National Library of Energy BETA

Sample records for analyzing window thermal

  1. WINDOW 4. 0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  2. WINDOW 4.0: Program description. A PC program for analyzing the thermal performance of fenestration products

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    WINDOW 4.0 is a publicly available IBM PC compatible computer program developed by the Windows and Daylighting Group at Lawrence Berkeley Laboratory for calculating total window thermal performance indices (e.g. U-values, solar heat gain coefficients, shading coefficients, and visible transmittances). WINDOW 4.0 provides a versatile heat transfer analysis method consistent with the rating procedure developed by the National Fenestration Rating Council (NFRC). The program can be used to design and develop new products, to rate and compare performance characteristics of all types of window products, to assist educators in teaching heat transfer through windows, and to help public officials in developing building energy codes. WINDOW 4.0 is a major revision to WINDOW 3.1 and we strongly urge all users to read this manual before using the program. Users who need professional assistance with the WINDOW 4.0 program or other window performance simulation issues are encouraged to contact one or more of the NFRC-accredited Simulation Laboratories. A list of these accredited simulation professionals is available from the NFRC.

  3. Thermally insulated window sash construction for a casement window

    SciTech Connect (OSTI)

    Biro, A.J.

    1987-09-01

    A window sash member is described comprising: first and second generally parallel sidewalls; first and second spaced, generally parallel transverse walls connecting the first and second sidewalls, extending between and oriented generally perpendicular to the first and second sidewalls to define a first hollow chamber; a third transverse wall, located without the first hollow chamber adjacent to and generally parallel to the first transverse wall, extending from the first sidewall and terminating short of the second sidewall; a first interior wall extending from the third transverse wall to the first transverse wall and oriented generally parallel to the first sidewall to define a second hollow chamber; a fourth transverse wall, located without the first hollow chamber adjacent to and generally to the second transverse wall, extending from the first sidewall and terminating short of the second sidewall; and a second interior wall extending from the fourth transverse wall to the second transverse wall and oriented generally parallel to the second sidewall to define a third hollow chamber.

  4. Laser window with annular grooves for thermal isolation

    DOE Patents [OSTI]

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  5. Electrostatic analyzer measurements of ionospheric thermal ion populations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, P. A.; Lynch, K. A.

    2016-07-09

    Here, we define the observational parameter regime necessary for observing low-altitude ionospheric origins of high-latitude ion up ow/out ow. We present measurement challenges and identify a new analysis technique which mitigates these impediments. To probe the initiation of auroral ion up ow, it is necessary to examine the thermal ion population at 200{350 km, where typical thermal energies are tenths of eV. Interpretation of the thermal ion distribution function measurement requires removal of payload sheath and ram effects. We use a 3-D Maxwellian model to quantify how observed ionospheric parameters such as density, temperature, and flows affect in situ measurementsmore » of the thermal ion distribution function. We define the viable acceptance window of a typical top-hat electrostatic analyzer in this regime and show that the instrument's energy resolution prohibits it from directly observing the shape of the particle spectra. To extract detailed information about measured particle population, we define two intermediate parameters from the measured distribution function, then use a Maxwellian model to replicate possible measured parameters for comparison to the data. Liouville's theorem and the thin-sheath approximation allow us to couple the measured and modeled intermediate parameters such that measurements inside the sheath provide information about plasma out- side the sheath. We apply this technique to sounding rocket data to show that careful windowing of the data and Maxwellian models allows for extraction of the best choice of geophysical parameters. More widespread use of this analysis technique will help our community expand its observational database of the seed regions of ionospheric outflows.« less

  6. Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Image courtesy of Alcoa and BTO Peer Review. Image courtesy of Alcoa and BTO Peer Review. Lead Performer: Alcoa - Pittsburgh, PA DOE Funding: $1,123,838 Cost Share: $280,960 Project Term: October 2014 - September 2016 Funding Opportunity: Building Energy Efficiency Frontiers and Incubator Technologies (BENEFIT) - 2014

  7. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wallmore » allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.« less

  8. Thermal Stress in HFEF Hot Cell Windows Due to an In-Cell Metal Fire

    SciTech Connect (OSTI)

    Solbrig, Charles W.; Warmann, Stephen A.

    2016-01-01

    This work investigates an accident during the pyrochemical extraction of Uranium and Plutonium from PWR spent fuel in an argon atmosphere hot cell. In the accident, the heavy metals (U and Pu) being extracted are accidentally exposed to air from a leaky instrument penetration which goes through the cell walls. The extracted pin size pieces of U and Pu metal readily burn when exposed to air. Technicians perform the electrochemical extraction using manipulators through a 4 foot thick hot cell concrete wall which protects them from the radioactivity of the spent fuel. Four foot thick windows placed in the wall allow the technicians to visually control the manipulators. These windows would be exposed to the heat of the metal fire. As a result, this analysis determines if the thermal stress caused by the fire would crack the windows and if the heat would degrade the window seals allowing radioactivity to escape from the cell.

  9. Characterization of Energy Savings and Thermal Comfort Improvements Derived from Using Interior Storm Windows

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2013-09-30

    This field study of a single historic home in Seattle, WA documents the performance of Indow Windows’s interior storm window inserts. Energy use and the temperature profile of the house were monitored before and after the installation of the window inserts and changes in the two recorded metrics were examined. Using the defined analysis approach, it was determined that the interior storm windows produced a 22% reduction of the HVAC energy bill and had an undetermined effect on the thermal comfort in the house. Although there was no measurable changes in the thermal comfort of the house, the occupant noted the house to be “warmer in the winter and cooler in the summer” and that the “temperatures are more even (throughout the house).” The interior storm windows were found to be not cost effective, largely due to the retrofits completed on its heating system. However, if the economic analysis was conducted based on the old heating system, a 72% efficient oil fired furnace, the Indow Windows proved to be economical and had a simple payback period of 9.0 years.

  10. Experimental and Numerical Examination of the Thermal Transmittance of High Performance Window Frames

    SciTech Connect (OSTI)

    Gustavsen Ph.D., Arild; Goudey, Howdy; Kohler, Christian; Arasteh P.E., Dariush; Uvslokk, Sivert; Talev, Goce; Petter Jelle Ph.D., Bjorn

    2010-06-17

    While window frames typically represent 20-30percent of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows which incorporate very low conductance glazings. Developing low-conductance window frames requires accurate simulation tools for product research and development. The Passivhaus Institute in Germany states that windows (glazing and frames, combined) should have U-values not exceeding 0.80 W/(m??K). This has created a niche market for highly insulating frames, with frame U-values typically around 0.7-1.0 W/(m2 cdot K). The U-values reported are often based on numerical simulations according to international simulation standards. It is prudent to check the accuracy of these calculation standards, especially for high performance products before more manufacturers begin to use them to improve other product offerings. In this paper the thermal transmittance of five highly insulating window frames (three wooden frames, one aluminum frame and one PVC frame), found from numerical simulations and experiments, are compared. Hot box calorimeter results are compared with numerical simulations according to ISO 10077-2 and ISO 15099. In addition CFD simulations have been carried out, in order to use the most accurate tool available to investigate the convection and radiation effects inside the frame cavities. Our results show that available tools commonly used to evaluate window performance, based on ISO standards, give good overall agreement, but specific areas need improvement.

  11. Thermal and Lorentz Force Analysis of Beryllium Windows for the Rectilinear Muon Cooling Channel

    SciTech Connect (OSTI)

    Luo, Tianhuan; Li, D.; Virostek, S.; Palmer, R.; Stratakis, Diktys; Bowring, D.

    2015-06-01

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  12. Thermal and Lorentz force analysis of beryllium windows for a rectilinear muon cooling channel

    SciTech Connect (OSTI)

    Luo, T.; Stratakis, D.; Li, D.; Virostek, S.; Palmer, R. B.; Bowring, D.

    2015-05-03

    Reduction of the 6-dimensional phase-space of a muon beam by several orders of magnitude is a key requirement for a Muon Collider. Recently, a 12-stage rectilinear ionization cooling channel has been proposed to achieve that goal. The channel consists of a series of low frequency (325 MHz-650 MHz) normal conducting pillbox cavities, which are enclosed with thin beryllium windows (foils) to increase shunt impedance and give a higher field on-axis for a given amount of power. These windows are subject to ohmic heating from RF currents and Lorentz force from the EM field in the cavity, both of which will produce out of the plane displacements that can detune the cavity frequency. In this study, using the TEM3P code, we report on a detailed thermal and mechanical analysis for the actual Be windows used on a 325 MHz cavity in a vacuum ionization cooling rectilinear channel for a Muon Collider.

  13. Windows technology assessment

    SciTech Connect (OSTI)

    Baron, J.J.

    1995-10-01

    This assessment estimates that energy loss through windows is approximately 15 percent of all the energy used for space heating and cooling in residential and commercial buildings in New York State. The rule of thumb for the nation as a whole is about 25 percent. The difference may reflect a traditional assumption of single-pane windows while this assessment analyzed installed window types in the region. Based on the often-quoted assumption, in the United States some 3.5 quadrillion British thermal units (Btu) of primary energy, costing some $20 billion, is annually consumed as a result of energy lost through windows. According to this assessment, in New York State, the energy lost due to heat loss through windows is approximately 80 trillion Btu at an annual cost of approximately $1 billion.

  14. Spring Home Maintenance: Windows, Windows, Windows! | Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Home Maintenance: Windows, Windows, Windows Spring Home Maintenance: Windows, Windows, Windows April 26, 2013 - 11:42am Addthis Caulking is an easy way to reduce air ...

  15. Thermal and Optical Properties of Low-E Storm Windows and Panels

    SciTech Connect (OSTI)

    Culp, Thomas D.; Widder, Sarah H.; Cort, Katherine A.

    2015-07-17

    Installing low-emissivity (low-E) storm windows and panels over existing windows has been identified as a cost-effective new approach for improving the energy efficiency of existing buildings where window replacement is impractical or too expensive. As such, it is desirable to characterize the key energy performance properties of low-E storm windows and panels when installed over different types of existing primary windows. this paper presents the representative U-factors, solar heat gain coefficients (SGHCs) and visible transmittance properties of the combined assemblies of various storm windows and panel types installed over different primary windows.

  16. Analyzing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray XT5 Platforms Hongzhang Shan Future Technology Group, Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Haoqiang Jin NAS Division, NASA Arms Research Center, Moffett Field, CA 94035-1000 Karl Fuerlinger University of California at Berkeley, EECS Department, Computer Science Division Berkeley, CA 94720 Alice Koniges, Nicholas J. Wright NERSC, Lawrence Berkeley

  17. Atomic force microscope with combined FTIR-Raman spectroscopy having a micro thermal analyzer

    DOE Patents [OSTI]

    Fink, Samuel D.; Fondeur, Fernando F.

    2011-10-18

    An atomic force microscope is provided that includes a micro thermal analyzer with a tip. The micro thermal analyzer is configured for obtaining topographical data from a sample. A raman spectrometer is included and is configured for use in obtaining chemical data from the sample.

  18. Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost

    Broader source: Energy.gov [DOE]

    Say what you want about the joys of Jack Frost nipping at your nose, but when it comes to winter wonderlands, I like mine outdoors. Etching icy messages on the insides of my windows is not exactly cozy. Therefore, I'm thankful for technology that provides an efficient and effective barrier from inclement weather.

  19. Window Types | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Types Window Types A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto A wood-frame window with insulated window glazing. | Photo courtesy of ©iStockphoto/chandlerphoto Windows come in a number of different frame and glazing types. By combining an energy-efficient frame choice with a glazing type tailored to your climate and application, you can customize each of your home's windows. Types of Window Frames Improving the thermal resistance

  20. WINDOW-WALL INTERFACE CORRECTION FACTORS: THERMAL MODELING OF INTEGRATED FENESTRATION AND OPAQUE ENVELOPE SYSTEMS FOR IMPROVED PREDICTION OF ENERGY USE

    SciTech Connect (OSTI)

    Bhandari, Mahabir S; Ravi, Dr. Srinivasan

    2012-01-01

    The boundary conditions for thermal modeling of fenestration systems assume an adiabatic condition between the fenestration system installed and the opaque envelope system. This theoretical adiabatic boundary condition may not be appropriate owing to heat transfer at the interfaces, particularly for aluminum- framed windows affixed to metal- framed walls. In such scenarios, the heat transfer at the interface may increase the discrepancy between real world thermal indices and laboratory measured or calculated indices based on NFRC Rating System.This paper discusses the development of window-wall Interface Correction Factors (ICF) to improve energy impacts of building envelope systems

  1. BERKELEY LAB WINDOW

    SciTech Connect (OSTI)

    Curcija, Dragan Charlie; Zhu, Ling; Czarnecki, Stephen; Mitchell, Robin D.; Kohler, Christian; Vidanovic, Simon V.; Huizenga, Charlie

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records from IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of the

  2. BERKELEY LAB WINDOW

    Energy Science and Technology Software Center (OSTI)

    2015-03-06

    WINDOW features include: - Microsoft Windows TM interface - algorithms for the calculation of total fenestration product U-values and Solar Heat Gain Coefficient consistent with ASHRAE SPC 142, ISO 15099, and the National Fenestration Rating Council - a Condensation Resistance Index in accordance with the NFRC 500 Standard - and integrated database of properties - imports data from other LBNL window analysis software: - Import THERM file into the Frame Library - Import records frommore » IGDB and OPtics5 into the Glass Library for the optical properties of coated and uncoated glazings, laminates, and applied films. Program Capabilities WINDOW 7.2 offers the following features: The ability to analyze products made from any combination of glazing layers, gas layers, frames, spacers, and dividers under any environmental conditions and at any tilt; The ability to model complex glazing systems such as venetian blinds and roller shades. Directly accessible libraries of window system components, (glazing systems, glazing layers, gas fills, frame and divider elements), and environmental conditions; The choice of working in English (IP), or Systeme International (SI) units; The ability to specify the dimensions and thermal properties of each frame element (header, sills, jamb, mullion) in a window; A multi-band (wavelength-by-wavelength) spectral model; A Glass Library which can access spectral data files for many common glazing materials from the Optics5database; A night-sky radiative model; A link with the DOE-2.1E and Energy Plus building energy analysis program. Performance Indices and Other Results For a user-defined fenestration system and user-defined environmental conditions, WINDOW calculates: The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the complete window system; The U-value, solar heat gain coefficient, shading coefficient, and visible transmittance for the glazing system (center-of-glass values); The U-values of

  3. Expert Meeting Report: Windows Options for New and Existing Homes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... SHGC U Residential Energy Use (MBTUyr) vs Window Thermal Properties (U, SHGC) Specific windows plotted on ... between the window and added coverings such as storms (interior and ...

  4. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    LBNL’s has three facilities specifically dedicated to windows: the Optical Properties Laboratory, the Infrared Thermography Laboratory, and the Mobile Window Thermal Test Facility (MoWiTT). These...

  5. MULTICHANNEL ANALYZER

    DOE Patents [OSTI]

    Kelley, G.G.

    1959-11-10

    A multichannel pulse analyzer having several window amplifiers, each amplifier serving one group of channels, with a single fast pulse-lengthener and a single novel interrogation circuit serving all channels is described. A pulse followed too closely timewise by another pulse is disregarded by the interrogation circuit to prevent errors due to pulse pileup. The window amplifiers are connected to the pulse lengthener output, rather than the linear amplifier output, so need not have the fast response characteristic formerly required.

  6. Window Attachments

    Energy Savers [EERE]

    ... shades Surface applied film Cellular shade Window quilt Seasonal film kit Louvered blinds Roller shades Solar screens Cellular shades Surface applied films Exterior attachments ...

  7. Window Types

    Broader source: Energy.gov [DOE]

    By combining an energy-efficient frame choice with glazing materials for your climate, you can customize your home's windows and reduce your energy bills.

  8. Analyzing the Effects of Climate and Thermal Configuration on Community Energy Storage Systems (Presentation)

    SciTech Connect (OSTI)

    Neubauer, J.; Pesaran, A.; Coleman, D.; Chen, D.

    2013-10-01

    Community energy storage (CES) has been proposed to mitigate the high variation in output from renewable sources and reduce peak load on the electrical grid. Thousands of these systems may be distributed around the grid to provide benefits to local distribution circuits and to the grid as a whole when aggregated. CES must be low cost to purchase and install and also largely maintenance free through more than 10 years of service life to be acceptable to most utilities.Achieving the required system life time is a major uncertainty for lithium-ion batteries. The lifetime and immediate system performance of batteries can change drastically with battery temperature, which is a strong function of system packaging, local climate, electrical duty cycle, and other factors. In other Li-ion applications, this problem is solved via air or liquid heating and cooling systems that may need occasional maintenance throughout their service life. CES requires a maintenance-free thermal management system providing protection from environmental conditions while rejecting heat from a moderate electrical duty cycle. Thus, the development of an effective, low-cost, zero-maintenance thermal management system poses a challenge critical to the success of CES. NREL and Southern California Edison have collaborated to evaluate the long-term effectiveness of various CES thermal configurations in multiple climates by building a model of CES based on collected test data, integrating it with an NREL-developed Li-ion degradation model, and applying CES electrical duty cycles and historic location-specific meteorological data to forecast battery thermal response and degradation through a 10-year service life.

  9. CAVE WINDOW

    DOE Patents [OSTI]

    Levenson, M.

    1960-10-25

    A cave window is described. It is constructed of thick glass panes arranged so that interior panes have smaller windowpane areas and exterior panes have larger areas. Exterior panes on the radiation exposure side are remotely replaceable when darkened excessively. Metal shutters minimize exposure time to extend window life.

  10. Vacuum window glazings for energy-efficient buildings

    SciTech Connect (OSTI)

    Benson, D.K.; Smith, L.K.; Tracy, C.E.; Potter, T.; Christensen, C. ); Soule, D.E. )

    1990-05-01

    The technical feasibility of a patented, laser-welded, evacuated insulating window was studied. The window has two edge-sealed sheets of glass separated by 0.5-mm glass spheres spaced 30 mm apart in a regular array. A highly insulating frame is required and several designs were analyzed. The vacuum window's combination of high solar transmittance and low thermal conductance makes it superior to many other windows in cold climates. In the US Pacific Northwest, the vacuum window could save about 6 MJ of heating energy annually per square meter of window in comparison to conventional, double-glazed windows. A large, vacuum laser-welding facility was designed and installed to conduct glass welding experiments and to fabricate full-sized vacuum windows. Experiments confirmed the feasibility of laser-sealing glass in vacuum but identified two difficulties. Under some circumstances, bubbles of dissolved gases form during welding and weaken the seal. Glass also vaporizes and contaminates the laser beam steering mirror. A novel moving metal foil mirror was developed to circumvent the contamination problem, but it has not yet been used to complete welding experiments and fabricate full-sized vacuum windows. 63 refs., 53 figs., 19 tabs.

  11. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  12. Window shopping

    SciTech Connect (OSTI)

    Best, D.

    1990-03-01

    The author addresses the energy efficiency of windows and describes changes and new products available in this consumer information article. Experiments currently being done by Lawrence Berkeley Laboratory (LBL), Bonneville Power Authority and the Washington State Energy Office show that some of these superwindows collect more energy from the sun than they let escape from inside the home. One type of window in current production is the low-E (low-emissivity) and the IGUs (insulated glass units). Low-E techniques include glazing of the glass with various materials including polyester and metallic coatings. Other measures include filling the airspace in double pane windows with argon, aerogel or by creating a vacuum in the airspace. Another factor the author considers is ultraviolet light protection.

  13. Key Elements of and Materials Performance Targets for Highly Insulating Window Frames

    SciTech Connect (OSTI)

    Gustavsen, Arild; Grynning, Steinar; Arasteh, Dariush; Jelle, Bjorn Petter; Goudey, Howdy

    2011-03-28

    The thermal performance of windows is important for energy efficient buildings. Windows typically account for about 30-50 percent of the transmission losses though the building envelope, even if their area fraction of the envelope is far less. The reason for this can be found by comparing the thermal transmittance (U-factor) of windows to the U-factor of their opaque counterparts (wall, roof and floor constructions). In well insulated buildings the U-factor of walls, roofs an floors can be between 0.1-0.2 W/(m2K). The best windows have U-values of about 0.7-1.0. It is therefore obvious that the U-factor of windows needs to be reduced, even though looking at the whole energy balance for windows (i.e. solar gains minus transmission losses) makes the picture more complex.In high performance windows the frame design and material use is of utmost importance, as the frame performance is usually the limiting factor for reducing the total window U-factor further. This paper describes simulation studies analyzing the effects on frame and edge-of-glass U-factors of different surface emissivities as well as frame material and spacer conductivities. The goal of this work is to define materials research targets for window frame components that will result in better frame thermal performance than is exhibited by the best products available on the market today.

  14. Energy Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... They offer several advantages: Weather protection Added security No use of interior space No thermal shock to windows if left closed. Exterior shutters must be integrated into your ...

  15. Measurement of fenestration net energy performance: Considerations leading to development of a Mobile Window Thermal Test (MoWitt) facility

    SciTech Connect (OSTI)

    Klems, J.H.

    1988-08-01

    The authors present a detailed consideration of the energy flows entering a building space and the effect of random measurement errors on determining fenestration performance. Estimates of error magnitudes are made for a passive test cell; they show that a more accurate test facility is needed for reliable measurements on fenestration systems with thermal resistance 2-10 times that of single glazing or with shading coefficients less than 0.7. A test facility of this type, built at Lawrence Berkeley Laboratory, is described. The effect of random errors in this facility is discussed and computer calculations of its performance are presented. The discussion shows that, for any measurement facility, random errors are most serious in nighttime measurements, and systematic errors are most important in daytime measurements. It is concluded that, for this facility, errors from both sources should be small.

  16. High Performance Window Attachments

    Broader source: Energy.gov (indexed) [DOE]

    Statement: * A wide range of residential window attachments are available, but they ... to model wide range of window coverings * Performed window coverings ...

  17. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  18. Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  19. Window Industry Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2000-04-01

    The Window Industry Technology Roadmap looks at the trends in window design and installation in 2000 and projects trends for the future.

  20. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows Storm Windows An energy upgrade on this daycare center included interior storm windows because most of the windows are on the north elevation. | Photo courtesy of ...

  1. Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Efficient windows, doors, and skylights can reduce energy bills and improve the comfort of your home.

  2. Ars Technica: Analyzing the Internet of Things in San Ramon ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing the Internet of Things Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share...

  3. Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  4. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, William H.

    1986-01-01

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N.sub.2), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable oxygen obtained by decomposing the sample at 1135.degree. C., or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135.degree. C. as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N.sub.2, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  5. Oxygen analyzer

    DOE Patents [OSTI]

    Benner, W.H.

    1984-05-08

    An oxygen analyzer which identifies and classifies microgram quantities of oxygen in ambient particulate matter and for quantitating organic oxygen in solvent extracts of ambient particulate matter. A sample is pyrolyzed in oxygen-free nitrogen gas (N/sub 2/), and the resulting oxygen quantitatively converted to carbon monoxide (CO) by contact with hot granular carbon (C). Two analysis modes are made possible: (1) rapid determination of total pyrolyzable obtained by decomposing the sample at 1135/sup 0/C, or (2) temperature-programmed oxygen thermal analysis obtained by heating the sample from room temperature to 1135/sup 0/C as a function of time. The analyzer basically comprises a pyrolysis tube containing a bed of granular carbon under N/sub 2/, ovens used to heat the carbon and/or decompose the sample, and a non-dispersive infrared CO detector coupled to a mini-computer to quantitate oxygen in the decomposition products and control oven heating.

  6. Residential Windows and Window Coverings: A Detailed View of...

    Broader source: Energy.gov (indexed) [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households. residentialwindowscoverings.pdf ...

  7. Energy Savings from Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of window combinations with window attachments in typical residential buildings and in varied ... The most common and widely used types of attachments are window coverings ...

  8. Novel Thermal Break with Simplified Manufacturing for R7 Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Break with Simplified Manufacturing for R7 Commercial Windows Novel Thermal Break with Simplified Manufacturing for R7 Commercial Windows Lead Performer: Alcoa - ...

  9. ABSORPTION ANALYZER

    DOE Patents [OSTI]

    Brooksbank, W.A. Jr.; Leddicotte, G.W.; Strain, J.E.; Hendon, H.H. Jr.

    1961-11-14

    A means was developed for continuously computing and indicating the isotopic assay of a process solution and for automatically controlling the process output of isotope separation equipment to provide a continuous output of the desired isotopic ratio. A counter tube is surrounded with a sample to be analyzed so that the tube is exactly in the center of the sample. A source of fast neutrons is provided and is spaced from the sample. The neutrons from the source are thermalized by causing them to pass through a neutron moderator, and the neutrons are allowed to diffuse radially through the sample to actuate the counter. A reference counter in a known sample of pure solvent is also actuated by the thermal neutrons from the neutron source. The number of neutrons which actuate the detectors is a function of a concentration of the elements in solution and their neutron absorption cross sections. The pulses produced by the detectors responsive to each neu tron passing therethrough are amplified and counted. The respective times required to accumulate a selected number of counts are measured by associated timing devices. The concentration of a particular element in solution may be determined by utilizing the following relation: T2/Ti = BCR, where B is a constant proportional to the absorption cross sections, T2 is the time of count collection for the unknown solution, Ti is the time of count collection for the pure solvent, R is the isotopic ratlo, and C is the molar concentration of the element to be determined. Knowing the slope constant B for any element and when the chemical concentration is known, the isotopic concentration may be readily determined, and conversely when the isotopic ratio is known, the chemical concentrations may be determined. (AEC)

  10. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, Robert A.

    1984-01-01

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in "kit" form.

  11. Apparatus for insulating windows and the like

    DOE Patents [OSTI]

    Mitchell, R.A.

    1984-06-19

    Apparatus for insulating window openings through walls and the like includes a thermal shutter, a rail for mounting the shutter adjacent to the window opening and a coupling for connecting the shutter to the rail. The thermal shutter includes an insulated panel adhered to frame members which surround the periphery of the panel. The frame members include a hard portion for providing the frame and a soft portion for providing a seal with that portion of the wall adjacent to the periphery of the opening. The coupling means is preferably integral with the attachment rail. According to a preferred embodiment, the coupling means includes a continuous hinge of reduced thickness. The thermal shutter can be permanently attached, hinged, bi-folded, or sliding with respect to the window and wall. A distribution method is to market the apparatus in kit'' form. 11 figs.

  12. Measure Guideline. Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, John; Haglund, Kerry

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all U.S. climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The report also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well.

  13. Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Nils Petermann

    2010-02-28

    The project goals covered both the residential and commercial windows markets and involved a range of audiences such as window manufacturers, builders, homeowners, design professionals, utilities, and public agencies. Essential goals included: (1) Creation of 'Master Toolkits' of information that integrate diverse tools, rating systems, and incentive programs, customized for key audiences such as window manufacturers, design professionals, and utility programs. (2) Delivery of education and outreach programs to multiple audiences through conference presentations, publication of articles for builders and other industry professionals, and targeted dissemination of efficient window curricula to professionals and students. (3) Design and implementation of mechanisms to encourage and track sales of more efficient products through the existing Window Products Database as an incentive for manufacturers to improve products and participate in programs such as NFRC and ENERGY STAR. (4) Development of utility incentive programs to promote more efficient residential and commercial windows. Partnership with regional and local entities on the development of programs and customized information to move the market toward the highest performing products. An overarching project goal was to ensure that different audiences adopt and use the developed information, design and promotion tools and thus increase the market penetration of energy efficient fenestration products. In particular, a crucial success criterion was to move gas and electric utilities to increase the promotion of energy efficient windows through demand side management programs as an important step toward increasing the market share of energy efficient windows.

  14. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  15. Plasma window characterization

    SciTech Connect (OSTI)

    Krasik, Ya. E.; Gleizer, S.; Gurovich, V.; Kronhaus, I.; Hershcovitch, A.; Nozar, P.; Taliani, C.

    2007-03-01

    Parameters of an arc Ar plasma discharge used as a plasma window with a discharge current of {approx}50 A and a voltage of {approx}58 V are presented. It is shown that this arc discharge allows one to decrease the pressure at the low pressure end of the plasma window almost 380 times using relatively low pumping at the low pressure end of the plasma window. Calculations of the plasma parameters and their spatial distribution using a simple wall-stabilized arc model showed a satisfactory agreement with the experimentally obtained data. It is shown that a significant decrease in gas flow through the plasma window occurs due to the increase in plasma viscosity. An improvement of the plasma window ignition and some of its design aspects are described as well.

  16. The Efficient Windows Collaborative

    SciTech Connect (OSTI)

    Petermann, Nils

    2006-03-31

    The Efficient Windows Collaborative (EWC) is a coalition of manufacturers, component suppliers, government agencies, research institutions, and others who partner to expand the market for energy efficient window products. Funded through a cooperative agreement with the U.S. Department of Energy, the EWC provides education, communication and outreach in order to transform the residential window market to 70% energy efficient products by 2005. Implementation of the EWC is managed by the Alliance to Save Energy, with support from the University of Minnesota and Lawrence Berkeley National Laboratory.

  17. Thermal Imaging Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  18. Residential Windows and Window Coverings: A Detailed View of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior SEPTEMBER 2013 Prepared for: Building Technologies Office Office of Energy ...

  19. Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of Americas commercial building space.

  20. EERE Success Story—Pennsylvania: Window Technology First of Its Kind for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The Opti Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America's commercial building space.

  1. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1997-03-11

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly has a superconducting metal-ceramic design. The srf window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  2. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  3. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, H.L.; Elliott, T.S.

    1998-05-19

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The SRF window assembly has a superconducting metal-ceramic design. The SRF window assembly comprises a superconducting frame, a ceramic plate having a superconducting metallized area, and a superconducting eyelet for sealing plate into frame. The plate is brazed to eyelet which is then electron beam welded to frame. A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the SRF window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator. 11 figs.

