Powered by Deep Web Technologies
Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SRL online Analytical Development  

DOE Green Energy (OSTI)

The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R&D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R&D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control & Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.

Jenkins, C.W.

1991-12-31T23:59:59.000Z

2

SRL online Analytical Development  

DOE Green Energy (OSTI)

The Savannah River Site is operated by the Westinghouse Savannah River Co. for the Department of Energy to produce special nuclear materials for defense. R D support for site programs is provided by the Savannah River Laboratory, which I represent. The site is known primarily for its nuclear reactors, but actually three fourths of the efforts at the site are devoted to fuel/target fabrication, fuel/target reprocessing, and waste management. All of these operations rely heavily on chemical processes. The site is therefore a large chemical plant. There are then many potential applications for process analytical chemistry at SRS. The Savannah River Laboratory (SRL) has an Analytical Development Section of roughly 65 personnel that perform analyses for R D efforts at the lab, act as backup to the site Analytical Laboratories Department and develop analytical methods and instruments. I manage a subgroup of the Analytical Development Section called the Process Control Analyzer Development Group. The Prime mission of this group is to develop online/at-line analytical systems for site applications.

Jenkins, C.W.

1991-01-01T23:59:59.000Z

3

Development of a catalytic system for gasification of wet biomass  

DOE Green Energy (OSTI)

A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350 C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversion of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R.

1993-08-01T23:59:59.000Z

4

Development studies for a novel wet oxidation process  

SciTech Connect

A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests.

Dhooge, P.M.; Hakim, L.B.

1994-01-01T23:59:59.000Z

5

Developing Guidelines for Assessing Visual Analytics Environments  

SciTech Connect

Visual analytic systems can be evaluated from a user perspective with quantitative metrics (i.e., time to complete the analysis or the accuracy of the solution found). However, qualitative measures are also useful in a user assessment. These include such measures as the utility of the interactive visualizations in the analysis process and the user's assessment of the efficiency of the analytic process. Quantitative measures can be found if data sets with embedded ground truth are used for analysis. Qualitative measures are more elusive. In this paper we report on an experiment with professional analysts who ranked five of submissions to the VAST 2009 Challenge and provided the rationale for their rankings. Their comments were used in conjunction with a meta-analysis of the 2009 VAST Challenge reviews to produce a set of guidelines for visual analytic systems. As visual analytic software is expected to eventually help in all aspects of analysis, we expect to see future systems provide more help with generating the final report. Hence, researchers also need to have an understanding of what makes a good analytic product. Therefore we asked the analysts to rank the situational assessments of four grand challenge entries and to provide comments on those assessments. We used these comments to produce guidelines for researchers to use in evaluating their analytic reports.

Scholtz, Jean

2011-09-22T23:59:59.000Z

6

Development of Mercury Oxidation Catalyst for Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on a mercury control technology development program co-funded by EPRI, the U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL), and several EPRI-member companies. The mercury control process under development uses catalysts installed downstream of the air heater and particulate control device to promote the oxidation of elemental mercury in flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) ...

2007-03-13T23:59:59.000Z

7

Development of a Computer-based Benchmarking and Analytical Tool...  

NLE Websites -- All DOE Office Websites (Extended Search)

a Computer-based Benchmarking and Analytical Tool: Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy) Title Development of a Computer-based Benchmarking and...

8

ANALYTICAL TOOL DEVELOPMENT FOR AFTERTREATMENT SUB-SYSTEMS INTEGRATION  

DOE Green Energy (OSTI)

The stringent emissions standards of 2007 and beyond require complex engine, aftertreatment and vehicle systems with a high degree of sub-system interaction and flexible control solutions. This necessitates a system-based approach to technology development, in addition to individual sub-system optimization. Analytical tools can provide an effective means to evaluate and develop such complex technology interactions as well as understand phenomena that is either too expensive or impossible to study with conventional experimental means. The analytical effort can also guide experimental development and thus lead to efficient utilization of available experimental resources.A suite of analytical models has been developed to represent PM and NOx aftertreatment sub-systems. These models range from computationally inexpensive zero-dimensional models for real-time control applications to CFD-based, multi-dimensional models with detailed temporal and spatial resolution. Such models in conjunction with well established engine modeling tools such as engine cycle simulation, engine controls modeling, CFD models of non-combusting and combusting flow, and vehicle models provide a comprehensive analytical toolbox for complete engine, aftertreatment and vehicle sub-systems development and system integration applications. However, the fidelity of aftertreatment models and application going forward is limited by the lack of fundamental kinetic data.

Bolton, B; Fan, A; Goney, K; Pavlova-MacKinnon, Z; Sisken, K; Zhang, H

2003-08-24T23:59:59.000Z

9

Wet Stacks Design Guide  

Science Conference Proceedings (OSTI)

The expense of fluegas reheat has led to increased application of less expensive wet stacks downstream of wet FGD (flue gas desulfurization) systems. Good data is necessary to properly design the wet stack system or serious problems can occur. This design guide summarizes all the latest information and provides guidance on developing detailed design specifications.

