National Library of Energy BETA

Sample records for anchorage fairbanks dillingham

  1. Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in Fairbanks, Mat Su, Kenai, and Anchorage.

  2. Ng Chung-Sung Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA

    E-Print Network [OSTI]

    Ng, Chung-Sang

    Ng Chung-Sung C. S. Ng Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska in a statistical steady state [Ng and Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now

  3. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  4. Fairbanks Geothermal Energy Project Final Report

    SciTech Connect (OSTI)

    Karl, Bernie

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  5. University of Alaska Fairbanks: Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,Biofuels for Military and|AirandCompany Name: Fairbanks

  6. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground...

  7. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  8. Aerial Photography At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial...

  9. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue...

  10. Reflection Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Reflection...

  11. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue...

  12. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank Engineering Ltd, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  13. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential...

  14. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

  15. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering...

    Open Energy Info (EERE)

    Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At...

  16. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal...

  17. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross, 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient...

  18. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann...

    Open Energy Info (EERE)

    Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At Blue...

  19. Fairbanks, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpA JumpGmbH EFCFBA FrancoFRED HomeFab CityFairbanks,

  20. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  1. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Info (EERE)

    STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library General:...

  2. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s...

    Open Energy Info (EERE)

    STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain Geothermal Power Facility Jump to: navigation, search OpenEI Reference LibraryAdd to library Personal...

  3. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for October 2008. Monthly Electric Utility Sales and Revenue Data Short Name...

  4. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Municipal Light and Power for June 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-06 Utility Company Anchorage Municipal Light and Power (Alaska) Place...

  5. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for May 2008. Monthly Electric Utility Sales and Revenue Data Short Name...

  6. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-November2008&oldid18733...

  7. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-September2008&oldid17668...

  8. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-December2008&oldid19263...

  9. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-March2008&oldid1450...

  10. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-April2008&oldid15036...

  11. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-January2009&oldid11832...

  12. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-February2008&oldid1397...

  13. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Revenue Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-July2008&oldid1661...

  14. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Data 1 Previous | Next Retrieved from "http:en.openei.orgwindex.php?titleAnchorageMunicipalLightandPower(Alaska)EIARevenueandSales-February2009&oldid1237...

  15. Anchorage, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | OpenAnchorage,

  16. Anchorage Roundtable Summary | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgaeAnatomy of a Groundwater UraniumAnchorage

  17. Asynchronous or synchronous? A misleading choice. Scott Fairbanks and Simon Moore

    E-Print Network [OSTI]

    Moore, Simon

    to generate and globally distribute timing signals. The first paper questions the synchronous assumptionsAsynchronous or synchronous? A misleading choice. Scott Fairbanks and Simon Moore 15 May 2004 as the technology that will progress the art of compu- tation when the timing assumptions that hold the synchronous

  18. WRF/Chem Simulations Over Fairbanks, AK Atmospheric Stability and Energy Correlation

    E-Print Network [OSTI]

    Moelders, Nicole

    1 WRF/Chem Simulations Over Fairbanks, AK Atmospheric Stability and Energy Correlation Analysis deposition. #12;3 The interactions and cycles of energy, water and trace gas components are also simulated, Alaska, that is characteristic of the Tanana valley; Specifically, Turbulent Kinetic Energy (TKE

  19. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for March 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-03...

  20. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Utility Company Anchorage Municipal Light and Power (Alaska) Place Alaska Start Date 2008-08-01 End Date 2008-09-01 Residential Revenue(Thousand ) 1183.136 Residential Sales (MWh)...

  1. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Utility Sales and Revenue Data Short Name 2008-01 Utility Company Anchorage Municipal Light and Power (Alaska) Place Alaska Start Date 2008-01-01 End Date 2008-02-01 Residential...

  2. The feasibility of residential development in the newly master planned Ship Creek area of Anchorage, Alaska

    E-Print Network [OSTI]

    Debenham, Shaun T. (Shaun Todd), 1973-

    2004-01-01

    The aim of this thesis is to determine if a 40 unit condominium complex located in the Ship Creek area in Anchorage, Alaska, is financially feasible. Historically, Ship Creek has been an industrial area but recently the ...

  3. Anchorages For FRPby M.A. Erki and S.H. Rizkalla ommercially available fiber-

    E-Print Network [OSTI]

    , and describes the products available commercially. Fiber reinforced plastic (FRP) rein- forcement has already-tensioning and post-tensioning. Wedge-type an- chorages were recently introduced for carbon and aramid fiber tendonsAnchorages For FRPby M.A. Erki and S.H. Rizkalla C ommercially available fiber- based reinforcement

  4. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  5. Analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle, southern Alaska

    SciTech Connect (OSTI)

    Madden, D.J.; Arbogast, B.F.; O'Leary, R.M.; Van Trump, G. Jr.; Silberman, M.L.

    1989-01-01

    A U.S. Geological Survey report give the analytical results, statistical analyses, and sample-locality maps of rocks from the Anchorage Quadrangle in southern Alaska is presented.

  6. An apparatus to manipulate and identify individual Ba ions from bulk liquid Xe K. Twelker, S. Kravitz, M. Montero Dez, G. Gratta, W. Fairbank Jr., J. B. Albert, D. J. Auty, P. S. Barbeau, D.

    E-Print Network [OSTI]

    Piepke, Andreas G.

    . Kravitz, M. Montero Díez, G. Gratta, W. Fairbank Jr., J. B. Albert, D. J. Auty, P. S. Barbeau, D. Beck, C to manipulate and identify individual Ba ions from bulk liquid Xe K. Twelker,1 S. Kravitz,1 M. Montero Díez,1,a

  7. Root morphology and anchorage of six native tree species from a tropical montane forest and an elfin forest in Ecuador

    E-Print Network [OSTI]

    Lehmann, Johannes

    in tropical forests in Ecuador. Increasing altitude was accompanied by higher wind speeds and more shallow anchorage in soils with low bulk density and in environments with high wind speeds. Abbreviations: AR m. At 3000 m, 48% of the trees were inclined, lying or even partly uprooted. At this altitude, all

  8. The U.S. Department of Energy Office of Indian Energy Policy and Programs, Anchorage, Alaska, Roundtable Summary

    SciTech Connect (OSTI)

    none,

    2011-04-14

    The Anchorage, Alaska Roundtable on Tribal Energy Policy convened at 10:00 a.m., Thursday April 15th, at the downtown Anchorage Hilton. The meeting was held by the Department of Energy (DOE) Office of Indian Energy Policy and Programs (Office of Indian Energy). Tracey LeBeau, Director of the Office of Indian Energy, and Pilar Thomas, Deputy Director-Policy of the Office of Indian Energy, represented DOE. Approximately twenty-seven people attended the meeting, including representatives of three native Alaskan villages, four Alaskan tribal corporations representing more than 40 tribal governments, as well as representatives from tribal associations and conferences. Interested state, federal, and non-profit representatives also were present. A full list of attendees is at the end of this summary. The meeting was facilitated by the Udall Foundation’s U.S. Institute for Environmental Conflict Resolution (U.S. Institute).  

  9. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  10. Albany, OR * Fairbanks, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    run at the Eastman Chemical Company's Kingsport, TN, site; at Tampa Electric Company's Polk Power Station in Lakeland, FL; and at the Wabash River Power Station in Terre Haute,...

  11. FISHERIES OCEANOGRAPHY Fish. Oceanogr. 10 (Suppl. 1), 113, 2001 2001 Blackwell Science Ltd. 1

    E-Print Network [OSTI]

    Scheel, David

    herring (Clupea pallasi) populations in Prince William Sound, Alaska ROBERT T. COONEY,1, * J. R. ALLEN,2 M Institute of Marine Science, University of Alaska Fairbanks, Fairbanks, AK 99775­7220, USA 2 Alaska Digital, USA 9 DepartmentofBiology,AlaskaPacificUniversity,Anchorage,AK 99520, USA 10 Alaska Department of Fish

  12. REAP Anchorage Solar Tour

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Alaska Center for Appropriate Technology has partnered with the American Solar Energy Society to share how solar energy is being used and developed in Alaska communities. Tours take place in...

  13. University of Alaska Fairbanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Henry Seel, Ramiro Parocua, Gerald Spencer, Ian Medina, Jennifer Ramos-Ortiz, Sasha Barnett, Alec Calder, David Chang, Eric Johnson, Sam Gray, Glenn Fuller, Khalid Bachkar....

  14. University of Alaska Fairbanks Utility Development Plan

    E-Print Network [OSTI]

    Hartman, Chris

    when equal to 0.71, 0.71, 0.67 STEAM SYSTEM Equipment MachineorGroup Units Notes Characteristics Boiler1 MinStandby Percent Minimum Standby Percent 0.2 Boiler1 DispatchCapThres Percent Dispatch Capacity Threshold 0.65 Boiler1 Capacity HPSteamPerHr Capacity Units Per Hr 45 Boiler1 Efficiency Mlbs

  15. University of Alaska Fairbanks: Business Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,Biofuels for Military and|Airand

  16. University of Alaska Fairbanks: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY 2009,Biofuels for Military and|AirandCompany Name:

  17. Fairbanks Geothermal Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14, 20111,FYDepartment of EnergySeptember

  18. University of Alaska Fairbanks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950 Timeline ofTurkeyProgramDepartment of

  19. Heller Ehrman White & McAuliffe LLP 701 Fifth Avenue, Suite 6100 Seattle, WA 98104-7098 www.hewm.com Seattle Portland Anchorage San Francisco Silicon Valley Los Angeles San Diego New York Washington D.C. Montgomery Co., MD Madison, WI

    E-Print Network [OSTI]

    .hewm.com Seattle Portland Anchorage San Francisco Silicon Valley Los Angeles San Diego New York Washington D's Purchases of Power from New Power Projects that are Being Developed by GNA's Affiliates to Replace a Portion of power from new generating resources that GNA affiliates are developing to help serve the portion of GNA

  20. Ocean Acidification Workshop in Anchorage

    Broader source: Energy.gov [DOE]

    This workshop aims to bring concerned and/or interested individuals together to hear the latest research, policy implications, community perspectives, and potential impacts along Alaska’s coast and...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projects and then conduct static and dynamic simulations using data from existing CO 2 floods. The simulations will be used to obtain a better understanding of CO 2 migration in...

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to a regional scale model to predict CO2 fate 10,000 years after injection into the reservoir. A rigorous geochemical reaction kinetics framework is being implemented, and a...

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heterogeneity related signatures embedded within the data. A wavelet- based signal analysis technique was applied to several synthetic cases in order to confirm the...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the geology of these reservoirs, as well as geologic and mechanical laboratory analysis of confining layers (the rock formations that prevent the migration of CO 2 ) to...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Completed the coupling of two-phase incompressible displacements with geomechanics in a model. * Continued development of the simulator that incorporates the...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gained from RCSP large-scale field projects- particularly from the Southeast Regional Carbon Sequestration Partnership (SECARB) to address knowledge gaps in the design and...

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that will significantly improve the effectiveness of geologic carbon storage, reduce the cost of implementation, and prepare for widespread commercial deployment between 2020 and...

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof-of-Feasibility of Using Wellbore Deformation as a Diagnostic Tool to Improve CO2 Sequestration Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Design Applications for Modeling and Assessing Carbon Dioxide Sequestration in Saline Aquifers Background The overall goal of the Department of Energy's (DOE) Carbon...

  11. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Test of a 1,000-Level 3C Fiber Optic Borehole Seismic Array Applied to Carbon Sequestration Background The overall goal of the Department of Energy's (DOE) Carbon Storage...

  12. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequestration of Carbon Dioxide Gas in Coal Seams Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and advance technologies that...

  13. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental and Modeling Studies of Mineral Carbonation as a Mechanism for Permanent Carbon Sequestration in MaficUltramafic Rocks Background The overall goal of the...

  14. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between formations through a pathway along the cementearth interface or within the well cement (Figure 1). This three-year project will explore the development of a low-cost...

  15. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routes responsible for the observed catalytic effects. Such efforts will allow for the optimization of plasma systems so that they may be incorporated into a broad range of...

  16. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In either case, these technologies are intended to enable fossil fuel utilization with ultra-low emissions. Transition from air-fired, fossil-fuel combustion to oxy-combustion...

  17. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complexity and Choice of Model Approaches for Practical Simulations of CO2 Injection, Migration, Leakage, and Long-term Fate Introduction The overall goal of the Department of...

  18. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  19. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prototype Development and Testing Advanced CO2 Leakage Mitigation Using Engineered Biomineralization Sealing Technologies Background The overall goal of the Department of Energy's...

  20. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation of Models Simulating Capillary and Dissolution Trapping During Injection and Post-Injection of CO2 in Heterogeneous Geological Formations Using Data from Intermediate...

  1. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of CO2 through heterogeneous storage formations. The distribution of transport properties may vary according to the geologic characteristics of each formation. Certain...

  2. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers are performing field studies at the CarbFix CO2 geologic storage site in Iceland (Figure 1). This site is home to a pilot study where CO2 is being injected into a...

  3. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Simulation Tools to Improve Predictions and Performance of Geologic Storage: Coupled Modeling of Fault Poromechanics, and High-Resolution Simulation of CO2 Migration and...

  4. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Reservoir Depositional Environments to Develop and Quantify Improvements in CO2 Storage Efficiency: A Reservoir Simulation Approach Background The overall goal of the...

  5. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Advanced Joint Inversion System for CO2 Storage Modeling with Large Date Sets for Characterization and Real- Time Monitoring - Enhancing Storage Performance and Reducing Failure...

  6. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactive Transport Models with Geomechanics to Mitigate Risks of CO2 Utilization and Storage Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO 2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  8. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification, Accounting (MVA) and Assessment, (3) CO2 Use and Re-Use, (4) Regional Carbon Sequestration Partnerships (RCSP), and (5) Focus Area for Sequestration Science....

  9. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simplified Predictive Models for CO2 Sequestration Performance Assessment Background The overall goal of the Department of Energy's (DOE) Carbon Storage Program is to develop and...

  10. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    without adversely affecting energy use or hindering economic growth. Geologic carbon storage involves the injection of CO2 into underground formations that have the ability to...

  11. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    , Alaska Pacific University, in Anchorage. Since the University of Alaska Fairbanks is the primary research Barnes, with expertise in waste treatment and management, and Dr. Robert Perkins with expertise in human in a laboratory scale bioreactor (2-liter volume) which was fed cyanide laden wastewater and produced treated

  12. TEAM CUMBERLAND Center Hill Project 1214 Church Street, Nashville

    Broader source: Energy.gov (indexed) [DOE]

    ... Jamie James 8. Hydrology Outlook & Water Control Manual Status ... Robert Dillingham 9. Cumberland...

  13. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al., 2013) |InformationThe2009) | Open Energy2008) ||

  14. UNIVERSITY OF ALASKA FAIRBANKS April 2012 Chancellor's Report

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    -voltage switches, and replace a section of the cam- pus main sewer line as part of a multiphase replacement project in Edinburgh, Scotland, lets users model oil reservoirs, wells and pipeline networks. In Progress Marketing and Communications, contracting with the Nerland Agency, has completed the research phase of a branding project

  15. National Strategy for the Arctic Tribal Consultation Session: Fairbanks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  16. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Fairbanks

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region.

  17. University of Alaska Fairbanks Summer Sessions Syllabus and Course Outline

    E-Print Network [OSTI]

    Sikes, Derek S.

