Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Principle of the Hollow-Anode Plasma Source Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 Abstract The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 - 10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through

2

Andre Anders  

NLE Websites -- All DOE Office Websites (Extended Search)

Andre Anders Andre Anders Andre Anders 1 Cyclotron Road MS 53R004 Berkeley CA 94720 Office Location: 53B-0101 (510) 486-6745 AAnders@lbl.gov This publications database is an ongoing project, and not all Division publications are represented here yet. Publications 2013 Zhu, Yuan Kun, Rueben J. Mendelsberg, Jiaqi Zhu, Jiecai Han, and André Anders. "Dopant-induced band filling and bandgap renormalization in CdO: In films." Journal of Physics D: Applied Physics 46, no. 19 (2013). Download: PDF (1.22 MB) 2012 Anders, André. "Self-organization and self-limitation in high power impulse magnetron sputtering." Applied Physics Letters 100, no. 224104 (2012). Download: PDF (1.2 MB) 2011 Anders, André, Delia J. Milliron, Rueben J. Mendelsberg, Sunnie H. N. Lim, Yuan Kun Zhu, and Joe Wallig. "Achieving high mobility ZnO:Al at very high

3

Bill Bradbury Jennifer Anders  

E-Print Network (OSTI)

Idaho James A. Yost Idaho Pat Smith Montana Tom Karier Washington Phil Rockefeller Washington September Anders Vice Chair Montana Henry Lorenzen Oregon W. Bill Booth Idaho James A. Yost Idaho Pat Smith Montana

4

THE FEDERAL ENERGY ADMINISTRATION By Roger Anders  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FEDERAL ENERGY FEDERAL ENERGY ADMINISTRATION By Roger Anders November 1980 U.S. Department of Energy Office of Management Office of the Executive Secretariat Office of History and Heritage Resources 1 Introduction For the three-year period between 1974 and 1977, the Federal Energy Administration implemented federal oil allocation and pricing regulations. An independent agency, the Federal Energy Administration was the successor of the Federal Energy Office, a short-term organization created to coordinate the government's response to the Arab oil embargo. By October 1977, when it became a part of the newly established Department of Energy, the Federal Energy

5

Magnetotellurics At Rio Grande Rift Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http:en.openei.orgwindex.php?titleMagnetote...

6

Chapter 18. Plasma Electrodynamics and Applications Plasma Electrodynamics and Applications  

E-Print Network (OSTI)

with the electrodynamics of waves in plasmas, with phenomena relevant to controlled fusion energy generation in high transformation of a cold-plasma extraordinary (X) wave to a kinetic electron-Bernstein wave (EBW and current drive in magnetically confined fusion plasmas. Section 3, in particular, describes the analysis

7

Atmospheric Pressure Plasma Process And Applications  

SciTech Connect

This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

Peter C. Kong; Myrtle

2006-09-01T23:59:59.000Z

8

Nielsen, Mads Pagh; Kr, Sren Knudsen; Korsgaard, Anders Published in  

E-Print Network (OSTI)

one year. Three scenarios are analyzed ranging from heat following only (grid compensation combined heat and power fuel cell system. International Journal of Hydrogen Energy, 33(7), 1921: Control of a novel HTPEM-based micro combined heat and power fuel cell system Anders R. Korsgaard?, Mads P

Nielsen, Mads Pagh

9

Ground Gravity Survey At U.S. West Region (Aiken & Ander, 1981...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At U.S. West Region (Aiken & Ander, 1981) Exploration Activity Details...

10

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

11

Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) | Open Energy  

Open Energy Info (EERE)

Aiken & Ander, 1981) Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At U.S. West Region (Aiken & Ander, 1981) Exploration Activity Details Location U.S. West Region Exploration Technique Magnetotellurics Activity Date Usefulness useful DOE-funding Unknown Notes Arizona, New Mexico, and southern Colorado References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Magnetotellurics_At_U.S._West_Region_(Aiken_%26_Ander,_1981)&oldid=389969" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties

12

Thermal Plasma Torches for Metallurgical Applications  

Science Conference Proceedings (OSTI)

Different types of plasma torches including a high power steam plasma torch and .... Recovery of Palladium and Rhodium from Spent Automobile Catalysts by...

13

Plasma biasing to control the growth conditions of diamond-like carbon  

E-Print Network (OSTI)

M. M. Bilek and A. Anders, Plasma Sources Sci. Technol. 8 (important for carbon films. The plasma bias principle isnot limited to carbon plasmas may also be applied to other

Anders, Andre; Pasaja, Nitisak; Lim, Sunnie H.N.; Petersen, Tim C.; Keast, Vicki J.

2006-01-01T23:59:59.000Z

14

Plasma cleaning techniques and future applications in environmentally conscious manufacturing  

SciTech Connect

Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

Ward, P.P.

1995-07-01T23:59:59.000Z

15

Laser produced plasma diagnostics by cavity ringdown spectroscopy and applications  

SciTech Connect

Laser-produced plasmas have many applications for which detailed characterization of the plume is requested. Cavity ring-down spectroscopy is a versatile absorption method which provides data on the plume and its surroundings, with spatial and temporal resolution. The measured absorption line shapes contain information about angular and velocity distributions within the plume. In various plasmas we have observed molecules or metastable atoms which were not present in the emission spectra.

Milosevic, S. [Institute of Physics, Zagreb (Croatia)

2012-05-25T23:59:59.000Z

16

Laser-Induced Underwater Plasma And Its Spectroscopic Applications  

SciTech Connect

Applications of Laser Induced Breakdown Spectroscopy (LIBS) for analysis of immersed solid and soft materials, and for liquid impurities are described. A method for improving the LIBS signal underwater and for obtaining quantitative analyses in presence of strong shot-to-shot variations of the plasma properties is proposed. Dynamic of the gas bubble formed by the laser pulse is also discussed, together with its importance in Double-Pulse (DP) laser excitation. Results of the studies relative to an application of multi-pulse sequence and its effects on the plasma and gas bubble formation are also presented.

Lazic, Violeta [ENEA, FIS-LAS, Via. E. Fermi 45, 00044 Frascati (Italy)

2008-09-23T23:59:59.000Z

17

Basic mechanism for abrupt monsoon transitions Anders Levermanna,b,1  

E-Print Network (OSTI)

Basic mechanism for abrupt monsoon transitions Anders Levermanna,b,1 , Jacob Schewea,b , Vladimir 18, 2009 (received for review February 11, 2009) Monsoon systems influence the livelihood of hundreds strong and abrupt changes. Though details of monsoon circulations are complicated, obser- vations reveal

Levermann, Anders

18

Anders ngstrm and His Early Papers on Probability Forecasting and the Use/Value of Weather Forecasts  

Science Conference Proceedings (OSTI)

Anders K. ngstrm was known primarily for his contributions to the field of atmospheric radiation. However, his scientific interests encompassed many diverse topics. This paper describes the contents of two early, remarkable, and, until recently,...

Erik Liljas; Allan H. Murphy

1994-07-01T23:59:59.000Z

19

Application of a Plasma Powder Welding to engine valves  

SciTech Connect

In hardfacing of automobile engine valves made of heat resisting steel such as 21-4N, conventional oxy-acetylene gase welding has been currently conducted manually by well trained operators because of using cast Stellite rods as the filler. In accordance with the strong demands of automatic welding, the authors newly developed an automatically controlled Plasma Powder Welding (PPW) system. This system is characterized by the application of a high thermal density plasma arc as heat source and by using power filler which melts more easily than bar cast rods. Moreover, this PPW system has been applied to the automotive engine valve production line and resulted in the great contribution to manpower saving.

Takeuchi, Y.; Nagata, M.

1985-01-01T23:59:59.000Z

20

Plasma process optimization for N-type doping applications  

SciTech Connect

Plasma doping (PLAD) has been adopted across the implant technology space and into high volume production for both conventional DRAM and NAND doping applications. PLAD has established itself as an alternative to traditional ion implantation by beamline implantation. The push for high doping concentration, shallow doping depth, and conformal doping capability expand the need for a PLAD solution to meet such requirements. The unique doping profile and doping characteristics at high dose rates allow for PLAD to deliver a high throughput, differentiated solution to meet the demand of evolving transistor technology. In the PLAD process, ions are accelerated to the wafer as with a negative wafer bias applied to the wafer. Competing mechanisms, such as deposition, sputtering, and etching inherent in plasma doping require unique control and process optimization. In this work, we look at the distinctive process tool control and characterization features which enable an optimized doping process using n-type (PH{sub 3} or AsH{sub 3}) chemistries. The data in this paper will draw the relationship between process optimization through plasma chemistry study to the wafer level result.

Raj, Deven; Persing, Harold; Salimian, Siamak; Lacey, Kerry; Qin Shu; Hu, Jeff Y.; McTeer, Allen [Applied Materials, Inc., Varian Semiconductor Business Unit, 35 Dory Road, Gloucester, MA 01930 (United States); Micron Technology, Inc., 8000 S. Federal Way, Boise, ID 83707 (United States)

2012-11-06T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ris National Laboratory Optics and Plasma Reserch Department  

E-Print Network (OSTI)

, Anders Bjarklev, Peter E. Andersen Risø National Laboratory, Optics and Plasma Research Department, DK amplifier Frederik D. Nielsen and Lars Thrane Risø National Laboratory, Optics and Plasma Research. Lyngby, Denmark Peter E. Andersen (corresponding author) Risø National Laboratory, Optics and Plasma

22

Characteristics and potential applications of an ORNL microwave ECR multicusp plasma ion source  

SciTech Connect

A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source that has two ECR plasma production regions and uses multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasma over large areas of 300 to 400 cm{sup 2} and could be scaled up to produce uniform plasma over 700 cm{sup 2} or larger. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The working gases used were argon, helium, hydrogen, and oxygen. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of the discharge parameters. The discharge characteristics and a hypothetical discharge mechanism for this plasma source are described and discussed. Potential applications, including plasma and ion-beam sources for manufacturing advanced microelectronics, for space electric propulsion, and for fusion research, are discussed. 10 refs., 10 figs.

Tsai, C.C.

1990-01-01T23:59:59.000Z

23

Potential applications of a new microwave ECR (electron cyclotron resonance) multicusp plasma ion source  

SciTech Connect

A new microwave electron cyclotron resonance (ECR) multicusp plasma ion source using two ECR plasma production regions and multicusp plasma confinement has been developed at Oak Ridge National Laboratory. This source has been operated to produce uniform and dense plasmas over large areas of 300 to 400 cm{sup 2}. The plasma source has been operated with continuous argon gas feed and pulsed microwave power. The discharge initiation phenomena and plasma properties have been investigated and studied as functions of discharge parameters. Together with the discharge characteristics observed, a hypothetical discharge mechanism for this plasma source is reported and discussed. Potential applications, including plasma and ion-beam processing for manufacturing advanced microelectronics and for space electric propulsion, are discussed. 7 refs., 6 figs.

Tsai, C.C.

1990-01-01T23:59:59.000Z

24

Fundamentals of Spark-Plasma Sintering: Applications to Net ...  

Science Conference Proceedings (OSTI)

Net-shaping capabilities of spark-plasma sintering are analyzed both theoretically and experimentally. Modeling and experimentation are conducted for...

25

Dielectric covered hairpin probe for its application in reactive plasmas  

Science Conference Proceedings (OSTI)

The hairpin probe is a well known technique for measuring local electron density in low temperature plasmas. In reactive plasmas, the probe characteristics are affected by surface sputtering, contamination, and secondary electron emission. At higher densities, the plasma absorbs the entire electromagnetic energy of hairpin and hence limits the density measurements. These issues can be resolved by covering the hairpin surface with a thin layer of dielectric. In this letter, the dielectric contribution to the probe characteristics is incorporated in a theory which is experimentally verified. The dielectric covering improves the performance of probe and also allows the hairpin tip to survive in reactive plasma where classical electrical probes are easily damaged.

Gogna, G. S.; Gaman, C.; Turner, M. M. [NCPST, School of Physical Sciences, Dublin City University, Dublin 9 (Ireland); Karkari, S. K. [Institute for Plasma Research Center, Bhat Gandhinagar, Gujarat 382428 (India)

2012-07-23T23:59:59.000Z

26

Plasma technology for textile finishing applications gets a boost from LANL  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma technology for textile finishing applications gets a boost Plasma technology for textile finishing applications gets a boost from LANL Plasma technology for textile finishing applications gets a boost from LANL APJeT received a $100,000 Venture Acceleration Fund award from LANS helping to complete design and engineering of a commercial-scale production unit. April 3, 2012 image description Gary Selwyn conducts product quality assurance on dual-functional, plasma-treated fabric at APJeT's Santa Fe lab: LANL technology may transform performance apparel. Contact CEO John Emrich (505) 471-6399 Future applications of APJet may include depositing thin films for architectural glass, semiconductors, flooring, and solar panels. "A big part of our current challenge has been selecting this one use for the technology and putting all of our energy and resources into that," Selwyn

27

Application of neutron transport codes to the transport of neutrals in plasmas  

DOE Green Energy (OSTI)

The application of the linear Boltzmann equation as used in reactor and shielding problems to the transport of neutral atoms in a Tokamak-type plasma has been studied. The method was found to be generally valid with some limitations because of possible anisotropy of the plasma medium. Effective cross sections for the interaction of neutral atoms with an isotropic plasma were calculated and applied to the transport of hydrogen in a typical Oak Ridge Tokamak (ORMAK) plasma. The outer wall was found to have a significant effect in the hydrogen concentration.

Marable, J.H.; Oblow, E.M.

1976-09-01T23:59:59.000Z

28

RF-Driven Plasma Source for Ion Implantation Applications  

E.O. Lawrence Berkeley National Laboratory. APPLICATIONS OF TECHNOLOGY: Automotive manufacturing ; Machine tools ; Medical tool manufacturing

29

Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications  

Science Conference Proceedings (OSTI)

The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

Yang Zhong; Robert C. O'Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

2011-11-01T23:59:59.000Z

30

Plasma mixing glow discharge device for analytical applications  

DOE Patents (OSTI)

An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

Pinnaduwage, L.A.

1999-04-20T23:59:59.000Z

31

Plasma mixing glow discharge device for analytical applications  

DOE Patents (OSTI)

An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

Pinnaduwage, Lal A. (Knoxville, TN)

1999-01-01T23:59:59.000Z

32

Cathodic Arc Plasma Deposition  

Office of Scientific and Technical Information (OSTI)

Cathodic Arc Plasma Deposition Cathodic Arc Plasma Deposition André Anders Lawrence Berkeley National Laboratory, University of California, 1 Cyclotron Road, Mailstop 53, Berkeley, California 94720 aanders@lbl.gov Abstract Cathodic arc plasma deposition is one of oldest coatings technologies. Over the last two decades it has become the technology of choice for hard, wear resistant coatings on cutting and forming tools, corrosion resistant and decorative coatings on door knobs, shower heads, jewelry, and many other substrates. The history, basic physics of cathodic arc operation, the infamous macroparticle problem and common filter solutions are reviewed. Cathodic arc plasmas stand out due to their high degree of ionization, with important consequences for film nucleation, growth, and efficient utilization of substrate bias. The

33

Plasma source ion implantation research and applications at Los Alamos National Laboratory  

DOE Green Energy (OSTI)

Plasma Source Ion Implantation research at Los Alamos Laboratory includes direct investigation of the plasma and materials science involved in target surface modification, numerical simulations of the implantation process, and supporting hardware engineering. Target materials of Al, Cr, Cu-Zn, Mg, Ni, Si, Ti, W, and various Fe alloys have been processed using plasmas produced from Ar, NH{sub 3}, N{sub 2}, CH{sub 4}, and C{sub 2}H{sub 2} gases. Individual targets with surface areas as large as {approximately}4 m{sup 2}, or weighing up to 1200 kg, have been treated in the large LANL facility. In collaboration with General Motors and the University of Wisconsin, a process has been developed for application of hard, low friction, diamond-like-carbon layers on assemblies of automotive pistons. Numerical simulations have been performed using a 2{1/2}-D particle- in-cell code, which yields time-dependent implantation energy, dose, and angle of arrival for ions at the target surface for realistic geometries. Plasma source development activities include the investigation of pulsed, inductively coupled sources capable of generating highly dissociated N{sup +} with ion densities n{sub i} {approximately} 10{sup 11}/cm{sup 3}, at {approximately}100 W average input power. Cathodic arc sources have also been used to produce filtered metallic and C plasmas for implantation and deposition either in vacuum, or in conjunction with a background gas for production of highly adherent ceramic coatings.

Munson, C.P.; Faehl, R.J.; Henins, I. [and others

1996-12-31T23:59:59.000Z

34

Brightness enhancement of plasma ion source by utilizing anode spot for nano applications  

Science Conference Proceedings (OSTI)

Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

2012-02-15T23:59:59.000Z

35

The structure, properties and performance of plasma-sprayed beryllium for fusion applications  

DOE Green Energy (OSTI)

Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others

1995-09-01T23:59:59.000Z

36

Plasma Immersion Ion Implantation with Solid Targets for Space and Aerospace Applications  

SciTech Connect

This paper describes successful results obtained by a new type of plasma source, named as Vaporization of Solid Targets (VAST), for treatment of materials for space and aerospace applications, by means of plasma immersion ion implantation and deposition (PIII and D). Here, the solid element is vaporized in a high pressure glow discharge, being further ionized and implanted/deposited in a low pressure cycle, with the aid of an extra electrode. First experiments in VAST were run using lithium as the solid target. Samples of silicon and aluminum alloy (2024) were immersed into highly ionized lithium plasma, whose density was measured by a double Langmuir probe. Measurements performed with scanning electron microscopy (SEM) showed clear modification of the cross-sectioned treated silicon samples. X-ray photoelectron spectroscopy (XPS) analysis revealed that lithium was implanted/deposited into/onto the surface of the silicon. Implantation depth profiles may vary according to the condition of operation of VAST. One direct application of this treatment concerns the protection against radiation damage for silicon solar cells. For the case of the aluminum alloy, X-ray diffraction analysis indicated the appearance of prominent new peaks. Surface modification of A12024 by lithium implantation/deposition can lower the coefficient of friction and improve the resistance to fatigue of this alloy. Recently, cadmium was vaporized and ionized in VAST. The main benefit of this element is associated with the improvement of corrosion resistance of metallic substrates. Besides lithium and cadmium, VAST allows to performing PIII and D with other species, leading to the modification of the near-surface of materials for distinct purposes, including applications in the space and aerospace areas.

Oliveira, R. M.; Goncalves, J. A. N.; Ueda, M.; Silva, G. [National Institute for Space Research, PO Box 515, ZIP 12227-010 Sao Jose dos Campos, Sao Paulo (Brazil); Baba, K. [Industrial Technology Center of Nagasaki, 2-1303-8, Ikeda, Omura Nagasaki 856-0026 (Japan)

2009-01-05T23:59:59.000Z

37

Development of a Multiscale Ionized Gas (MIG) Flow Code for Plasma Applications Subrata Roy Datta V. Gaitonde  

E-Print Network (OSTI)

dynamics, electromagnetics, chemical kinetics and molecular physics amongst others. A finite element basedDevelopment of a Multiscale Ionized Gas (MIG) Flow Code for Plasma Applications Subrata Roy Datta V applications including space propulsion thrusters and high-speed air vehicles. These are of considerable

Roy, Subrata

38

Working Principle of the Hollow-Anode Plasma Source Hollow-Anode Plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

36240 36240 Plasma Sources Science and Technology 4 (1995) 571-575. Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ABSTRACT The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 -10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through the anode hole and forms a bright plasma jet streaming with supersonic velocity (Mach number 1.2). The plasma stream can be used, for instance, in plasma-assisted deposition of thin films

39

Plasma-based ion implantation and deposition: A review of physics, technology, and applications  

E-Print Network (OSTI)

X. Y. Yao, and K. -M. Yu, "Plasma synthesis of metallic andT. Short, and J. Tendys, "Plasma immersion ion implantationBang, and M. -R. Lin, "Plasma doping for shallow junctions,"

Pelletier, Jacques; Anders, Andre

2005-01-01T23:59:59.000Z

40

A cold micro plasma jet device suitable for bio-medical applications  

Science Conference Proceedings (OSTI)

This paper presents a cold plasma jet operating at 20kHz AC under atmospheric pressure. The micro plasma jet nozzle has a porous alumina dielectric installed between the outer anode and the inner hollow cathode. While nitrogen gas is injected through ... Keywords: Atmospheric cold plasma, Micro plasma jet, Porous alumina dielectric

Kangil Kim; Geunyoung Kim; Yong Cheol Hong; Sang Sik Yang

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High average power CW FELs (Free Electron Laser) for application to plasma heating: Designs and experiments  

SciTech Connect

A short period wiggler (period {approximately} 1 cm), sheet beam FEL has been proposed as a low-cost source of high average power (1 MW) millimeter-wave radiation for plasma heating and space-based radar applications. Recent calculation and experiments have confirmed the feasibility of this concept in such critical areas as rf wall heating, intercepted beam ( body'') current, and high voltage (0.5 - 1 MV) sheet beam generation and propagation. Results of preliminary low-gain sheet beam FEL oscillator experiments using a field emission diode and pulse line accelerator have verified that lasing occurs at the predicted FEL frequency. Measured start oscillation currents also appear consistent with theoretical estimates. Finally, we consider the possibilities of using a short-period, superconducting planar wiggler for improved beam confinement, as well as access to the high gain, strong pump Compton regime with its potential for highly efficient FEL operation.

Booske, J.H.; Granatstein, V.L.; Radack, D.J.; Antonsen, T.M. Jr.; Bidwell, S.; Carmel, Y.; Destler, W.W.; Latham, P.E.; Levush, B.; Mayergoyz, I.D.; Zhang, Z.X. (Maryland Univ., College Park, MD (USA). Lab. for Plasma Research); Freund, H.P. (Science Applications International Corp., McLean, VA (USA))

1989-01-01T23:59:59.000Z

42

Bill Bradbury Jennifer Anders  

E-Print Network (OSTI)

Idaho James A. Yost Idaho Pat Smith Montana Tom Karier Washington Phil Rockefeller Washington October 29, 2013 MEMORANDUM TO: Council Members FROM: Jeff Allen, Idaho Council Office Director and Policy Analyst SUBJECT: Update on the Redfish Lake Sockeye Hatchery in Springfield, ID. Idaho Department of Fish and Game

43

Bill Bradbury Jennifer Anders  

E-Print Network (OSTI)

Idaho James A. Yost Idaho Pat Smith Montana Tom Karier Washington Phil Rockefeller Washington July 30 Northwestern Link Rick PacifiCorp Kinney Scott Avista Stokes Mark Idaho Power Publicly Owned Utilities Huhta Utilities O'Meara Kevin PPC Prescott John PNGC Commissions Sterling Rick Idaho Johnson Steve Washington

44

Theory of coupled whistler-electron temperature gradient mode in high beta plasma: Application to linear plasma device  

Science Conference Proceedings (OSTI)

This paper presents a theory of coupled whistler (W) and electron temperature gradient (ETG) mode using two-fluid model in high beta plasma. Non-adiabatic ion response, parallel magnetic field perturbation ({delta}B{sub z}), perpendicular magnetic flutter ({delta}B{sub perpendicular}), and electron collisions are included in the treatment of theory. A linear dispersion relation for whistler-electron temperature gradient (W-ETG) mode is derived. The numerical results obtained from this relation are compared with the experimental results observed in large volume plasma device (LVPD) [Awasthi et al., Phys. Plasma 17, 42109 (2010)]. The theory predicts that the instability grows only where the temperature gradient is finite and the density gradient flat. For the parameters of the experiment, theoretically estimated frequency and wave number of W-ETG mode match with the values corresponding to the peak in the power spectrum observed in LVPD. By using simple mixing length argument, estimated level of fluctuations of W-ETG mode is in the range of fluctuation level observed in LVPD.

Singh, S. K.; Awasthi, L. M.; Singh, R.; Kaw, P. K.; Jha, R.; Mattoo, S. K. [Institute for Plasma Research, Bhat, Gandhinagar 382 428 (India)

2011-10-15T23:59:59.000Z

45

Reactive Plasma-Aided Fabrication of ZnO for Solar Cells Applications  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Multifunctional Oxide. Presentation Title, Reactive Plasma-Aided Fabrication of...

46

Plasma Enhanced Chemical Vapor Deposition on Living Substrates: Development, Characterization, and Biological Applications  

E-Print Network (OSTI)

This dissertation proposed the idea of plasma-enhanced chemical vapor deposition on living substrates (PECVD on living substrates) to bridge the gap between the thin film deposition technology and the biological and living substrates. This study focuses on the establishment of the knowledge and techniques necessary to perform PECVD on living substrates and contains three main aspects: development, characterization, and biological applications. First, a PECVD tool which can operate in ambient air and at low temperature was developed using a helium dielectric barrier discharge jet (DBD jet). It was demonstrated that various materials, such as polymeric, metallic, and composite films, can be readily synthesized through this technique. Second, the PMMA and copper films deposited using DBD jets were characterized. High-rate (22 nm/s), low-temperature (39 C) PMMA deposition was achieved and the film surface morphology can be tailored by altering the discharge power. Conductive copper films with an electrical resistivity lower than 110-7 ohm-m were obtained through hydrogen reduction. Both PMMA and copper films can be grown on temperature-sensitive substrates, such as plastics, pork skin, and even fingernail. The electrical, optical, and imaging characterization of the DBD jets was also conducted and several new findings were reported. Multiple short-duration current pulses instead of only one broad pulse per half voltage cycle were observed when a dielectric substrate was employed. Each short-duration current pulse is induced by a leading ionization wave followed by the formation of a plasma channel. Precursor addition further changed the temporal sequence of the pulses. An increase in the power led to a mode change from a diffuse DBD jet to a concentrated one. This mode change showed significant dependence on the precursor type, tube size, and electrode configuration. These findings regarding the discharge characteristics can thus facilitate the development of DBD-jet operation strategies to improve the deposition efficacy. Finally, this technique was used to grow PMMA films onto agar to demonstrate one of its potential biological applications: sterile bandage deposition. The DBD jet with the film depositing ability enabled the surface to be not only efficiently sanitized but also protected by a coating from being reached by bacteria.

Tsai, Tsung-Chan 1982-

2012-12-01T23:59:59.000Z

47

Application of pulsed plasma NO{sub x} reduction to diesel engine exhaust  

SciTech Connect

We have studied the effect of pulsed plasma discharges on gas mixtures simulating diesel engine exhaust by modeling and by experiment. Our modeling results have shown that the pulsed plasma can convert NO{sub x} to N{sub 2} using the nitrogen itself as a reductant. However, this process is energetically unfavorable for the plasma regime of our measurements. In our experiments we found that addition of hydrocarbons improves substantially the energy efficiency of pulsed plasma NO{sub x} reduction. Real exhaust gas contains some gaseous hydrocarbons and carbon monoxide that may prove sufficient for improving the energy efficiency of the ``right`` pulsed plasma reduction process.

Wallman, P.H.; Penetrante, B.M.; Vogtlin, G.E.; Hsiao, M.C.

1993-10-11T23:59:59.000Z

48

EBT2 dosimetry of x-rays produced by the electron beam from a Plasma Focus for medical applications  

Science Conference Proceedings (OSTI)

The electron beam emitted from the back of Plasma Focus devices is being studied as a radiation source for intraoperative radiation therapy applications. A Plasma Focus device is being developed to this aim, to be utilized as an x-ray source. The electron beam is driven to impinge on 50 {mu}m brass foil, where conversion x-rays are generated. Measurements with gafchromic film are performed to analyse the attenuation of the x-rays beam and to predict the dose given to the culture cell in radiobiological experiments to follow.

Ceccolini, E.; Mostacci, D.; Sumini, M. [Montecuccolino Nuclear Engineering Laboratory - DIENCA, University of Bologna, via dei Colli 16, I-40136 Bologna (Italy); Rocchi, F. [Montecuccolino Nuclear Engineering Laboratory - DIENCA, University of Bologna, via dei Colli 16, I-40136 Bologna (Italy); UTFISSM-PRONOC, ENEA, via Martiri di Monte Sole 4, I-40129 Bologna (Italy); Tartari, A. [Department of Physics, Ferrara University, via Saragat 1, I-44122 Ferrara (Italy); Mariotti, F. [ENEA, IRP-DOS, via dei Colli 16, I-40136 Bologna (Italy)

2012-09-01T23:59:59.000Z

49

Development of asymmetric double probe formula and its application for collisional plasmas  

SciTech Connect

The ratio of the electron and ion saturation currents in single probe I-V characteristics for microwave-sustained plasma jets at atmospheric pressure are found to be much smaller than the value expected from the standard high-pressure single probe theory providing an over estimation of electron temperatures. By assuming that the single probe characteristic behaves as an asymmetric double probe when the electron to ion saturation current ratio is reduced, the whole characteristics may be fitted and significantly lower electron temperatures may be derived. In this study, asymmetric double probe theory for collisional plasmas is developed and employed to microwave-sustained helium plasma jets in order to estimate the plasma parameters (electron temperature and plasma density) at atmospheric pressure avoiding the overestimation of electron temperature.

Saito, S.; Razzak, M. A.; Takamura, S.; Talukder, M. R. [Faculty of Engineering, Aichi Institute of Technology, 470-0392 Toyota (Japan)

2010-06-15T23:59:59.000Z

50

The LANL atomic kinetics modeling effort and its application to W plasmas  

SciTech Connect

This is the work of the LANL group on atomic kinetics modelling. There are various levels of detail in the LANL suite of atomic physics codes: (1) Non-relativistic configuration average kinetics (nl{sup w}) + UTA spectra, (2) Relativistic configuration average kinetics (nlj{sup w}) + UTA spectra, (3) Mixed UTA (MUTA) - configuration average kinetics and spectra composed of mixture of UTAs and fine-structure features and (4) Fine-structure levels. The LANL suite of atomic physics codes consists of 5 codes: (1) CATS/RATS atomic structure codes (semi-relativistic Cowan code or Dirac-Fock-Slater code), (2) ACE collisional excitation code (Plane-wave Born, Columb-Born and distorted-wave methods) and (3) GIPPER ionization code (scaled-hydrogenic and distorted-wave methods). An on-line version of the codes is available at http://aphysics2.lanl.gov/tempweb. ATOMIC kinetics modelling code uses the atomic data for LTE or NLTE population kinetics models and spectral modelling of a broad range of plasma applications. The mixed UTA (MUTA) approach was developed for the spectra of complex ions and the results are in very good agreement with the Sandia-Z Iron opacity experiments. The LANL configuration-average/MUTA calculations were applied to tungsten problems of the non-LTE kinetics code comparison workshops. The LANL group plans to perform much larger calculations to assess the accuracy of the older results and to investigate low-temperature tungsten processes relevant to the divertor modelling.

Colgan, James [Los Alamos National Laboratory; Abdallah, Joseph [Los Alamos National Laboratory; Fontes, Christopher [Los Alamos National Laboratory; Zhang, Honglin [Los Alamos National Laboratory

2010-12-10T23:59:59.000Z

51

Slide 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Andre Anders, Plasma Applications Group, 2006 Andre Anders, Plasma Applications Group, 2006 AVS 53rd International Symposium & Exhibition, November 12 - 17, 2006 Moscone West Convention Center, San Francisco, CA Invited Talk for Session Invited Talk for Session " " Surface Engineering 5 Surface Engineering 5 " " Pulsed Plasmas in Surface Engineering Pulsed Plasmas in Surface Engineering Pulsed Metal Plasmas Pulsed Metal Plasmas Andr Andr é é Anders Anders Lawrence Berkeley National Laboratory Berkeley, California USA aanders@lbl.gov This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building Technology, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. © Andre Anders, Plasma Applications Group, 2006 Motivation Motivation

52

Design of a Command-Triggered Plasma Opening Switch for Terawatt Applications  

DOE Green Energy (OSTI)

Inductive energy storage systems can have high energy density, lending to smaller, less expensive systems. The crucial element of an inductive energy storage system is the opening switch. This switch must conduct current while energy is stored in an inductor, then open quickly to transfer this energy to a load. Plasma can perform this function. The Plasma Opening Switch (POS) has been studied for more than two decades. Success with the conventional plasma opening switch has been limited. A system designed to significantly improve the performance of vacuum opening switches is described in this paper. The gap cleared of plasma is a rough figure-of-merit for vacuum opening switches. Typical opened gaps of 3 mm are reported for conventional switches. The goal for the system described in this paper is more than 3 cm. To achieve this, the command-triggered POS adds an active opening mechanism, which allows complete separation of conduction and opening. This separation is advantageous because of the widely different time scales of conduction and opening. The detrimental process of magnetic field penetration into the plasma during conduction is less important in this switch. The opening mechanism duration is much shorter than the conduction time, so penetration during opening is insignificant. Opening is accomplished with a fast magnetic field that pushes plasma out of the switch region. Plasma must be removed from the switch region to allow high voltage. This paper describes some processes important during conduction and opening, and show calculations on the trigger requirements. The design of the switch is shown. This system is designed to demonstrate both improved performance and nanosecond output jitter at levels greater than one terawatt. An amplification mechanism is described which reduces the trigger energy. Particle-in-cell simulations of the system are also shown.