1997-01-04T23:59:59.000Z

10

Direct Calculation of Thermodynamic Wet-Bulb Temperature as a Function of Pressure and Elevation  

Science Conference Proceedings (OSTI)

A simple analytical method was developed for directly calculating the thermodynamic wet-bulb temperature from air temperature and the vapor pressure (or relative humidity) at elevations up to 4500 m above MSL was developed. This methodology was ...

Sayed-Hossein Sadeghi; Troy R. Peters; Douglas R. Cobos; Henry W. Loescher; Colin S. Campbell

2013-08-01T23:59:59.000Z

11

100-B/C Target Analyte List Development for Soil  

Science Conference Proceedings (OSTI)

This report documents the process used to identify source area target analytes in support of the 100-B/C remedial investigation/feasibility study addendum to DOE/RL-2008-46. This report also establishes the analyte exclusion criteria applicable for 100-B/C use and the analytical methods needed to analyze the target analytes.

R.W. Ovink

2010-03-18T23:59:59.000Z

12

Direct Calculation of Thermodynamic Wet Bulb Temperature as a Function of Pressure and Elevation  

Science Conference Proceedings (OSTI)

A simple analytical method was developed for directly calculating the thermodynamic wet bulb temperature from air temperature and the vapor pressure (or relative humidity) at any desired elevation. This methodology was based on the fact that the ...

Sayed-Hossein Sadeghi; Troy R. Peters; Douglas R. Cobos; Henry W. Loescher; Colin S. Campbell

13

Zipping Wetting  

E-Print Network (OSTI)

Water droplets can completely wet micro-structured superhydrophobic surfaces. The {\\it dynamics} of this rapid process is analyzed by ultra-high-speed imaging. Depending on the scales of the micro-structure, the wetting fronts propagate smoothly and circularly or -- more interestingly -- in a {\\it stepwise} manner, leading to a growing {\\it square-shaped} wetted area: entering a new row perpendicular to the direction of front propagation takes milliseconds, whereas once this has happened, the row itself fills in microseconds ({\\it ``zipping''}). Numerical simulations confirm this view and are in quantitative agreement with the experiments.

Sbragaglia, Mauro; Pirat, Christophe; Borkent, Bram M; Lammertink, Rob G H; Wessling, Matthias; Lohse, Detlef

2007-01-01T23:59:59.000Z

14

100-K Target Analyte List Development for Soil  

SciTech Connect

This report documents the process used to identify source area target analytes in support of the 100-K Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

Ovink, R.

2012-09-18T23:59:59.000Z

15

100-F Target Analyte List Development for Soil  

SciTech Connect

This report documents the process used to identify source area target analytes in support of the 100-F Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

Ovink, R.

2012-09-18T23:59:59.000Z

16

A new analytic-adaptive model for EGS assessment, development...  

Open Energy Info (EERE)

center in Nevada with REA250. State Nevada Objectives Develop and apply: (1) a Geologic Heat Exchanger (GHE) model, (2) a life-cycle model, and (3) a total system model. The GHE...

17

Microsoft PowerPoint - Hobbs Electrolyzer Develop & Analytical...  

NLE Websites -- All DOE Office Websites (Extended Search)

HyS Electrolyzer Workshop and Information Exchange 2 History of HyS Process Development Patent for "Sulfur Cycle" issued to Westinghouse 1975 Two-compartment Diaphragm Cell Built...

18

Chemical Processing in High-Pressure Aqueous Environments. 7. Process Development for Catalytic Gasification of Wet Biomass  

E-Print Network (OSTI)

Gasification of Wet Biomass Feedstocks Douglas C. Elliott,* Gary G. Neuenschwander, Todd R. Hart, R. Scott catalyst, gasification of wet biomass can be accomplished with high levels of carbon conversion to gas of the organic structure of biomass to gases has been achieved in the presence of a ruthenium metal catalyst

19

Favorable Conditions for the Development of a Heavy Rainfall Event over Oahu during the 2006 Wet Period  

Science Conference Proceedings (OSTI)

During the 2006 wet period, as eastward-moving transient disturbances passed through a semipermanent low pressure system west of Hawaii, southerly winds east of the low strengthened bringing in higher than usual amounts of moisture from the deep ...

Chuan-Chi Tu; Yi-Leng Chen

2011-06-01T23:59:59.000Z

20

Development of analytical cell support for vitrification at the West Valley Demonstration Project. Topical report  