    (a non-credit workshop) Course Title: Fly Fishing Weekend Pre-requisites: None Location: Room 344 of Alaskan fly fishing. Fly fishing is both a meditative and a scientific pursuit. From the end of a line effects on fish habitat, angling tactics and fly fishing techniques. Course Objective(s): Students

  18. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorage CONTACTS

  19. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Sugarland, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorage

  20. Ground Gravity Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,Solar Jump to:ResourcesGriggs County,Groom(Redirected1978)

  1. Dipole-Dipole Resistivity At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard Road SolarEngineering Ltd, 2003)

  2. Direct-Current Resistivity Survey At Blue Mountain Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP) JumpDillard RoadEnergyOpen

  3. Fairbanks Ranch, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative|| OpenOklahoma: Energy Resources

  4. Field Mapping At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello GeothermalFideris Inc formerly Lynntech Industries Jump2003)

  5. Self Potential At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,SageScheucoSedco Hills, California:SekisuiEnergy

  6. Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSilicium de ProvenceSolar Jump to:Illinois:2003) | Open Energy

  7. Static Temperature Survey At Blue Mountain Geothermal Area (Fairbank

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jumpand Maintenance Geothermal Project(Cull, 1981) Jump

  8. Reflection Survey At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/Colorado <RAPID/Geothermal/WaterEnergyRedfield CampusReedsville,ReferenceReflectiaLtd,

  9. Aerial Photography At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar Energy LLCAdemaInformationwebsite JumpLtd, 2003) |

  10. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank Engineering

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand DaltonSolar EnergyAerodyn Energiesysteme GmbH JumpOcean | Open

  11. City of Fairbank, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point,BlueDeaver,Dighton,Louisiana

  12. Fairbanks North Star Borough, Alaska: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to:Sheet Jump

  13. PAX Newsletter No 3.2.1, 2 March 2010 DOD AREA COST FACTORS (ACF)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    .82 MOBILE AREA Navy 0.83 REDSTONE ARSENAL Army 0.83 ALASKA 1.97 ANCHORAGE Army 1.79 FAIRBANKS Army 2.14 ADAK NAVAL STATION Navy 4.06 CG - JUNEAU Navy 2.38 CG - KETCHIKAN Navy 2.24 CG - KODIAK Navy 2.54 CG - PRINCE WILLIAM SOUND Navy 2.21 CLEAR AIR FORCE BASE Air Force 2.27 EARECKSON AIR FORCE BASE Air Force 3

  14. PAX Newsletter No 3.2.1, 5 March 2009 DOD AREA COST FACTORS (ACF)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Army 0.79 FORT RUCKER Army 0.75 MAXWELL AIR FORCE BASE Air Force 0.85 MOBILE AREA Navy 0.85 REDSTONE ARSENAL Army 0.86 ALASKA 2.01 ANCHORAGE Army 1.82 FAIRBANKS Army 2.20 ADAK NAVAL STATION Navy 4.07 CG - JUNEAU Navy 2.45 CG - KETCHIKAN Navy 2.42 CG - KODIAK Navy 2.62 CG - PRINCE WILLIAM SOUND Navy 2.22 CLEAR

  15. State Service ALABAMA 0.86

    E-Print Network [OSTI]

    US Army Corps of Engineers

    AREA Navy 0.86 REDSTONE ARSENAL Army 0.86 ALASKA 1.78 ANCHORAGE Army 1.67 FAIRBANKS Army 1.89 ADAK NAVAL STATION Navy 4.41 CG - JUNEAU Navy 2.53 CG - KETCHIKAN Navy 2.70 CG - KODIAK Navy 3.43 CG - PRINCE WILLIAM SOUND Navy 2.90 CLEAR AIR FORCE BASE Air Force 2.00 EARECKSON AIR FORCE BASE Air Force 4

  16. PAX Newsletter No 3.2.1, 12 February 2008 DOD AREA COST FACTORS (ACF)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    AREA Navy 0.87 REDSTONE ARSENAL Army 0.89 ALASKA 1.90 ANCHORAGE Army 1.67 FAIRBANKS Army 2.13 ADAK NAVAL STATION Navy 3.72 CG - JUNEAU Navy 2.42 CG - KETCHIKAN Navy 2.37 CG - KODIAK Navy 2.58 CG - PRINCE WILLIAM SOUND Navy 2.18 CLEAR AIR FORCE BASE Air Force 2.25 EARECKSON AIR FORCE BASE Air Force 3

  17. PAX Newsletter No 3.2.1, 30 April 2007 DOD AREA COST FACTORS (ACF)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    0.75 MAXWELL AIR FORCE BASE Air Force 0.82 MOBILE AREA Navy 0.84 REDSTONE ARSENAL Army 0.89 ALASKA 1.90 ANCHORAGE Army 1.67 FAIRBANKS Army 2.13 ADAK NAVAL STATION Navy 3.72 CG - JUNEAU Navy 2.41 CG - KETCHIKAN Navy 2.36 CG - KODIAK Navy 2.57 CG - PRINCE WILLIAM SOUND Navy 2.18 CLEAR AIR FORCE BASE Air Force 2

  18. 2300 VOLUME 17J O U R N A L O F C L I M A T E 2004 American Meteorological Society

    E-Print Network [OSTI]

    Bhatt, Uma

    Arctic Research Center, University of Alaska, Fairbanks, Fairbanks, Alaska JING ZHANG Geophysical Institute, University of Alaska, Fairbanks, Fairbanks, Alaska UMA S. BHATT International Arctic Research Center, University of Alaska, Fairbanks, Fairbanks, Alaska MOTO IKEDA Graduate School of Environmental

  19. Well Log Data At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources Jump to:Search Your Data Search PopularEnergy|

  20. Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes the inputs and results for each location. This Microsoft Excel spreadsheet is also included in the ZIP file. For version 1.4, only the IDF file is included.

  1. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury,RushS.KSPARQL Query FormSTARTech

  2. STATEMENT OF BRIAN D. FAIRBANK Nevada Geothermal Power Inc.'s Blue Mountain

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD Wind Farm Jump to:

  3. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank & Ross,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ AutomationTexas/WindEnergy Information 1968-1971) JumpAlum

  4. Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans,Oregon: EnergyInformation 81)Tanaka,Open

  5. Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flatsInformation 7thFlorin, California: EnergyAlum

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expanding the DOE's focus on Carbon Capture Utilization and Storage (CCUS) for advanced coal power systems and other applications, including the use of petroleum coke as a...

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    these complex engineered systems, including properties of geologic formations and reservoir fluids, wellbore characteristics, coupled fracture propagation dynamics and fluid...

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    properties of reservoirs and seals-Assessing the impact of chemical reactions and geomechanics on injectivity and storage permanence. * Fundamental processes and...

  9. The history of the anchorage at Serce Liman, Turkey 

    E-Print Network [OSTI]

    Slane, Dorothy Anne

    1982-01-01

    . Hazor Yadin, Yigael et al, 1960, Hazor II. An Account' cf the Second Season of Excavation, 956. Jerusalem. KWS Slane, Kathleen Warner, personal communica- tion. Hayes, John, 1972, Late Roman Potter A Catalo ue of Roman Fine Wares. London. Ostia I...

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of efficient and economical approaches to carbon capture. A typical coal gasification process produces H 2 , CO 2 , and steam at about 260 C and 25 bar after...

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resulting from injected CO2, and monitoring with geochemical fluid sampling gave good insight into the movement of CO2 within the reservoir. The final phase of the project...

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Future Energy Technologies Background Development of efficient future technologies for energy production with zero carbon emissions based on the use of fossil fuels or novel...

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in High Pressure, High Temperature (HPHT) Ultra-Deep Drilling Environments Background Oil and natural gas fuel America's economy-accounting for more than 60 percent of the...

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and minimal soot formation. The syngas reformate will be used as fuel for solid oxide fuel cells developed in the Solid State Energy Conversion Alliance (SECA) program....

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In either case, these technologies are intended to enable fossil fuel utilization with ultra-low emissions. Transition from air-fired, fossil-fuel combustion to oxy-combustion...

  16. National Strategy for the Arctic Region Stakeholder Outreach Meeting: Anchorage

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) is announcing the second round of tribal consultations and stakeholder outreach meetings on the National Strategy for the Arctic Region (NSAR), 10-Year Plan to accelerate renewable energy deployment in the Arctic Region. The purpose of this round is to give feedback on the elements of the draft plan.

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or moved into other parts of the capture portfolio for further development. Among the materials currently being examined are advanced polymers based on inorganic phosphazines and...

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are an important target for studies seeking to positively affect both the efficiency and environmental impact of U.S. energy production. The diversity of available sources for...

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of recoverable petroleum within a reservoir, as well as the modeling of the flow of these fluids within the porous media and in wellbore. These properties are also used to design...

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the FutureGen Industrial Alliance (Alliance) to build FutureGen 2.0-a clean coal repowering program and CO 2 pipeline and storage network. The FutureGen 2.0 Program is...

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Scale Field Test Demonstrating CO2 Sequestration in Arbuckle Saline Aquifer and by CO2-EOR at Wellington Field, Sumner County, Kansas Background The goal of the Department of...

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fossil Energy Plants estimated that the use of MEA to capture 90% of CO 2 in a pulverized coal power plant would impose a 30% energy penalty and ultimately result in an 85%...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantifiable and relevant para- meters, while leaving the sample available for further testing. Facilities Medical CT Scanner Core-scale Characterization and Fluid Flow The...

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mkarmis@vt.edu PARTNERS Marshall Miller & Associates Virginia Department of Mines, Minerals, and Energy Southern States Energy Board CONSOL Energy Geological Survey of Alabama...

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Analytical Simulation Tool for CO2 Storage Capacity Estimation and Uncertainty Quantification Background The goal of the Department of Energy's (DOE) Carbon Storage...

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimal Model Complexity in Geological Carbon Sequestration: A Response Surface Uncertainty Analysis Background The goal of the Department of Energy's (DOE) Carbon Storage Program...

  7. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecember 2008 | Open

  8. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecember 2008 |

  9. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecember 2008

  10. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecember 2008January

  11. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecember

  12. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecemberNovember 2008

  13. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground SourceDecemberNovember

  14. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales -

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground

  15. Anchorage Borough, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to:HempsteadtemporalAnalytical Modeling Jump

  16. Anchorage Municipal Light and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: EnergyYork Jump to:HempsteadtemporalAnalytical Modeling

  17. Alaska Native Village Energy Development Workshop: Anchorage | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| DepartmentAL/FALGeologic CO2 Storage | Department ofYuDepartmentAKDTof

  18. No Slide Title

    Broader source: Energy.gov (indexed) [DOE]

    Water Control Manual Update & H&H ReviewOutlook Robert Dillingham Water Management Nashville District 10 September 2014 BUILDING STRONG Water Control Manual Update Status...

  19. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    STRATEGIC ENERGY PLANNING 2015 Bethel, Dillingham and Juneau Presented by the National Renewable Energy Laboratory What is Strategic Energy Planning * Stakeholder Inclusivity *...

  20. 2015 Alaska Project Development and Finance Workshop Agenda and...

    Energy Savers [EERE]

    Presentations The DOE Office of Indian Energy hosted three back-to-back Alaska Renewable Energy Project Development and Finance Workshops in Bethel, Dillingham, and Juneau,...

  1. Deep Blue No.1-A Slimhole Geothermal Discovery At Blue Mountain...

    Open Energy Info (EERE)

    Area (Fairbank & Niggemann, 2004) Slim Holes At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank &...

  2. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  3. Quiet-Time Statistics of Electrostatic Turbulent Fluxes from the JET Tokamak and theW7-AS and TJ-II Stellarators

    E-Print Network [OSTI]

    van Milligen, Boudewijn

    ´n EURATOM-CIEMAT, 28040 Madrid, Spain 3 Department of Physics, University of Alaska-Fairbanks, Fairbanks

  4. Superfund record of decision (EPA region 10): Eielson Air Force Base, Fairbanks-North Star Borough, AK, September 30, 1996

    SciTech Connect (OSTI)

    1997-10-01

    The decision document presents the final remedial action selected for Eielson Air Force Base (AFB), Alaska. The sitewide investigation at Eielson AFB evaluated basewide contamination that is not confined or attributable to specific source areas identified and addressed in the FFA as well as cumulative risks to human health and the environment posed by contamination on a sitewide basis. Garrison Slough is the only one that poses an unacceptable risk to human health and the environment. Polychlorinated biphenyls (PCBs) were found in the fish tissue and sediments of Garrison Slough. Soils in a trench adjacent to Garrison Slough were contaminated with PCBs and appear to be the source of contamination to slough sediments via surface water runoff. The major components of the selected remedy include: Fishing restrictions in Garrison Slough; Fish control device near the downstream edge of Eielson AFB; Excavation of contaminated soils and sediments with concentrations greater than 10 mg/kg PCBs; Onsite disposal of material with PCB concentrations less than 50 mg/kg; Offsite disposal or treatment of materials with PCB concentrations greater than 50 mg/kg in accordance with the Toxic Substances Control Act (TSCA), 40 CFR part 761; and Environmental monitoring of soils, sediments, surface water, fish, and groundwater.

  5. National Strategy for the Arctic Tribal Consultation Session...

    Energy Savers [EERE]

    Tribal Consultation Session: Fairbanks National Strategy for the Arctic Tribal Consultation Session: Fairbanks February 19, 2015 9:30AM to 10:30AM AKST Fairbanks, Alaska BLM...

  6. Torrey Pine and Climate Change

    E-Print Network [OSTI]

    Berger, Wolfgang H

    2007-01-01

    San Diego, Ca. , 98pp. Peltier, W.R. , and R.G. Fairbanks,24,000 years according to Peltier and Fairbanks, 2006 (black

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J.U.S.Alaska

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J.U.S.AlaskaInfrastructure The

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan J.U.S.AlaskaInfrastructure

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlan

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space Geodesy,

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space Geodesy,GEOSEQ:

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space Geodesy,GEOSEQ:O

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining Space

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining SpaceNear-Surface

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining SpaceNear-SurfaceCarbon

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombining

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua Hull Project

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua Hull

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua HullWilliam W.

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua HullWilliam

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshua

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshuaTraining Center

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshuaTraining

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E RAlanCombiningJoshuaTrainingTraining

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T E

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore National Laboratory

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore National

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore NationalTechnology

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence Livermore

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorage CONTACTS Mary

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorageFutureGen 2.0

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorageFutureGen

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence LivermoreStorageFutureGenand

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrence

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. Alexandra Hakala

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. Alexandra

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. Alexandra

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J. AlexandraHybrid

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.Fractured Reservoir

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.Fractured

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS J.FracturedScience

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTS

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S Office

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S and

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T S

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC T

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FAC

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FACOFFICE OF

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D FACOFFICE

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &D

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &DCarbon Capture

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &DCarbon

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR &DCarbonNational

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSR

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluation of Foamed

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluation of

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluation

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluationStrategic

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T ELawrenceCONTACTSREvaluationStrategic

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T T

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon Capture Background

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon Capture

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon CaptureSensors and

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon CaptureSensors

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for Carbon

  9. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance in

  10. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance in

  11. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance inNETL-ORD

  12. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformance

  13. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for CarbonPerformanceOffshore

  14. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents for

  15. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 Geological Storage:

  16. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 Geological

  17. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 GeologicalCONTACTS Traci

  18. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 GeologicalCONTACTS Traci

  19. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2 GeologicalCONTACTS

  20. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2

  1. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC T S

  2. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC T

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC T

  4. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FAC

  5. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FACRegional

  6. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M FACRegional

  7. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A M

  8. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA * Sugar Land, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I N P A T TSorbents forCO 2P R O G R A MProgram

  9. Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground Source

  10. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - April

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open Energy

  11. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - August

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open Energy2008 |

  12. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - July

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open Energy2008 |2008

  13. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - June

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open Energy2008

  14. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open Energy20082008 |

  15. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open Energy20082008

  16. Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - May

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | Open

  17. 2010 Western Pacific Geophysics Search Results

    E-Print Network [OSTI]

    Ng, Chung-Sang

    2010 Western Pacific Geophysics Meeting Search Results Cite abstracts as Author(s) (2010), Title: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States AU: Ragunathan, S EM: srivatta@gi.alaska.edu AF: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United

  18. NSF EPSCoR Announces New Collaborative Funding Opportunity for UA Researchers FAIRBANKS, AK White papers are being solicited for a new research award program from the National

    E-Print Network [OSTI]

    eligible for EPSCoR funding. Research projects must be in one of the following areas: 1. The Water-Energy Infrastructure Improvement (RII) Track-2 program will award up to $1.5 million a year to research projects for Research George Kamberov (gkamberov@uaa.alaska.edu) UAF: Alaska EPSCoR Project Administrator Pips Veazey

  19. Snow Parameter Caused Uncertainty of Predicted Snow Metamorphism Processes Report on the Research Performed during the REU Program at the University of Alaska Fairbanks,

    E-Print Network [OSTI]

    Moelders, Nicole

    Snow Parameter Caused Uncertainty of Predicted Snow Metamorphism Processes Report on the Research (advisor) 2006 #12;2 Abstract Simulated snow metamorphism processes, snow fluxes and snow state variables limitations of the hydro-thermodynamic soil-vegetation scheme's snow model that are due to stochastic errors