  4. Windows, Doors, & Skylights

    Broader source: Energy.gov [DOE]

    Windows, doors and skylights affect home aesthetics as well as energy use. Learn how to choose products that allow you to use natural light without raising your heating and cooling costs.

  5. High Performance Window Retrofit

    SciTech Connect (OSTI)

    Shrestha, Som S; Hun, Diana E; Desjarlais, Andre Omer

    2013-12-01

    The US Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Traco partnered to develop high-performance windows for commercial building that are cost-effective. The main performance requirement for these windows was that they needed to have an R-value of at least 5 ft2 F h/Btu. This project seeks to quantify the potential energy savings from installing these windows in commercial buildings that are at least 20 years old. To this end, we are conducting evaluations at a two-story test facility that is representative of a commercial building from the 1980s, and are gathering measurements on the performance of its windows before and after double-pane, clear-glazed units are upgraded with R5 windows. Additionally, we will use these data to calibrate EnergyPlus models that we will allow us to extrapolate results to other climates. Findings from this project will provide empirical data on the benefits from high-performance windows, which will help promote their adoption in new and existing commercial buildings. This report describes the experimental setup, and includes some of the field and simulation results.

  6. Windows Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead Performer: Window Covering Manufacturing Association - New York, NY Core Research ... National Laboratory (LBNL) - Berkeley, CA Core Research Support for BTO WindowsEnvelope ...

  7. Storm Windows | Department of Energy

    Office of Environmental Management (EM)

    interior storm windows because most of the windows are on the north elevation. | Photo courtesy of Larry Kinney, Synergistic Building Technologies. An energy upgrade on this...

  8. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Windows provide views, daylighting, ventilation, and heat from the sun in the winter. ... Install ENERGY STAR-qualified windows and use curtains and shade to give your air ...

  9. Department of Energy Announces 14 New Projects for Window Efficiency...

    Office of Environmental Management (EM)

    ... The team's thermal barrier is based on liquid crystalline phases of nano-cellulose aerogel that have low-emissivity properties, which will help prevent heat loss through windows. ...

  10. Adaptive Liquid Crystal Windows

    SciTech Connect (OSTI)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. At a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft 1ft prototype panels for the worlds first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicrons patented e-Tint technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power

  11. Measure Guideline: Energy-Efficient Window Performance and Selection

    SciTech Connect (OSTI)

    Carmody, J.; Haglund, K.

    2012-11-01

    This document provides guidelines for the selection of energy-efficient windows in new and existing residential construction in all US climate zones. It includes information on window products, their attributes and performance. It provides cost/benefit information on window energy savings as well as information on non-energy benefits such as thermal comfort and reduced HVAC demands. The document also provides information on energy impacts of design decisions such as window orientation, total glazing area and shading devices and conditions. Information on resources for proper window installation is included as well. This document is for builders, homeowners, designers and anyone making decisions about selecting energy efficient window. It is intended to complement other Building America information and efforts.

  12. DIFFERENTIAL ANALYZER

    DOE Patents [OSTI]

    Sorensen, E.G.; Gordon, C.M.

    1959-02-10

    Improvements in analog eomputing machines of the class capable of evaluating differential equations, commonly termed differential analyzers, are described. In general form, the analyzer embodies a plurality of basic computer mechanisms for performing integration, multiplication, and addition, and means for directing the result of any one operation to another computer mechanism performing a further operation. In the device, numerical quantities are represented by the rotation of shafts, or the electrical equivalent of shafts.

  13. Building America Top Innovations 2013 Profile – Window Replacement, Rehabilitation, & Repair Guide

    SciTech Connect (OSTI)

    none,

    2013-09-01

    In this Top Innovation profile, Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  14. Superconductive radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry Lawrence; Elliott, Thomas S.

    1998-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  15. Superconducting radiofrequency window assembly

    DOE Patents [OSTI]

    Phillips, Harry L.; Elliott, Thomas S.

    1997-01-01

    The present invention is a superconducting radiofrequency window assembly for use in an electron beam accelerator. The srf window assembly (20) has a superconducting metal-ceramic design. The srf window assembly (20) comprises a superconducting frame (30), a ceramic plate (40) having a superconducting metallized area, and a superconducting eyelet (50) for sealing plate (40) into frame (30). The plate (40) is brazed to eyelet (50) which is then electron beam welded to frame (30). A method for providing a ceramic object mounted in a metal member to withstand cryogenic temperatures is also provided. The method involves a new metallization process for coating a selected area of a ceramic object with a thin film of a superconducting material. Finally, a method for assembling an electron beam accelerator cavity utilizing the srf window assembly is provided. The procedure is carried out within an ultra clean room to minimize exposure to particulates which adversely affect the performance of the cavity within the electron beam accelerator.

  16. Design of the beryllium window for Brookhaven Linac Isotope Producer

    SciTech Connect (OSTI)

    Nayak, S.; Mapes, M.; Raparia, D.

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  17. Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior

    Broader source: Energy.gov [DOE]

    Includes information about the installed base of residential windows and window coverings, and the operation of window coverings by households.

  18. Storm Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    If you have old windows in your home, replacing them with new, energy-efficient windows ... In general, plastics are most economical for people with small budgets or who live in ...

  19. Windows and Building Envelope Facilities

    Broader source: Energy.gov [DOE]

    The Department of Energy funds these three test national lab test facilities to do window and building envelope research.

  20. EERE Success Story—Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings

    Broader source: Energy.gov [DOE]

    The OptiQ™ Ultra Thermal Window series introduces new high-performing windows to the commercial building industry and unlocks the potential to save energy in more of America’s commercial building space.

  1. Thermal Science Leaders Are Also Researchers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Science Leaders Are Also Researchers Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  2. Measuring, Analyzing and Improving Airline Efficiency | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measuring, Analyzing and Improving Airline Efficiency Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Measuring, Analyzing and Improving Airline Efficiency Michael Durling 2012.09.24 Hello - my name is Mike Durling. I manage the Supervisory Control & Systems Integration Lab at Global Research in Niskayuna, New York.

  3. Vacuum Insulation for Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and value propositions 19 Acknowledgements (Many People Providing Expertise) * Michele Olsen and Phil Parilla: Thermal Conductivity Measurements * Chaiwat Engtrakul and Robert ...

  4. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Window treatments or coverings can reduce heat loss in the winter and heat gain in the ...

  5. Energy-Efficient Windows | Department of Energy

    Energy Savers [EERE]

    by adding storm windows, caulking and weatherstripping, and using window treatments or coverings. ... Links ENERGY STAR Residential Windows, Doors and Skylights Product Ratings - ...

  6. Windows and Building Envelope | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 27, 2014 Research and Development Roadmap: Windows and Building Envelope November 26, 2013 Residential Windows and Window Coverings: A Detailed View of the Installed Base ...

  7. PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  8. Optical analyzer

    DOE Patents [OSTI]

    Hansen, A.D.

    1987-09-28

    An optical analyzer wherein a sample of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter is placed in a combustion tube, and light from a light source is passed through the sample. The temperature of the sample is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample is detected as the temperature is raised. A data processor, differentiator and a two pen recorder provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample. These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample. Additional information is obtained by repeating the run in different atmospheres and/or different rates or heating with other samples of the same particulate material collected on other filters. 7 figs.

  9. Proton irradiation damage of an annealed Alloy 718 beam window

    SciTech Connect (OSTI)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  10. Proton irradiation damage of an annealed Alloy 718 beam window

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; et al

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less

  11. Predicting window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.

    1995-07-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining window U-factors, there has been little work to date on using numerical methods to predict condensation potential. It is, perhaps, of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a preliminary step to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and inferior indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building materials, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products, as part of its mandate from the Department of Energy. A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing, to reduce the cost and time required for implementation and increase the flexibility of the rating method. This article outlines the necessary components in the application of numerical methods for evaluating condensation in fenestration products, and describes the status of the development of these methods. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products. Much of the technical discussion in this article can be found in ASHRAE Transactions.

  12. Optical analyzer

    DOE Patents [OSTI]

    Hansen, Anthony D.

    1989-01-01

    An optical analyzer (10) wherein a sample (19) of particulate matter, and particularly of organic matter, which has been collected on a quartz fiber filter (20) is placed in a combustion tube (11), and light from a light source (14) is passed through the sample (19). The temperature of the sample (19) is raised at a controlled rate and in a controlled atmosphere. The magnitude of the transmission of light through the sample (19) is detected (18) as the temperature is raised. A data processor (23), differentiator (28) and a two pen recorder (24) provide a chart of the optical transmission versus temperature and the rate of change of optical transmission versus temperature signatures (T and D) of the sample (19). These signatures provide information as to physical and chemical processes and a variety of quantitative and qualitative information about the sample (19). Additional information is obtained by repeating the run in different atmospheres and/or different rates of heating with other samples of the same particulate material collected on other filters.

  13. Determining window solar heat gain coefficient

    SciTech Connect (OSTI)

    Harrison, S.J.; Wonderen, S.J. van . Solar Calorimetry Lab.)

    1994-08-01

    The solar heat gain characteristics of fenestration systems impact daytime building energy performance, occupant comfort and utility load demands. A measure of the fraction of available solar energy entering a building interior per unit window area is defined as the solar heat gain coefficient (SHGC). Together with a window's thermal transmittance (U-value), the SHGC is used to compare fenestration products, and it allows for the calculation of energy rating number and annual energy performance. The need to measure and compared advances in window technology has led to the development of experimental and analytical methods for the determination of SHGC performance. Several test facilities currently or previously capable of performing SHGC measurements exist worldwide. Results experimentally determined using these facilities have provided design data for handbook tables, and have been instrumental in the development and validation of predictive analytical methods and computer simulation tools. However, these facilities have operated without a standard test procedure for SHGC performance. Consequently, recent efforts have been focused on developing consensus test procedures for the evaluation of window energy performance.

  14. Windows on the axion

    SciTech Connect (OSTI)

    Turner, M.S.

    1989-04-01

    Peccei-Quinn symmetry with attendant axion is a most compelling, and perhaps the most minimal, extension of the standard model, as it provides a very elegant solution to the nagging strong CP-problem associated with the THETA vacuum structure of QCD. However, particle physics gives little guidance as to the axion mass; a priori, the plausible values span the range: 10/sup /minus/12/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup 6/ eV, some 18 orders-of-magnitude. Axions have a host of interesting astrophysical and cosmological effects, including, modifying the evolution of stars of all types (our sun, red giants, white dwarfs, and neutron stars), contributing significantly to the mass density of the Universe today, and producing detectable line radiation through the decays of relic axions. Consideration of these effects has probed 14 orders-of-magnitude in axion mass, and has left open only two windows for further exploration: 10/sup /minus/6/ eV /approx lt/ m/sub a/ /approx lt/ 10/sup /minus/3/ eV and 1 eV /approx lt/ m/sub a/ /approx lt/ 5 eV (hadronic axions only). Both these windows are accessible to experiment, and a variety of very interesting experiments, all of which involve ''heavenly axions,'' are being planned or are underway. 58 refs., 6 figs., 1 tab.

  15. Turning windows into solar generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turning windows into solar generators Turning windows into solar generators A simple filtration process helped Rice University researchers create flexible, wafer-scale films of highly aligned and closely packed carbon nanotubes. August 8, 2016 Turning windows into solar generators UbiQD founder and President Hunter McDaniel shows quantum dots dissolved in a liquid solution that absorbs ultraviolet light and converts the energy into emitted light of different colors. CREDIT: Courtesy of UbiQD

  16. Window Types | Department of Energy

    Office of Environmental Management (EM)

    Tints Heat-absorbing window glazing contains special tints that change the color of the glass. Tinted glass absorbs a large fraction of the incoming solar radiation...

  17. Tips: Windows | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    attractive features. Windows provide views, daylighting, ventilation, and heat from the sun in the winter. Unfortunately, they can also account for 10% to 25% of your heating bill...

  18. Radiation damage in diagnostic window materials for the TFTR

    SciTech Connect (OSTI)

    Primak, W.

    1981-07-01

    The general problem of evaluating diagnostic window materials for the TFTR at the tank wall location is described. Specific evaluations are presented for several materials: vitreous silica, crystal quartz, sapphire, zinc selenide, and several fluorides: lithium fluoride, magnesium fluoride, and calcium fluoride; and seal glasses are discussed. The effects of the neutrons will be minimal. The major problems arise from the high flux of ionizing radiation, mainly the soft x rays which are absorbed near the surface of the materials. Additionally, this large energy deposition causes a significant thermal pulse with attendant thermal stresses. It is thus desirable to protect the windows with cover slips where this is feasible or to reduce the incident radiation by mounting the windows on long pipes. A more detailed summary is given at the end of this report.

  19. Energy performance analysis of prototype electrochromic windows

    SciTech Connect (OSTI)

    Sullivan, R.; Rubin, M.; Selkowitz, S.

    1996-12-01

    This paper presents the results of a study investigating the energy performance of three newly developed prototype electrochromic devices. The DOE-2.1 E energy simulation program was used to analyze the annual cooling, lighting, and total electric energy use and peak demand as a function of window type and size. The authors simulated a prototypical commercial office building module located in the cooling-dominated locations of Phoenix, AZ and Miami, FL. Heating energy use was also studied in the heating-dominated location of Madison, WI. Daylight illuminance was used to control electrochromic state-switching. Two types of window systems were analyzed; i.e., the outer pane electrochromic glazing was combined with either a conventional low-E or a spectrally selective inner pane. The properties of the electrochromic glazings are based on measured data of new prototypes developed as part of a cooperative DOE-industry program. The results show the largest difference in annual electric energy performance between the different window types occurs in Phoenix and is about 6.5 kWh/m{sup 2} floor area (0.60 kWh/ft{sup 2}) which can represent a cost of about $.52/m{sup 2} ($.05/ft{sup 2}) using electricity costing $.08/kWh. In heating-dominated locations, the electrochromic should be maintained in its bleached state during the heating season to take advantage of beneficial solar heat gain which would reduce the amount of required heating. This also means that the electrochromic window with the largest solar heat gain coefficient is best.

  20. X-Windows Acceleration via NX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Windows Acceleration via NX X-Windows Acceleration via NX May 12, 2011 by Francesca Verdier NX is a computer program that handles remote X-Windows connections. It can greatly...

  1. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  2. Tips: Windows | Department of Energy

    Office of Environmental Management (EM)

    Choose high-performance windows that have at least two panes of glass and a low-e coating. Choose a low U-factor for better insulation in colder climates; the U-factor is the...

  3. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E.

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  4. A window on urban sustainability

    SciTech Connect (OSTI)

    Stigt, Rien van; Driessen, Peter P.J.; Spit, Tejo J.M.

    2013-09-15

    Sustainable urban development requires the integration of environmental interests in urban planning. Although various methods of environmental assessment have been developed, plan outcomes are often disappointing due to the complex nature of decision-making in urban planning, which takes place in multiple arenas within multiple policy networks involving diverse stakeholders. We argue that the concept of ‘decision windows’ can structure this seemingly chaotic chain of interrelated decisions. First, explicitly considering the dynamics of the decision-making process, we further conceptualized decision windows as moments in an intricate web of substantively connected deliberative processes where issues are reframed within a decision-making arena, and interests may be linked within and across arenas. Adopting this perspective in two case studies, we then explored how decision windows arise, which factors determine their effectiveness and how their occurrence can be influenced so as to arrive at more sustainable solutions. We conclude that the integration of environmental interests in urban planning is highly dependent on the ability of the professionals involved to recognize and manipulate decision windows. Finally, we explore how decision windows may be opened. -- Highlights: • Decision-making about sustainable urban development occurs in networks. • The concept of ‘decision windows’ was further elaborated. • Decision windows help understand how environmental interests enter decision-making. • Decision windows can, to some extent, be influenced.

  5. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  6. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. You are accessing a document ...

  7. Window taper functions for subaperture processing. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Window taper functions for subaperture processing. Citation Details In-Document Search Title: Window taper functions for subaperture processing. It is well known that the spectrum ...

  8. Atmospheric Pressure Deposition for Electrochromic Windows |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows ...

  9. Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    in your home involves design, selection, and installation. Design Before selecting new windows for your home, determine what types of windows will work best and where to...

  10. Energy Efficient Window Treatments | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    You can choose window treatments or coverings not only for decoration but also for saving energy. ... Federal incentives are available for efficient residential windows, doors, or ...

  11. Performance of a multifunctional PV/T hybrid solar window

    SciTech Connect (OSTI)

    Davidsson, Henrik; Perers, Bengt; Karlsson, Bjoern

    2010-03-15

    A building-integrated multifunctional PV/T solar window has been developed and evaluated. It is constructed of PV cells laminated on solar absorbers placed in a window behind the glazing. To reduce the cost of the solar electricity, tiltable reflectors have been introduced in the construction to focus radiation onto the solar cells. The reflectors render the possibility of controlling the amount of radiation transmitted into the building. The insulated reflectors also reduce the thermal losses through the window. A model for simulation of the electric and hot water production was developed. The model can perform yearly energy simulations where different features such as shading of the cells or effects of the glazing can be included or excluded. The simulation can be run with the reflectors in an active, up right, position or in a passive, horizontal, position. The simulation program was calibrated against measurements on a prototype solar window placed in Lund in the south of Sweden and against a solar window built into a single family house, Solgaarden, in Aelvkarleoe in the central part of Sweden. The results from the simulation shows that the solar window annually produces about 35% more electric energy per unit cell area compared to a vertical flat PV module. (author)

  12. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, N.E.

    1984-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90/sup 0/ and 180/sup 0/ excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A uv-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  13. Rotor for centrifugal fast analyzers

    DOE Patents [OSTI]

    Lee, Norman E.

    1985-01-01

    The invention is an improved photometric analyzer of the rotary cuvette type, the analyzer incorporating a multicuvette rotor of novel design. The rotor (a) is leaktight, (b) permits operation in the 90.degree. and 180.degree. excitation modes, (c) is compatible with extensively used Centrifugal Fast Analyzers, and (d) can be used thousands of times. The rotor includes an assembly comprising a top plate, a bottom plate, and a central plate, the rim of the central plate being formed with circumferentially spaced indentations. A UV-transmitting ring is sealably affixed to the indented rim to define with the indentations an array of cuvettes. The ring serves both as a sealing means and an end window for the cuvettes.

  14. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly insulating Residential Windows Using Smart Automated Shading 2015 Building Technologies Office Peer Review Robert Hart, rghart@lbl.gov Stephen Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Kevin Gaul, GaulKJ@pella.com Pella Corporation Project Summary Timeline: Start date: 04/01/2013 Planned end date: 03/31/2016 Key Milestones 1. Measured thermal performance of static prototype windows is within 0.03 Btu/hr-ft2F (NFRC tolerance) of design specifications 09/30/2014

  15. Promising Technology: R-5 Window Replacements

    Broader source: Energy.gov [DOE]

    A significant amount of the energy used to heat and cool commercial buildings is lost through inefficient windows. Incorporating windows into a building that are resistant to heat transfer can significantly reduce the amount of energy that is lost through windows. R-values are an indication of how resistant a window is to heat transfer, and a larger R-value indicates a more insulating window. An R-5 window represents an efficient window, and has a larger R-value than what is required to qualify for ENERGY STAR.

  16. Thermal Imaging Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Butterfly-Inspired Design Enables Advanced Thermal Imaging Bryan Whalen in the Electronics Cooling Lab at GE Global Research recorded this thermo graphic video of a Morpho butterfly structure in response to heat pulses produced by breathing onto

  17. A generalized window energy rating system for typical office buildings

    SciTech Connect (OSTI)

    Tian, Cheng; Chen, Tingyao; Yang, Hongxing; Chung, Tse-ming

    2010-07-15

    Detailed computer simulation programs require lengthy inputs, and cannot directly provide an insight to relationship between the window energy performance and the key window design parameters. Hence, several window energy rating systems (WERS) for residential houses and small buildings have been developed in different countries. Many studies showed that utilization of daylight through elaborate design and operation of windows leads to significant energy savings in both cooling and lighting in office buildings. However, the current WERSs do not consider daylighting effect, while most of daylighting analyses do not take into account the influence of convective and infiltration heat gains. Therefore, a generalized WERS for typical office buildings has been presented, which takes all primary influence factors into account. The model includes embodied and operation energy uses and savings by a window to fully reflect interactions among the influence parameters. Reference locations selected for artificial lighting and glare control in the current common simulation practice may cause uncompromised conflicts, which could result in over- or under-estimated energy performance. Widely used computer programs, DOE2 and ADELINE, for hourly daylighting and cooling simulations have their own weaknesses, which may result in unrealistic or inaccurate results. An approach is also presented for taking the advantages of the both programs and avoiding their weaknesses. The model and approach have been applied to a typical office building of Hong Kong as an example to demonstrate how a WERS in a particular location can be established and how well the model can work. The energy effect of window properties, window-to-wall ratio (WWR), building orientation and lighting control strategies have been analyzed, and can be indicated by the localized WERS. An application example also demonstrates that the algebraic WERS derived from simulation results can be easily used for the optimal design of

  18. A first-generation prototype dynamic residential window

    SciTech Connect (OSTI)

    Kohler, Christian; Goudey, Howdy; Arasteh, Dariush

    2004-10-26

    We present the concept for a ''smart'' highly efficient dynamic window that maximizes solar heat gain during the heating season and minimizes solar heat gain during the cooling season in residential buildings. We describe a prototype dynamic window that relies on an internal shade, which deploys automatically in response to solar radiation and temperature. This prototype was built at Lawrence Berkeley National Laboratory from commercially available ''off-the-shelf'' components. It is a stand-alone, standard-size product, so it can be easily installed in place of standard window products. Our design shows promise for near-term commercialization. Improving thermal performance of this prototype by incorporating commercially available highly efficient glazing technologies could result in the first window that could be suitable for use in zero-energy homes. The unit's predictable deployment of shading could help capture energy savings that are not possible with manual shading. Installation of dynamically shaded windows in the field will allow researchers to better quantify the energy effects of shades, which could lead to increased efficiency in the sizing of heating, ventilation, and air conditioning equipment for residences.

  19. Accurately Analyzing Malaria Tests a Matter of Life and Death | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Accurately Analyzing Malaria Tests in Difficult Conditions is a Matter of Life and Death Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Accurately Analyzing Malaria Tests in Difficult Conditions is a Matter of Life and Death Ralf Lenigk 2015.02.13 Having lived for several years in Southeast Asia, I

  20. R-5 Highly-Insulating Windows and Low-e Storm Windows Volume Purchase Program

    SciTech Connect (OSTI)

    2009-09-30

    Introduces DOE's Building Technologies fenestration RD&D program, and describes the highly insulated R-5 Windows and Low-e Storm Windows Volume Purchase solicitation.

  1. Windows come to the workstation

    SciTech Connect (OSTI)

    Upton, M.

    1984-04-11

    Those making major buying decisions about software packages face a difficult process. The author looks at specific features, including windows and integrated packages. Everyone aspiring to be anyone in the packaged software business is touting an integrated system. Integrated software means a lot of things to a lot of people, but three hierarchical levels seem to stand out: the data integration level, the command structure level, and the modeless (or seamless) level.

  2. 13 EER Window Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 EER Window Air Conditioner 2014 Building Technologies Office Peer Review Broadway Apartment Building with WACs in NYC Pradeep Bansal, bansalpk@ornl.gov Oak Ridge National Laboratory Project Summary Timeline: Key Partners: Start date: October 1, 2011 Planned end date: September 30, 2015 Key Milestones: 1. Complete preliminary simulations to predict design point performance; March 31, 2012 2. Testing of Lab Breadboard; September 30 2013 3. Design production ready unit; March 31 2014 Budget:

  3. Electrochromic Windows: Advanced Processing Technology

    SciTech Connect (OSTI)

    SAGE Electrochromics, Inc

    2006-12-13

    This project addresses the development of advanced fabrication capabilities for energy saving electrochromic (EC) windows. SAGE EC windows consist of an inorganic stack of thin films deposited onto a glass substrate. The window tint can be reversibly changed by the application of a low power dc voltage. This property can be used to modulate the amount of light and heat entering buildings (or vehicles) through the glazings. By judicious management of this so-called solar heat gain, it is possible to derive significant energy savings due to reductions in heating lighting, and air conditioning (HVAC). Several areas of SAGEs production were targeted during this project to allow significant improvements to processing throughput, yield and overall quality of the processing, in an effort to reduce the cost and thereby improve the market penetration. First, the overall thin film process was optimized to allow a more robust set of operating points to be used, thereby maximizing the yield due to the thin film deposition themselves. Other significant efforts aimed at improving yield were relating to implementing new procedures and processes for the manufacturing process, to improve the quality of the substrate preparation, and the quality of the IGU fabrication. Furthermore, methods for reworking defective devices were developed, to enable devices which would otherwise be scrapped to be made into useful product. This involved the in-house development of some customized equipment. Finally, the improvements made during this project were validated to ensure that they did not impact the exceptional durability of the SageGlass products. Given conservative estimates for cost and market penetration, energy savings due to EC windows in residences in the US are calculated to be of the order 0.026 quad (0.0261015BTU/yr) by the year 2017.

  4. RUGGED CERAMIC WINDOW FOR RF APPLICATIONS

    SciTech Connect (OSTI)

    MIKE NEUBAUER

    2012-11-01

    High-current RF cavities that are needed for many accelerator applications are often limited by the power transmission capability of the pressure barriers (windows) that separate the cavity from the power source. Most efforts to improve RF window design have focused on alumina ceramic, the most popular historical choice, and have not taken advantage of new materials. Alternative window materials have been investigated using a novel Merit Factor comparison and likely candidates have been tested for the material properties which will enable construction in the self-matched window configuration. Window assemblies have also been modeled and fabricated using compressed window techniques which have proven to increase the power handling capability of waveguide windows. Candidate materials have been chosen to be used in fabricating a window for high power testing at Thomas Jefferson National Accelerator Facility.

  5. Rolling, Rolling, Rolling: Roller Window Shades

    Broader source: Energy.gov [DOE]

    There's a lot of talk these days about installing new energy-efficient windows. Thanks to a Federal tax credit of up to $1,500, window advertisements, both print and radio and TV broadcasting, are aplenty.

  6. Making Smart Windows Smarter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Windows Smarter Making Smart Windows Smarter April 5, 2011 - 2:00pm Addthis "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Roland Risser Roland Risser Deputy Assistant Secretary for Renewable Power (Acting) What does this project do? Pleotint, LLC has developed a

  7. Shading, Films and Window Attachments Market Report

    Broader source: Energy.gov [DOE]

    Shading, Films and Window Attachments (SFWA) Market Report, March 13, 2016, from the Consortium for Building Energy Innovation.

  8. Mickey Leland Energy Fellowship Report: Development of Advanced Window Coatings

    SciTech Connect (OSTI)

    Bolton, Ladena A.; Alvine, Kyle J.; Schemer-Kohrn, Alan L.

    2014-08-05

    Advanced fenestration technologies for light and thermal management in building applications are of great recent research interest for improvements in energy efficiency. Of these technologies, there is specific interest in advanced window coating technologies that have tailored control over the visible and infrared (IR) scattering into a room for both static and dynamic applications. Recently, PNNL has investigated novel subwavelength nanostructured coatings for both daylighting, and IR thermal management applications. Such coatings rese still in the early stages and additional research is needed in terms of scalable manufacturing. This project investigates aspects of a potential new methodology for low-cost scalable manufacture of said subwavelength coatings.

  9. High-Efficiency Window Air Conditioners - Building America Top...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Window Air Conditioners - Building America Top Innovation High-Efficiency Window Air Conditioners - Building America Top Innovation This photo shows a window air ...

  10. New Window Technology Saves Energy and the View | Department...

    Energy Savers [EERE]

    Window Technology Saves Energy and the View New Window Technology Saves Energy and the ... Laboratory are developing innovative new window technology that helps improve ...

  11. Highly Insulating Residential Windows Using Smart Automated Shading...

    Office of Environmental Management (EM)

    Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with ...

  12. Window, Door, and Skylight Products and Services | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Doors, and Skylights ENERGY STAR Learn how to save energy by sealing your home and choosing ENERGY STAR windows, doors, and skylights. Window Selection Tool Efficient Windows...

  13. Rigid thin windows for vacuum applications

    DOE Patents [OSTI]

    Meyer, Glenn Allyn; Ciarlo, Dino R.; Myers, Booth Richard; Chen, Hao-Lin; Wakalopulos, George

    1999-01-01

    A thin window that stands off atmospheric pressure is fabricated using photolithographic and wet chemical etching techniques and comprises at least two layers: an etch stop layer and a protective barrier layer. The window structure also comprises a series of support ribs running the width of the window. The windows are typically made of boron-doped silicon and silicon nitride and are useful in instruments such as electron beam guns and x-ray detectors. In an electron beam gun, the window does not impede the electrons and has demonstrated outstanding gun performance and survivability during the gun tube manufacturing process.

  14. Purged window apparatus utilizing heated purge gas

    DOE Patents [OSTI]

    Ballard, Evan O.

    1984-01-01

    A purged window apparatus utilizing tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows, and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube. Use of this apparatus prevents backstreaming of gases under investigation which are flowing past the mouth of the mounting tube which would otherwise deposit on the windows. Lengthy spectroscopic investigations and analyses can thereby be performed without the necessity of interrupting the procedures in order to clean or replace contaminated windows.

  15. Establishment of a Rating Program for Pre- and Post-Fabricated Windows

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Shah, B.; Bloyd, Cary N.