SciTech Connect

Analytical and Process Chemistry (A&PC) support is essential to the high-level waste vitrification campaign at the West Valley Demonstration Project (WVDP). A&PC characterizes the waste, providing information necessary to formulate the recipe for the target radioactive glass product. High-level waste (HLW) samples are prepared and analyzed in the analytical cells (ACs) and Sample Storage Cell (SSC) on the third floor of the main plant. The high levels of radioactivity in the samples require handling them in the shielded cells with remote manipulators. The analytical hot cells and third floor laboratories were refurbished to ensure optimal uninterrupted operation during the vitrification campaign. New and modified instrumentation, tools, sample preparation and analysis techniques, and equipment and training were required for A&PC to support vitrification. Analytical Cell Mockup Units (ACMUs) were designed to facilitate method development, scientist and technician training, and planning for analytical process flow. The ACMUs were fabricated and installed to simulate the analytical cell environment and dimensions. New techniques, equipment, and tools could be evaluated m in the ACMUs without the consequences of generating or handling radioactive waste. Tools were fabricated, handling and disposal of wastes was addressed, and spatial arrangements for equipment were refined. As a result of the work at the ACMUs the remote preparation and analysis methods and the equipment and tools were ready for installation into the ACs and SSC m in July 1995. Before use m in the hot cells, all remote methods had been validated and four to eight technicians were trained on each. Fine tuning of the procedures has been ongoing at the ACs based on input from A&PC technicians. Working at the ACs presents greater challenges than had development at the ACMUs. The ACMU work and further refinements m in the ACs have resulted m in a reduction m in analysis turnaround time (TAT).

Barber, F.H.; Borek, T.T.; Christopher, J.Z. [and others

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluating electronic banking systems in developing nations through Analytic Hierarchy Process model: a case study  

Science Conference Proceedings (OSTI)

Since the beginning of the late 1970s an impressive number of innovative electronic banking systems have been developed and tested commercially. One of the most important issues with respect to these innovations is the choosing best electronic banking ... Keywords: AHP, ATM banking, Iran, analytical hierarchy process, bank remark factors, developing countries, e-banking, electronic banking, internet banking, m-banking SMS banking, mobile banking, online banking, phone banking, security factors, socioeconomic factors, technological factors, telephone banking

Ehsan Rasolinezhad

2009-10-01T23:59:59.000Z

22

A new analytic-adaptive model for EGS assessment, development and  

Open Energy Info (EERE)

new analytic-adaptive model for EGS assessment, development and new analytic-adaptive model for EGS assessment, development and management support Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A new analytic-adaptive model for EGS assessment, development and management support Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Integrated Chemical, Thermal, Mechanical and Hydrological Modeling Project Description The University of Nevada - Reno (UNR), proposes to develop a new, integrated solution technique for simulating the Thermal, Hydrological, Mechanical, and Chemical (THMC) processes relevant to thermal energy extraction from an Enhanced Geothermal System (EGS). UNR defines the great challenges in numerical modeling as to (1) dealing with flows and transport in the stimulated fractures of the EGS of largely unknown geometry and characteristics; and (2) discovering the best possible cooling fluid circulation solution in the EGS by trial-and-error numerical simulations. The new THMC will have an adaptive, Computational Fluid Dynamics (CFD) component, integrated with the THMC rockmass model in order to match field test signatures, or desired outcomes in design hypothesis test. The project's main hypothesis is that there are new solutions to heat extraction from an as-created, enhanced fracture system of EGS. The project will develop a new THMC simulation model with new capabilities and prove the main hypothesis by and applying it to various EGS designs including emerging concepts, two-phase (steam-gas-liquid) coolant flows in the fracture network, and dynamic, huff-puff operations.

23

Analytical Division  

Science Conference Proceedings (OSTI)

Analytical Division Common (non-systematic) Names for Fatty Acids Analytical Division Analytical Chemistry Divisions Analytical Division Common (non-

24

An environmental pressure index proposal for urban development planning based on the analytic network process  

SciTech Connect

This paper introduces a new approach to prioritize urban planning projects according to their environmental pressure in an efficient and reliable way. It is based on the combination of three procedures: (i) the use of environmental pressure indicators, (ii) the aggregation of the indicators in an Environmental Pressure Index by means of the Analytic Network Process method (ANP) and (iii) the interpretation of the information obtained from the experts during the decision-making process. The method has been applied to a proposal for urban development of La Carlota airport in Caracas (Venezuela). There are three options which are currently under evaluation. They include a Health Club, a Residential Area and a Theme Park. After a selection process the experts chose the following environmental pressure indicators as ANP criteria for the project life cycle: used land area, population density, energy consumption, water consumption and waste generation. By using goal-oriented questionnaires designed by the authors, the experts determined the importance of the criteria, the relationships among criteria, and the relationships between the criteria and the urban development alternatives. The resulting data showed that water consumption is the most important environmental pressure factor, and the Theme Park project is by far the urban development alternative which exerts the least environmental pressure on the area. The participating experts coincided in appreciating the technique proposed in this paper is useful and, for ranking ordering these alternatives, an improvement from traditional techniques such as environmental impact studies, life-cycle analysis, etc.

Gomez-Navarro, Tomas, E-mail: tgomez@dpi.upv.e [Departamento de Proyectos de Ingenieria, Universidad Politecnica de Valencia, Camino de Vera s/n. 46022, Valencia (Spain); Garcia-Melon, Monica, E-mail: mgarciam@dpi.upv.e [Departamento de Proyectos de Ingenieria, Universidad Politecnica de Valencia, Camino de Vera s/n. 46022, Valencia (Spain); Acuna-Dutra, Silvia, E-mail: sacuna@unimet.edu.v [Departamento de Estudios Ambientales, Universidad Metropolitana, Autopista Guarenas, Sector La Urbina, Distribuidor Metropolitano, Caracas (Venezuela, Bolivarian Republic of); Diaz-Martin, Diego, E-mail: ddiaz@unimet.edu.v [Departamento de Estudios Ambientales, Universidad Metropolitana, Autopista Guarenas, Sector La Urbina, Distribuidor Metropolitano, Caracas (Venezuela, Bolivarian Republic of)

2009-09-15T23:59:59.000Z

25

Source apportionment of wet sulfate deposition in eastern North America  

E-Print Network (OSTI)

An analytical model of long distance transport of air pollutants (Fay and Rosenzweig, 1980) has been adapted for the estimation of long term (e.g. annual) wet sulfate deposition in eastern N. America. The model parameters ...