  20. Albany, OR Anchorage, AK Morgantown, WV Pittsburgh, PA Sugar Land, TX Website: www.netl.doe.gov

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    --SEM-COM Company Background the challenge in developing a high-temperature seal material for solid oxide fuel cells efficiency, near-zero emissions and water usage, and carbon dioxide (co2 ) capture. Project Description se with dissimilar (non-matching) cte properties; (2) a glass-ceramic material with a cte as high as 18 ppm

  1. Miklankovitch Theory - Hits and Misses

    E-Print Network [OSTI]

    Berger, W H

    2012-01-01

    Leipzig, 1199pp. Peltier, W.R. , and R.G. Fairbanks, 2006.N.J. , A. Berger, and W. R. Peltier, 1990. An alternative1990, 1996; Shinn, 2001; Peltier and Fairbanks, 2006), with

  2. 2078 VOLUME 16J O U R N A L O F C L I M A T E 2003 American Meteorological Society

    E-Print Network [OSTI]

    Bhatt, Uma

    Institute, St. Petersburg, Russia #Institute of Marine Science, University of Alaska Fairbanks, Fairbanks. Introduction Arctic sea ice plays an important role in the global climate system. Export of Arctic ice to lower

  3. Renormalization of tracer turbulence leading to fractional differential equations R. Snchez,1,

    E-Print Network [OSTI]

    van Milligen, Boudewijn

    , Fairbanks, Alaska 99775-5920, USA 4 Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid

  4. 2011 CCE Fellows Rice undergraduate students conducted faculty-supervised research

    E-Print Network [OSTI]

    Richards-Kortum, Rebecca

    projects in collaboration with or for a community partner during the summer. Energy Conservation in the Houston Independent School District: Rowan Canter (Political Science and Energy and Water Sustainability) worked with Political Science Professor Dr. Bob Stein and Gavin Dillingham, Energy Manager at HISD

  5. The University of Alaska Fairbanks is accredited by the Northwest Commission on Colleges and Universities. UAF is an affirmative action/equal opportunity employer and educational institution. 10/2013

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    "Class Schedule Search." (You may also select "Register/ Add/Drop Classes" and then "Class Search.") In either case, be sure to choose the proper semester or term, and choose "UAF-Main Campus" from the list.uaf.edu/coursefinder/.) 3 Add your classes. In the "Add Classes Worksheet" on the "Register/Add/Drop Classes" page, enter

  6. Building Performance Simulation

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    Phoenix Memphis EI Paso San Francisco Baltimore Albuquerque Salem Chicago Boise Vancouver Burlington Helena Duluth Fairbanks HVAC source EUI (kWh/Phoenix Memphis EI Paso San Francisco Baltimore Albuquerque Salem Chicago Boise Vancouver Burlington Helena Duluth Fairbanks HVAC source EUI (kWh/Phoenix Memphis EI Paso San Francisco Baltimore Albuquerque Salem Chicago Boise Vancouver Burlington Helena Duluth Fairbanks Total building source EUI (kWh/

  7. Alaska Native Village Energy Development Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download a draft agenda for the Alaska Native Village Energy Development Workshop scheduled for October 21-23, 2013, in Fairbanks, Alaska.

  8. On the Rates of Sea Level Rise -- Clues From the Distant Past

    E-Print Network [OSTI]

    Berger, Wolfgang H

    2009-01-01

    o d a y . 1 9 , 4 - 1 0 . Peltier. W. R. , a nd R . G . F acorresponding depth in the Peltier and Fairbanks graph (4

  9. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    W. Fairbanks, "Advanced Gas Turbine Coatings for MinimallyResistance Coatings for Gas Turbine Airfoils, 11 Final1980. (11) R. C. Krutenat, Gas Turbine Materials Conference

  10. OFFICE OF FOSSIL ENERGY, DEPARTMENT OF ENERGY Alaska LNG Project...

    Broader source: Energy.gov (indexed) [DOE]

    or other transportation systems capable of delivering gas and other non-oil hydrocarbons to Fairbanks, Southcentral, and other communities within the State at the lowest...

  11. Vehicular Thermoelectrics: A New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Automotive Thermoelectric Generators and HVAC Solid-State...

  12. baepgac_ccdd | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Clean Coal Diesel Demonstration Project - Project Brief PDF-57KB (Withdrawn) Arthur D. Little, Inc., Fairbanks, AK PROGRAM PUBLICATIONS Final Reports Not available CCT Reports:...

  13. Geographically Differentiated Life-cycle Impact Assessment of Human Health

    E-Print Network [OSTI]

    Humbert, Sebastien

    2009-01-01

    Proctor D (2001). How much fly ash. Concrete Constructionash material: A novel fly ash-based cement. Environ Sci2007. TFHRC (2005). Coal fly ash. Turner Fairbank Highway

  14. DOE Final Report

    SciTech Connect (OSTI)

    Hinzman, Larry D.; Long, James; Newby, Greg B.

    2014-01-08

    This final report contains a summary of work accomplished in the establishment of a Climate Data Center at the International Arctic Research Center, University of Alaska Fairbanks.

  15. Reference Buildings by Climate Zone and Representative City:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    akfairbanksnew2004v1-47-2.zip More Documents & Publications Reference Buildings by Climate Zone and Representative City: 8 Fairbanks, Alaska Reference Buildings by Climate Zone...

  16. ADVANCED ELECTRON BEAM TECHNIQUES FOR METALLIC AND CERAMIC PROTECTIVE COATING SYSTEMS

    E-Print Network [OSTI]

    Boone, Donald H.

    2013-01-01

    W. Fairbanks, "Advanced Gas Turbine Coatings for MinimallyResistance Coatings for Gas Turbine Airfoils, 11 Finaland current production gas turbine and diesel engines in an

  17. Deep-Sea Research II 49 (2002) 60696093 Plankton distribution associated with frontal zones in the

    E-Print Network [OSTI]

    2002-01-01

    that wind-induced erosion of a weak thermocline in the inner part of the coastal front as well of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK 99775-7220, USA Abstract We studied the effect of four types of fronts, the coastal front, the middle front, the shelf partition front

  18. Potential DOC production from size-fractionated Arctic tundra soils Chunhao Xu a,b

    E-Print Network [OSTI]

    Guo, Laodong

    and available for biogeochemical cycling through coastal erosion (Rachold et al., 2000; Guo et al., 2004 of Alaska Fairbanks, Fairbanks, AK 99775, USA b International Arctic Research Center, University of Alaska Permafrost Alaska Soil organic carbon (SOC) accumulated inthe Arctic regions has beensubject to impacts

  19. doi:10.1152/physiolgenomics.00260.2005 25:346-353, 2006. First published Feb 7, 2006;Physiol. Genomics

    E-Print Network [OSTI]

    Barnes, Brian McRae

    . Barnes,1 and Thomas G. Marr1 1 Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska; and 2 Wistar Institute, Philadelphia, Pennsylvania Submitted 19 October 2005; accepted in final- bernation is an energy-saving strategy adopted by a wide range of mammals to survive highly seasonal

  20. 0-7803-8808-9/05/$20.00 2005 IEEE An Environment for Runtime Power Monitoring

    E-Print Network [OSTI]

    Milenkovi, Aleksandar

    University of Alaska Fairbanks Fairbanks, AK 99775-5915 d.raskovic@uaf.edu Key Words: Power Consumption for a long period of time under stringent resource and energy constraints. Energy conservation and power or use energy extracted from the environment, such as solar energy or vibrations. Runtime power

  1. Uncertainty analysis on the parameterization of processes at the biosphere and hydrosphere in atmospheric models scientific-technical

    E-Print Network [OSTI]

    Moelders, Nicole

    : Mihailo Jankov Undergraduate student: Anne Cherry Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775-7320, USA, email: molders@gi.alaska.edu Aim: The aim index, water potential at saturation, etc.) in predicted trace gas, energy and water fluxes for various

  2. Intercontinental divergence in the Populus-associated ectomycorrhizal fungus, Tricholoma populinum

    E-Print Network [OSTI]

    Taylor, Lee

    Biology, 902 N. Koyukuk Drive, 311 Irving 1 Building, University of Alaska Fairbanks, Fairbanks, AK 99775 · The ectomycorrhizal fungus Tricholoma populinum is host-specific with Populus species. T. populinum has wind of long-distance dispersal owing to their small size and the large number of propagules (Finlay, 2002

  3. Are Your Papers in Order? Developing and Enforcing MultiTenancy and Migration Policies in the Cloud

    E-Print Network [OSTI]

    Bishop, Matt

    in the Cloud Brian Hay University of Alaska Fairbanks brian.hay@alaska.edu Kara Nance University of AlaskaDaniel University of Alaska Fairbanks lamcdaniel@alaska.edu Abstract As cloud usage continues to increase, new issues with respect to managing and securing resources in the cloud are becoming more apparent. While

  4. Are Your Papers in Order? Developing and Enforcing Multi-Tenancy and Migration Policies in the Cloud

    E-Print Network [OSTI]

    Bishop, Matt

    in the Cloud Brian Hay University of Alaska Fairbanks brian.hay@alaska.edu Kara Nance University of AlaskaDaniel University of Alaska Fairbanks lamcdaniel@alaska.edu Abstract As cloud usage continues to increase, new issues with respect to managing and securing resources in the cloud are becoming more apparent. While

  5. 2 REGION 6 COASTAL CHARTS

    E-Print Network [OSTI]

    Russell, Lynn

    ,000 61310 Comoros Islands 300,000 61311 Plans in the Comoros and Mayotte (France) A. Anchorage at Moroni 10

  6. Studying Altocumulus Plus Virga with Ground-based Active and Passive Remote Sensors Zhien Wang1, Kenneth Sassen2, David Whiteman3, and Belay Demoz3 1University of Maryland, Baltimore County, Catonsville, MD 21228 2University of Alaska, Fairbanks, Alaska 99775 3NASA Goddard Space Flight Center, Greenbelt, MD 20771 E-mail: zhien@agnes.gsfc.nasa.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure andChallenge | Department,Aerosol

  7. Studying Altocumulus Plus Virga with Ground-based Active and Passive Remote Sensors Zhien Wang1, Kenneth Sassen2, David Whiteman3, and Belay Demoz3 1University of Maryland, Baltimore County, Catonsville, MD 21228 2University of Alaska, Fairbanks, Alaska 99775 3NASA Goddard Space Flight Center, Greenbelt, MD 20771 E-mail: zhien@agnes.gsfc.nasa.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effect PhotovoltaicsStructure andChallenge | Department,AerosolSeasonal and

  8. Final Project Report, Bristol Bay Native Corporation Wind and Hydroelectric Feasibility Study

    SciTech Connect (OSTI)

    Vaught, Douglas J.

    2007-03-31

    The Bristol Bay Native Corporation (BBNC) grant project focused on conducting nine wind resource studies in eight communities in the Bristol Bay region of southwest Alaska and was administered as a collaborative effort between BBNC, the Alaska Energy Authority, Alaska Village Electric Cooperative, Nushagak Electric Cooperative (NEC), Naknek Electric Association (NEA), and several individual village utilities in the region. BBNC’s technical contact and the project manager for this study was Douglas Vaught, P.E., of V3 Energy, LLC, in Eagle River, Alaska. The Bristol Bay region of Alaska is comprised of 29 communities ranging in size from the hub community of Dillingham with a population of approximately 3,000 people, to a few Native Alaska villages that have a few tens of residents. Communities chosen for inclusion in this project were Dillingham, Naknek, Togiak, New Stuyahok, Kokhanok, Perryville, Clark’s Point, and Koliganek. Selection criteria for conduction of wind resource assessments in these communities included population and commercial activity, utility interest, predicted Class 3 or better wind resource, absence of other sources of renewable energy, and geographical coverage of the region. Beginning with the first meteorological tower installation in October 2003, wind resource studies were completed at all sites with at least one year, and as much as two and a half years, of data. In general, the study results are very promising for wind power development in the region with Class 6 winds measured in Kokhanok; Class 4 winds in New Stuyahok, Clark’s Point, and Koliganek; Class 3 winds in Dillingham, Naknek, and Togiak; and Class 2 winds in Perryville. Measured annual average wind speeds and wind power densities at the 30 meter level varied from a high of 7.87 meters per second and 702 watts per square meter in Kokhanok (Class 6 winds), to a low of 4.60 meters per second and 185 watts per square meter in Perryville (Class 2 winds).

  9. Energy Management Programs in Texas Public School Districts 

    E-Print Network [OSTI]

    Dillingham, G.

    2013-01-01

    in Texas Public School Districts Gavin Dillingham, PhD HARC Jennifer DuPlessis, MBA, CEM, ATEM Arlington ISD School Energy Managers on Energy Management CATEE, December 16, 2013 ESL-KT-13-12-55 CATEE 2013: Clean Air Through Energy Efficiency Conference... Performance Maintains room temperature Better indoor air quality Ideal temperature for learning 68 degrees and 74 degrees Improved ventilation rates 15% increase in test scores ESL-KT-13-12-55 CATEE 2013: Clean Air Through Energy Efficiency Conference, San...

  10. UGIM 2012 Final Program Banatao Auditorium, Sutardja Dai Hall

    E-Print Network [OSTI]

    Lee, Seung-Wuk

    Fairbanks Micro and Nano R&D Fab Safety, Inert Gas Reduction A Lean Six-Sigma Approach Ronald Olson, Ronald Consumption Thomas Tribble, Craig Rochester, and Michael Beauvais, Harvard University A Lean and Sustainable

  11. ASTROBIOLOGY Volume 6, Number 3, 2006

    E-Print Network [OSTI]

    Cummer, Steven A.

    - tian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, North Carolina. 5Geophysical Institute, University of Alaska, Fairbanks, Alaska. 6SETI Institute to consider an alternative production mechanism when he s

  12. Name Address Place Zip Sector Product Stock Symbol Year founded...

    Open Energy Info (EERE)

    Fairbanks Alaska Marine and Hydrokinetic Solar Wind energy Solar PV Solar thermal Wind Hydro Small scale wind turbine up to kW and solar systems distributor http www absak com...

  13. DOE Office of Indian Energy Partners with ACEP to Study Wind...

    Office of Environmental Management (EM)

    with the University of Alaska Fairbanks ACEP (Alaska Center for Energy and Power) to support in-depth technical and economic analysis of wind-diesel energy systems in...

  14. Stress in the lithosphere from non-tectonic loads with implications for plate boundary processes

    E-Print Network [OSTI]

    Luttrell, Karen M

    2010-01-01

    Res. , 112 (B03402). Peltier, W.R. (2004), Global glacialearth.32.082503.144359. Peltier, W.R. , and R. Drummond (10.1029/2008GL034586. Peltier, W.R. , and R.G. Fairbanks (

  15. Ocean loading effects on stress at near shore plate boundary fault systems

    E-Print Network [OSTI]

    Sandwell, David T.

    , and since that time, eustatic sea level has risen 120 m [Peltier, 2004; Peltier and Fairbanks, 2006; Lambeck et al., 2002a; Peltier and Drummond, 2008], but these analyses are not repeated here. Instead

  16. JON M. ERLANDSON CURRICULUM VITA (ABBREVIATED) AND PUBLICATIONS

    E-Print Network [OSTI]

    California Archaeology Archaeology of Viking Age Iceland Archaeology of the Pacific Rim Museum Management of Alaska-Fairbanks. Courses taught: 1989 Pacific Rim Prehistory; Writing for Archaeologists; Fundamentals INTERESTS AND GEOGRAPHIC EXPERTISE Archaeology of Maritime Societies Pacific Coast Archaeology Historical

  17. STEM Middle School Mentoring Cafes Take it on the Road | Department...

    Office of Environmental Management (EM)

    to serve 20 annually to inspire young minds in their communities From Anchorage to New York, The Energy Department's popular Science, Technology, Engineering, and Mathematics...

  18. Energy Department Selects Five Alaska Villages in next round...

    Office of Environmental Management (EM)

    Organized Village of Kwethluk, located in the Yukon-Kuskokwim Delta on the Kwethluk River, Alaska, approximately 338 miles west of Anchorage and 20 miles east of Bethel....

  19. DOE Funds 21 Research, Development and Demonstration Projects...

    Energy Savers [EERE]

    (Anchorage, Alaska): to identify open fracture systems by their Fluid Inclusion Stratigraphy (FIS) chemical signature; differences based on the mineral assemblages and geology...