    2011-08-01

    This document was prepared to support the Smart Buildings-Material Testing and Rating Centres (SB-2) activity of the Asia-Pacific Economic Cooperation (APEC) Energy Smart Communities Initiative (ESCI). The ESCI was put forward by APEC Leaders at the 2010 meeting in Japan. APEC is the premier forum for facilitating economic growth, cooperation, trade and investment in the Asia-Pacific region. This document addresses the testing and certification of building products and equipment to support building energy codes, focusing specifically on energy-efficient factory-built windows. It sets forth a proposed structure for an APEC economy to establish a testing, rating, certification, and labeling program for efficient factory-built windows. In the context of this document, efficient windows would be windows made with insulating glass (IG) and an efficient frame assembly. The minimum efficiency metric (or thermal performance) for these windows is not quantified in this document and would generally be established by a governmental agency.

  16. State-of-the-Art Highly Insulating Window Frames - Research and Market Review

    SciTech Connect (OSTI)

    Gustavsen, Arild; Jelle, Bjorn Petter; Arasteh, Dariush; Kohler, Christian

    2007-01-01

    This document reports the findings of a market and research review related to state-of-the-art highly insulating window frames. The market review focuses on window frames that satisfy the Passivhaus requirements (window U-value less or equal to 0.8 W/m{sup 2}K ), while other examples are also given in order to show the variety of materials and solutions that may be used for constructing window frames with a low thermal transmittance (U-value). The market search shows that several combinations of materials are used in order to obtain window frames with a low U-value. The most common insulating material seems to be Polyurethane (PUR), which is used together with most of the common structural materials such as wood, aluminum, and PVC. The frame research review also shows examples of window frames developed in order to increase the energy efficiency of the frames and the glazings which the frames are to be used together with. The authors find that two main tracks are used in searching for better solutions. The first one is to minimize the heat losses through the frame itself. The result is that conductive materials are replaced by highly thermal insulating materials and air cavities. The other option is to reduce the window frame area to a minimum, which is done by focusing on the net energy gain by the entire window (frame, spacer and glazing). Literature shows that a window with a higher U-value may give a net energy gain to a building that is higher than a window with a smaller U-value. The net energy gain is calculated by subtracting the transmission losses through the window from the solar energy passing through the windows. The net energy gain depends on frame versus glazing area, solar factor, solar irradiance, calculation period and U-value. The frame research review also discusses heat transfer modeling issues related to window frames. Thermal performance increasing measures, surface modeling, and frame cavity modeling are among the topics discussed. The

  17. Low-Cost Solutions for Dynamic Window Material | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Atmospheric Pressure Deposition for Electrochromic Windows Nanolens Window Coatings for Daylighting Advanced Facades, Daylighting, and Complex Fenestration Systems

  18. Field Evaluation of Highly Insulating Windows in the Lab Homes: Winter Experiment

    SciTech Connect (OSTI)

    Parker, Graham B.; Widder, Sarah H.; Bauman, Nathan N.

    2012-06-01

    This field evaluation of highly insulating windows was undertaken in a matched pair of 'Lab Homes' located on the Pacific Northwest National Laboratory (PNNL) campus during the 2012 winter heating season. Improving the insulation and solar heat gain characteristics of a home's windows has the potential to significantly improve the home's building envelope and overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high quality installation and/or window retrofit will also minimize or reduce air leakage through the window cavity and thus also contribute to reduced heat loss in the winter and cooling loss in the summer. These improvements all contribute to decreasing overall annual home energy use. Occupant comfort (non-quantifiable) can also be increased by minimizing or eliminating the cold 'draft' (temperature) many residents experience at or near window surfaces that are at a noticeably lower temperature than the room air temperature. Lastly, although not measured in this experiment, highly insulating windows (triple-pane in this experiment) also have the potential to significantly reduce the noise transmittance through windows compared to standard double-pane windows. The metered data taken in the Lab Homes and data analysis presented here represent 70 days of data taken during the 2012 heating season. As such, the savings from highly insulating windows in the experimental home (Lab Home B) compared to the standard double-pane clear glass windows in the baseline home (Lab Home A) are only a portion of the energy savings expected from a year-long experiment that would include a cooling season. The cooling season experiment will take place in the homes in the summer of 2012, and results of that experiment will be reported in a subsequent report available to all stakeholders.

  19. Grid Window Tests on an 805-MHz Pillbox Cavity

    SciTech Connect (OSTI)

    Torun, Y.; Moretti, A.

    2015-06-01

    Muon ionization cooling channel designs use pillbox shaped RF cavities for improved power efficiency and fine control over phasing of individual cavities. For minimum scattering of the muon beam, the ends should be made out of a small thickness of high radiation length material. Good electrical and thermal conductivity are required to reduce power dissipation and remove the heat efficiently. Thin curved beryllium windows with TiN coating have been used successfully in the past. We have built an alternative win- dow set consisting of grids of tubes and tested these on a pillbox cavity previously used with both thin Be and thick Cu windows. The cavity was operated with a pair of grids as well as a single grid against a flat endplate.

  20. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming

    2010-02-23

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  1. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-10-04

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  2. Hybrid window layer for photovoltaic cells

    DOE Patents [OSTI]

    Deng, Xunming; Liao, Xianbo; Du, Wenhui

    2011-02-01

    A novel photovoltaic solar cell and method of making the same are disclosed. The solar cell includes: at least one absorber layer which could either be a lightly doped layer or an undoped layer, and at least a doped window-layers which comprise at least two sub-window-layers. The first sub-window-layer, which is next to the absorber-layer, is deposited to form desirable junction with the absorber-layer. The second sub-window-layer, which is next to the first sub-window-layer, but not in direct contact with the absorber-layer, is deposited in order to have transmission higher than the first-sub-window-layer.

  3. Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation from Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments.

  4. Laser sealed vacuum insulation window

    DOE Patents [OSTI]

    Benson, David K.; Tracy, C. Edwin

    1987-01-01

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the glass panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  5. Laser sealed vacuum insulating window

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1985-08-19

    A laser sealed evacuated window panel is comprised of two glass panes held spaced apart in relation to each other by a plurality of spherical glass beads and glass welded around the edges to provide an evacuated space between the glass panes that is completely glass sealed from the exterior. The glass welded edge seal is obtained by welding the edges of the glass panes together with a laser beam while the glass panes and bead spacers are positioned in a vacuum furnace and heated to the annealing point of the glass to avoid stress fracture in the area of the glass weld. The laser welding in the furnace can be directed around the perimeter of the galss panel by a combination of rotating the glass panel and linearly translating or aiming the laser with a relay mirror.

  6. Window Daylighting Demo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Facades, Daylighting, and Complex Fenestration Systems High Performance Window Attachments Figure 1: Measurement of performance of ceiling ...

  7. Piezoresponse Force Microscopy: A Window into Electromechanical...

    Office of Scientific and Technical Information (OSTI)

    Behavior at the Nanoscale Citation Details In-Document Search Title: Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale Authors: Bonnell, ...

  8. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings Addthis 1 of 5 An oxygen plasma etcher is ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  9. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... selective coatings filter out 40% to 70% of the heat normally transmitted through insulated window glass or glazing, while allowing the full amount of light to be transmitted. ...

  10. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The guides are available in the Building America Solution Center, an online resource of home construction how-to's. Search for "retrofit windows" and filter for "Guides" under ...

  11. Energy-Efficient Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fraction of incoming solar radiation through a window, reflective coatings reduce the transmission of solar radiation, and spectrally selective coatings filter out 40% to 70%...

  12. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012...

  13. Design of an Aluminum Proton Beam Window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    Janney, Jim G; McClintock, David A

    2012-01-01

    An aluminum proton beam window design is being considered at the Spallation Neutron Source primarily to increase the lifetime of the window, with secondary advantages of higher beam transport efficiency and lower activation. The window separates the core vessel, the location of the mercury target, from the vacuum of the accelerator, while withstanding the pass through of a proton beam of up to 2 MW with 1.0 GeV proton energy. The current aluminum alloy being investigated for the window material is 6061-T651 due to its combination of high strength, high thermal conductivity, and good resistance to aqueous corrosion, as well as demonstrated dependability in previous high-radiation environments. The window design will feature a thin plate with closely spaced cross drilled cooling holes. An analytical approach was used to optimize the dimensions of the window before finite element analysis was used to simulate temperature profiles and stress fields resulting from thermal and static pressure loading. The resulting maximum temperature of 60 C and Von Mises stress of 71 MPa are very low compared to allowables for Al 6061-T651. A significant challenge in designing an aluminum proton beam window for SNS is integrating the window with the current 316L SS shield blocks. Explosion bonding was chosen as a joining technique because of the large bonding area required. A test program has commenced to prove explosion bonding can produce a robust vacuum joint. Pending successful explosion bond testing, the aluminum proton beam window design will be proven acceptable for service in the Spallation Neutron Source.

  14. An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide

    SciTech Connect (OSTI)

    Stovall, Therese K; Petrie, Thomas; Kosny, Jan; Childs, Phillip W; Atchley, Jerald Allen; Hulvey, Kimberly D

    2007-11-01

    A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

  15. High-power RF window design for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Hodgson, J.; Ng, C.; Schwarz, H.; Skarpaas, K.; Kroll, N. |; Rimmer, R.

    1994-06-01

    We describe the design of RF windows to transmit up to 500 kW CW to the PEP-II 476 MHz cavities. RF analysis of the windows using high-frequency simulation codes are described. These provide information about the power loss distribution in the ceramic and tim matching properties of the structure. Finite-element analyses of the resulting temperature distribution and thermal stresses are presented. Fabrication methods including a proposed scheme to compensate for thermal expansion s are discussed and hardware tests to validate this approach are described. The effects of surface coatings (intentional and otherwise) and the application of air cooling are considered.

  16. Thermal and Lorentz Force Analysis of Beryllium Windows for the...

    Office of Scientific and Technical Information (OSTI)

    States) Sponsoring Org: USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25) Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS

  17. Butterfly-Inspired Thermal Imaging | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Butterfly-Inspired Design Enables Low-Cost Thermal Imaging Taking heat detection to a new level of sensitivity and speed, a team of scientists at GE Global Research, the technology development arm for the General Electric Company (NYSE: GE),

  18. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  19. Night-time naturally ventilated offices: Statistical simulations of window-use patterns from field monitoring

    SciTech Connect (OSTI)

    Yun, Geun Young; Steemers, Koen

    2010-07-15

    This paper investigates occupant behaviour of window-use in night-time naturally ventilated offices on the basis of a pilot field study, conducted during the summers of 2006 and 2007 in Cambridge, UK, and then demonstrates the effects of employing night-time ventilation on indoor thermal conditions using predictive models of occupant window-use. A longitudinal field study shows that occupants make good use of night-time natural ventilation strategies when provided with openings that allow secure ventilation, and that there is a noticeable time of day effect in window-use patterns (i.e. increased probability of action on arrival and departure). We develop logistic models of window-use for night-time naturally ventilated offices, which are subsequently applied to a behaviour algorithm, including Markov chains and Monte Carlo methods. The simulations using the behaviour algorithm demonstrate a good agreement with the observational data of window-use, and reveal how building design and occupant behaviour collectively affect the thermal performance of offices. They illustrate that the provision of secure ventilation leads to more frequent use of the window, and thus contributes significantly to the achievement of a comfortable indoor environment during the daytime occupied period. For example, the maximum temperature for a night-time ventilated office is found to be 3 C below the predicted value for a daytime-only ventilated office. (author)

  20. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    8 Typical Thermal Performance of Residential Windows, by Type Single-Glazed Clear Single-Glazed with Bronze Tint Double-Glazed Clear Double-Glazed with grey/Bronze Tint Double-Glazed with High Performance Tint Double-Glazed with High-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Moderate-Solar Gain Low-e Glass, Argon/Krypton Gas Double-Glazed with Low-Solar Gain Low-e (1) Glass, Argon/Krypton Gas Triple-Glazed (2) with High-Solar Gain Low-e Glass, Argon/Krypton Gas (3)

  1. Electrical analysis of wideband and distributed windows using time-dependent field codes

    SciTech Connect (OSTI)

    Shang, C.C.; Caplan, M.; Nickel, H.U.; Thumm, M. |

    1993-09-16

    Windows, which provide the barrier to maintain the vacuum envelope in a microwave tube, are critical components in high-average-power microwave sources, especially at millimeter wavelengths. As RF power levels approach the 100`s of kWs to 1 MW range (CW), the window assembly experiences severe thermal and mechanical stresses. Depending on the source, the bandwidth of the window may be less than 1 GHz for gyrotron oscillators or up to {approximately}20 GHz for the FOM Institute`s fast-tunable, free-electron-maser. The bandwidth requirements give rise to a number of window configurations where the common goal is locally distributed heat dissipation. In order to better understand the transmission and RF properties of these microwave structures, the authors use detailed time-dependent field solvers.

  2. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon

    SciTech Connect (OSTI)

    Zhang, Xue Wang, Yong; Fan, Junjie

    2015-02-15

    To suppress the surface multipactor phenomenon and improve the transmitting power of the high-power microwave window, the application of external magnetic fields is theoretically analyzed and simulated. A Monte Carlo algorithm is used to track the secondary electron trajectories and study the multipactor scenario on the surface of a cylinder window. It is confirmed that over-resonant magnetic fields (an external magnetic field whose magnitude is slightly greater than that of a resonant magnetic field) will generate a compensating trajectory and collision, which can suppress the secondary electron avalanche. The optimal value of this external magnetic field that will avoid the multipactor phenomenon on cylinder windows is discussed.

  3. Demonstration of the Performance of Highly Insulating (R-5) Windows in a Matched Pair of Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.

    2013-12-05

    Improving the insulation and solar heat gain characteristics of a homes windows has the potential to significantly improve the homes overall thermal performance by reducing heat loss (in the winter), and cooling loss and solar heat gain (in the summer) through the windows. A high-quality installation will also minimize or reduce air leakage through the building envelope, decreasing infiltration and thus contributing to reduced heat transmission through building envelope. These improvements all contribute to decreasing overall annual home energy use. In addition to improvements in energy efficiency, highly insulating windows can have important impacts on occupant comfort by minimizing or eliminating the cold draft many homeowners experience at or near window surfaces that are at a noticeably cooler than the room air temperature. Energy efficiency measures, such as highly insulating windows, also have the potential to decrease peak energy use in a home, which can lead to measurable peak load decreases for a utility service territory if implemented on a large scale. High-performance windows now feature triple-pane glass, double low-e coatings, and vinyl insulated frames to achieve U-factors as low as 0.2 , as compared to double-pane clear glass windows with a U-factor of 0.67, which are common in existing homes across the United States. The highly insulating windows (as they will be referred to in this document) are now available from several manufacturers and show promise to yield considerable energy savings and thermal comfort improvements in homes.

  4. Supersymmetric Dualities beyond the Conformal Window

    SciTech Connect (OSTI)

    Spiridonov, V. P.; Vartanov, G. S.

    2010-08-06

    Using the superconformal (SC) indices techniques, we construct Seiberg type dualities for N=1 supersymmetric field theories outside the conformal windows. These theories are physically distinguished by the presence of chiral superfields with small or negative R charges.

  5. NREL Electrochromic Window Research Wins Award

    SciTech Connect (OSTI)

    2011-01-01

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  6. Dynamically Responsive Infrared Window Coatings | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamically Responsive Infrared Window Coatings 1 of 5 An oxygen plasma etcher is used to ... Kyle Alvine checks on the progress of the plasma etch. Image: Pacific Northwest National ...

  7. NREL Electrochromic Window Research Wins Award

    ScienceCinema (OSTI)

    None

    2013-05-29

    Winners of the CO-LABS Governor's Award for High-Impact Research in Energy Efficiency, Dr. Satyen Deb at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) discovered that a small electrical charge can change the opacity of tungsten oxide from clear to tinted. He, Dr. Dane Gillaspie, and their fellow scientists at NREL then applied this knowledge to develop and transfer the technologies required to construct an electrochromic window, which can switch between clear and heavily tinted states. Electrochromic windows allow natural light in while adding tint to reduce summer heat and glare, and going clear to allow sunlight through in the winter. Broad adaptation of these windows could reduce US total energy use by four percent and reduce building cooling loads by 20%, much of this during expensive peak hours. Windows based on these discoveries are now being installed worldwide.

  8. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  9. Building Technologies Office: Emerging Technologies Windows and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cost premium <5ft 2 over standard window or blind installation including the cost of sensor and lighting Reduce lighting energy use by 50% for a 50-ft floor plate 7 Highlight of ...

  10. Science on the Hill: Turning windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: Turning windows into solar panels Turning windows into solar panels Working with quantum dots, researchers achieve a breakthrough in solar-concentrating technology that can turn windows into electric generators. February 7, 2016 solar panel windows The luminescent solar concentrator could turn any window into a daytime power source. Science on the Hill: Turning windows into solar panels Sunlight is abundant, free and for all practical purposes, eternal. Harvesting that light

  11. T-596: 0-Day Windows Network Interception Configuration Vulnerability |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 96: 0-Day Windows Network Interception Configuration Vulnerability T-596: 0-Day Windows Network Interception Configuration Vulnerability April 6, 2011 - 5:48am Addthis PROBLEM: 0-Day exploit of IPv4 and IPv6 mechanics and how it applies to Microsoft Windows Operating systems. PLATFORM: Microsoft Operating Systems (OS) Windows Vista, Windows 7, and Windows 2008 Server ABSTRACT: The links below describe a parasitic IPv6 layered over a native IPv4 network. This attack can

  12. Transparency: it's not just for windows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transparency: it's not just for windows Transparency: it's not just for windows Los Alamos National Laboratory's database of environmental monitoring data is now directly viewable by the public. March 20, 2012 Intellus environmental data The same environmental data used by LANL scientists can be viewed by anyone, anytime. Contact Environmental Communications & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email "The new system contains more than 9 million

  13. Vacuum Insulation for Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum Insulation for Windows Vacuum Insulation for Windows Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules deposited using dip coating, demonstrating virtually no visual degradation. Image of vacuum capsules in water (4 mg/ml) used for dip coating. Image of vacuum capsules deposited using

  14. Nanolens Window Coatings for Daylighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (1.07 MB) More Documents & Publications Dynamically Responsive Infrared Window Coatings Advanced Facades, Daylighting, and Complex Fenestration Systems Window Daylighting Demo

  15. Building America Top Innovations 2013 Profile … Window Replacement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Replacement, Rehabilitation, & Repair Guide TOP INNOVATOR: BSC Old single-glazed ... * Modifying the window sash - remove single- pane glass from the sash and replace ...

  16. Diffraction scattering computed tomography: a window into the...

    Office of Scientific and Technical Information (OSTI)

    tomography: a window into the structures of complex nanomaterials Citation Details In-Document Search Title: Diffraction scattering computed tomography: a window into the ...

  17. V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability V-217: Microsoft Windows NAT Driver ICMP Packet Handling Denial of Service Vulnerability August...

  18. Pennsylvania: New Series of Windows Has Potential to Save Energy...

    Office of Environmental Management (EM)

    New Series of Windows Has Potential to Save Energy for Commercial Buildings Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial Buildings March 6, 2014...

  19. Covered Product Category: Residential Windows, Doors, and Skylights...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition ...

  20. Energy-Efficient Window Treatments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window Treatments September 25, 2012 - 9:04am Addthis The awnings on this home shade the windows and generate electricity. | Photo courtesy of iStockphoto...

  1. Windows and Building Envelope Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy ...

  2. Low Cost Nanostructured Smart Window Coatings | Department of...

    Office of Environmental Management (EM)

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings Addthis 1 of 3 A Heliotrope scientist prepares slot die coater for solution based ...

  3. Windows and Envelope Subprogram Overview - 2016 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy ...

  4. Energy Savings from Window Attachments | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fenestration Software Tools Residential Windows and Window Coverings: A Detailed View of the Installed Base and User Behavior Energy Savings from ...

  5. Side-by-Side Field Evaluation of Highly Insulating Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Widder, Sarah H.; Parker, Graham B.; Baechler, Michael C.; Bauman, Nathan N.

    2012-08-01

    To examine the energy, air leakage, and thermal performance of highly insulating windows, a field evaluation was undertaken in a matched pair of all-electric, factory-built “Lab Homes” located on the Pacific Northwest National Laboratory (PNNL) campus in Richland, Washington. The “baseline” Lab Home B was retrofitted with “standard” double-pane clear aluminum-frame slider windows and patio doors, while the “experimental” Lab Home A was retrofitted with Jeld-Wen® triple-pane vinyl-frame slider windows and patio doors with a U-factor of 0.2 and solar heat gain coefficient of 0.19. To assess the window, the building shell air leakage, energy use, and interior temperatures of each home were compared during the 2012 winter heating and summer cooling seasons. The measured energy savings in Lab Home B averaged 5,821 watt-hours per day (Wh/day) during the heating season and 6,518 Wh/day during the cooling season. The overall whole-house energy savings of Lab Home B compared to Lab Home A are 11.6% ± 1.53% for the heating season and 18.4 ± 2.06% for the cooling season for identical occupancy conditions with no window coverings deployed. Extrapolating these energy savings numbers based on typical average heating degree days and cooling degree days per year yields an estimated annual energy savings of 12.2%, or 1,784 kWh/yr. The data suggest that highly insulating windows are an effective energy-saving measure that should be considered for high-performance new homes and in existing retrofits. However, the cost effectiveness of the measure, as determined by the simple payback period, suggests that highly insulating window costs continue to make windows difficult to justify on a cost basis alone. Additional reductions in costs via improvements in manufacturing and/or market penetration that continue to drive down costs will make highly insulating windows much more viable as a cost-effective energy efficiency measure. This study also illustrates that highly

  6. Microsoft PowerPoint - Window_Attachments-Webinar-Oct_28_2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... that examined 11 different typical residential window attachments including: - shades - ... window. * Energy-efficient window coverings can reduce heat loss through windows ...

  7. Micro acoustic spectrum analyzer

    DOE Patents [OSTI]

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  8. List mode multichannel analyzer

    DOE Patents [OSTI]

    Archer, Daniel E.; Luke, S. John; Mauger, G. Joseph; Riot, Vincent J.; Knapp, David A.

    2007-08-07

    A digital list mode multichannel analyzer (MCA) built around a programmable FPGA device for onboard data analysis and on-the-fly modification of system detection/operating parameters, and capable of collecting and processing data in very small time bins (<1 millisecond) when used in histogramming mode, or in list mode as a list mode MCA.

  9. Dynamic gating window for compensation of baseline shift in respiratory-gated radiation therapy

    SciTech Connect (OSTI)

    Pepin, Eric W.; Wu Huanmei; Shirato, Hiroki

    2011-04-15

    Purpose: To analyze and evaluate the necessity and use of dynamic gating techniques for compensation of baseline shift during respiratory-gated radiation therapy of lung tumors. Methods: Motion tracking data from 30 lung tumors over 592 treatment fractions were analyzed for baseline shift. The finite state model (FSM) was used to identify the end-of-exhale (EOE) breathing phase throughout each treatment fraction. Using duty cycle as an evaluation metric, several methods of end-of-exhale dynamic gating were compared: An a posteriori ideal gating window, a predictive trend-line-based gating window, and a predictive weighted point-based gating window. These methods were evaluated for each of several gating window types: Superior/inferior (SI) gating, anterior/posterior beam, lateral beam, and 3D gating. Results: In the absence of dynamic gating techniques, SI gating gave a 39.6% duty cycle. The ideal SI gating window yielded a 41.5% duty cycle. The weight-based method of dynamic SI gating yielded a duty cycle of 36.2%. The trend-line-based method yielded a duty cycle of 34.0%. Conclusions: Dynamic gating was not broadly beneficial due to a breakdown of the FSM's ability to identify the EOE phase. When the EOE phase was well defined, dynamic gating showed an improvement over static-window gating.

  10. GenoGraphics for OpenWindows trademark

    SciTech Connect (OSTI)

    Hagstrom, R.; Overbeek, R.; Price, M.; Zawada, D. ); Michaels, G.S.; Taylor, R. . Div. of Computer Research and Technology); Yoshida, Kaoru )

    1992-04-01

    GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem's OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.

  11. GenoGraphics for OpenWindows{trademark}

    SciTech Connect (OSTI)

    Hagstrom, R.; Overbeek, R.; Price, M.; Zawada, D.; Michaels, G.S.; Taylor, R.; Yoshida, Kaoru

    1992-04-01

    GenoGraphics is a generic utility for constructing and querying one-dimensional linear plots. The outgrowth of a request from Dr. Cassandra Smith for a tool to facilitate her genome mapping research. GenoGraphics development has benefited from a continued collaboration with her. Written in Sun Microsystem`s OpenWindows environment and the BTOL toolkit developed at Argonne National Laboratory. GenoGraphics provides an interactive, intuitive, graphical interface. Its features include: viewing multiple maps simultaneously, zooming, and querying by mouse clicking. By expediting plot generation, GenoGraphics gives the scientist more time to analyze data and a novel means for deducing conclusions.

  12. PULSE AMPLITUDE ANALYZER

    DOE Patents [OSTI]

    Greenblatt, M.H.

    1958-03-25

    This patent pertains to pulse amplitude analyzers for sorting and counting a serles of pulses, and specifically discloses an analyzer which ls simple in construction and presents the puise height distribution visually on an oscilloscope screen. According to the invention, the pulses are applied to the vertical deflection plates of an oscilloscope and trigger the horizontal sweep. Each pulse starts at the same point on the screen and has a maximum amplitude substantially along the same vertical line. A mask is placed over the screen except for a slot running along the line where the maximum amplitudes of the pulses appear. After the slot has been scanned by a photocell in combination with a slotted rotating disk, the photocell signal is displayed on an auxiliary oscilloscope as vertical deflection along a horizontal time base to portray the pulse amplitude distribution.

  13. PULSE AMPLITUDE ANALYZER

    DOE Patents [OSTI]

    Gray, G.W.; Jensen, A.S.

    1957-10-22

    A pulse-height analyzer system of improved design for sorting and counting a series of pulses, such as provided by a scintillation detector in nuclear radiation measurements, is described. The analyzer comprises a main transmission line, a cathode-ray tube for each section of the line with its deflection plates acting as the line capacitance; means to bias the respective cathode ray tubes so that the beam strikes a target only when a prearranged pulse amplitude is applied, with each tube progressively biased to respond to smaller amplitudes; pulse generating and counting means associated with each tube to respond when the beam is deflected; a control transmission line having the same time constant as the first line per section with pulse generating means for each tube for initiating a pulse on the second transmission line when a pulse triggers the tube of corresponding amplitude response, the former pulse acting to prevent successive tubes from responding to the pulse under test. This arrangement permits greater deflection sensitivity in the cathode ray tube and overcomes many of the disadvantages of prior art pulse-height analyzer circuits.

  14. Microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    An apparatus for packaging of microelectronic devices, including an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can include a cofired ceramic frame or body. The package can have an internal stepped structure made of one or more plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination.

  15. Hot Cell Window Shielding Analysis Using MCNP

    SciTech Connect (OSTI)

    Chad L. Pope; Wade W. Scates; J. Todd Taylor

    2009-05-01

    The Idaho National Laboratory Materials and Fuels Complex nuclear facilities are undergoing a documented safety analysis upgrade. In conjunction with the upgrade effort, shielding analysis of the Fuel Conditioning Facility (FCF) hot cell windows has been conducted. This paper describes the shielding analysis methodology. Each 4-ft thick window uses nine glass slabs, an oil film between the slabs, numerous steel plates, and packed lead wool. Operations in the hot cell center on used nuclear fuel (UNF) processing. Prior to the shielding analysis, shield testing with a gamma ray source was conducted, and the windows were found to be very effective gamma shields. Despite these results, because the glass contained significant amounts of lead and little neutron absorbing material, some doubt lingered regarding the effectiveness of the windows in neutron shielding situations, such as during an accidental criticality. MCNP was selected as an analysis tool because it could model complicated geometry, and it could track gamma and neutron radiation. A bounding criticality source was developed based on the composition of the UNF. Additionally, a bounding gamma source was developed based on the fission product content of the UNF. Modeling the windows required field inspections and detailed examination of drawings and material specifications. Consistent with the shield testing results, MCNP results demonstrated that the shielding was very effective with respect to gamma radiation, and in addition, the analysis demonstrated that the shielding was also very effective during an accidental criticality.

  16. Energy Performance Ratings for Windows, Doors, and Skylights

    Broader source: Energy.gov [DOE]

    Energy performance ratings make it easier to shop for energy-efficient windows, doors, and skylights.

  17. Highly Insulating Residential Windows Using Smart Automated Shading

    Broader source: Energy.gov [DOE]

    Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partner: Pella Windows - Pella, IA

  18. Fluorescence analyzer for lignin

    DOE Patents [OSTI]

    Berthold, John W.; Malito, Michael L.; Jeffers, Larry

    1993-01-01

    A method and apparatus for measuring lignin concentration in a sample of wood pulp or black liquor comprises a light emitting arrangement for emitting an excitation light through optical fiber bundles into a probe which has an undiluted sensing end facing the sample. The excitation light causes the lignin concentration to produce fluorescent emission light which is then conveyed through the probe to analyzing equipment which measures the intensity of the emission light. Measures a This invention was made with Government support under Contract Number DOE: DE-FC05-90CE40905 awarded by the Department of Energy (DOE). The Government has certain rights in this invention.

  19. Fractional channel multichannel analyzer

    DOE Patents [OSTI]

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  20. Fractional channel multichannel analyzer

    DOE Patents [OSTI]

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  1. Integral window hermetic fiber optic components

    SciTech Connect (OSTI)

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1994-12-31

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  2. Multiple capillary biochemical analyzer

    DOE Patents [OSTI]

    Dovichi, Norman J.; Zhang, Jian Z.

    1995-01-01

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibres to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands.

  3. Multiple capillary biochemical analyzer

    DOE Patents [OSTI]

    Dovichi, N.J.; Zhang, J.Z.