Fay, James A.

1985-01-01T23:59:59.000Z

26

Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.  

SciTech Connect

Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

Keck, B D; Ognibene, T; Vogel, J S

2010-02-05T23:59:59.000Z

27

Development of analytical and numerical models for the assessment and interpretation of hydrogeological field tests  

Science Conference Proceedings (OSTI)

Mathematical models of the flow and tracer tests in fractured aquifers are being developed for the further study of radioactive wastes migration in round water at the Lake Area, which is associated with one of the waste disposal site in Russia. The choice of testing methods, tracer types (chemical or thermal) and the appropriate models are determined by the nature of the ongoing ground-water pollution processes and the hydrogeological features of the site under consideration. Special importance is attached to the increased density of wastes as well as to the possible redistribution of solutes both in the liquid phase and in the absorbed state (largely, on fracture surfaces). This allows for studying physical-and-chemical (hydrogeochemical) interaction parameters which are hard to obtain (considering a fractured structure of the rock mass) in laboratory. Moreover, a theoretical substantiation is being given to the field methods of studying the properties of a fractured stratum aimed at the further construction of the drainage system or the subsurface flow barrier (cutoff wall), as well as the monitoring system that will evaluate the reliability of these ground-water protection measures. The proposed mathematical models are based on a tight combination of analytical and numerical methods, the former being preferred in solving the principal (2D axisymmetrical) class of the problems. The choice of appropriate problems is based on the close feedback with subsequent field tests in the Lake Area. 63 refs.

Mironenko, V.A.; Rumynin, V.G.; Konosavsky, P.K. [St. Petersburg Mining Inst. (Russian Federation); Pozdniakov, S.P.; Shestakov, V.M. [Moscow State Univ. (Russian Federation); Roshal, A.A. [Geosoft-Eastlink, Moscow (Russian Federation)

1994-07-01T23:59:59.000Z

28

Chaoticity of the Wet Granular Gas  

E-Print Network (OSTI)

In this work we derive an analytic expression for the Kolmogorov-Sinai entropy of dilute wet granular matter, valid for any spatial dimension. The grains are modelled as hard spheres and the influence of the wetting liquid is described according to the Capillary Model, in which dissipation is due to the hysteretic cohesion force of capillary bridges. The Kolmogorov-Sinai entropy is expanded in a series with respect to density. We find a rapid increase of the leading term when liquid is added. This demonstrates the sensitivity of the granular dynamics to humidity, and shows that the liquid significantly increases the chaoticity of the granular gas.

A. Fingerle; S. Herminghaus; V. Yu. Zaburdaev

2007-05-22T23:59:59.000Z

29

Developing measures of intellectual capital in commercial wireless television by the analytical hierarchy process  

Science Conference Proceedings (OSTI)

The purpose of this research is to establish the intellectual capital indicators of commercial wireless television companies. An in-depth interview is used to collect data. Both content analysis and analytical hierarchy process are used to analyse ... Keywords: AHP, analytical hierarchy process, commercial wireless television, competitive advantage, content analysis, human capital, in-depth interview, innovation capital, intellectual capital, m-commerce, mobile commerce, mobile communications, wireless television

Chung-Chu Liu

2007-03-01T23:59:59.000Z

30

Breakdown in the Wetting Transparency of Graphene  

E-Print Network (OSTI)

We develop a theory to model the van der Waals interactions between liquid and graphene, including quantifying the wetting behavior of a graphene-coated surface. Molecular dynamics simulations and contact angle measurements ...

Shih, Chih-Jen

31

Raftery Group NMR Probe Development Program The Raftery group has made a number of developments in NMR probes for analytical NMR applications.  

E-Print Network (OSTI)

Raftery Group NMR Probe Development Program The Raftery group has made a number of developments in NMR probes for analytical NMR applications. Shown below are some of the advances made over the past several years. Dual Volume Double Resonance Microcoil NMR Probe Dual Coil probe has the upper coil

Raftery, Dan

32

Development of statistical wet weather model to evaluate frictional properties at the pavement-tire interface on hot mix asphalt concrete  

E-Print Network (OSTI)