  20. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  1. ABACHRYSA EUREKA (BANKS) (NEUROPTERA: CHRYSOPIDAE): EGG, FIRST INSTAR LARVA AND BIOLOGICAL NOTES 

    E-Print Network [OSTI]

    Catanach, Therese A.

    2007-08-29

    , Indianapolis, Indiana, December 2006 “Prey items collected from barn owl pellets in Texas.” Poster Presentation, The Wildlife Society Annual Meeting, Anchorage, Alaska, September 2006 “Leafhoppers as an Indicator of Prairie Health” Entomological Society...

  2. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  3. Energy Department Announces Request for Information on the Remote...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  4. Alaska Energy in Action: Alaska Residents Tapping into Technical...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  5. Indian Energy Blog Archive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  6. CX-004529: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Abrasion Testing of Critical Components of Hydrokinetic DevicesCX(s) Applied: A9, B3.6Date: 11/29/2010Location(s): Anchorage, AlaskaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. 2014 Alaska Native Village Energy Development Workshop | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Resources for Alaska Native Villages April 29-30, 2014 Anchorage, Alaska Dena'ina Convention Center The Office of Indian Energy and Office of Energy Efficiency and Renewable Energy...

  8. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project...

    Broader source: Energy.gov (indexed) [DOE]

    Sandia National Laboratories study examines the feasibility of a hydrogen-fueled PEM fuel cell barge to provide electrical power to vessels at anchorage or at berth. The study...

  9. DOE to Host Alaska Native Village Energy Development Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and the Tribal Energy Program will present a workshop on Alaska Native village energy project development on April 29-30 at the Dena'ina Convention Center in Anchorage, Alaska....

  10. Marine Habitat Mapping Technology Workshop for Alaska April 2-4, 2007

    E-Print Network [OSTI]

    New Hampshire, University of

    Marine Habitat Mapping Technology Workshop for Alaska April 2-4, 2007 Anchorage, Alaska ABSTRACTS -- INVITED SPEAKERS --------------------------------------------------- Marine habitat mapping: What National Marine Fisheries Service Doug Woodby Chief Scientist for Commercial Fisheries, Alaska Department

  11. rsted Lecture at DTU, 1 November 2013 at 14:00 Mechanics on our planet: Ice sheets,

    E-Print Network [OSTI]

    , Hydraulic fractures James R. Rice (Harvard) Ice sheet collaborators: Thibaut Perol (Harvard), John D. Platt; significant energy in periods between 20 and 100 sec (much longer than for standard earthquakes of similar Ms, 2008) #12;(recorded by Jason Amundson, Univ. Alaska, Fairbanks, 2008) #12;A natural hydraulic fracture

  12. Invited paper Tide distribution and

    E-Print Network [OSTI]

    Kowalik, Zygmunt

    plants Zygmunt Kowalik Institute of Marine Science, University of Alaska, Fairbanks, AK, 99775, USA; e tidal shores has been used for centuries to run small tidal mills. Generating electricity by tapping currents to bring electricity to remote locations. Since the generation of such electricity is concerned

  13. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  14. MHD Simulations of the Parker Model of Solar Coronal Heating

    E-Print Network [OSTI]

    Ng, Chung-Sang

    MHD Simulations of the Parker Model of Solar Coronal Heating Chung-Sang Ng Geophysical Institute, University of Alaska Fairbanks Collaborators: Amitava Bhattacharjee, Liwei Lin, Tim Dennis Funding.alaska.edu/~chungsangng/ · 2D/3D BGK modes (with/without magnetic field) · MHD turbulence (theory/simulations/solar wind

  15. Next-Generation Ecosystem Experiments NGEE Arctic Quarterly Report

    E-Print Network [OSTI]

    Fairbanks performed hydrologic analyses using the physically-based model WaSiM-ETH that was forced by data, and processes such as evaporation. Measurement of chemical constituents that vary in concentration according transformations such as mineralization of organic matter to ammonia, nitrate, CO2, and methane. To determ

  16. DEEP SEA RESEARCH PART II Circulation in the Eastern Bering Sea: Inferences

    E-Print Network [OSTI]

    Kurapov, Alexander

    of the North Pacific and Gulf of Alaska coastal currents connect with the Bering Sea basin and shelf through of Alaska, Fairbanks, Alaska, 99775, USA December 18, 2013, 1:54pm DRAFT #12;X - 2 DURSKI ET AL.: CIRC. EAST in determining the pattern of erosion of the water mass as the shelf warms and mixes. On the Bering Sea Shelf

  17. DEEP SEA RESEARCH PART II Circulation in the Eastern Bering Sea: Inferences

    E-Print Network [OSTI]

    Kurapov, Alexander

    of Alaska coastal currents connect with the Bering Sea basin and shelf through narrow island passes35 of Alaska, Fairbanks, Alaska, 99775, USA 4 National Research Tomsk Polytechnic University, Tomsk, Russia of erosion of the water mass as the shelf warms and mixes. On the Bering Sea shelf, tidal motions

  18. Aquatic eutrophication promotes pathogenic infection in amphibians

    E-Print Network [OSTI]

    Johnson, Pieter

    53706-1492; ¶Southern California Coastal Water Research Project, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626; Institute of Arctic Biology, University of Alaska, P.O. Box 751403, Fairbanks, AK 99775 of nitrogen (N) and/or phosphorus (P) associated with agriculture, livestock, erosion, sewage waste

  19. Deep-Sea Research II 49 (2002) 58895909 Characteristics and variability of the inner front of the

    E-Print Network [OSTI]

    2002-01-01

    and Ocean Sciences, University of Alaska, P.O. Box 757220, Fairbanks, AK 99775-7220, USA Abstract The inner of nutrients in the lower layer on the middle shelf and the occurrence of sufficient wind and tidal energy to as structural or structure fronts (e.g., Schumacher et al., 1979; Coachman, 1986). Alternatively

  20. American Statistical Association (ASA) Section on Statistics and the Environment (ENVR)

    E-Print Network [OSTI]

    21-23, 2004, Palmer House, Chicago, Illinois, is an opportunity to learn all about Computational of environmental data. Application areas include ecology, air quality, water resources, environmental health (U of Chicago), and Devin Johnson (U of Alaska Fairbanks) will discuss ecological applications. Mark

  1. Per Board of Regents Meeting of the Full Board

    E-Print Network [OSTI]

    Hartman, Chris

    Professional Development Early Childhood Education, Human Services, and General Academic Programs Early Childhood Education Child Development & Family Studies Early Childhood Lab School Developmental Education, Fairbanks, AK #12;UAF CTC Bunnell House Early Childhood Lab School, UAF Campus UAF CTC Cosmetology Program

  2. MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler

    E-Print Network [OSTI]

    Stuefer, Martin

    MM5 Contrail Forecasting in Alaska Martin Stuefer, Xiande Meng and Gerd Wendler Geophysical Institute, University of Alaska, Fairbanks 1. Abstract Fifth-generation mesoscale model (MM5) is being used air. Algorithm input data are MM5 forecasted temperature and humidity values at defined pressure

  3. Eddies as Offshore Foraging Grounds for Melon-headed Whales (Peponocephala electra)

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    Eddies as Offshore Foraging Grounds for Melon- headed Whales (Peponocephala electra) Phoebe, NOAA 5School of Fisheries and Ocean Sciences, University of Alaska Fairbanks and Alaska SeaLife Center eddies occur frequently in the lee of the Hawaiian Islands ­ Formed and sustained by easterly trade winds

  4. Insights from a Geophysical and Geomorphological Mars Analog Field Study at the Great Kobuk Sand Dunes, Northwestern Alaska

    E-Print Network [OSTI]

    Stillman, David E.

    Kobuk Sand Dunes, Northwestern Alaska Mcginnis, R. N.1 ; C. L. Dinwiddie1 ; D. Stillman2 ; K. Bjella3 of Engineers, Fairbanks, AK, United States. Terrestrial dune systems are used as natural analogs to improve understanding of the processes by which planetary dunes form and evolve. Selected terrestrial analogs are often

  5. International Journal of Sediment Research, Vol. 30, No. 1, 2015, pp. 112 -1 -International Journal of Sediment Research 30 (2015) 1-12

    E-Print Network [OSTI]

    Julien, Pierre Y.

    2015-01-01

    International Journal of Sediment Research, Vol. 30, No. 1, 2015, pp. 1­12 - 1 - International Journal of Sediment Research 30 (2015) 1-12 Sediment load calculations from point measurements in sand-bed rivers Seema C. SHAH-FAIRBANK1 and Pierre Y. JULIEN2 Abstract Point velocity and suspended sediment

  6. Journal of Fusion Energy, Vol. 20, No. 3, September 2001 ( 2002) Report of the FESAC Panel on a Burning Plasma Program

    E-Print Network [OSTI]

    Najmabadi, Farrokh

    Lawrence Livermore National Laboratory. 16 Lawrence Berkeley National Laboratory. 4 University of Texas at Austin. 11 University of Washington. 17 Oak Ridge National Laboratory. 5 University of Rochester. 12 of Technology. 13 Naval Research Laboratory. 19 University of Alaska at Fairbanks. 7 Fusion Power Associates. 14

  7. Intermittency of plasma edge fluctuation data: Multifractal analysis B. A. Carreras and V. E. Lynch

    E-Print Network [OSTI]

    van Milligen, Boudewijn

    , University of Alaska, Fairbanks, Alaska R. Balbi´n Asociacio´n Euratom-Ciemat, 28040 Madrid, Spain J. Bleuel Asociacio´n Euratom-Ciemat, 28040 Madrid, Spain M. Endler Max-Planck-Institut fu¨r Plasmaphysik, Euratom Association, 85740 Garching, Germany B. van Milligen and E. Sa´nchez Asociacio´n Euratom-Ciemat, 28040 Madrid

  8. Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska's Boreal Forest

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Fire Severity Filters Regeneration Traits to Shape Community Assembly in Alaska's Boreal Forest pre-fire forest type­ black spruce forests of Interior Alaska. Patterns of community composition Forest Service, Pacific Northwest Research Station, Fairbanks, Alaska, United States of America, 2

  9. TRANSPORT IN EDA H-MODE AND ITS RELATION TO FLUCTUATIONS AND THE MICRO-STABILITY OF THE

    E-Print Network [OSTI]

    Greenwald, Martin

    MIT Plasma Science & Fusion Center W. DORLAND University of Maryland Presented at TTF Fairbanks - May COMPONENT · Recently observed with a fast scanning magnetic probe (Not seen with standard set of fast energy transport? · How does it survive the shear layer? · Is it seen on other machines? - Why doesn

  10. JON M. ERLANDSON CURRICULUM VITA (ABBREVIATED) AND PUBLICATIONS

    E-Print Network [OSTI]

    Archaeology of Viking Age Iceland Archaeology of the Pacific Rim Museum Management and Administration Dating: Department of Anthropology, University of Alaska-Fairbanks. 1989 Courses taught: Pacific Rim Prehistory AND GEOGRAPHIC EXPERTISE Archaeology of Maritime Societies Pacific Coast Archaeology Historical Ecology in Marine

  11. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect (OSTI)

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  12. BiochemicalSystematicsand Ecology,Vol.21,No. 5,pp.535-542,1993. 0305-1978/93$6.00+0.00 Printedin GreatBritain. 1993PergamonPressLtd.

    E-Print Network [OSTI]

    Orians, Colin

    Glycosides in Salix sericea" Clonal Variation and Sex-based Differences COLIN M. NICHOLS-ORIANS,*t ROBERTS:Department of Chemistry, University of Alaska, Fairbanks, AK 99775, U.S.A. Key Word Index--Salix sericea; Salicaceae glycosides, salicortin and 2'-cinnamoyl salicortin, varied among clones of Salix sericea and whether

  13. Cruise No: MF06-05 3/21/2006 FOCI No: 2MF06

    E-Print Network [OSTI]

    , Temperature, and Depth (CTD) profiler casts and deploy ARGOS Satellite Tracked Drifter Buoys at designated) 7600 Sand Point Way N.E., Seattle, Washington 98115-6439 NOAA ­ Alaska Fisheries Science Center (AFSC) 7600 Sand Point Way N.E., Seattle, Washington 98115-0070 University of Alaska ­ Fairbanks (UAF

  14. CRUISE REPORT Cruise Number: DY-08-06

    E-Print Network [OSTI]

    (PMEL) 7600 Sand Point Way N.E., Seattle, WA. 98115 NOAA-Alaska Fisheries Science Center (AFSC) 7600 Sand Point Way N.E., Seattle, WA. 98115 University of Alaska Fairbanks (UAF) Institute of Marine CTD casts collecting chlorophyll and nutrient samples. To collect plankton samples using bongo and Cal

  15. HLY-04-04, SBI Mooring Cruise. 2 Sep 1 Oct, 2004 CTD and Water Sampling Summary

    E-Print Network [OSTI]

    Pickart, Robert S.

    organic carbon, particulate organic carbon, total carbon dioxide, alkalinity, and radium samples were of Oceanography (SIO), chlorophyll measurements were taken by the University of Alaska, Fairbanks, and carbon to avoid the extremely large surface gradients and the change in water properties due to ship's presence

  16. SUMMARY OF NIST PRECISION MEASUREMENT GRANTS Recipient Title of Grant Dates

    E-Print Network [OSTI]

    masers 1973-1975 Brij M. Khorana University of Notre Dame Quantum properties of liquid helium Hans A using new fast excited one-electron ion pro- duction and detection techniques 1975-1977 Henry A. Hill. Fairbank, Jr. and George J. Collins Colorado State University Precision Doppler-free spectroscopy on helium

  17. Computational Arctic Research at ARSC/UAF

    E-Print Network [OSTI]

    Newby, Gregory B.

    Supercomputing Center ­ Ph.D. Syracuse 1993, "Information Transfer" ­ Research interests in data Climate Change Impacts on Water Resources across Alaska and the Hawaiian Islands" · PI: Buck Sharpton Supercomputing Center University of Alaska Fairbanks U.S. Arctic Research Commission Meeting October 7, 2010 #12

  18. Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new numerical scheme

    E-Print Network [OSTI]

    Moelders, Nicole

    ii Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme and implementation of a new.S. Fairbanks, Alaska August 2005 #12;iii Abstract The Hydro-Thermodynamic Soil-Vegetation Scheme (HTSVS........................................................................................................................... 24 Evaluation of snow depth and soil temperatures predicted by the Hydro- Thermodynamic Soil

  19. Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS)

    E-Print Network [OSTI]

    Moelders, Nicole

    Arctic Region Evaluation of the Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS) Pamela Spier, University of Alaska, Fairbanks, AK Abstract This paper presents an evaluation of the Hydro. Introduction and Motivation The Hydro-Thermodynamic Soil Vegetation Scheme (HTSVS, Kramm et al. 1996, Mölders

  20. One 1 GHz 16x16 HyperTransport link per supported processor with 8GB/second bandwidth

    E-Print Network [OSTI]

    Newby, Gregory B.