SAVAGE,MARK E.; MENDEL,C.W.; SEIDEL,DAVID B.

1999-10-29T23:59:59.000Z

53

Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications  

Science Conference Proceedings (OSTI)

We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

2012-12-15T23:59:59.000Z

54

Thermal conduction and particle transport in strong MHD turbulence, with application to galaxy-cluster plasmas  

E-Print Network (OSTI)

We investigate field-line separation in strong MHD turbulence analytically and with direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 5-10 relative to the Spitzer thermal conductivity of a non-magnetized plasma. We also estimate how the thermal conductivity would be affected by efficient turbulent resistivity.

Benjamin D. G. Chandran; Jason L. Maron

2003-03-11T23:59:59.000Z

55

External proton beam analysis of plasma facing materials for magnetic confinement fusion applications  

E-Print Network (OSTI)

A 1.7MV tandem accelerator was reconstructed and refurbished for this thesis and for surface science applications at the Cambridge laboratory for accelerator study of surfaces (CLASS). At CLASS, an external proton beam ...

Barnard, Harold Salvadore

2009-01-01T23:59:59.000Z

56

Application of diffusion theory to neutral atom transport in fusion plasmas  

Science Conference Proceedings (OSTI)

It is found that energy dependent diffusion theory provides excellent accuracy in the modelling of transport of neutral atoms in fusion plasmas. Two reasons in particular explain the good accuracy. First, while the plasma is optically thick for low energy neutrals, it is optically thin for high energy neutrals and diffusion theory with Marshak boundary conditions gives accurate results for an optically thin medium even for small values of 'c', the ratio of the scattering to the total cross section. Second, the effective value of 'c' at low energy becomes very close to one due to the down-scattering via collisions of high energy neutrals. The first reason is proven both computationally and theoretically by solving the transport equation in a power series in 'c' and the diffusion equation with 'general' Marshak boundary conditions. The second reason is established numerically by comparing the results from a one-dimensional, general geometry, multigroup diffusion theory code, written for this purpose, with the results obtained using the transport code ANISN.

Hasan, M.Z.; Conn, R.W.; Pomraning, G.C.

1986-05-01T23:59:59.000Z

57

A direct electron bombarded charge coupled device for dynamic plasma imaging applications (abstract)  

Science Conference Proceedings (OSTI)

A variety of plasma physics experiments require the recording of continuous time history of x-ray emission. Many laboratories have developed x-ray streak camera technology in order to time resolve x-ray spectra or images produced by laser-driven plasma experiments. These cameras record x rays by converting photons to electrons, which in turn are focused and swept across an electron sensitive area detector as a function of time. X-ray photons impinging on a transmission type photocathode generate photoelectrons which are accelerated to energies between 10 and 20 keV and focused onto a phosphor screen. The light from the phosphor image may be intensified using a microchannel plate, and is usually optically coupled directly onto film or an optical charge coupled device. We have designed and built an x-ray sensitive streak camera readout where we replaced the microchannel plate based intensifier and film package with a modified charge coupled device area detector to directly absorb accelerated photoelectrons emitted from the cathode. This system has been integrated into the streak tube arrangement. We will present a set of system performance data, which have been obtained from both bench top experiments on a dc source and dynamic measurements at the Nova laser facility. X-ray images at various exposure times show better spatial resolution, improved signal to noise ratio, and higher dynamic range. Other advantages include instantaneous data readout, which enables fast postprocessing, and no increase in overall cost for an engineered system.

Weber, F.; Celliers, P.; Bell, P.; Diamond, C.

2001-01-01T23:59:59.000Z

58

Underwater pressure amplification of laser-induced plasma shock waves for particle removal applications  

Science Conference Proceedings (OSTI)

Underwater amplification of laser-induced plasma (LIP)-generated transient pressure waves using shock tubes is introduced and demonstrated. Previously, it has been shown that LIP for noncontact particle removal is possible on the sub-100-nm level. This is now enhanced through shock tube utilization in a medium such as water by substantially increasing shock wave pressure for the same pulse energy. A shock tube constrains the volume and changes the propagation direction of the expanding plasma core by focusing a pulsed-laser beam inside a tube with a blind end, thus increasing the wave front pressure generated. Current amplification approach can reduce radiation exposure of the substrate from the shock wave because of the increased distance from the LIP core to the substrate provided by the increased pressure per unit pulse energy. For the same pulsed laser, with the aid of a shock tube, substantial levels of pressure amplitude amplification (8.95) and maximum pressure (6.48 MPa) are observed and reported.

Dunbar, Thomas J.; Cetinkaya, Cetin [Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, New York 13699-5725 (United States) and Center for Advanced Materials Processing, Clarkson University, Potsdam, New York 13699-5725 (United States)

2007-07-30T23:59:59.000Z

59

Theory of heating of hot magnetized plasma by Alfven waves. Application for solar corona  

E-Print Network (OSTI)

The heating of magnetized plasma by propagation of Alfven waves is calculated as a function of the magnetic field spectral density. The results can be applied to evaluate the heating power of the solar corona at known data from satellites' magnetometers. This heating rate can be incorporated in global models for heating of the solar corona and creation of the solar wind. The final formula for the heating power is illustrated with a model spectral density of the magnetic field obtained by analysis of the Voyager 1 mission results. The influence of high frequency dissipative modes is also taken into account and it is concluded that for evaluation of the total coronal heating it is necessary to know the spectral density of the fluctuating component of the magnetic field up to the frequency of electron-proton collisions.

T. M. Mishonov; M. V. Stoev; Y. G. Maneva

2007-01-19T23:59:59.000Z

60

BROADBAND ANTENNA MATCHING NETWORK DESIGN AND APPLICATION FOR RF PLASMA ION SOURCE  

SciTech Connect

The RF ion source at Spallation Neutron Source has been upgraded to meet higher beam power requirement. One important subsystem for efficient operation of the ion source is the 2MHz RF impedance matching network. The real part of the antenna impedance is very small and is affected by plasma density for 2MHz operating frequency. Previous impedance matching network for the antenna has limited tuning capability to cover this potential variation of the antenna impedance since it employed a single tuning element and an impedance transformer. A new matching network with two tunable capacitors has been built and tested. This network can allow precision matching and increase the tunable range without using a transformer. A 5-element broadband matching network also has been designed, built and tested. The 5-element network allows wide band matching up to 50 kHz bandwidth from the resonance center of 2 MHz. The design procedure, simulation and test results are presented.

Shin, Ki [ORNL; Kang, Yoon W [ORNL; Piller, Chip [ORNL; Fathy, Aly [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Design of a digital multiradian phase detector and its application in fusion plasma interferometry  

Science Conference Proceedings (OSTI)

We discuss the circuit design of a digital multiradian phase detector that measures the phase difference between two 10 kHz square wave TTL signals and provides the result as a binary number. The phase resolution of the circuit is 1/64 period and its dynamic range is 256 periods. This circuit has been developed for fusion plasma interferometry with submillimeter waves on the ASDEX Upgrade tokamak. The results from interferometric density measurement are discussed and compared to those obtained with the previously used phase detectors, especially with respect to the occurrence of phase jumps. It is illustrated that the new phase measurement provides a powerful tool for automatic real-time validation of the measured density, which is important for feedback algorithms that are sensitive to spurious density signals.

Mlynek, A.; Schramm, G.; Eixenberger, H.; Sips, G.; McCormick, K.; Zilker, M.; Behler, K.; Eheberg, J. [Max-Planck-Institut fuer Plasmaphysik, Garching 85748 (Germany); Collaboration: ASDEX Upgrade Team

2010-03-15T23:59:59.000Z

62

Differential Emission Measure Determination of Collisionally Ionized Plasma: II. Application to Hot Stars  

E-Print Network (OSTI)

In a previous paper we have described a technique to derive constraints on the differential emission measure (DEM) distribution, a measure of the temperature distribution, of collisionally ionized hot plasmas from their X-ray emission line spectra. We apply this technique to the Chandra/HETG spectra of all of the nine hot stars available to us at the time this project was initiated. We find that DEM distributions of six of the seven O stars in our sample are very similar but that theta Ori has an X-ray spectrum characterized by higher temperatures. The DEM distributions of both of B stars in our sample have lower magnitudes than those of the O stars and one, tau Sco, is characterized by higher temperatures than the other, beta Cru. These results confirm previous work in which high temperatures have been found for theta Ori and tau Sco and taken as evidence for channeling of the wind in magnetic fields, the existence of which are related to the stars' youth. Our results demonstrate the utility of our method for deriving temperature information for large samples of X-ray emission line spectra.

Patrick S. Wojdowski; Norbert S. Schulz

2005-03-20T23:59:59.000Z

63

Induced Current Characteristics Due to Laser Induced Plasma and Its Application to Laser Processing Monitoring  

Science Conference Proceedings (OSTI)

In laser processing, suitable conditions for laser and gas play important role in ensuring a high quality of processing. To determine suitable conditions, we employed the electromagnetic phenomena associated with laser plasma generation. An electrode circuit was utilised to detect induced current due to the fast electrons propelled from the material during laser material processing. The characteristics of induced current were examined by changing parameters such as supplied voltage, laser pulse energy, number of laser shots, and type of ambient gas. These characteristics were compared with the optical emission characteristics. It was shown that the induced current technique proposed in this study is much more sensitive than the optical method in monitoring laser processing, that is to determine the precise focusing condition, and to accurately determine the moment of completion of laser beam penetration. In this study it was also shown that the induced current technique induced by CW CO{sub 2} laser can be applied in industrial material processing for monitoring the penetration completion in a stainless steel plate drilling process.

Madjid, Syahrun Nur; Idris, Nasrullah [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Banda Aceh (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40/80 Srengseng Raya, Jakarta 11630 (Indonesia); Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, University of Fukui, 9-1 Bunkyo 3-chome, Fukui 910-8507 (Japan)

2011-03-30T23:59:59.000Z

64

J. Plasma Fusion Res. SERIES, Vol. 8 (2009) Generation Technique and Sterilization Application of Microwave-excited Plasma inside a Medical Container  

E-Print Network (OSTI)

A novel technique of generating stable microwave-excited plasma inside a medical container is proposed. With this technique, sterilization process can be easily carried out with the medical instruments stored in the medical container without opening it just like the sterilization process what is carried out by autoclave. Biological indicator (BI) with 2.3?10 6 Geobacillus stearothermophilus spores are placed at the center bottom of the medical container to check the sterilizing effectiveness of the plasma excited by 2.45 GHz microwave launched from the plastic cover of the medical container. By using air plasma with gas flow rate of 50 sccm, when net microwave power is kept 400 W at pressure of 25 Pa, the BI samples are sterilized after 15 min plasma irradiation in the preliminary experiments. In the latest experiments, sterilization of the same BI samples can be realized after 15 min plasma irradiation at air flow rate of 200 sccm, when net microwave power is kept 300 W at pressure of 95 Pa.

Lei Xu; Yuya Fujioka; Akihisa Ogino; Masaaki Nagatsu

2008-01-01T23:59:59.000Z

65

PLASMA DEVICE  

DOE Patents (OSTI)

A device for producing a confined high temperature plasma is described. In the device the concave inner surface of an outer annular electrode is disposed concentrically about and facing the convex outer face of an inner annular electrode across which electrodes a high potential is applied to produce an electric field there between. Means is provided to create a magnetic field perpendicular to the electric field and a gas is supplied at reduced pressure in the area therebetween. Upon application of the high potential, the gas between the electrodes is ionized, heated, and under the influence of the electric and magnetic fields there is produced a rotating annular plasma disk. The ionized plasma has high dielectric constant properties. The device is useful as a fast discharge rate capacitor, in controlled thermonuclear research, and other high temperature gas applications. (AEC)

Baker, W.R.; Brathenahl, A.; Furth, H.P.

1962-04-10T23:59:59.000Z

66

NOREM Applications Guidelines: Procedures for Gas Tungsten Arc and Plasma Transferred Arc Welding of NOREM Cobalt-Free Hardfacing Al loys  

Science Conference Proceedings (OSTI)

Wire products have been successfully fabricated and new procedures developed for machine and manual gas tungsten arc welding (GTAW) of the iron-base NOREM hardfacing alloys. These developments enhance the attractiveness of NOREM alloys both in replacement valves and in field repairs of installed valves. This report describes the GTAW procedures and summarizes plasma transferred arc welding (PTAW) parameters for shop applications of NOREM alloys.

1996-01-03T23:59:59.000Z

67

Sheath expansion and plasma dynamics in the presence of electrode evaporation: Application to a vacuum circuit breaker  

Science Conference Proceedings (OSTI)

During the postarc dielectric recovery phase in a vacuum circuit breaker, a cathode sheath forms and expels the plasma from the electrode gap. The success or failure of current breaking depends on how efficiently the plasma is expelled from the electrode gap. The sheath expansion in the postarc phase can be compared to sheath expansion in plasma immersion ion implantation except that collisions between charged particles and atoms generated by electrode evaporation may become important in a vacuum circuit breaker. In this paper, we show that electrode evaporation plays a significant role in the dynamics of the sheath expansion in this context not only because charged particle transport is no longer collisionless but also because the neutral flow due to evaporation and temperature gradients may push the plasma toward one of the electrodes. Using a hybrid model of the nonequilibrium postarc plasma and cathode sheath coupled with a direct simulation Monte Carlo method to describe collisions between heavy species, we present a parametric study of the sheath and plasma dynamics and of the time needed for the sheath to expel the plasma from the gap for different values of plasma density and electrode temperatures at the beginning of the postarc phase. This work constitutes a preliminary step toward understanding and quantifying the risk of current breaking failure of a vacuum arc.

Sarrailh, P. [UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); LAPLACE, CNRS, F-31062 Toulouse (France); Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09 (France); Garrigues, L.; Hagelaar, G. J. M.; Boeuf, J. P. [UPS, INPT, LAPLACE (Laboratoire Plasma et Conversion d'Energie), Universite de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9 (France); LAPLACE, CNRS, F-31062 Toulouse (France); Sandolache, G.; Rowe, S. [Schneider Electric, Centre de Recherche 38 TEC, 38050 Grenoble Cedex 09 (France)

2009-09-01T23:59:59.000Z

68

Laboratory Directed Research and Development Program FY 2010  

E-Print Network (OSTI)

Trans. Plasma Sci. , under review. Invention Disclosures A.Anders, invention disclosure IB-2803: "Method and Apparatus2009. A. Anders, invention disclosure IB-2830: "Plasma lens

Hansen, Todd

2011-01-01T23:59:59.000Z

69

Plasma-based accelerator structures  

SciTech Connect

Plasma-based accelerators have the ability to sustain extremely large accelerating gradients, with possible high-energy physics applications. This dissertation further develops the theory of plasma-based accelerators by addressing three topics: the performance of a hollow plasma channel as an accelerating structure, the generation of ultrashort electron bunches, and the propagation of laser pulses is underdense plasmas.

Schroeder, Carl B.

1999-12-01T23:59:59.000Z

70

Characterization of a low-energy constricted-plasma source  

NLE Websites -- All DOE Office Websites (Extended Search)

40374 (text only) 40374 (text only) Review. Sci. Instruments 69 (1998) 1340-1343. Characterization of a low-energy constricted-plasma source André Anders 1 and Michael Kühn 2 1 Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 2 Institute of Physics, Technical University of Chemnitz, 09107 Chemnitz, Germany ABSTRACT The construction and principle of operation of the Constricted-Plasma Source are described. A supersonic plasma stream is produced by a special form of a dc-glow discharge, the constricted glow discharge. The discharge current and gas flow pass through an orifice of small diameter (constriction) which causes a space charge double layer but also serves as a nozzle to gasdynamically accelerate the plasma flow. Plasma parameters have been measured using Langmuir probes, optical emission spectroscopy, and a plasma monitor for mass-resolved energy measurements. Experiments have been done with nitrogen as the discharge gas. It was found that the energy distribution of both atomic and molecular ions have two peaks at about 5 eV and 15 eV, and the energy of almost all ions is less than 20 eV. The ionization efficiency decreases with increasing gas flow. The downstream plasma density is relatively low but activated species such as excited molecules and radicals contribute to film growth when the source is used for reactive film deposition

71

IAEA Coordinated Activities on Evaluation of Atomic, Molecular, and Plasma-Surface Interaction Data for Fusion Applications  

Science Conference Proceedings (OSTI)

Technical Paper / Selected papers from IAEA-NFRI Technical Meeting on Data Evaluation for Atomic, Molecular and Plasma-Material Interaction Processes in Fusion, September 4-7, 2012, Daejeon, Republic of Korea

H.-K. Chung; B. J. Braams

72

Physics and application of impurity plume dispersal as an edge plasma flow diagnostic on the Alcator C-Mod tokamak  

E-Print Network (OSTI)

A unique system has been developed for studying impurity transport in the edge plasma of Alcator C-Mod. Impurity gas (which for these experiments is deuterated ethylene, C?D?) is injected locally into the scrape-off layer ...

Gangadhara, Sanjay, 1972-

2003-01-01T23:59:59.000Z

73

Influence of the Edge Plasma Profile and Parameters on the Coupling of an ICRH Antenna. Application to ITER  

Science Conference Proceedings (OSTI)

The coupling to the fast wave of an ICRH antenna is principally determined by its distance to an optimum plasma density correlated to the cutoff one and by the density gradient between this optimum density and the bulk plasma. This explains the differences in coupling for the various heating and current drive phasings as predicted for different plasma edge profiles considered for ITER. For a given electron density edge profile the ion mix, the steady magnetic field and the frequency have also a significant effect on the coupling performances. These quantities affect the coupling mainly by influencing the position of the optimum density in the profile. A marked perturbation of the coupling leading to a large edge power deposition can occur when the Alfven resonance lies in the edge profile. The results are applied to different ICRF scenarios considered for ITER at full and half toroidal field.

Messiaen, A.; Koch, R.; Weynants, R. [LPP-ERM/KMS, EURATOM-Belgian State Association, Trilateral Euregio Cluster, Brussels (Belgium)

2011-12-23T23:59:59.000Z

74

What is a plasma?  

SciTech Connect

This introduction will define the plasma fourth state of matter, where we find plasmas on earth and beyond, and why they are useful. There are applications to many consumer items, fusion energy, scientific devices, satellite communications, semiconductor processing, spacecraft propulsion, and more. Since 99% of our observable universe is ionized gas, plasma physics determines many important features of astrophysics, space physics, and magnetosphere physics in our solar system. We describe some plasma characteristics, examples in nature, some useful applications, how to create plasmas. A brief introduction to the theoretical framework includes the connection between kinetic and fluid descriptions, quasi neutrality, Debye shielding, ambipolar electric fields, some plasma waves. Hands-on demonstrations follow. More complete explanations will follow next week.

Intrator, Thomas P. [Los Alamos National Laboratory

2012-08-30T23:59:59.000Z

75

Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications.

76

Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli  

Science Conference Proceedings (OSTI)

An underwater electrical discharge in a narrow dielectric capillary provides the details of the evolution of microbubbles to plasma as formed by a tungsten electrode inserted in the capillary. An increase in the applied voltage forms microbubbles after water fills the capillary. A further increase in the voltage generates a surface discharge through the boundary of the bubble, elongating the bubble shape, and eventually forming plasma by electrical breakdown. This produces atomic oxygen, atomic hydrogen, and hydroxyl radicals from dissociation of water vapor. Also, a bactericidal test in normal saline solution showed that more than 99.6% of the bacterial cells were killed within 8 s, resulting from chlorine-containing species, in particular hypochlorous acid as a major bactericidal agent.

Hong, Yong Cheol; Park, Hyun Jae; Lee, Bong Ju [Convergence Plasma Research Center, National Fusion Research Institute, 113 Gwahangno, Yuseong-Gu, Daejeon 305-333 (Korea, Republic of); Kang, Won-Seok [Department of Molecular Science and Technology, Ajou University, San 5, Wonchon-Dong, Youngtong-Gu, Suwon 443-749 (Korea, Republic of); Uhm, Han Sup [Kwangwoon Academy of Advanced Studies, Kwangwoon University, 447-1 Wolgye-Dong, Nowon-Gu, Seoul 139-701 (Korea, Republic of)

2010-05-15T23:59:59.000Z

77

Feasibility study to evaluate plasma quench process for natural gas conversion applications. [Quarterly report], July 1, 1993--September 30, 1993  

SciTech Connect

The objective of this work was to conduct a feasibility study on a new process, called the plasma quench process, for the conversion of methane to acetylene. FY-1993 efforts were focused on determining the economic viability of this process using bench scale experimental data which was previously generated. This report presents the economic analysis and conclusions of the analysis. Future research directions are briefly described.

Thomas, C.P.; Kong, P.C.; Detering, B.A.

1993-12-31T23:59:59.000Z

78

STUDY OF PLASMA PHENOMENA AT HIGH ELECTRIC FIELDS IN APPLICATIONS FOR ACTIVE FLOW CONTROL AND ULTRA-SHORT PULSE LASER DRILLING.  

E-Print Network (OSTI)

??Plasma engineering is one of the most actively growing research areas in modern science. Over the past decade, plasma engineering became a significant part of (more)

Likhanskii, Alexandre

2009-01-01T23:59:59.000Z

79

High-temperature plasma physics  

SciTech Connect

Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

Furth, H.P.

1988-03-01T23:59:59.000Z

80

Controlled zone microwave plasma system  

DOE Patents (OSTI)

An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

2009-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Optimization of extreme ultraviolet photons emission and collection in mass-limited laser produced plasmas for lithography application  

SciTech Connect

The progress in development of commercial system for next generation EUV lithography requires, among other factors, significant improvement in EUV photon sources such as discharge produced plasma (DPP) and laser produced plasma (LPP) devices. There are still many uncertainties in determining the optimum device since there are many parameters for the suitable and efficient energy source and target configuration and size. Complex devices with trigger lasers in DPP or with pre-pulsing in LPP provide wide area for optimization in regards to conversion efficiency (CE) and components lifetime. We considered in our analysis a promising LPP source configuration using 10-30 {mu}m tin droplet targets, and predicted conditions for the most efficient EUV radiation output and collection as well as calculating photons source location and size. We optimized several parameters of dual-beam lasers and their relationship to target size. We used our HEIGHTS comprehensive and integrated full 3D simulation package to study and optimize LPP processes with various target sizes to maximize the CE of the system.

Sizyuk, T.; Hassanein, A. [Center for Materials under Extreme Environment, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

2012-08-01T23:59:59.000Z

82

Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory  

SciTech Connect

Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics.

Dana M. Mastrovito

2002-03-14T23:59:59.000Z

83

Magnetoacoustic solitons in quantum plasma  

SciTech Connect

Nonlinear magnetoacoustic waves in collisionless homogenous, magnetized quantum plasma is studied. Two fluid quantum magneto-hydrodynamic model (QMHD) is employed and reductive perturbation method is used to derive Korteweg de Vries (KdV) equation for magnetoacoustic waves. The effects of plasma density and magnetic field intensity are investigated on magnetoacoustic solitary structures in quantum plasma. The numerical results are also presented, which are applicable to explain some aspects of the propagation of nonlinear magnetoacosutic wave in dense astrophysical plasma situations.

Hussain, S.; Mahmood, S. [Theoretical Plasma Physics Division (TPPD), PINSTECH, P.O. Nilore, Islamabad (Pakistan); Department of Physics and Applied Mathematics (DPAM), PIEAS, P.O. Nilore, Islamabad (Pakistan)

2011-08-15T23:59:59.000Z

84

Applications  

Science Conference Proceedings (OSTI)

Table 6   Typical applications of duplex stainless steels...salt evaporation equipment, desalination plants, geothermal

85

Applications  

Science Conference Proceedings (OSTI)

Table 3   Wear-, erosion-, and corrosion-resistance applications of CVD...against neutron radiation

86

Plasma cleaning for waste minimization  

Science Conference Proceedings (OSTI)

Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

Ward, P.P.

1993-07-01T23:59:59.000Z

87

Plasma Colloquium Travel Grant Program  

SciTech Connect

OAK B188 Plasma Colloquium Travel Grant Program. The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

Hazeltine, R.D.

1998-09-14T23:59:59.000Z

88

PLASMA GENERATOR  

DOE Patents (OSTI)

This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

Foster, J.S. Jr.

1958-03-11T23:59:59.000Z

89

The ion acoustic decay instability, and anomalous laser light absorption for the OMEGA upgrade, large scale hot plasma application to a critical surface diagnostic, and instability at the quarter critical density. Final report  

SciTech Connect

It is shown that laser light can be anomalously absorbed with a moderate intensity laster (I{lambda}{sup 2}{approx}10{sup 14} W/cm{sup 2}-{mu}m{sup 2}) in a large scale, laser produced plasma. The heating regime, which is characterized by a relatively weak instability in a large region, is different from the regime studied previously, which is characterized by a strong instability in a narrow region. The two dimensional geometrical effect (lateral heating) has an important consequence on the anomalous electron heating. The characteristics of the IADI, and the anomalous absorption of the laser light were studied in a large scale, hot plasma applicable to OMEGA upgrade plasma. These results are important for the diagnostic application of the IADI.

Mizuno, K.; DeGroot, J.S.; Seka, W. [and others

1996-11-01T23:59:59.000Z

90

Applications  

Science Conference Proceedings (OSTI)

Table 8   Major markets for ABS products...Market category Applications ABS grades Major appliances Refrigerator door and food liners; crisper pans;

91

Applications  

Science Conference Proceedings (OSTI)

Table 5   Selected applications for wrought aluminum alloys...vehicles, trucks and trailers 3105 Residential siding, mobile homes, rain-carrying goods,

92

Applications  

Science Conference Proceedings (OSTI)

Table 2   Applications for titanium and titanium alloys...for FGD units, nuclear waste disposal Geothermal energy Heat exchangers, evaporators, condensers, tubes Marine engineering Shipbuilding Heat exchangers, condensers, piping

93

Applications  

Science Conference Proceedings (OSTI)

Table 2   Examples of applications and parts made with vacuum infusion...small aircraft Industrial Fan blades, part for fish counting unit, toilet bowl, oil

94

Applications  

Science Conference Proceedings (OSTI)

Table 6 Selected applications for aluminum casting alloys...gears; jet engine compressor cases 356.0 Sand: flywheel castings; automotive transmission cases; oil pans; pump bodies. Permanent: machine tool parts;

95

Applications  

Science Conference Proceedings (OSTI)

Table 1   Application of sintered stainless steels...316L Photographic equipment 316L Cam cleats 304L Dishwasher components 304L Can opener gears 410L...

96

Applications:  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications: Applications: ● Telecommunications: cell / smartphone; multi-party secure phone calls; videoconferencing; Voice over IP (VoIP) ● Banking and financial transactions: ATM, debit / credit card and e-Commerce ● e-Business; e-gaming; e-books; e-music; e-movies; e-gambling ● Wireless internet ● Electronic voting ● Facility and vehicle access ● Information exchange for government/defense

97

Applications  

Science Conference Proceedings (OSTI)

Table 3   Major application areas of porous P/M materials...refining Semiconductor Particle removal process gas Bulk gas delivery systems Purifier media retainers Analysis instruments Gas/liquid chromatography Gas sampling Sensor protection Chemical processing Catalyst recovery Process gases and liquids Fluid-bed reactor products Mineral processing Coal,...

98

Applications  

Science Conference Proceedings (OSTI)

Table 3   Some applications of investment casting...Electrical equipment Electronics, radar Guns and small armaments Hand tools Jewelry Machine tools Materials handling equipment Metal working equipment Oil well drilling and auxiliary equipment Optical equipment Packaging equipment Pneumatic and hydraulic systems Prosthetic appliances Pumps Sports gear...

99

Applications  

Science Conference Proceedings (OSTI)

Table 1   Commercial applications of refractory metals and alloys by industry...Rhenium, W-Re Process industries Heating and cooling coils Tantalum, Ta-Nb Shell and tube heat exchangers Tantalum Condensers Tantalum Tantalum-clad steel vessels Tantalum Distillation towers Tantalum Valves for hot sulfuric acid service Molybdenum, tantalum, Ta-Nb Expansion joints (bellows) Tantalum...

100

Applications  

Science Conference Proceedings (OSTI)

Table 9   Applications of various polymers...bins 767 aircraft acoustical tile 767 and other Boeing aircraft brackets Airbus A320 bulk cargo floor sandwich structural panels Airbus A330-340 lower wing fairings A3XX main stair case (developmental) Beluga heavy-duty entrance floor panels Dornier 328 landing flap ribs Dornier 328 ice protection...

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A new approach to the application of the classic methods of physicochemical kinetics in the analysis of the efficiency of plasma technology of coal gasification  

SciTech Connect

This work is devoted to the problem of improving the efficiency of new plasma technologies of coal combustion that have minimum negative environmental impact. In particular, the authors consider a general method of formulating and solving the inverse kinetic problem to elucidate advantages of plasma gasification.

Karpenko, E.I.; Devyatov, B.N. [Kutateladze Inst. of Thermal Physics, Novosibirsk (Russian Federation)

1995-07-01T23:59:59.000Z

102

Inductively coupled plasma spectrometry: Noise characteristics of aerosols, application of generalized standard additions method, and Mach disk as an emission source  

SciTech Connect

This dissertation is focused on three problem areas in the performance of inductively coupled plasma (ICP) source. The noise characteristics of aerosols produced by ICP nebulizers are investigated. A laser beam is scattered by aerosol and detected by a photomultiplier tube and the noise amplitude spectrum of the scattered radiation is measured by a spectrum analyzer. Discrete frequency noise in the aerosol generated by a Meinhard nebulizer or a direct injection nebulizer is primarily caused by pulsation in the liquid flow from the pump. A Scott-type spray chamber suppresses white noise, while a conical, straight-pass spray chamber enhances white noise, relative to the noise seen from the primary aerosol. Simultaneous correction for both spectral interferences and matrix effects in ICP atomic emission spectrometry (AES) can be accomplished by using the generalized standard additions method (GSAM). Results obtained with the application of the GSAM to the Perkin-Elmer Optima 3000 ICP atomic emission spectrometer are presented. The echelle-based polychromator with segmented-array charge-coupled device detectors enables the direct, visual examination of the overlapping lines Cd (1) 228.802 nm and As (1) 228.812 nm. The slit translation capability allows a large number of data points to be sampled, therefore, the advantage of noise averaging is gained. An ICP is extracted into a small quartz vacuum chamber through a sampling orifice in a water-cooled copper plate. Optical emission from the Mach disk region is measured with a new type of echelle spectrometer equipped with two segmented-array charge-coupled-device detectors, with an effort to improve the detection limits for simultaneous multielement analysis by ICP-AES.

Shen, Luan

1995-10-06T23:59:59.000Z

103

Planar controlled zone microwave plasma system  

DOE Patents (OSTI)

An apparatus and method for initiating a process gas plasma. A conductive plate having a plurality of conductive fingers is positioned in a microwave applicator. An arc forms between the conductive fingers to initiate the formation of a plasma. A transport mechanism may convey process materials through the plasma. A spray port may be provided to expel processed materials.

Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxvlle, TN)

2011-10-04T23:59:59.000Z

104

Published: May 30, 2011 r 2011 American Chemical Society 8122 dx.doi.org/10.1021/jp2023023 |J. Phys. Chem. B 2011, 115, 81228129  

E-Print Network (OSTI)

-June Woo* and Anders Wallqvist Biotechnology High Performance Computing Software Applications Institute

105

Plasma generating apparatus for large area plasma processing  

DOE Patents (OSTI)

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm[sup 2]. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity. 3 figures.

Tsai, C.C.; Gorbatkin, S.M.; Berry, L.A.

1991-07-16T23:59:59.000Z

106

Plasma generating apparatus for large area plasma processing  

DOE Patents (OSTI)

A plasma generating apparatus for plasma processing applications is based on a permanent magnet line-cusp plasma confinement chamber coupled to a compact single-coil microwave waveguide launcher. The device creates an electron cyclotron resonance (ECR) plasma in the launcher and a second ECR plasma is created in the line cusps due to a 0.0875 tesla magnetic field in that region. Additional special magnetic field configuring reduces the magnetic field at the substrate to below 0.001 tesla. The resulting plasma source is capable of producing large-area (20-cm diam), highly uniform (.+-.5%) ion beams with current densities above 5 mA/cm.sup.2. The source has been used to etch photoresist on 5-inch diam silicon wafers with good uniformity.