Skid resistance on wet pavements is influenced by friction at the tire-pavement interface as well as overall hot mix asphalt (HMA) performance. It is important to control aggregate, asphalt, and mix properties to achieve desirable frictional properties on HMA during its service life. Aggregate consensus and source properties influence frictional properties at the surface as well as aggregate matrix properties that affect overall skid performance. Thus, it is important to identify and control these properties through an effective testing and monitoring program. Research studies have indicated that current testing protocol for pre-qualification of aggregates being used by DOT's is tenuous and needs definitive evaluation. The validity of some tests currently being used for pre-qualification of aggregates is being questioned due to poor field correlation. Thus, there is a need for upgrading current testing criteria and aggregate classification system in view of new techniques that can be used either as replacements and/or supplements to current tests. This study, a part of the Texas Department of Transportation (TxDOT) current research program to evaluate inadequacies of current tests to skid performance, focuses on tests evaluating aggregate shape and distribution parameters. In this study, a wet weather test selection criteria was developed to evaluate the effectiveness of current and new testing techniques to monitor aggregate shape, texture, and distribution characteristics. Extensive tests were conducted on forty aggregates selected from TxDOT Quality Material Catalogue covering various parts of U.S.A. Fine aggregates tests including the Uncompacted Void Content, the Compacted Aggregate Resistance, the Methylene Blue, and the Particle Size Analysis were performed to evaluate angularity, texture, and distribution characteristics within fine aggregates. Flat and elongated tests on coarse aggregates were also performed using both conventional and automated techniques to analyze shape and size distribution characteristics. A statistical analysis was performed to select tests that would enable monitoring of aggregate shape and distribution properties enhancing skid performance. The evaluation criteria were based upon a sensitivity and correlation analysis to evaluate consistency, reproducibility, and ability of tests to effectively discern aggregates with good and marginal performance.

Bedi, Harpreet

2001-01-01T23:59:59.000Z

33

100-N Area Decision Unit Target Analyte List Development for Soil  

Science Conference Proceedings (OSTI)

This report documents the process used to identify source area target analytes in support of the 100-N Area remedial investigation/feasibility study (RI/FS) addendum to the Integrated 100 Area Remedial Investigation/Feasibility Study Work Plan (DOE/RL-2008-46, Rev. 0).

Ovink, R.

2012-09-18T23:59:59.000Z

34

Developing a practical framework for ERP readiness assessment using fuzzy analytic network process  

Science Conference Proceedings (OSTI)

Previous studies report unusually high failure in enterprise resource planning (ERP) projects. Thus, it is necessary to perform an assessment at the initial stage of an ERP implementation program to identify weaknesses or problems which may lead to project ... Keywords: Critical success factors (CSF), Enterprise resource planning (ERP), Fuzzy analytic network process, Readiness assessment

Jafar Razmi; Mohamad Sadegh Sangari; Reza Ghodsi

2009-11-01T23:59:59.000Z

35

Analytical Microscopy  

DOE Green Energy (OSTI)

In the Analytical Microscopy group, within the National Center for Photovoltaic's Measurements and Characterization Division, we combine two complementary areas of analytical microscopy--electron microscopy and proximal-probe techniques--and use a variety of state-of-the-art imaging and analytical tools. We also design and build custom instrumentation and develop novel techniques that provide unique capabilities for studying materials and devices. In our work, we collaborate with you to solve materials- and device-related R&D problems. This sheet summarizes the uses and features of four major tools: transmission electron microscopy, scanning electron microscopy, the dual-beam focused-ion-beam workstation, and scanning probe microscopy.

Not Available

2006-06-01T23:59:59.000Z

36

Spray type wet scrubber  

SciTech Connect

A spray type wet scrubber includes a plurality of spray nozzles installed in parallel banks across the path of gas stream within the scrubber body, and partition walls held upright in grating fashion to divide the path of gas stream into a plurality of passages, each of which accommodates one of the spray nozzles.

Atsukawa, M.; Tatani, A.

1978-01-10T23:59:59.000Z

37

Development and implementation of information systems for the DOE's National Analytical Management Program (NAMP).  

SciTech Connect

The Department of Energy (DOE) faces a challenging environmental management effort, including environmental protection, environmental restoration, waste management, and decommissioning. This effort requires extensive sampling and analysis to determine the type and level of contamination and the appropriate technology for cleanup, and to verify compliance with environmental regulations. Data obtained from these sampling and analysis activities are used to support environmental management decisions. Confidence in the data is critical, having legal, regulatory, and therefore, economic impact. To promote quality in the planning, management, and performance of these sampling and analysis operations, DOE's Office of Environmental Management (EM) has established the National Analytical Management Program (NAMP). With a focus on reducing the estimated costs of over $200M per year for EM's analytical services, NAMP has been charged with developing products that will decrease the costs for DOE complex-wide environmental management while maintaining quality in all aspects of the analytical data generation. As part of this thrust to streamline operations, NAMP is developing centralized information systems that will allow DOE complex personnel to share information about EM contacts at the various sites, pertinent methodologies for environmental restoration and waste management, costs of analyses, and performance of contracted laboratories.

Streets, W. E.