    1995-08-08

    A multiple capillary analyzer allows detection of light from multiple capillaries with a reduced number of interfaces through which light must pass in detecting light emitted from a sample being analyzed, using a modified sheath flow cuvette. A linear or rectangular array of capillaries is introduced into a rectangular flow chamber. Sheath fluid draws individual sample streams through the cuvette. The capillaries are closely and evenly spaced and held by a transparent retainer in a fixed position in relation to an optical detection system. Collimated sample excitation radiation is applied simultaneously across the ends of the capillaries in the retainer. Light emitted from the excited sample is detected by the optical detection system. The retainer is provided by a transparent chamber having inward slanting end walls. The capillaries are wedged into the chamber. One sideways dimension of the chamber is equal to the diameter of the capillaries and one end to end dimension varies from, at the top of the chamber, slightly greater than the sum of the diameters of the capillaries to, at the bottom of the chamber, slightly smaller than the sum of the diameters of the capillaries. The optical system utilizes optic fibers to deliver light to individual photodetectors, one for each capillary tube. A filter or wavelength division demultiplexer may be used for isolating fluorescence at particular bands. 21 figs.

  4. Window for radiation detectors and the like

    DOE Patents [OSTI]

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  5. Solar optical materials for innovative window design

    SciTech Connect (OSTI)

    Lampert, C.M.

    1982-08-01

    New and innovative optical materials and coatings can greatly improve the efficiency of window energy systems. These potential materials and coatings increase energy efficiency by reducing radiative losses in the infrared, or reducing visible reflection losses or controlling overheating due to solar gain. Current progress in heat mirror coatings for glass and polymeric substrates is presented. Highly doped semiconducting oxides and metal/dielectric interference coatings are reviewed. Physical and optical properties are outlined for antireflection films and transparent aerogel insulation media. The potential for optical switching films as window elements includes discussions of electrochromic, photochromic and other physical switching processes.

  6. Interior and Exterior Low-E Storm Window Installation

    SciTech Connect (OSTI)

    Witters, Sarah

    2014-09-03

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings. A new and improved low-e storm window boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement. A recent whole-home experiment performed by PNNL suggests that attaching low-e storm windows can result in as much energy savings replacing the windows.

  7. Modeling the Thermal Mechanical Behavior of a 300 K Vacuum Vesselthat is Cooled by Liquid Hydrogen in Film Boiling

    SciTech Connect (OSTI)

    Yang, S.Q.; Green, M.A.; Lau, W.

    2004-05-07

    This report discusses the results from the rupture of a thin window that is part of a 20-liter liquid hydrogen vessel. This rupture will spill liquid hydrogen onto the walls and bottom of a 300 K cylindrical vacuum vessel. The spilled hydrogen goes into film boiling, which removes the thermal energy from the vacuum vessel wall. This report analyzes the transient heat transfer in the vessel and calculates the thermal deflection and stress that will result from the boiling liquid in contact with the vessel walls. This analysis was applied to aluminum and stainless steel vessels.

  8. Multiple capillary biochemical analyzer with barrier member

    DOE Patents [OSTI]

    Dovichi, Norman J.; Zhang, Jian Z.

    1996-01-01

    A multiple capillary biochemical analyzer for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal to noise ratio.

  9. Multiple capillary biochemical analyzer with barrier member

    DOE Patents [OSTI]

    Dovichi, N.J.; Zhang, J.Z.

    1996-10-22

    A multiple capillary biochemical analyzer is disclosed for sequencing DNA and performing other analyses, in which a set of capillaries extends from wells in a microtiter plate into a cuvette. In the cuvette the capillaries are held on fixed closely spaced centers by passing through a sandwich construction having a pair of metal shims which squeeze between them a rubber gasket, forming a leak proof seal for an interior chamber in which the capillary ends are positioned. Sheath fluid enters the chamber and entrains filament sample streams from the capillaries. The filament sample streams, and sheath fluid, flow through aligned holes in a barrier member spaced close to the capillary ends, into a collection chamber having a lower glass window. The filament streams are illuminated above the barrier member by a laser, causing them to fluoresce. The fluorescence is viewed end-on by a CCD camera chip located below the glass window. The arrangement ensures an equal optical path length from all fluorescing spots to the CCD chip and also blocks scattered fluorescence illumination, providing more uniform results and an improved signal-to-noise ratio. 12 figs.

  10. Motion detector and analyzer

    DOE Patents [OSTI]

    Unruh, W.P.

    1987-03-23

    Method and apparatus are provided for deriving positive and negative Doppler spectrum to enable analysis of objects in motion, and particularly, objects having rotary motion. First and second returned radar signals are mixed with internal signals to obtain an in-phase process signal and a quadrature process signal. A broad-band phase shifter shifts the quadrature signal through 90/degree/ relative to the in-phase signal over a predetermined frequency range. A pair of signals is output from the broad-band phase shifter which are then combined to provide a first side band signal which is functionally related to a negative Doppler shift spectrum. The distinct positive and negative Doppler spectra may then be analyzed for the motion characteristics of the object being examined.

  11. PULSE AMPLITUDE ANALYZERS

    DOE Patents [OSTI]

    Gray, G.W.; Jensen, A.S.

    1958-06-01

    An analyzer system incorporating a cathode-ray tube and linearly spaced targets masked by a plate having slits at points corresponding to the location of the targets is described. The advantages of the system include reduction in the required amplified band width and also the reduction in possible double counting of a pulse by striking two targets. The system comprises integrating means for each pulse, the signal from which is applied to a pair of deflection plates, and a control circuit for turning on the electron beam when the pulse has almost reached its maximum value. The mask prevents the beam from overlapping on a target adjacent to the proper one, while a control circuit responsive to the target output signals acts to cut off the beam immediately after the beam strikes a target to permit the beam to impinge on only one target.

  12. Defining window-boundaries for genomic analyses using smoothing spline techniques

    SciTech Connect (OSTI)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the data and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.

  13. Defining window-boundaries for genomic analyses using smoothing spline techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Beissinger, Timothy M.; Rosa, Guilherme J.M.; Kaeppler, Shawn M.; Gianola, Daniel; de Leon, Natalia

    2015-04-17

    High-density genomic data is often analyzed by combining information over windows of adjacent markers. Interpretation of data grouped in windows versus at individual locations may increase statistical power, simplify computation, reduce sampling noise, and reduce the total number of tests performed. However, use of adjacent marker information can result in over- or under-smoothing, undesirable window boundary specifications, or highly correlated test statistics. We introduce a method for defining windows based on statistically guided breakpoints in the data, as a foundation for the analysis of multiple adjacent data points. This method involves first fitting a cubic smoothing spline to the datamore » and then identifying the inflection points of the fitted spline, which serve as the boundaries of adjacent windows. This technique does not require prior knowledge of linkage disequilibrium, and therefore can be applied to data collected from individual or pooled sequencing experiments. Moreover, in contrast to existing methods, an arbitrary choice of window size is not necessary, since these are determined empirically and allowed to vary along the genome.« less

  14. Predicting Electrochemical Windows of Nitrogen Containing Aromatic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molecules - Joint Center for Energy Storage Research October 20, 2014, Research Highlights Predicting Electrochemical Windows of Nitrogen Containing Aromatic Molecules Various nitrogen containing aromatic base molecules and a descriptive relationship derived to predict their reduction potentials is shown. Scientific Achievement A descriptive relationship is derived for computing reduction potentials of quinoxaline derivatives from the orbital energies of the neutral molecules without

  15. Analyzing Atmospheric Neutrino Oscillations

    SciTech Connect (OSTI)

    Escamilla, J.; Ernst, D. J.; Latimer, D. C.

    2007-10-26

    We provide a pedagogic derivation of the formula needed to analyze atmospheric data and then derive, for the subset of the data that are fully-contained events, an analysis tool that is quantitative and numerically efficient. Results for the full set of neutrino oscillation data are then presented. We find the following preliminary results: 1.) the sub-dominant approximation provides reasonable values for the best fit parameters for {delta}{sub 32}, {theta}{sub 23}, and {theta}{sub 13} but does not quantitatively provide the errors for these three parameters; 2.) the size of the MSW effect is suppressed in the sub-dominant approximation; 3.) the MSW effect reduces somewhat the extracted error for {delta}{sub 32}, more so for {theta}{sub 23} and {theta}{sub 13}; 4.) atmospheric data alone constrains the allowed values of {theta}{sub 13} only in the sub-dominant approximation, the full three neutrino calculations requires CHOOZ to get a clean constraint; 5.) the linear in {theta}{sub 13} terms are not negligible; and 6.) the minimum value of {theta}{sub 13} is found to be negative, but at a statistically insignificant level.

  16. PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Goldsworthy, W.W.

    1958-06-01

    A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.

  17. Exciting News About LEAP-X and Thermal Systems | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exciting News About LEAP-X and Thermal Systems Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Exciting News About LEAP-X and Thermal Systems Todd Wetzel 2011.07.20 I was excited to hear that the LEAP-X engine (Leading Edge Aviation Propulsion) developed by CFM International, a 50/50 joint venture between GE and Snecma

  18. Determines the Thermal and Optical Properties of Fenestration Systems

    Energy Science and Technology Software Center (OSTI)

    1995-01-27

    WINDOW4.1 computes the thermal properties of windows and other fenestration elements used in typical residential and commercial buildings. Manufactures, specifiers, architects, consumers, and the energy code specialists all need to know these properties (U-values, Solar Heat Gain Coefficients, optical properties). The use of this program to calculate these properties is typically much more cost effective than laboratory test procedures. Properties of complete window systems are based on libraries (or user input) component data.

  19. Windows and Envelope Sub-Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows and Envelope Sub-Program Overview Karma Sawyer, Ph.D. - Technology Manager karma.sawyer@ee.doe.gov Presented by Patrick Phelan 2 BTO's Integrated Approach Research & Development * Develop technology roadmaps * Prioritize opportunities * Solicit and select innovative technology solutions * Collaborate with researchers * Solve technical barriers and test innovations to prove effectiveness * Measure and validate energy savings Codes and Standards * Establish minimum energy use in a

  20. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  1. A Tale of Three Windows: Part 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    We live in Colorado, and that means cold winters with hot summers -- so the type of window we choose makes a difference in performance. Energy Savers gives great advice for window ...

  2. My Energy Audit, Part 2: Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    My Energy Audit, Part 2: Windows My Energy Audit, Part 2: Windows July 9, 2012 - 1:48pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Last time I wrote ...

  3. Improving the Energy Efficiency of Existing Windows | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving the Energy Efficiency of Existing Windows Improving the Energy Efficiency of Existing Windows October 15, 2008 - 10:56am Addthis Jen Carter What does this mean for me? ...

  4. Energy Performance Ratings for Windows, Doors, and Skylights...

    Energy Savers [EERE]

    The NFRC label can be found on all ENERGY STAR qualified window, door, and skylight ... U-factor is the rate at which a window, door, or skylight conducts non-solar heat flow. ...

  5. Purchasing Energy-Efficient Windows | Department of Energy

    Office of Environmental Management (EM)

    Purchasing Energy-Efficient Windows October 13, 2008 - 11:29am Addthis John Lippert Windows connect us with the "great outdoors." They let in the light and the rays of the sun and ...

  6. Updating the Doors and Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Windows Updating the Doors and Windows August 23, 2012 - 2:46pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory Since I can't afford to replace...

  7. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    5 Residential Prime Window Sales, by Glass Type (Million Units) 1980 8.6 34% 0.0 0% 16.6 ... Executive Report, May 2010, Exhibit D.8 Conventional Residential Window Glass Usage, p. 52

  8. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    1 Residential Prime Window Sales, by Frame Type (Million Units) (1) New Construction 1990 ... for 2000 and 2003; and LBNL, Savings from Energy Efficient Windows, Apr. 1993, p. 6 for ...

  9. Core Research Support for BTO Windows/Envelope Programs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Windows, as a major element of the building envelope, are an important factor in the overall energy use of buildings. Heat transfer through windows accounts for 4 quads of primary ...

  10. New Window Technology Saves Energy and the View | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Window Technology Saves Energy and the View New Window Technology Saves Energy and the View November 5, 2013 - 3:55pm Addthis Researchers at the Energy Department's National...

  11. Numerical prediction of window condensation potential

    SciTech Connect (OSTI)

    McGowan, A.G.

    1995-08-01

    Although a substantial amount of effort has been expended to develop numerical methods for determining windows U-factors (EE 1983; Goss and Curcija 1994; Standaert 1985; CSA 1993a; NFRC 1991), there has been little work to data on using numerical methods to predict condensation potential. It is perhaps of direct interest to most ASHRAE members to determine heat loss and solar gains through windows as a precursor to sizing heating and cooling equipment, but condensation has long been recognized as an extremely important issue for consumers (and, consequently, for window manufacturers). Moreover, building scientists recognize the link between condensation and increased energy consumption (due to latent loads), reduced occupant comfort and indoor air quality (from the presence of bacteria and mold), and structural damage (where accumulated condensation is absorbed by the building material, thus reducing their structural stability). The National Fenestration Rating Council (NFRC) is developing a rating method for condensation potential in fenestration products as part of its mandate from the US Department of Energy (DOE). A rating method would benefit from the use of simulation as a supplement to physical condensation resistance testing to reduce the cost and time required for implementation and increase the flexibility of the rating method. This paper outlines one of the necessary components in the application of numerical methods for evaluating condensation in fenestration products. The theoretical approach and its practical application are discussed, as well as some comparisons between numerical prediction and physical test results for a sample of products.

  12. Energy and Power Evaluation Program for Windows

    Energy Science and Technology Software Center (OSTI)

    2000-06-27

    ENPEP for windows has its origins in the DOS version of the software, however, the Windows release is significantly modified and rather different in structure and capabilities from the older DOS version of ENPEP. ENPEP for Windows provides the user with a graphical interface for designing a comprehensive model of the energy system of a country or region. The BALANCE submodel processes a representative network of all energy production, conversion, transport, distribution, and utilization activitiesmore » in a country (or region) as well as the flows of energy and fuels among these activities. The objective of the model is to simulate energy market and determine energy supply and demand balance over a long-term period of up to 75 years. The environmental aspect is also taken into account by calculating the emissions of various pollutants. In addition to the energy costs, the environmental costs are also calculated by the model. These costs can be used to affect the solution found by the market equilibrium algorithm. The main purpose of the software is to provide analytical capability and tools for the various analyses of energy and environmental systems, as well as for development of long-term energy strategy of a country or region.« less

  13. Windows and Building Envelope Overview - 2015 BTO Peer Review | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Building Envelope Overview - 2015 BTO Peer Review Windows and Building Envelope Overview - 2015 BTO Peer Review Presenter: Bahman Habibzadeh, U.S. Department of Energy View the Presentation Windows and Building Envelope Overview - 2015 BTO Peer Review (1.13 MB) More Documents & Publications Window and Envelope Technologies Overview - 2014 BTO Peer Review Windows and Envelope Subprogram Overview - 2016 BTO Peer Review 2014 Building Technologies Office Program Peer Revi

  14. Window, Door, and Skylight Products and Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Window, Door, and Skylight Products and Services Use the following links to get product information and locate professional services for windows, doors, and skylights. Product Information Awnings in Residential Buildings: The Impact on Energy Use and Peak Demand University of Minnesota Center for Sustainable Building Research Independently Tested and Certified Energy Performance ENERGY STAR®

  15. Highly Insulating Residential Windows Using Smart Automated Shading |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Highly Insulating Residential Windows Using Smart Automated Shading Highly Insulating Residential Windows Using Smart Automated Shading Addthis 1 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 2 of 3 Residential Smart Window with integrated sensors, control logic and a motorized shade between glass panes. Image: Lawrence Berkeley National Laboratory 3 of 3

  16. New Rating System for Enhancing Window Energy Performance

    Broader source: Energy.gov [DOE]

    Window attachments, such as awnings, shutters, drapes, and solar shades, are often used for cosmetic purposes and to help control the amount of light entering a room. However, many Americans aren't aware that identifying energy conserving window strategies are cost effective in homes and commercial buildings. The Window Covering Manufacturers Association (WCMA) will cost-share Energy Department funding to help consumers realize potential energy savings from window attachments through the creation of a comprehensive energy ratings and certification program.

  17. Sliding coherence window technique for hierarchical detection of continuous gravitational waves

    SciTech Connect (OSTI)

    Pletsch, Holger J.

    2011-06-15

    A novel hierarchical search technique is presented for all-sky surveys for continuous gravitational-wave sources, such as rapidly spinning nonaxisymmetric neutron stars. Analyzing yearlong detector data sets over realistic ranges of parameter space using fully coherent matched-filtering is computationally prohibitive. Thus more efficient, so-called hierarchical techniques are essential. Traditionally, the standard hierarchical approach consists of dividing the data into nonoverlapping segments of which each is coherently analyzed, and subsequently the matched-filter outputs from all segments are combined incoherently. The present work proposes to break the data into subsegments shorter than the desired maximum coherence time span (size of the coherence window). Then matched-filter outputs from the different subsegments are efficiently combined by sliding the coherence window in time: Subsegments whose timestamps are closer than coherence window size are combined coherently, otherwise incoherently. Compared to the standard scheme at the same coherence time baseline, data sets longer by about 50-100% would have to be analyzed to achieve the same search sensitivity as with the sliding coherence window approach. Numerical simulations attest to the analytically estimated improvement.

  18. Developing Low-Conductance Window Frames: Capabilities and Limitations of Current Window Heat Transfer Design Tools

    SciTech Connect (OSTI)

    Gustavsen, Arild; Arasteh, Dariush; Jelle, Bjorn Petter; Curcija, Charlie; Kohler, Christian

    2008-09-11

    While window frames typically represent 20-30% of the overall window area, their impact on the total window heat transfer rates may be much larger. This effect is even greater in low-conductance (highly insulating) windows that incorporate very low-conductance glazing. Developing low-conductance window frames requires accurate simulation tools for product research and development. Based on a literature review and an evaluation of current methods of modeling heat transfer through window frames, we conclude that current procedures specified in ISO standards are not sufficiently adequate for accurately evaluating heat transfer through the low-conductance frames. We conclude that the near-term priorities for improving the modeling of heat transfer through low-conductance frames are: (1) Add 2D view-factor radiation to standard modeling and examine the current practice of averaging surface emissivity based on area weighting and the process of making an equivalent rectangular frame cavity. (2) Asses 3D radiation effects in frame cavities and develop recommendation for inclusion into the design fenestration tools. (3) Assess existing correlations for convection in vertical cavities using CFD. (4) Study 2D and 3D natural convection heat transfer in frame cavities for cavities that are proven to be deficient from item 3 above. Recommend improved correlations or full CFD modeling into ISO standards and design fenestration tools, if appropriate. (5) Study 3D hardware short-circuits and propose methods to ensure that these effects are incorporated into ratings. (6) Study the heat transfer effects of ventilated frame cavities and propose updated correlations.

  19. Development of a Silicon Based Electron Beam Transmission Window for Use in a KrF Excimer Laser System

    SciTech Connect (OSTI)

    C.A. Gentile; H.M. Fan; J.W. Hartfield; R.J. Hawryluk; F. Hegeler; P.J. Heitzenroeder; C.H. Jun; L.P. Ku; P.H. LaMarche; M.C. Myers; J.J. Parker; R.F. Parsells; M. Payen; S. Raftopoulos; J.D. Sethian

    2002-11-21

    The Princeton Plasma Physics Laboratory (PPPL), in collaboration with the Naval Research Laboratory (NRL), is currently investigating various novel materials (single crystal silicon, <100>, <110> and <111>) for use as electron-beam transmission windows in a KrF excimer laser system. The primary function of the window is to isolate the active medium (excimer gas) from the excitation mechanism (field-emission diodes). Chosen window geometry must accommodate electron energy transfer greater than 80% (750 keV), while maintaining structural integrity during mechanical load (1.3 to 2.0 atm base pressure differential, approximate 0.5 atm cyclic pressure amplitude, 5 Hz repetition rate) and thermal load across the entire hibachi area (approximate 0.9 W {center_dot} cm superscript ''-2''). In addition, the window must be chemically resistant to attack by fluorine free-radicals (hydrofluoric acid, secondary). In accordance with these structural, functional, and operational parameters, a 22.4 mm square silicon prototype window, coated with 500 nm thin-film silicon nitride (Si{sub 3}N{sub 4}), has been fabricated. The window consists of 81 square panes with a thickness of 0.019 mm {+-} 0.001 mm. Stiffened (orthogonal) sections are 0.065 mm in width and 0.500 mm thick (approximate). Appended drawing (Figure 1) depicts the window configuration. Assessment of silicon (and silicon nitride) material properties and CAD modeling and analysis of the window design suggest that silicon may be a viable solution to inherent parameters and constraints.

  20. Characterization of an explosively bonded aluminum proton beam window for the Spallation Neutron Source

    SciTech Connect (OSTI)

    McClintock, David A; Janney, Jim G; Parish, Chad M

    2014-01-01

    An effort is underway at the Spallation Neutron Source (SNS) to change the design of the 1st Generation high-nickel alloy proton beam window (PBW) to one that utilizes aluminum for the window material. One of the key challenges to implementation of an aluminum PBW at the SNS was selection of an appropriate joining method to bond an aluminum window to the stainless steel bulk shielding of the PBW assembly. An explosively formed bond was selected as the most promising joining method for the aluminum PBW design. A testing campaign was conducted to evaluate the strength and efficacy of explosively formed bonds that were produced using two different interlayer materials: niobium and titanium. The characterization methods reported here include tensile testing, thermal-shock leak testing, optical microscopy, and advanced scanning electron microscopy. All tensile specimens examined failed in the aluminum interlayer and measured tensile strengths were all slightly greater than the native properties of the aluminum interlayer, while elongation values were all slightly lower. A leak developed in the test vessel with a niobium interlayer joint after repeated thermal-shock cycles, and was attributed to an extensive crack network that formed in a layer of niobium-rich intermetallics located on the bond interfaces of the niobium interlayer; the test vessel with a titanium interlayer did not develop a leak under the conditions tested. Due to the experience gained from these characterizations, the explosively formed bond with a titanium interlayer was selected for the aluminum PBW design at the SNS.

  1. How Have You Improved the Efficiency of Your Windows? | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Have You Improved the Efficiency of Your Windows? How Have You Improved the Efficiency of Your Windows? March 18, 2010 - 7:57pm Addthis This week, John told you about his experience with window shades that improve the energy efficiency of his windows. There are several things you can do to improve the efficiency of existing windows, including adding storm windows, caulking or weatherstripping, or using window treatments. How have you improved the efficiency of your windows? Each

  2. Accurately Analyzing Malaria Tests a Matter of Life and Death...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Life and Death Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn ...

  3. Single level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-12-09

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The package can be formed of a multilayered LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during cofiring. The microelectronic device can be flip-chip interconnected so that the light-sensitive side is optically accessible through the window. A glob-top encapsulant or protective cover can be used to protect the microelectronic device and electrical interconnections. The result is a compact, low profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device.

  4. Bi-level microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-01-06

    A package with an integral window for housing a microelectronic device. The integral window is bonded directly to the package without having a separate layer of adhesive material disposed in-between the window and the package. The device can be a semiconductor chip, CCD chip, CMOS chip, VCSEL chip, laser diode, MEMS device, or IMEMS device. The multilayered package can be formed of a LTCC or HTCC cofired ceramic material, with the integral window being simultaneously joined to the package during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded so that the light-sensitive side is optically accessible through the window. The package has at least two levels of circuits for making electrical interconnections to a pair of microelectronic devices. The result is a compact, low-profile package having an integral window that is hermetically sealed to the package prior to mounting and interconnecting the microelectronic device(s).

  5. High efficiency novel window air conditioner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, andmore » R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.« less

  6. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-07-24

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  7. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  8. Low heat transfer, high strength window materials

    DOE Patents [OSTI]

    Berlad, Abraham L.; Salzano, Francis J.; Batey, John E.

    1978-01-01

    A multi-pane window with improved insulating qualities; comprising a plurality of transparent or translucent panes held in an essentially parallel, spaced-apart relationship by a frame. Between at least one pair of panes is a convection defeating means comprising an array of parallel slats or cells so designed as to prevent convection currents from developing in the space between the two panes. The convection defeating structures may have reflective surfaces so as to improve the collection and transmittance of the incident radiant energy. These same means may be used to control (increase or decrease) the transmittance of solar energy as well as to decouple the radiative transfer between the interior surfaces of the transparent panes.

  9. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2011-01-11

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  10. Managing coherence via put/get windows

    DOE Patents [OSTI]

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Ohmacht, Martin

    2012-02-21

    A method and apparatus for managing coherence between two processors of a two processor node of a multi-processor computer system. Generally the present invention relates to a software algorithm that simplifies and significantly speeds the management of cache coherence in a message passing parallel computer, and to hardware apparatus that assists this cache coherence algorithm. The software algorithm uses the opening and closing of put/get windows to coordinate the activated required to achieve cache coherence. The hardware apparatus may be an extension to the hardware address decode, that creates, in the physical memory address space of the node, an area of virtual memory that (a) does not actually exist, and (b) is therefore able to respond instantly to read and write requests from the processing elements.

  11. High efficiency novel window air conditioner

    SciTech Connect (OSTI)

    Bansal, Pradeep

    2015-01-01

    This paper presents the technical development of a high efficiency window air conditioner. In order to achieve higher energy efficiency ratio (EER), the original capacity of the R410A unit was downgraded by replacing the original compressor with a lower capacity but higher EER compressor, while all heat exchangers and the chassis from the original unit were retained. The other subsequent major modifications included – the AC fan motor being replaced with a brushless high efficiency electronically commuted motor (ECM) motor, the capillary tube being replaced with a needle valve to better control the refrigerant flow and refrigerant set points, and R410A being replaced with drop-in environmentally friendly binary mixture of R32 (85% molar concentration)/R125 (15% molar concentration). All these modifications resulted in significant EER enhancement of the modified unit.

  12. INTEGRATED ENERGY EFFICIENT WINDOW-WALL SYSTEMS

    SciTech Connect (OSTI)

    Michael Arney, Ph.D.

    2002-12-31

    The building industry faces the challenge of reducing energy use while simultaneously improving construction methods and marketability. This paper describes the first phase of a project to address these concerns by designing an Integrated Window Wall System (IWWS) that can be commercialized. This work builds on previous research conducted during the 1990's by Lawrence Berkeley national Laboratories (LBNL). During this phase, the objective was to identify appropriate technologies, problems and issues and develop a number of design concepts. Four design concepts were developed into prototypes and preliminary energy analyses were conducted Three of these concepts (the foam wall, steel wall, and stiffened plate designs) showed particular potential for meeting the project objectives and will be continued into a second phase where one or two of the systems will be brought closer to commercialization.

  13. Covered Product Category: Residential Windows, Doors, and Skylights |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Residential Windows, Doors, and Skylights Covered Product Category: Residential Windows, Doors, and Skylights The Federal Energy Management Program (FEMP) provides acquisition guidance for residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law. Most

  14. Windows and Building Envelope Sub-Program Logic Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market entry & acceptance of window & building envelope product installation Improve testing & modeling capabilities, including window design tools to enable market adoption Technology pathways & research reports Improve performance & cost of near-term technologies & reduce manufacturing costs Documented low cost infiltration measurement methods Competitively funded projects to model attachments in window software tools Government, standards & industry orgs. & EE

  15. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, D.K.; Crandall, R.S.; Deb, S.K.; Stone, J.L.

    1995-01-24

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired. 11 figures.

  16. Stand-alone photovoltaic (PV) powered electrochromic window

    DOE Patents [OSTI]

    Benson, David K.; Crandall, Richard S.; Deb, Satyendra K.; Stone, Jack L.

    1995-01-01

    A variable transmittance double pane window includes an electrochromic material that has been deposited on one pane of the window in conjunction with an array of photovoltaic cells deposited along an edge of the pane to produce the required electric power necessary to vary the effective transmittance of the window. A battery is placed in a parallel fashion to the array of photovoltaic cells to allow the user the ability to manually override the system when a desired transmittance is desired.

  17. 13-Energy Efficiency Ratio Window Air Conditioner | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -Energy Efficiency Ratio Window Air Conditioner 13-Energy Efficiency Ratio Window Air Conditioner Credit: Oak Ridge National Lab Credit: Oak Ridge National Lab Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: General Electric - Fairfield, CT DOE Funding: $1,540,000 Cost Share: Provided by CRADA partners Project Term: October 1, 2011 - September 30, 2015 Project Objective This project is designing and developing a high-efficiency 13 energy-efficiecy-ratio (EER) window air

  18. Note: Phase retrieval method for analyzing single-phase displacement interferometry data

    SciTech Connect (OSTI)

    Chen, X. H.; Zeng, X. L.; Fan, D.; Liu, Q. C.; Bie, B. X.; Zhou, X. M. Luo, S. N.

    2014-02-15

    We present a phase retrieval method (PRM) for analyzing single-phase displacement interferometry measurements on rapidly changing velocity histories, including photon Doppler velocimetry (PDV). PRM identifies the peaks and valleys as well as zero-crossing points in a PDV time series, performs normalization and extracts point-by-point phase and thus velocity information. PRM does not require a wide time window as in sliding window Fourier transformation, and thus improves the effective temporal resolution. This method is implemented in analyzing PDV data obtained from gas gun experiments, and validated against simultaneous measurements with velocity interferometer system for any reflector.

  19. NM company wants to turn your windows into solar panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM company wants to turn your windows into solar panels NM company wants to turn your windows into solar panels "There's an opportunity to generate electricity and power buildings with their windows" August 1, 2016 The UbiQD Team The UbiQD team celebrates the opening of its new quantum dot manufacturing facility in Los Alamos July 29. Contact Hunter McDaniel UbiQD Email UbiQD LLC, a quantum dot company, says it can turn windows into solar generators. "There's an opportunity to

  20. NREL Solves Residential Window Air Conditioner Performance Limitations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners are inexpensive, portable, and can be installed by home occupants, making them a good solution for supplemental cooling, for installing air conditioning ...