Tsai, Chin-Chi (Oak Ridge, TN); Gorbatkin, Steven M. (Oak Ridge, TN); Berry, Lee A. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

107

Plasma valve  

DOE Patents (OSTI)

A plasma valve includes a confinement channel and primary anode and cathode disposed therein. An ignition cathode is disposed adjacent the primary cathode. Power supplies are joined to the cathodes and anode for rapidly igniting and maintaining a plasma in the channel for preventing leakage of atmospheric pressure through the channel.

Hershcovitch, Ady (Mount Sinai, NY); Sharma, Sushil (Hinsdale, IL); Noonan, John (Naperville, IL); Rotela, Elbio (Clarendon Hills, IL); Khounsary, Ali (Hinsdale, IL)

2003-01-01T23:59:59.000Z

108

PLASMA ENERGIZATION  

DOE Patents (OSTI)

BS>A method is given for ion cyclotron resonance heatthg of a magnetically confined plasma by an applied radio-frequency field. In accordance with the invention, the radiofrequency energy is transferred to the plasma without the usual attendent self-shielding effect of plasma polarlzatlon, whereby the energy transfer is accomplished with superior efficiency. More explicitly, the invention includes means for applying a radio-frequency electric field radially to an end of a plasma column confined in a magnetic mirror field configuration. The radio-frequency field propagates hydromagnetic waves axially through the column with the waves diminishing in an intermediate region of the column at ion cyclotron resonance with the fleld frequency. In such region the wave energy is converted by viscous damping to rotational energy of the plasma ions. (AEC)

Furth, H.P.; Chambers, E.S.

1962-03-01T23:59:59.000Z

109

PLASMA DEVICE  

DOE Patents (OSTI)

A device is described for establishing and maintaining a high-energy, rotational plasma for use as a fast discharge capacitor. A disc-shaped, current- conducting plasma is formed in an axinl magnetic field and a crossed electric field, thereby creating rotational kinetic enengy in the plasma. Such energy stored in the rotation of the plasma disc is substantial and is convertible tc electrical energy by generator action in an output line electrically coupled to the plasma volume. Means are then provided for discharging the electrical energy into an external circuit coupled to the output line to produce a very large pulse having an extremely rapid rise time in the waveform thereof. (AE C)

Baker, W.R.

1961-08-22T23:59:59.000Z

110

Dry etching of CoFe films using a CH{sub 4}/Ar inductively coupled plasma for magnetic random access memory application  

Science Conference Proceedings (OSTI)

In this study, the CoFe thin film was studied using an inductively coupled plasma system in CH{sub 4}-based gas chemistries. The etch rate of the CoFe thin film was systemically studied by the process parameters including the gas mixing ratio, the rf power, the dc-bias power, and the process pressure. The best gas composition for etching was in CH{sub 4} (20%)/Ar (80%) ratio. As the rf power and the dc-bias voltage were increased, the etch rate of the CoFe thin film increased in a CH{sub 4}/Ar inductively coupled plasma system. The best process pressure condition for etching was 10 mTorr in the CH{sub 4}/Ar inductively coupled plasma system. The changes in the components on the surface of the CoFe thin film were investigated with energy dispersive x ray.

Um, Doo-Seung; Kim, Dong-Pyo; Woo, Jong-Chang; Kim, Chang-Il; Lee, Sung-Kwon; Jung, Tae-Woo; Moon, Seung-Chan [School of Electrical and Electronics Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Hynix Semiconductor Inc., San 136-1, Ami-ri, Bubal-eub, Icheon-si, Kyoungki-do 467-701 (Korea, Republic of)

2009-07-15T23:59:59.000Z

111

Plasma Nitrocarburizing  

Science Conference Proceedings (OSTI)

...heat pollution Reduced processing times Reduced energy consumption Reduced treatment gas consumption Industrial plasma nitrocarburizing processing modules contain: Vacuum furnace Vacuum system Gas supply with gas mixing and pressure control system Electric power supply unit Microprocessor control unit...

112

Deposition of Dense SiO2 Thin Films for Electrical Insulation Applications by Microwave ECR Plasma Source Enhanced RF Reactive Magnetron Sputtering  

Science Conference Proceedings (OSTI)

Silicon dioxide thin films have been deposited successfully on high speed steel (HSS) cutting tool substrates by means of microwave electron cyclotron resonance (MW-ECR) plasma source enhanced RF reactive magnetron sputtering of a pure silica target ... Keywords: SiO2 thin films, Electrical insulation properties, RF magnetron sputtering, Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS)

Qiyong Zeng; Xiaofeng Zheng; Zhonghua Yu; Yunxian Cui

2010-03-01T23:59:59.000Z

113

MPD streaming plasma source for MFTF  

SciTech Connect

The applicability of Magneto-plasma-dynamic (MPD) arcs as a source of warm, streaming plasma for start-up and for the suppression of instabilities is discussed. The plasma source emits a high particle flux (1000-5000 amp) of well directed ions having kinetic energy in the 10-100 eV range. The construction details of an MPD plasma source are given and a sequence of proposed tests are presented. The tests are designed to demonstrate the large flux and good gas utilization of the source as well as investigate the behavior of the streaming plasma in a high magnetic field environment.

Poulsen, P.

1977-07-01T23:59:59.000Z

114

Plasma Simulation Program  

SciTech Connect

Many others in the fusion energy and advanced scientific computing communities participated in the development of this plan. The core planning team is grateful for their important contributions. This summary is meant as a quick overview the Fusion Simulation Program's (FSP's) purpose and intentions. There are several additional documents referenced within this one and all are supplemental or flow down from this Program Plan. The overall science goal of the DOE Office of Fusion Energy Sciences (FES) Fusion Simulation Program (FSP) is to develop predictive simulation capability for magnetically confined fusion plasmas at an unprecedented level of integration and fidelity. This will directly support and enable effective U.S. participation in International Thermonuclear Experimental Reactor (ITER) research and the overall mission of delivering practical fusion energy. The FSP will address a rich set of scientific issues together with experimental programs, producing validated integrated physics results. This is very well aligned with the mission of the ITER Organization to coordinate with its members the integrated modeling and control of fusion plasmas, including benchmarking and validation activities. [1]. Initial FSP research will focus on two critical Integrated Science Application (ISA) areas: ISA1, the plasma edge; and ISA2, whole device modeling (WDM) including disruption avoidance. The first of these problems involves the narrow plasma boundary layer and its complex interactions with the plasma core and the surrounding material wall. The second requires development of a computationally tractable, but comprehensive model that describes all equilibrium and dynamic processes at a sufficient level of detail to provide useful prediction of the temporal evolution of fusion plasma experiments. The initial driver for the whole device model will be prediction and avoidance of discharge-terminating disruptions, especially at high performance, which are a critical impediment to successful operation of machines like ITER. If disruptions prove unable to be avoided, their associated dynamics and effects will be addressed in the next phase of the FSP.

Greenwald, Martin

2011-10-04T23:59:59.000Z

115

Studies of plasma transport  

SciTech Connect

This report discusses the charge-coupled device camera and other plasma diagnostic equipment used to measure plasma density and other plasma properties. (LSP)

Malmberg, J.H.; O' Neil, T.M.; Driscoll, C.F.

1991-07-22T23:59:59.000Z

116

Burning plasmas  

SciTech Connect

The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

1990-10-01T23:59:59.000Z

117

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network (OSTI)

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films deposited at low substrate temperature for devices such as thin film transistors (TFTs). The effect of the deposition parameters such as doping gas concentration, substrate temperature, hydrogen dilution, helium dilution, power density, and pressure at 50 kHz rf frequency on the films' characteristics were analyzed. The films' electrical property was characterized by its dark resistivity. The chemical composition and bonding characteristics were discussed. p-channel TFTs were fabricated with these optimized films. Three different levels of dopant concentrations in the channel were used to detect the dopant effect on the TFT properties. Doping resulted in the increase of film deposition rate. The low film deposition rate at the high temperature deposition corresponds to a dense structured film. The increase of gas phase H? concentration could increase H? etching of the weak bonds in the film, which is consistent with the decrease of the deposition rate. Film's dark conductivity is determined by the atomic B concentration in the film, the substrate temperature, the ion bombardment effect, the surface morphology, and the gas phase and film hydrogen concentration. At high power density and high pressure plasma condition, film with a high deposition rate shows a high conductivity. However, excessive ion bombardment effect, e.g. in powdery plasma region, limits the further increase of the conductivity. Film deposited with He dilution demonstrates a higher conductivity compared to the H? dilution counterpart. This might be attributed to a more effective ion bombardment effect of the former. Powder generation in the plasma significantly affects the conductivity of He diluted film compared to the H? diluted ones, which might be due to the less H? etching effect at the He dilution deposition. The output and transfer characteristics show the normal p-channel TFTs behavior. TFT characteristics, such as mobility, threshold voltage, and on-off current ratio were affected by the doping gas concentration in the channel layer and the deposition process.

Nominanda, Helinda

2004-01-01T23:59:59.000Z

118

Interferometric measurements of plasma density in high-. beta. plasmas  

SciTech Connect

The coupled-cavity laser interferometer technique is particularly applicable to the measurement of pulsed plasma densities. This technique is based on the fact that if a small fraction of a gas laser's output radiation is reflected into the laser with an external mirror, the intensity of the laser output is modulated. These amplitude or intensity modulations are produced by changes in the laser gain. A rotating corner mirror or an oscillating mirror can be used to produce a continuous feedback modulation of the interferometer which produces a continuous background fringe pattern. The presence of plasma in the outer cavity causes an additional change which results in a phase shift of the regular period of the background fringe pattern. The integral of the plasma density along the line of sight can be evaluated by comparison of the time history of the fringes obtained with and without plasma.

Quinn, W.E.

1977-01-01T23:59:59.000Z

119

The ion acoustic decay instability in a large scale, hot plasma relevant to direct drive laser fusion -- Application to a critical surface diagnostic. Final report  

SciTech Connect

The authors have studied the ion acoustic decay instability in a large ({approximately} 1 mm) scale, hot ({approximately} 1 keV) plasma, which is relevant to a laser fusion reactor target. They have shown that the instability threshold is low. They have developed a novel collective Thomson scattering diagnostic at a 90{degree} scattering angle. The scattering is nonetheless coherent, because of the modest ratio of the frequency of the probe laser to that of the pump laser, such that even for such a large angle, (k{lambda}{sub De}){sup 2} is much less than one. With this system they have measured the electron plasma wave excited by the ion acoustic decay instability near the critical density (n{sub e} {approximately} 0.86 n{sub c}). This allows them to use the frequency of the detected wave to measure the electron temperature in the interaction region, obtaining a result reasonably close to that predicted by the SAGE computer code.

Mizuno, K.; DeGroot, J.S.; Drake, R.P.; Seka, W.; Craxton, R.S.; Estabrook, K.G.

1996-08-01T23:59:59.000Z

120

Charge trapping characteristics of Au nanocrystals embedded in remote plasma atomic layer-deposited Al{sub 2}O{sub 3} film as the tunnel and blocking oxides for nonvolatile memory applications  

Science Conference Proceedings (OSTI)

Remote plasma atomic layer deposited (RPALD) Al{sub 2}O{sub 3} films were investigated to apply as tunnel and blocking layers in the metal-oxide-semiconductor capacitor memory utilizing Au nanocrystals (NCs) for nonvolatile memory applications. The interface stability of an Al{sub 2}O{sub 3} film deposited by RPALD was studied to observe the effects of remote plasma on the interface. The interface formed during RPALD process has high oxidation states such as Si{sup +3} and Si{sup +4}, indicating that RPALD process can grow more stable interface which has a small amount of fixed oxide trap charge. The significant memory characteristics were also observed in this memory device through the electrical measurement. The memory device exhibited a relatively large memory window of 5.6 V under a 10/-10 V program/erase voltage and also showed the relatively fast programming/erasing speed and a competitive retention characteristic after 10{sup 4} s. These results indicate that Al{sub 2}O{sub 3} films deposited via RPALD can be applied as the tunnel and blocking oxides for next-generation flash memory devices.

Lee, Jaesang; Kim, Hyungchul; Park, Taeyong; Ko, Youngbin; Ryu, Jaehun; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea and R and D Division, Hynix Semiconductor, Inc., Icheon, Gyeonggi-do 467-701 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea and R and D Division, Hynix Semiconductor, Inc., Icheon, Gyeonggi-do 467-701 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791, Korea and Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2012-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ion-beam Plasma Neutralization Interaction Images  

SciTech Connect

Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

2002-04-09T23:59:59.000Z

122

Mini Pulsed Plasma Source - Lawrence Berkeley National Laboratory  

The mini-pulsed plasma source will find use in ion source applications including heavy ion fusion, particle accelerators, and Electron Beam Ion Source ...

123

Plasma implantation and deposition for advanced materials surface modification.  

E-Print Network (OSTI)

??The research work described in this thesis focuses on the physics of plasma implantation and deposition as well as the application of the technology to (more)

Fu, King Yu (???)

2005-01-01T23:59:59.000Z

124

Fabrication of Metal Matrix Composites via Spark Plasma Sintering ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fabrication of Metal Matrix Composites via Spark Plasma Sintering for Nuclear Energy Application. Author(s), Indrajit Charit, Jonathan A.

125

2012 PLASMA PROCESSING SCIENCE GRC & GRS, JULY 22-27, 2012  

Science Conference Proceedings (OSTI)

The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

Chang, Jane

2012-07-27T23:59:59.000Z

126

Low voltage operation of plasma focus  

SciTech Connect

Plasma foci of compact sizes and operating with low energies (from tens of joules to few hundred joules) have found application in recent years and have attracted plasma-physics scientists and engineers for research in this direction. We are presenting a low energy and miniature plasma focus which operates from a capacitor bank of 8.4 {mu}F capacity, charged at 4.2-4.3 kV and delivering approximately 52 kA peak current at approximately 60 nH calculated circuit inductance. The total circuit inductance includes the plasma focus inductance. The reported plasma focus operates at the lowest voltage among all reported plasma foci so far. Moreover the cost of capacitor bank used for plasma focus is nearly 20 U.S. dollars making it very cheap. At low voltage operation of plasma focus, the initial breakdown mechanism becomes important for operation of plasma focus. The quartz glass tube is used as insulator and breakdown initiation is done on its surface. The total energy of the plasma focus is approximately 75 J. The plasma focus system is made compact and the switching of capacitor bank energy is done by manual operating switch. The focus is operated with hydrogen and deuterium filled at 1-2 mbar.

Shukla, Rohit; Sharma, S. K.; Banerjee, P.; Das, R.; Deb, P.; Prabahar, T.; Das, B. K.; Adhikary, B.; Shyam, A. [Energetics and Electromagnetics Division, Facility for Electromagnetic Systems, Bhabha Atomic Research Center, Visakhapatanam, A.P. 530012 (India)

2010-08-15T23:59:59.000Z

127

Solar Physics & Space Plasma Research Center (SP2RC)  

E-Print Network (OSTI)

Solar Physics & Space Plasma Research Center (SP2RC) University of SheffieldSTFC SSP Intro Summer Plasma Research Center (SP2RC) http://robertus.staff.shef.ac.ukUniversity of SheffieldSTFC SSP Intro]solitons, applications) ·Conclusions #12;Solar Physics & Space Plasma Research Center (SP2RC) http

128

Low temperature deposition of transparent conducting oxide films: Comparison of different pulsed sputtering and arc plasma methods  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows André Anders, Jonathan L. Slack, and Thomas J. Richardson Lawrence Berkeley National Laboratory Berkeley, California Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer

129

The effect of PECVD plasma decomposition on the wettability and dielectric constant changes in silicon modified DLC films for potential MEMS and low stiction applications  

SciTech Connect

We have carried out investigations aimed at understanding the mechanism responsible for a water contact angle increase of up to ten degrees and a decrease in dielectric constant in silicon modified hydrogenated amorphous carbon films compared to unmodified hydrogenated amorphous carbon films. Our investigations based on surface chemical constituent analysis using Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), SIMS, FTIR, contact angle / surface energy measurements and spectroscopic ellipsometry suggests the presence of hydrophobic chemical entities on the surface of the films. This observation is consistent with earlier theoretical plasma chemistry predictions and observed Raman peak shifts in the films. These surface hydrophobic entities also have a lower polarizability than the bonds in the un-modified films thereby reducing the dielectric constant of the silicon modified films measured by spectroscopic ellipsometry. Ellipsometric dielectric constant measurement is directly related to the surface energy through Hamaker's constant. Our current finding is expected to be of benefit to understanding stiction, friction and lubrication in areas that range from nano-tribology to microfluidics.

Ogwu, A. A. [Thin Film Centre, University of the West of Scotland, Paisley Campus, High Street, Paisley PA1 2BE, Scotland (United Kingdom); Okpalugo, T. I. T. [Thin Film Centre, University of the West of Scotland, Paisley Campus, High Street, Paisley PA1 2BE, Scotland (United Kingdom); Nanotechnology Institute, School of Electrical and Mechanical Engineering, University of Ulster, Northern Ireland (United Kingdom); McLaughlin, J. A. D. [Nanotechnology Institute, School of Electrical and Mechanical Engineering, University of Ulster, Northern Ireland (United Kingdom)

2012-09-15T23:59:59.000Z

130

Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma  

SciTech Connect

Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

2004-04-15T23:59:59.000Z

131

Oscillatory nonhmic current drive for maintaining a plasma current  

DOE Patents (OSTI)

Apparatus and method of the invention maintain a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

Fisch, Nathaniel J. (Princeton, NJ)

1986-01-01T23:59:59.000Z

132

Oscillatory nonohomic current drive for maintaining a plasma current  

DOE Patents (OSTI)

Apparatus and methods are described for maintaining a plasma current with an oscillatory nonohmic current drive. Each cycle of operation has a generation period in which current driving energy is applied to the plasma, and a relaxation period in which current driving energy is removed. Plasma parameters, such as plasma temperature or plasma average ionic charge state, are modified during the generation period so as to oscillate plasma resistivity in synchronism with the application of current driving energy. The invention improves overall current drive efficiencies.

Fisch, N.J.

1984-01-01T23:59:59.000Z

133

Effect of electron energy distribution functions on plasma generated vacuum ultraviolet in a diffusion plasma excited by a microwave surface wave  

Science Conference Proceedings (OSTI)

Plasma generated vacuum ultraviolet (VUV) in diffusion plasma excited by a microwave surface wave has been studied by using dielectric-based VUV sensors. Evolution of plasma VUV in the diffusion plasma as a function of the distance from the power coupling surface is investigated. Experimental results have indicated that the energy and spatial distributions of plasma VUV are mainly controlled by the energy distribution functions of the plasma electrons, i.e., electron energy distribution functions (EEDFs). The study implies that by designing EEDF of plasma, one could be able to tailor plasma VUV in different applications such as in dielectric etching or photo resist smoothing.

Zhao, J. P.; Chen, L.; Funk, M.; Sundararajan, R. [Austin Plasma Laboratory, Tokyo Electron America, Inc., Austin, Texas 78741 (United States); Nozawa, T. [Tokyo Electron Limited, TEL Technology Center Sendai, 2-1 Osawa 3-chome, Izumi-ku, Sendai 981-3137 (Japan); Samukawa, S. [Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

2013-07-15T23:59:59.000Z

134

Application Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest architectures. We describe current bottlenecks and performance improvement areas for applications including plasma physics, chemistry related to carbon capture and sequestration, and material science. We include a variety of methods including advanced hybrid parallelization using multi-threaded MPI, GPU acceleration, libraries and auto- parallelization compilers. KEYWORDS: hybrid

135

Plasma Panel Based Radiation Detectors  

Science Conference Proceedings (OSTI)

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels (PDPs). It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in PDPs, it uses non-reactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (< 50 m RMS) and low cost. In this paper we report here on prototype PPS experimental results in detecting betas, protons and cosmic muons, and we extrapolate on the PPS potential for applications including detection of alphas, heavy-ions at low to medium energy, thermal neutrons and X-rays.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Varner Jr, Robert L [ORNL; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Bentefour, E [Ion Beam Applications; Levin, Daniel S. [University of Michigan; Moshe, M. [Tel Aviv University; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan

2013-01-01T23:59:59.000Z

136

Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows  

E-Print Network (OSTI)

to energy-efficient windows Andr Anders, Jonathan L. Slack,to electrochromic windows for vehicles and buildings [1].in conventional electrochromic windows because of its high

Anders, Andre

2008-01-01T23:59:59.000Z

137

Plasma Kinetic Theory  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

138

Plasma-based EUV light source  

DOE Patents (OSTI)

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2010-11-02T23:59:59.000Z

139

Plasma-based EUV light source  

DOE Patents (OSTI)

Various mechanisms are provided relating to plasma-based light source that may be used for lithography as well as other applications. For example, a device is disclosed for producing extreme ultraviolet (EUV) light based on a sheared plasma flow. The device can produce a plasma pinch that can last several orders of magnitude longer than what is typically sustained in a Z-pinch, thus enabling the device to provide more power output than what has been hitherto predicted in theory or attained in practice. Such power output may be used in a lithography system for manufacturing integrated circuits, enabling the use of EUV wavelengths on the order of about 13.5 nm. Lastly, the process of manufacturing such a plasma pinch is discussed, where the process includes providing a sheared flow of plasma in order to stabilize it for long periods of time.

Shumlak, Uri (Seattle, WA); Golingo, Raymond (Seattle, WA); Nelson, Brian A. (Mountlake Terrace, WA)

2008-05-13T23:59:59.000Z

140

Plasma sweeper. [Patents  

DOE Patents (OSTI)

A device is described for coupling RF power (a plasma sweeper) from RF power introducing means to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the RF power introducing means. Means are described for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, R.W.; Glanz, J.

1982-10-25T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS  

SciTech Connect

The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

Ekechukwu, A

2009-04-20T23:59:59.000Z

142

Research activities of the Institute of Plasma Physics. Annual report, 1972  

SciTech Connect

A survey of scientific work carried out during the year 1972 is presented. The research program was narrowed down to some main problem areas, such as plasma waves, plasma focusing, transient diagnostics, and laser applications. (GRA)

1973-01-01T23:59:59.000Z

143

The Absence of Plasma in "Spark Plasma Sintering"  

E-Print Network (OSTI)

investigations on the spark plasma sintering/synthesisinvestigations on the spark plasma sintering/synthesisLichtenberg, Principles of Plasma Discharges and Materials

Hulbert, Dustin M.

2008-01-01T23:59:59.000Z

144

Plasma diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

of superheated and electrically charged gases known as plasmas. PPPL and ITER: Lab teams support the world's largest fusion experiment with leading-edge ideas and...

145

Plasma processes in non-ideal plasmas  

Science Conference Proceedings (OSTI)

Non-ideal plasma equation of state, radiative cross-sections and energy exchange coefficients are described in a tutorial overview.

More, R.M.

1986-03-01T23:59:59.000Z

146

Plasma Astrophysics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

which gives rise to astrophysical events that include auroras, solar flares and geomagnetic storms. The process occurs when the magnetic field lines in plasmas break and...

147

Interdisciplinary plasma theory workshop | Princeton Plasma Physics...  

NLE Websites -- All DOE Office Websites (Extended Search)

Interdisciplinary plasma theory workshop April 15, 2013 Tweet Widget Facebook Like Google Plus One (Photo by Elle Starkman PPPL Office of Communications) PPPL postdoctoral fellow...

148

Plasma Kinetic Theory  

Science Conference Proceedings (OSTI)

Basic and Kinetic Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

149

Plasma-Thermal Synthesis  

INLs Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels.

150

22nd International Conference on Numerical Simulation of Plasmas (ICNSP) |  

NLE Websites -- All DOE Office Websites (Extended Search)

September 7, 2011, 9:00am to September 11, 2011, 5:00pm September 7, 2011, 9:00am to September 11, 2011, 5:00pm Conference Long Branch, NJ 22nd International Conference on Numerical Simulation of Plasmas (ICNSP) The purpose of this conference series, which started at the College of William and Mary in 1967 "to disseminate progress in the state-of-the-art of plasma simulation and to report specific applications of computer experiments to various areas of plasma physics," remains unchanged. On the other hand, the topics of the Conference, which has been expanded over the years, now include: Topics: Magnetic & Inertial Fusion Plasmas Space & Astrophysical Plasmas High Intensity Beams & Laser Plasma Interactions Low-temperature Plasmas Numerical Methods & High Performance Computing Scientific Visualization

151

Tailoring the air plasma with a double laser pulse  

SciTech Connect

We present a comprehensive model of plasma dynamics that enables a detailed understanding of the ways the air plasma induced in the atmosphere in the wake of a laser-induced filament can be controlled by an additional laser pulse. Our model self-consistently integrates plasma-kinetic, Navier-Stokes, electron heat conduction, and electron-vibration energy transfer equations, serving to reveal laser-plasma interaction regimes where the plasma lifetime can be substantially increased through an efficient control over plasma temperature, as well as suppression of attachment and recombination processes. The model is used to quantify the limitations on the length of uniform laser-filament heating due to the self-defocusing of laser radiation by the radial profile of electron density. The envisaged applications include sustaining plasma guides for long-distance transmission of microwaves, standoff detection of impurities and potentially hazardous agents, as well as lightning control and protection.

Shneider, M. N.; Miles, R. B. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263 (United States); Zheltikov, A. M. [Physics Department, International Laser Center, M. V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Department of Physics and Astronomy, Texas A and M University, College Station, Texas 77843-4242 (United States)

2011-06-15T23:59:59.000Z

152

Scaling of Energy Gain with Plasma Parameters in a Plasma Wakefield Accelerator  

SciTech Connect

We have recently demonstrating the doubling of the energy of particles of the ultra-short, ultra-relativistic electron bunches of the Stanford Linear Accelerator Center [1]. This energy doubling occurred in a plasma only 85 cm-long with a density of {approx} 2.6 x 10{sup 17} e{sup -}/cm{sup -3}. This milestone is the result of systematic measurements that show the scaling of the energy gain with plasma length and density, and show the reproducibility and the stability of the acceleration process. We show that the energy gain increases linearly with plasma length from 13 to 31 cm. These are key steps toward the application of beam-driven plasma accelerators or plasma wakefield accelerators (PWFA) to doubling the energy of a future linear collider without doubling its length.

Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

2008-01-28T23:59:59.000Z

153

Plasma panel-based radiation detectors  

E-Print Network (OSTI)

The plasma panel sensor (PPS) is a gaseous micropattern radiation detector under current development. It has many operational and fabrication principles common to plasma display panels. It comprises a dense matrix of small, gas plasma discharge cells within a hermetically sealed panel. As in plasma display panels, it uses nonreactive, intrinsically radiation-hard materials such as glass substrates, refractory metal electrodes, and mostly inert gas mixtures. We are developing these devices primarily as thin, low-mass detectors with gas gaps from a few hundred microns to a few millimeters. The PPS is a high gain, inherently digital device with the potential for fast response times, fine position resolution (cost. In this paper, we report on prototype PPS experimental results in detecting betas, protons, and cosmic muons, and we extrapolate on the PPS potential for applications including the detection of alphas, heavy ions at low-to-medium energy, thermal neutrons, and X-rays.

Peter Friedman; Robert Ball; James Beene; Yan Benhammou; Meny Ben-Moshe; Hassan Bentefour; J. W. Chapman; Erez Etzion; Claudio Ferretti; Daniel Levin; Yiftah Silver; Robert Varner; Curtis Weaverdyck; Bing Zhou

2013-05-10T23:59:59.000Z

154

Computational methods for kinetic models of magnetically confined plasmas  

SciTech Connect

In this book authors present various types of nonlinear Fokker-Planck equations which require solution for the realistic computer simulation of magnetically confined plasmas. They present detailed mathematical arguements leading to numerically tractable simplifications and provide examples and applications bearing directly on the most recent technology in plasma research.

Killeeen, J.; Kerbel, G.D.; Mc Coy, M.G.; Mirin, A.A.

1986-01-01T23:59:59.000Z

155

Model of detached plasmas  

SciTech Connect

Recently a tokamak plasma was observed in TFTR that was not limited by a limiter or a divertor. A model is proposed to explain this equilibrium, which is called a detached plasma. The model consists of (1) the core plasma where ohmic heating power is lost by anomalous heat conduction and (2) the shell plasma where the heat from the core plasma is radiated away by the atomic processes of impurity ions. A simple scaling law is proposed to test the validity of this model.

Yoshikawa, S.; Chance, M.

1986-07-01T23:59:59.000Z

156

Mirror plasma apparatus  

DOE Patents (OSTI)

A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma.

Moir, Ralph W. (Livermore, CA)

1981-01-01T23:59:59.000Z

157

Power balance in a helicon plasma source for space propulsion  

E-Print Network (OSTI)

Electric propulsion systems provide an attractive option for various spacecraft propulsion applications due to their high specific impulse. The power balance of an electric thruster based on a helicon plasma source is ...

White, Daniel B., Jr

2008-01-01T23:59:59.000Z

158

Plasma emission spectroscopy method of tumor therapy  

DOE Patents (OSTI)

Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics.

Fleming, Kevin J. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

159

Plasma emission spectroscopy method of tumor therapy  

DOE Patents (OSTI)

Disclosed are a method and apparatus for performing photon diagnostics using a portable and durable apparatus which incorporates the use of a remote sensing probe in fiberoptic communication with an interferometer or spectrometer. Also disclosed are applications for the apparatus including optically measuring high velocities and analyzing plasma/emission spectral characteristics. 6 figs.

Fleming, K.J.

1997-03-11T23:59:59.000Z

160

Hertz' Principles of Mechanics Johanna Pejlare och Anders berg  

E-Print Network (OSTI)

of the necessary consequents in nature of the things pictured. In order that this reuirement may be satisfied

?berg, Anders

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network (OSTI)

· Bottom-up R&D study financed by the district heating consumers · Prepared by an independent team increase of district heating · optimal zoning of district heating and natural gas networks based on overall · district heating shifts from fossil fuel boilers to CHP and renewable energy · This legislation ensures

162

INTERARTICULATOR PROGRAMMING IN OBSTRUENT PRODUCTION* Anders LBfqvist+ and Hirohide Yoshioka++  

E-Print Network (OSTI)

- ent languages using the combined techniques of electromyography, transillumination and fiberoptic #12;Voiceless obstruent production requires control and coordination of several articulatory systems, and the distance between the vocal processes measured as an index of glottal opening. The light passing through

163

Strongly Coupled Plasmas via Rydberg-Blockade of Cold Atoms  

E-Print Network (OSTI)

We propose and analyze a new scheme to produce ultracold neutral plasmas deep in the strongly coupled regime. The method exploits the interaction blockade between cold atoms excited to high-lying Rydberg states and therefore does not require substantial extensions of current ultracold plasma experiments. Extensive simulations reveal a universal behavior of the resulting Coulomb coupling parameter, providing a direct connection between the physics of strongly correlated Rydberg gases and ultracold plasmas. The approach is shown to reduce currently accessible temperatures by more than an order of magnitude, which opens up a new regime for ultracold plasma research and cold ion-beam applications with readily available experimental techniques.

Bannasch, G; Pohl, T

2013-01-01T23:59:59.000Z

164

Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons  

SciTech Connect

Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented.

Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

2004-08-03T23:59:59.000Z

165

Time parallelization of advanced operation scenario simulations of ITER plasma  

Science Conference Proceedings (OSTI)

This work demonstrates that simulations of advanced burning plasma operation scenarios can be successfully parallelized in time using the parareal algorithm. CORSICA - an advanced operation scenario code for tokamak plasmas is used as a test case. This is a unique application since the parareal algorithm has so far been applied to relatively much simpler systems except for the case of turbulence. In the present application, a computational gain of an order of magnitude has been achieved which is extremely promising. A successful implementation of the Parareal algorithm to codes like CORSICA ushers in the possibility of time efficient simulations of ITER plasmas.

Samaddar, D. [ITER Organization, Saint Paul Lez Durance, France; Casper, T. A. [Lawrence Livermore National Laboratory (LLNL); Kim, S. H. [ITER Organization, Saint Paul Lez Durance, France; Berry, Lee A [ORNL; Elwasif, Wael R [ORNL; Batchelor, Donald B [ORNL; Houlberg, Wayne A [ORNL

2013-01-01T23:59:59.000Z

166

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas  

E-Print Network (OSTI)

Burning Plasma Science Workshop Astrophysics and Laboratory Plasmas Robert Rosner The University of Chicago Dec. 12, 2000 Austin, TX (http://flash.uchicago.edu) #12;Burning Plasma Science Workshop Austin ¥ Plasma conditions ¥ Overview of plasma physics issues for astrophysics ¥ Specific examples #12;Burning

167

Flux compression generators as plasma compression power sources  

SciTech Connect

A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches.

Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

1979-01-01T23:59:59.000Z

168

Plasma Processing Of Hydrocarbon  

SciTech Connect

The Idaho National Laboratory (INL) developed several patented plasma technologies for hydrocarbon processing. The INL patents include nonthermal and thermal plasma technologies for direct natural gas to liquid conversion, upgrading low value heavy oil to synthetic light crude, and to convert refinery bottom heavy streams directly to transportation fuel products. Proof of concepts has been demonstrated with bench scale plasma processes and systems to convert heavy and light hydrocarbons to higher market value products. This paper provides an overview of three selected INL patented plasma technologies for hydrocarbon conversion or upgrade.