1999-01-29T23:59:59.000Z

38

Development of an instrument to measure stress among software professionals: factor analytic study  

Science Conference Proceedings (OSTI)

This study investigates sources of negative pressure among software professionals, from the perspective of the software development process. A multiple response questionnaire (survey instrument) was developed to measure sources of pressure among software ... Keywords: occupational stress, software professionals

K. S. Rajeswari; R. N. Anantharaman

2003-04-01T23:59:59.000Z

39

The effect of imports on export development : a network analytical view of international trade in music  

E-Print Network (OSTI)

What are the effects of imports on export development? Would low influence from imports provide more opportunity to local producers to develop radically new products that could later be exported as a uniquely local ...

Chu-Shore, Jesse Conan

2010-01-01T23:59:59.000Z

40

IN-SITU XRD OF OPERATING LSFC CATHODES: DEVELOPMENT OF A NEW ANALYTICAL CAPABILITY  

Science Conference Proceedings (OSTI)

A solid oxide fuel cell (SOFC) research capability has been developed that facilitates measuring the electrochemical performance of an operating SOFC while simultaneously performing x-ray diffraction on its cathode. The evolution of this research tool’s development is discussed together with a description of the instrumentation used for in-situ x-ray diffraction (XRD) measurements of operating SOFC cathodes. The challenges that were overcome in the process of developing this capability, which included seals and cathode current collectors, are described together with the solutions that are presently being applied to mitigate them.

Hardy, John S.; Templeton, Jared W.; Stevenson, Jeffry W.

2012-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

1995-01-01T23:59:59.000Z

42

Optical wet steam monitor  

DOE Patents (OSTI)

A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

Maxey, L.C.; Simpson, M.L.

1995-01-17T23:59:59.000Z

43

Microsoft PowerPoint - Hobbs Electrolyzer Develop & Analytical Needs2.ppt  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Component Electrolyzer Component Development Summary David Hobbs April 20, 2009 SRNL-STI-2009-00263 HyS Electrolyzer Workshop and Information Exchange 2 History of HyS Process Development Patent for "Sulfur Cycle" issued to Westinghouse 1975 Two-compartment Diaphragm Cell Built 1977 Closed-loop Process Demonstration by (W) 1978 Solar-driven Process Design Completed by (W) 1983 Development "Hiatus" 1984-2003 New Process Design work by (W) 2004 Conceptual Design of HyS by SRNL 2005 Proof-of-Concept for PEM-based SDE 2005 Pressurized, Elevated Temperature SDE Testing 2006 Improved PEM Design; 100-hr Longevity Test; Multi-cell stack SDE 2007 Alternate Membrane & Catalyst Evaluations 2008 Anode Cathode Separator 2H + /H 2 O SO 2 /H 2 O/H 2 SO 4 H 2 SO 4 Anode Cathode Separator

44

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

Science Conference Proceedings (OSTI)

To accelerate the development of advanced power plants, DOE's Vision 21 program identified the need for an integrated suite of software tools that could be used to simulate and visualize new plant concepts. Existing process simulation software did not meet this objective of virtual-plant simulation. Sophisticated models of many individual equipment items are available; however, a seamless coupling capability that would integrate the advanced equipment (component) models to the process (system) simulation software remained to be developed. The inability to use models in an integrated manner causes knowledge loss (e.g., knowledge captured in detailed equipment models is usually not available in process simulation) and modeling inconsistencies (e.g., physical properties and reaction kinetics data in different models are not the same). A team consisting of Fluent Inc., ALSTOM Power Inc., Aspen Technology Inc., Intergraph Corporation, and West Virginia University, in collaboration with the National Energy Technology Laboratory (NETL), addressed this challenge in a project performed over the period from October 2000 through December 2004. In this project the integration of the cycle analysis software was based on widely used commercial software: Aspen Plus{reg_sign} for process simulation and FLUENT{reg_sign} for computational fluid dynamics (CFD) modeling of equipment items. The integration software was designed to also include custom (in-house, proprietary, legacy) equipment models that often encapsulate the experience from the many years of designing and operating the equipment. The team adopted CAPE-OPEN (CO) interfaces, the de facto international standard for communication among process models, for exchanging information between software. The software developed in this project is the first demonstration of the use of CO interfaces to link CFD and custom equipment models with process simulators. New interface requirements identified during this project were communicated to the CO standard developers. The new software capability was designed to make the construction of integrated models fast and integrated simulations robust and user-friendly. Configuration wizards were developed to make CFD and custom models CO-compliant. An Integration Controller and CFD Model Database were developed to facilitate the exchange of information between equipment and process models. A reduced order model (ROM) framework and a solution strategy capability were incorporated in the Integration Controller to enable a flexible trade-off between simulation speed and complexity. A CFD viewer was developed so that process engineers can view CFD results from the process simulator interface.