  1. Energy-Efficient Smart Windows are Lowering Energy Costs | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratory are cutting energy cost for American families, businesses, institutions, and governments ...

  2. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided...

  3. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  4. Energy-Efficient Smart Windows are Lowering Energy Costs

    Broader source: Energy.gov [DOE]

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratoryare cutting energy cost for American families, businesses, institutions, and governments every year. With...

  5. Highly Insulating Residential Windows Using Smart Automated Shading...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These windows target significant reductions in residential heating as well as cooling energy. Contacts DOE Technology Manager: Karma Sawyer Performer: Steve Selkowitz, Lawrence ...

  6. Suntuitive(tm): Sunlight-Responsive Thermochromic Window Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Provides a thermochromic interlayer that can be supplied to laminators and window manufacturers worldwide. Contact Information Curtis Liposcak (608) 216-5373 CurtisL@pleotint.com ...

  7. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, C.M.

    1996-04-16

    A window is disclosed that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 {micro}m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons. 1 fig.

  8. Cooled window for X-rays or charged particles

    DOE Patents [OSTI]

    Logan, Clinton M.

    1996-01-01

    A window that provides good structural integrity and a very high capacity for removal of the heat deposited by x-rays, electrons, or ions, with minimum attenuation of the desired beam. The window is cooled by providing microchannels therein through which a coolant is pumped. For example, the window may be made of silicon with etched microchannels therein and covered by a silicon member. A window made of silicon with a total thickness of 520 .mu.m transmits 96% of the x-rays at an energy of 60 keV, and the transmission is higher than 90% for higher energy photons.

  9. Window and Envelope Technologies Overview - 2014 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Envelope Technologies Overview - 2014 BTO Peer Review Window and Envelope Technologies Overview - 2014 BTO Peer Review Presenter: Karma Sawyer, U.S. Department of Energy This ...

  10. LANL analyzes meteor fragments nondestructively

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL analyzes meteor fragments nondestructively LANL analyzes meteor fragments nondestructively Researchers and collaborators used the Los Alamos Neutron Science Center User Facility to perform novel compositional tomography characterizing small samples of the Chelyabinsk meteor. April 1, 2015 Chelyabinsk meteor fragment shown next to a 1-cm scale cube. Chelyabinsk meteor fragment shown next to a 1-cm scale cube. The team employed a range of LANSCE probes to analyze Chelyabinsk fragments and two

  11. analyzing reliability and performance data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyzing reliability and performance data - Sandia Energy Energy Search Icon Sandia Home ... Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ...

  12. Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling

    SciTech Connect (OSTI)

    Wang, Hsin; Sluder, Scott; Storey, John Morse

    2009-01-01

    Exhaust gas recirculation (EGR) cooler fouling has become a significant issue for compliance with NOX emissions standards. This paper reports results of a study of fundamental aspects of EGR cooler fouling. An apparatus and procedure were developed to allow surrogate EGR cooler tubes to be exposed to diesel engine exhaust under controlled conditions. The resulting fouled tubes were removed and analyzed. Volatile and non-volatile deposit mass was measured for each tube. Thermal diffusivity of the deposited soot cake was measured by milling a window into the tube and using the Xenon flash lamp method. The heat capacity of the deposit was measured at temperatures up to 430 C and was slightly higher than graphite, presumably due to the presence of hydrocarbons. These measurements were combined to allow calculation of the deposit thermal conductivity, which was determined to be 0.041 W/mK, only ~1.5 times that of air and much lower than the 304 stainless steel tube (14.7 W/mK). The main determinant of the deposit thermal conductivity is density, which was measured to be just 2% that of the density of the primary soot particles (or 98% porous). The deposit layer thermal resistance was calculated and compared with estimates of the thermal resistance calculated from gas temperature data during the experiment. The deposit properties were also used to further analyze the temperature data collected during the experiment.

  13. Exhaust Analyzer | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exhaust Analyzer Technology available for licensing: Aids in development of advanced technologies for reducing particulate emissions, thereby reducing human exposure Diesel engine makers can use to evaluate diesel particulate emissions; refining companies can use it for evaluating fuel quality; and regulatory agencies can use for checking on-road vehicle compliance for emissions PDF icon Exhaust_Analyzer

  14. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon

    SciTech Connect (OSTI)

    Zhang, Xue Wang, Yong; Fan, Junjie; Zhong, Yong; Zhang, Rui

    2014-09-15

    To improve the transmitting power in an S-band klystron, a long pill-box window that has a disk with grooves with a semicircular cross section is theoretically investigated and simulated. A Monte-Carlo algorithm is used to track the secondary electron trajectories and analyze the multipactor scenario in the long pill-box window and on the grooved surface. Extending the height of the long-box window can decrease the normal electric field on the surface of the window disk, but the single surface multipactor still exists. It is confirmed that the window disk with periodic semicircular grooves can explicitly suppress the multipactor and predominantly depresses the local field enhancement and the bottom continuous multipactor. The difference between semicircular and sharp boundary grooves is clarified numerically and analytically.

  15. Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

    Broader source: Energy.gov [DOE]

    Text-Alternative Version of Building America Webinar: High Performance Enclosure Strategies, Part II: Low-E Storm Windows and Window Attachments

  16. Nuclear fuel microsphere gamma analyzer

    DOE Patents [OSTI]

    Valentine, Kenneth H.; Long, Jr., Ernest L.; Willey, Melvin G.

    1977-01-01

    A gamma analyzer system is provided for the analysis of nuclear fuel microspheres and other radioactive particles. The system consists of an analysis turntable with means for loading, in sequence, a plurality of stations within the turntable; a gamma ray detector for determining the spectrum of a sample in one section; means for analyzing the spectrum; and a receiver turntable to collect the analyzed material in stations according to the spectrum analysis. Accordingly, particles may be sorted according to their quality; e.g., fuel particles with fractured coatings may be separated from those that are not fractured, or according to other properties.

  17. Electrochromic Window Demonstration- Donna Land Port of Entry

    Broader source: Energy.gov [DOE]

    Donna Project Plan: Electrochrome Window Demonstration Measurement and Verification Report This report details the measurement and verification tools and methods used to evaluate the effectiveness of electrochromic windows at the Donna Land Port of Entry, an international border crossing between the United States and Mexico located in Texas.

  18. Radiation-transparent windows, method for imaging fluid transfers

    DOE Patents [OSTI]

    Shu, Deming; Wang, Jin

    2011-07-26

    A thin, x-ray-transparent window system for environmental chambers involving pneumatic pressures above 40 bar is presented. The window allows for x-ray access to such phenomena as fuel sprays injected into a pressurized chamber that mimics realistic internal combustion engine cylinder operating conditions.

  19. Research and Development Roadmap: Windows and Building Envelope

    Broader source: Energy.gov [DOE]

    Windows and building envelope research and development is a high priority for the Building Technologies Office. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  20. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  1. The conformal window of deformed conformal field theories in the planar limit

    SciTech Connect (OSTI)

    Vecchi, Luca

    2010-08-15

    We discuss in the planar approximation the effect of double-trace deformations on conformal field theories. We show that this large class of models posses a conformal window describing a nontrivial flow between two fixed points of the renormalization group and reveal the presence of a resonance which we associate to the remnant of a dilaton pole. As the conformal window shrinks to zero measure, the theory undergoes a conformal phase transition separating a symmetric from a nonsymmetric phase. The recently conjectured strongly coupled branch of nonsupersymmetric, non-Abelian gauge theories with a large number of flavors is analyzed in light of these results, and a model for the strong branch is proposed. Some phenomenological implications in the context of unparticle physics are also emphasized.

  2. Real time infrared aerosol analyzer

    DOE Patents [OSTI]

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  3. Infrared Emissivity of Tin upon Release of a 25 GPa Shock into a LiF Window

    SciTech Connect (OSTI)

    Turley, W. D., Holtkamp, D. B., Marshall, B. R., Stevens, G. D., Veeser, L. R.

    2011-11-01

    We measured the emissivity of a tin sample at its interface with a lithium-fluoride window upon release of a 25 GPa shock wave from the tin into the window. Measurements were made over four wavelength bands between 1.2 and 5.4 μm. Thermal emission backgrounds from the tin, glue, and lithium fluoride were successfully removed from the reflectance signals. Emissivity changes for the sample, which was initially nearly specular, were small except for the longest wavelength band, where uncertainties were high because of poor signal-to-noise ratio at that wavelength. A thin glue layer, which bonds the sample to the window, was found to heat from reverberations of the shock wave between the tin and the lithium fluoride. At approximately 3.4 μm the thermal emission from the glue was large compared to the tin, allowing a good estimate of the glue temperature from the thermal radiance. The glue appears to remain slightly colder than the tin, thereby minimizing heat conduction into or out of the tin immediately after the shock passage.

  4. Multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    An apparatus for packaging of microelectronic devices is disclosed, wherein the package includes an integral window. The microelectronic device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can comprise, for example, a cofired ceramic frame or body. The package has an internal stepped structure made of a plurality of plates, with apertures, which are patterned with metallized conductive circuit traces. The microelectronic device can be flip-chip bonded on the plate to these traces, and oriented so that the light-sensitive side is optically accessible through the window. A cover lid can be attached to the opposite side of the package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed. The package body can be formed by low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. Multiple chips can be located within a single package, according to some embodiments. The cover lid can include a window. The apparatus is particularly suited for packaging of MEMS devices, since the number of handling steps is greatly reduced, thereby reducing the potential for contamination. The integral window can further include a lens for optically transforming light passing through the window. The package can include an array of binary optic lenslets made integral with the window. The package can include an electrically-switched optical modulator, such as a lithium niobate window attached to the package, for providing a very fast electrically-operated shutter.

  5. Effect of window reflections on photonic Doppler velocimetry measurements

    SciTech Connect (OSTI)

    Ao, T.; Dolan, D. H.

    2011-02-15

    Photonic Doppler velocimetry (PDV) has rapidly become a standard diagnostic for measuring velocities in dynamic compression research. While free surface velocity measurements are fairly straightforward, complications occur when PDV is used to measure a dynamically loaded sample through a window. Fresnel reflections can severely affect the velocity and time resolution of PDV measurements, especially for low-velocity transients. Shock experiments of quartz compressed between two sapphire plates demonstrate how optical window reflections cause ringing in the extracted PDV velocity profile. Velocity ringing is significantly reduced by using either a wedge window or an antireflective coating.

  6. A HIGH-POWER L-BAND RF WINDOW

    SciTech Connect (OSTI)

    R. RIMMER; G. KOEHLER; ET AL

    2001-05-01

    This paper discusses the design, fabrication and testing of a high power alumina disk window in WR1500 waveguide at L Band, suitable for use in the NLC damping ring RF cavities at 714 MHz and the LEDA Accelerator at 700 MHz. The design is based on the fabrication methods used for the successful PEP-II cavity windows. Four prototype windows at 700 MHz have been produced by LBNL for testing at LANL. The RF design and simulation using MAFIA, laboratory cold test measurements, fabrication methods and preliminary high power test results are discussed.

  7. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, Viet; Dylla, III, Henry Frederick

    1997-01-01

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost.

  8. Ultra high vacuum broad band high power microwave window

    DOE Patents [OSTI]

    Nguyen-Tuong, V.; Dylla, H.F. III

    1997-11-04

    An improved high vacuum microwave window has been developed that utilizes high density polyethylene coated on two sides with SiOx, SiNx, or a combination of the two. The resultant low dielectric and low loss tangent window creates a low outgassing, low permeation seal through which broad band, high power microwave energy may be passed. No matching device is necessary and the sealing technique is simple. The features of the window are broad band transmission, ultra-high vacuum compatibility with a simple sealing technique, low voltage standing wave ratio, high power transmission and low cost. 5 figs.

  9. Fighting with South-Facing Windows | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fighting with South-Facing Windows Fighting with South-Facing Windows June 13, 2011 - 3:20pm Addthis Elizabeth Spencer Communicator, National Renewable Energy Laboratory You know, back when it was cold out (and, this being Colorado, that was last month), my south-facing windows were awesome. They let in tons of light and kept the entire place snug and warm. I barely even needed to break out the blankets! But Colorado's weather likes to mess with you, so it recently decided that it was done with

  10. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    3 Nonresidential Window Sales, by Type and Census Region (Million Square Feet of Vision Area) (1) Northeast Midwest South West Total Type 1995 2009 1995 2009 1995 2009 1995 2009 1995 2009 New Construction Commercial Windows (2) 4 15 16 22 21 58 13 25 54 120 Curtain Wall 3 10 6 16 16 41 8 18 33 84 Store Front 7 10 11 16 14 41 11 18 43 85 Total (3) 14 36 33 53 51 140 32 60 130 289 Remodeling/Replacement Commercial Windows (2) 18 12 25 17 46 45 27 19 116 93 Curtain Wall 4 2 6 3 8 7 10 3 28 15 Store

  11. Highly insulating Residential Windows Using Smart Automated Shading

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Christian Kohler, cjkohler@lbl.gov Steve Selkowitz, seselkowitz@lbl.gov Lawrence Berkeley National Laboratory Highly insulating Residential Windows Using Smart Automated Shading 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 4/1/2013 Planned end date: 3/31/2016 Key Milestones 1. Window designs meeting FOA targets 9/30/2013 2. Prototype window with integrated sensors, ENERGY STAR level performance 12/31/2013 Budget: Total DOE $ to date: $783k (FY13-FY14)

  12. Company Rehires Unemployed Workers for Energy Efficient Window Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Company Rehires Unemployed Workers for Energy Efficient Window Project Company Rehires Unemployed Workers for Energy Efficient Window Project August 20, 2010 - 12:57pm Addthis Maya Payne Smart Former Writer for Energy Empowers, EERE What are the key facts? Recovery Act grant funded $478,000 project for Kitsap County. Courthouse to save $25,000 per year with 95 new windows. Local vendor Pacific Glass rehires five workers. "Our labor force has fluctuated up and down

  13. Residential Lighting Usage Estimate Tool, v1.0, Windows version...

    Energy Savers [EERE]

    Windows version Residential Lighting Usage Estimate Tool, v1.0, Windows version Windows version of the Residential Lighting Usage Estimate Tool, v1.0. Spreadsheet More Documents &...

  14. Development of BWR plant analyzer

    SciTech Connect (OSTI)

    Wulff, W.; Cheng, H.S.; Lekach, S.V.; Stritar, A.; Mallen, A.N.

    1984-01-01

    The BWR Plant Analyzer has been developed for realistic and accurate simulations of normal and severe abnormal transients in BWR power plants at high simulation speeds, low capital and operating costs and with outstanding user conveniences. The simulation encompasses neutron kinetics, heat conduction in fuel structures, nonequilibrium, nonhomogeneous coolant dynamics, steam line acoustics, and the dynamics of turbines, condensers, feedwater pumps and heaters, of the suppression pool, the control systems and the plant protection systems. These objectives have been achieved. Advanced modeling, using extensively analytical integration and dynamic evaluation of analytical solutions, has been combined with modern minicomputer technology for high-speed simulation of complex systems. The High-Speed Interactive Plant Analyzer code HIPA-BWR has been implemented on the AD10 peripheral parallel processor.

  15. DEEP WATER ISOTOPIC CURRENT ANALYZER

    DOE Patents [OSTI]

    Johnston, W.H.

    1964-04-21

    A deepwater isotopic current analyzer, which employs radioactive isotopes for measurement of ocean currents at various levels beneath the sea, is described. The apparatus, which can determine the direction and velocity of liquid currents, comprises a shaft having a plurality of radiation detectors extending equidistant radially therefrom, means for releasing radioactive isotopes from the shaft, and means for determining the time required for the isotope to reach a particular detector. (AEC)

  16. Research and Development Roadmap: Windows and Building Envelope...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and ...

  17. High-Efficiency Window Air Conditioners- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    This Top Innovation profile highlights research into making window air conditioners much more energy efficient, and recommendations for homeowners about how to improve the operating efficiency of their units.

  18. Energy Performance Ratings for Windows, Doors, and Skylights...

    Broader source: Energy.gov (indexed) [DOE]

    the rate of air movement around a window, door, or skylight in the presence of a specific pressure difference across it. It's expressed in units of cubic feet per minute per square...

  19. A Design Guide for Early-Market Electrochromic Windows

    SciTech Connect (OSTI)

    Lee, Eleanor S.; Selkowitz, Stephen E.; Clear, Robert D.; DiBartolomeo, Dennis L.; Klems, Joseph H.; Fernandes, Luis L.; Ward, GregJ.; Inkarojrit, Vorapat; Yazdanian, Mehry

    2006-05-01

    Switchable variable-tint electrochromic (EC) windows preserve view out while modulating transmitted light, glare, and solar heat gains. Consumers will require objective information on the risks and benefits of this emerging technology as it enters the market in 2006. This guide provides such information and data derived from a wide variety of simulations, laboratory tests, and a 2.5-year field test of prototype large-area EC windows evaluated under outdoor sun and sky conditions. This design guide is provided to architects, engineers, building owners, and others interested in electrochromic windows. The design guide provides basic information about what is an electrochromic window, what it looks like, how fast does it switch, and what current product offerings are. The guide also provides information on performance benefits if more mature product offerings were available.

  20. Window Manufacturer Sees Business Surge As Weatherization Supplier...

    Broader source: Energy.gov (indexed) [DOE]

    impact because of weatherization," says Mark Barr, a third-generation owner of 70-year-old family window manufacturing business Harry G. Barr Company, located in Fort Smith, Ark. ...

  1. High-Power Ka-Band Window and Resonant Ring

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2006-11-29

    A stand-alone 200 MW rf test station is needed for carrying out development of accelerator structures and components for a future high-gradient multi-TeV collider, such as CLIC. A high-power rf window is needed to isolate the test station from a structure element under test. This project aimed to develop such a window for use at a frequency in the range 30-35 GHz, and to also develop a high-power resonant ring for testing the window. During Phase I, successful conceptual designs were completed for the window and the resonant ring, and cold tests of each were carried out that confirmed the designs.

  2. New High-Efficiency Window Prototype Result of DOE Partnership...

    Office of Environmental Management (EM)

    December 4, 2006 - 9:34am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced a next-generation residential and commercial window prototype. When widely ...

  3. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    2 Residential Storm Window and Door Shipments, by Frame Type (Million Units) Type 1990 2000 2005 2008 1990 2000 2005 2008 1990 2000 2005 2008 Aluminum 10 8 7 NA 2 4 4 3 12 12 11 ...

  4. Multilayered Microelectronic Device Package With An Integral Window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2004-10-26

    A microelectronic package with an integral window mounted in a recessed lip for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The package can be formed of a low temperature co-fired ceramic (LTCC) or high temperature cofired ceramic (HTCC) multilayered material, with the integral window being simultaneously joined (e.g. co-fired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that a light-sensitive side is optically accessible through the window. The result is a compact, low profile package, having an integral window mounted in a recessed lip, that can be hermetically sealed.

  5. Sealed symmetric multilayered microelectronic device package with integral windows

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.

  6. Repairing Windows & Doors: How To's for the Handy Homeowner

    SciTech Connect (OSTI)

    2006-01-05

    This brochure contains tips for homeowners to repair windows and doors in their home that sustained hurricane damage. This publication is a part of the How To's for the Handy Homeowner Series.

  7. EERE Success Story-Pennsylvania: Window Technology First of Its...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In support of DOE's goal to reduce energy consumption in buildings by 50% by 2030, EERE utilized 1.3 million of Recovery Act funding to support window manufacturer Traco, a ...

  8. Windows and Envelope Subprogram Overview — 2016 BTO Peer Review

    Broader source: Energy.gov [DOE]

    This presentation at the 2016 Peer Review provided an overview of the Building Technologies Office’s Windows and Envelope Subprogram. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  9. Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolytes for Lithium Batteries - Joint Center for Energy Storage Research June 6, 2016, Research Highlights Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries The electrochemical stability windows and redox limits of the ionic liquids examined in this work. 1-Alkyl-3-methylimidazolium-based ionic liquids with [PF6]- anion ([CnMIM]+[PF6]-) are the most electrochemically stable ionic liquids among the ones studied in this research.

  10. Analysis of cavity and window for THz gyrotron

    SciTech Connect (OSTI)

    Alaria, Mukesh Kumar; Mukherjee, P.; Rao, R.R.; Sinha, A.K. E-mail: aksinha@ceeri.ernet.in

    2011-07-01

    In this paper study of cavity and window has been carried out using Ansoft HFSS for Terahertz Gyrotron. Eigen mode analysis of the cavity has been carried out at 1 THz. An idea about the operating modes in the cavity of the Gyrotron and obtained the simulated Eigen frequency and field pattern of the modes. The design of window for 1 THz Gyrotron has also been carried out using HFSS. The simulated results have also been compared with ST microwave studio. (author)

  11. Low Cost Nanostructured Smart Window Coatings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost Nanostructured Smart Window Coatings Low Cost Nanostructured Smart Window Coatings 1 of 3 A Heliotrope scientist prepares slot die coater for solution based deposition of electrochromic layer. Image: Heliotrope Technologies 2 of 3 A Heliotrope scientist investigates the coating quality of a slot die deposition of electrochromic layer. Image: Heliotrope Technologies 3 of 3 A Heliotrope scientist investigates the spray coater for a solution based deposition of electrochromic layer. Image:

  12. Separation of High Order Harmonics with Fluoride Windows

    SciTech Connect (OSTI)

    Allison, Tom; van Tilborg, Jeroen; Wright, Travis; Hertlein, Marcus; Falcone, Roger; Belkacem, Ali

    2010-08-02

    The lower orders produced in high order harmonic generation can be effciently temporally separated into monochromatic pulses by propagation in a Fluoride window while still preserving their femtosecond pulse duration. We present calculations for MgF2, CaF2, and LiF windows for the third, fifth, and seventh harmonics of 800 nm. We demonstrate the use of this simple and inexpensive technique in a femtosecond pump/probe experiment using the fifth harmonic.

  13. Spurring Market Adoption of Energy Efficient Storm Windows | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Spurring Market Adoption of Energy Efficient Storm Windows Spurring Market Adoption of Energy Efficient Storm Windows June 20, 2016 - 12:53pm Addthis At the Energy Department's Pacific Northwest National Laboratory (PNNL), researchers are using two modular homes to test energy-efficient products and calculate their energy savings. Researchers test new technologies in the Experimental home (pictured above), while the Baseline home (not pictured) serves as a control and doesn’t get

  14. Connecting to the Internet Securely: Windows 2000 CIAC-2321

    SciTech Connect (OSTI)

    Orvis, W; Call, K; Dias, J

    2002-03-12

    As the threat to computer systems increases with the increasing use of computers as a tool in daily business activities, the need to securely configure those systems becomes more important. There are far too many intruders with access to the Internet and the skills and time to spend compromising systems to not spend the time necessary to securely configure a system. Hand-in-hand with the increased need for security are an increased number of items that need to be securely configured. Windows 2000 has about seven hundred security related policy settings, up from seventy two in Windows NT. While Windows 2000 systems are an extension of the Windows NT 4 architecture, there are considerable differences between these two systems, especially in terms of system and security administration. Operational policy, system security, and file security are other areas where Windows 2000 has expanded considerably beyond the domain model of Windows NT 4. The Windows NT 4 Domain model consists of domains of workstations that, with a single login, share resources and are administered together. The database of user settings and credentials resides in the domain server. Domains can trust other domains to expand the sharing of resources between users of multiple domains. On Windows 2000, the domains still exist but multiple domains that share trust are combined into Domain Trees and Domain Forests depending on how the logical namespace is divided. These trees and forests are combined under a new object called Active Directory. Domains themselves are broken down into Organizational Units. As such, there are more levels at which security policies can be set and for which information sharing can be controlled.

  15. NREL: Transportation Research - Light-Duty Vehicle Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light-Duty Vehicle Thermal Management Image of a semi-transparent car with parts of the engine highlighted in green. NREL evaluates technologies and methods such as advanced window glazing, cooling heat-pipe systems, parked car ventilation, and direct energy recovery. Illustration by Josh Bauer, NREL National Renewable Energy Laboratory (NREL) researchers are focused on improving the thermal efficiency of light-duty vehicles (LDVs) while maintaining the thermal comfort that drivers expect.

  16. Application of Standard Maintenance Windows in PHWR Outage

    SciTech Connect (OSTI)

    Fuming Jiang

    2006-07-01

    The concept of Standard Maintenance Windows has been widely used in the planned outage of light water reactor in the world. However, due to the specific feature of Pressurized Heavy Water Reactor (PHWR), it has not come to a consensus for the PHWR owners to adopt Standard Maintenance Windows for planned outage aiming at the optimization of outage duration. Third Qinshan Nuclear Power Company (TQNPC), with their experience gained in the previous outages and with reference to other PHWR power plants, has identified a set of Standard Maintenance Windows for planned outage. It can be applied to similar PHWR plants and with a few windows that are specific to Qinshan Phase III NPP. The use of these Standard Maintenance Windows in planned outage has been proved to be effective in control shutdown nuclear safety, minimize the unavailability of safety system, improve the efficient utilization of outage duration, and improved the flexibility of outage schedule in the case of emergency issue, which forced the revision of outage schedule. It has also formed a solid foundation for benchmarking. The identification of Standard Maintenance Windows and its application will be discussed with relevant cases for the common improvement of outage duration. (author)

  17. A Homeowners Guide to Window Air Conditioner Installation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Window air conditioners (ACs) are an inexpensive alternative to central systems, and are ... The study showed that window AC installation resulted in signifcant air ...

  18. X-ray Induced Quasiparticles: New Window on UnconventionalSuperconduc...

    Office of Science (SC) Website

    X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Basic Energy ... X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Creation of ...

  19. MiniBooNE as realated to "Window's on the Universe"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Windows on the Universe" Ray Stefanski Fermilab Blois 2009 Windows on the Universe June 22, 2009 Outline: Introduction Current Status New Results Expectations Summary June 22, ...

  20. T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sessions | Department of Energy 7:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions T-727:Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions September 27, 2011 - 8:00am Addthis PROBLEM: Microsoft Windows SSL/TLS Protocol Flaw Lets Remote Users Decryption Sessions. PLATFORM: Windows XP Service Pack 3 Windows XP Professional x64 Edition Service Pack 2 Windows Server 2003 Service Pack 2 Windows Server 2003 x64 Edition Service Pack 2 Windows

  1. EERE Success Story-Pennsylvania: New Series of Windows Has Potential...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Series of Windows Has Potential to Save Energy for Commercial Buildings EERE Success Story-Pennsylvania: New Series of Windows Has Potential to Save Energy for Commercial ...

  2. Low-E Storms: The Next "Big Thing" in Window Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America Low-E Storms: The Next "Big Thing" in Window ... compliance with residential and commercial national ... information about window coverings: http:...

  3. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOE Patents [OSTI]

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  4. Charged particle mobility refrigerant analyzer

    DOE Patents [OSTI]

    Allman, S.L.; Chunghsuan Chen; Chen, F.C.

    1993-02-02

    A method for analyzing a gaseous electronegative species comprises the steps of providing an analysis chamber; providing an electric field of known potential within the analysis chamber; admitting into the analysis chamber a gaseous sample containing the gaseous electronegative species; providing a pulse of free electrons within the electric field so that the pulse of free electrons interacts with the gaseous electronegative species so that a swarm of electrically charged particles is produced within the electric field; and, measuring the mobility of the electrically charged particles within the electric field.

  5. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  6. The OpenSHMEM Analyzer

    Energy Science and Technology Software Center (OSTI)

    2014-07-30

    The OpenSHMEM Analyzer is a compiler-based tool that can help users detect errors and provide useful analyses about their OpenSHMEM applications. The tool is built on top of the OpenUH compiler (a branch of Open64 compiler) and presents OpenSHMEM information as feedback to the user. Some of the analyses it provides include checks for correct usage of symmetric variables in OpenSHMEM calls, out-of-bounds checks for symmetric data, checks for the correct initialization of pointers tomore » symmetric data, and symmetric data alias information.« less

  7. Method for analyzing microbial communities

    DOE Patents [OSTI]

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  8. Thermal performance of complex fenestration systems

    SciTech Connect (OSTI)

    Carpenter, S.C.; Elmahdy, A.H.

    1994-12-31

    The thermal performance (i.e., U-factor) of four complex fenestration systems is examined using computer simulation tools and guarded hot box testing. The systems include a flat glazed skylight, a domed or bubble skylight, a greenhouse window, and a curtain wall. The extra care required in performing simulation and testing of these complex products is described. There was good agreement (within 10%) between test and simulation for two of the four products. The agreement was slightly poorer (maximum difference of 16%) for the two high-heat-transfer products: the domed skylight and the greenhouse window. Possible causes for the larger discrepancy in these projecting window products are uncertainties in the inside and outside film coefficients and lower warm-side air temperatures because of stagnant airflow.

  9. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  10. Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

    SciTech Connect (OSTI)

    Splitter, Derek A; Reitz, Rolf

    2014-01-01

    Fuel reactivity effects on the efficiency and operational window of dual-fuel compression ignition engines

  11. Highly Insulating R-5 Windows Volume Purchase - How Utilities Can Participate Fact Sheet

    SciTech Connect (OSTI)

    2010-03-01

    This fact sheet describes DOEs Windows Volume Purchase, the benefits of highly insulated R-5 windows and low-e storm windows, and the important role that utilities can play in expanding the market for these highly insulated windows.