Grandy, Jon D; Peter C. Kong; Brent A. Detering; Larry D. Zuck

2007-05-01T23:59:59.000Z

169

PlasmaMethane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

170

Plasma-Quench  

INL has developed a thermal plasma quench to cool the heat generated from rapid chemical reactions, preventing adverse reactions or decompositions to ...

171

Physics of Complex Plasmas.  

E-Print Network (OSTI)

??Physics of complex plasmas is a wide and varied field. In the context of this PhD thesis I present the major results from my research (more)

Stterlin, Robert

2010-01-01T23:59:59.000Z

172

Spark Plasma Sintering  

Science Conference Proceedings (OSTI)

Oct 21, 2010 ... Coupled Electro-Thermo-Mechanical Analysis of Conventional (SPS) and Free Pressureless (FPSPS) Spark-Plasma Sintering: Eugene...

173

Plasma-Borohydride  

INLs Plasma-Borohydride process produces borohydride from sodium borate which is capable of forming a chemical hydride for a storage medium of hydrogen.

174

Stellarator Coil Design and Plasma Sensitivity  

SciTech Connect

The rich information contained in the plasma response to external magnetic perturbations can be used to help design stellarator coils more effectively. We demonstrate the feasibility by first devel- oping a simple, direct method to study perturbations in stellarators that do not break stellarator symmetry and periodicity. The method applies a small perturbation to the plasma boundary and evaluates the resulting perturbed free-boundary equilibrium to build up a sensitivity matrix for the important physics attributes of the underlying configuration. Using this sensitivity information, design methods for better stellarator coils are then developed. The procedure and a proof-of-principle application are given that (1) determine the spatial distributions of external normal magnetic field at the location of the unperturbed plasma boundary to which the plasma properties are most sen- sitive, (2) determine the distributions of external normal magnetic field that can be produced most efficiently by distant coils, (3) choose the ratios of the magnitudes of the the efficiently produced magnetic distributions so the sensitive plasma properties can be controlled. Using these methods, sets of modular coils are found for the National Compact Stellarator Experiment (NCSX) that are either smoother or can be located much farther from the plasma boundary than those of the present design.

Long-Poe Ku and Allen H. Boozer

2010-11-03T23:59:59.000Z

175

Complex plasmas: An interdisciplinary research field  

SciTech Connect

Complex (dusty) plasmas are composed of a weakly ionized gas and charged microparticles and represent the plasma state of soft matter. Complex plasmas have several remarkable features: Dynamical time scales associated with microparticles are ''stretched'' to tens of milliseconds, yet the microparticles themselves can be easily visualized individually. Furthermore, since the background gas is dilute, the particle dynamics in strongly coupled complex plasmas is virtually undamped, which provides a direct analogy to regular liquids and solids in terms of the atomistic dynamics. Finally, complex plasmas can be easily manipulated in different ways--also at the level of individual particles. Altogether, this gives us a unique opportunity to go beyond the limits of continuous media and study--at the kinetic level--various generic processes occurring in liquids or solids, in regimes ranging from the onset of cooperative phenomena to large strongly coupled systems. In the first part of the review some of the basic and new physics are highlighted which complex plasmas enable us to study, and in the second (major) part strong coupling phenomena in an interdisciplinary context are examined. The connections with complex fluids are emphasized and a number of generic liquid and solid-state issues are addressed. In summary, application oriented research is discussed.

Morfill, Gregor E.; Ivlev, Alexei V. [Max-Planck-Institut fuer extraterrestrische Physik, 85741 Garching (Germany)

2009-10-15T23:59:59.000Z

176

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

Transport in tokamak plasma . . . . . . . . . . . . . . .of tokamak plasma . . . . . . . . . 1.4 Dissertationtransport model for edge plasma . . . . . . 6.1 Anomalous

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

177

DOE Science Showcase - DOE Plasma Research | OSTI, US Dept of Energy,  

Office of Scientific and Technical Information (OSTI)

DOE Plasma Research DOE Plasma Research Image credit: NASA Plasma, the electrified gas that surrounds and illuminates our world, is the fourth state of matter. The behavior, nature, and complexity of plasma allows DOE scientists, research institutions and international partners to research a diverse number of applications that are significant to our world. DOE plasma theorists are developing the fundamental plasma theory and computational base needed to understand plasma. Hall thrusters are being studied that satellites and space probes use for propulsion. Research on beam dynamics is yielding applications from particle accelerators to the creation of fusion. Plasma-based systems are being developed to manufacture a radioactive element vital to medical exams. Nanomaterials are being

178

Tomographic Analysis of SRF Cavities as Asymmetric Plasma Reactors  

SciTech Connect

The tomographic reconstruction of local plasma parameters for nonequilibrium plasma sources is a developing approach, which has a great potential in understanding the fundamental processes and phenomena during plasma processing of SRF cavity walls. Any type of SRF cavity presents a plasma rector with limited or distorted symmetry and possible presence of high gradients. Development of the tomographic method for SRF plasma analysis consists of several steps. First, we define the method based on the inversion of the Abel integral equation for a hollow spherical reactor. Second step is application of the method for the actual elliptical cavity shape. Third step consists of study of the effects of various shapes of the driven electrode. Final step consists of testing the observed line-integrated optical emission data. We will show the typical results in each step and the final result will be presented in the form of correlation between local plasma parameter distributions and local etching characteristics.

M. Nikoli?, A.L. Godunov, S. Popovi?, A. Samolov, J. Upadhyay, L. Vukovi?, H.L. Phillips, A-M. Valente-Feliciano

2010-05-01T23:59:59.000Z

179

Self-consistent resonance in a plasma  

E-Print Network (OSTI)

As an application of the solution of the equations of electromagnetic self-consistency in a plasma, found in a previous paper, the study of controlled thermo-nuclear fusion is undertaken. This study utilizes the resonance which can be developed in the plasma, as indicated by the above solution, and is based to an analysis of the underlying forced oscillation under friction. As a consequence, we find that, in this way, controlled thermonuclear fusion seems now to be feasible in principle. The treatment is rather elementary, and it may serve as a guide for more detailed calculations.

Evangelos Chaliasos

2005-10-14T23:59:59.000Z

180

Design Considerations for Plasma Accelerators Driven by Lasers or Particle Beams  

SciTech Connect

Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. The implications for accelerator design and the different physical mechanisms of laser-driven and beam-driven plasma acceleration are discussed. Driver propagation is examined, as well as the effects of the excited plasma wave phase velocity. The driver coupling to subsequent plasma accelerator stages for high-energy physics applications is addressed.

Schroeder, C. B.; Esarey, E.; Benedetti, C.; Toth, Cs.; Geddes, C. G. R.; Leemans, W.P.

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plasma technology directory  

SciTech Connect

The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

Ward, P.P.; Dybwad, G.L.

1995-03-01T23:59:59.000Z

182

Triggered plasma opening switch  

DOE Patents (OSTI)

A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

Mendel, Clifford W. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

183

Triggered plasma opening switch  

DOE Patents (OSTI)

A triggerable opening switch for a very high voltage and current pulse includes a transmission line extending from a source to a load and having an intermediate switch section including a plasma for conducting electrons between transmission line conductors and a magnetic field for breaking the plasma conduction path and magnetically insulating the electrons when it is desired to open the switch.

Mendel, C.W.

1986-07-14T23:59:59.000Z

184

SUPERFAST THERMALIZATION OF PLASMA  

DOE Patents (OSTI)

A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

Chang, C.C.

1962-06-12T23:59:59.000Z

185

Plasma opening switch  

DOE Patents (OSTI)

A command triggered plasma opening switch assembly using an amplification stage. The assembly surrounds a coaxial transmission line and has a main plasma opening switch (POS) close to the load and a trigger POS upstream from the main POS. The trigger POS establishes two different current pathways through the assembly depended on whether it has received a trigger current pulse. The initial pathway has both POS's with plasma between their anodes and cathodes to form a short across the transmission line and isolating the load. The final current pathway is formed when the trigger POS receives a trigger current pulse which energizes its fast coil to push the conductive plasma out from between its anode and cathode, allowing the main transmission line current to pass to the fast coil of the main POS, thus pushing its plasma out the way so as to establish a direct current pathway to the load.

Savage, Mark E. (Albuquerque, NM); Mendel, Jr., Clifford W. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

186

Plasma-based accelerator structures  

E-Print Network (OSTI)

Particle Beam Dynamics in. a Hollow Plasma Channel 3.1Structure of the Hollow Plasma Channel . . . . 2.2.1 ChannelLimit . . 5.2.6 Laser-Plasma Instabilities . . . 5.3

Schroeder, C.B.

2011-01-01T23:59:59.000Z

187

NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS  

DOE Green Energy (OSTI)

Currently CARB estimates on road diesel vehicles contribute 50% of the NOX and 78% of the particulates being discharged from mobile sources. Diesel emissions obviously must be reduced if future air quality targets are to be met. A critical technological barrier exists because there are no commercial technologies available, which can reduce NOX from diesel (lean), exhaust containing 5-15% O2 concentration. One promising approach to reducing NOX and particulates from diesel exhaust is to use a combination of plasma with catalyst. Plasma can be generated thermally or non-thermally. Thermal plasma is formed by heating the system to an exceedingly high temperature (>2000 C). High temperature requirements for plasma makes thermal plasma inefficient and requires skillful thermal management and hence is considered impractical for mobile applications. Non-thermal plasma directs electrical energy into the creation of free electrons, which in turn react with gaseous species thus creating plasma. A combination of non-thermal plasma with catalysts can be referred to Plasma Assisted Catalysts or PAC. PAC technology has been demonstrated in stationary sources where non-thermal plasma catalysis is carried out in presence of NH3 as a reductant. In stationary applications NO is oxidized to HNO3 and then into ammonium nitrate where it is condensed and removed. This approach is impractical for mobile application because of the ammonia requirement and the ultimate mechanism by which NOX is removed. However, if a suitable catalyst can be found which can use onboard fuel as reductant then the technology holds a considerable promise. NOX REDUCTION FOR LEAN EXHAUST USING PLASMA ASSISTED CATALYSIS Ralph Slone, B. Bhatt and Victor Puchkarev NOXTECH INC. In addition to the development of an effective catalyst, a non-thermal plasma reactor needs be scaled and demonstrated along with a reliable and cost effective plasma power source and onboard HC source needs to be proven. Under the work sponsored by DOE and SCAQMD Noxtech is developing a cost effective and reliable PAC system for mobile applications. The goal of the program is to develop a suitable catalyst with the ability to remove high levels of NOx at reasonable space velocities. This new catalyst will then be used to scale the technology to treat exhaust from 80Hp engine and eventually to demonstrate the technology on 200 and 400 Hp engine applications. Using the 2004 EPA proposed regulation as a standard, it is clear in order for PAC system to be commercially viable it needs to remove NOX by 70% or better. It is further assumed from past experience that 30,000 HR-1 space velocities are necessary to ensure a good compact design.

Bhatt, B.

2000-08-20T23:59:59.000Z

188

Plasma sheath criterion in thermal electronegative plasmas  

Science Conference Proceedings (OSTI)

The sheath formation criterion in electronegative plasma is examined. By using a multifluid model, it is shown that in a collisional sheath there will be upper as well as lower limits for the sheath velocity criterion. However, the parameters of the negative ions only affect the lower limit.

Ghomi, Hamid [Laser and Plasma Research Institute, Shahid Beheshti University, Evin 1983963113, Tehran (Iran, Islamic Republic of); Khoramabadi, Mansour; Ghorannevis, Mahmod [Plasma Physics Research Center, Science and Research Campus of Islamic Azad University, P.O. Box 14665-678, Tehran (Iran, Islamic Republic of); Shukla, Padma Kant [Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2010-09-15T23:59:59.000Z

189

Future scientific applications for high-energy lasers  

Science Conference Proceedings (OSTI)

This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

Lee, R.W. [comp.

1994-08-01T23:59:59.000Z

190

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network (OSTI)

C. Andes, and E. Hudson, Plasma Processes and Polymers 6,J. P. Booth, and G. Cunge, Plasma Sources Sci. Technol. 5,and B. M. Alexandrovich, Plasma Sources Sci. Technol. 1,

Titus, Monica Joy

2010-01-01T23:59:59.000Z

191

Plasma Response to Lithium-Coated Plasma-Facing Components in the National Spherical Torus Experiment  

Science Conference Proceedings (OSTI)

Experiments in the National Spherical Torus Experiment (NSTX) have shown beneficial effects on the performance of divertor plasmas as a result of applying lithium coatings on the graphite and carbonfiber- composite plasma-facing components. These coatings have mostly been applied by a pair of lithium evaporators mounted at the top of the vacuum vessel which inject collimated streams of lithium vapor towards the lower divertor. In NBI-heated, deuterium H-mode plasmas run immediately after the application of lithium, performance modifications included decreases in the plasma density, particularly in the edge, and inductive flux consumption, and increases in the electron and ion temperatures and the energy confinement time. Reductions in the number and amplitude of ELMs were observed, including complete ELM suppression for periods up to 1.2 s, apparently as a result of altering the stability of the edge. However, in the plasmas where ELMs were suppressed, there was a significant secular increase in the effective ion charge Zeff and the radiated power as a result of increases in the carbon and medium-Z metallic impurities, although not of lithium itself which remained at a very low level in the plasma core, lithium also inhibited parasitic losses through the scrape-off layer of ICRF power coupled to the plasma, enabling the waves to heat electrons in the core of H-mode plasmas produced by NBI. Lithium has also been introduced by injecting a stream of chemically stabilized, fine lithium powder directly into the scrape-off layer of NBI-heated plasmas. The lithium was ionized in the SOL and appeared to flow along the magnetic field to the divertor plates. This method of coating produced similar effects to the evaporated lithium but at lower amounts.

M.G. Bell, H.W. Kugel, R. Kaita, L.E. Zakharov, H. Schneider, B.P. LeBlanc, D. Mansfield, R.E. Bell, R. Maingi, S. Ding, S.M. Kaye, S.F. Paul, S.P. Gerhardt, J.M. Canik, J.C. Hosea, G. Taylor and the NSTX Research Team

2009-08-20T23:59:59.000Z

192

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 34, NO. 3, JUNE 2006 825 Nonlocal Effects in a Bounded Afterglow Plasma  

E-Print Network (OSTI)

surpass by many times the kinetic energy of the electron gas. Due to this large chemical activity. Steadman and D. W. Setser, "Chemical applications of metastable argon atoms II. A clean system research and technical applications. Index Terms--Afterglow plasma, diffusion cooling, electron energy

Kaganovich, Igor

193

Plasma control and utilization  

SciTech Connect

A plasma is confined and heated by a microwave field resonant in a cavity excited in a combination of the TE and TM modes while responding to the resonant frequency of the cavity as the plasma dimensions change to maintain operation at resonance. The microwave field is elliptically or circularly polarized as to prevent the electromagnetic confining field from going to zero. A high Q chamber having superconductive walls is employed to minimize wall losses while providing for extraction of thermonuclear energy produced by fusion of nuclei in the plasma.

Ensley, Donald L. (Danville, CA)

1976-12-28T23:59:59.000Z

194

Kinetic Theory of Plasma Waves - Part III: Inhomogeneous Plasma  

Science Conference Proceedings (OSTI)

Kinetic Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

P. U. Lamalle

195

THE ANISOTROPIC TRANSPORT EFFECTS ON DILUTE PLASMAS  

Science Conference Proceedings (OSTI)

We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction.

Devlen, Ebru, E-mail: ebru.devlen@ege.edu.tr [Department of Astronomy and Space Sciences, Faculty of Science, University of Ege, Bornova 35100, Izmir (Turkey)

2011-04-20T23:59:59.000Z

196

Fizeau plasma interferometer  

SciTech Connect

This paper describes a technique by which the sensitivity of plasma interferometers can be increased. Stabilization and fractional fringe measurement techniques have improved to the point where additional optical sensitivity could be useful. (MOW)

Frank, A.M.

1980-01-01T23:59:59.000Z

197

Plasma Screen Floating Mount  

Engineers at the Savannah River National Laboratory (SRNL) have invented a new mounting system for flat panel video technology. The plasma screen floating mount is a mounting system proven to eliminate vibration and dampen shock for mobile uses of ...

198

Induction plasma tube  

DOE Patents (OSTI)

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, D.E.

1982-07-02T23:59:59.000Z

199

Induction plasma tube  

DOE Patents (OSTI)

An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

Hull, Donald E. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

200

Measuring the Plasma Density of a Ferroelectric Plasma Source in an Expanding Plasma  

SciTech Connect

The initial density and electron temperature at the surface of a ferroelectric plasma source were deduced from floating probe measurements in an expanding plasma. The method exploits negative charging of the floating probe capacitance by fast flows before the expanding plasma reaches the probe. The temporal profiles of the plasma density can be obtained from the voltage traces of the discharge of the charged probe capacitance by the ion current from the expanding plasma. The temporal profiles of the plasma density, at two different distances from the surface of the ferroelectric plasma source, could be further fitted by using the density profiles for the expanding plasma. This gives the initial values of the plasma density and electron temperature at the surface. The method could be useful for any pulsed discharge, which is accompanied by considerable electromagnetic noise, if the initial plasma parameters might be deduced from measurements in expanding plasma.

A. Dunaevsky; N.J. Fisch

2003-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Electrostatics of moving plasma  

SciTech Connect

The stability of charge distribution over the surface of a conducting body in moving plasma is analyzed. Using a finite-width plate streamlined by a cold neutralized electron flow as an example, it is shown that an electrically neutral body can be unstable against the development of spontaneous polarization. The plasma parameters at which such instability takes place, as well as the frequency and growth rate of the fundamental mode of instability, are determined.

Ignatov, A. M. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)] [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)

2013-07-15T23:59:59.000Z

202

Oscillations in quasineutral plasmas  

Science Conference Proceedings (OSTI)

The purpose of this article is to describe the limit, as the vacuum electric permittivity goes to zero, of a plasma physics system, deduced from the Vlasov-Poisson system for special initial data (distribution functions which are analytic in the space variable, with compact support in velocity), a limit also called {open_quotes}quasineutral regime{close_quotes} of the plasma, and the related oscillations of the electric field, with high frequency in time. 20 refs.

Grenier, E. [Ecole Normale Superieure, Paris (France)

1996-12-31T23:59:59.000Z

203

Adventures in Laser Produced Plasma Research  

SciTech Connect

In the UK the study of laser produced plasmas and their applications began in the universities and evolved to a current system where the research is mainly carried out at the Rutherford Appleton Laboratory Central Laser Facility ( CLF) which is provided to support the universities. My own research work has been closely tied to this evolution and in this review I describe the history with particular reference to my participation in it.

Key, M

2006-01-13T23:59:59.000Z

204

Plasma Formation, Measurement and Control  

E-Print Network (OSTI)

The beauty found in looking at plasmas in the world inspires future generations of engineers and scientists While factory walls hide them from sight industrial plasmas are no less ubiquitous Cover-photo: Another day filled with plasma, 26 December 1996. Multiexposure photograph of the midnight sun in Antarctica. Courtesy of Dr. Darryn A. Schneider, PhD in plasma physics. 1

Albert R. Ellingboe; Miles M. Turner

2002-01-01T23:59:59.000Z

205

"Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny Raitses This invention relates to a new plasma thruster for space applications. The key innovations of this thruster allow it to effectively ionize different propellants, including gases, liquids and solids, at different flow rates, and to operate with wallout losses. Due to these characteristics and the design simplicity, this thruster can be miniaturized to operate at low power levels, including, but not limited to a few watts input power, and regimes relevant to Cubesat applications. The new thruster uses plasma with magnetized electrons and non-magnetized ions and consists of at least two stages, ionization and acceleration, which are physically separated by the geometry, magnetic field topology and

206

Hot-electron refluxing enhanced relativistic transparency of overdense plasmas  

E-Print Network (OSTI)

A new phenomenon of enhancing the relativistic transparency of overdense plasmas by the influence of hot-electron refluxing has been found via particle-in-cell simulations. When a p-polarized laser pulse, with intensity below the self-induced-transparency (SIT) threshold, obliquely irradiates a thin overdense plasma, the initially opaque plasma would become transparent after a time interval which linearly relies on the thickness of the plasma. This phenomenon can be interpreted by the influence of hot-electron refluxing. As the laser intensity is higher than the SIT threshold, the penetration velocity of the laser in the plasma is enhanced when the refluxing is presented. Simulation data with ion motion considered is also consistent with the assumption that hot-electron refluxing enhances transparency. These results have potential applications in laser shaping.

Yu, Yong; Chen, Zi-Yu; Wang, Jia-Xiang; Zhu, Wen-Jun

2013-01-01T23:59:59.000Z

207

Low-n shear Alfven spectra in axisymmetric toroidal plasmas  

SciTech Connect

In toroidal plasmas, the toroidal magnetic field is nonuniform over a magnetic surface and causes coupling of different poloidal harmonics. It is shown both analytically and numerically that the toroidicity not only breaks up the shear Alfven continuous spectrum, but also creates new, discrete, toroidicity-induced shear Alfven eigenmodes with frequencies inside the continuum gaps. Potential applications of the low-n toroidicity-induced shear Alfven eigenmodes on plasma heating and instabilities are addressed. 17 refs., 4 figs.

Cheng, C.Z.; Chance, M.S.

1985-11-01T23:59:59.000Z

208

Final Report: Plasma Colloquium Travel Grant Program, September 15, 1997 - September 14, 1998  

SciTech Connect

The purpose of the Travel Grant Program is to increase the awareness of plasma research. The new results and techniques of plasma research in fusion plasmas, plasma processing space plasmas, basic plasma science, etc, have broad applicability throughout science. The benefits of these results are limited by the relatively low awareness and appreciation of plasma research in the larger scientific community. Whereas spontaneous interactions between plasma scientists and other scientists are useful, a focused effort in education and outreach to other scientists is efficient and is needed. The academic scientific community is the initial focus of this effort, since that permits access to a broad cross-section of scientists and future scientists including undergraduates, graduate students, faculty, and research staff.

Hazeltine, Richard D.

1998-09-14T23:59:59.000Z

209

Superconducting Magnet for Non-Neutral Plasma Research Alexei V. Dudarev, Victor E. Keilin, Nicolai Ph. Kopeikin, Igor O. Shugaev,  

E-Print Network (OSTI)

Superconducting Magnet for Non-Neutral Plasma Research Alexei V. Dudarev, Victor E. Keilin, Nicolai-7300 Abstract -- A superconducting magnet intended for non- neutral electron plasma research has been developed. Non-neutral plasma research is applicable to several other physics disciplines, such as two

California at Berkeley, University of

210

D. Moreau IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005 INTEGRATED REAL-TIME CONTROL  

E-Print Network (OSTI)

D. Moreau IEA W60 Burning Plasma Physics and Simulation, Tarragona, July 2005 INTEGRATED REAL-TIME CONTROL FOR ADVANCED STEADY STATE SCENARIOS AND APPLICATIONS TO BURNING PLASMAS EFDA-JET CSU, Culham. Sartori, and many other JET-EFDA Contributors D. Moreau #12;D. Moreau IEA W60 Burning Plasma Physics

211

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

212

Furth Plasma Physics Libary  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Hours Online Access Directions Contacts Hours Online Access Directions QuickFind Main Catalog Databases PPPL Publications & Reports/PPLcat Plasma Physics E-Journals clear Click arrows to scroll for more clear Plasma Physics Colloquia The Global Carbon Cycle and Earth's Climate - January 15, 2014 Addressing Big Data Challenges in Simulation-based Science - January 22, 2014 "The Usefulness of Useless Knowledge?: The History of the Institute for Advanced Study - January 29, 2014 PM-S-1 PDF PM-S-2 PDF PM-S-3 PDF PM-S-4 PDF PM-S-5 PDF PM-S-6 PDF See All Library History Intro 950 1960-1970 1980 1990 2000 Quick Order Article Express Borrow Direct Interlibrary Loan PPL Book Request More Resources and Services Search & Find Articles & Databases - Plasma Physics, Physics, Engineering & Technology,

213

Perturbations in a plasma  

E-Print Network (OSTI)

The perturbations of a homogeneous non-relativistic two-component plasma are studied in the Coulomb gauge. Starting from the solution found [2] of the equations of electromagnetic self consistency in a plasma [1], we add small perturbations to all quantities involved, and we enter the perturbed quantities in the equations, keeping only the first order terms in the perturbations. Because the unperturbed quantities are solutions of the equations, they cancel each other, and we are left with a set of 12 linear equations for the 12 perturbations (unknown quantities). Then we solve this set of linearized equations, in the approximation of small ratio of the masses of electrons over those of ions, and under the assumption that the plasma remains homogeneous.

Evangelos Chaliasos

2005-10-20T23:59:59.000Z

214

Rotating Plasma Finding is Key for ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Finding is Key for ITER Rotating Plasma Finding is Key for ITER PlasmaTurbulenceCSChang.png Tokamak turbulence showing inward-propagating streamers from normalized...

215

A Plasma Lens for Magnetron Sputtering  

E-Print Network (OSTI)

for Sputtering with a Plasma Lens", December 7, 2009 (V. M. Khoroshikh, "Motion of plasma streams from a vacuumarc in a long, straight plasma optics system," Sov. J.

Anders, Andre

2011-01-01T23:59:59.000Z

216

Quark-Gluon Plasma Thermalization and Plasma Instabilities  

E-Print Network (OSTI)

In this talk, I review the important role played by plasma instabilities in the thermalization of quark-gluon plasmas at very high energy. [Conference talk presented at Strong and Electroweak Mattter 2004, Helsinki, Finland, June 16--19.

Peter Arnold

2004-08-31T23:59:59.000Z

217

A plasma source for system for microwave plasma experiments (SYMPLE)  

Science Conference Proceedings (OSTI)

A system "SYMPLE" is being developed at our laboratory to investigate the interaction of high power microwave and plasma. A brief account on the development of a plasma source that satisfies the prerequisites required for SYMPLE is discussed.

V. P. Anitha; Renu Bahl; Priyavandna J. Rathod; Jayesh Raval; Y. C. Saxena

2011-02-01T23:59:59.000Z

218

Thermal plasma processing of materials  

SciTech Connect

Emphasis has been on plasma synthesis of fine powders, plasma Chemical Vapor Deposition (CVD), on related diagnostics, and on modeling work. Since plasma synthesis as well as plasma CVD make frequent use of plasma jets, the beginning has been devoted of plasma jets and behavior of particulates injected into such plasma jets. Although most of the construction of the Triple-Torch Plasma Reactor (TTPR) has already been done, modifications have been made in particular modifications required for plasma CVD of diamond. A new reactor designed for Counter-Flow Liquid Injection Plasma Synthesis (CFLIPS) proved to be an excellent tool for synthesis of fine powders as well as for plasma CVD. An attempt was made to model flow and temperature fields in this reactor. Substantial efforts were made to single out those parameters which govern particle size, size distribution, and powder quality in our plasma synthesis experiments. This knowledge is crucial for controlling the process and for meaningful diagnostics and modeling work. Plasma CVD of diamond films using both reactors has been very successful and we have been approached by a number of companies interested in using this technology for coating of tools.

Pfender, E.; Heberlein, J.

1992-02-01T23:59:59.000Z

219

Energetic electron avalanches and mode transitions in planar inductively coupled radio-frequency driven plasmas operated in oxygen  

Science Conference Proceedings (OSTI)

Space and phase resolved optical emission spectroscopic measurements reveal that in certain parameter regimes, inductively coupled radio-frequency driven plasmas exhibit three distinct operation modes. At low powers, the plasma operates as an alpha-mode capacitively coupled plasma driven through the dynamics of the plasma boundary sheath potential in front of the antenna. At high powers, the plasma operates in inductive mode sustained through induced electric fields due to the time varying currents and associated magnetic fields from the antenna. At intermediate powers, close to the often observed capacitive to inductive (E-H) transition regime, energetic electron avalanches are identified to play a significant role in plasma sustainment, similar to gamma-mode capacitively coupled plasmas. These energetic electrons traverse the whole plasma gap, potentially influencing plasma surface interactions as exploited in technological applications.

Zaka-ul-Islam, M.; Niemi, K. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom); Gans, T.; O'Connell, D. [Centre for Plasma Physics, School of Mathematics and Physics, Queen's University Belfast, University Road, Belfast BT7 1NN, Northern Ireland (United Kingdom); York Plasma Institute, Department of Physics, University of York, Innovation Way, Heslington York YO10 5DQ (United Kingdom)

2011-07-25T23:59:59.000Z

220

Fusion Plasmas Martin Greenwald  

E-Print Network (OSTI)

. Despite the cold war, which raged for another 30 years, controlled fusion research became a modelFusion Plasmas Martin Greenwald Encyclopedia of Electrical and Electronic Engineering, John Webster - editor, published by John Wiley & Sons, New York (1999) #12;Controlled Fusion For half a century

Greenwald, Martin

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hollow Plasma in a Solenoid  

E-Print Network (OSTI)

kA, 140 s long, with B = 3 T. Fig. 3. Photograph of plasmaindicating plasma rotation near the axis (cathode ring 2 cmcoupling efficiency," Phys. Plasmas, vol. 15, pp. 072701-7,

Anders, Andre

2011-01-01T23:59:59.000Z

222

Burning Plasma Support Research Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning Plasma Support Research Program on Alcator C-Mod Presented by: Stephen M. Wolfe Alcator C-Mod Five Year Proposal Review MIT Plasma Science & Fusion Center Cambridge, MA May...

223

Kinetic Theory of Plasma Waves  

Science Conference Proceedings (OSTI)

Kinetic Wave Theory / Proceedings of the Tenth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

D. Van Eester; E. Lerche

224

Experiments on Cryogenic Complex Plasma  

SciTech Connect

Experiments on a cryogenic complex plasma have been performed. Preliminary experiments include production of a plasma in a liquid helium or in a cryogenic helium gas by a pulsed discharge. The extended production of a plasma has been realized in a vapor of liquid helium or in a cryogenic helium gas by rf discharge. The charge of dust particles injected in such a plasma has been studied in detail.

Ishihara, O.; Sekine, W.; Kubota, J.; Uotani, N.; Chikasue, M.; Shindo, M. [Faculty of Engineering, Yokohama National University Yokohama, 240-8501 (Japan)

2009-11-10T23:59:59.000Z

225

Burning Plasma Developments Presented to  

E-Print Network (OSTI)

Burning Plasma Developments Dale Meade Presented to VLT Program Advisory Committee UCLA December 4 and Burning Plasma Issues · NSO PAC Activities First Meeting July 20-21, 2001 at GA Action Items and Status Second Meeting January 17-18, 2001 at MIT Agenda items · FuSAC Recommendation on a burning plasma

226

Princeton Plasma Physics Lab - Particle beam dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

particle-beam-dynamics The study of particle-beam-dynamics The study of the physics of charged particle beams and the accelerators that produce them. This cross-disciplinary area intersects with fields such as plasma physics, high-energy density science, and ultra-fast lasers. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

application-pdf.png"

227

A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere  

SciTech Connect

A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

Punjabi, Sangeeta B. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India); Joshi, N. K. [Faculty of Engineering and technology, MITS, lakshmangarh, (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A.; Lande, B. K. [Electrical Engineering Department, V. J.T.I, Matunga, Mumbai 400019 (India); Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz(E) 400098 (India)

2012-01-15T23:59:59.000Z

228

High beta plasma operation in a toroidal plasma producing device  

DOE Patents (OSTI)

A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.

Clarke, John F. (Oak Ridge, TN)

1978-01-01T23:59:59.000Z

229

Instabilities and pattern formation in lowtemperature plasmas  

E-Print Network (OSTI)

of the plasma region is approximately 20cm. (Produced by the Plasma Research Laboratory, Dublin City University

230

Tunable Laser Plasma Accelerator based on Longitudinal Density Tailoring  

Science Conference Proceedings (OSTI)

Laser plasma accelerators have produced high-quality electron beams with GeV energies from cm-scale devices and are being investigated as hyperspectral fs light sources producing THz to {gamma}-ray radiation and as drivers for future high-energy colliders. These applications require a high degree of stability, beam quality and tunability. Here we report on a technique to inject electrons into the accelerating field of a laser-driven plasma wave and coupling of this injector to a lower-density, separately tunable plasma for further acceleration. The technique relies on a single laser pulse powering a plasma structure with a tailored longitudinal density profile, to produce beams that can be tuned in the range of 100-400 MeV with percent-level stability, using laser pulses of less than 40 TW. The resulting device is a simple stand-alone accelerator or the front end for a multistage higher-energy accelerator.