Madhava Syamlal; Maxwell Osawe; Stephen Zitney; Lewis Collins; David Sloan; Woodrow Fiveland; Frank Joop; Philip Simon; K. Joseph Cleetus

2005-04-01T23:59:59.000Z

45

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

DOE Green Energy (OSTI)

A software review meeting was held at Fluent Inc. in Lebanon, NH on January 31-February 1, 2002. The team reviewed the current status of the software and its compliance with the software requirements (Task 2). Work on a fuel cell based power-plant flow sheet that incorporates a reformer CFD model was started. This test case includes more features (multiple ports, temperature dependent properties) than the mixing tank test case developed earlier and will be used for the further testing of the software (Task 2). The software development plan was finalized (Task 2.7). The design and implementation of a CFD database was commenced. The CFD database would store various models that a process analyst can use in the flowsheet model (Task 2.8). The COM-CORBA Bridge was upgraded to use the recently published version 0.9.3 CAPE-OPEN specifications. Work on transferring reaction kinetics data from Aspen Plus to Fluent was started (Task 2.11). The requirements for extending CAPE-OPEN interfaces in Aspen Plus to transfer temperature dependent properties to Fluent was written and communicated to the Aspen Tech developer of CAPE-OPEN interfaces (Task 2.12). A prototype of low-order model based on the Multiple Regression technique was written. A low-order model is required to speed up the calculations with the integrated model (Task 2.19). The Berkshire Power (Agawam, MA) combined-cycle power plant was selected as the Demonstration Case 2 (Task 3.2). A CFD model of the furnace in Demonstration Case 1 was developed. The furnace model will be incorporated into the flowsheet model already developed for this case (Task 4.1). A new hire joined the Fluent development team for this project. The project management plan was revised based on the software development plan. A presentation on the project status was made at the Clearwater Conference, March 4-7, 2002. The final manuscript for ESCAPE-12 conference was submitted (Task 7.0).

Madhava Syamlal, Ph.D.

2002-04-01T23:59:59.000Z

46

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

SciTech Connect

A software design review meeting was conducted (Task 2.0). A CFD Viewer was developed, to allow the process analyst to view CFD results from the process simulator (Task 2.14). Work on developing a CO wrapper for the INDVU code was continued (Task 2.15). The model-edit GUI was modified to allow the user to specify a solution strategy. Enhancements were made to the solution strategy implementation (Task 2.16). Testing of the integrated software was continued and several bug fixes and enhancements were made: ability to expose CFD parameters to the process analyst and support for velocity and pressure inlet boundary conditions (Task 2.21). Work on preparing the release version progressed: Version 0.3 of V21 Controller was released, a global configuration dialog was implemented, and a code review process was initiated (Task 2.24). The calibration of the tube bank CFD model for the RP&L case was completed. While integrating the tube bank CFD model into the flow sheet model, several development requirements were identified and communicated to the developers. The requirements of porting V21 Controller and Configuration Wizard to FLUENT 6.1, turning off the transfer of temperature dependent properties, exposing CFD parameters in Aspen Plus and supporting velocity boundary conditions have been implemented (Task 4.1). An initial grid for the HRSG component has been prepared (Task 4.2). A web-based advisory board meeting was conducted on December 18, 2003 (Task 5.0). Project personnel attended and gave presentations at the Aspen World Conference, October 28-30, 2002; AIChE Annual Meeting, November 8, 2002; and the Vision 21 Simulation meeting at Iowa State University, November 19-20, 2002 (Task 7.0).

Madhava Syamlal, Ph.D.

2002-12-31T23:59:59.000Z

47

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

DOE Green Energy (OSTI)

The project management plan was finalized during a project kick off meeting held on January 16, 2001 in Lebanon, NH, which was attended by all project participants. The project management plan was submitted to DOE and was revised based on comments from DOE (Task 1.0). A survey of the potential users of the integrated software was conducted. A web-based survey form was developed and was announced in the ProcessCity discussion forum and in AspenTech's e-mail digest Aspen e-Flash. Several Fluent clients were individually contacted. A user requirements document was written (Task 2.2). As a prototype of AspenPlus-Fluent integration, the flowsheet for allyl alcohol production via the isomerization of propylene oxide was developed. A stirred tank reactor in the flowsheet for converting the byproduct acetone into n-propyl propionate was modeled with Fluent, version 5.4. The convergence of the AspenPlus-Fluent integrated model was demonstrated, and a list of data exchanges required between AspenPlus and Fluent was developed (Task 2.6). As the first demonstration case, the RP and L power plant was selected. A planning meeting was held on February 13, 2001 in Cambridge, MA to discuss this demonstration case. It was decided that the steam-side of the power plant would be modeled with AspenPlus and the gas-side, with the ALSTOM Power in-house code INDVU. A flowsheet model of the power plant was developed (Task 3.1). Three positive responses were received for the invitation to join the project Advisory Board. It was decided to expand the membership on the Advisory Board to include other industrial users interested in integrating AspenPlus and Fluent. Additional invitations were sent out (Task 5.0). Integraph's role in the project was restructured based on discussions among the project participants. Fluent hired Dr. Maxwell Osawe to work on the project. Dr. Osawe brings to the project a unique combination of skills (expertise in CFD and object-oriented design and programming) required for the software integration task (Task 7.0).