  12. ARPA-E Announces $30 Million in Funding for Window Efficiency Technologies

    Broader source: Energy.gov [DOE]

    SHIELD Program Seeks Transformational Materials to Retrofit Building Windows for Improved Energy Efficiency

  13. Analyzes Data from Semiconductor Wafers

    Energy Science and Technology Software Center (OSTI)

    2002-07-23

    This program analyzes reflectance data from semiconductor wafers taken during the deposition or evolution of a thin film, typically via chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is used to determine the growth rate and optical constants of the deposited thin films using a virtual interface concept. Growth rates and optical constants of multiple-layer structures is possible by selecting appropriate sections in the reflectance vs time waveform. No prior information or estimatesmore » of growth rates and materials properties is required if an absolute reflectance waveform is used. If the optical constants of a thin film are known, then the growth rate may be extracted from a relative reflectance data set. The analysis is valid for either s or p polarized light at any incidence angle and wavelength. The analysis package is contained within an easy-to-use graphical user interface. The program is based on the algorighm described in the following two publications: W.G. Breiland and K.P. Killen, J. Appl. Phys. 78 (1995) 6726, and W. G. Breiland, H.Q. Hou, B.E. Hammons, and J.F. Klem, Proc. XXVIII SOTAPOCS Symp. Electrochem. Soc. San Diego, May 3-8, 1998. It relies on the fact that any multiple-layer system has a reflectance spectrum that is mathematically equivalent to a single-layer thin film on a virtual substrate. The program fits the thin film reflectance with five adjustable parameters: 1) growth rate, 2) real part of complex refractive index, 3) imaginary part of refractive index, 4) amplitude of virtual interface reflectance, 5) phase of virtual interface reflectance.« less

  14. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  15. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  16. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, Rick D.; Kramer, Daniel P.; Massey, Richard T.; Waker, Damon A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam.

  17. Method of making an integral window hermetic fiber optic component

    DOE Patents [OSTI]

    Dalton, R.D.; Kramer, D.P.; Massey, R.T.; Waker, D.A.

    1996-11-12

    In the fabrication of igniters, actuators, detonators, and other pyrotechnic devices to be activated by a laser beam, an integral optical glass window is formed by placing a preform in the structural member of the device and then melting the glass and sealing it in place by heating at a temperature between the ceramming temperature of the glass and the melting point of the metal, followed by rapid furnace cooling to avoid devitrification. No other sealing material is needed to achieve hermeticity. A preferred embodiment of this type of device is fabricated by allowing the molten glass to flow further and form a plano-convex lens integral with and at the bottom of the window. The lens functions to decrease the beam divergence caused by refraction of the laser light passing through the window when the device is fired by means of a laser beam. 9 figs.

  18. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  19. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect (OSTI)

    Bansal, Pradeep; Shen, Bo

    2015-01-01

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  20. Analyzing Design Heating Loads in Superinsulated Buildings

    SciTech Connect (OSTI)

    Arena, Lois

    2015-06-16

    The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings (CARB) worked with the EcoVillage cohousing community in Ithaca, New York, on the Third Residential EcoVillage Experience neighborhood. This communityscale project consists of 40 housing units—15 apartments and 25 single-family residences. Units range in size from 450 ft2 to 1,664 ft2 and cost from $80,000 for a studio apartment to $235,000 for a three- or four-bedroom single-family home. For the research component of this project, CARB analyzed current heating system sizing methods for superinsulated homes in cold climates to determine if changes in building load calculation methodology should be recommended. Actual heating energy use was monitored and compared to results from the Air Conditioning Contractors of America’s Manual J8 (MJ8) and the Passive House Planning Package software. Results from that research indicate that MJ8 significantly oversizes heating systems for superinsulated homes and that thermal inertia and internal gains should be considered for more accurate load calculations.

  1. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, Lee A.

    1995-01-01

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design.

  2. Optimized ECR plasma apparatus with varied microwave window thickness

    DOE Patents [OSTI]

    Berry, L.A.

    1995-11-14

    The present invention describes a technique to control the radial profile of microwave power in an ECR plasma discharge. In order to provide for a uniform plasma density to a specimen, uniform energy absorption by the plasma is desired. By controlling the radial profile of the microwave power transmitted through the microwave window of a reactor, the profile of the transmitted energy to the plasma can be controlled in order to have uniform energy absorption by the plasma. An advantage of controlling the profile using the window transmission characteristics is that variations to the radial profile of microwave power can be made without changing the microwave coupler or reactor design. 9 figs.

  3. Buildings Energy Data Book: 5.2 Windows

    Buildings Energy Data Book [EERE]

    7 Nonresidential Window Stock and Sales, by Glass Type Existing U.S. Stock Vision Area of New Windows (Million Square Feet) Type (% of buildings) 1995 2001 2003 2005 2007 2009 Single Pane 56 57 48 56 60 48 Insulating Glass (1) 294 415 373 407 476 389 Total 350 472 421 463 536 437 Clear 36% 49% 43% 44% 38% 33% Tinted 40% 24% 17% 15% 11% 10% Reflective 7% 8% 6% 4% 3% 3% Low-e 17% 19% 34% 37% 48% 54% Total 100% 100% 100% 100% 100% 100% 100% Note(s): Source(s): (2) 1) Includes double- and

  4. Application issues for large-area electrochromic windows incommercial buildings

    SciTech Connect (OSTI)

    Lee, Eleanor S.; DiBartolomeo, D.L.

    2000-05-01

    Projections of performance from small-area devices to large-area windows and enterprise marketing have created high expectations for electrochromic glazings. As a result, this paper seeks to precipitate an objective dialog between material scientists and building-application scientists to determine whether actual large-area electrochromic devices will result in significant performance benefits and what material improvements are needed, if any, to make electrochromics more practical for commercial building applications. Few in-situ tests have been conducted with large-area electrochromic windows applied in buildings. This study presents monitored results from a full-scale field test of large-area electrochromic windows to illustrate how this technology will perform in commercial buildings. The visible transmittance (Tv) of the installed electrochromic ranged from 0.11 to 0.38. The data are limited to the winter period for a south-east-facing window. The effect of actual device performance on lighting energy use, direct sun control, discomfort glare, and interior illumination is discussed. No mechanical system loads were monitored. These data demonstrate the use of electrochromics in a moderate climate and focus on the most restrictive visual task: computer use in offices. Through this small demonstration, we were able to determine that electrochromic windows can indeed provide unmitigated transparent views and a level of dynamic illumination control never before seen in architectural glazing materials. Daily lighting energy use was 6-24 percent less compared to the 11 percent-glazing, with improved interior brightness levels. Daily lighting energy use was 3 percent less to 13 percent more compared to the 38 percent-glazing, with improved window brightness control. The electrochromic window may not be able to fulfill both energy-efficiency and visual comfort objectives when low winter direct sun is present, particularly for computer tasks using cathode-ray tube (CRT

  5. High-power RF window and coupler development for the PEP-II B Factory

    SciTech Connect (OSTI)

    Neubauer, M.; Fant, K.; Hodgson, J.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1995-05-01

    We describe the fabrication and testing of the RF windows designed to transmit power to the PEP-II 476 MHz cavities. Design choices to maximize the reliability of the window are discussed. Fabrication technologies for the window are described and finite-element analysis of the assembly process is presented. Conditioning and high-power testing of the window are discussed. Design of the coupler assembly including the integration of the window and other components is reported.

  6. Angular selective window systems: Assessment of technical potential for energy savings

    SciTech Connect (OSTI)

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAE 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.

  7. Angular selective window systems: Assessment of technical potential for energy savings

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fernandes, Luis L.; Lee, Eleanor S.; McNeil, Andrew; Jonsson, Jacob C.; Nouidui, Thierry; Pang, Xiufeng; Hoffmann, Sabine

    2014-10-16

    Static angular selective shading systems block direct sunlight and admit daylight within a specific range of incident solar angles. The objective of this study is to quantify their potential to reduce energy use and peak demand in commercial buildings using state-of-the art whole-building computer simulation software that allows accurate modeling of the behavior of optically-complex fenestration systems such as angular selective systems. Three commercial systems were evaluated: a micro-perforated screen, a tubular shading structure, and an expanded metal mesh. This evaluation was performed through computer simulation for multiple climates (Chicago, Illinois and Houston, Texas), window-to-wall ratios (0.15-0.60), building codes (ASHRAEmore » 90.1-2004 and 2010) and lighting control configurations (with and without). The modeling of the optical complexity of the systems took advantage of the development of state-of-the-art versions of the EnergyPlus, Radiance and Window simulation tools. Results show significant reductions in perimeter zone energy use; the best system reached 28% and 47% savings, respectively without and with daylighting controls (ASHRAE 90.1-2004, south facade, Chicago,WWR=0.45). As a result, angular selectivity and thermal conductance of the angle-selective layer, as well as spectral selectivity of low-emissivity coatings, were identified as factors with significant impact on performance.« less

  8. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-09-01

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  9. Drafty Windows: Is it Better to Insulate or Replace Them?

    Broader source: Energy.gov [DOE]

    I’ve lived in my condominium for several years, and though it naturally stays cooler in the summer (with all west-facing windows) I struggle to keep it warm in the winter without taking out a loan to pay utilities

  10. Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Milliron, Delia; Selkowitz, Stephen

    2010-08-05

    August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.

  11. T-547: Microsoft Windows Human Interface Device (HID) Vulnerability

    Broader source: Energy.gov [DOE]

    Microsoft Windows does not properly warn the user before enabling additional Human Interface Device (HID) functionality over USB, which allows user-assisted attackers to execute arbitrary programs via crafted USB data, as demonstrated by keyboard and mouse data sent by malware on a Smartphone that the user connected to the computer.

  12. Covered Product Category: Residential Windows, Doors, and Skylights

    Office of Energy Efficiency and Renewable Energy (EERE)

    FEMP provides acquisition guidance across a variety of product categories, including residential windows, doors, and skylights, which are an ENERGY STAR-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  13. Window and Envelope Technologies Overview- 2014 BTO Peer Review

    Broader source: Energy.gov [DOE]

    Presenter: Karma Sawyer, U.S. Department of Energy This presentation at the 2014 Peer Review provided an overview of the Building Technologies Office's Window and Envelope Technologies activities. Through robust feedback, the BTO Program Peer Review enhances existing efforts and improves future designs.

  14. Laboratory Performance Testing of Residential Window Air Conditioners

    SciTech Connect (OSTI)

    Winkler, J.; Booten, C.; Christensen, D.; Tomerlin, J.

    2013-03-01

    Window air conditioners are the dominant cooling product for residences, in terms of annual unit sales. They are inexpensive, portable and can be installed by the owner. For this reason, they are an attractive solution for supplemental cooling, for retrofitting air conditioning into a home which lacks ductwork, and for renters. Window air conditioners for sale in the United States are required to meet very modest minimum efficiency standards. Four window air conditioners' performance were tested in the Advanced HVAC Systems Laboratory on NREL's campus in Golden, CO. In order to separate and study the refrigerant system's performance, the unit's internal leakage pathways, the unit's fanforced ventilation, and the leakage around the unit resulting from installation in a window, a series of tests were devised that focused on each aspect of the unit's performance. These tests were designed to develop a detailed performance map to determine whole-house performance in different climates. Even though the test regimen deviated thoroughly from the industry-standard ratings test, the results permit simple calculation of an estimated rating for both capacity and efficiency that would result from a standard ratings test. Using this calculation method, it was found that the three new air conditioners' measured performance was consistent with their ratings. This method also permits calculation of equivalent SEER for the test articles. Performance datasets were developed across a broad range of indoor and outdoor operating conditions, and used them to generate performance maps.

  15. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    SciTech Connect (OSTI)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T.; Kubo, S.; Ogasawara, S.; Makino, R.; Idei, H.; Nagasaki, K.

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  16. Pulsed Neurton Elemental On-Line Material Analyzer

    DOE Patents [OSTI]

    Vourvopoulos, George

    2002-08-20

    An on-line material analyzer which utilizes pulsed neutron generation in order to determine the composition of material flowing through the apparatus. The on-line elemental material analyzer is based on a pulsed neutron generator. The elements in the material interact with the fast and thermal neutrons produced from the pulsed generator. Spectra of gamma-rays produced from fast neutrons interacting with elements of the material are analyzed and stored separately from spectra produced from thermal neutron reactions. Measurements of neutron activation takes place separately from the above reactions and at a distance from the neutron generator. A primary passageway allows the material to flow through at a constant rate of speed and operators to provide data corresponding to fast and thermal neutron reactions. A secondary passageway meters the material to allow for neutron activation analysis. The apparatus also has the capability to determine the density of the flowed material. Finally, the apparatus continually utilizes a neutron detector in order to normalize the yield of the gamma ray detectors and thereby automatically calibrates and adjusts the spectra data for fluctuations in neutron generation.

  17. Thermal performance of an earth-sheltered passive solar residence

    SciTech Connect (OSTI)

    LaVigne, A.B. (Puget Sound Power and Light Co., Bellevue, WA); Schuldt, M.A.

    1981-01-01

    Results are presented of the measured thermal performance of a direct gain, passive solar residence in the Pacific Northwest. The east, west, and north exterior walls of the house are bermed to within 12 inches (30 cm) of the ceiling; sliding interior insulated panels cover the double glazed, south facing windows when appropriate. The cost of the house construction was kept modest.

  18. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  19. Expert system for analyzing eddy current measurements

    DOE Patents [OSTI]

    Levy, Arthur J.; Oppenlander, Jane E.; Brudnoy, David M.; Englund, James M.; Loomis, Kent C.

    1994-01-01

    A method and apparatus (called DODGER) analyzes eddy current data for heat exchanger tubes or any other metallic object. DODGER uses an expert system to analyze eddy current data by reasoning with uncertainty and pattern recognition. The expert system permits DODGER to analyze eddy current data intelligently, and obviate operator uncertainty by analyzing the data in a uniform and consistent manner.

  20. Highly Insulating Windows with a U-value less than 0.6 W/m2K

    SciTech Connect (OSTI)

    Wendell Rhine; Ying Tang; Wenting Dong; Roxana Trifu; Reduane Begag

    2008-11-30

    U.S. households rely primarily on three sources of energy: natural gas, electricity, and fuel oil. In the past several decades, electricity consumption by households has grown dramatically, and a significant portion of electricity used in homes is for lighting. Lighting includes both indoor and outdoor lighting and is found in virtually every household in the United States. In 2001, according to the US Energy Information Administration, lighting accounted for 101 billion kWh (8.8 percent) of U.S. household electricity use. Incandescent lamps, which are commonly found in households, are highly inefficient sources of light because about 90 percent of the energy used is lost as heat. For that reason, lighting has been one focus area to increase the efficiency of household electricity consumption. Windows have several functions, and one of the main functions is to provide a view to the outside. Daylighting is another one of windows main functions and determines the distribution of daylight to a space. Daylighting windows do not need to be transparent, and a translucent daylighting window is sufficient, and often desired, to diffuse the light and make the space more environmentally pleasing. In homes, skylights are one source of daylighting, but skylights are not very energy efficient and are inseparably linked to solar heat gain. In some climates, added solar heat gains from daylighting may be welcome; but in other climates, heat gain must be controlled. More energy efficient skylights and daylighting solutions, in general, are desired and can be designed by insulating them with aerogels. Aerogels are a highly insulating and transparent material in its pure form. The overall objective for this project was to prepare an economical, translucent, fiber-reinforced aerogel insulation material for daylighting applications that is durable for manufacturing purposes. This advanced insulation material will increase the thermal performance of daylighting windows, while

  1. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    SciTech Connect (OSTI)

    Berland, Brian; Hollingsworth, Russell

    2015-03-31

    silica and a transparent conductive oxide demonstrated 90% visible transmission with high thermal infrared reflectivity characteristic of conventional low-e coatings. A slightly more complex stack provided high solar infrared reflection without sacrificing visible transmission or thermal infrared reflection. Successful completion of the effort produced a prototype integrated low-e, dynamic window film with characterized energy saving potential. Cost modeling for the passive bi-layer, low-e film projects a manufacturing cost of ~$0.50/ft2 for a plant with 10M ft2/yr capacity. The novel thin film processes developed here enable high deposition rate (low cost), optical quality oxide coatings at low temperatures. When combined with engineered materials, ITN’s coating will result in low-cost, low-e films that reflect a high degree of infrared radiation without substantially reducing the visible transmission. The resultant window film will improve the U-value and achieve SHGC improvements over bare glass. The new low-e coating will be particularly attractive when combined with an electrochromic film. Low-e coating design guided by energy savings modeling allows customization of the product for different climate zones.

  2. Beam Fields in an Integrated Cavity, Coupler and Window Configuration

    SciTech Connect (OSTI)

    Weathersby, Stephen; Novokhatski, Alexander; /SLAC

    2010-02-10

    In a multi-bunch high current storage ring, beam generated fields couple strongly into the RF cavity coupler structure when beam arrival times are in resonance with cavity fields. In this study the integrated effect of beam fields over several thousand RF periods is simulated for the complete cavity, coupler, window and waveguide system of the PEP-II B-factory storage ring collider. We show that the beam generated fields at frequencies corresponding to several bunch spacings for this case gives rise to high field strength near the ceramic window which could limit the performance of future high current storage rings such as PEP-X or Super B-factories.

  3. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, P.R.; Shapira, H.B.

    1979-12-07

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  4. Reflective insulating blinds for windows and the like

    DOE Patents [OSTI]

    Barnes, Paul R.; Shapira, Hanna B.

    1981-01-01

    Energy-conserving window blinds are provided. The blinds are fabricated from coupled and adjustable slats, each slat having an insulation layer and a reflective surface to face outwardly when the blinds are closed. A range of desired light and air transmission may be selected with the reflective surfaces of the slats adapted to direct sunlight upward toward the ceiling when the blinds are open. When the blinds are closed, the insulation of the slats reduces the heat loss or gain produced by the windows. If desired, the reflective surfaces of the slats may be concave. The edges of the slats are designed to seal against adjacent slats when the blinds are closed to ensure minimum air flow between slats.

  5. Low Cost Near Infrared Selective Plasmonic Smart Windows

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guillermo Garcia, memo@heliotropetech.com Heliotrope Technologies Low Cost Near Infrared Selective Plasmonic Smart Windows 2015 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: 5/15/14 Planned end date: 5/15/16 Key Milestones 1. Met device performance milestones by optimizing material composition, Aug 2014 2. Established fabrication protocol for transition to commercial scaled samples, Oct 2014 3. Validated UV sensitivity, variable temperature operation, and cycle

  6. ORGBUG -- A windows-based combinatorial geometry debugger

    SciTech Connect (OSTI)

    Burns, T.J.

    1993-06-01

    ORGBUG is the second half of a two part graphical display and debugging system for combinatorial geometry. The first part of the system consists of a ``view`` generator, CGVIEW. ORGBUG itself is a Microsoft Windows-based application designed to run on a 386 personal computer and to display the ``view`` produced by CGVIEW as an aid to debugging. ORGBUG also includes specific tools to facilitate the identification of geometric features which are inconsistent or in error.

  7. ORGBUG -- A windows-based combinatorial geometry debugger

    SciTech Connect (OSTI)

    Burns, T.J.

    1993-06-01

    ORGBUG is the second half of a two part graphical display and debugging system for combinatorial geometry. The first part of the system consists of a view'' generator, CGVIEW. ORGBUG itself is a Microsoft Windows-based application designed to run on a 386 personal computer and to display the view'' produced by CGVIEW as an aid to debugging. ORGBUG also includes specific tools to facilitate the identification of geometric features which are inconsistent or in error.

  8. Performance prediction using geostatistics and window reservoir simulation

    SciTech Connect (OSTI)

    Fontanilla, J.P.; Al-Khalawi, A.A.; Johnson, S.G.

    1995-11-01

    This paper is the first window model study in the northern area of a large carbonate reservoir in Saudi Arabia. It describes window reservoir simulation with geostatistics to model uneven water encroachment in the southwest producing area of the northern portion of the reservoir. In addition, this paper describes performance predictions that investigate the sweep efficiency of the current peripheral waterflood. A 50 x 50 x 549 (240 m. x 260 m. x 0.15 m. average grid block size) geological model was constructed with geostatistics software. Conditional simulation was used to obtain spatial distributions of porosity and volume of dolomite. Core data transforms were used to obtain horizontal and vertical permeability distributions. Simple averaging techniques were used to convert the 549-layer geological model to a 50 x 50 x 10 (240 m. x 260 m. x 8 m. average grid block size) window reservoir simulation model. Flux injectors and flux producers were assigned to the outermost grid blocks. Historical boundary flux rates were obtained from a coarsely-ridded full-field model. Pressure distribution, water cuts, GORs, and recent flowmeter data were history matched. Permeability correction factors and numerous parameter adjustments were required to obtain the final history match. The permeability correction factors were based on pressure transient permeability-thickness analyses. The prediction phase of the study evaluated the effects of infill drilling, the use of artificial lifts, workovers, horizontal wells, producing rate constraints, and tight zone development to formulate depletion strategies for the development of this area. The window model will also be used to investigate day-to-day reservoir management problems in this area.

  9. EERE Success Story-Performance Validation of Low-e Storm Windows...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of Low-e Storm Windows Paves Way for Market Acceptance EERE Success Story-Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance September 30, ...

  10. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging ...

  11. Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Building America webinar presented a new and improved low-e storm window that boasts a combination of curb appeal and energy efficiency, all for a fraction of the cost of window replacement, on Sept. 9, 2014.

  12. U-028: Microsoft Windows win32k.sys TrueType Font Parsing Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Microsoft Windows, which can be exploited by malicious people to compromise a user's system.

  13. Science on the Hill: Gravitational waves open new window on universe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves open new window on universe Gravitational waves open new window on universe Viewing the very large and very small workings of what's out there. May 8, 2016 Science on the Hill: Gravitational waves open new window on universe A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. Science on the Hill: Gravitational waves open new window on universe Now that gravitational waves have been found, what can be done with them? Lots, it turns

  14. Department of Energy Announces 14 New Projects for Window Efficiency Technologies

    Broader source: Energy.gov [DOE]

    ARPA-E Awards $31 Million to Develop Innovative Materials that Reduce Heat Loss through Single-Pane Windows

  15. Method to analyze remotely sensed spectral data

    DOE Patents [OSTI]

    Stork, Christopher L.; Van Benthem, Mark H.

    2009-02-17

    A fast and rigorous multivariate curve resolution (MCR) algorithm is applied to remotely sensed spectral data. The algorithm is applicable in the solar-reflective spectral region, comprising the visible to the shortwave infrared (ranging from approximately 0.4 to 2.5 .mu.m), midwave infrared, and thermal emission spectral region, comprising the thermal infrared (ranging from approximately 8 to 15 .mu.m). For example, employing minimal a priori knowledge, notably non-negativity constraints on the extracted endmember profiles and a constant abundance constraint for the atmospheric upwelling component, MCR can be used to successfully compensate thermal infrared hyperspectral images for atmospheric upwelling and, thereby, transmittance effects. Further, MCR can accurately estimate the relative spectral absorption coefficients and thermal contrast distribution of a gas plume component near the minimum detectable quantity.

  16. Integrated self-cleaning window assembly for optical transmission in combustion environments

    DOE Patents [OSTI]

    Kass, Michael D [Oak Ridge, TN

    2007-07-24

    An integrated window design for optical transmission in combustion environments is described. The invention consists of an integrated optical window design that prevents and removes the accumulation of carbon-based particulate matter and gaseous hydrocarbons through a combination of heat and catalysis. These windows will enable established optical technologies to be applied to combustion environments and their exhaust systems.

  17. EERE Success Story-Energy-Efficient Smart Windows are Lowering...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Increases Comfort PPG Industries' online tool, Construct, allows users to quickly build a virtual Insulated Glass Unit (IGU) and calculate its thermal and optical ...

  18. 5 Steps to Making Your Windows More Energy Efficient | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steps to Making Your Windows More Energy Efficient 5 Steps to Making Your Windows More Energy Efficient December 13, 2013 - 4:06pm Addthis Keep your hard-earned dollars from flying out the window by following the <a href="http://apps1.eere.energy.gov/buildings/publications/pdfs/building_america/measure_guide_wood_windows.pdf">latest guidelines for window repair, rehabilitation and replacement</a>. | Photo courtesy of the Weatherization Assistance Program Technical

  19. Building America's Low-e Storm Window Adoption Program Plan (FY2014)

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-12-23

    Low emissivity (low-e) storm windows/panels appear to hold promise for effectively reducing existing home heating, ventilation, and air-conditioning (HVAC) consumption. Due to the affordability of low-e storm windows and the large numbers of existing homes that have low-performing single-pane or double-pane clear windows, a tremendous opportunity exists to provide energy savings by transforming the low-e storm window market and increasing market adoption. This report outlines U.S. Department of Energy (DOE) Building America’s planned market transformation activities in support of low-e storm window adoption during fiscal year (FY) 2014.

  20. ALPHA ENHANCEMENT AND THE METALLICITY DISTRIBUTION FUNCTION OF PLAUT'S WINDOW

    SciTech Connect (OSTI)

    Johnson, Christian I.; Michael Rich, R.; Fulbright, Jon P.; Valenti, Elena; McWilliam, Andrew E-mail: rmr@astro.ucla.edu E-mail: evalenti@eso.org

    2011-05-10

    We present Fe, Si, and Ca abundances for 61 giants in Plaut's window (l = -1{sup 0}, b = -8.{sup 0}5) and Fe abundances for an additional 31 giants in a second, nearby field (l = 0{sup 0}, b = -8{sup 0}) derived from high-resolution (R {approx} 25,000) spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. The median metallicity of red giant branch (RGB) stars in the Plaut's field is {approx}0.4 dex lower than those in Baade's window, and confirms the presence of an iron abundance gradient along the bulge minor axis. The full metallicity range of our (biased) RGB sample spans -1.5 < [Fe/H] < +0.3, which is similar to that found in other bulge fields. We also derive a photometric metallicity distribution function for RGB stars in the (l = -1{sup 0}, b = -8{sup 0}.5) field and find very good agreement with the spectroscopic metallicity distribution. The radial velocity (RV) and dispersion data for the bulge RGB stars are in agreement with previous results of the Bulge Radial Velocity Assay survey, and we find evidence for a decreasing velocity dispersion with increasing [Fe/H]. The [{alpha}/Fe] enhancement in Plaut field stars is nearly identical to that observed in Baade's window, and suggests that an [{alpha}/Fe] gradient does not exist between b = -4{sup 0} and -8{sup 0}. Additionally, a subset of our sample (23 stars) appears to be foreground red clump stars that are very metal rich, exhibit small metallicity and RV dispersions, and are enhanced in {alpha} elements. While these stars likely belong to the Galactic inner disk population, they exhibit [{alpha}/Fe] ratios that are enhanced above the thin and thick disk.

  1. Graph of Total Number of Oligos Within Windows of a Sequence

    Energy Science and Technology Software Center (OSTI)

    1995-11-28

    SEQWIN is user-friendly software which graphs the total number of oligos present in a sequence. The sequence is scanned one window at a time; windows can be overlapping. Each bar on the graph represents a single window down the sequence. The user specifies the sequence of interest and a list of oligos as program input. If the sequence is known, locations of specific structure or sequences can be specified and compared with the bars onmore » a graph. The window size, amount of overlap of the windows, number of windows to be considered, and the starting position of the first window used can be adjusted at the user's discretion.« less

  2. Feasibility study of broadband efficient ''water window'' source

    SciTech Connect (OSTI)

    Higashiguchi, Takeshi; Yugami, Noboru; Otsuka, Takamitsu; Jiang Weihua; Endo, Akira; Li Bowen; Dunne, Padraig; O'Sullivan, Gerry

    2012-01-02

    We demonstrate a table-top broadband emission water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs) in the 2-4 nm region, extending below the carbon K edge (4.37 nm). Arrays resulting from n=4-n=4 transitions are overlaid with n=4-n=5 emission and shift to shorter wavelength with increasing atomic number. An outline of a microscope design for single-shot live cell imaging is proposed based on a bismuth plasma UTA source, coupled to multilayer mirror optics.

  3. The Open Host Network Packet Process Correlator for Windows

    Energy Science and Technology Software Center (OSTI)

    2014-06-17

    The Hone sensors are packet-process correlation engines that log the relationships between applications and the communications they are responsible for. Hone sensors are available for a variety of platforms including Linux, Windows, and MacOSX. Hone sensors are designed to help analysts understand the meaning of communications on a deeper level by associating the origin or destination process to the communication. They do this by tracing communications on a per-packet basis, through the kernel of themore » operating system to determine their ultimate source/destination on the monitored machine.« less

  4. User to net eleven-month payback on window film

    SciTech Connect (OSTI)

    Kennedy, K.

    1985-08-12

    Solar window insulation manufactured by Solar Master Film Corp. will save a Labor Department building $82,000 annually in electricity costs for air conditioning and $58,000 in steam costs. There could be an additional savings of about $1800 after one year because of lower demand charges for electricity. Solar film decreases the U-value of glass, thus lowering the conduction losses of cool air in the summertime and of warm air in the winter. The quality of Solar Master's two-ply insulation and the experience of the firm and bid price were criteria that helped Solar Master get the contract.

  5. Expert Meeting Report: Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyk, C.; Carmody, J.; Haglund, K.

    2013-05-01

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011 at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  6. Expert Meeting Report. Windows Options for New and Existing Homes

    SciTech Connect (OSTI)

    Ojczyck, C.; Carmody, J.; Haglund, K.

    2013-05-01

    The NorthernSTAR Building America Partnership held an Expert Meeting on Windows Options for New and Existing Homes on November 14, 2011, at the Nolte Building on the campus of the University of Minnesota in Minneapolis, MN. Featured speakers included John Carmody and Pat Huelman of the University of Minnesota, Charlie Curcija of Lawrence Berkeley National Laboratory, Jim Larson of Cardinal Glass Industries, Peter Yost of Building Green, Peter Baker of Building Science Corporation, and Theresa Weston of Du Pont Innovations. Audience participation was actively encouraged during each presentation to uncover need and promote dialog among researchers and industry professionals.

  7. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  8. Web-based multi-channel analyzer

    DOE Patents [OSTI]

    Gritzo, Russ E.