Gonsalves, Anthony; Nakamura, Kei; Lin, Chen; Panasenko, Dmitriy; Shiraishi, Satomi; Sokollik, Thomas; Benedetti, Carlo; Schroeder, Carl; Geddes, Cameron; Tilborg, Jeroen van; Osterhoff, Jens; Esarey, Eric; Toth, Csaba; Leemans, Wim

2011-07-15T23:59:59.000Z

231

High frequency parametric wave phenomena and plasma heating: a review  

SciTech Connect

A survey of parametric instabilities in plasma, and associated particle heating, is presented. A brief summary of linear theory is given. The physical mechanism of decay instability, the purely growing mode (oscillating two-stream instability) and soliton and density cavity formation is presented. Effects of density gradients are discussed. Possible nonlinear saturation mechanisms are pointed out. Experimental evidence for the existence of parametric instabilities in both unmagnetized and magnetized plasmas is reviewed in some detail. Experimental observation of plasma heating associated with the presence of parametric instabilities is demonstrated by a number of examples. Possible application of these phenomena to heating of pellets by lasers and heating of magnetically confined fusion plasmas by high power microwave sources is discussed. (auth)

Porkolab, M.

1975-11-01T23:59:59.000Z

232

Atmospheric Pressure Low Current Plasma for Syngas Production from Alcohol  

E-Print Network (OSTI)

Abstract Atmospheric pressure low current arc discharge between graphite electrodes with conical geometry in liquid ethanol/water mixture was investigated. Syngas production was demonstrated over large experimental conditions. In this paper we focus on discharge aspects. It is shown from pictures that the behavior of low current arc discharge with consumable electrodes represents non-stationary plasma. The energetic properties of plasmas can be used to carry out many applications, particularly in discharge based systems. Recently, research interest focuses on the Non Thermal Plasma (NTP) treatment of hydrocarbons, alcohol, or biomass aimed to improve the yield of synthetic gas (syngas: H2+CO) production at low cost [1, 4]. Experiments were performed on a plasma reactor consisting of two graphite electrodes with conical shape

Ahmed Khacef; Khadija Arabi; Olivier Aubry; Jean Marie Cormier

2012-01-01T23:59:59.000Z

233

Interaction of High Intensity Electromagnetic Waves with Plasmas  

SciTech Connect

The focus of our work during the duration of this grant was on the following areas: (a) the fundamental plasma physics of intense laser-plasma interactions, including the nonlinear excitation of plasma waves for accelerator applications, as well as the recently discovered by us phenomenon of the relativistic bi-stability of relativistic plasma waves driven by a laser beatwave; (b) interaction of high power microwave beams with magnetized plasma, including some of the recently discovered by us phenomena such as the Undulator Induced Transparency (UIT) as well as the new approaches to dynamic manipulation of microwave pulses; (c) investigations of the multi-color laser pulse interactions in the plasma, including the recently discovered by us phenomenon of Electromagnetic Cascading (EC) and the effect of the EC of three-dimensional dynamics of laser pulses (enhanced/suppressed selffocusing etc.); (d) interaction of high-current electron beams with the ambient plasma in the context of Fast Ignitor (FI) physics, with the emphasis on the nonlinear dynamics of the Weibel instability and beam filamentation.

G. Shvets

2008-10-03T23:59:59.000Z

234

Plasma transport induced by kinetic Alfven wave turbulence  

SciTech Connect

At the Earth's magnetopause that separates the hot-tenuous magnetospheric plasma from the cold dense solar wind plasma, often seen is a boundary layer where plasmas of both origins coexist. Plasma diffusions of various forms have been considered as the cause of this plasma mixing. Here, we investigate the plasma transport induced by wave-particle interaction in kinetic Alfven wave (KAW) turbulence, which is one of the candidate processes. We clarify that the physical origin of the KAW-induced cross-field diffusion is the drift motions of those particles that are in Cerenkov resonance with the wave: E Multiplication-Sign B-like drift that emerges in the presence of non-zero parallel electric field component and grad-B drift due to compressional magnetic fluctuations. We find that KAW turbulence, which has a spectral breakpoint at which an MHD inertial range transits to a dissipation range, causes selective transport for particles whose parallel velocities are specified by the local Alfven velocity and the parallel phase velocity at the spectral breakpoint. This finding leads us to propose a new data analysis method for identifying whether or not a mixed plasma in the boundary layer is a consequence of KAW-induced transport across the magnetopause. The method refers to the velocity space distribution function data obtained by a spacecraft that performs in situ observations and, in principle, is applicable to currently available dataset such as that provided by the NASA's THEMIS mission.

Izutsu, T. [Department of Earth and Planetary Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Hasegawa, H.; Fujimoto, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nakamura, T. K. M. [X-Computational Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-10-15T23:59:59.000Z

235

NANOSECOND PULSE NONEQUILIBRIUM DISCHARGES FOR HIGH SPEED FLOW CONTROL AND PLASMA ASSISTED COMBUSTION  

E-Print Network (OSTI)

their poten tial for engineering applications such as plasma assisted combustion, highspeed flow con trol by RNSPD and compared with kinetic model ing. The results show that ignition in a uniform plasma occurs Engi neering from Moscow Institute of Physics and Technology and a Ph.D. in Chemical Physics from OSU

Shyy, Wei

236

Use of plasma fuel systems at thermal power plants in Russia, Kazakhstan, China, and Turkey  

SciTech Connect

The technology of plasma ignition of solid fuels is described, as well as its creation and development steps, the technoeconomic characteristics of plasma igniter systems, schemes of their installation in pulverized-coal boilers, and results of their application at pulverized coal-fired power plants.

Karpenko, E.I.; Karpenko, Y.E.; Messerle, V.E.; Ustimenko, A.B. [Russian Academy of Sciences, Ulan Ude (Russian Federation). Institute of Thermal Physics

2009-05-15T23:59:59.000Z

237

Low frequency electrostatic and electromagnetic modes in nonuniform cold quantum plasmas  

SciTech Connect

The low frequency electrostatic and electromagnetic linear modes in a nonuniform cold quantum electron-ion plasma are studied. The effect of stationary dust on an electrostatic mode is also investigated. The quantum corrections in the linear dispersion relations of a cold dense plasma are presented with possible applications.

Saleem, H.; Ahmad, Ali [Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Khan, S. A. [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)

2008-01-15T23:59:59.000Z

238

Plasma beat-wave accelerator  

Science Conference Proceedings (OSTI)

We perform an analytic study of some quantities relevant to the plasma beat-wave accelerator (PBWA) concept. We obtain analytic expressions for the plasma frequency, longitudinal electron velocity, plasma density and longitudinal plasma electric field of a nonlinear longitudinal electron plasma oscillation with amplitude less than the wave-breaking limit and phase velocity approaching the speed of light. We also estimate the luminosity of a single-pass e/sup +/e/sup -/ linear PBWA collider assuming the energy and collision beamstrahlung are fixed parameters.

Noble, R.J.

1983-06-01T23:59:59.000Z

239

Experimental Plasma Research project summaries  

SciTech Connect

This report contains descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Diagnostics; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

1980-09-01T23:59:59.000Z

240

Experimental plasma research project summaries  

SciTech Connect

This report contans descriptions of the activities supported by the Experimental Plasma Research Branch of APP. The individual project summaries were prepared by the principal investigators and include objectives and milestones for each project. The projects are arranged in six research categories: Plasma Properties; Plasma Heating; Plasma Measurements and Instrumentation; Atomic, Molecular and Nuclear Physics; Advanced Superconducting Materials; and the Fusion Plasma Research Facility (FPRF). Each category is introduced with a statement of objectives and recent progress and followed by descriptions of individual projects. An overall budget summary is provided at the beginning of the report.

1978-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Closed inductively coupled plasma cell  

DOE Patents (OSTI)

A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

Manning, T.J.; Palmer, B.A.; Hof, D.E.

1990-11-06T23:59:59.000Z

242

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Conference Proceedings (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

243

Using the Centrifugal Method for the Plasma-Arc Vitrification of Waste  

Science Conference Proceedings (OSTI)

... from the first experiments in 1985 to occupy a niche in the waste-treatment market. ... The availability of energy at high temperatures is much greater for electric .... Retech Plasma Centrifugal Furnace Application Analysis Report (

244

Princeton Plasma Physics Laboratory:  

SciTech Connect

This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

Phillips, C.A. (ed.)

1986-01-01T23:59:59.000Z

245

2XIIB plasma confinement experiments  

SciTech Connect

This paper reports results of 2XIIB neutral-beam injection experiments with plasma-stream stabilization. The plasma stream is provided either by a pulsed plasma generator located on the field lines outside the plasma region or by ionization of neutral gas introduced at the mirror throat. In the latter case, the gas is ionized by the normal particle flux through the magnetic mirror. A method of plasma startup and sustenance in a steady-state magnetic field is reported in which the plasma stream from the pulsed plasma generator serves as the initial target for the neutral beams. After an energetic plasma of sufficient density is established, the plasma generator stream is replaced by the gas-fed stream. Lifetimes of the stabilized plasma increase with plasma temperature in agreement with the plasma stabilization of the drift-cyclotron loss-cone mode. The following plasma parameters are attained using the pulsed plasma generator for stabilization: n approximately 5 x 10/sup 13/ cm/sup -3/, anti W/sub i/ approximately 13 keV, T/sub e/ = 140 eV, and ntau/sub p/ approximately 7 x 10/sup 10/ cm/sup -3/.s. With the gas feed, the mean deuterium ion energy is 9 keV and the peak density n approximately 10/sup 14/ cm/sup -3/. In the latter case, the energy confinement parameter reaches ntau/sub E/ = 7 x 10/sup 10/ cm/sup -3/.s, and the particle confinement parameter reaches ntau/sub p/ = 1 x 10/sup 11/ cm/sup -3/.s.

Coensgen, F.H.; Clauser, J.F.; Correll, D.L.

1976-08-06T23:59:59.000Z

246

Gravitational lensing in plasma: Relativistic images at homogeneous plasma  

E-Print Network (OSTI)

We investigate the influence of plasma presence on relativistic images formed by Schwarzschild black hole lensing. When a gravitating body is surrounded by a plasma, the lensing angle depends on a frequency of the electromagnetic wave due to refraction properties, and the dispersion properties of the light propagation in gravitational field in plasma. The last effect leads to difference, even in uniform plasma, of gravitational deflection angle in plasma from vacuum case. This angle depends on the photon frequency, what resembles the properties of the refractive prism spectrometer. Here we consider the case of a strong deflection angle for the light, traveling near the Schwarzschild black hole, surrounded by a uniform plasma. Asymptotic formulae are obtained for the case of a very large deflection angle, exceeding $2\\pi$. We apply these formulae for calculation of position and magnification of relativistic images in a homogeneous plasma, which are formed by the photons performing one or several revolutions around the central object. We conclude that the presence of the uniform plasma increases the angular size of relativistic rings or the angular separation of point images from the gravitating center. The presence of the uniform plasma increases also a magnification of relativistic images. The angular separation and the magnification become significantly larger than in the vacuum case, when the photon frequency goes to a plasma frequency.

Oleg Yu. Tsupko; Gennady S. Bisnovatyi-Kogan

2013-05-30T23:59:59.000Z

247

Greg Hammett Imperial College, London & Princeton Plasma Physics Lab  

E-Print Network (OSTI)

/velocity/B-field power spectra Compare with observations of ISM & solar wind turb. 2. Predicting plasma heating scales Astrophysical Applications ­ Turbulence in the Interstellar Medium ­ Black Hole Accretion ­ Solar Medium Power Spectrum Of Electron Density Fluctuations Wavenumber (m-1) Power law over ~ 12 orders

Hammett, Greg

248

Modeling of plasma spraying process to manufacture hybrid materials  

Science Conference Proceedings (OSTI)

A component, which has an optimized combination of different materials in its different portions for a specific application, is considered as the component made of a multiphase perfect material. To fabricate such components, a hybrid layered manufacturing ... Keywords: Behavior simulation, Hybrid layered manufacturing, Multiphase perfect material, Plasma spraying, Virtual manufacturing, Virtual prototyping

Feng Wang; Ke-Zhang Chen; Xin-An Feng

2007-12-01T23:59:59.000Z

249

Proceedings of the Second International Plasma Symposium - Palo Alto, California February 9-11, 1993  

Science Conference Proceedings (OSTI)

This report presents a summary of the 35 presentations from the plasma symposium; included are the text of the talks and overheads, supplemental handouts, and poster papers. The presentations review progress in commercial applications and research activities throughout the world, with specific advances in application to the metals industry and environmental clean-up. A summary of the panel discussion by nine developers and users of plasma torches and systems is included, as well as open discussion comments.

1993-04-01T23:59:59.000Z

250

Plasma gasification of coal in different oxidants  

Science Conference Proceedings (OSTI)

Oxidant selection is the highest priority for advanced coal gasification-process development. This paper presents comparative analysis of the Powder River Basin bituminous-coal gasification processes for entrained-flow plasma gasifier. Several oxidants, which might be employed for perspective commercial applications, have been chosen, including air, steam/carbon-dioxide blend, carbon dioxide, steam, steam/air, steam/oxygen, and oxygen. Synthesis gas composition, carbon gasification degree, specific power consumptions, and power efficiency for these processes were determined. The influence of the selected oxidant composition on the gasification-process main characteristics have been investigated.

Matveev, I.B.; Messerle, V.E.; Ustimenko, A.B. [Applied Plasma Technology, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

251

R-MATRIX ELECTRON-IMPACT EXCITATION OF Fe{sup 13+} AND ITS APPLICATION TO THE SOFT X-RAY AND EXTREME-ULTRAVIOLET SPECTROSCOPY OF CORONA-LIKE PLASMAS  

SciTech Connect

Accurate excitation parameters are required to interpret the ultraviolet and X-ray spectra of Fe{sup 13+}. In this work, we use the AUTOSTRUCTURE code to describe the atomic structure of Fe{sup 13+}. The 197 lowest-lying fine-structure levels of the 3s{sup x} 3p{sup y} 3d{sup z} (x + y + z = 3), 3s {sup 2}4l, and 3s3p4{l_brace}s, p, and d{r_brace} configurations are included along with further correlation configurations: 3s3p4f, 3p{sup x} 3d{sup y} 4l (x + y = 2), 3l4l'4l'', and 3l3l'5l''. The resultant level energies, lifetimes of excited states, and oscillator strengths of transitions between these levels are assessed by comparison with available experimental data and previous calculations. Electron-impact excitation data among these lowest-lying levels are generated using the intermediate-coupling frame transformation R-matrix method. We assess the present results by comparisons with laboratory measurement for the excitation to the metastable level 3s {sup 2}3p {sup 2} P {sup o} {sub 3/2} and with available close-coupling calculations for other excitations. Using these data and a collisional-radiative model, we have analyzed soft X-ray and extreme-ultraviolet spectra from space satellite observations of a stellar corona and of solar flares, as well as measurements from an electron beam ion trap. We assess the contribution from Fe{sup 13+} emission lines in the solar and Procyon corona observations, and find and identify new lines in the X-ray region observed in the solar and Procyon coronae. The laboratory measurements also confirm that weak lines (218.177 A and 224.354 A) of Fe{sup 13+} contribute to the observed intensities in solar observations. The polarization effect due to the directional monoenergetic distribution of the electron energy has been taken into account in comparison with the laboratory measurements. Electron density diagnostics for the astrophysical plasma sources have been performed using the updated data so as to investigate their sensitivity to the atomic data source.

Liang, G. Y.; Badnell, N. R. [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Crespo Lopez-Urrutia, J. R.; Baumann, T. M.; Tawara, H.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Del Zanna, G. [DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Storey, P. J., E-mail: guiyun.liang@strath.ac.u [Department of Physics and Astronomy, University College London, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

252

Plasma immersion surface modification with metal ion plasma  

SciTech Connect

We describe here a novel technique for surface modification in which metal plasma is employed and by which various blends of plasma deposition and ion implantation can be obtained. The new technique is a variation of the plasma immersion technique described by Conrad and co-workers. When a substrate is immersed in a metal plasma, the plasma that condenses on the substrate remains there as a film, and when the substrate is then implanted, qualitatively different processes can follow, including' conventional' high energy ion implantation, recoil implantation, ion beam mixing, ion beam assisted deposition, and metallic thin film and multilayer fabrication with or without species mixing. Multiple metal plasma guns can be used with different metal ion species, films can be bonded to the substrate through ion beam mixing at the interface, and multilayer structures can be tailored with graded or abrupt interfaces. We have fabricated several different kinds of modified surface layers in this way. 22 refs., 4 figs.

Brown, I.G.; Yu, K.M. (Lawrence Berkeley Lab., CA (USA)); Godechot, X. (Lawrence Berkeley Lab., CA (USA) Societe Anonyme d'Etudes et Realisations Nucleaires (SODERN), 94 - Limeil-Brevannes (France))

1991-04-01T23:59:59.000Z

253

MHD description of plasma: handbook of plasma physics  

SciTech Connect

The basic sets of MHD equations for the description of a plasma in various limits are derived and their usefulness and limits of validity are discussed. These limits are: the one fluid collisional plasma, the two fluid collisional plasma, the Chew-Goldberger Low formulation of the guiding center limit of a collisionless plasma and the double-adiabatic limit. Conservation relations are derived from these sets and the mathematics of the concept of flux freezing is given. An example is given illustrating the differences between guiding center theory and double adiabatic theory.

Kulsrud, R.M.

1980-10-01T23:59:59.000Z

254

Surface plasma wave excitation via laser irradiated overdense plasma foil  

SciTech Connect

A laser irradiated overdense plasma foil is seen to be susceptible to parametric excitation of surface plasma wave (SPW) and ion acoustic wave (IAW) on the ion plasma period time scale. The SPW is localised near the front surface of the foil while IAW extends upto the rear. The evanescent laser field and the SPW exert a ponderomotive force on electrons driving the IAW. The density perturbation associated with the latter beats with the laser induced oscillatory electron velocity to drive the SPW. At relativistic laser intensity, the growth rate is of the order of ion plasma frequency.

Kumar, Pawan; Tripathi, V. K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110 016 (India)

2012-04-09T23:59:59.000Z

255

Furth Plasma Physics Library | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

256

COLLOQUIUM: Excitement at the Plasma Boundary" | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

257

Free Floating Atmospheric Pressure Ball Plasmas | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

258

Low frequency electrostatic and electromagnetic modes of ultracold magnetized nonuniform dense plasmas  

SciTech Connect

A coupled linear dispersion relation for the basic electrostatic and electromagnetic waves in the ultracold nonuniform magnetized dense plasmas has been obtained which interestingly is analogous to the classical case. The scales of macroscopic phenomena and the interparticle quantum interactions are discussed. It is important to point out that hydrodynamic models cannot take into account strong quantum effects and they are not applicable to very dense plasmas. The analysis is presented with applications to dense plasmas which are relevant to both laboratory and astrophysical environments.

Saleem, H. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Ahmad, Ali [Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Theoretical Plasma Physics Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), Islamabad (Pakistan); Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Department of Physics, COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Department of Physics, Government College Bagh AJK (Pakistan)

2008-09-15T23:59:59.000Z

259

Princeton Plasma Physics Lab - Laser diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

laser-diagnostics The Multi-Point laser-diagnostics The Multi-Point Thomson Scattering (MPTS) diagnostic system has been providing time dependent Te and ne profile measurements on NSTX for ten years. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

application-pdf.png" title="application/pdf" alt="" />

260

Princeton Plasma Physics Lab - Fusion roadmapping  

NLE Websites -- All DOE Office Websites (Extended Search)

roadmapping The process of roadmapping The process of mapping a path to a commercial fusion reactor by planning a sequence of future machines. en Premiere issue of "Quest" magazine details PPPL's strides toward fusion energy and advances in plasma science http://www.pppl.gov/news/2013/09/premiere-issue-quest-magazine-details-pppls-strides-toward-fusion-energy-and-advances-0

application-pdf.png" title="application/pdf" alt="" />

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Possible fusion reactor. [Movable plasmas  

SciTech Connect

A scheme to improve performance characteristics of a tokamak-type fusion reactor is proposed. Basically, the tokamak-type plasma could be moved around so that the plasma could be heated by compression, brought to the region where the blanket surrounds the plasma, and moved so as to keep wall loading below the acceptable limit. This idea should be able to help to economize a fusion reactor.

Yoshikawa, S.

1976-05-01T23:59:59.000Z

262

Bumper wall for plasma device  

DOE Patents (OSTI)

Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

Coultas, Thomas A. (Hinsdale, IL)

1977-01-01T23:59:59.000Z

263

Method for generating surface plasma  

SciTech Connect

A method for generating a discharge plasma which covers a surface of a body in a gas at pressures from 0.01 Torr to atmospheric pressure, by applying a radio frequency power with frequencies between approximately 1 MHz and 10 GHz across a plurality of paired insulated conductors on the surface. At these frequencies, an arc-less, non-filamentary plasma can be generated to affect the drag characteristics of vehicles moving through the gas. The plasma can also be used as a source in plasma reactors for chemical reaction operations.

Miller, Paul A. (Albuquerque, NM); Aragon, Ben P. (Albuquerque, NM)

2003-05-27T23:59:59.000Z

264

News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

image and select "Save Image" or "Save Image As..." From left, Energy Secretary Ernest Moniz and Rich Hawryluk. Princeton University Princeton Plasma Physics Laboratory P.O. Box...

265

Institute for Plasma Research - TMS  

Science Conference Proceedings (OSTI)

VISIT THE JOM COVER GALLERY. BACK TO RESULTS. SEARCH AGAIN. Institute for Plasma Research. Division - FCIPT, B-15-17/P, GIDC, Electronics zone,...

266

Tours | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

267

CRADA | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

268

Directory | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

269

News | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

270

WFO | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

271

Education | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

272

Engineering | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

273

Communications | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

274

STEM | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

275

Weather | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

276

History | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

277

ITER | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

278

About | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

279

Newsletters | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

280

Tokamaks | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Purpose | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

282

How Spherical Plasma Crystals Form  

Science Conference Proceedings (OSTI)

The correlation buildup and the formation dynamics of the shell structure in a spherically confined one-component plasma are studied. Using Langevin dynamics simulations the relaxation processes and characteristic time scales and their dependence on the pair interaction and dissipation in the plasma are investigated. While in systems with Coulomb interaction (e.g., trapped ions) in a harmonic confinement shell formation starts at the plasma edge and proceeds inward, this trend is significantly weakened for dusty plasmas with Yukawa interaction. With a suitable change of the confinement conditions the crystallization scenario can be externally controlled.

Kaehlert, H.; Bonitz, M. [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts Universitaet zu Kiel, 24098 Kiel (Germany)

2010-01-08T23:59:59.000Z

283

Lithium | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

284

Stellarators | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

285

Princeton Plasma Physics Lab - Tokamaks  

NLE Websites -- All DOE Office Websites (Extended Search)

tokamaks A nuclear fusion reactor in which a magnetic field keeps charged, hot plasma moving in a doughnut-shaped vacuum container. en Multinational achievement: PPPL collaborates...

286

Ultrafast electron beam imaging of femtosecond laser-induced plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

Ultrafast electron beam imaging of femtosecond laser-induced plasma Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Title Ultrafast electron beam imaging of femtosecond laser-induced plasma dynamics Publication Type Journal Article Year of Publication 2010 Authors Li, Junjie, Xuan Wang, Zhaoyang Chen, Richard Clinite, Samuel S. Mao, Pengfei Zhu, Zhengming Sheng, Jie Zhang, and Jianming Cao Journal Journal of Applied Physics Volume 107 Issue 8 Date Published 03/2010 Keywords copper, electron beam applications, high-speed optical techniques, laser ablation, plasma diagnostics, plasma production by laser Abstract Plasma dynamics in the early stage of laser ablation of a copper target are investigated in real time by making ultrafast electron shadow images and electron deflectometry measurements. These complementary techniques provide both a global view and a local perspective of the associated transient electric field and charge expansion dynamics. The results reveal that the charge cloud above the target surface is composed predominantly of thermally ejected electrons and that it is self-expanding, with a fast front-layer speed exceeding 107 m/s. The average electric field strength of the charge cloud induced by a pump fluence of 2.2 J/cm2 is estimated to be ∼ 2.4×105 V/m.

287

Plasma Measurements: An Overview of Requirements and Status  

Science Conference Proceedings (OSTI)

This paper introduces this special issue on plasma diagnostics for magnetic fusion devices. Its primary purpose is to relate the measurements of plasma parameters to the physics challenges to be faced on operating and planned devices, and also to identify the diagnostic techniques that are used to make these measurements. The specific physics involved in the application of the techniques will be addressed in subsequent chapters. This chapter is biased toward measurements for tokamaks because of their proximity to the burning plasma frontier, and to set the scene for the development work associated with ITER. Hence, there is some emphasis on measurements for alpha-physics studies and the needs for plasma measurements as input to actuators to control the plasma, both for optimizing the device performance and for protection of the surrounding material. The very different approach to the engineering of diagnostics for a burning plasma is considered, emphasizing the needs for new calibration ideas, reliability and hardness against, and compatibility with, radiation. New ideas take a long time to be converted into "work-horse" sophisticated diagnostics so that investment in new developments is essential for ITER, particularly for the measurement of alpha-particles.

Kenneth M. Young

2008-01-04T23:59:59.000Z

288

Free radicals induced in aqueous solution by non-contact atmospheric-pressure cold plasma  

SciTech Connect

To understand plasma-induced chemical processing in liquids, we investigated the formation of free radicals in aqueous solution exposed to different types of non-contact atmospheric-pressure helium plasma using the spin-trapping technique. Both hydroxyl radical (OH{center_dot}) and superoxide anion radical (O{sub 2}{sup -}{center_dot}) adducts were observed when neutral oxygen gas was additionally supplied to the plasma. In particular, O{sub 2}{sup -}{center_dot} can be dominantly induced in the solution via oxygen flow into the afterglow gas of helium plasma. This type of plasma treatment can potentially be used in medical applications to control infectious diseases, because the O{sub 2}{sup -}{center_dot} is crucial for sterilization of liquids via atmospheric-pressure plasma.

Tani, Atsushi; Fukui, Satoshi [Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Ono, Yusuke; Kitano, Katsuhisa [Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Ikawa, Satoshi [Technology Research Institute of Osaka Prefecture, Izumi, Osaka 594-1157 (Japan)

2012-06-18T23:59:59.000Z

289

Optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals  

Science Conference Proceedings (OSTI)

In this paper, the optical and magneto-optical properties of one-dimensional magnetized coupled resonator plasma photonic crystals have been investigated. We use transfer matrix method to solve our magnetized coupled resonator plasma photonic crystals consist of dielectric and magnetized plasma layers. The results of the change in the optical and magneto-optical properties of structure as a result of the alteration in the structural properties such as thickness, plasma frequency and collision frequency, plasma filling factor, number of resonators and dielectric constant of dielectric layers and external magnetic field have been reported. The main feature of this structure is a good magneto-optical rotation that takes place at the defect modes and the edge of photonic band gap of our proposed optical magnetized plasma waveguide. Our outcomes demonstrate the potential applications of the device for tunable and adjustable filters or reflectors and active magneto-optic in microwave devices under structural parameter and external magnetic field.

Hamidi, S. M. [Laser and Plasma Research Institute, G. C., Shahid Beheshti University, Tehran 1983963113 (Iran, Islamic Republic of)

2012-01-15T23:59:59.000Z

290

Efficiency of a hybrid-type plasma-assisted fuel reformation system  

Science Conference Proceedings (OSTI)

The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existing and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.

Matveev, I.B.; Serbin, S.I.; Lux, S.M. [Applied Plasma Technologies, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

291

Design of Catalytic Materials for Plasma Assisted Catalysis System  

DOE Green Energy (OSTI)

In recent years, the Plasma Assisted Catalysis (PAC) approach for controlling NOx and/or particulate emissions from mobile diesel engines has received a significant amount of attention from researchers. Substantial work has been performed by various researchers to develop an understanding of the reaction mechanisms in a plasma reactor in conjunction with conventional lean-NOx catalyst materials. However, less effort has been devoted to systematically investigating new catalyst materials specifically designed for application in the PAC system. Since it is believed that plasma produces a unique environment for a catalyst bed (i.e. oxidation of NO to NO2 and partial oxidation/reforming of hydrocarbon reductants in the exhaust), new catalytic materials that take advantage of the plasma reactor conditions need to be studied. Optimum catalyst materials will be required in order to develop a PAC system that achieves maximum deNOx performance over the wide range of operating conditions in which the system will be required to operate for application on heavy duty diesel engines. This presentation discusses the issues involved in designing catalytic materials for achieving high NOx conversion in a laboratory test PAC system, and what is required to improve the catalyst materials further for application in an on-engine environment.

Park, Paul W.

2000-08-20T23:59:59.000Z

292

Purification of tantalum by plasma arc melting  

DOE Green Energy (OSTI)

Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

Dunn, Paul S. (Santa Fe, NM); Korzekwa, Deniece R. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

293

Kinetic theory of the interdiffusion coefficient in dense plasmas  

DOE Green Energy (OSTI)

Naive applications of Spitzer's theory to very dense plasmas can lead to negative diffusion coefficients. The interdiffusion coefficients in Binary Ionic Mixtures (two species of point ions in a uniform neutralizing background) have been calculated recently using molecular dynamics techniques. These calculations can provide useful benchmarks for theoretical evaluations of the diffusion coefficient in dense plasma mixtures. This paper gives a brief description of a kinetic theoretic approximation to the diffusion coefficient which generalizes Spitzer to high density and is in excellent agreement with the computer simulations. 15 refs., 1 fig., 2 tabs.

Boercker, D.B.

1986-08-01T23:59:59.000Z

294

Helicon Plasma Source Configuration Analysis by Means of Density Measurements  

DOE Green Energy (OSTI)

Initial results have been obtained from operation of a helicon plasma source built to conduct optimization studies for space propulsion applications. The source features an easily reconfigurable antenna to test different geometries. Operating with He as the source gas, peak densities >= 1.6X10{sup 19} m{sup -3} have been achieved. Radial and axial plasma profiles have been obtained using a microwave interferometer that can be scanned axially and a Langmuir probe. The source will be used to investigate operation at high magnetic field, frequency, and input power.

Angrilli, F.; Barber, G.C.; Carter, M.D.; Goulding, R.H.; Maggiora, R.; Pavarin, D.; Sparks, D.O.

1999-11-13T23:59:59.000Z

295

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.particle accelerators, plasmas can sustain acceleratingthat use laser-driven plasma waves. These plasma- based

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

296

Plasma wave propagation with a plasma density gradient  

Science Conference Proceedings (OSTI)

Plasma waves with the plasma diffusion velocity u{sub n} due to a plasma density gradient are described in a positive column plasma. The ion wave is generated by the perturbation of the operating frequency 10{sup 6} s{sup -1} and it propagates with the group velocity u{sub g{approx}}c{sub s}{sup 2}/u{sub n{approx}}(10{sup 5}-10{sup 6}) m/s, where c{sub s} is the acoustic velocity in a fine tube fluorescent lamp, while the electron wave cannot be generated with a turbulence of low frequency less than the electron oscillation frequency {omega}{sub pe}. The propagation of the lighting signal observed in long tube fluorescent lamps is well understood with the propagation of ion waves occurring along the plasma density gradient.

Cho, Guangsup; Choi, Eun-Ha; Uhm, Han Sup [Department of Electrophysics, Kwangwoon University, 447-1 Nowon Wallgye, Seoul 139-701 (Korea, Republic of)

2011-03-15T23:59:59.000Z

297

Plasma Diagnostics and Plasma-Surface Interactions in Inductively Coupled Plasmas  

E-Print Network (OSTI)

inert atomic gas plasma 20,33 ), and thermal conduction andplasma Ratio of displacement to conductionplasmas focusing on heating contribution from thermal heat conduction

Titus, Monica Joy

2010-01-01T23:59:59.000Z

298

Hollow Plasma in a Solenoid  

SciTech Connect

A ring cathode for a pulsed, high-current, multi-spot cathodic arc discharge was placed inside a pulsed magnetic solenoid. Photography is used to evaluate the plasma distribution. The plasma appears hollow for cathode positions close the center of the solenoid, and it is guided closer to the axis when the cathode is away from the center.

Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

2010-11-30T23:59:59.000Z

299

Plasma digital density determining device  

DOE Patents (OSTI)

The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.

Sprott, Julien C. (Madison, WI); Lovell, Thomas W. (Madison, WI); Holly, Donald J. (Madison, WI)

1976-01-01T23:59:59.000Z

300

Experimental Plasma Research. Project summaries  

SciTech Connect

This is the fifth in a series of Project Summary books going back to 1976. They are issued approximately every two years and provide a short description of each project supported by the Experimental Plasma Research Branch of the Division of Applied Plasma Physics in the Office of Fusion Energy (OFE).