    , dewpoint, pressure, winds Vertical soundings from raobs and satellite ­ temperature, dewpoint, pressure, winds #12;South Fairbanks, July 6, 2004. Air quality particulate level at approximately 10 micrograms Service Fire Science Lab in Missoula. #12;#12;#12;A weak smoke concentration due to North-Easterly winds

  1. Net primary production of terrestrial ecosystems in China and its equilibrium responses to changes in climate and

    E-Print Network [OSTI]

    in climate and atmospheric CO2 concentration X. Xiao1,2 , J.M. Melillo1 , D.W. Kicklighter1 , Y. Pan1 , A of Technology, Cambridge, MA 02139 3 Institute of Arctic Biology, University of Alaska, Fairbanks, AK 99775) in China for contemporary climate and NPP responses to elevated CO2 and climate changes projected by three

  2. This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and

    E-Print Network [OSTI]

    concentrations in harlequin ducks (Histrionicus histrionicus) Peter B. Nilsson a,b,1 , Tuula E. Hollmén a,b,, Shannon Atkinson a,b , Kendall L. Mashburn a,b , Pamela A. Tuomi a , Daniel Esler c , Daniel M. Mulcahy d , Daniel J. Rizzolo e a Alaska SeaLife Center, Seward, AK, 99664, USA b University of Alaska Fairbanks

  3. Assssment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States

    SciTech Connect (OSTI)

    Jacobson, Paul T.; Ravens, Thomas M.; Cunningham, Keith W.; Scott, George

    2012-12-14

    The U.S. Department of Energy (DOE) funded the Electric Power Research Institute and its collaborative partners, University of Alaska ? Anchorage, University of Alaska ? Fairbanks, and the National Renewable Energy Laboratory, to provide an assessment of the riverine hydrokinetic resource in the continental United States. The assessment benefited from input obtained during two workshops attended by individuals with relevant expertise and from a National Research Council panel commissioned by DOE to provide guidance to this and other concurrent, DOE-funded assessments of water based renewable energy. These sources of expertise provided valuable advice regarding data sources and assessment methodology. The assessment of the hydrokinetic resource in the 48 contiguous states is derived from spatially-explicit data contained in NHDPlus ?a GIS-based database containing river segment-specific information on discharge characteristics and channel slope. 71,398 river segments with mean annual flow greater than 1,000 cubic feet per second (cfs) mean discharge were included in the assessment. Segments with discharge less than 1,000 cfs were dropped from the assessment, as were river segments with hydroelectric dams. The results for the theoretical and technical resource in the 48 contiguous states were found to be relatively insensitive to the cutoff chosen. Raising the cutoff to 1,500 cfs had no effect on estimate of the technically recoverable resource, and the theoretical resource was reduced by 5.3%. The segment-specific theoretical resource was estimated from these data using the standard hydrological engineering equation that relates theoretical hydraulic power (Pth, Watts) to discharge (Q, m3 s-1) and hydraulic head or change in elevation (??, m) over the length of the segment, where ? is the specific weight of water (9800 N m-3): ??? = ? ? ?? For Alaska, which is not encompassed by NPDPlus, hydraulic head and discharge data were manually obtained from Idaho National Laboratory?s Virtual Hydropower Prospector, Google Earth, and U.S. Geological Survey gages. Data were manually obtained for the eleven largest rivers with average flow rates greater than 10,000 cfs and the resulting estimate of the theoretical resource was expanded to include rivers with discharge between 1,000 cfs and 10,000 cfs based upon the contribution of rivers in the latter flow class to the total estimate in the contiguous 48 states. Segment-specific theoretical resource was aggregated by major hydrologic region in the contiguous, lower 48 states and totaled 1,146 TWh/yr. The aggregate estimate of the Alaska theoretical resource is 235 TWh/yr, yielding a total theoretical resource estimate of 1,381 TWh/yr for the continental US. The technically recoverable resource in the contiguous 48 states was estimated by applying a recovery factor to the segment-specific theoretical resource estimates. The recovery factor scales the theoretical resource for a given segment to take into account assumptions such as minimum required water velocity and depth during low flow conditions, maximum device packing density, device efficiency, and flow statistics (e.g., the 5 percentile flow relative to the average flow rate). The recovery factor also takes account of ?back effects? ? feedback effects of turbine presence on hydraulic head and velocity. The recovery factor was determined over a range of flow rates and slopes using the hydraulic model, HEC-RAS. In the hydraulic modeling, presence of turbines was accounted for by adjusting the Manning coefficient. This analysis, which included 32 scenarios, led to an empirical function relating recovery factor to slope and discharge. Sixty-nine percent of NHDPlus segments included in the theoretical resource estimate for the contiguous 48 states had an estimated recovery factor of zero. For Alaska, data on river slope was not readily available; hence, the recovery factor was estimated based on the flow rate alone. Segment-specific estimates of the theoretical resource were multiplied by the corresponding recovery factor to estimate

  4. Novel Chemically-Bonded Phosphate Ceramic Borehole Sealants (Ceramicretes) for Arctic Environments

    SciTech Connect (OSTI)

    Shirish Patil; Godwin A. Chukwu; Gang Chen; Santanu Khataniar

    2008-12-31

    Novel chemically bonded phosphate ceramic borehole sealant, i.e. Ceramicrete, has many advantages over conventionally used permafrost cement at Alaska North Slope (ANS). However, in normal field practices when Ceramicrete is mixed with water in blenders, it has a chance of being contaminated with leftover Portland cement. In order to identify the effect of Portland cement contamination, recent tests have been conducted at BJ services in Tomball, TX as well as at the University of Alaska Fairbanks with Ceramicrete formulations proposed by the Argonne National Laboratory. The tests conducted at BJ Services with proposed Ceramicrete formulations and Portland cement contamination have shown significant drawbacks which has caused these formulations to be rejected. However, the newly developed Ceramicrete formulation at the University of Alaska Fairbanks has shown positive results with Portland cement contamination as well as without Portland cement contamination for its effective use in oil well cementing operations at ANS.

  5. Combat Disclosure in Intimate Relationships: A Mediator between Partner Support and Posttraumatic Stress 

    E-Print Network [OSTI]

    Balderrama-Durbin, Christina Marie

    2015-06-01

    expressed in this dissertation are those of the author and do not necessarily reflect the official policy or position of the Department of the Air Force, Department of Defense, or the U.S. Government. v TABLE OF CONTENTS Page... to a combat theater, many others do not. Exposure to combat places a service member at risk for the development of posttraumatic stress disorder (PTSD) (Buydens-Branchey, Noumair, & Branchey, 1990; King, King, Foy, Keane, & Fairbank, 1999...

  6. 241-U-701 new compressor building and instrument air piping analyses

    SciTech Connect (OSTI)

    Huang, F.H.

    1994-08-25

    Building anchorage analysis is performed to qualify the design of the new compressor building foundation given in the ECN ``241-U-701 New Compressor Building.`` Recommendations for some changes in the ECN are made accordingly. Calculations show that the 6-in.-slab is capable of supporting the pipe supports, and that the building foundation, air compressor and dryer anchorage, and electric rack are adequate structurally. Analysis also shows that the instrument air piping and pipe supports for the compressed air system meet the applicable code requirements and are acceptable. The building is for the U-Farm instrument air systems.

  7. BOSTON HARBOR, MASSACHUSETTS DEEP DRAFT NAVIGATION IMPROVEMENT PROJECT

    E-Print Network [OSTI]

    US Army Corps of Engineers

    entrance channels connecting Massachusetts Bay to the harbor, deep water anchorages in the harbor, a mainBOSTON HARBOR, MASSACHUSETTS DEEP DRAFT NAVIGATION IMPROVEMENT PROJECT Civil Works Review Board Re-Presentation - 26 April 2013 ABSTRACT: The Boston Harbor Deep Draft Navigation Improvement Project consists

  8. Dear APUNSC Member, This sheet is to help get you started in ski waxing. As you become more proficient and

    E-Print Network [OSTI]

    Scheel, David

    Dear APUNSC Member, This sheet is to help get you started in ski waxing. As you become more will need. This sheet includes the Swix waxes and tools that we use the most in Anchorage and Alaska. My in any condition. By using this sheet and attending our program wax clinics waxing should become a more

  9. ENVIRONMENTAL ASSESSMENT/REGULATORY IMPACT REVIEW/ INITIAL REGULATORY FLEXIBILITY ANALYSIS

    E-Print Network [OSTI]

    by the Staffs of the North Pacific Fishery Management Council, Alaska Fisheries Science Center and National Marine Fisheries Service Anchorage, Alaska December 31, 1991 #12;TABLE OF CONTENTS 1.0INTRODUCTION. . . . . . . . . 22 2.6 BS/AI and GOA Fishery Definitions . . . . . . . . . . . . . . . 23 2.7 Directed Fishing

  10. CX-003341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy ProjectCX(s) Applied: B3.3Date: 08/10/2010Location(s): Anchorage, AlaskaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. R E S E A R C H A R T I C L E Passive Recovery of Vegetation after Herbivore

    E-Print Network [OSTI]

    Zavaleta, Erika

    plant cover, high exposure of bare ground, and erosion. After 28 years of passive recovery, transect similar to the over- story of coastal scrubland but with an understory dominated by non-native annualPresent address: Department of Biological Sciences, University of Alaska, 3101 Science Circle, Anchorage

  12. MARINE ECOLOGY PROGRESS SERIES Mar Ecol Prog Ser

    E-Print Network [OSTI]

    (Robert- son & Goudie 1999), where they feed on benthic inver- tebrates (Goudie & Ankney 19862 , Kimberly A. Trust3 , Brenda E. Ballachey1 , Thomas A. Dean4 , Stephen C. Jewett5 , Charles E. O G62, Anchorage, Alaska 99501, USA 4 Coastal Resources Associates, Inc., 1185 Park Center Drive

  13. Creekside Park Elementary Creekside Park is a

    E-Print Network [OSTI]

    Pantaleone, Jim

    and language. What are you learning and how do you know? We have focused on collaborative, review of student. Located in East Anchorage, our school is committed to our vision of providing every student with a challenging and motivating education in the most appropriate learning environment to enable him/her to reach

  14. FOURTH A VENUE LANDSLIDE DURING 1964 ALASKAN EARTHQUAKE By Timothy D. Stark! and Ivan A. Contreras2

    E-Print Network [OSTI]

    FOURTH A VENUE LANDSLIDE DURING 1964 ALASKAN EARTHQUAKE By Timothy D. Stark! and Ivan A. Contreras2 ABSTRACT: This paper presents a reevaluation of the Fourth Avenue landslide in Anchorage that occurred the Saguenay earthquake of 1988. The most notable landslides are the Fourth Avenue, L-Street, Government Hill

  15. The influence of wind and ice on spring walrus hunting success on St. Lawrence Island, Alaska

    E-Print Network [OSTI]

    Zhang, Jinlun

    indicate that other factors (e.g. fuel prices, socioeconomic conditions) collectively cause a greater share Service, Marine Mammals Management, 1011 East Tudor Road, Anchorage, AK 99508, USA e Applied Physics, and nearly three-quarters of the weight of the marine mammal harvest (Fall et al., 2013). Mon- itoring

  16. Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering

    E-Print Network [OSTI]

    Baker, Jack W.

    21-25, 2014 Anchorage, Alaska10NCEE GROUND MOTION MODELING FOR RISK AND RELIABILITY ASSESSMENT OF SAN on the ground motion intensity simulation aspect of the research, which utilizes current rupture forecasts and ground motion prediction equations in conjunction with a ground motion spatial correlation model. Recent

  17. A New Approach To Wind Energy: Opportunities And Challenges

    E-Print Network [OSTI]

    Dabiri, John O.

    1 A New Approach To Wind Energy: Opportunities And Challenges John O. Dabiria , Julia R. Greera, Anchorage, AK 99508, USA Abstract. Despite common characterizations of modern wind energy technology as mature, there remains a persistent disconnect between the vast global wind energy resource--which is 20

  18. TES carbon monoxide validation with DACOM aircraft measurements during INTEX-B 2006

    E-Print Network [OSTI]

    , consistent with known features in the tracer fields due to transpacific transport of polluted air parcels in the Houston area. The comparisons of TES and DACOM CO profiles near Hawaii and Anchorage in April to May 2006, and Intercontinental Chemical Transport Experiment (INTEX)-B in March to May 2006 near Houston, TX, Hawaii, HI

  19. MARINE MAMMAL SCIENCE, 22(1): 201205 ( January 2006) C 2006 by the Society for Marine Mammalogy

    E-Print Network [OSTI]

    (old; 10 foreclaws), three subadults (1­2 yr old; 23 foreclaws), and five adults (49 foreclaws National Marine Fisheries Service, 222 W. 7th Avenue, #43, Anchorage, Alaska 99513, U.S.A. An adult male. The killer whale (aged by a tooth section) was a minimum of 40 yr old.3 The whale was moderately decomposed

  20. Cultural contributions to the island of St. John, United States Virgin Islands: underwater historical archaeology at Cruz Bay 

    E-Print Network [OSTI]

    Marquez, Carmen M

    1995-01-01

    on the eastern side of St. John. Coral Bay was the principal port of St. John until 1733, when a major slave insurrection occurred, and the population moved west toward Cruz Bay, a primary anchorage for interisland and transoceanic vessels during the 18th and 19...

  1. DeSigneDByp3 DeSignStuDio51675

    E-Print Network [OSTI]

    New South Wales, University of

    people within their families and communities from early adolescence to early adulthood, Social policy and Community Medicine (unSW) and Family planning Australia Innovation for anchorage wedge manufacturing-intensive universities. Founded with a mandate to engage and collaborate with Industry, UNSW has a proud record

  2. New York Harbor Chart 12334 New York Harbor Upper Bay and Narrows

    E-Print Network [OSTI]

    New York Harbor Chart 12334 ­ New York Harbor Upper Bay and Narrows Anchorage Chart Booklet, the nation's chartmaker #12;United States ­ East Coast NEW YORK ­ NEW JERSEY NEW YORK HARBOR UPPER BAY.noaa.gov/WarOf1812. #12;Because of its importance as a hub of international commerce, New York City served several

  3. Un error en los calculos matematicos destroza el acelerador de particulas del CERN

    E-Print Network [OSTI]

    Cernuda, Olalla

    2007-01-01

    The most famous particle accelerator in the world, who is at CERN, has suffered a catastrophic damage after a great explosion took place in its depths. This explosion has an absolutely scientific explanation: a mathematical mistake in the design of the anchorages of great magnets. (1 page)

  4. Effect of the tyrosine kinase inhibitor lapatinib on CUB-domain containing protein (CDCP1)-mediated breast cancer cell survival and migration

    SciTech Connect (OSTI)

    Seidel, Jeanette; Kunc, Klaudia; Possinger, Kurt; Jehn, Christian; Lueftner, Diana

    2011-10-14

    Highlights: {yields} CDCP1 downregulation reduces anchorage free survival of breast cancer cells. {yields} Anoikis of CDCP1-positive breast cancer cells is increased after CDCP1 downregulation. {yields} CDCP1 knockdown decreases migration and extensively reduces invasiveness in vitro. {yields} Proliferation rate does not correlate with CDCP1 expression. {yields} Lapatinib does not influence tyrosine kinases of CDCP1 signal transduction. -- Abstract: The surface receptor CUB domain-containing protein 1 (CDCP1) is highly expressed in several adenocarcinomas and speculated to participate in anchorage-independent cell survival and cell motility. Tyrosine kinase phosphorylation seems to be crucial for intracellular signaling of CDCP1. Lapatinib, a tyrosine kinase inhibitor (TKI), is approved for treatment of HER-2/neu overexpressing metastatic breast cancer and functions by preventing autophosphorylation following HER-2/neu receptor activation. This study aimed to investigate the effect of CDCP1 expression on anchorage-independent growth and cell motility of breast cancer cells. Moreover, studies were performed to examine if lapatinib provided any beneficial effect on HER-2/neu{sup (+)/-}/CDCP1{sup +} breast cancer cell lines. In our studies, we affirmed that CDCP1 prevents cells from undergoing apoptosis when cultured in the absence of cell-substratum anchorage and that migratory and invasive properties of these cells were decreased when CDCP1 was down-regulated. However, only HER-2/neu{sup +}, but not HER-2/neu{sup (+)/-} cells showed decreased proliferation and invasion and an enhanced level of apoptosis towards loss of anchorage when treated with lapatinib. Therefore, we conclude that CDCP1 might be involved in regulating adhesion and motility of breast cancer cells but that lapatinib has no effect on tyrosine kinases regulating CDCP1. Nonetheless, other TKIs might offer therapeutic approaches for CDCP1-targeted breast cancer therapy and should be studied considering this aspect.

  5. The Communist revolution in Republican China: the conceptual development of the second united front. 

    E-Print Network [OSTI]

    Hope, Brian Lannes

    1974-01-01

    -strengthening" conservative el i te wi thin the Ch'ing government over its more radical reformers re- affirmed the inability of the Chinese political system to undergo a Meiji-style "revolution from above" so long as it was hamstrung by the Ch'ing Dynasty's Manchu court... and the fledgling Chi- nese Communist Party established. 15 References Fairbank, John K. , Reischauer, Edwin 0. , Craig, Albert M. ; East Asia: The Modern Transforma- tion (Boston: Houston Mifflin Co. , 1965 p. 122-23. 2. Ibid. , p. 124. 3. Wright, Mary C...