    2003-12-23

    The present invention provides an improved multi-channel analyzer designed to conveniently gather, process, and distribute spectrographic pulse data. The multi-channel analyzer may operate on a computer system having memory, a processor, and the capability to connect to a network and to receive digitized spectrographic pulses. The multi-channel analyzer may have a software module integrated with a general-purpose operating system that may receive digitized spectrographic pulses for at least 10,000 pulses per second. The multi-channel analyzer may further have a user-level software module that may receive user-specified controls dictating the operation of the multi-channel analyzer, making the multi-channel analyzer customizable by the end-user. The user-level software may further categorize and conveniently distribute spectrographic pulse data employing non-proprietary, standard communication protocols and formats.

  9. Hydrogen Policy and Analyzing the Transition

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Analyzing the Transition Paul N. Leiby, David L. Greene, Zhenhong Lin, David Bowman, Sujit Das Oak Ridge National Laboratory November 16, 2009 Presented at the Workshop, "Delivering Renewable Hydrogen," NREL/CaFCP, Palm Springs, CA 2 Overview: Hydrogen Policy and Analyzing the Transition * Some lessons learned from analyzing fuel transitions - Find barriers to transitions significant, but progress being made - Review work by DOE-sponsored team, highlighting key factors *

  10. Electrochromic Window Demonstration at the Donna Land Port of Entry

    SciTech Connect (OSTI)

    Fernandes, Luis L.; Lee, Eleanor S.; Thanachareonkit, Anothai

    2015-05-01

    The U.S. General Services Administration (GSA) Public Buildings Service (PBS) has jurisdiction, custody or control over 105 land ports of entry throughout the United States, 35 of which are located along the southern border. At these facilities, one of the critical functions of windows is to provide border control personnel with direct visual contact with the surrounding environment. This also can be done through surveillance cameras, but the high value that U.S. Customs and Border Protection (CPB) officers place on direct visual contact can be encapsulated in the following statement by a senior officer regarding this project: “nothing replaces line of sight.” In sunny conditions, however, outdoor visibility can be severely compromised by glare, especially when the orb of the sun is in the field of view. This often leads to the deployment of operable shading devices, such as Venetian blinds. While these devices address the glare, they obstruct the view of the surroundings, negating the visual security benefits of the windows.

  11. Affordable Window Insulation with R-10/inch Rating

    SciTech Connect (OSTI)

    Jenifer Marchesi Redouane Begag; Je Kyun Lee; Danny Ou; Jong Ho Sonn; George Gould; Wendell Rhine

    2004-10-15

    During the performance of contract DE-FC26-00-NT40998, entitled ''Affordable Window Insulation with R-10/inch Value'', research was conducted at Aspen Aerogels, Inc. to develop new transparent aerogel materials suitable for window insulation applications. The project requirements were to develop a formulation or multiple formulations that have high transparency (85-90%) in the visible region, are hydrophobic (will not opacify with exposure to water vapor or liquid), and have at least 2% resiliency (interpreted as recoverable 2% strain and better than 5% strain to failure in compression). Results from an unrelated project showed that silica aerogels covalently bonded to organic polymers exhibit excellent mechanical properties. At the outset of this project, we believed that such a route is the best to improve mechanical properties. We have applied Design of Experiment (DOE) techniques to optimize formulations including both silica aerogels and organically modified silica aerogels (''Ormosils''). We used these DOE results to optimize formulations around the local/global optimization points. This report documents that we succeeded in developing a number of formulations that meet all of the stated criteria. We successfully developed formulations utilizing a two-step approach where the first step involves acid catalyzed hydrolysis and the second step involves base catalyzed condensation to make the gels. The gels were dried using supercritical CO{sub 2} and we were able to make 1 foot x 1 foot x 0.5 inch panels that met the criteria established.

  12. Thermal wake/vessel detection technique

    DOE Patents [OSTI]

    Roskovensky, John K.; Nandy, Prabal; Post, Brian N

    2012-01-10

    A computer-automated method for detecting a vessel in water based on an image of a portion of Earth includes generating a thermal anomaly mask. The thermal anomaly mask flags each pixel of the image initially deemed to be a wake pixel based on a comparison of a thermal value of each pixel against other thermal values of other pixels localized about each pixel. Contiguous pixels flagged by the thermal anomaly mask are grouped into pixel clusters. A shape of each of the pixel clusters is analyzed to determine whether each of the pixel clusters represents a possible vessel detection event. The possible vessel detection events are represented visually within the image.

  13. TOF Electron Energy Analyzer for Spin and Angular Resolved Photoemission Spectroscopy

    SciTech Connect (OSTI)

    Lebedev, Gennadi; Jozwiak, Chris; Andresen, Nord; Lanzara, Alessandra; Hussain, Zahid

    2008-07-09

    Current pulsed laser and synchrotron x-ray sources provide new opportunities for Time-Of- Flight (TOF) based photoemission spectroscopy to increase photoelectron energy resolution and efficiency compared to current standard techniques. The principals of photoelectron timing front formation, temporal aberration minimization, and optimization of electron beam transmission are presented. We have developed these concepts into a high resolution Electron Optical Scheme (EOS) of a TOF Electron Energy Analyzer (TOF-EEA) for photoemission spectroscopy. The EOS of the analyzer includes an electrostatic objective lens, three columns of transport lenses and a 90 degree energy band pass filter (BPF). The analyzer has two modes of operation: Spectrometer Mode (SM) with straight passage of electrons through the EOS undeflected by the BPF, allowing the entire spectrum to be measured, and Monochromator Mode (MM) in which the BPF defines a certain energy window inside the scope of the electron energy spectrum.

  14. Resizing the conformal window: A {beta}-function ansatz

    SciTech Connect (OSTI)

    Antipin, O.; Tuominen, K.

    2010-04-01

    We propose an ansatz for the nonperturbative beta-function of a generic nonsupersymmetric Yang-Mills theory with or without fermions in an arbitrary representation of the gauge group. While our construction is similar to the recently proposed Ryttov-Sannino all-order beta-function, the essential difference is that it allows for the existence of an unstable ultraviolet fixed point in addition to the predicted Banks-Zaks-like infrared stable fixed point. Our beta-function preserves all of the tested features with respect to the nonsupersymmetric Yang-Mills theories. We predict the conformal window identifying the lower end of it as a merger of the infrared and ultraviolet fixed points.

  15. Evacuated Window Glazing Research and Development: A Progress Report

    SciTech Connect (OSTI)

    Benson, D. K.; Tracy, C. E.; Jorgensen, G. J.

    1984-12-01

    This document summarizes progress during a nine-month period of an ongoing, exploratory research talk. The objective of the research is to evaluate the technical feasibility of a highly insulating, evacuated glazing for windows and other building apertures. Research includes engineering design and analysis of the glazing structure, materials development for its components, and the development of fabrication processes that could be used in the practical, mass production of such a glazing system. The targeted design performance goals are 70 percent solar weighted transmittance with less than 0.5 W/m2 K conductance (insulating R value greater than 12 F ft2 h/Btu) with an acceptable view quality.

  16. Vacuum chamber with a supersonic flow aerodynamic window

    DOE Patents [OSTI]

    Hanson, Clark L.

    1982-01-01

    A supersonic flow aerodynamic window, whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  17. Vacuum chamber with a supersonic-flow aerodynamic window

    DOE Patents [OSTI]

    Hanson, C.L.

    1980-10-14

    A supersonic flow aerodynamic window is disclosed whereby a steam ejector situated in a primary chamber at vacuum exhausts superheated steam toward an orifice to a region of higher pressure, creating a barrier to the gas in the region of higher pressure which attempts to enter through the orifice. In a mixing chamber outside and in fluid communication with the primary chamber, superheated steam and gas are combined into a mixture which then enters the primary chamber through the orifice. At the point of impact of the ejector/superheated steam and the incoming gas/superheated steam mixture, a barrier is created to the gas attempting to enter the ejector chamber. This barrier, coupled with suitable vacuum pumping means and cooling means, serves to keep the steam ejector and primary chamber at a negative pressure, even though the primary chamber has an orifice to a region of higher pressure.

  18. System for analyzing coal liquefaction products

    DOE Patents [OSTI]

    Dinsmore, Stanley R.; Mrochek, John E.

    1984-01-01

    A system for analyzing constituents of coal-derived materials comprises three adsorption columns and a flow-control arrangement which permits separation of both aromatic and polar hydrocarbons by use of two eluent streams.

  19. On-line chemical composition analyzer development

    SciTech Connect (OSTI)

    Garrison, A.A.

    1993-01-01

    This report relates to the development of an on-line Raman analyzer for control of a distillation column. It is divided into: program issues, experimental control system evaluation, energy savings analysis, and reliability analysis. (DLC)

  20. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook...

    Office of Scientific and Technical Information (OSTI)

    in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program ...

  1. Analyzing ocean mixing reveals insight on climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyzing ocean mixing reveals insight on climate Analyzing ocean mixing reveals insight on climate LANL scientists have developed a computer model that clarifies the complex processes driving ocean mixing in the vast eddies that swirl across hundreds of miles of open ocean. June 24, 2015 A three-dimensional spatial structure of mixing in an idealized ocean simulation, computed using Lagrangian particle statistics. A three-dimensional spatial structure of mixing in an idealized ocean simulation,

  2. Question of the Week: What Have You Done to Improve Your Windows? |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy We've been talking a lot on the blog recently about improving and replacing windows to improve energy efficiency. What have you done to improve your windows? E-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles Weatherization Assistance for the Hottest Days Hawaii is a Renewable Energy Lover's Paradise Do You Have Windows That Need Replacing

  3. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOE Patents [OSTI]

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  4. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOE Patents [OSTI]

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  5. High-power testing of PEP-II RF cavity windows

    SciTech Connect (OSTI)

    Neubauer, M.; Allen, M.; Fant, K.; Hill, A.; Hoyt, M.; Judkins, J.; Schwarz, H.; Rimmer, R.A.

    1996-06-01

    We describe the high power testing of RF cavity windows for the PEP-II B factory. The window is designed for continuous operation at 476 MHz with up to 500 kW throughput and has been tested to full power using a modified PEP Klystron. The windows use an anti-multipactor coating on the vacuum side and the application and processing of this layer is discussed. The high power test configuration, RF processing history and high power performance are described.

  6. Property:OpenEI/UtilityRate/DemandWindow | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search This is a property of type Number. Retrieved from "http:en.openei.orgwindex.php?titleProperty:OpenEIUtilityRateDemandWindow&oldid680274...

  7. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt ...

  8. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  9. Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows...

    Office of Scientific and Technical Information (OSTI)

    Title: Electrochromism vs. the Bugs:DevelopingWO3 Thin Film Windows toControl Photoactive Biological Systems. Abstract not provided. Authors: Small, Leo J ; Spoerke, Erik David ; ...

  10. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology

  11. Savings Project: Install Exterior Storm Windows With Low-E Coating...

    Office of Environmental Management (EM)

    while keeping your home warm in the winter and cool in the summer. | Photo courtesy of Larson Manufacturing Company. Installing storm windows will lower your energy bill while...

  12. A multiple deep attenuation frequency window for harmonic analysis in power systems

    SciTech Connect (OSTI)

    Daponte, P.; Falcomata, G. . Dept. di Elettronica Informatica e Sistemistica); Testa, A. . Dipt. di Ingegneria Elettrica)

    1994-04-01

    A novel window is presented and applied in electrical power system harmonic analysis. The goal of increasing the resolvability of low magnitude non-harmonic tones close in frequency to higher magnitude harmonics and the detectability of very low magnitude high frequency harmonics is pursued. The proposed window is derived from the Tseng window; its spectrum can be modeled in the synthesis stage and it is characterized by a narrow width main lobe and by sidelobes which are very low in correspondence to some specified frequencies. Numerical experiments demonstrate the performances and the usefulness of the new window in resolving periodic distorted waveforms in power systems.

  13. Smarter Smart Windows | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Smarter Smart Windows Basic Energy Sciences (BES) BES Home About Research Facilities Science ... Laboratory, and was supported by the Office of Science, Office of Basic Energy ...

  14. Purged window apparatus. [On-line spectroscopic analysis of gas flow systems

    DOE Patents [OSTI]

    Ballard, E.O.

    1982-04-05

    A purged window apparatus is described which utilizes tangentially injected heated purge gases in the vicinity of electromagnetic radiation transmitting windows and a tapered external mounting tube to accelerate these gases to provide a vortex flow on the window surface and a turbulent flow throughout the mounting tube thereby preventing backstreaming of flowing gases under investigation in a chamber to which a plurality of similar purged apparatus is attached with the consequent result that spectroscopic analyses can be undertaken for lengthy periods without the necessity of interrupting the flow for cleaning or replacing the windows due to contamination.

  15. T-573: Windows Remote Desktop Client DLL Loading Error Lets Remote Users Execute Arbitrary Code

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in Windows Remote Desktop Client. A remote user can cause arbitrary code to be executed on the target user's system.

  16. R&D Magazine: Windows into Solar Power Sources with Quantum Dots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R&D Magazine: Windows into Solar Power Sources with Quantum Dots August 30, 2015 R&D Magazine: Windows into Solar Power Sources with Quantum Dots A luminescent solar concentrator is an emerging sunlight harvesting technology that has the potential to disrupt the way we think about energy: It could turn any window into a daytime power source. "In these devices, a fraction of light transmitted through the window is absorbed by nano-sized particles (semiconductor quantum dots)

  17. Evaluation of Interior Low-E Storm Windows in the PNNL Lab Homes...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION Lab Homes; Storm; Windows; Low-e; ...

  18. Apparatus for preventing particle deposition from process streams on optical access windows

    DOE Patents [OSTI]

    Logan, Ronald G.; Grimm, Ulrich

    1993-01-01

    An electrostatic precipitator is disposed inside and around the periphery of the window of a viewing port communicating with a housing through which a particle-laden gas stream is being passed. The precipitator includes a pair of electrodes around the periphery of the window, spaced apart and connected to a unidirectional voltage source. Application of high voltage from the source to the electrodes causes air molecules in the gas stream to become ionized, attaching to solid particles and causing them to be deposited on a collector electrode. This prevents the particles from being deposited on the window and keeps the window clean for viewing and making optical measurements.

  19. EERE Success Story—Energy-Efficient Smart Windows are Lowering Energy Costs

    Broader source: Energy.gov [DOE]

    Window innovations developed in collaboration with Lawrence Berkeley National Laboratory are cutting energy cost for American families, businesses, institutions, and governments every year. With...

  20. Analysis of thermally-degrading, confined HMX

    SciTech Connect (OSTI)

    Hobbs, M.L.; Schmitt, R.G.; Renlund, A.M.

    1996-12-01

    The response of a thermally-degrading, confined HMX pellet is analyzed using a Reactive Elastic-Plastic (REP) constitutive model which is founded on the collapse and growth of internal inclusions resulting from physical and chemical processes such as forced displacement, thermal expansion, and/or decomposition. Axial stress predictions compare adequately to data. Deficiencies in the model and future directions are discussed.

  1. A Big Data Approach to Analyzing Market Volatility

    SciTech Connect (OSTI)

    Wu, Kesheng; Bethel, E. Wes; Gu, Ming; Leinweber, David; Ruebel, Oliver

    2013-06-05

    Understanding the microstructure of the financial market requires the processing of a vast amount of data related to individual trades, and sometimes even multiple levels of quotes. Analyzing such a large volume of data requires tremendous computing power that is not easily available to financial academics and regulators. Fortunately, public funded High Performance Computing (HPC) power is widely available at the National Laboratories in the US. In this paper we demonstrate that the HPC resource and the techniques for data-intensive sciences can be used to greatly accelerate the computation of an early warning indicator called Volume-synchronized Probability of Informed trading (VPIN). The test data used in this study contains five and a half year?s worth of trading data for about 100 most liquid futures contracts, includes about 3 billion trades, and takes 140GB as text files. By using (1) a more efficient file format for storing the trading records, (2) more effective data structures and algorithms, and (3) parallelizing the computations, we are able to explore 16,000 different ways of computing VPIN in less than 20 hours on a 32-core IBM DataPlex machine. Our test demonstrates that a modest computer is sufficient to monitor a vast number of trading activities in real-time ? an ability that could be valuable to regulators. Our test results also confirm that VPIN is a strong predictor of liquidity-induced volatility. With appropriate parameter choices, the false positive rates are about 7percent averaged over all the futures contracts in the test data set. More specifically, when VPIN values rise above a threshold (CDF > 0.99), the volatility in the subsequent time windows is higher than the average in 93percent of the cases.

  2. Low-Cost Solutions for Dynamic Window Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... we use "terminated cluster growth". * Nanoparticles (copper, vanadium) have been synthesized and analyzed * First oxide nanoparticles have been made and deposited as a film ...

  3. In-situ continuous water analyzing module

    DOE Patents [OSTI]

    Thompson, Cyril V.; Wise, Marcus B.

    1998-01-01

    An in-situ continuous liquid analyzing system for continuously analyzing volatile components contained in a water source comprises: a carrier gas supply, an extraction container and a mass spectrometer. The carrier gas supply continuously supplies the carrier gas to the extraction container and is mixed with a water sample that is continuously drawn into the extraction container. The carrier gas continuously extracts the volatile components out of the water sample. The water sample is returned to the water source after the volatile components are extracted from it. The extracted volatile components and the carrier gas are delivered continuously to the mass spectometer and the volatile components are continuously analyzed by the mass spectrometer.

  4. Frequency spectrum analyzer with phase-lock

    DOE Patents [OSTI]

    Boland, Thomas J.

    1984-01-01

    A frequency-spectrum analyzer with phase-lock for analyzing the frequency and amplitude of an input signal is comprised of a voltage controlled oscillator (VCO) which is driven by a ramp generator, and a phase error detector circuit. The phase error detector circuit measures the difference in phase between the VCO and the input signal, and drives the VCO locking it in phase momentarily with the input signal. The input signal and the output of the VCO are fed into a correlator which transfers the input signal to a frequency domain, while providing an accurate absolute amplitude measurement of each frequency component of the input signal.

  5. BWR plant analyzer development at BNL

    SciTech Connect (OSTI)

    Cheng, H.S.; Wulff, W.; Mallen, A.N.; Lekach, S.V.; Stritar, A.; Cerbone, R.J.

    1985-01-01

    Advanced technology for high-speed interactive nuclear power plant simulations is of great value for timely resolution of safety issues, for plant monitoring, and for computer-aided emergency responses to an accident. Presented is the methodology employed at BNL to develop a BWR plant analyzer capable of simulating severe plant transients at much faster than real-time process speeds. Five modeling principles are established and a criterion is given for selecting numerical procedures and efficient computers to achieve the very high simulation speeds. Typical results are shown to demonstrate the modeling fidelity of the BWR plant analyzer.

  6. Analyzing Design Heating Loads in Superinsulated Buildings

    SciTech Connect (OSTI)

    Arena, Lois

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  7. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C. Stuart; Hawk, James A.

    1995-01-01

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence.

  8. Fluidization quality analyzer for fluidized beds

    DOE Patents [OSTI]

    Daw, C.S.; Hawk, J.A.

    1995-07-25

    A control loop and fluidization quality analyzer for a fluidized bed utilizes time varying pressure drop measurements. A fast-response pressure transducer measures the overall bed pressure drop, or over some segment of the bed, and the pressure drop signal is processed to produce an output voltage which changes with the degree of fluidization turbulence. 9 figs.

  9. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  10. Technology Advancements to Lower Costs of Electrochromic Window Glazing

    SciTech Connect (OSTI)

    Mark Burdis; Neil Sbar

    2008-07-13

    An Electrochromic (EC) Window is a solar control device that can electronically regulate the flow of sunlight and heat. In the case of the SageGlass{reg_sign} EC window, this property derives from a proprietary all-ceramic, intrinsically durable thin-film stack applied to an inner surface of a glass double-pane window. As solar irradiation and temperatures change, the window can be set to an appropriate level of tint to optimize the comfort and productivity of the occupants as well as to minimize building energy usage as a result of HVAC and lighting optimization. The primary goal of this project is to replace certain batch processes for EC thin film deposition resulting in a complete in-line vacuum process that will reduce future capital and labor coats, while increasing throughput and yields. This will require key technology developments to replace the offline processes. This project has enabled development of the next generation of electrochromic devices suitable for large-scale production. Specifically, the requirements to produce large area devices cost effectively require processes amenable to mass production, using a variety of different substrate materials, having minimal handling and capable of being run at high yield. The present SageGlass{reg_sign} production process consists of two vacuum steps separated by an atmospheric process. This means that the glass goes through several additional handling steps, including venting and pumping down to go from vacuum to atmosphere and back, which can only serve to introduce additional defects associated with such processes. The aim of this project therefore was to develop a process which would eliminate the need for the atmospheric process. The overall project was divided into several logical tasks which would result in a process ready to be implemented in the present SAGE facility. Tasks 2 and 3 were devoted to development and the optimization of a new thin film material process. These tasks are more complicated

  11. A Moving Window Technique in Parallel Finite Element Time Domain Electromagnetic Simulation

    SciTech Connect (OSTI)

    Lee, Lie-Quan; Candel, Arno; Ng, Cho; Ko, Kwok; ,

    2010-06-07

    A moving window technique for the finite element time domain (FETD) method is developed to simulate the propagation of electromagnetic waves induced by the transit of a charged particle beam inside large and long structures. The window moving along with the beam in the computational domain adopts high-order finite-element basis functions through p refinement and/or a high-resolution mesh through h refinement so that a sufficient accuracy is attained with substantially reduced computational costs. Algorithms to transfer discretized fields from one mesh to another, which are the key to implementing a moving window in a finite-element unstructured mesh, are presented. Numerical experiments are carried out using the moving window technique to compute short-range wakefields in long accelerator structures. The results are compared with those obtained from the normal FETD method and the advantages of using the moving window technique are discussed.

  12. Method of fabricating a microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2003-01-01

    A method of fabricating a microelectronic device package with an integral window for providing optical access through an aperture in the package. The package is made of a multilayered insulating material, e.g., a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC). The window is inserted in-between personalized layers of ceramic green tape during stackup and registration. Then, during baking and firing, the integral window is simultaneously bonded to the sintered ceramic layers of the densified package. Next, the microelectronic device is flip-chip bonded to cofired thick-film metallized traces on the package, where the light-sensitive side is optically accessible through the window. Finally, a cover lid is attached to the opposite side of the package. The result is a compact, low-profile package, flip-chip bonded, hermetically-sealed package having an integral window.

  13. Calibration of optical particle-size analyzer

    DOE Patents [OSTI]

    Pechin, William H.; Thacker, Louis H.; Turner, Lloyd J.

    1979-01-01

    This invention relates to a system for the calibration of an optical particle-size analyzer of the light-intercepting type for spherical particles, wherein a rotary wheel or disc is provided with radially-extending wires of differing diameters, each wire corresponding to a particular equivalent spherical particle diameter. These wires are passed at an appropriate frequency between the light source and the light detector of the analyzer. The reduction of light as received at the detector is a measure of the size of the wire, and the electronic signal may then be adjusted to provide the desired signal for corresponding spherical particles. This calibrator may be operated at any time without interrupting other processing.

  14. Real-time airborne particle analyzer

    DOE Patents [OSTI]

    Reilly, Peter T.A.

    2012-10-16

    An aerosol particle analyzer includes a laser ablation chamber, a gas-filled conduit, and a mass spectrometer. The laser ablation chamber can be operated at a low pressure, which can be from 0.1 mTorr to 30 mTorr. The ablated ions are transferred into a gas-filled conduit. The gas-filled conduit reduces the electrical charge and the speed of ablated ions as they collide and mix with buffer gases in the gas-filled conduit. Preferably, the gas filled-conduit includes an electromagnetic multipole structure that collimates the nascent ions into a beam, which is guided into the mass spectrometer. Because the gas-filled conduit allows storage of vast quantities of the ions from the ablated particles, the ions from a single ablated particle can be analyzed multiple times and by a variety of techniques to supply statistically meaningful analysis of composition and isotope ratios.

  15. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, G.E.; Struve, W.S.; Homer, J.F.

    1987-02-03

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.

  16. Real time speech formant analyzer and display

    DOE Patents [OSTI]

    Holland, George E.; Struve, Walter S.; Homer, John F.

    1987-01-01

    A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.

  17. Compact fast analyzer of rotary cuvette type

    DOE Patents [OSTI]

    Thacker, Louis H.

    1976-01-01

    A compact fast analyzer of the rotary cuvette type is provided for simultaneously determining concentrations in a multiplicity of discrete samples using either absorbance or fluorescence measurement techniques. A rigid, generally rectangular frame defines optical passageways for the absorbance and fluorescence measurement systems. The frame also serves as a mounting structure for various optical components as well as for the cuvette rotor mount and drive system. A single light source and photodetector are used in making both absorbance and fluorescence measurements. Rotor removal and insertion are facilitated by a swing-out drive motor and rotor mount. BACKGROUND OF THE INVENTION The invention relates generally to concentration measuring instruments and more specifically to a compact fast analyzer of the rotary cuvette type which is suitable for making either absorbance or fluorescence measurements. It was made in the course of, or under, a contract with the U.S. Atomic Energy Commission.

  18. Analyzing Outreach Effectiveness to Improve Program Design

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analyzing Outreach Effectiveness to Improve Program Design What's Working in Residential Energy Efficiency Upgrade Programs, Panel on Collecting and Using Data to Improve the Program May 20, 2011 © Copyright Earth Markets, LLC 2011 Bethany Cheshire East Haddam Glastonbury Mansfield Ridgefield Portland Weston Westport Wethersfield Wilton Windham Lebanon East Hampton Who's participating? © Copyright Earth Markets, LLC 2011 Road from Start to Finish Sign-Up for the Reduce 4 tons CO 2 Earn Town

  19. RGA-5 process gas analyzer test report

    SciTech Connect (OSTI)

    Weamer, J.L.

    1994-11-09

    The gas monitoring system, GMS-2, includes two gas monitors. GC-2 measures high hydrogen concentrations (0.2--10%) and GC-3 measures the lower concentration levels (10--100 ppm). Although redundant instruments are in place for accurately measuring the higher hydrogen concentrations, there are no redundant instruments to accurately measure the relatively low baseline hydrogen concentrations. The RGA-5 process gas analyzer is a two-column GC that will replace GC-2 and provide redundancy for GC-3. This upgrade will provide faster response time and reduce tank farm entries for routine operations because the RGA-5 is remotely operable. Tests were conducted according to WHC-SD-WM-TP-262, RGA-5 Process Gas Analyzer Test Plan. The first objective was to verify that the vendor-supplied RGA host data acquisition software allowed communication between the RGA-5 and an ISA bus personal computer. The second objective was to determine the capabilities of the RGA-5 process gas analyzer. The tests did the following: with a constant flow rate and pressure, determined the concentration range that each column can accurately and precisely measure; identified any uncorrected interferences from other tank gases such as ammonia, nitrous oxide, or methane; and determined the response and decay time.

  20. Thermal insulation for buildings. (Latest citations from the Compendex database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (Contains 250 citations and includes a subject term index and title list.)

  1. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  2. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  3. Light-weight analyzer for odor recognition

    DOE Patents [OSTI]

    Vass, Arpad A; Wise, Marcus B

    2014-05-20

    The invention provides a light weight analyzer, e.g., detector, capable of locating clandestine graves. The detector utilizes the very specific and unique chemicals identified in the database of human decompositional odor. This detector, based on specific chemical compounds found relevant to human decomposition, is the next step forward in clandestine grave detection and will take the guess-work out of current methods using canines and ground-penetrating radar, which have historically been unreliable. The detector is self contained, portable and built for field use. Both visual and auditory cues are provided to the operator.

  4. Analyzing PICL trace data with MEDEA

    SciTech Connect (OSTI)

    Merlo, A.P.; Worley, P.H.

    1994-04-01

    Execution traces and performance statistics can be collected for parallel applications on a variety of multiprocessor platforms by using the Portable Instrumented Communication Library (PICL). The static and dynamic performance characteristics of performance characteristics of performance data can be analyzed easily and effectively with the facilities provided within the MEasurements Description Evaluation and Analysis tool (MEDEA). A case study is then outlined that uses PICL and MEDEA to characterize the performance of a parallel benchmark code executed on different hardware platforms and using different parallel algorithms and communication protocols.

  5. Analyzing PICL trace data with MEDEA

    SciTech Connect (OSTI)

    Merlo, A.P.; Worley, P.H.

    1993-11-01

    Execution traces and performance statistics can be collected for parallel applications on a variety of multiprocessor platforms by using the Portable Instrumented Communication Library (PICL). The static and dynamic performance characteristics of performance data can be analyzed easily and effectively with the facilities provided within the MEasurements Description Evaluation and Analysis tool (MEDEA). This report describes the integration of the PICL trace file format into MEDEA. A case study is then outlined that uses PICL and MEDEA to characterize the performance of a parallel benchmark code executed on different hardware platforms and using different parallel algorithms and communication protocols.

  6. Recovery and upgrading of heavy oil analyzed

    SciTech Connect (OSTI)

    Fornoff, L.L.; Van Driesen, R.P.; Viens, C.H.

    1980-10-13

    An analysis has been made of recovery and upgrading of Venezuelan heavy crudes by integrating steam-drive production data with an upgraded computer processing program. A study used 110 computer cases to analyze a project using Venezuelan heavy crude from the Jobo field with gravity of 9.2 API and 4.1% by wt sulfur for the base case. Sensitivity cases used 12.2 API oil from the Lot 9 field, Monagas state, Venezuela, with sulfur content of 2.3%. Four upgrading methods were studied (deasphalting, delayed coking, flexicoking, and LC-fining), all with favorable resulting economics.

  7. Analyzing water/wastewater infrastructure interdependencies.

    SciTech Connect (OSTI)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-03-26

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed.