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Filters for cathodic arc plasmas  

DOE Patents (OSTI)

Cathodic arc plasmas are contaminated with macroparticles. A variety of magnetic plasma filters has been used with various success in removing the macroparticles from the plasma. An open-architecture, bent solenoid filter, with additional field coils at the filter entrance and exit, improves macroparticle filtering. In particular, a double-bent filter that is twisted out of plane forms a very compact and efficient filter. The coil turns further have a flat cross-section to promote macroparticle reflection out of the filter volume. An output conditioning system formed of an expander coil, a straightener coil, and a homogenizer, may be used with the magnetic filter for expanding the filtered plasma beam to cover a larger area of the target. A cathodic arc plasma deposition system using this filter can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA); Bilek, Marcela M. M. (Engadine, AU); Brown, Ian G. (Berkeley, CA)

2002-01-01T23:59:59.000Z

302

Current Drive in Recombining Plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the effect of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero "residual" current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

P.F. Schmit and N.J. Fisch

2012-05-15T23:59:59.000Z

303

Current drive in recombining plasma  

SciTech Connect

The Langevin equations describing the average collisional dynamics of suprathermal particles in nonstationary plasma remarkably admit an exact analytical solution in the case of recombining plasma. The current density produced by arbitrary particle fluxes is derived including the influence of charge recombination. Since recombination has the effect of lowering the charge density of the plasma, thus reducing the charged particle collisional frequencies, the evolution of the current density can be modified substantially compared to plasma with fixed charge density. The current drive efficiency is derived and optimized for discrete and continuous pulses of current, leading to the discovery of a nonzero ''residual'' current density that persists indefinitely under certain conditions, a feature not present in stationary plasmas.

Schmit, P. F.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

2011-10-15T23:59:59.000Z

304

Plasma treatment advantages for textiles  

E-Print Network (OSTI)

The textile industry is searching for innovative production techniques to improve the product quality, as well as society requires new finishing techniques working in environmental respect. Plasma surface treatments show distinct advantages, because they are able to modify the surface properties of inert materials, sometimes with environment friendly devices. For fabrics, cold plasma treatments require the development of reliable and large systems. Such systems are now existing and the use of plasma physics in industrial problems is rapidly increasing. On textile surfaces, three main effects can be obtained depending on the treatment conditions: the cleaning effect, the increase of microroughness (anti-pilling finishing of wool) and the production of radicals to obtain hydrophilic surfaces. Plasma polymerisation, that is the deposition of solid polymeric materials with desired properties on textile substrates, is under development. The advantage of such plasma treatments is that the modification turns out to ...

Sparavigna, Amelia

2008-01-01T23:59:59.000Z

305

Plasma Wakefield Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

306

Steady state compact toroidal plasma production  

DOE Patents (OSTI)

This invention relates to the confinement of field reversed plasma rings and, more particularly, to the steady state maintainance of field reversed plasma rings produced by coaxial plasma guns.

Turner, W.C.

1983-05-17T23:59:59.000Z

307

Resonant-cavity antenna for plasma heating  

DOE Patents (OSTI)

This invention relates generally to a method and apparatus for transferring energy to a plasma immersed in a magnetic field, and relates particularly to an apparatus for heating a plasma of low atomic number ions to high temperatures by transfer of energy to plasma resonances, particularly the fundamental and harmonics of the ion cyclotron frequency of the plasma ions. This invention transfers energy from an oscillating radio-frequency field to a plasma resonance of a plasma immersed in a magnetic field.

Perkins, F.W. Jr.; Chiu, S.C.; Parks, P.; Rawls, J.M.

1984-01-10T23:59:59.000Z

308

Presheath profiles in simulated tokamak edge plasmas  

SciTech Connect

The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines.

LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

1988-04-01T23:59:59.000Z

309

On anomalous diffusion in a plasma in velocity space  

E-Print Network (OSTI)

The problem of anomalous diffusion in momentum space is considered for plasma-like systems on the basis of a new collision integral, which is appropriate for consideration of the probability transition function (PTF) with long tails in momentum space. The generalized Fokker-Planck equation for description of diffusion (in momentum space) of particles (ions, grains etc.) in a stochastic system of light particles (electrons, or electrons and ions, respectively) is applied to the evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is also applicable to the diffusion of particles with an arbitrary mass relation, due to the small characteristic momentum transfer. The cases of an exponentially decreasing in momentum space (including the Boltzmann-like) kernel in the PT-function, as well as the more general kernels, which create the anomalous diffusion in velocity space due to the long tail in the PT-function, are considered. Effective friction and diffusion coefficients f...

Trigger, S A; van Heijst, G J F; Schram, P P J M; Sokolov, I M

2010-01-01T23:59:59.000Z

310

DOE Hydrogen Analysis Repository: Westinghouse Plasma Gasification...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organization Projects by Principal Investigator Projects by Date U.S. Department of Energy Westinghouse Plasma Gasification Computer Model Project Summary Full Title: Plasma...

311

Science Education Lab | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Lab Science Education Laboratory Overview Gallery: (Photo by Remote Control Glow Discharge) (Photo by DC Glow Discharges for Undergraduate Laboratories) (Photo by Atmospheric Plasma Laboratory) (Photo by 3D Printing Laboratory) (Photo by Remote Control Glow Discharge) (Photo by Plasma Speaker with 200 Hz input) (Photo by Dusty Plasma Laboratory) The Science Education Laboratory is a fusion (pun intended) of research between education and plasma science. This unique facility includes a teaching laboratory/classroom, two research labs, and student offices/storage/prep room. The research performed in the Science Education Laboratory is currently centered upon dusty plasmas, plasma speakers, remote control of plasmas for educational purposes, atmospheric plasmas and

312

Introduction to Plasma Physics Greg Hammett  

E-Print Network (OSTI)

displays Radiation Processing: Water purification, Plant growth Switches: Electric Power, Pulsed power propulsion: plasma thrusters, fusion powered propulsion Flat-Panel Displays: Field-emitter arrays, Plasma

Hammett, Greg

313

Computational and Experimental Investigations into Aerospace Plasmas.  

E-Print Network (OSTI)

??Investigations into two different fields of plasma research are presented here. These include the study of ion engine performance and the use of plasma discharges (more)

Bennett, William Thomas

2008-01-01T23:59:59.000Z

314

Multilayered and complex nanoparticle architectures through plasma synthesis  

Science Conference Proceedings (OSTI)

Using the Aerosol Through Plasma (ATP) method in conjunction with simple chemical techniques a variety of complex and novel nanoparticle architectures were created. A TP was used to make metal-core/carbon shell nanoparticles (ca. 50 nm diameter) of SnlCarbon and AI/Carbon. These have, respectively, potential for application as battery anode (for hybrid and electric vehicles) and high energy fuel In one example of post processing, the Sn-core/carbon-shell material is treated in acidic solution and yields a true nano-sized hollow carbon shell. These shells have potential application as catalyst supports, gas storage, a neutral buoyancy material for applications as varied as proppants, and slow release capsules for pharmaceutical or agricultural applications. A different set of post-A-T-P processes were used to make three layer nanoparticles with a metal core, graphite inner shell and ceramic outer shell. This method extends the range of achievable nanoparticles architectures, hence enabling new applications.

Phillips, Jonathan [Los Alamos National Laboratory; Wakeland, Stephen [UNM MECH.ENG.; Cui, Yuehua [UNM MECH.ENG.; Knapp, Angela [TOYOTA USA; Richard, Monique [TOYOTA USA; Luhrs, Claudia [UNM MECH.ENG.

2009-01-01T23:59:59.000Z

315

Analytical and Numerical Studies of the Complex Interaction of a Fast Ion Beam Pulse with a Background Plasma  

SciTech Connect

Plasma neutralization of an intense ion beam pulse is of interest for many applications, including plasma lenses, heavy ion fusion, high energy physics, etc. Comprehensive analytical, numerical, and experimental studies are underway to investigate the complex interaction of a fast ion beam with a background plasma. The positively charged ion beam attracts plasma electrons, and as a result the plasma electrons have a tendency to neutralize the beam charge and current. A suite of particle-in-cell codes has been developed to study the propagation of an ion beam pulse through the background plasma. For quasi-steady-state propagation of the ion beam pulse, an analytical theory has been developed using the assumption of long charge bunches and conservation of generalized vorticity. The analytical results agree well with the results of the numerical simulations. The visualization of the data obtained in the numerical simulations shows complex collective phenomena during beam entry into and ex it from the plasma.

Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

2003-11-25T23:59:59.000Z

316

Surface plasma source with saddle antenna radio frequency plasma generator  

Science Conference Proceedings (OSTI)

A prototype RF H{sup -} surface plasma source (SPS) with saddle (SA) RF antenna is developed which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with small AlN discharge chambers and different antennas and magnetic field configurations were tested in the plasma source test stand. A prototype SA SPS was installed in the Spallation Neutron Source (SNS) ion source test stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency up to 1.6 mA/kW. Control experiments with H{sup -} beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma gun has been designed. A saddle antenna SPS with water cooling is fabricated for high duty factor testing.

Dudnikov, V.; Johnson, R. P. [Muons, Inc., Batavia, Illinios 60510 (United States); Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R. [ORNL, Oak Ridge, Tennessee 37831 (United States)

2012-02-15T23:59:59.000Z

317

Lee Honored for Work in Plasma Simulations | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Plasma Simulations By Patti Wieser September 13, 2011 Tweet Widget Facebook Like Google Plus One Wei-li Lee (Photo by Elle Starkman PPPL Office of Communications) Wei-li Lee...

318

Resonant Excitation of Plasma Wakefields  

SciTech Connect

We describe characteristics of the bunch train and plasma source used in a resonant plasma wakefield experiment at the Brookhaven National Laboratory Accelerator Test Facility. The bunch train has the proper correlated spread to unambiguously observe the expected energy gain by the witness bunch at resonance. The plasma density in the capillary discharge is sufficiently high to reach the resonance with the typical bunch train spacing of this experiment. It is also uniform over more than 3/4 of the 2 cm-long capillary.

Muggli, P.; Allen, B. [University of Southern California, Los Angeles, CA 90089 (United States); Yakimenko, V.; Fedurin, M.; Kusche, K.; Babzien, M. [Brookhaven National Laboratory, Upton, NY 11973 (United States)

2010-11-04T23:59:59.000Z

319

CONFINEMENT OF HIGH TEMPERATURE PLASMA  

DOE Patents (OSTI)

The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

Koenig, H.R.

1963-05-01T23:59:59.000Z

320

Optimization of the process of plasma ignition of coal  

Science Conference Proceedings (OSTI)

Results are given of experimental and theoretical investigations of plasma ignition of coal as a result of its thermochemical preparation in application to the processes of firing up a boiler and stabilizing the flame combustion. The experimental test bed with a commercial-scale burner is used for determining the conditions of plasma ignition of low-reactivity high-ash anthracite depending on the concentration of coal in the air mixture and velocity of the latter. The calculations produce an equation (important from the standpoint of practical applications) for determining the energy expenditure for plasma ignition of coal depending on the basic process parameters. The tests reveal the difficulties arising in firing up a boiler with direct delivery of pulverized coal from the mill to furnace. A scheme is suggested, which enables one to reduce the energy expenditure for ignition of coal and improve the reliability of the process of firing up such a boiler. Results are given of calculation of plasma thermochemical preparation of coal under conditions of lower concentration of oxygen in the air mixture.

Peregudov, V.S. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

2009-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Separation of finite electron temperature effect on plasma polarimetry  

SciTech Connect

This study demonstrates the separation of the finite electron temperature on the plasma polarimetry in the magnetic confined fusion plasma for the first time. Approximate solutions of the transformed Stokes equation, including the relativistic effect, suggest that the orientation angle, {theta}, and ellipticity angle, {epsilon}, of polarization state have different dependency on the electron density, n{sub e}, and the electron temperature, T{sub e}, and that the separation of n{sub e} and T{sub e} from {theta} and {epsilon} is possible in principle. We carry out the equilibrium and kinetic reconstruction of tokamak plasma when the central electron density was 10{sup 20} m{sup -3}, and the central electron temperatures were 5, 10, 20, and 30 keV. For both cases when a total plasma current, I{sub p}, is known and when I{sub p} is unknown, the profiles of plasma current density, j{sub {phi}}, n{sub e}, and T{sub e} are successfully reconstructed. The reconstruction of j{sub {phi}} without the information of I{sub p} indicates the new method of I{sub p} measurement applicable to steady state operation of tokamak.

Imazawa, Ryota; Kawano, Yasunori; Kusama, Yoshinori [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki (Japan)

2012-12-15T23:59:59.000Z

322

Dynamic modeling of plasma-vapor interactions during plasma disruptions  

SciTech Connect

Intense deposition of energy in short times on fusion reactor components during a plasma disruption may cause severe surface erosion due to ablation of these components. The exact amount of the eroded material is very important to the reactor design and its lifetime. During the plasma deposition, the vaporized wall material will interact with the incoming plasma particles and may shield the rest of the wall from damage. The vapor shielding may then prolong the lifetime of these components and increase the reactor duty cycle. To correctly evaluate the impact of vapor shielding effect a comprehensive model is developed. In this model the dynamic slowing down of the plasma particles, both ions and electrons, with the eroded wall material is established. Different interaction processes between the plasma particles and the ablated material is included. The generated photons radiation source and the transport of this radiation through the vapor to the wall is modeled. Recent experimental data on disruptions is analyzed and compared with model predictions. Vapor shielding may be effective in reducing the overall erosion rate for certain plasma disruption parameters and conditions.

Hassanein, A.; Ehst, D.A.

1992-05-01T23:59:59.000Z

323

Texas A&M University | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas A&M University Texas A&M University Texas A&M University Professor David Staack Dr. Yevgeny Raitses collaborates with Professor David Staack of TAMU Mechanical Engineering Department on discharges in liquids. This new research topic is relevant to energy, environmental and medical applications and the research has attracted significant attention from industry and government agencies. Professor Staack's research is focused mainly on plasma chemistry and application aspects of discharges in liquids. Dr. Raitses assistance has helped Prof. Staack advance the understanding of the plasma science associated with these discharges. OSUR supported travel for Prof. Staack and his graduate student, Grant Gaalema, to PPPL and provided a high frame rate Phantom V7.3 camera for

324

Lithium As Plasma Facing Component for Magnetic Fusion Research  

SciTech Connect

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (< 0.1%) of lithium fraction in main fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

325

Lithium As Plasma Facing Component for Magnetic Fusion Research  

Science Conference Proceedings (OSTI)

The use of lithium in magnetic fusion confinement experiments started in the 1990's in order to improve tokamak plasma performance as a low-recycling plasma-facing component (PFC). Lithium is the lightest alkali metal and it is highly chemically reactive with relevant ion species in fusion plasmas including hydrogen, deuterium, tritium, carbon, and oxygen. Because of the reactive properties, lithium can provide strong pumping for those ions. It was indeed a spectacular success in TFTR where a very small amount (~ 0.02 gram) of lithium coating of the PFCs resulted in the fusion power output to improve by nearly a factor of two. The plasma confinement also improved by a factor of two. This success was attributed to the reduced recycling of cold gas surrounding the fusion plasma due to highly reactive lithium on the wall. The plasma confinement and performance improvements have since been confirmed in a large number of fusion devices with various magnetic configurations including CDX-U/LTX (US), CPD (Japan), HT-7 (China), EAST (China), FTU (Italy), NSTX (US), T-10, T-11M (Russia), TJ-II (Spain), and RFX (Italy). Additionally, lithium was shown to broaden the plasma pressure profile in NSTX, which is advantageous in achieving high performance H-mode operation for tokamak reactors. It is also noted that even with significant applications (up to 1,000 grams in NSTX) of lithium on PFCs, very little contamination (fusion plasma core was observed even during high confinement modes. The lithium therefore appears to be a highly desirable material to be used as a plasma PFC material from the magnetic fusion plasma performance and operational point of view. An exciting development in recent years is the growing realization of lithium as a potential solution to solve the exceptionally challenging need to handle the fusion reactor divertor heat flux, which could reach 60 MW/m2 . By placing the liquid lithium (LL) surface in the path of the main divertor heat flux (divertor strike point), the lithium is evaporated from the surface. The evaporated lithium is quickly ionized by the plasma and the ionized lithium ions can provide a strongly radiative layer of plasma ("radiative mantle"), thus could significantly reduce the heat flux to the divertor strike point surfaces, thus protecting the divertor surface. The protective effects of LL have been observed in many experiments and test stands. As a possible reactor divertor candidate, a closed LL divertor system is described. Finally, it is noted that the lithium applications as a PFC can be quite flexible and broad. The lithium application should be quite compatible with various divertor configurations, and it can be also applied to protecting the presently envisioned tungsten based solid PFC surfaces such as the ones for ITER. Lithium based PFCs therefore have the exciting prospect of providing a cost effective flexible means to improve the fusion reactor performance, while providing a practical solution to the highly challenging divertor heat handling issue confronting the steadystate magnetic fusion reactors.

Masayuki Ono

2012-09-10T23:59:59.000Z

326

Fusion/Plasma Physics materials  

NLE Websites -- All DOE Office Websites (Extended Search)

FusionPlasma Physics materials 71958-00 Large Chart 107 150 cm 17. 71958-01 Package of 30 Three-hole-punched Notebook Charts, chart size 43 28 cm, folded size 22 28 cm...

327

Mobile inductively coupled plasma system  

DOE Patents (OSTI)

A system is described for sampling and analyzing a material located at a hazardous site. A laser located remotely from the hazardous site is connected to an optical fiber, which directs laser radiation proximate the material at the hazardous site. The laser radiation abates a sample of the material. An inductively coupled plasma is located remotely from the material. An aerosol transport system carries the ablated particles to a plasma, where they are dissociated, atomized and excited to provide characteristic optical reduction of the elemental constituents of the sample. An optical spectrometer is located remotely from the site. A second optical fiber is connected to the optical spectrometer at one end and the plasma source at the other end to carry the optical radiation from the plasma source to the spectrometer. 10 figs.

D`Silva, A.P.; Jaselskis, E.J.

1999-03-30T23:59:59.000Z

328

Quark-gluon plasma paradox  

E-Print Network (OSTI)

Based on simple physics arguments it is shown that the concept of quark-gluon plasma, a state of matter consisting of uncorrelated quarks, antiquarks, and gluons, has a fundamental problem.

Dariusz Miskowiec

2007-07-06T23:59:59.000Z

329

Tandem mirror plasma confinement apparatus  

DOE Patents (OSTI)

Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

Fowler, T. Kenneth (Walnut Creek, CA)

1978-11-14T23:59:59.000Z

330

Princeton Plasma Physics Lab - STEM  

NLE Websites -- All DOE Office Websites (Extended Search)

used throughout the week, including a plasma globe and a half-coated fluorescent light bulb, and they have the rare opportunity to apply for a 2,000 grant for additional lab...

331

Layered plasma polymer composite membranes  

DOE Patents (OSTI)

Layered plasma polymer composite fluid separation membranes are disclosed, which comprise alternating selective and permeable layers for a total of at least 2n layers, where n is [>=]2 and is the number of selective layers. 2 figs.

Babcock, W.C.

1994-10-11T23:59:59.000Z

332

Princeton Plasma Physics Lab - Engineering  

NLE Websites -- All DOE Office Websites (Extended Search)

class"field-item even">

The U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) is a key contributor to ITER, a huge international fusion facility...

333

HTS applications  

E-Print Network (OSTI)

Superconductivity has found many attractive applications in medicine, science, power systems, engineering, transport and electronics. One of the most prominent applications of superconductivity are superconducting magnets e.g. MRI magnets, NMR magnets, accelerator magnets, and magnets for fusion; most applications still use low temperature superconductors. Since the discovery of high temperature superconductivity (HTS) in 1986 there has been a tremendous progress in R&D of HTS material, wires and applications. Especially for power system applications, HTS offers considerable economic benefits. Many HTS demonstrator or prototype applications have been built and successfully tested, and some HTS applications like cables and superconducting fault current limiters seem very close to commercialisation. This paper gives an overview about the present and future HTS applications in power applications, high field magnets and current leads. In addition results of the Forschungszentrum Karlsruhe program to develop H...

Noe, M; Fietz, W H; Goldacker, W; Schneider, Th

2009-01-01T23:59:59.000Z

334

Flavors in an expanding plasma  

E-Print Network (OSTI)

We consider the effect of an expanding plasma on probe matter by determining time-dependent D7 embeddings in the holographic dual of an expanding viscous plasma. We calculate the chiral condensate and meson spectra including contributions of viscosity. The chiral condensate essentially confirms the expectation from the static black hole. For the meson spectra we propose a scheme that is in agreement with the adiabatic approximation. New contributions arise for the vector mesons at the order of the viscosity terms.

Johannes Groe; Romuald A. Janik; Piotr Surwka

2007-09-25T23:59:59.000Z

335

Manual Plasma Welding (PTAW) Evaluation with Powder Hardfacing Alloys  

Science Conference Proceedings (OSTI)

Repair practices for hardfacing alloys using gas tungsten arc welding (GTAW) and shielded metal arc welding (SMAW) have been evaluated in the past on hardfacing applied with various automated welding processes. Accessibility often limits the use of these welding processes in manual repair applications. Recent developments in plasma transfer arc welding (PTAW) powder welding systems have prompted evaluations of manual repair practices for hardfacing materials. The PTAW powder welding process feeds the fil...

2001-12-18T23:59:59.000Z

336

Application of High Power DC Arc Plasma for  

Science Conference Proceedings (OSTI)

Recent results in the R&D of thin diamond film coated WC-Co drills and end ... of High Quality Freestanding Diamond Films and Diamond Film Coated Cutting...

337

Application of Microwave, Magnet, Laser and Plasma Technology  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... This technique is based on exposing the fluid to a magnetic field and measuring the force acting upon the magnetic-field-generating system.

338

Thyristor stack for pulsed inductive plasma generation  

Science Conference Proceedings (OSTI)

A thyristor stack for pulsed inductive plasma generation has been developed and tested. The stack design includes a free wheeling diode assembly for current reversal. Triggering of the device is achieved by a high side biased, self supplied gate driver unit using gating energy derived from a local snubber network. The structure guarantees a hard firing gate pulse for the required high dI/dt application. A single fiber optic command is needed to achieve a simultaneous turn on of the thyristors. The stack assembly is used for switching a series resonant circuit with a ringing frequency of 30 kHz. In the prototype pulsed power system described here an inductive discharge has been generated with a pulse duration of 120 {mu}s and a pulse energy of 50 J. A maximum power transfer efficiency of 84% and a peak power of 480 kW inside the discharge were achieved. System tests were performed with a purely inductive load and an inductively generated plasma acting as a load through transformer action at a voltage level of 4.1 kV, a peak current of 5 kA, and a current switching rate of 1 kA/{mu}s.

Teske, C.; Jacoby, J.; Schweizer, W.; Wiechula, J. [Plasmaphysics Group, Institute of Applied Physics, Johann-Wolfgang-Goethe University, 60438 Frankfurt am Main (Germany)

2009-03-15T23:59:59.000Z

339

Compton scattering measurements from dense plasmas  

DOE Green Energy (OSTI)

Compton scattering has been developed for accurate measurements of densities and temperatures in dense plasmas. One future challenge is the application of this technique to characterize compressed matter on the National Ignition Facility where hydrogen and beryllium will approach extremely dense states of matter of up to 1000 g/cc. In this regime, the density, compressibility, and capsule fuel adiabat may be directly measured from the Compton scattered spectrum of a high-energy x-ray line source. Specifically, the scattered spectra directly reflect the electron velocity distribution. In non-degenerate plasmas, the width provides an accurate measure of the electron temperatures, while in partially Fermi degenerate systems that occur in laser-compressed matter it provides the Fermi energy and hence the electron density. Both of these regimes have been accessed in experiments at the Omega laser by employing isochorically heated solid-density beryllium and moderately compressed beryllium foil targets. In the latter experiment, compressions by a factor of 3 at pressures of 40 Mbar have been measured in excellent agreement with radiation hydrodynamic modeling.

Glenzer, S H; Neumayer, P; Doeppner, T; Landen, L; Lee, R W; Wallace, R; Weber, S; Lee, H J; Kritcher, A L; Falcone, R; Regan, S P; Sawada, H; Meyerhofer, D D; Gregori, G; Fortmann, C; Schwarz, V; Redmer, R

2007-10-02T23:59:59.000Z

340

Visualization and Diagnostics of Thermal Plasma Flows  

Science Conference Proceedings (OSTI)

Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques ... Keywords: d.c. plasma jet, enthalpy probe techniques, induction plasma, laser strobe, photographic techniques, schlieren, thermal plasma flows

M. I. Boulos

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Neoclassical Transport Properties of Tokamak Plasmas  

Science Conference Proceedings (OSTI)

Transport Theory / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

B. Weyssow

342

Anomalous radial transport in tokamak edge plasma  

E-Print Network (OSTI)

1.2 Transport in tokamakAnomalous radial transport model for edge plasma . . . . . .Anomalous transport . . . . . . . . . . . . . . . . . . . .

Bodi, Vasudeva Raghavendra Kowsik

2010-01-01T23:59:59.000Z

343

Plasma Control Requirements and Concepts For ITER  

Science Conference Proceedings (OSTI)

Technical Paper / Special Section: Plasma Control Issues for Tokamaks / Instrumentation Control and Data Handling

J. Wesley,* H.-W. Bartels; D. Boucher; A. Costley; L. De Kock; Yu. Gribov; M. Huguet; G. Janeschitz; P.-L. Mondino; V. Mukhovatov; A. Portone; M. Sugihara; I. Yonekawa

344

MFE Burning Plasmas Innovative Confinement Concepts (ICCs)  

E-Print Network (OSTI)

MFE Burning Plasmas and Innovative Confinement Concepts (ICCs) Bick Hooper LLNL Presentation power requires: · A burning plasma experiment · An advancing portfolio of ICCs · Plasma physics unified Improved Configurations Magnetic Configurations Knowledge Base Burning Plasma Phys. & Tech. Knowledge Base

345

Plasma chemistry in wire chambers  

SciTech Connect

The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

Wise, J.

1990-05-01T23:59:59.000Z

346

Pulse shaping of transversely excited atmospheric CO{sub 2} laser using a simple plasma shutter  

SciTech Connect

The pulse from a transversely excited atmospheric CO{sub 2} laser consists of a sharp spike followed by a long, drawn out tail region spanning about 2-5 {mu}s caused by the nitrogen gas in the laser cavity. The nitrogen tail is undesirable in many applications because it decreases the average power of the laser pulse. We employ a pinhole plasma shutter for eliminating the nitrogen tail and shortening the pulse width. The pinhole shutter optically triggers plasma at a certain point in time with respect to the temporal profile of the laser pulse. This way, a good portion of the sharp spike is transmitted, while the energy stored in the nitrogen tail is consumed in heating the plasma. This simplistic plasma shutter is easy to build and inexpensive compared to other existing plasma shutter designs.

Hurst, Noah [Hyperion Scientific, Inc., 455 Science Dr., Madison, Wisconsin 53711 (United States); College of Engineering, University of Wisconsin, Madison, Wisconsin 53706 (United States); Harilal, S. S. [Hyperion Scientific, Inc., 455 Science Dr., Madison, Wisconsin 53711 (United States); School of Nuclear Engineering, 400 Central Dr., Purdue University, West Lafayette, Indiana 47907 (United States)

2009-03-15T23:59:59.000Z

347

Partial pressure analysis of CF/sub 4//O/sub 2/ plasmas  

SciTech Connect

This work will examine a simple down-stream sampling arrangement for effluent analysis in a typical plasma environment. This method offers the advantage of simplicity when compared to the need for extraction optics and energy analyzing stages required for flux-type analysis. In addition, partial pressure analysis provides information on the plasma/surface interactions occurring over the entire surface area of the reactor as opposed to just those occurring at the sampling orifice in flux-type analysis. This fact makes partial-pressure analysis particularly attractive for such tasks as plasma-etch end-point monitoring. In this example, experimental partial-pressure measurements of a CF/sub 4//O/sub 2/ plasma are presented as is the application of the technique to plasma etch end-point detection. 12 refs., 2 figs.

Martz, J.C.; Hess, D.W.; Anderson, W.E.

1989-01-01T23:59:59.000Z

348

Fusion Basics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Basics Fusion Basics What is Plasma? Plasma is a state of matter along with solids, liquids and gases. It consists of a partially-ionized gas, containing ions, electrons, and neutral atoms. So what does that mean? In a plasma, some electrons are freed from their atoms, allowing current and electricity to flow. In fact, one of the few naturally-occurring plasmas found here on Earth is lightning! Can you think of other plasmas? Fluorescent light bulbs contain mercury plasma. Stars, such as the sun are hot balls of plasma. Aurora Borealis and Aurora Australis Fusion reactors, like NSTX, use plasma to fuse atoms to make energy. Plasma displays use small cells of plasma to illuminate images. What is Fusion? Light atoms like hydrogen (one proton and one neutron) can fuse together so

349

Geometric phases of the Faraday rotation of electromagnetic waves in magnetized plasmas  

Science Conference Proceedings (OSTI)

Geometric phases of circularly polarized electromagnetic waves in nonuniform magnetized plasmas is studied theoretically. The variation of the propagation direction of circularly polarized waves results in a geometric phase, which also contributes to the Faraday rotation, in addition to the standard dynamical phase. The origin and properties of the geometric phase are investigated. The influence of the geometric phase to plasma diagnostics using the Faraday rotation is discussed as an application of the theory.

Liu Jian [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Qin Hong [Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

2012-10-15T23:59:59.000Z

350

Wave dispersion in a counterstreaming, relativistic thermal, magnetized, electron-positron plasma  

SciTech Connect

The dispersion equation is analyzed for waves in a strongly magnetized, electron-positron plasma in which counterstreaming electrons and positrons have a relativistic thermal distribution in their respective rest frames, for propagation parallel to the magnetic field. We derive the response tensor for the medium, demonstrate the dispersion curves for different temperatures, and discuss the differences from the cold-plasma case. Application to the case of pulsar magnetospheres is discussed.

Verdon, M. W.; Melrose, D. B. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia)

2011-05-15T23:59:59.000Z

351

Plasma temperature determination from the total intensity of a self-reversed spectral line  

SciTech Connect

A method is introduced for determining the temperature of a high-pressure gas discharge from the total intensity of a self-reversed spectral line, if the plasma is in local thermodynamic equilibrium. The structural characteristics of the plasma are determined from observable parameters of the line on the basis of a simplified model for the light source. An application is given with the self-reversed mercury lines 5461, 4358, and 4047 A emitted from a high-pressure mercury discharge.

Karabourniotis, D.; Karras, C.; Drakakis, M.; Damelincourt, J.J.

1982-11-01T23:59:59.000Z

352

Radiation Transport in Takamak Edge Plasmas  

DOE Green Energy (OSTI)

Plasmas in edge regions of tokamaks can be very optically thick to hydrogen lines. Strong line radiation introduces a non-local coupling between different regions of the plasma and can significantly affect the ionization and energy balance. These effects can be very important, but they are not included in current edge plasma simulations. We report here on progress in self-consistently including the effects of a magnetic field, line radiation and plasma transport in modeling tokamak edge plasmas.

Scott, H; Adams, M

2002-09-30T23:59:59.000Z

353

Stopping power of weakly unstable plasmas  

SciTech Connect

An expression for the additional contribution to the stopping power of a weakly unstable plasma due to the modification of the beam--plasma collision operator by the presence of the unstable modes is derived and evaluated for a plasma with a flowing hot-electron tail, i.e., a bump-on-tail instability. It is found that the unstable plasma oscillations do not substantially alter the screening of the beam--plasma interaction.

Perez, J.D.; Payne, G.L.

1984-02-01T23:59:59.000Z

354

Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx  

DOE Green Energy (OSTI)

The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

2003-08-24T23:59:59.000Z

355

Hydrocarbon and Electrical Requirements in the Plasma During Treatment of NOx in Light-Duty Diesel Engine Exhaust  

DOE Green Energy (OSTI)

This paper examines the hydrocarbon (C{sub 1}/NO{sub x} ratio) and electrical energy density (ratio of power to exhaust flow rate) requirements in the plasma during plasma-assisted catalytic reduction of NO{sub x}. The requirements for treatment of NO{sub x} in heavy-duty and light-duty diesel engines are compared. It is shown that, for light-duty applications, the plasma can significantly enhance the catalytic reduction of NO{sub x} with little fuel penalty incurred in the plasma process.

Penetrante, B.; Brusasco,R.M.; Merritt, B.T.; Vogtlin, G.E.

1999-10-28T23:59:59.000Z

356

PDF Application  

Science Conference Proceedings (OSTI)

?Computer Applications and Process Control. ?Copper Nickel and Cobalt ... ? Iron and Steel. ?Joining. ?Lead Zinc and Tin. ?Lightweight Materials.