  6. Planning the Next Generation of Arctic Ecosystem Experiments

    SciTech Connect (OSTI)

    Hinzman, Larry D [International Arctic Research Center; Wilson, Cathy [Los Alamos National Laboratory (LANL)

    2011-01-01

    Climate Change Experiments in High-Latitude Ecosystems; Fairbanks, Alaska, 13-14 October 2010; A 2-day climate change workshop was held at the International Arctic Research Center, University of Alaska Fairbanks. The workshop, sponsored by Biological and Environmental Research, Office of Science, U.S. Department of Energy (DOE), was attended by 45 subject matter experts from universities, DOE national laboratories, and other federal and nongovernmental organizations. The workshop sought to engage the Arctic science community in planning for a proposed Next-Generation Ecosystem Experiments (NGEE-Arctic) project in Alaska (http:// ngee.ornl.gov/). The goal of this activity is to provide data, theory, and models to improve representations of high-latitude terrestrial processes in Earth system models. In particular, there is a need to better understand the processes by which warming may drive increased plant productivity and atmospheric carbon uptake and storage in biomass and soils, as well as those processes that may drive an increase in the release of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) through microbial decomposition of soil carbon stored in thawing permafrost. This understanding is required to quantify the important feedback mechanisms that define the role of terrestrial processes in regional and global climate.

  7. ProjectRanking(Economic) District Potentially Impacted USACE Navigation Projects

    E-Print Network [OSTI]

    US Army Corps of Engineers

    (SoC) Alewife(SoC) Rainbowsmelt(SoC) Porbeagleshark(SoC) Thornyskate(SoC) 97 67 65 107 107 90 54 48 47 Baltimore BALTIMORE HARBOR & CHANNELS, MD & VA (0074955) MD, VA 3 X X X 113 Baltimore BALTIMORE HARBOR ANCHORAGES AND CHANNELS, MD AND VA (0010031) MD, VA 3 X X X 114 Baltimore BALTIMORE HARBOR AND CHANNELS, MD AND VA

  8. ProjectRanking(Economic) District Potentially Impacted USACE Navigation Projects

    E-Print Network [OSTI]

    US Army Corps of Engineers

    (SoC) Alewife(SoC) Rainbowsmelt(SoC) Porbeagleshark(SoC) Thornyskate(SoC) 23 13 13 26 26 19 9 9 47 Baltimore BALTIMORE HARBOR & CHANNELS, MD & VA (0074955) MD, VA 3 X X X 113 Baltimore BALTIMORE HARBOR ANCHORAGES AND CHANNELS, MD AND VA (0010031) MD, VA 3 X X X 114 Baltimore BALTIMORE HARBOR AND CHANNELS, MD AND VA

  9. The development and characterization of a somatic cell line for feline nuclear transfer 

    E-Print Network [OSTI]

    Hutchison, Sarah Adrianne

    2013-02-22

    (Austin, TX) Graduated 1996, Advanced Curriculum with honors Salutatorian GPA: 4. 0 Honors Dean's Honor Role ? fall, 1998, spring, 1999, and fall, 1999 Distinguished Student ? fa11, 1996 spring, 1997, fall, 1997, spring, 1998 Phi Eta Sigma National... stages of development. Earlier the same team had shown that division of these anchorage-independent granulosa cells which exhibited stem cell properties were stimulated by insulin-like growth factors (IGF) as well as inhibited by insulin-like growth...

  10. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  11. International conference on the role of the polar regions in global change: Proceedings. Volume 1

    SciTech Connect (OSTI)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks; (6) paleoenvironmental studies; and, (7) aerosols and trace gases.

  12. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2003-10-30

    This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

  13. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    SciTech Connect (OSTI)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  14. Bescorp soil washing system for lead battery site treatment. Applications analysis report. Project report

    SciTech Connect (OSTI)

    Gaire, R.J.

    1995-01-01

    The Brice Environmental Services Corporation (BESCORP) Soil Washing System (BSWS) and its applicability in remediating lead-contaminated soil at lead battery sites was evaluated. The report presents performance and economic data, developed from the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation (SITE) demonstration (three test runs) and additional data provided by the developer. The demonstration took place at the Alaskan Battery Enterprises (ABE) site in Fairbanks, Alaska. Economic data for a commercial 20-tph unit processing wastes similar to those treated in the SITE Demonstration, including disposal of waste effluents, project operating costs to be about $165/ton of soil (dry basis) containing 6.6 wt percent moisture. This figure does not reflect any revenue from recycling of metallic lead or cashing chips.

  15. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  16. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    SciTech Connect (OSTI)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in the global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.

  17. Mapping of top of permafrost using a direct current resistivity survey

    SciTech Connect (OSTI)

    Gilmore, T.J.; Clayton, E.A.

    1995-10-01

    Data from a direct current resistivity survey and geologic logs from boreholes were used to map the top of permafrost at a remote Air Force installation in Alaska. This study resulted from a remedial investigation that was conducted at Eielson Air Force base near Fairbanks, Alaska under the federal Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) regulations. The depth and continuity of the permafrost was important in determining the fate of petroleum contamination that was inadvertently discharged to the ground during earlier Air Force operations. The results indicate that the top of permafrost forms a highly irregular surface. In general, however, the top of permafrost forms a diagonal ridge at the center of the contour grid that is bordered on each side by troughs.

  18. The eukaryotic translation elongation factor eEF1A2 induces neoplastic properties and mediates tumorigenic effects of ZNF217 in precursor cells of human ovarian carcinomas

    SciTech Connect (OSTI)

    Sun, Yu; Wong, Nicholas; Guan, Yinghui; Salamanca, Clara M.; Cheng, Jung Chien; Lee, Jonathan M.; Gray, Joe W.; Auersperg, Nelly

    2008-04-25

    Ovarian epithelial carcinomas (OEC) frequently exhibit amplifications at the 20q13 locus which is the site of several oncogenes, including the eukaryotic elongation factor EEF1A2 and the transcription factor ZNF217. We reported previously that overexpressed ZNF217 induces neoplastic characteristics in precursor cells of OEC. Unexpectedly, ZNF217, which is a transcriptional repressor, enhanced expression of eEF1A2. In this study, array comparative genomic hybridization, single nucleotide polymorphism and Affymetrix analysis of ZNF217-overexpressing cell lines confirmed consistently increased expression of eEF1A2 but not of other oncogenes, and revealed early changes in EEF1A2 gene copy numbers and increased expression at crisis during immortalization. We defined the influence of eEF1A2 overexpression on immortalized ovarian surface epithelial cells, and investigated interrelationships between effects of ZNF217 and eEF1A2 on cellular phenotypes. Lentivirally induced eEF1A2 overexpression caused delayed crisis, apoptosis resistance and increases in serum-independence, saturation densities, and anchorage independence. siRNA to eEF1A2 reversed apoptosis resistance and reduced anchorage independence in eEF1A2-overexpressing lines. Remarkably, siRNA to eEF1A2 was equally efficient in inhibiting both anchorage independence and resistance to apoptosis conferred by ZNF217 overexpression. Our data define neoplastic properties that are caused by eEF1A2 in nontumorigenic ovarian cancer precursor cells, and suggest that eEF1A2 plays a role in mediating ZNF217-induced neoplastic progression.

  19. DOE Awards Small Business Contract for West Valley NY Services

    Broader source: Energy.gov [DOE]

    CINCINNATI – The Department of Energy (DOE) today awarded a task order (contract) to Chenega Global Services, LLC of Anchorage, Alaska, for administrative and technical support services at the West Valley Demonstration Project, West Valley, New York. The contract has a one-year performance period with a value of $1.3 million, and contains two one-year extension options with a total value of $4.12 million. Chenega Global Services is a certified small and disadvantaged business under the Small Business Administration.

  20. The United States Nuclear Regulatory Commission and the United States Department Of Energy Public Meeting

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed for EssentialAnchorage, Alaska,Reno,Savings for1 2

  1. Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed for EssentialAnchorage,following comments 5Thermal

  2. Andale, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex A S Jump to: navigation,Inof Ground2008 | OpenAnchorage,Andale,

  3. Andrew C. Lawrence | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDITLeslieAlgaeAnatomy of a Groundwater UraniumAnchorageC.

  4. Weatherization Apprenticeship Program

    SciTech Connect (OSTI)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  5. Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano

    SciTech Connect (OSTI)

    Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

    2008-11-01

    On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.

  6. Review of Recent Aging-Related Degradation Occurrences of Structures and Passive Components in U.S. Nuclear Power Plants

    SciTech Connect (OSTI)

    Nie,J.; Braverman, J.; Hofmayer, C.; Choun, Y.-S.; Kim, M.K.; Choi, I.-K.

    2009-04-02

    The Korea Atomic Energy Research Institute (KAERI) and Brookhaven National Laboratory (BNL) are collaborating to develop seismic capability evaluation technology for degraded structures and passive components (SPCs) under a multi-year research agreement. To better understand the status and characteristics of degradation of SPCs in nuclear power plants (NPPs), the first step in this multi-year research effort was to identify and evaluate degradation occurrences of SPCs in U.S. NPPs. This was performed by reviewing recent publicly available information sources to identify and evaluate the characteristics of degradation occurrences and then comparing the information to the observations in the past. Ten categories of SPCs that are applicable to Korean NPPs were identified, comprising of anchorage, concrete, containment, exchanger, filter, piping system, reactor pressure vessel, structural steel, tank, and vessel. Software tools were developed to expedite the review process. Results from this review effort were compared to previous data in the literature to characterize the overall degradation trends.

  7. A novel redox-based switch: LMW-PTP oxidation enhances Grb2 binding and leads to ERK activation

    SciTech Connect (OSTI)

    Giannoni, Elisa [Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence (Italy); Raugei, Giovanni [Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence (Italy); Center of Excellence for Scientific Research DENOTHE, Viale Morgagni 44, 50134 Florence (Italy); Chiarugi, Paola [Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence (Italy) and Center of Excellence for Scientific Research DENOTHE, Viale Morgagni 44, 50134 Florence (Italy)]. E-mail: paola.chiarugi@unifi.it; Ramponi, Giampietro [Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence (Italy); Center of Excellence for Scientific Research DENOTHE, Viale Morgagni 44, 50134 Florence (Italy)

    2006-09-22

    Low molecular weight-PTP has been reported as a redox-sensitive protein during both platelet-derived growth factor and integrin signalling. In response to oxidation the phosphatase undergoes a reversible inactivation, which in turn leads to the increase in tyrosine phosphorylation of its substrates and the properly executed anchorage-dependent proliferation program. Here, we report that an exogenous oxidative stress enhances LMW-PTP tyrosine phosphorylation, through oxidation/inactivation of the enzyme, thus preventing its auto-dephosphorylation activity. In particular, we observed a selective hyper-phosphorylation of Tyr132, that acts as a docking site for the adaptor protein Grb2. The redox-dependent enhancement of Grb2 recruitment to LMW-PTP ultimately leads to an improvement of ERK activation, likely triggering a prosurvival signal against the oxidant environment.

  8. MCF-10A-NeoST: A New Cell System for Studying Cell-ECM and Cell-Cell Interactions in Breast Cancer

    SciTech Connect (OSTI)

    Zantek, Nicole Dodge; Walker-Daniels, Jennifer; Stewart, Jane; Hansen, Rhonda K.; Robinson, Daniel; Miao, Hui; Wang, Bingcheng; Kung, Hsing-Jien; Bissell, Mina J.; Kinch, Michael S.

    2001-08-22

    There is a continuing need for genetically matched cell systems to model cellular behaviors that are frequently observed in aggressive breast cancers. We report here the isolation and initial characterization of a spontaneously arising variant of MCF-10A cells, NeoST, which provides a new model to study cell adhesion and signal transduction in breast cancer. NeoST cells recapitulate important biological and biochemical features of metastatic breast cancer, including anchorage-independent growth, invasiveness in threedimensional reconstituted membranes, loss of E-cadherin expression, and increased tyrosine kinase activity. A comprehensive analysis of tyrosine kinase expression revealed overexpression or functional activation of the Axl, FAK, and EphA2 tyrosine kinases in transformed MCF-10A cells. MCF-10A and these new derivatives provide a genetically matched model to study defects in cell adhesion and signaling that are relevant to cellular behaviors that often typify aggressive breast cancer cells.

  9. Single-molecule dynamic force spectroscopy of the fibronectin-heparin interaction

    SciTech Connect (OSTI)

    Mitchell, Gabriel; Lamontagne, Charles-Antoine; Lebel, Rejean; Grandbois, Michel Malouin, Francois

    2007-12-21

    The integrity of cohesive tissues strongly depends on the presence of the extracellular matrix, which provides support and anchorage for cells. The fibronectin protein and the heparin-like glycosaminoglycans are key components of this dynamic structural network. In this report, atomic force spectroscopy was used to gain insight into the compliance and the resistance of the fibronectin-heparin interaction. We found that this interaction can be described by an energetic barrier width of 3.1 {+-} 0.2 A and an off-rate of 0.2 {+-} 0.1 s{sup -1}. These dissociation parameters are similar to those of other carbohydrate-protein interactions and to off-rate values reported for more complex interactions between cells and extracellular matrix components. Our results indicate that the function of the fibronectin-heparin interaction is supported by its capacity to sustain significant deformations and considerable external mechanical forces.

  10. Student Support for EIPBN 2010 Conference

    SciTech Connect (OSTI)

    Reginald C. Farrow

    2011-03-11

    The 54th International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication, 2010, held at the Egan Convention Center and Hilton in Anchorage, Alaska, June 1 to 4, 2010 was a great success in large part because financial support allowed robust participation from students. The conference brought together 444 engineers and scientists from industries and universities from all over the world to discuss recent progress and future trends. Among the emerging technologies that are within the scope of EIPBN is Nanofabrication for Energy Sources along with nanofabrication for the realization of low power integrated circuits. Every year, EIPBN provides financial support for students to attend the conference.The students gave oral and poster presentations of their research and many published peer reviewed articles in a special conference issue of the Journal of Vacuum Science and Technology B. The Department of Energy Office of Basic Energy Sciences supported 20 students from US universities with a $15,000.

  11. Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Harris, Aaron P

    2013-01-01

    A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

  12. LINC Complexes Form by Binding of Three KASH Peptides to Domain Interfaces of Trimeric SUN Proteins

    SciTech Connect (OSTI)

    Sosa, Brian A.; Rothballer, Andrea; Kutay, Ulrike; Schwartz, Thomas U.

    2012-08-31

    Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.

  13. Proposed IMS infrastructure improvement project, Seward, Alaska. Final environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Environmental Impact Statement (EIS) examines a proposal for improvements at the existing University of Alaska, Fairbanks, Institute of Marine Science (IMS), Seward Marine Center. The Exxon Valdez Oil Spill (EVOS) Trustee Council is proposing to improve the existing research infrastructure to enhance the EVOS Trustee Council`s capabilities to study and rehabilitate marine mammals, marine birds, and the ecosystem injured by the Exxon Valdez oil spill. The analysis in this document focuses on the effects associated with construction and operation of the proposed project and its proposed alternatives. The EIS gives a detailed description of all major elements of the proposed project and its alternatives; identifies resources of major concern that were raised during the scoping process; describes the environmental background conditions of those resources; defines and analyzes the potential effects of the proposed project and its alternatives on these conditions; and identifies mitigating measures that are part of the project design as well as those proposed to minimize or reduce the adverse effects. Included in the EIS are written and oral comments received during the public comment period.

  14. Eielson Air Force Base OU-1 baseline risk assessment

    SciTech Connect (OSTI)

    Jarvis, M.T.; Jarvis, T.T.; Van Houten, N.C.; Lewis, R.E.

    1993-09-01

    This Baseline Risk Assessment report is the second volume in a set of three volumes for operable Unit 1 (OU-1). The companion documents contain the Remedial Investigation and the Feasibility Study. Operable Unit 1 (OU-1) is one of several groups of hazardous waste sites located at Eielson Air Force Base (AFB) near Fairbanks, Alaska. The operable units at Eielson are typically characterized by petroleum, oil, lubricant/solvent contamination, and by the presence of organics floating at the water table. In 1989 and 1990, firms under contract to the Air Force conducted field studies to gather information about the extent of chemical contamination in soil, groundwater, and soil air pore space (soil gas) at the site. This report documents the results of a baseline risk assessment, which uses the 1989 and 1991 site characterization database to quantify the potential human health risk associated with past Base industrial activities in the vicinity of OU-1. Background data collected in 1992 were also used in the preparation of this report.

  15. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  16. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.