  8. Real-Time Occupancy Change Analyzer

    Energy Science and Technology Software Center (OSTI)

    2005-03-30

    The Real-Time Occupancy Change Analyzer (ROCA) produces an occupancy grid map of an environment around the robot, scans the environment to generate a current obstacle map relative to a current robot position, and converts the current obstacle map to a current occupancy grid map. Changes in the occupancy grid can be reported in real time to support a number of tracking capabilities. The benefit of ROCA is that rather than only providing a vector tomore » the detected change, it provides the actual x,y position of the change.« less

  9. MULTI-CHANNEL PULSE HEIGHT ANALYZER

    DOE Patents [OSTI]

    Boyer, K.; Johnstone, C.W.

    1958-11-25

    An improved multi-channel pulse height analyzer of the type where the device translates the amplitude of each pulse into a time duration electrical quantity which is utilized to control the length of a train of pulses forwarded to a scaler is described. The final state of the scaler for any one train of pulses selects the appropriate channel in a magnetic memory in which an additional count of one is placed. The improvement consists of a storage feature for storing a signal pulse so that in many instances when two signal pulses occur in rapid succession, the second pulse is preserved and processed at a later time.

  10. Installing Windows with Foam Sheathing on a Wood-Frame Wall: January 1, 2004 to December 31, 2004

    SciTech Connect (OSTI)

    2005-05-01

    In most wall assemblies, connection details around windows have been the source of problems with water penetration into the building. This report describes how to install a window into a wall with insulating sheathing as an integrated drainage plane.

  11. Examination of the technical potential of near-infrared switching thermochromic windows for commercial building applications

    SciTech Connect (OSTI)

    Hoffmann, Sabine; Lee, Eleanor S.; Clavero, Cesar

    2013-12-01

    Current thermochromic windows modulate solar transmission primarily within the visible range, resulting in reduced space-conditioning energy use but also reduced daylight, thereby increasing lighting energy use compared to conventional static, near-infrared selective, low-emittance windows. To better understand the energy savings potential of improved thermochromic devices, a hypothetical near-infrared switching thermochromic glazing was defined based on guidelines provided by the material science community. EnergyPlus simulations were conducted on a prototypical large office building and a detailed analysis was performed showing the progression from switching characteristics to net window heat flow and perimeter zone loads and then to perimeter zone heating, ventilation, and air-conditioning (HVAC) and lighting energy use for a mixed hot/cold climate and a hot, humid climate in the US. When a relatively high daylight transmission is maintained when switched (Tsol = 0.10-0.50, Tvis = 0.30-0.60) and if coupled with a low-e inboard glazing layer (e = 0.04), the hypothetical thermochromic window with a low critical switching temperature range (14-20°C) achieved reductions in total site annual energy use of 14.0-21.1 kWh/m2-floor-yr or 12-14%2 for moderate- to large-area windows (WWR≥0.30) in Chicago and 9.8-18.6 kWh/m2-floor-yr or 10-17%3 for WWR≥0.45 in Houston compared to an unshaded spectrally-selective, low-e window (window E1) in south-, east-, and west-facing perimeter zones. If this hypothetical thermochromic window can be offered at costs that are competitive to conventional low-e windows and meet aesthetic requirements defined by the building industry and end users, then the technology is likely to be a viable energy-efficiency option for internal load dominated commercial buildings.

  12. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  13. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  14. Transient One-dimensional Pipe Flow Analyzer

    Energy Science and Technology Software Center (OSTI)

    1986-04-08

    TOPAZ-SNLL, the Transient One- dimensional Pipe flow AnalyZer code, is a user-friendly computer program for modeling the heat transfer, fluid mechanics, and thermodynamics of multi-species gas transfer in arbitrary arrangements of pipes, valves, vessels, and flow branches. Although the flow conservation equations are assumed to be one-dimensional and transient, multidimensional features of internal fluid flow and heat transfer may be accounted for using the available quasi-steady flow correlations (e.g., Moody friction factor correlation and variousmore » form loss and heat transfer correlations). Users may also model the effects of moving system boundaries such as pistons, diaphragms, and bladders. The features of fully compressible flow are modeled, including the propagation of shocks and rarefaction waves, as well as the establishment of multiple choke points along the flow path.« less

  15. Method for network analyzation and apparatus

    DOE Patents [OSTI]

    Bracht, Roger B.; Pasquale, Regina V.

    2001-01-01

    A portable network analyzer and method having multiple channel transmit and receive capability for real-time monitoring of processes which maintains phase integrity, requires low power, is adapted to provide full vector analysis, provides output frequencies of up to 62.5 MHz and provides fine sensitivity frequency resolution. The present invention includes a multi-channel means for transmitting and a multi-channel means for receiving, both in electrical communication with a software means for controlling. The means for controlling is programmed to provide a signal to a system under investigation which steps consecutively over a range of predetermined frequencies. The resulting received signal from the system provides complete time domain response information by executing a frequency transform of the magnitude and phase information acquired at each frequency step.

  16. Analyzing Options for Airborne Emergency Wireless Communications

    SciTech Connect (OSTI)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  17. Gaseous trace impurity analyzer and method

    DOE Patents [OSTI]

    Edwards, Jr., David (Bellport, NY); Schneider, William (Setauket, NY)

    1980-01-01

    Simple apparatus for analyzing trace impurities in a gas, such as helium or hydrogen, comprises means for drawing a measured volume of the gas as sample into a heated zone. A segregable portion of the zone is then chilled to condense trace impurities in the gas in the chilled portion. The gas sample is evacuated from the heated zone including the chilled portion. Finally, the chilled portion is warmed to vaporize the condensed impurities in the order of their boiling points. As the temperature of the chilled portion rises, pressure will develop in the evacuated, heated zone by the vaporization of an impurity. The temperature at which the pressure increase occurs identifies that impurity and the pressure increase attained until the vaporization of the next impurity causes a further pressure increase is a measure of the quantity of the preceding impurity.

  18. Stackable differential mobility analyzer for aerosol measurement

    DOE Patents [OSTI]

    Cheng, Meng-Dawn; Chen, Da-Ren

    2007-05-08

    A multi-stage differential mobility analyzer (MDMA) for aerosol measurements includes a first electrode or grid including at least one inlet or injection slit for receiving an aerosol including charged particles for analysis. A second electrode or grid is spaced apart from the first electrode. The second electrode has at least one sampling outlet disposed at a plurality different distances along its length. A volume between the first and the second electrode or grid between the inlet or injection slit and a distal one of the plurality of sampling outlets forms a classifying region, the first and second electrodes for charging to suitable potentials to create an electric field within the classifying region. At least one inlet or injection slit in the second electrode receives a sheath gas flow into an upstream end of the classifying region, wherein each sampling outlet functions as an independent DMA stage and classifies different size ranges of charged particles based on electric mobility simultaneously.

  19. BOA, Beam Optics Analyzer A Particle-In-Cell Code

    SciTech Connect (OSTI)

    Thuc Bui

    2007-12-06

    The program was tasked with implementing time dependent analysis of charges particles into an existing finite element code with adaptive meshing, called Beam Optics Analyzer (BOA). BOA was initially funded by a DOE Phase II program to use the finite element method with adaptive meshing to track particles in unstructured meshes. It uses modern programming techniques, state-of-the-art data structures, so that new methods, features and capabilities are easily added and maintained. This Phase II program was funded to implement plasma simulations in BOA and extend its capabilities to model thermal electrons, secondary emissions, self magnetic field and implement a more comprehensive post-processing and feature-rich GUI. The program was successful in implementing thermal electrons, secondary emissions, and self magnetic field calculations. The BOA GUI was also upgraded significantly, and CCR is receiving interest from the microwave tube and semiconductor equipment industry for the code. Implementation of PIC analysis was partially successful. Computational resource requirements for modeling more than 2000 particles begin to exceed the capability of most readily available computers. Modern plasma analysis typically requires modeling of approximately 2 million particles or more. The problem is that tracking many particles in an unstructured mesh that is adapting becomes inefficient. In particular memory requirements become excessive. This probably makes particle tracking in unstructured meshes currently unfeasible with commonly available computer resources. Consequently, Calabazas Creek Research, Inc. is exploring hybrid codes where the electromagnetic fields are solved on the unstructured, adaptive mesh while particles are tracked on a fixed mesh. Efficient interpolation routines should be able to transfer information between nodes of the two meshes. If successfully developed, this could provide high accuracy and reasonable computational efficiency.

  20. A Homeowners Guide to Window Air Conditioner Installation for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... side of the AC. (Do not remove top and bottom braces; they hold the unit in the window. ... If this is done, work from bottom to top and overlap tape so water will drain ...

  1. Molecular beam epitaxy of SrTiO{sub 3} with a growth window

    SciTech Connect (OSTI)

    Jalan, Bharat; Moetakef, Pouya; Stemmer, Susanne

    2009-07-20

    Many complex oxides with only nonvolatile constituents do not have a wide growth window in conventional molecular beam epitaxy (MBE) approaches, which makes it difficult to obtain stoichiometric films. Here it is shown that a growth window in which the stoichiometry is self-regulating can be achieved for SrTiO{sub 3} films by using a hybrid MBE approach that uses a volatile metal-organic source for Ti, titanium tetra isopropoxide (TTIP). The growth window widens and shifts to higher TTIP/Sr flux ratios with increasing temperature, showing that it is related to the desorption of the volatile TTIP. We demonstrate stoichiometric, highly perfect, insulating SrTiO{sub 3} films. The approach can be adapted for the growth of other complex oxides that previously were believed to have no wide MBE growth window.

  2. Building America Top Innovations 2013 Profile – High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    none,

    2013-09-01

    This Top Innovation profile explains how comprehensive performance testing by the National Renewable Energy Laboratory led to simple, affordable methods that homeowners could employ for increasing the energy efficiency of window air conditioners.

  3. Preliminary Assessment of the Energy-Saving Potential of Electrochromic Windows in Residential Buildings

    SciTech Connect (OSTI)

    Roberts, D. R.

    2009-12-01

    Electrochromic windows provide variable tinting that can help control glare and solar heat gain. We used BEopt software to evaluate their performance in prototypical energy models of a single-family home.

  4. Storm Windows (Even with a Low-E Coating!) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storm Windows (Even with a Low-E Coating) November 11, 2008 - 3:45pm Addthis John Lippert ... Alex is one of the world's experts on green building materials, so I'm always glad to see ...

  5. Savings Project: Install Exterior Storm Windows With Low-E Coating...

    Energy Savers [EERE]

    ... Storm window Tape measure Screwdriver Putty knife Caulk Caulking gun STEP-BY-STEP ... Do not caulk the bottom sill. Hold the caulking gun at a 45-degree angle to the edge of ...

  6. Building America Webinar: Low-E Storms: The Next Big Thing in Window Retrofits

    Broader source: Energy.gov [DOE]

    Until recently, energy-efficient window retrofit options have largely been limited to repair or replacement; leaving the homeowner to decide between affordability and deeper energy savings.  A new...

  7. Performance Validation of Low-e Storm Windows Paves Way for Market Acceptance

    Broader source: Energy.gov [DOE]

    One recent addition to the arsenal of cost-effective efficiency measures is low-emissivity (low-e) storm windows. A low-e coating or glazing is a thin layer deposited directly on the surface of one...

  8. U-045: Windows Win32k.sys Keyboard Layout Bug Lets Local Users...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ID: SA46919 IMPACT ASSESSMENT: Low Discussion: A vulnerability has been discovered in Microsoft Windows, which can be exploited by malicious, local users to cause a DoS (Denial...

  9. Bi-level multilayered microelectronic device package with an integral window

    DOE Patents [OSTI]

    Peterson, Kenneth A.; Watson, Robert D.

    2002-01-01

    A bi-level, multilayered package with an integral window for housing a microelectronic device. The device can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the window being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic device can be flip-chip bonded and oriented so that the light-sensitive side is optically accessible through the window. A second chip can be bonded to the backside of the first chip, with the second chip being wirebonded to the second level of the bi-level package. The result is a compact, low-profile package, having an integral window that can be hermetically-sealed.

  10. Low-e Storm Windows: Market Assessment and Pathways to Market Transformation

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-06-08

    Field studies sponsored by the U.S. Department of Energy (DOE) have shown that the use of low-e storm windows can lead to significant heating and cooling energy savings in residential homes. This study examines the market for low-e storm windows based on market data, case studies, and recent experience with weatherization deployment programs. It uses information from interviews conducted with DOE researchers and industry partners involved in case studies and early deployment efforts related to low-e storm windows. In addition, this study examines potential barriers to market acceptance, assesses the market and energy savings potential, and identifies opportunities to transform the market for low-e storm windows and overcome market adoption barriers.

  11. EERE Success Story—Energy Efficient Windows to Reach Market Quicker with New Tool

    Broader source: Energy.gov [DOE]

    About 10% of the energy used in U.S. buildings—approximately 4 quads per year—compensates for energy lost through windows. To address this inefficiency, architects, engineers, and home-builders are...

  12. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  13. Solar Energy Windows and Smart IR Switchable Building Technologies

    SciTech Connect (OSTI)

    McCarny, James; Kornish, Brian

    2011-09-30

    The three building envelope functions with the largest impact on the energy usage are illumination, energy flux and energy production. In general, these three functions are addressed separately in the building design. A step change toward a zero-energy building can be achieved with a glazing system that combines these three functions and their control into a single unit. In particular, significant value could be realized if illumination into the building is dynamically controlled such that it occurs during periods of low load on the grid (e.g., morning) to augment illumination supplied by interior lights and then to have that same light diverted to PV energy production and the thermal energy rejected during periods of high load on the grid. The objective of this project is to investigate the feasibility of a glazing unit design that integrates these three key functions (illumination and energy flux control, and power production) into a single module.

  14. Evaluation of control strategies for different smart window combinations using computer simulations

    SciTech Connect (OSTI)

    Jonsson, Andreas; Roos, Arne

    2010-01-15

    Several studies have shown that the use of switchable windows could lower the energy consumption of buildings. Since the main function of windows is to provide daylight and visual contact with the external world, high visible transmittance is needed. From an energy perspective it is always best to have the windows in their low-transparent state whenever there are cooling needs, but this is generally not preferable from a daylight and visual contact point of view. Therefore a control system, which can be based on user presence, is needed in connection with switchable windows. In this study the heating and cooling needs of the building, using different control mechanisms were evaluated. This was done for different locations and for different combinations of switchable windows, using electrochromic glazing in combination with either low-e or solar control glazing. Four control mechanisms were investigated; one that only optimizes the window to lower the need for heating and cooling, one that assumes that the office is in use during the daytime, one based on user presence and one limiting the perpendicular component of the incident solar irradiation to avoid glare and too strong daylight. The control mechanisms were compared using computer simulations. A simplified approach based on the balance temperature concept was used instead of performing complete building simulations. The results show that an occupancy-based control system is clearly beneficial and also that the best way to combine the panes in the switchable window differs depending on the balance temperature of the building and on the climate. It is also shown that it can be beneficial to have different window combinations for different orientations. (author)

  15. Dynamic compression of synthetic diamond windows (final report for LDRD project 93531).

    SciTech Connect (OSTI)

    Dolan, Daniel H.,

    2008-09-01

    Diamond is an attractive dynamic compression window for many reasons: high elastic limit,large mechanical impedance, and broad transparency range. Natural diamonds, however, aretoo expensive to be used in destructive experiments. Chemical vapor deposition techniquesare now able to produce large single-crystal windows, opening up many potential dynamiccompression applications. This project studied the behavior of synthetic diamond undershock wave compression. The results suggest that synthetic diamond could be a usefulwindow in this field, though complete characterization proved elusive.3

  16. Through a glass, warmly: Argonne nanomaterials can help make windows more

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficient | Argonne National Laboratory Through a glass, warmly: Argonne nanomaterials can help make windows more efficient By Greg Cunningham * May 31, 2016 Tweet EmailPrint A team of researchers at the U.S. Department of Energy's (DOE's) Argonne National Laboratory is using nanomaterials to improve the energy efficiency of existing single-pane windows in commercial and residential buildings. The team was recently awarded a $3.1 million grant from DOE's Advanced Research Projects

  17. Evaluation of Low-E Storm Windows in the PNNL Lab Homes

    SciTech Connect (OSTI)

    Knox, Jake R.; Widder, Sarah H.

    2014-05-31

    This study examines the performance of exterior and interior low-e storm panels with a controlled whole home experimental design using PNNL's Lab Homes. Summing the estimated annual average heating and cooling savings, the installation of low-e storm panels resulted in approximately 10% annual energy savings. The results of the experiment will be used to determine and validate performance of low-e storm windows over double pane clear glass windows in a whole home setting.

  18. Apparatus and method for in-situ cleaning of resist outgassing windows

    DOE Patents [OSTI]

    Klebanoff, Leonard E.; Haney, Steven J.

    2001-01-01

    An apparatus and method for in-situ cleaning of resist outgassing windows. The apparatus includes a chamber located in a structure, with the chamber having an outgassing window to be cleaned positioned in alignment with a slot in the chamber, whereby radiation energy passes through the window, the chamber, and the slot onto a resist-coated wafer mounted in the structure. The chamber is connected to a gas supply and the structure is connected to a vacuum pump. Within the chamber are two cylindrical sector electrodes and a filament is electrically connected to one sector electrode and a power supply. In a first cleaning method the sector electrodes are maintained at the same voltage, the filament is unheated, the chamber is filled with argon (Ar) gas under pressure, and the window is maintained at a zero voltage, whereby Ar ions are accelerated onto the window surface, sputtering away carbon deposits that build up as a result of resist outgassing. A second cleaning method is similar except oxygen gas (O.sub.2) is admitted to the chamber instead of Ar. These two methods can be carried out during lithographic operation. A third method, carried out during a maintenance period, involves admitting CO.sub.2 into the chamber, heating the filament to a point of thermionic emission, the sector electrodes are at different voltages, excited CO.sub.2 gas molecules are created which impact the carbon contamination on the window, and gasify it, producing CO gaseous products that are pumped away.

  19. NON-INTRUSIVE SENSOR FOR GAS FILL VERIFICATION OF INSULATED GLASS WINDOWS

    SciTech Connect (OSTI)

    Andrew Freedman; Paul L. Kebabian; Richard R. Romano; James Woodroffe

    2003-10-01

    A sensor capable of measuring the amount of oxygen (an unwanted component that is only present because of improper filling or seal failure) within an argon-filled insulated glass window has been designed, built and successfully tested. It operates by using the optical absorption of oxygen in the atmospheric A-band centered at 762 nm. Light emitted by an argon-filled surface glow discharge lamp is Zeeman-tuned on and off an oxygen absorption line using an AC-modulated electromagnet. In the presence of oxygen, the change in the measured intensity of the lamp, obtained using standard demodulation techniques, is proportional to the oxygen column density. Measurements using an industry-standard insulated glass window indicate that the sensor can measure the amount of oxygen in a nominally argon-filled IG window (with a window gap of 10 mm) with a precision of 0.50% oxygen using a 16 second integration time. This level of precision is well within the limits required by the IG window manufacturing industry for proper monitoring of newly manufactured window units.

  20. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOE Patents [OSTI]

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  1. Analyzing petabytes of data with Hadoop

    ScienceCinema (OSTI)

    None

    2011-10-06

    Abstract The open source Apache Hadoop project provides a powerful suite of tools for storing and analyzing petabytes of data using commodity hardware. After several years of production use inside of web companies like Yahoo! and Facebook and nearly a year of commercial support and development by Cloudera, the technology is spreading rapidly through other disciplines, from financial services and government to life sciences and high energy physics. The talk will motivate the design of Hadoop and discuss some key implementation details in depth. It will also cover the major subprojects in the Hadoop ecosystem, go over some example applications, highlight best practices for deploying Hadoop in your environment, discuss plans for the future of the technology, and provide pointers to the many resources available for learning more. In addition to providing more information about the Hadoop platform, a major goal of this talk is to begin a dialogue with the ATLAS research team on how the tools commonly used in their environment compare to Hadoop, and how Hadoop could improve better to serve the high energy physics community. Short Biography Jeff Hammerbacher is Vice President of Products and Chief Scientist at Cloudera. Jeff was an Entrepreneur in Residence at Accel Partners immediately prior to founding Cloudera. Before Accel, he conceived, built, and led the Data team at Facebook. The Data team was responsible for driving many of the applications of statistics and machine learning at Facebook, as well as building out the infrastructure to support these tasks for massive data sets. The team produced two open source projects: Hive, a system for offline analysis built above Hadoop, and Cassandra, a structured storage system on a P2P network. Before joining Facebook, Jeff was a quantitative analyst on Wall Street. Jeff earned his Bachelor's Degree in Mathematics from Harvard University and recently served as contributing editor to the book "Beautiful Data", published by O

  2. Development of Labview based data acquisition and multichannel analyzer software for radioactive particle tracking system

    SciTech Connect (OSTI)

    Rahman, Nur Aira Abd Yussup, Nolida; Ibrahim, Maslina Bt. Mohd; Abdullah, Nor Arymaswati; Mokhtar, Mukhlis B.; Abdullah, Jaafar B.; Hassan, Hearie B.

    2015-04-29

    A DAQ (data acquisition) software called RPTv2.0 has been developed for Radioactive Particle Tracking System in Malaysian Nuclear Agency. RPTv2.0 that features scanning control GUI, data acquisition from 12-channel counter via RS-232 interface, and multichannel analyzer (MCA). This software is fully developed on National Instruments Labview 8.6 platform. Ludlum Model 4612 Counter is used to count the signals from the scintillation detectors while a host computer is used to send control parameters, acquire and display data, and compute results. Each detector channel consists of independent high voltage control, threshold or sensitivity value and window settings. The counter is configured with a host board and twelve slave boards. The host board collects the counts from each slave board and communicates with the computer via RS-232 data interface.

  3. Rapid response sensor for analyzing Special Nuclear Material

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mitra, S. S.; Doron, O.; Chen, A. X.; Antolak, A. J.

    2015-06-18

    Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolatingmore » these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.« less

  4. Rapid response sensor for analyzing Special Nuclear Material

    SciTech Connect (OSTI)

    Mitra, S. S.; Doron, O.; Chen, A. X.; Antolak, A. J.

    2015-06-18

    Rapid in-situ analytical techniques are attractive for characterizing Special Nuclear Material (SNM). Present techniques are time consuming, and require sample dissolution. Proof-of-principal studies are performed to demonstrate the utility of employing low energy neutrons from a portable pulsed neutron generator for non-destructive isotopic analysis of nuclear material. In particular, time-sequenced data acquisition, operating synchronously with the pulsing of a neutron generator, partitions the characteristic elemental prompt gamma-rays according to the type of the reaction; inelastic neutron scattering reactions during the ON state and thermal neutron capture reactions during the OFF state of the generator. Thus, the key challenge is isolating these signature gamma- rays from the prompt fission and β-delayed gamma-rays that are also produced during the neutron interrogation. A commercial digital multi-channel analyzer has been specially customized to enable time-resolved gamma-ray spectral data to be acquired in multiple user-defined time bins within each of the ON/OFF gate periods of the neutron generator. Preliminary results on new signatures from depleted uranium as well as modeling and benchmarking of the concept are presented, however this approach should should be applicable for virtually all forms of SNM.

  5. A thermal battery operational reliability evaluation study

    SciTech Connect (OSTI)

    Herzberg, M.; Jaeger, M.; Shalev, H.

    1994-12-31

    A thermal battery is a one shot device. Its overall reliability is given as the product of its technical and operational reliability. This work evaluates operational reliability. The operational reliability for various performance requirements was estimated by analyzing data received from qualification tests of a certain thermal battery. A lower bound of its operational reliability was evaluated by use of the statistical tolerance method for each specific electrical performance requirement. A conservative overall lower bound for the operational reliability of the thermal battery was calculated as the product of the individual operational reliability estimates corresponding to each performance requirement.

  6. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  7. GAIA: A WINDOW TO LARGE-SCALE MOTIONS

    SciTech Connect (OSTI)

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2012-08-10

    Using redshifts as a proxy for galaxy distances, estimates of the two-dimensional (2D) transverse peculiar velocities of distant galaxies could be obtained from future measurements of proper motions. We provide the mathematical framework for analyzing 2D transverse motions and show that they offer several advantages over traditional probes of large-scale motions. They are completely independent of any intrinsic relations between galaxy properties; hence, they are essentially free of selection biases. They are free from homogeneous and inhomogeneous Malmquist biases that typically plague distance indicator catalogs. They provide additional information to traditional probes that yield line-of-sight peculiar velocities only. Further, because of their 2D nature, fundamental questions regarding vorticity of large-scale flows can be addressed. Gaia, for example, is expected to provide proper motions of at least bright galaxies with high central surface brightness, making proper motions a likely contender for traditional probes based on current and future distance indicator measurements.

  8. Thermal insulation for Buildings. September 1982-September 1988 (Citations from the COMPENDEX data base). Report for September 1982-September 1988

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This bibliography contains citations concerning materials used for the thermal insulation of buildings. Consumer acceptance of materials and weatherproofing options are included. Insulation in new and retrofitted buildings is discussed. Residential buildings, earth sheltered structures, greenhouses, and animal houses are among the structures studied. Infrared thermal sensing of heat loss, insulation placement, multilayer partition walls, and insulating windows are briefly considered. (This updated bibliography contains 244 citations, 92 of which are new entries to the previous edition.)

  9. Savings from energy efficient windows: Current and future savings from new fenestration technologies in the residential market

    SciTech Connect (OSTI)

    Frost, K.; Arasteh, D.; Eto, J.

    1993-04-01

    Heating and cooling energy lost through windows in the residential sector (estimated at two-thirds of the energy lost through windows in all sectors) currently accounts for 3 percent (or 2.8 quads) of total US energy use, costing over $26 billion annually in energy bills. Installation of energy-efficient windows is acting to reduce the amount of energy lost per unit window area. Installation of more energy efficient windows since 1970 has resulted in an annual savings of approximately 0.6 quads. If all windows utilized existing cost effective energy conserving technologies, then residential window energy losses would amount to less than 0.8 quads, directly saving $18 billion per year in avoided energy costs. The nationwide installation of windows that are now being developed could actually turn this energy loss into a net energy gain. Considering only natural replacement of windows and new construction, appropriate fenestration policies could help realize this potential by reducing annual residential window energy losses to 2.2 quids by the year 2012, despite a growing housing stock.

  10. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  11. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  12. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  13. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  14. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  15. Numerical simulation study on fluid dynamics of plasma window using argon

    SciTech Connect (OSTI)

    Huang, S.; Zhu, K.; Shi, B. L.; Lu, Y. R.; Hershcovitch, A.; Yang, L.; Zhang, X. Y.; Wei, G. D.

    2013-07-15

    In this paper, a numerical 2D FLUENT-based magneto-hydrodynamic model has been developed to investigate the arc and flow field of plasma window, which is used as a windowless vacuum sealing device. The gas inlet, arc creation-developing and plasma expansion segments are all incorporated together in the integral model. An axis-symmetry cathode structure (hollow cathode) is used in the model. Current distribution of the arc is presented and discussed. The temperature, velocity, and pressure field are presented to show the physical mechanisms for the high pressure gap within the plasma window. Flow acceleration and viscosity effect are concluded as the main reasons for the pressure drop. The result for the pressure distribution in the cylindrical tube section has a good agreement with the analytical model. The validation for the sealing ability of plasma window is verified.

  16. Comparison of the Window-Frame RHIC-abort kicker with C-type Kicker

    SciTech Connect (OSTI)

    Tsoupas, N.; Hahn, H.; Meng, W.; Severance, Michael; McMahan, Brandon

    2014-08-26

    The high intensity proton bunches (~2.5x1011 p/bunch ) circulating in RHIC increase the temperature of the ferrite-made RHIC-abort-kickers above the Curie point; as a result, the kickers cannot provide the required field to abort the beam at the beam dump. A team of experts in the CAD department worked on modifying the design of the window-frame RHIC-abort kicker to minimize the hysteresis losses responsible for the increase of the ferrite’s temperature. In this technical note we report some results from the study of two possible modifications of the window-frame RHIC-abort kicker, and we compare these results with those of a propose C-type RHIC-abort kicker. We also include an Appendix where we describe a method which may further reduce the hysteresis losses of the window-frame kicker.

  17. Energy Savings of Low-E Storm Windows and Panels across US Climate Zones

    SciTech Connect (OSTI)

    Culp, Thomas D.; Cort, Katherine A.

    2015-10-01

    This report builds off of previous modeling work related to low-e storm windows used to create a "Database of U.S. Climate-Based Analysis for Low-E Storm Windows." This work updates similar studies using new fuel costs and examining the separate contributions of reduced air leakage and reduced coefficients of overall heat transfer and solar heat gain. In this report we examine the energy savings and cost effectiveness of low-E storm windows in residential homes across a broad range of U.S. climates, excluding the impact from infiltration reductions, which tend to vary using the National Energy Audit Tool (NEAT) and RESFEN model calculations. This report includes a summary of the results, NEAT and RESFEN background, methodology, and input assumptions, and an appendix with detailed results and assumptions by climate zone.

  18. A GCxGC Design for Fieldable Microfabricated Gas Analyzers. ...

    Office of Scientific and Technical Information (OSTI)

    Conference: A GCxGC Design for Fieldable Microfabricated Gas Analyzers. Citation Details In-Document Search Title: A GCxGC Design for Fieldable Microfabricated Gas Analyzers. ...

  19. ARM: AOS Humidified Tandem Differential Mobility Analyzer (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Title: ARM: AOS Humidified Tandem Differential Mobility Analyzer AOS Humidified Tandem Differential Mobility Analyzer Authors: Scott Smith ; Cynthia Salwen ; Janek Uin ; Alice ...

  20. Atomic line emission analyzer for hydrogen isotopes (Patent)...

    Office of Scientific and Technical Information (OSTI)

    Atomic line emission analyzer for hydrogen isotopes Title: Atomic line emission analyzer for hydrogen isotopes Apparatus for isotopic analysis of hydrogen comprises a low pressure ...