357

Technologies Applications  

E-Print Network (OSTI)

evaporation systems n Potential mining applications (produced water) nIndustry applications for which silicaLicensable Technologies Applications: n Cooling tower systems n Water treatment systems n Water needed n Decreases the amount of makeup water and subsequent discharged water (blowdown) n Enables

358

Redshift of photons penetrating a hot plasma  

E-Print Network (OSTI)

A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics, without any new assumptions. The calculations are only more exact than those usually found in the literature. When photons penetrate a cold and dense electron plasma, they lose energy through ionization and excitation, through Compton scattering on the individual electrons, and through Raman scattering on the plasma frequency. But when the plasma is very hot and has low density, such as in the solar corona, the photons lose energy also in plasma redshift, which is an interaction with the electron plasma. The energy loss of a photon per electron in the plasma redshift is about equal to the product of the photons energy and one half of the Compton cross-section per electron. This energy loss (plasma redshift of the photons) consists of very small quanta, which are absorbed by the plasma and cause a significant heating. In quiescent solar corona, this heating starts in the transition zone to the solar corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains

Ari Brynjolfsson

2005-01-01T23:59:59.000Z

359

Generating vorticity and magnetic fields in plasmas in general relativity: Spacetime curvature drive  

SciTech Connect

Using the generally covariant magnetofluid formalism for a hot plasma, a spacetime curvature driven mechanism for generating seed vorticity/magnetic field is presented. The 'battery' owes its origin to the interaction between the gravity modified Lorentz factor of the fluid element and the inhomogeneous plasma thermodynamics. The general relativistic drive is evaluated for two simple cases: seed formation in a simplified model of a hot plasma accreting in stable orbits around a Schwarzschild black hole and for particles in free fall near the horizon. Some astrophysical applications are suggested.

Asenjo, Felipe A.; Mahajan, Swadesh M. [Institute for Fusion Studies, University of Texas at Austin, Texas 78712 (United States); Qadir, Asghar [Centre for Advanced Mathematics and Physics, National University of Sciences and Technology, H12, Islamabad 4400 (Pakistan)

2013-02-15T23:59:59.000Z

360

An evaluation of anti-oxidative protection for cells against atmospheric pressure cold plasma treatment  

Science Conference Proceedings (OSTI)

With the development of plasma medicine, safety issues are emerging as a serious concern. In this study, both intracellular (genetic engineering) and extracellular (scavengers) measures were tested in an effort to determine the best protection for cells against plasma-induced oxidative stress. All results of immediate reactive species detection, short term survival and long term proliferation, suggest that intracellular pathways are superior in reducing oxidative stress and cell death. This work provides a potential mechanism to enhance safety and identifies precautionary measures that should be taken in future clinical applications of plasmas.

Ma Ruonan; Zhang Qian [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Feng Hongqing; Liang Yongdong [College of Engineering, Peking University, Beijing 100871 (China); Li Fangting [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Physics, Peking University, Beijing 100871 (China); Zhu Weidong [Department of Applied Science and Technology, Saint Peter's College, Jersey City, New Jersey 07306 (United States); Zhang Jue; Fang Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Becker, Kurt H. [Department of Applied Physics, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States)

2012-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity  

DOE Patents (OSTI)

A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

Whealton, John H. (Oak Ridge, TN); Hanson, Gregory R. (Clinton, TN); Storey, John M. (Oak Ridge, TN); Raridon, Richard J. (Oak Ridge, TN); Armfield, Jeffrey S. (Ypsilanti, MI); Bigelow, Timothy S. (Knoxville, TN); Graves, Ronald L. (Knoxville, TN)

2002-01-01T23:59:59.000Z

362

Parametric instabilities and plasma heating in an inhomogeneous plasma  

SciTech Connect

Experimental studies of plasma heating due to microwave irradiation of the magnetically confined plasma column in the Princeton L-3 device is presented. X-band (10.4 GHz) microwave power, both in the ordinary and the extraordinary modes of propagation, is used in these experiments. Plasma heating is observed to occur simultaneously with the occurrence of parametric decay instabilities. The mode structure of the pump wave and the decay ion wave dispersion has been measured with high frequency probes. Detailed measurements of electron heating rates are presented and compared with collisional heating rates. In addition, production of suprathermal electrons and ions is also observed and measured. A comparison is made with recent laser-pellet interaction experiments. (auth)

Porkolab, M.; Arunasalam, V.; Luhmann, N.C. Jr.; Schmitt, J.P.M.

1975-10-01T23:59:59.000Z

363

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

E-Print Network (OSTI)

Esarey and M. Pillo?, Phys. Plasmas 2, 1432 (1995). 13 B. A.and E. Esarey, Phys. Plasmas 14 T. Katsouleas, Phys. Rev. APegoraro, and I. V. Pogorelsky, Plasma Phys. Rep. 23, 259 16

Rittershofer, W.

2010-01-01T23:59:59.000Z

364

Plasma-catalyzed fuel reformer  

DOE Patents (OSTI)

A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

2013-06-11T23:59:59.000Z

365

Constricted glow discharge plasma source  

SciTech Connect

A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

Anders, Andre (Albany, CA); Anders, Simone (Albany, CA); Dickinson, Michael (San Leandro, CA); Rubin, Michael (Berkeley, CA); Newman, Nathan (Winnetka, IL)

2000-01-01T23:59:59.000Z

366

SciTech Connect: plasma  

Office of Scientific and Technical Information (OSTI)

plasma Find plasma Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

367

LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS  

E-Print Network (OSTI)

LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

Schroeder, C. B.

2010-01-01T23:59:59.000Z

368

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network (OSTI)

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

369

Spectroscopic characterization of laser-induced tin plasma  

E-Print Network (OSTI)

H. R. Griem, Principles of Plasma Spectroscopy ?Cambridge,Beke?, Principles of Laser Plasmas ?Wiley-Interscience, NewIn the early stage of plasma evolution, the electron

Harilal, S S; O'Shay, B; Tillack, M S; Mathew, M V

2005-01-01T23:59:59.000Z

370

Bi-Plasma Interactions on Femtosecond Time-Scales  

SciTech Connect

Ultrafast THz radiation has important applications in materials science studies, such as characterizing transport properties, studying the vibrational response of materials, and in recent years, controlling materials and elucidating their response in intense electromagnetic fields. THz fields can be generated in a lab setting using various plasma-based techniques. This study seeks to examine the interaction of two plasmas in order to better understand the fundamental physics associated with femtosecond filamentation processes and to achieve more efficient THz generation in a lab setting. The intensity of fluorescence in the region of overlap was measured as a function of polarization, power, and relative time delay of the two plasma-generating laser beams. Results of time dependent intensity studies indicate strikingly similar behaviors across polarizations and power levels; a sudden intensity spike was observed at time-zero, followed by a secondary maxima and subsequent decay to the initial plasma intensity. Dependence of the intensity on the power through either beam arm was also observed. Spectral studies of the enhanced emission were also carried out. Although this physical phenomenon is still not fully understood, future studies, including further spectral analysis of the fluorescence overlap, could yield new insight into the ultrafast processes occurring at the intersection of femtosecond filaments, and would provide a better understanding of the mechanisms for enhanced THz production.

2011-06-22T23:59:59.000Z

371

Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration  

Science Conference Proceedings (OSTI)

An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O'Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

2012-12-21T23:59:59.000Z

372

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents (OSTI)

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm.sup.2 at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance.

Tsai, Chin-Chi (Oak Ridge, TN); Haselton, Halsey H. (Knoxville, TN)

1994-01-01T23:59:59.000Z

373

Tapered plasma channels to phase-lock accelerating and focusing forces in laser-plasma accelerators  

SciTech Connect

Tapered plasma channels are considered for controlling dephasing of a beam with respect to a plasma wave driven by a weakly-relativistic, short-pulse laser. Tapering allows for enhanced energy gain in a single laser plasma accelerator stage. Expressions are derived for the taper, or longitudinal plasma density variation, required to maintain a beam at a constant phase in the longitudinal and/or transverse fields of the plasma wave. In a plasma channel, the phase velocities of the longitudinal and transverse fields differ, and, hence, the required tapering differs. The length over which the tapered plasma density becomes singular is calculated. Linear plasma tapering as well as discontinuous plasma tapering, which moves beams to adjacent plasma wave buckets, are also considered. The energy gain of an accelerated electron in a tapered laser-plasma accelerator is calculated and the laser pulse length to optimize the energy gain is determined.

Rittershofer, W.; Schroeder, C.B.; Esarey, E.; Gruner, F.J.; Leemans, W.P.

2010-05-17T23:59:59.000Z

374

Coupled microwave ECR and radio-frequency plasma source for plasma processing  

DOE Patents (OSTI)

In a dual plasma device, the first plasma is a microwave discharge having its own means of plasma initiation and control. The microwave discharge operates at electron cyclotron resonance (ECR), and generates a uniform plasma over a large area of about 1000 cm[sup 2] at low pressures below 0.1 mtorr. The ECR microwave plasma initiates the second plasma, a radio frequency (RF) plasma maintained between parallel plates. The ECR microwave plasma acts as a source of charged particles, supplying copious amounts of a desired charged excited species in uniform manner to the RF plasma. The parallel plate portion of the apparatus includes a magnetic filter with static magnetic field structure that aids the formation of ECR zones in the two plasma regions, and also assists in the RF plasma also operating at electron cyclotron resonance. 4 figures.

Tsai, C.C.; Haselton, H.H.

1994-03-08T23:59:59.000Z

375

PETSc: Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications and Publications Applications and Publications Home Download Features Documentation Applications/Publications Prizes Industrial/DOE sites DOE CSGF users Miscellaneous External Software Developers Site These are publications on application simulations developed by PETSc users. Please send us information about your publications, petsc-maint@mcs.anl.gov. How to cite PETSc in your publications. See Acknowledgments for software packages that PETSc uses. PETSc has been used for modeling in all of these areas: Acoustics, Aerodynamics, Air Pollution, Arterial Flow, Bone Fractures, Brain Surgery, Cancer Surgery, Cancer Treatment, Carbon Sequestration, Cardiology, Cells, CFD, Combustion, Concrete, Corrosion, Data Mining, Dentistry, Earth Quakes, Economics, Fission, Fusion, Glaciers, Ground Water Flow, Linguistics,

376

Application: Electronics  

Science Conference Proceedings (OSTI)

Application: Electronics. ... Suppression of Electrical Cable Fires: Development of a Standard PVC Cable Fire Test for ISO 14520-1.. Robin, ML ...

2011-12-22T23:59:59.000Z

377

Application Form  

Science Conference Proceedings (OSTI)

ELIGIBILITY REQUIREMENTS. The application ... Note: Applying for the travel award does not enter your abstract into the TMS Conference Management System.

378

brochure application  

Science Conference Proceedings (OSTI)

Magnetohydrodynamics. 19. Measurement Techniques for Pot Analysis ... Country ... Be sure to note your personal topics of interest on the application because...

379

Michigan Institute for Plasma Sci-  

E-Print Network (OSTI)

associated with flux ropes. Magnetic field lines (red, green tubes), plasma current (arrows) and the QSL experiment two magnetic flux ropes are generated from adjacent pulsed current channels in a background-separatrix layer (QSL), a narrow region between the flux ropes. Field lines on either side of the QSL have closely

Shyy, Wei

380

Neutral transport in a plasma  

DOE Green Energy (OSTI)

A solution procedure for the neutral transport equation in plasma slab geometry is developed. Half-angle scalar fluxes, currents and averaged cross sections are introduced to provide a convenient and simple method of calculating the neutral energy distribution as an adjunct to the neutral density calculation. A forward-backward sweep numerical solution procedure, which avoids matrix inversion, is outlined.

Stacey, W.M. Jr.

1977-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gatan Solarus Advanced Plasma System  

Science Conference Proceedings (OSTI)

The Solarus Advanced Plasma System expands this process to a new level. ... electronics and software; which when integrated allows more control and .... Ar, Ni, or Ar/O2 at 60psi (4.1bar) required for operation of pneumatic valve. Power.

382

Hydrodynamics of the cascading plasma  

E-Print Network (OSTI)

The cascading gauge theory of Klebanov et.al realizes a soluble example of gauge/string correspondence in a non-conformal setting. Such a gauge theory has a strong coupling scale Lambda, below which it confines with a chiral symmetry breaking. A holographic description of a strongly coupled cascading gauge theory plasma is represented by a black brane solution of type IIB supergravity on a conifold with fluxes. A characteristic parameter controlling the high temperature expansion of such plasma is 1/ln(T/Lambda). In this paper we study the speed of sound and the bulk viscosity of the cascading gauge theory plasma to order 1/ln(T/Lambda)^4. We find that the bulk viscosity satisfies the bound conjectured in arXiv:0708.3459. We comment on difficulties of computing the transport coefficients to all orders in T/Lambda. Previously, it was shown that a cascading gauge theory plasma undergoes a first-order deconfinement transition with unbroken chiral symmetry at T_c=0.6141111(3) Lambda. We show here that a deconfined chirally symmetric phase becomes perturbatively unstable at T_u=0.8749(0) T_c. Near the unstable point the specific heat diverges as c_V ~ |1-T_u/T|^(-1/2).

Alex Buchel

2009-03-20T23:59:59.000Z

383

Microwave-generated plasma thruster  

DOE Green Energy (OSTI)

A concept for high power density and efficiency plasma thruster based on electron cyclotron resonance heating (ECRH) is described. Initial estimates are made of the parameters, leading to a conceptual design. An effort for detail physics design and proof-of-principal tests is also proposed. 20 refs., 2 figs., 1 tab.

Hooper, E.B.

1991-05-11T23:59:59.000Z

384

Hollow electrode plasma excitation source  

DOE Patents (OSTI)

A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures.

Ballou, Nathan E. (West Richland, WA)

1992-01-01T23:59:59.000Z

385

Hollow electrode plasma excitation source  

DOE Patents (OSTI)

A plasma source incorporates a furnace as a hollow anode, while a coaxial cathode is disposed therewithin. The source is located in a housing provided with an ionizable gas such that a glow discharge is produced between anode and cathode. Radiation or ionic emission from the glow discharge characterizes a sample placed within the furnace and heated to elevated temperatures. 5 figs.

Ballou, N.E.

1992-04-14T23:59:59.000Z

386

Exhaust aftertreatment using plasma-assisted catalysis  

DOE Green Energy (OSTI)

In the field of catalysis, one application that has been classified as a breakthrough technology is the catalytic reduction of NO{sub x} in oxygen-rich environments using hydrocarbons. This breakthrough will require dramatic improvements in both catalyst and engine technology, but the benefits will be substantial for energy efficiency and a cleaner environment. Engine and automobile companies are placing greater emphasis on the diesel engine because of its potential for saving fuel resources and reducing CO{sub 2} emissions. The modern direct-injection diesel engine offers demonstrated fuel economy advantages unmatched by any other commercially-viable engine. The main drawback of diesel engines is exhaust emissions. A modification of existing oxidation catalyst/engine technology is being used to address the CO, hydrocarbon and particulates. However, no satisfactory solution currently exists for NO{sub x}. Diesel engines operate under net oxidizing conditions, thus rendering conventional three-way catalytic converters ineffective for the controlling the NO{sub x} emission. NO{sub x} reduction catalysts, using ammonia as a reductant, do exist for oxygen-rich exhausts; however, for transportation applications, the use of on-board hydrocarbon fuels is a more feasible, cost-effective, and environmentally-sound approach. Selective catalytic reduction (SCR) by hydrocarbons is one of the leading catalytic aftertreatment technologies for the reduction of NO{sub x} in lean-burn engine exhaust (often referred to as lean-NO{sub x}). The objective is to chemically reduce the pollutant molecules of NO{sub x} to benign molecules such as N{sub 2}. Aftertreatment schemes have focused a great deal on the reduction of NO because the NO{sub x} in engine exhaust is composed primarily of NO. Recent studies, however, have shown that the oxidation of NO to NO{sub 2} serves an important role in enhancing the efficiency for reduction of NO{sub x} to N{sub 2}. It has become apparent that preconverting NO to NO{sub 2} could improve both the efficiency and durability of lean-NO{sub x} catalysts. A non-thermal plasma is an efficient means for selective partial oxidation of NO to NO{sub 2}. The use of a non-thermal plasma in combination with a lean-NO{sub x} catalyst opens the opportunity for catalysts that are more efficient and more durable compared to conventional catalysts. In the absence of hydrocarbons, the O radicals will oxidize NO to NO{sub 2}, and the OH radicals will further oxidize NO{sub 2} to nitric acid. In plasma-assisted catalysis it is important that the plasma oxidize NO to NO{sub 2} without further producing acids.

Penetrante, B

2000-01-20T23:59:59.000Z

387

A Plasma Lens for Magnetron Sputtering  

SciTech Connect

A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

Anders, Andre; Brown, Jeff

2010-11-30T23:59:59.000Z

388

Magnetron cathodes in plasma electrode pockels cells  

DOE Patents (OSTI)

Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

Rhodes, Mark A. (Pleasanton, CA)

1995-01-01T23:59:59.000Z

389

Rotation generation and transport in tokamak plasmas  

E-Print Network (OSTI)

Plasma toroidal rotation is a factor important for plasma stability and transport, but it is still a fairly poorly understood area of physics. This thesis focuses on three aspects of rotation: momentum transport, Ohmic ...

Podpaly, Yuri Anatoly

2012-01-01T23:59:59.000Z

390

Reviews of plasma physics. Vol. 10  

SciTech Connect

This book presents information on the following topics: nonlinear dynamics of rarefied plasmas and ionospheric aerodynamics; cyclotron instability of the earth radiation belts; dynamic nonlinear electromagnetic phenomena in plasmas; and dynamics of the Z pinch.

Leontovich, M.A.

1986-01-01T23:59:59.000Z

391

Plasma heating by an rf electric field  

SciTech Connect

In an analysis of the excitation of plasma waves by an electromagnetic wave at a frequency near the plasma frequency, the decay instabilities of first and second orders are taken into account. (AIP)

Musher, S.L.; Rubenchik, A.M.

1975-12-01T23:59:59.000Z

392

Plasma physics aspects of ETF/INTOR  

SciTech Connect

In order to achieve their principle technical objectives, the Engineering Test Facility (ETF) and the International Tokomak Reactor (INTOR) will require an ignited (or near ignited) plasma, sustained for pulse lengths of at least 100 secs at a high enough plasma pressure to provide a neutron wall loading of at least 1.3 MW/m/sup 2/. The ignited plasma will have to be substantially free of impurities. Our current understanding of major plasma physics characters is summarized.

Peng, Y.K.M.; Rutherford, P.R.; Schmidt, J.A.; Cohn, D.R.; Miller, R.L.

1980-01-01T23:59:59.000Z

393

Vortex formation during rf heating of plasma  

SciTech Connect

Experiments on a test plasma show that the linear theory of waveguide coupling to slow plasma waves begins to break down if the rf power flux exceeds approx. 30 W/cm/sup 2/. Probe measurements reveal that within 30 ..mu..s an undulation appears in the surface plasma near the mouth of the twin waveguide. This surface readjustment is part of a vortex, or off-center convective cell, driven by asymmetric rf heating of the plasma column.

Motley, R.W.

1980-05-01T23:59:59.000Z

394

Building Assessment and Energy Coordinator | Princeton Plasma...  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities Environment, Safety & Health Procurement Division Technology Transfer Furth Plasma Physics Library Jobs Building Assessment and Energy Coordinator Department:...

395

Methane Conversion by Plasma Assisted Methods  

E-Print Network (OSTI)

and Helge Egsgaard2 1Optics and Plasma Research Department 2Biosystems Department Risø National Laboratory

396

The Coupling of Electromagnetic Power to Plasmas  

Science Conference Proceedings (OSTI)

Heating and Current Drive / Proceedings of the Ninth Carolus Magnus Summer School on Plasma and Fusion Energy Physics

R. Koch

397

Active molecular plasma in a magnetic field  

SciTech Connect

The propagation of electromagnetic oscillations in an active molecules plasma in a constant external magnetic field is investigated. (AIP)

Kovtun, V.P.

1981-05-01T23:59:59.000Z

398

Princeton Plasma Physics Laboratory Technology Marketing ...  

... Energy Innovation Portal on Google; Bookmark Princeton Plasma Physics Laboratory Technology Marketing Summaries - Energy Innovation Portal on ...

399

Tribological Behavior of Carbon Nanotube Reinforced Plasma ...  

Science Conference Proceedings (OSTI)

Symposium, Ceramic Matrix Composites ... Abstract Scope, Plasma sprayed Yittria Stabilized Zirconia (YSZ) coating is most commonly used in cylindrical liners,...

400

Miniaturized cathodic arc plasma source  

DOE Patents (OSTI)

A cathodic arc plasma source has an anode formed of a plurality of spaced baffles which extend beyond the active cathode surface of the cathode. With the open baffle structure of the anode, most macroparticles pass through the gaps between the baffles and reflect off the baffles out of the plasma stream that enters a filter. Thus the anode not only has an electrical function but serves as a prefilter. The cathode has a small diameter, e.g. a rod of about 1/4 inch (6.25 mm) diameter. Thus the plasma source output is well localized, even with cathode spot movement which is limited in area, so that it effectively couples into a miniaturized filter. With a small area cathode, the material eroded from the cathode needs to be replaced to maintain plasma production. Therefore, the source includes a cathode advancement or feed mechanism coupled to cathode rod. The cathode also requires a cooling mechanism. The movable cathode rod is housed in a cooled metal shield or tube which serves as both a current conductor, thus reducing ohmic heat produced in the cathode, and as the heat sink for heat generated at or near the cathode. Cooling of the cathode housing tube is done by contact with coolant at a place remote from the active cathode surface. The source is operated in pulsed mode at relatively high currents, about 1 kA. The high arc current can also be used to operate the magnetic filter. A cathodic arc plasma deposition system using this source can be used for the deposition of ultrathin amorphous hard carbon (a-C) films for the magnetic storage industry.

Anders, Andre (Albany, CA); MacGill, Robert A. (Richmond, CA)

2003-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Final Technical Report of DE-FG02-06ER54789 Current-Driven Filament Instabilities in Relativistic Plasmas  

SciTech Connect

This grant has supported a study of some fundamental problems in current- and flowdriven instabilities in plasmas and their applications in inertial confinement fusion (ICF) and astrophysics. It addressed current-driven instabilities and their roles in fast ignition, and flow-driven instabilities and their applications in astrophysics.

Ren, Chuang

2013-02-13T23:59:59.000Z

402

Energy Measurement in a Plasma Wakefield Accelerator  

SciTech Connect

In the E-167 plasma wakefield acceleration experiment, electrons with an initial energy of 42GeV are accelerated in a meter-scale lithium plasma. Particles are leaving plasma with a large energy spread. To determine the spectrum of the accelerated particles, a two-plane spectrometer has been set up.

Ischebeck, R

2007-07-06T23:59:59.000Z

403

Plasma confinement. [Physics for magnetic geometries  

SciTech Connect

The physics of plasma confinement by a magnetic field is developed from the basic properties of plasmas through the theory of equilibrium, stability, and transport in toroidal and open-ended configurations. The close relationship between the theory of plasma confinement and Hamiltonian mechanics is emphasized, and the modern view of macroscopic instabilities as three-dimensional equilibria is given.

Boozer, A.H.

1985-03-01T23:59:59.000Z

404

Master Thesis: Fusion Plasma Thermal Transport  

E-Print Network (OSTI)

Master Thesis: Fusion Plasma Thermal Transport Radial and Poloidal Profile Modeling Martin Olesen-axis localised ion cyclotron resonance heating source. 2. Cold pulse shock induction at the plasma edge via laser wave propagation from heat modulation and the fast propagation of a cold pulse, at the same plasma

405

COMPARISON OF PLASMA-CATALYST AND ACTIVE LEAN NOx CATALYST  

DOE Green Energy (OSTI)

A number of NO{sub x} control systems are being discussed for potential application to diesel engines. Unfortunately, it can be difficult to compare systems on an equal basis because data are run under different conditions, or reported against different test cycles, or not shown over a range of operating conditions. In addition, the fuel consumption penalty associated with the NO{sub x} control technologies is not always reported. In this paper, we compare two diesel NO{sub x} aftertreatment systems: (1) Plasma-Catalyst (PC): a nonthermal plasma followed by a catalyst; and (2) Active Lean NO{sub x} Catalyst (ALNC): a NO{sub x} catalyst designed to selectively reduce NO{sub x} using hydrocarbon (HC) in the form of diesel fuel. Fuel is added to the exhaust to increase HC above normal diesel levels. These systems will be described in more detail in this report.

Hoard, John

2000-08-20T23:59:59.000Z

406

Plasma effect in Silicon Charge Coupled Devices (CCDs)  

E-Print Network (OSTI)

Plasma effect is observed in CCDs exposed to heavy ionizing alpha-particles with energies in the range 0.5 - 5.5 MeV. The results obtained for the size of the charge clusters reconstructed on the CCD pixels agrees with previous measurements in the high energy region (>3.5 MeV). The measurements were extended to lower energies using alpha-particles produced by (n,alpha) reactions of neutrons in a Boron-10 target. The effective linear charge density for the plasma column is measured as a function of energy. The results demonstrate the potential for high position resolution in the reconstruction of alpha particles, which opens an interesting possibility for using these detectors in neutron imaging applications.

Juan Estrada; Jorge Molina; J. Blostein; G. Fernandez

2011-05-16T23:59:59.000Z

407

Plasma sweeper to control the coupling of RF power to a magnetically confined plasma  

DOE Patents (OSTI)

A device for coupling RF power (a plasma sweeper) from a phased waveguide array for introducing RF power to a plasma having a magnetic field associated therewith comprises at least one electrode positioned near the plasma and near the phased waveguide array; and a potential source coupled to the electrode for generating a static electric field at the electrode directed into the plasma and having a component substantially perpendicular to the plasma magnetic field such that a non-zero vector cross-product of the electric and magnetic fields exerts a force on the plasma causing the plasma to drift.

Motley, Robert W. (Princeton, NJ); Glanz, James (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

408

Production of field-reversed mirror plasma with a coaxial plasma gun  

SciTech Connect

The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

Hartman, Charles W. (Alamo, CA); Shearer, James W. (Livermore, CA)

1982-01-01T23:59:59.000Z

409

Porcelain-coated antenna for radio-frequency driven plasma source  

SciTech Connect

A new porcelain-enamel coated antenna creates a clean plasma for volume or surface-conversion ion sources. The porcelain-enamel coating is hard, electrically insulating, long lasting, non fragile, and resistant to puncture by high energy ions in the plasma. Plasma and ion production using the porcelain enamel coated antenna is uncontaminated with filament or extraneous metal ion because the porcelain does not evaporate and is not sputtered into the plasma during operation. Ion beams produced using the new porcelain-enamel coated antenna are useful in ion implantation, high energy accelerators, negative, positive, or neutral beam applications, fusion, and treatment of chemical or radioactive waste for disposal. For ion implantation, the appropriate species ion beam generated with the inventive antenna will penetrate large or small, irregularly shaped conducting objects with a narrow implantation profile.

Leung, Ka-Ngo (Hercules, CA); Wells, Russell P. (Kensington, CA); Craven, Glen E. (Fremont, CA)

1996-01-01T23:59:59.000Z

410

of schedule, demonstrated a new technique for establishing plasma current and re  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of schedule, demonstrated a new technique for establishing plasma current and reached of schedule, demonstrated a new technique for establishing plasma current and reached one million amperes. Such work simultaneously advances basic research in plasma science and engineering, supports increasingly important industrial applications of plasmas from chip processing to pasteurization, and represents the kind of long term energy investment strategy that must be supported in the Federal energy R&D portfolio. Renewable Energy Renewable energy resources-wind, solar, geothermal, biomass, hydrogen and hydroelectric-are abundant. These alternatives are mainly used for power generation (biomass can be used for ransportation fuel, and biomass, solar and geothermal for heating), and they produce virtually no emissions or solid wastes. Their primary challenges are the cost of producing power (excpthdroelari) copared with

411

A Tutorial on Basic Principles of Microwave Reflectometry Applied to Fluctuation Measurements in Fusion Plasmas  

SciTech Connect

Microwave reflectometry is now routinely used for probing the structure of magnetohydrodynamic and turbulent fluctuations in fusion plasmas. Conditions specific to the core of tokamak plasmas, such as small amplitude of density irregularities and the uniformity of the background plasma, have enabled progress in the quantitative interpretation of reflectometer signals. In particular, the extent of applicability of the 1-D [one-dimensional] geometric optics description of the reflected field is investigated by direct comparison to 1-D full wave analysis. Significant advances in laboratory experiments are discussed which are paving the way towards a thorough understanding of this important measurement technique. Data is presented from the Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Physics and Controlled Fusion 33 (1991) 1509] identifying the validity of the geometric optics description of the scattered field and demonstrating the feasibility of imaging turbulent fluctuations in fusion scale devices.

Nazikian, R.; Kramer, G.J.; Valeo, E.

2001-02-16T23:59:59.000Z

412

Contamination due to memory effects in filtered vacuum arc plasma deposition systems  

SciTech Connect

Thin film synthesis by filtered vacuum arc plasma deposition is a widely used technique with a number of important emerging technological applications. A characteristic feature of the method is that during the deposition process not only is the substrate coated by the plasma, but the plasma gun itself and the magnetic field coil and/or vacuum vessel section constituting the macroparticle filter are also coated to some extent. If then the plasma gun cathode is changed to a new element, there can be a contamination of the subsequent film deposition by sputtering from various parts of the system of the previous coating species. We have experimentally explored this effect and compared our results with theoretical estimates of sputtering from the SRIM (Stopping and Range of Ions in Matter) code. We find film contamination of order 10-4 - 10-3, and the memory of the prior history of the deposition hardware can be relatively long-lasting.

Martins, D.R.; Salvadori, M.C.; Verdonck, P.; Brown, I.G.

2002-08-13T23:59:59.000Z

413

Plasma position dynamics of ISX tokamak  

SciTech Connect

Perturbation equations of a tokamak plasma equilibrium position have been developed. Neglecting second and higher order effects, oscillatory high frequency solution is obtained, and an approximated low frequency plasma motion dynamics transfer function is derived. This function allows a manageable study of a tokamak plasma equilibrium position stability and practical syntheses of the associated plasma position feedback control systems. One of the major parameters governing plasma equilibrium position stability of a tokamak is shown to be the vacuum vessel eddy current delay time constant.

Burenko, O.

1977-01-01T23:59:59.000Z

414

High-Intensity Plasma Glass Melter Final Technical Report  

Science Conference Proceedings (OSTI)

The purpose of this project was to demonstrate the energy efficiency and reduced emissions that can be obtained with a dual torch DC plasma transferred arc-melting system. Plasmelt Glass Technologies, LLC was formed to solicit and execute the project, which utilize a full-scale test melter system. The system is similar to the one that was originally constructed by Johns Manville, but Plasmelt has added significant improvements to the torch design and melter system that has extended the original JM short torch lives. The original JM design has been shown to achieve melt rates 5 to 10 times faster than conventional gas or electric melting, with improved energy efficiency and reduced emissions. This project began on 7/28/2003 and ended 7/27/06. A laboratory scale melter was designed, constructed, and operated to conduct multiple experimental melting trials on various glass compositions. Glass quality was assessed. Although the melter design is generic and equally applicable to all sectors within the glass industry, the development of this melter has focused primarily on fiberglass with additional exploratory melting trials of frits, specialty, and minerals-melting applications. Throughput, energy efficiency, and glass quality have been shown to be heavily dependent on the selected glass composition. During this project, Plasmelt completed the proof-of-concept work in our Boulder, CO Lab to show the technical feasibility of this transferred-arc plasma melter. Late in the project, the work was focused on developing the processes and evaluating the economic viability of plasma melting aimed at the specific glasses of interest to specific client companies. Post project work is on going with client companies to address broader non-glass materials such as refractories and industrial minerals. Exploratory melting trials have been conducted on several glasses of commercial interest including: C-glass, E-glass, S-Glass, AR-Glass, B-glass, Lighting Glass, NE-Glass, and various frits. Exploratory melts of non-glassy materials, such as wollastonite, zirconium silicate, and alumino-silicate melts were successfully done indicating that plasma melting has potential application beyond glass. Experimental results were generated that show the high quality of plasma-melted fiberglass compositions, such as E-glass, can result in good fiberizing performance. Fiberizing performance and tensile strength data were achieved during the project to support this conclusion. High seed counts are a feature of the current lab scale melter and must be dealt with via other means, since fining work was outside the scope of this project.

Gonterman, J. Ronald; Weinstein, Michael A.