    SciTech Connect (OSTI)

    Lottes, S. A.; Kulak, R. F.; Bojanowski, C. (Energy Systems)

    2011-05-19

    This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

  17. Houston Pre-Freshman Enrichment Program (Houston PREP). Final report, June 9, 1997--July 25, 1997

    SciTech Connect (OSTI)

    1997-10-01

    The 1997 Houston Pre-Freshman Enrichment Program (PREP) was conducted at the campus of the University of Houston-Downtown from June 9 to July 25, 1997. Program participants were recruited from the Greater Houston Area. All participants were identified as high-achieving students with an interest in learning about the engineering and science professions. The goal of the program was to better prepare our pre-college youth prior to entering college as mathematics, science and engineering majors. The program participants were middle school and high school students from the Aldine, Alief, Channel View, Clear Creek, Cypress-Fairbanks, Fort Bend, Galena Park, Houston, Humble, Katy, Klein, North Forest, Pasadena, Private, and Spring Branch Independent School Districts. Of the 194 students starting the program, 165 students were from economically and socially disadvantage groups under-represented in the engineering and science professions, and 118 of the 194 were women. Our First Year group for 1997 composed of 96% minority and women students. Second and Third Year students combined were 96% minority or women. With financial support from the Center for Computational Sciences and Advanced Distributed Simulation, the Fourth Year Program was added to PREP this year. Twelve students completed the program (83% minority or women).

  18. Sitewide biological risk assessment Eielson Air Force Base, Alaska: Risks to terrestrial receptors from diverse contaminants

    SciTech Connect (OSTI)

    Brandt, C.A.; Becker, J.M.

    1995-12-31

    Eielson Air Force Base (AFB) is located southeast of Fairbanks, Alaska. Eielson AFB was listed by the US Environmental Protection Agency on the National Priorities List with a total of 64 potential terrestrial and aquatic source areas. Contaminants of concern include fuel and fuel components, pesticides, polychlorinated biphenyls (PCBs), and lead. As part of the remedial investigations of these sites, a biological risk assessment (BRA) was conducted to estimate the risk of ecological effects on terrestrial receptors posed by contaminants in the Eielson environment. There are 32 mammal species, 117 bird species, 17 fish species, and 1 amphibian species known to inhabit Eielson AFB and vicinity. The BRA screened source areas based on completed biological exposure pathways, selected receptors for analysis, estimated exposure of receptors to contaminants, and compared these exposures to known toxicological effects. Lower Garrison Slough and Flightline Pond posed a substantial risk for shrikes and goshawks. Ingestion of PCBs constituted the primary pathway/contaminant combination contributing to this risk. The effects of the various sources of uncertainty in the ingestion exposure calculations for these sites were evaluated in a probabilistic risk assessment using Monte Carlo methods. There was an 11% risk of reproductive effects from PCBs for goshawks feeding from Flightline Pond and a 25 % risk from lower Garrison Slough. There was an 81 % risk of reproductive effects from PCB exposure for shrikes feeding near lower Garrison Slough.

  19. Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1

    SciTech Connect (OSTI)

    Carpenter, Richard L.; Jiang, Yue; Jing, Yi; He, Jun; Rojanasakul, Yon; Liu, Ling-Zhi; Jiang, Bing-Hua

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer Chronic exposure to arsenite induces cell proliferation and transformation. Black-Right-Pointing-Pointer Arsenite-induced transformation increases ROS production and downstream signalings. Black-Right-Pointing-Pointer Inhibition of ROS levels via catalase reduces arsenite-induced cell transformation. Black-Right-Pointing-Pointer Interruption of AKT, ERK, or p70S6K1 inhibits arsenite-induced cell transformation. -- Abstract: Arsenic is naturally occurring element that exists in both organic and inorganic formulations. The inorganic form arsenite has a positive association with development of multiple cancer types. There are significant populations throughout the world with high exposure to arsenite via drinking water. Thus, human exposure to arsenic has become a significant public health problem. Recent evidence suggests that reactive oxygen species (ROS) mediate multiple changes to cell behavior after acute arsenic exposure, including activation of proliferative signaling and angiogenesis. However, the role of ROS in mediating cell transformation by chronic arsenic exposure is unknown. We found that cells chronically exposed to sodium arsenite increased proliferation and gained anchorage-independent growth. This cell transformation phenotype required constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. We also observed these cells constitutively produce ROS, which was required for the constitutive activation of AKT, ERK1/2, mTOR, and p70S6K1. Suppression of ROS levels by forced expression of catalase also reduced cell proliferation and anchorage-independent growth. These results indicate cell transformation induced by chronic arsenic exposure is mediated by increased cellular levels of ROS, which mediates activation of AKT, ERK1/2, and p70S6K1.

  20. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    SciTech Connect (OSTI)

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel; Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN; Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  1. Five Kilowatt Fuel Cell Demonstration for Remote Power Applications

    SciTech Connect (OSTI)

    Dennis Witmer; Tom Johnson; Jack Schmid

    2008-12-31

    While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

  2. Arctic Energy Technology Development Laboratory

    SciTech Connect (OSTI)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  3. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    SciTech Connect (OSTI)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

    2011-12-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of July through September 2011.

  4. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report

    SciTech Connect (OSTI)

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

    2012-06-28

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through March 2012.

  5. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.

    SciTech Connect (OSTI)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

    2011-08-26

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of April through June 2011.

  6. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.

    SciTech Connect (OSTI)

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

    2012-04-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through December 2011.

  7. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    SciTech Connect (OSTI)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc, E-mail: jean-marc.ricort@univ-montp2.fr

    2012-03-10

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic properties and would, therefore, define PKD1 as a potentially new promising anti-tumor therapeutic target.

  8. Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137CS y-rays

    SciTech Connect (OSTI)

    Bennett P. V.; Bennett, P.V.; Keszenman, D.J.; Johnson, A.M.; Sutherland, B.M.; Wilson, P.F.

    2013-05-14

    Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to 0-30 cGy of 50MeV, 100MeV (SPE-like), or 1000 MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL.

  9. Geothermal energy resource investigations at Mt. Spurr, Alaska

    SciTech Connect (OSTI)

    Turner, D.L.; Wescott, E.M. (eds.)

    1986-12-01

    Spurr volcano is a composite Quaternary cone of largely andesitic composition located on the west side of Cook Inlet about 80 miles west of Anchorage and about 40 miles from the Beluga electrical transmission line. Geologic mapping (Plate 1-1) shows that the present summit depression was produced by a Mt. St. Helens-type sector collapse, rather than by a caldera collapse. Geochronologic and previous tephrachronologic studies show that there has been an active magmatic system at Spurr volcano during the late Pleistocene-to-Holocene time interval that is of critical interest for geothermal energy resource assessment. Major effort was devoted to geochemical and geophysical surveys of the accessible area south of Mt. Spurr, in addition to geologic mapping and geochronologic studies. Many coincident mercury and helium anomalies were found, suggesting the presence of geothermal systems at depth. Extremely large electrical self-potential anomalies were also found, together with extensive zones of low resistivity discovered by our controlled-source audiomagnetotelluric survey. The juxtaposition of all of these different types of anomalies at certain areas on the south slope of Crater Peak indicates the presence of a geothermal system which should be accessible by drilling to about 2000 ft depth. It is also evident that there is a strong volcanic hazard to be evaluated in considering any development on the south side of Mt. Spurr. This hazardous situation may require angle drilling of production wells from safer areas and placement of power generation facilities at a considerable distance from hazardous areas.

  10. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    SciTech Connect (OSTI)

    Ungerer, Christopher; Doberstein, Kai; Boehm, Beate; Pfeilschifter, Josef; Mihic-Probst, Daniela; Gutwein, Paul

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  11. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  12. Establishment of an Industry-Driven Consortium Focused on Improving the Production Performance of Domestic Stripper Wells

    SciTech Connect (OSTI)

    Joel L. Morrison

    2005-08-30

    The Pennsylvania State University, under contract to the U.S. Department of Energy, National Energy Technology Laboratory will establish, promote, and manage a national industry-driven Stripper Well Consortium (SWC) that will be focused on improving the production performance of domestic petroleum and/or natural gas stripper wells. The consortium creates a partnership with the U.S. petroleum and natural gas industries and trade associations, state funding agencies, academia, and the National Energy Technology Laboratory. This report serves as the nineteenth quarterly technical progress report for the SWC. Key activities for this reporting period include: (1) deliver a keynote luncheon address to the 16th Annual Oil Recovery Conference in Wichita, Kansas, (2) participated in the Interstate Oil & Gas Compact Commission's (IOGCC) Midyear Issues Summit in Anchorage, Alaska, (3) completed and distributed the SWC technical bulletin ''Keeping the Home Wells Flowing: Helping Small Independent Oil and Gas Producers Develop New Technology Solutions'', and (4) completed the primary filming of the Public Broadcast of ''Independent Oil: Rediscovering America's Forgotten Wells''.

  13. Differentiation of C2C12 myoblasts expressing lamin A mutated at a site responsible for Emery-Dreifuss muscular dystrophy is improved by inhibition of the MEK-ERK pathway and stimulation of the PI3-kinase pathway

    SciTech Connect (OSTI)

    Favreau, Catherine [Institut Jacques Monod, UMR7592, CNRS et Universites Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05 (France); Delbarre, Erwan [Institute of Basic Medical Sciences, Department of Biochemistry, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo (Norway); Courvalin, Jean-Claude [Institut Jacques Monod, UMR7592, CNRS et Universites Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05 (France); Buendia, Brigitte [Institut Jacques Monod, UMR7592, CNRS et Universites Paris 6 et 7, 2 Place Jussieu, 75251 Paris Cedex 05 (France)], E-mail: buendia@ijm.jussieu.fr

    2008-04-01

    Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.

  14. Chromosomal changes in cultured human epithelial cells transformed by low- and high-LET radiation

    SciTech Connect (OSTI)

    Yang, Tracy Chui-hsu; Craise, L.M; Prioleau, J.C.; Stampfer, M.R.; Rhim, J.S.

    1990-11-01

    For a better assessment of radiation risk in space, an understanding of the responses of human cells, especially the epithelial cells, to low- and high-LET radiation is essential. In our laboratory, we have successfully developed techniques to study the neoplastic transformation of two human epithelial cell systems by ionizing radiation. These cell systems are human mammary epithelial cells (H184B5) and human epidermal keratinocytes (HEK). Both cell lines are immortal, anchorage dependent for growth, and nontumorigenic in athymic nude nice. Neoplastic transformation was achieved by irradiation cells successively. Our results showed that radiogenic cell transformation is a multistep process and that a single exposure of ionizing radiation can cause only one step of transformation. It requires, therefore, multihits to make human epithelial cells fully tumorigenic. Using a simple karyotyping method, we did chromosome analysis with cells cloned at various stages of transformation. We found no consistent large terminal deletion of chromosomes in radiation-induced transformants. Some changes of total number of chromosomes, however, were observed in the transformed cells. These transformants provide an unique opportunity for further genetic studies at a molecular level. 15 refs., 9 figs., 2 tabs.

  15. KPNA7, a nuclear transport receptor, promotes malignant properties of pancreatic cancer cells in vitro

    SciTech Connect (OSTI)

    Laurila, Eeva; Vuorinen, Elisa; Savinainen, Kimmo; Rauhala, Hanna; Kallioniemi, Anne

    2014-03-10

    Pancreatic cancer is an aggressive malignancy and one of the leading causes of cancer deaths. The high mortality rate is mostly due to the lack of appropriate tools for early detection of the disease and a shortage of effective therapies. We have previously shown that karyopherin alpha 7 (KPNA7), the newest member of the alpha karyopherin family of nuclear import receptors, is frequently amplified and overexpressed in pancreatic cancer. Here, we report that KPNA7 expression is absent in practically all normal human adult tissues but elevated in several pancreatic cancer cell lines. Inhibition of KPNA7 expression in AsPC-1 and Hs700T pancreatic cancer cells led to a reduction in cell growth and decreased anchorage independent growth, as well as increased autophagy. The cell growth effects were accompanied by an induction of the cell cycle regulator p21 and a G1 arrest of the cell cycle. Interestingly, the p21 induction was caused by increased mRNA synthesis and not defective nuclear transport. These data strongly demonstrate that KPNA7 silencing inhibits the malignant properties of pancreatic cancer cells in vitro and thereby provide the first evidence on the functional role for KPNA7 in human cancer. - Highlights: • KPNA7 expression is elevated in several pancreatic cancer cell lines. • KPNA7 silencing in high expressing cancer cells leads to growth inhibition. • The cell growth reduction is associated with p21 induction and G1 arrest. • KPNA7 silencing is also accompanied with increased autophagy.

  16. Old Harbor Scammon Bay Hydro Feasibility

    SciTech Connect (OSTI)

    Brent Petrie

    2007-06-27

    The grantee, Alaska Village Electric Cooperative (AVEC), is a non-profit member owned rural electric generation and distribution cooperative. The proposed Project is located near the community of Old Harbor, Alaska. Old Harbor is on the southeastern coast of Kodiak Island, approximately 70 miles southwest of the City of Kodiak and 320 miles southwest of Anchorage. In 1998 sufficient information had been developed to apply for a license to construct the project and the cost was estimated to be $2,445,000 for a 500 KW project on Lagoon Creek. Major features of the project included an eight-foot high diversion dam on Mountain Creek, a desander box, a 9,800-foot long penstock to the powerhouse on Lagoon Creek, and a 5,500-foot long access road. It was also anticipated that the project could provide an additional source of water to Old Harbor. The report details the history and lessons learned in designing and permiting the proposed hydroelectric facility.

  17. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    SciTech Connect (OSTI)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram; Chen, Albert H.; Dolinski, Brian; Xu, Youyuan; Keilhack, Heike; Nguyen, Thi; Wiznerowicz, Maciej; Li, Lixia; Lutterbach, Bart A.; Chi, An; Paweletz, Cloud; Allison, Timothy; Yan, Youwei; Munshi, Sanjeev K.; Klippel, Anke; Kraus, Manfred; Bobkova, Ekaterina V.; Deshmukh, Sujal; Xu, Zangwei; Mueller, Uwe; Szewczak, Alexander A.; Pan, Bo-Sheng; Richon, Victoria; Pollock, Roy; Blume-Jensen, Peter; Northrup, Alan; Andersen, Jannik N.

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.

  18. Enhancement of cancer stem-like and epithelial?mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: Reversal by targeting SNAIL

    SciTech Connect (OSTI)

    Yu, Cheng-Chia; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan ; Chang, Yu-Chao; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan

    2013-02-01

    Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial?mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulate ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ? Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ? Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ? Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ? Si-Snail blocked xenograft tumorigenesis of long-term nicotine-treated OSCC cells.

  19. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    SciTech Connect (OSTI)

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive agents, such as curcumin, effective in suppressing TCC-induced cellular pre-malignancy.

  20. The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-10-01

    No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

  1. Advanced Techniques for Power System Identification from Measured Data

    SciTech Connect (OSTI)

    Pierre, John W.; Wies, Richard; Trudnowski, Daniel

    2008-11-25

    Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

  2. Concept Study: Exploration and Production in Environmentally Sensitive Arctic Areas

    SciTech Connect (OSTI)

    Shirish Patil; Rich Haut; Tom Williams; Yuri Shur; Mikhail Kanevskiy; Cathy Hanks; Michael Lilly

    2008-12-31

    The Alaska North Slope offers one of the best prospects for increasing U.S. domestic oil and gas production. However, this region faces some of the greatest environmental and logistical challenges to oil and gas production in the world. A number of studies have shown that weather patterns in this region are warming, and the number of days the tundra surface is adequately frozen for tundra travel each year has declined. Operators are not allowed to explore in undeveloped areas until the tundra is sufficiently frozen and adequate snow cover is present. Spring breakup then forces rapid evacuation of the area prior to snowmelt. Using the best available methods, exploration in remote arctic areas can take up to three years to identify a commercial discovery, and then years to build the infrastructure to develop and produce. This makes new exploration costly. It also increases the costs of maintaining field infrastructure, pipeline inspections, and environmental restoration efforts. New technologies are needed, or oil and gas resources may never be developed outside limited exploration stepouts from existing infrastructure. Industry has identified certain low-impact technologies suitable for operations, and has made improvements to reduce the footprint and impact on the environment. Additional improvements are needed for exploration and economic field development and end-of-field restoration. One operator-Anadarko Petroleum Corporation-built a prototype platform for drilling wells in the Arctic that is elevated, modular, and mobile. The system was tested while drilling one of the first hydrate exploration wells in Alaska during 2003-2004. This technology was identified as a potentially enabling technology by the ongoing Joint Industry Program (JIP) Environmentally Friendly Drilling (EFD) program. The EFD is headed by Texas A&M University and the Houston Advanced Research Center (HARC), and is co-funded by the National Energy Technology Laboratory (NETL). The EFD participants believe that the platform concept could have far-reaching applications in the Arctic as a drilling and production platform, as originally intended, and as a possible staging area. The overall objective of this project was to document various potential applications, locations, and conceptual designs for the inland platform serving oil and gas operations on the Alaska North Slope. The University of Alaska Fairbanks assisted the HARC/TerraPlatforms team with the characterization of potential resource areas, geotechnical conditions associated with continuous permafrost terrain, and the potential end-user evaluation process. The team discussed the various potential applications with industry, governmental agencies, and environmental organizations. The benefits and concerns associated with industry's use of the technology were identified. In this discussion process, meetings were held with five operating companies (22 people), including asset team leaders, drilling managers, HSE managers, and production and completion managers. Three other operating companies and two service companies were contacted by phone to discuss the project. A questionnaire was distributed and responses were provided, which will be included in the report. Meetings were also held with State of Alaska Department of Natural Resources officials and U.S. Bureau of Land Management regulators. The companies met with included ConcoPhillips, Chevron, Pioneer Natural Resources, Fairweather E&P, BP America, and the Alaska Oil and Gas Association.

  3. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney

    2007-07-15

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  4. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    2013-09-01

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  5. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    SciTech Connect (OSTI)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-11-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: Black-Right-Pointing-Pointer Endothelial cells mount a stress response under conditions of low serum. Black-Right-Pointing-Pointer Endothelial VEGFR levels are modulated during this response. Black-Right-Pointing-Pointer The cell regulates VEGF-A bioavailability and cell survival. Black-Right-Pointing-Pointer This may partly underlie endothelial dysfunction seen in many pathologies.

  6. YY1 modulates taxane response in epithelial ovarian cancer

    SciTech Connect (OSTI)

    Matsumura, Noriomi; Huang, Zhiqing; Baba, Tsukasa; Lee, Paula S.; Barnett, Jason C.; Mori, Seiichi; Chang, Jeffrey T.; Kuo, Wen-Lin; Gusberg, Alison H.; Whitaker, Regina S.; Gray, JoeW.; Fujii, Shingo; Berchuck, Andrew; Murphy, Susan K.

    2008-10-10

    The results of this study show that a high YY1 gene signature (characterized by coordinate elevated expression of transcription factor YY1 and putative YY1 target genes) within serous epithelial ovarian cancers is associated with enhanced response to taxane-based chemotherapy and improved survival. If confirmed in a prospective study, these results have important implications for the potential future use of individualized therapy in treating patients with ovarian cancer. Identification of the YY1 gene signature profile within a tumor prior to initiation of chemotherapy may provide valuable information about the anticipated response of these tumors to taxane-based drugs, leading to better informed decisions regarding chemotherapeutic choice. Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer (SEOC) were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary SEOC and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using siRNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in SEOC and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA crosslinking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1 knockdown in ovarian cancer cell lines results in inhibition of anchorage-independent growth, motility and proliferation, but also increases resistance to taxanes, with no effect on cisplatin sensitivity. These results, together with the prior demonstration of augmentation of microtubule-related genes by E2F3, suggest that enhanced taxane sensitivity in tumors with high YY1/E2F activity may be mediated by modulation of putative target genes with microtubule function.

  7. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold; Edmonson, James; Standridge, Charles; Pervez, Nahid; Desai, Neel; Williams, Bruce; Clark, Aaron; Zeitler, David; Kendall, Scott; Biddanda, Bopi; Steinman, Alan; Klatt, Brian; Gehring, J. L.; Walter, K.; Nordman, Erik E.

    2014-06-30

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigan’s Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: • Siting, permitting, and deploying an offshore floating MET facility; • Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; • Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; • Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; • Investigation of technology best suited for wireless data transmission from distant offshore structures; • Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; • Identifying the presence or absence of bird and bat species near wind assessment facilities; • Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: • Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  8. Fragility Analysis Methodology for Degraded Structures and Passive Components in Nuclear Power Plants - Illustrated using a Condensate Storage Tank

    SciTech Connect (OSTI)

    Nie, J.; Braverman, J.; Hofmayer, C.; Choun, Y.; Kim, M.; Choi, I.

    2010-06-30

    The Korea Atomic Energy Research Institute (KAERI) is conducting a five-year research project to develop a realistic seismic risk evaluation system which includes the consideration of aging of structures and components in nuclear power plants (NPPs). The KAERI research project includes three specific areas that are essential to seismic probabilistic risk assessment (PRA): (1) probabilistic seismic hazard analysis, (2) seismic fragility analysis including the effects of aging, and (3) a plant seismic risk analysis. Since 2007, Brookhaven National Laboratory (BNL) has entered into a collaboration agreement with KAERI to support its development of seismic capability evaluation technology for degraded structures and components. The collaborative research effort is intended to continue over a five year period. The goal of this collaboration endeavor is to assist KAERI to develop seismic fragility analysis methods that consider the potential effects of age-related degradation of structures, systems, and components (SSCs). The research results of this multi-year collaboration will be utilized as input to seismic PRAs. In the Year 1 scope of work, BNL collected and reviewed degradation occurrences in US NPPs and identified important aging characteristics needed for the seismic capability evaluations. This information is presented in the Annual Report for the Year 1 Task, identified as BNL Report-81741-2008 and also designated as KAERI/RR-2931/2008. The report presents results of the statistical and trending analysis of this data and compares the results to prior aging studies. In addition, the report provides a description of U.S. current regulatory requirements, regulatory guidance documents, generic communications, industry standards and guidance, and past research related to aging degradation of SSCs. In the Year 2 scope of work, BNL carried out a research effort to identify and assess degradation models for the long-term behavior of dominant materials that are determined to be risk significant to NPPs. Multiple models have been identified for concrete, carbon and low-alloy steel, and stainless steel. These models are documented in the Annual Report for the Year 2 Task, identified as BNL Report-82249-2009 and also designated as KAERI/TR-3757/2009. This report describes the research effort performed by BNL for the Year 3 scope of work. The objective is for BNL to develop the seismic fragility capacity for a condensate storage tank with various degradation scenarios. The conservative deterministic failure margin method has been utilized for the undegraded case and has been modified to accommodate the degraded cases. A total of five seismic fragility analysis cases have been described: (1) undegraded case, (2) degraded stainless tank shell, (3) degraded anchor bolts, (4) anchorage concrete cracking, and (5)a perfect combination of the three degradation scenarios. Insights from these fragility analyses are also presented.

  9. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert

    2014-05-07

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  10. Literature and information related to the natural resources of the North Aleutian Basin of Alaska.

    SciTech Connect (OSTI)

    Stull, E.A.; Hlohowskyj, I.; LaGory, K. E.; Environmental Science Division

    2008-01-31

    The North Aleutian Basin Planning Area of the Minerals Management Service (MMS) is a large geographic area with significant natural resources. The Basin includes most of the southeastern part of the Bering Sea Outer Continental Shelf, including all of Bristol Bay. The area supports important habitat for a wide variety of species and globally significant habitat for birds and marine mammals, including several federally listed species. Villages and communities of the Alaska Peninsula and other areas bordering or near the Basin rely on its natural resources (especially commercial and subsistence fishing) for much of their sustenance and livelihood. The offshore area of the North Aleutian Basin is considered to have important hydrocarbon reserves, especially natural gas. In 2006, the MMS released a draft proposed program, 'Outer Continental Shelf Oil and Gas Leasing Program, 2007-2012' and an accompanying draft programmatic environmental impact statement (EIS). The draft proposed program identified two lease sales proposed in the North Aleutian Basin in 2010 and 2012, subject to restrictions. The area proposed for leasing in the Basin was restricted to the Sale 92 Area in the southwestern portion. Additional EISs will be needed to evaluate the potential effects of specific lease actions, exploration activities, and development and production plans in the Basin. A full range of updated multidisciplinary scientific information will be needed to address oceanography, fate and effects of oil spills, marine ecosystems, fish, fisheries, birds, marine mammals, socioeconomics, and subsistence in the Basin. Scientific staff at Argonne National Laboratory were contracted to assist MMS with identifying and prioritizing information needs related to potential future oil and gas leasing and development activities in the North Aleutian Basin. Argonne focused on three related tasks: (1) identify and gather relevant literature published since 1996, (2) synthesize and summarize the literature, and (3) identify and prioritize remaining information needs. To assist in the latter task, MMS convened the North Aleutian Basin Information Status and Research Planning Meeting (the Planning Meeting) in Anchorage, Alaska, from November 28 through December 1, 2006. That meeting and its results are described in 'Proceedings of the North Aleutian Basin Information Status and Research Planning Meeting' (the Planning Meeting report)1. Citations for recent literature (1996-2006) to support an assessment of the impacts of oil and gas development on natural, cultural, and socioeconomic resources in the North Aleutian Basin were entered in a database. The database, a series of Microsoft Excel spreadsheets with links to many of the reference materials, was provided to MMS prior to the Planning Meeting and was made available for participants to use during the meeting. Many types of references were identified and collected from the literature, such as workshop and symposium proceedings, personal web pages, web pages of government and nongovernmental organizations, EISs, books and articles reporting research results, regulatory documents, technical reports, newspaper and newsletter articles, and theses and dissertations. The current report provides (1) a brief overview of the literature; (2) descriptions (in tabular form) of the databased references, including geographic area covered, topic, and species (where relevant); (3) synopses of the contents of the referenced documents and web pages; and (4) a full citation for each reference. At the Planning Meeting, subject matter experts with research experience in the North Aleutian Basin presented overviews of the area's resources, including oceanography, fish and shellfish populations, federal fisheries, commercial fishery economics, community socioeconomics, subsistence, seabirds and shorebirds, waterfowl, seals and sea lions, cetaceans, sea otters, and walruses. These presentations characterized the status of the resource, the current state of knowledge on the topic, and information needs related to an assessment of

  11. Steelhead Supplementation Studies; Steelhead Supplementation in Idaho Rivers, Annual Report 2002.

    SciTech Connect (OSTI)

    Byrne, Alan

    2003-03-01

    The Steelhead Supplementation Study (SSS) has two broad objectives: (1) investigate the feasibility of supplementing depressed wild and natural steelhead populations using hatchery populations, and (2) describe the basic life history and genetic characteristics of wild and natural steelhead populations in the Salmon and Clearwater Basins. Idaho Department of Fish and Game (IDFG) personnel stocked adult steelhead from Sawtooth Fish Hatchery into Frenchman and Beaver creeks and estimated the number of age-1 parr produced from the outplants since 1993. On May 2, 2002, both Beaver and Frenchman creeks were stocked with hatchery adult steelhead. A SSS crew snorkeled the creeks in August 2002 to estimate the abundance of age-1 parr from brood year (BY) 2001. I estimated that the yield of age-1 parr per female stocked in 2001 was 7.3 and 6.7 in Beaver and Frenchman creeks, respectively. SSS crews stocked Dworshak hatchery stock fingerlings and smolts from 1993 to 1999 in the Red River drainage to assess which life stage produces more progeny when the adults return to spawn. In 2002, Clearwater Fish Hatchery personnel operated the Red River weir to trap adults that returned from these stockings. Twelve PIT-tagged adults from the smolt releases and one PIT-tagged adult from fingerling releases were detected during their migration up the mainstem Columbia and Snake rivers, but none from either group were caught at the weir. The primary focus of the study has been monitoring and collecting life history information from wild steelhead populations. An adult weir has been operated annually since 1992 in Fish Creek, a tributary of the Lochsa River. The weir was damaged by a rain-on-snow event in April 2002 and although the weir remained intact, some adults were able to swim undetected through the weir. Despite damage to the weir, trap tenders captured 167 adult steelhead, the most fish since 1993. The maximum likelihood estimate of adult steelhead escapement was 242. A screw trap has been operated annually in Fish Creek since 1994 to estimate the number of emigrating parr and smolts. I estimated that 18,687 juvenile steelhead emigrated from Fish Creek in 2002, the lowest number of migrants since 1998. SSS crews snorkeled three streams in the Selway River drainage and 10 streams in the Lochsa River drainage to estimate juvenile steelhead densities. The densities of age-1 steelhead parr declined in all streams compared to the densities observed in 2001. The age-1 densities in Fish Creek and Gedney Creek were the lowest observed since this project began monitoring those populations in 1994. The SSS crews and other cooperators tagged more than 12,000 juvenile steelhead with passive integrated transponder (PIT) tags in 2002. In 2002, technicians mounted and aged steelhead scales that were collected from 1998 to 2001. A consensus was reached among technicians for age of steelhead juveniles from Fish Creek. Scales that were collected in other streams were aged by at least one reader; however, before a final age is assigned to these fish, the age needs to be verified by another reader and any age differences among readers resolved. Dr. Jennifer Nielsen, at the U.S. Geological Survey Alaska Biological Science Center, Anchorage continued the microsatellite analysis of the steelhead tissue samples that were collected from Idaho streams in 2000. Two thousand eighteen samples from 40 populations were analyzed. The analysis of the remaining 39 populations is continuing.

  12. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  13. Overview of the design, construction, and operation of interstate liquid petroleum pipelines.

    SciTech Connect (OSTI)

    Pharris, T. C.; Kolpa, R. L.

    2008-01-31

    The U.S. liquid petroleum pipeline industry is large, diverse, and vital to the nation's economy. Comprised of approximately 200,000 miles of pipe in all fifty states, liquid petroleum pipelines carried more than 40 million barrels per day, or 4 trillion barrel-miles, of crude oil and refined products during 2001. That represents about 17% of all freight transported in the United States, yet the cost of doing so amounted to only 2% of the nation's freight bill. Approximately 66% of domestic petroleum transport (by ton-mile) occurs by pipeline, with marine movements accounting for 28% and rail and truck transport making up the balance. In 2004, the movement of crude petroleum by domestic federally regulated pipelines amounted to 599.6 billion tonmiles, while that of petroleum products amounted to 315.9 billion ton-miles (AOPL 2006). As an illustration of the low cost of pipeline transportation, the cost to move a barrel of gasoline from Houston, Texas, to New York Harbor is only 3 cents per gallon, which is a small fraction of the cost of gasoline to consumers. Pipelines may be small or large, up to 48 inches in diameter. Nearly all of the mainline pipe is buried, but other pipeline components such as pump stations are above ground. Some lines are as short as a mile, while others may extend 1,000 miles or more. Some are very simple, connecting a single source to a single destination, while others are very complex, having many sources, destinations, and interconnections. Many pipelines cross one or more state boundaries (interstate), while some are located within a single state (intrastate), and still others operate on the Outer Continental Shelf and may or may not extend into one or more states. U.S. pipelines are located in coastal plains, deserts, Arctic tundra, mountains, and more than a mile beneath the water's surface of the Gulf of Mexico (Rabinow 2004; AOPL 2006). The network of crude oil pipelines in the United States is extensive. There are approximately 55,000 miles of crude oil trunk lines (usually 8 to 24 inches in diameter) in the United States that connect regional markets. The United States also has an estimated 30,000 to 40,000 miles of small gathering lines (usually 2 to 6 inches in diameter) located primarily in Texas, Oklahoma, Louisiana, and Wyoming, with small systems in a number of other oil producing states. These small lines gather the oil from many wells, both onshore and offshore, and connect to larger trunk lines measuring 8 to 24 inches in diameter. There are approximately 95,000 miles of refined products pipelines nationwide. Refined products pipelines are found in almost every state in the United States, with the exception of some New England states. These refined product pipelines vary in size from relatively small, 8- to 12-inch-diameter lines, to up to 42 inches in diameter. The overview of pipeline design, installation, and operation provided in the following sections is only a cursory treatment. Readers interested in more detailed discussions are invited to consult the myriad engineering publications available that provide such details. The two primary publications on which the following discussions are based are: Oil and Gas Pipeline Fundamentals (Kennedy 1993) and the Pipeline Rules of Thumb Handbook (McAllister 2002). Both are recommended references for additional reading for those requiring additional details. Websites maintained by various pipeline operators also can provide much useful information, as well as links to other sources of information. In particular, the website maintained by the U.S. Department of Energy's Energy Information Administration (EIA) (http://www.eia.doe.gov) is recommended. An excellent bibliography on pipeline standards and practices, including special considerations for pipelines in Arctic climates, has been published jointly by librarians for the Alyeska Pipeline Service Company (operators of the Trans-Alaska Pipeline System [TAPS]) and the Geophysical Institute/International Arctic Research Center, both located in Fairbanks (Barboza and Trebelhorn 2001)