2006-10-27T23:59:59.000Z

415

Evidence cross-validation and Bayesian inference of MAST plasma equilibria  

SciTech Connect

In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmetric current beams with rectangular cross-section and inferring the current for each one of these beams, flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-Savart's law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svensson and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion 50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predictions, and the probability distribution for the currents in the collection of plasma beams was subsequently calculated directly via application of Bayes' formula. In this work, we introduce a new diagnostic technique to identify and remove outlier observations associated with diagnostics falling out of calibration or suffering from an unidentified malfunction. These modifications enable a good agreement between Bayesian inference of the last-closed flux-surface with other corroborating data, such as that from force balance considerations using EFIT++[Appel et al., ''A unified approach to equilibrium reconstruction'' Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well as directly predicting the Shafranov shift of the plasma core.

Nessi, G. T. von; Hole, M. J. [Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Svensson, J. [Max-Planck-Institut fuer Plasmaphysik, D-17491 Greifswald (Germany); Appel, L. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

2012-01-15T23:59:59.000Z

416

Plasma Lens for Muon and Neutrino Beams  

SciTech Connect

The plasma lens is examined as an alternate to focusing horns and solenoids for use in a neutrino or muon beam facility. The plasma lens concept is based on a combined high-energy lens/target configuration. The current is fed at electrodes located upstream and downstream from the target where pion capturing is needed. The current flows primarily in the plasma, which has a lower resistivity than the target. A second plasma lens section, with an additional current feed, follows the target to provide shaping of the plasma for optimum focusing. The plasma lens is immersed in an additional solenoid magnetic field to facilitate the plasma stability. The geometry of the plasma is shaped to provide optimal pion capture. Simulations of this plasma lens system have shown a 25% higher neutrino production than the horn system. Plasma lenses have the additional advantage of negligible pion absorption and scattering by the lens material and reduced neutrino contamination during anti-neutrino running. Results of particle simulations using plasma lens will be presented.

Kahn,S.A.; Korenev, S.; Bishai, M.; Diwan, M.; Gallardo, J.C.; Hershcovitch, A.; Johnson, B.M.

2008-06-23T23:59:59.000Z

417

DYNAMIC SCREENING IN SOLAR PLASMA  

Science Conference Proceedings (OSTI)

In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions has been revisited. In particular, the issue of dynamic effects has been raised by Shaviv and Shaviv who apply the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean field assumption inherent in Salpeter's approximation. In this paper, we reproduce their numerical analysis of the screening energy in the plasma of the solar core and conclude that the effects of dynamic screening are relevant and should be included when stellar nuclear reaction rates are computed.

Mao, Dan; Daeppen, Werner [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089 (United States); Mussack, Katie [Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA (United Kingdom)], E-mail: mussack@ast.cam.ac.uk

2009-08-20T23:59:59.000Z

418

Galleries | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Research Education Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Organization Contact Us Science Education About Blog Programs Galleries Upcoming Events Lab Outreach Efforts Graduate Programs Off Site University Research (OSUR) Galleries Subscribe to RSS - Galleries 2013 Young Women's Conference 2013 Young Women's Conference63 images 2013 Plasma Camp 2013 Plasma Camp7 images 2013 Science on Saturday Lecture Series 2013 Science on Saturday Lecture Series7 images 2013 Summer's End Poster Session 2013 Summer's End Poster Session19 images 2013 Science Bowl 2013 Science Bowl12 images 2013 Pathways to Science Summit 2013 Pathways to Science Summit17 images 2012-2013 PathSci Kick-Off Event

419

Princeton Plasma Physics Lab - ITER  

NLE Websites -- All DOE Office Websites (Extended Search)

iter ITER is a large international iter ITER is a large international fusion experiment aimed at demonstrating the scientific and technological feasibility of fusion energy.ITER (Latin for "the way") will play a critical role advancing the worldwide availability of energy from fusion - the power source of the sun and the stars.To produce practical amounts of fusion power on earth, heavy forms of hydrogen are joined together at high temperature with an accompanying production of heat energy. The fuel must be held at a temperature of over 100 million degrees Celsius. At these high temperatures, the electrons are detached from the nuclei of the atoms, in a state of matter called plasma. en New imaging technique provides improved insight into controlling the plasma in fusion experiments

420

Perspectives on Geospace Plasma Coupling  

Science Conference Proceedings (OSTI)

There are a large variety of fascinating and instructive aspects to examining the coupling of mass and energy from the solar wind into the Earth's magnetosphere. Past research has suggested that magnetic reconnection (in a fluid sense) on the day-side magnetopause plays the key role in controlling the energy coupling. However, both linear and nonlinear coupling processes involving kinetic effects have been suggested through various types of innovative data analysis. Analysis and modeling results have also indicated a prominent role for multi-scale processes of plasma coupling. Examples include evidence of control by solar wind turbulence in the coupling sequence and localized (finite gyroradius) effects in dayside plasma transport. In this paper we describe several solar wind-magnetosphere coupling scenarios. We particularly emphasize the study of solar wind driving of magnetospheric substorm, and related geomagnetic disturbances.

Baker, Daniel N. [Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80303-7814 (United States)

2011-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dynamic screening in solar plasma  

E-Print Network (OSTI)

In the hot, dense plasma of solar and stellar interiors, Coulomb potentials are screened, resulting in increased nuclear reaction rates. Although Salpeter's approximation for static screening is widely accepted and used in stellar modeling, the question of screening in nuclear reactions has been revisited. In particular the issue of dynamic effects has been raised by Shaviv and Shaviv who apply the techniques of molecular dynamics to the conditions in the Sun's core in order to numerically determine the effect of screening. By directly calculating the motion of ions and electrons due to Coulomb interactions, the simulations are used to compute the effect of screening without the mean-field assumption inherent in Salpeter's approximation. In this paper we reproduce their numerical analysis of the screening energy in the plasma of the solar core and conclude that the effects of dynamic screening are relevant and should be included when stellar nuclear reaction rates are computed.

Mao, Dan; Dppen, Werner

2009-01-01T23:59:59.000Z

422

Process Applications  

Science Conference Proceedings (OSTI)

...flash-welding applications include: Chain links Transmission bands Automotive flywheel ring gears Strips that are joined for continuous processing lines Wire and bar drawing operations for continuous stamping press

423

Superabrasive Applications  

Science Conference Proceedings (OSTI)

Table 2   Typical applications of superabrasives...airports, highways Mining products Stone, shale, rock Drilling Precision grinding wheels Carbide Tool production and resharpening; wear parts and

424

Industrial Applications  

Science Conference Proceedings (OSTI)

Table 2   Frequently used rubber linings in other industries...Application Lining Power industry Scrubber towers Blended chlorobutyl Limestone slurry tanks Blended chlorobutyl Slurry piping Blended chlorobutyl 60 Shore A hardness natural rubber Seawater cooling water

425

Robert Kaita | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Kaita Kaita Principal Research Physicist, P.I., LTX Robert (Bob) Kaita is the head of plasma diagnostic operations and acting head of boundary physics operations for the National Spherical Torus Experiment (NSTX). Kaita is also a co-principal investigator of the Lithium Tokamak Experiment (LTX). He is a Fellow of the American Physical Society and a recipient of the Kaul Foundation Prize for Excellence in Plasma Physics Research. He has supervised the research of many students in the PPPL Program in Plasma Physics in the Department of Astrophysical Sciences at Princeton University. Interests Neutral beam and radiofrequency plasma heating Plasma diagnostics Plasma-surface interactions Solid and liquid plasma-facing components Contact Information Phone: 609-243-3275

426

Plasma plume MHD power generator and method  

DOE Patents (OSTI)

Highly-conducting plasma plumes are ejected across the interplanetary magnetic field from a situs that is moving relative to the solar wind, such as a spacecraft or an astral body, such as the moon, having no magnetosphere that excludes the solar wind. Discrete plasma plumes are generated by plasma guns at the situs extending in opposite directions to one another and at an angle, preferably orthogonal, to the magnetic field direction of the solar wind plasma. The opposed plumes are separately electrically connected to their source by a low impedance connection. The relative movement between the plasma plumes and the solar wind plasma creates a voltage drop across the plumes which is tapped by placing the desired electrical load between the electrical connections of the plumes to their sources. A portion of the energy produced may be used in generating the plasma plumes for sustained operation.

Hammer, James H. (Livermore, CA)

1993-01-01T23:59:59.000Z

427

Steady state compact toroidal plasma production  

DOE Patents (OSTI)

Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

Turner, William C. (Livermore, CA)

1986-01-01T23:59:59.000Z

428

Plasma Propagation Through Porous Dielectric Sheets  

E-Print Network (OSTI)

AbstractThe propagation of plasmas through porous materials is one extreme example of a packed-bed reactor. Mechanisms for atmospheric-pressure plasmas flowing through porous dielectric films are computationally investigated. Images of this plasma flow are discussed. Index TermsPhotoionization, plasma functionalization. ATMOSPHERIC-PRESSURE plasmas (APPs) in dielectric barrier discharge (DBD) configurations are widely used for remediation of toxic gases. One such configuration is a packed-bed reactor where the plasma flows along the surface of high-dielectric-constant (?) beads where electric fields are intensified by the gradient in ? [1]. Typical DBD plasmas operate in air at atmospheric pressure at a few to tens of kilohertz, having electrode separations of a few millimeters to a centimeter. One extreme example of a packed-bed DBD reactor

Mingmei Wang; John E. Foster; Mark J. Kushner

2011-01-01T23:59:59.000Z

429

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Hassanain, Babiker

2011-01-01T23:59:59.000Z

430

Plasma conductivity at finite coupling  

E-Print Network (OSTI)

By taking into account the full order(\\alpha'^3) type IIB string theory corrections to the supergravity action, we compute the leading finite 't Hooft coupling order(\\lambda^{-3/2}) corrections to the conductivity of strongly-coupled SU(N) {\\cal {N}}=4 supersymmetric Yang-Mills plasma in the large N limit. We find that the conductivity is enhanced by the corrections, in agreement with the trend expected from previous perturbative weak-coupling computations.

Babiker Hassanain; Martin Schvellinger

2011-08-31T23:59:59.000Z

431

Redshift of photons penetrating a hot plasma  

E-Print Network (OSTI)

A new interaction, plasma redshift, is derived, which is important only when photons penetrate a hot, sparse electron plasma. The derivation of plasma redshift is based entirely on conventional axioms of physics. When photons penetrate a cold and dense plasma, they lose energy through ionization and excitation, Compton scattering on the individual electrons, and Raman scattering on the plasma frequency. But in sparse hot plasma, such as in the solar corona, the photons lose energy also in plasma redshift. The energy loss per electron in the plasma redshift is about equal to the product of the photon's energy and one half of the Compton cross-section per electron. In quiescent solar corona, this heating starts in the transition zone to the corona and is a major fraction of the coronal heating. Plasma redshift contributes also to the heating of the interstellar plasma, the galactic corona, and the intergalactic plasma. Plasma redshift explains the solar redshifts, the redshifts of the galactic corona, the cosmological redshifts, the cosmic microwave background, and the X-ray background. The plasma redshift explains the observed magnitude-redshift relation for supernovae SNe Ia without the big bang, dark matter, or dark energy. There is no cosmic time dilation. The universe is not expanding. The plasma redshift, when compared with experiments, shows that the photons' classical gravitational redshifts are reversed as the photons move from the Sun to the Earth. This is a quantum mechanical effect. As seen from the Earth, a repulsion force acts on the photons. This means that there is no need for Einstein's Lambda term. The universe is quasi-static, infinite, and everlasting.

Ari Brynjolfsson

2004-01-21T23:59:59.000Z

432

Formation of tungsten coatings by gas tunnel type plasma spraying Akira Kobayashia,*, Shahram Sharafatb  

E-Print Network (OSTI)

silicon carbide (SiC) substrate coated with tungsten. Although chemical vapor deposition (CVD) is being method for coating preparation. Another example application is the tungsten-plasma spray- ing coated SiC-fiber (foam) for high heat-resistance. It is helpful to enhance the SiC-fiber heat-resistance that tungsten

Ghoniem, Nasr M.

433

Detection of Ionizing Radiation by Plasma-Panel Sensors: Cosmic Muons, Ion Beams, and Cancer Therapy  

Science Conference Proceedings (OSTI)

The plasma panel sensor is an ionizing photon and particle radiation detector derived from PDP technology with high gain and nanosecond response. Experimental results in detecting cosmic ray muons and beta particles from radioactive sources are described along with applications including high energy and nuclear physics, homeland security and cancer therapeutics.

Friedman, Dr. Peter S. [Integrated Sensors, LLC; Ferretti, Claudio [University of Michigan; Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Etzion, E [Tel Aviv University; Moshe, M. [Tel Aviv University; Bentefour, E [Ion Beam Applications

2012-01-01T23:59:59.000Z

434

IAEA specialists' meeting on carbon and oxygen collision data for fusion plasma research  

SciTech Connect

A brief overview is given of the status of the carbon and oxygen atomic data base for electron-impact excitation, ionization and recombination, and for spectroscopic data. Deficiencies for fusion plasma research applications are identified. Additional data are most critically needed for dielectronic and radiative recombination. 10 refs., 1 fig., 3 tabs.

Phaneuf, R.A.; Defrance, P.; Griffin, D.C.; Hahn, Y.; Pindzola, M.S.; Roszman, L.; Wiese, W.

1988-01-01T23:59:59.000Z

435

Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef*  

E-Print Network (OSTI)

1 Syngas Production from Propane using Atmospheric Non-Thermal Plasma F. Ouni, A. Khacef* and J. M applications (1, 2) . Synthesis gas or syngas (mixture of hydrogen and carbon monoxide) are used as a major. The conventional reformers allowing syngas production are based on steam reforming of hydrocarbons (3) following

Paris-Sud XI, Université de

436

Nano powders, components and coatings by plasma technique  

DOE Patents (OSTI)

Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

McKechnie, Timothy N. (Brownsboro, AL); Antony, Leo V. M. (Huntsville, AL); O' Dell, Scott (Arab, AL); Power, Chris (Guntersville, AL); Tabor, Terry (Huntsville, AL)

2009-11-10T23:59:59.000Z

437

A Deformable Model for Bringing Particles in Anders Lindbjerg Dahl1  

E-Print Network (OSTI)

in for example a fermentation process, oil droplets in water, coal particles in a power plant, and spray the particle size. This can be handled by only including the particles in focus, but most of the depicted all particles in focus. Therefore we need to handle the out-of-focus blur, but this also provide

Dahl, Anders Lindbjerg

438

HYDROTHERMAL TREATMENT OF WHEAT STRAW ON PILOT PLANT SCALE Anders Thygesena  

E-Print Network (OSTI)

solid material is one of the most important factors for production of bioethanol. Conversion for production of sugars for bio ethanol and an alkali free solid material for combustion in an incineration). After combined hydrothermal treatment and enzymatic hydrolysis the maximum sugar, yields were 30 g

439

LARYNGEAL ACTIVITY IN ICELANDIC OBSTRUENT PRODUCTION* Anders L6fqvist+ and Hirohide Yoshioka++  

E-Print Network (OSTI)

of glottal opening. The light from the fiberscope was used as a transillumination system, whereby the amount in Icelandic was investigated by the combined techniques of transillumination and fiberoptic filming of the organization of the speech motor system. Finally, we will address the general problem of interarticulator

440

DTU Aqua-rapport nr. 220-2010 Af Anders Koed, Niels Jepsen,  

E-Print Network (OSTI)

-11 42 * Skjern Sdr. Green - Skarrild 4-11 74 * Skjern Skarrild ­ Sdr. Felding 5-11 45 * Skjern Lysholm

Mosegaard, Klaus

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A compact generator based on Tesla transformer and water pulsed forming line for POS application  

Science Conference Proceedings (OSTI)

A compact generator based on Tesla transformer for application in plasma opening switch has been developed. This system will be used to produce microwave for plasma-microwave interaction studies. Overall dimension of this system is 6 feet by 4 feet. ...

Rajesh Kumar; Jignesh Patel; V. P. Anitha; Anurag Shyam

2011-02-01T23:59:59.000Z

442

Shock waves in strongly coupled plasmas  

E-Print Network (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically $AdS_5$ space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks we find the dual metric in a derivative expansion and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular we find that, when the velocity of the fluid relative to the shock approaches the speed of light $v\\to 1$ the penetration depth $\\ell$ scales as $\\ell\\sim (1-v^2)^{1/4}$. We compare the results with second order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Sergei Khlebnikov; Martin Kruczenski; Georgios Michalogiorgakis

2010-04-21T23:59:59.000Z

443

Shock waves in strongly coupled plasmas  

Science Conference Proceedings (OSTI)

Shock waves are supersonic disturbances propagating in a fluid and giving rise to dissipation and drag. Weak shocks, i.e., those of small amplitude, can be well described within the hydrodynamic approximation. On the other hand, strong shocks are discontinuous within hydrodynamics and therefore probe the microscopics of the theory. In this paper, we consider the case of the strongly coupled N=4 plasma whose microscopic description, applicable for scales smaller than the inverse temperature, is given in terms of gravity in an asymptotically AdS{sub 5} space. In the gravity approximation, weak and strong shocks should be described by smooth metrics with no discontinuities. For weak shocks, we find the dual metric in a derivative expansion, and for strong shocks we use linearized gravity to find the exponential tail that determines the width of the shock. In particular, we find that, when the velocity of the fluid relative to the shock approaches the speed of light v{yields}1 the penetration depth l scales as l{approx}(1-v{sup 2}){sup 1/4}. We compare the results with second-order hydrodynamics and the Israel-Stewart approximation. Although they all agree in the hydrodynamic regime of weak shocks, we show that there is not even qualitative agreement for strong shocks. For the gravity side, the existence of shock waves implies that there are disturbances of constant shape propagating on the horizon of the dual black holes.

Khlebnikov, Sergei; Kruczenski, Martin; Michalogiorgakis, Georgios [Department of Physics, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907 (United States)

2010-12-15T23:59:59.000Z

444

NERSC Applications Software  

NLE Websites -- All DOE Office Websites (Extended Search)

For Users Software Applications Applications List of Applications List of math, chemistry and materials science software installed at NERSC. Mathematical Applications...

445

Hybrid Electron-Positron-Ion Shear Flows and Applications to Gamma-Ray Bursts  

E-Print Network (OSTI)

We present Particle-in-Cell simulation results of relativistic shear boundary layers for hybrid electron-positron-ion plasmas and discuss their potential applications to gamma-ray bursts.

Liang, Edison; Smith, Ian

2013-01-01T23:59:59.000Z

446

Applicant Organization: | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applicant Organization: Applicant Organization: Applicant Organization: More Documents & Publications BlueFire Ethanol, Inc. Applicant Organization: Applicant Organization:...

447

Kinetic phenomena in charged particle transport in gases and plasmas  

SciTech Connect

The key difference between equilibrium (thermal) and non-equilibrium (low temperature - a.k.a. cold) plasmas is in the degree in which the shape of the cross sections influences the electron energy distribution function (EEDF). In this paper we will discuss the issue of kinetic phenomena from two different angles. The first will be how to take advantage of the strong influence and use low current data to obtain the cross sections. This is also known as the swarm technique and the product of a ''swarm analysis'' is a set of cross sections giving good number, momentum and energy balances of electrons or other charged particles. At the same time understanding the EEDF is based on the cross section data. Nevertheless sometimes the knowledge of the cross sections and even the behaviour of individual particles are insufficient to explain collective behaviour of the ensemble. The resulting ''kinetic'' effects may be used to favour certain properties of non-equilibrium plasmas and even may be used as the basis of some new plasma applications.

Petrovic, Zoran Lj.; Dujko, Sasa; Sasic, Olivera; Stojanovic, Vladimir; Malovic, Gordana [Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia); Faculty of Traffic Engineering, University of Belgrade Belgrade (Serbia); Institute of Physics, University of Belgrade, POB 68 11080 Zemun (Serbia)

2012-05-25T23:59:59.000Z

448

Simulation of an asymmetric single dielectric barrier plasma actuator  

SciTech Connect

Continuity equations governing electron and ion density are solved with Poisson's equation to obtain spatial and temporal profiles of electron density, ion density, and voltage. The motion of electrons and ions results in charge separation and generation of an electrostatic electric field. Electron deposition downstream of the overlap region of the electrode results in formation of a virtual negative electrode that always attracts the charge separation. The value of charge separation e(n{sub i}-n{sub e}) and the force per volume F=e(n{sub i}-n{sub e})E have been obtained near the dielectric surface for the 50th cycle. Domain integration of the force F=e(n{sub i}-n{sub e})E has been obtained for different plasma densities, frequencies, and rf voltage wave forms. The time average of the x force is positive and the y force is negative over the domain; therefore there is an average net force on the plasma in the positive x and negative y directions. This will result in a moving wave of plasma over the dielectric surface in the positive x direction, which can find application in flow control.

Singh, K.P.; Roy, Subrata [Computational Plasma Dynamics Laboratory, Mechanical Engineering, Kettering University, Flint, Michigan 48504 (United States)

2005-10-15T23:59:59.000Z

449

Physics Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Applications Applications Technetium-99m radioisotope generator developed at Brookhaven. Numerous physics-related programs at Brookhaven have yielded major advances in medicine and various technologies. Brookhaven's nuclear medicine program, which began in the 1950s, uses the Brookhaven Linac Isotope Producer to make radioisotopes for nuclear medicine diagnostics and treatment throughout the world. Today, more than 85 percent of all imaging examinations worldwide use one of the radioisotopes developed at Brookhaven. At Brookhaven's Center for Translational Neuroimaging, researchers can peer into a living brain through the use of various imaging modalities, including positron emission tomography (PET), magnetic resonance imaging (MRI), and optical imaging. Such research has led to a new understanding of

450

Plasma arc torch with coaxial wire feed  

SciTech Connect

A plasma arc welding apparatus having a coaxial wire feed. The apparatus includes a plasma arc welding torch, a wire guide disposed coaxially inside of the plasma arc welding torch, and a hollow non-consumable electrode. The coaxial wire guide feeds non-electrified filler wire through the tip of the hollow non-consumable electrode during plasma arc welding. Non-electrified filler wires as small as 0.010 inches can be used. This invention allows precision control of the positioning and feeding of the filler wire during plasma arc welding. Since the non-electrified filler wire is fed coaxially through the center of the plasma arc torch's electrode and nozzle, the wire is automatically aimed at the optimum point in the weld zone. Therefore, there is no need for additional equipment to position and feed the filler wire from the side before or during welding.

Hooper, Frederick M (Albuquerque, NM)

2002-01-01T23:59:59.000Z

451

Boundary Plasma Turbulence Simulations for Tokamaks  

SciTech Connect

The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

Xu, X; Umansky, M; Dudson, B; Snyder, P

2008-05-15T23:59:59.000Z

452

Plasma vitrification of waste materials  

DOE Patents (OSTI)

This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

1997-06-10T23:59:59.000Z

453

Plasma vitrification of waste materials  

DOE Patents (OSTI)

This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

McLaughlin, David F. (Oakmont, PA); Dighe, Shyam V. (North Huntingdon, PA); Gass, William R. (Plum Boro, PA)

1997-01-01T23:59:59.000Z

454

Transport Coefficients of Gluon Plasma  

E-Print Network (OSTI)

Transport coefficients of gluon plasma are calculated for a SU(3) pure gauge model by lattice QCD simulations on $16^3 \\times 8$ and $24^3 \\times 8$ lattices. Simulations are carried out at a slightly above the deconfinement transition temperature $T_c$, where a new state of matter is currently being pursued in RHIC experiments. Our results show that the ratio of the shear viscosity to the entropy is less than one and the bulk viscosity is consistent with zero in the region, $1.4 \\leq T/T_c \\leq 1.8 $.

Atsushi Nakamura; Sunao Sakai

2004-06-08T23:59:59.000Z

455

Holographic plasma and anyonic fluids  

E-Print Network (OSTI)

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-09T23:59:59.000Z

456

Resonant-cavity antenna for plasma heating  

SciTech Connect

Disclosed is a resonant coil cavity wave launcher for energizing a plasma immersed in a magnetic field. Energization includes launching fast Alfven waves to excite ion cyclotron frequency resonances in the plasma. The cavity includes inductive and capacitive reactive members spaced no further than one-quarter wavelength from a first wall confinement chamber of the plasma. The cavity wave launcher is energized by connection to a waveguide or transmission line carrying forward power from a remote radio frequency energy source.

Perkins, Jr., Francis W. (Princeton, NJ); Chiu, Shiu-Chu (San Diego, CA); Parks, Paul (San Diego, CA); Rawls, John M. (Del Mar, CA)

1987-01-01T23:59:59.000Z

457

Neutrino magnetic moment in a magnetized plasma  

E-Print Network (OSTI)

The contribution of a magnetized plasma to the neutrino magnetic moment is calculated. It is shown that only part of the additional neutrino energy in magnetized plasma connecting with its spin and magnetic field strength defines the neutrino magnetic moment. It is found that the presence of magnetized plasma does not lead to the considerable increase of the neutrino magnetic moment in contrast to the results presented in literature previously.

N. V. Mikheev; E. N. Narynskaya

2010-11-08T23:59:59.000Z

458

Nonabelian plasma instabilities in Bjorken expansion  

E-Print Network (OSTI)

Plasma instabilities are parametrically the dominant nonequilibrium dynamics of a weakly coupled quark-gluon plasma. In recent years the time evolution of the corresponding collective colour fields has been studied in stationary anisotropic situations. Here I report on recent numerical results on the time evolution of the most unstable modes in a longitudinally expanding plasma as they grow from small rapidity fluctuations to amplitudes where non-Abelian self-interactions become important.

Anton Rebhan

2008-10-15T23:59:59.000Z

459

Plasma heat pump and heat engine  

Science Conference Proceedings (OSTI)

A model system where cold charged particles are locally confined in a volume V{sub P} within a warm plasma of volume V (V{sub P}kilowatts is possible with the present day technology. Second, we discuss the feasibility of constructing an electrostatic heat engine which converts plasma heat into mechanical work via plasma electric fields. Effects of P{sub E} are shown to be observable in colloidal solutions.

Avinash, K. [Centre for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, Alabama 35899 (United States) and Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

2010-08-15T23:59:59.000Z

460

Quantum Electrodynamical Effects in Dusty Plasmas  

E-Print Network (OSTI)

A new nonlinear electromagnetic wave mode in a magnetized dusty plasma is predicted. Its existence depends on the interaction of an intense circularly polarized electromagnetic wave with a dusty plasma, where quantum electrodynamical photon-photon scattering is taken into account. Specifically, we consider a dusty electron-positron-ion plasma, and show that the propagation of the new mode is admitted. It could be of significance for the physics of supernova remnants and in neutron star formation.

M. Marklund; L. Stenflo; P. K. Shukla; G. Brodin

2005-03-17T23:59:59.000Z

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Plasma torch with liquid metal electrodes  

Science Conference Proceedings (OSTI)

In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

Predtechenskii, M.R.; Tukhto, O.M. [Russian Academy of Science, Novosibirsk (Russian Federation)

2006-03-15T23:59:59.000Z

462

Versatile and Rapid Plasma Heating Device for Steel and Aluminum  

DOE Green Energy (OSTI)

The main objective of the research was to enhance steel and aluminum manufacturing with the development of a new plasma RPD device. During the project (1) plasma devices were manufactured (2) testing for the two metals were carried out and (3) market development strategies were explored. Bayzi Corporation has invented a Rapid Plasma Device (RPD) which produces plasma, comprising of a mixture of ionized gas and free electrons. The ions, when they hit a conducting surface, deposit heat in addition to the convective heat. Two generic models called the RPD-Al and RPD-S have been developed for the aluminum market and the steel market. Aluminum melting rates increased to as high as 12.7 g/s compared to 3 g/s of the current industrial practice. The RPD melting furnace operated at higher energy efficiency of 65% unlike most industrial processes operating in the range of 13 to 50%. The RPD aluminum melting furnace produced environment friendly cleaner melts with less than 1% dross. Dross is the residue in the furnace after the melt is poured out. Cast ingots were extremely clean and shining. Current practices produce dross in the range of 3 to 12%. The RPD furnace uses very low power ~0.2 kWh/Lb to melt aluminum. RPDs operate in one atmosphere using ambient air to produce plasma while the conventional systems use expensive gases like argon, or helium in air-tight chambers. RPDs are easy to operate and do not need intensive capital investment. Narrow beam, as well as wide area plasma have been developed for different applications. An RPD was developed for thermal treatments of steels. Two different applications have been pursued. Industrial air hardening steel knife edges were subjected to plasma beam hardening. Hardness, as measured, indicated uniform distribution without any distortion. The biggest advantage with this method is that the whole part need not be heated in a furnace which will lead to oxidation and distortion. No conventional process will offer localized hardening. The RPD has a great potential for heat treating surgical knives and tools. Unavailability of the full amount of the DOE award prevented further development of this exciting technology. Significant progress was made during the 5th quarter, specially the invention of the wider-area plasma and the resultant benefits in terms of rapid melting of aluminum and thermal treatments of larger size steel parts. Coating of nickel base superalloys was demonstrated (an additional task over that proposed). Directed low cost surface enhancement of steel and the directed clean low dross energy efficient melting of aluminum are industrial needs that require new technologies. These are large volume markets which can benefit from energy savings. Estimated energy savings are very large, in the order of 1015 J/year when the equipment is universally used. Compact and directed heating technology/product market in these two sectors could potentially reach over $1B in sales. The results of the research, presented at the DOE annual Review meeting on Aluminum held at the Oak Ridge National Laboratory during the 4-5 October 2005, were very well received by the delegates and panel reviewers. Insufficient DOE funds to fully fund the project at the end of the 5th quarter necessitated some key tasks being only partially completed.

Reddy, G.S.

2006-03-14T23:59:59.000Z

463

On the geometry of plasma reactor  

E-Print Network (OSTI)

It is presented the concept of controled nuclear synthesis in top of cone formed by rotational dynamic flow of low-temperature plasma.

I. V. Bayak

2000-05-22T23:59:59.000Z

464

Design of a cusped field plasma thruster.  

E-Print Network (OSTI)

??A plasma space propulsion thruster has been designed. It is classified as a Cusped Field Thruster (CFT), which refers to the geometry of the magnetic (more)

Conte, Joseph Richard, III

2012-01-01T23:59:59.000Z

465

Princeton Plasma Physics Laboratory Technologies Available for ...  

The DOE Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, ...

466

Princeton Plasma Physics Laboratory Honors Three Researchers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Kenneth Hill received the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. (Photo by Elle Starkman, PPPL Office of Communications) Kenneth...

467

Plasma planar filament instability and Alfven waves  

E-Print Network (OSTI)

Inhomogeneous plasmas filaments instabilities are investigated by using the techniques of classical differential geometry of curves where Frenet torsion and curvature describe completely the motion of curves. In our case the Frenet frame changes in time and also depends upon the other coordinates taking into account the inhomogeneity of the plasma. The exponential perturbation method so commonly used to describe cosmological perturbatons is applied to magnetohydrodynamic (MHD) plasma equations to find longitudinal modes describing Alfven waves propagation modes describing plasma waves in the medium. Stability is investigated in the imaginary axis of the spectra of complex frequencies ${\\omega}$ or $Im(\\omega)\

Garcia de Andrade

2007-03-05T23:59:59.000Z

468

Plasma Response to Complex External Magnetic Perturbations  

E-Print Network (OSTI)

Bull. Am. Phys. Soc. 55, 131 (2010)52nd American Physical Society Annual Meeting of Division of Plasma Physics Chicago Illinois, US, 2010999618210

Chu, M.S.

2010-07-10T23:59:59.000Z

469

Stuart R Hudson | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

approach for optimizing currents in H-1NF stellarator in operation in the Plasma Research Laboratory at the ANU to control vacuum magnetic islands was introduced. After...

470

Betatron radiation from density tailored plasmas  

E-Print Network (OSTI)

Betatron radiation from density tailored plasmas K. Tathe resulting betatron radiation spectrum can therefore bepro?le, the betatron radiation emitted by theses electrons

Ta Phuoc, Kim

2010-01-01T23:59:59.000Z

471

Robert Andre | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

472

Russell Kulsrud | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

473

Virtual Tour | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

474

Stephen Jardin | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

475

Nathaniel J Fisch | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

476

Peter Porazik | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

477

Marina Gorelenkova | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

478

Seung Hoe Ku | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

479

Weixing Wang | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

480

Peter Damiano | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

Note: This page contains sample records for the topic "anders plasma applications" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Administrative Assistant | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

482

Graduate Programs | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

483

Wenjun Deng | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

484

Nikolai Gorelenkov | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

485

Hong Qin | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

486

Allan Reiman | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

487

Contract Documents | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

488

Ilya Dodin | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

489

Organization Chart | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

490

Super Separator | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

491

Experimental Fusion Research | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

492

PPPL Open House | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

493

Robert Goldston | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

494

Current Job Openings | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

495

EEB Hub | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

496

Gregory Hammett | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

497

Michael Williams | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

498

Michael Zarnstorff | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

499

Fact Sheets | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...

500

Contact Information | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History...