Madhava Syamlal, Ph.D.`

2001-04-20T23:59:59.000Z

48

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

SciTech Connect

The goal of this DOE Vision-21 project work scope is to develop an integrated suite of software tools that can be used to simulate and visualize advanced plant concepts. Existing process simulation software does not meet the DOE's objective of ''virtual simulation'' which is needed to evaluate complex cycles. The overall intent of the DOE is to improve predictive tools for cycle analysis, and to improve the component models that are used in turn to simulate the cycle. Advanced component models are available; however, a generic coupling capability that will link the advanced component models to the cycle simulation software remains to be developed. In the current project, the coupling of the cycle analysis and cycle component simulation software will be based on an existing suite of programs. The challenge is to develop a general-purpose software and communications link between the cycle analysis software Aspen Plus{reg_sign} (marketed by Aspen Technology, Inc.), and specialized component modeling packages, as exemplified by industrial proprietary codes (utilized by ALSTOM Power Inc.) and the FLUENT{trademark} CFD code (provided by Fluent Inc). ALSTOM Power has a task responsibility to select and run a combined cycle test case (designated as Demonstration Case 2) to demonstrate the feasibility of the linkage concept. This report summarizes and documents the unit selected to represent Case 2, a 250 MW, natural gas-fired, combined cycle power plant. An analogous document for Demonstration Case 1 was previously submitted on April 30, 2001. Sufficient information is available from the plant to adequately benchmark the model. Hence, the proposed unit is deemed to be well suited as a demonstration case. However, as the combined cycle plant selected for this study contains recent technology, sensitivity to the commercial implications of this study prevents the release of the plant name and limits the quantity of operating/design information that can be presented. These limitations will not prevent the goal of this task, demonstration of the feasibility of software integration for ''virtual simulation'', from being accomplished.

Galen Richards, Ph.D.; David Sloan, Ph.D.; Woodrow Fiveland, Ph.D.

2002-08-31T23:59:59.000Z

49

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

DOE Green Energy (OSTI)

The training of a new project team member was completed (Task 2.1). The Software Requirements Document was written (Task 2.3). It was determined that the CAPE-OPEN interfaces are sufficient for the communication between Fluent and V21 Controller (Task 2.4). The AspenPlus-Fluent prototype on allyl/triacetone alcohol production was further developed to assist the GUI and software design tasks. The prototype was also used to analyze the sensitivity of a process simulation result with respect to a parameter in a CFD model embedded in the process simulation. Thus the integration of process simulation and CFD provides additional process insights and enables the engineer to optimize overall process performance (e.g., product purity and yield) with respect to important CFD design and operation parameters (e.g., CSTR shaft speed). A top-level design of the V21 Controller was developed and discussed. A draft version of the Software Design Document was written (Task 2.5/2.6). A preliminary software development plan was outlined. At first the V21 Controller will be developed and tested in two parts--a part that communicates with Fluent and a part that communicates with Aspen Plus. Then the two parts will be combined and tested with the allyl/triacetone alcohol flow sheet simulation. Much progress was made in writing the code for the two parts (Task 2.7). A requirement for pre-configured models was identified and added to the software requirements document (Task 2.9). Alstom Power's INDVU code was ported to the PC platform and calibrated. Aspen Plus model of the RP&L unit was improved to reflect the latest information received on the unit. Thus the preparation for linking INDVU code with the Aspen Plus model of RP&L unit is complete (Task 2.14). A report describing Demo Case 1 was written and submitted to DOE for review and approval (Task 3.1). The first Advisory Board meeting was held at the Fluent Users Group Meeting on June 6th. At the Advisory Board meeting, the project was reviewed, a demonstration was made, and verbal feedback was received. Meeting minutes have been issued (Task 5.0). Global-CAPE-OPEN organization was contacted for obtaining draft specifications in CORBA that are needed for writing the interfaces between V21 Controller and Fluent. Efforts are underway to establish collaboration with Norsk Hydro, who is leading a Global CAPE-OPEN project on linking CFD and process simulation models. Because of the similarity between that project and the present project, the two project teams can learn much from each other (Task 7.0).

Madhava Syamlal, Ph.D.

2001-07-10T23:59:59.000Z

50

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

DOE Green Energy (OSTI)

A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website (Task 5.0). A paper entitled ''Integrated Process Simulation and CFD for Improved Process Engineering'' was presented at the European Symposium on Computer Aided Process Engineering-12, May 26-29, 2002, The Hague, The Netherlands (Task 7.0).

Madhava Syamlal, Ph.D.

2002-07-01T23:59:59.000Z

51

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

SciTech Connect

A software design review meeting was held May 2-3 in Lebanon, NH. The work on integrating a reformer model based on CFD with a fuel cell flow sheet was completed (Task 2.0). The CFD database design was completed and the database API's finalized. A file -based CFD database was implemented and tested (Task 2.8). The task COM-CORBA Bridge-I was completed. The bridge now has CO interfaces for transferring reaction kinetics information from Aspen Plus to Fluent (Task 2.11). The capability for transferring temperature-dependent physical properties from Aspen Plus to Fluent was implemented (Task 2.12). Work on ''Model Selection'' GUI was completed. This GUI allows the process analyst to select models from the CFD database. Work on ''Model Edit'' GUI was started (Task 2.13). A version of Aspen Plus with the capability for using CO parameters in ''design spec'' analysis has become available. With this version being available, work on adding CO wrapper to INDVU code has been started (Task 2.15). A preliminary design for the Solution Strategy class was developed (Task 2.16). The requirements for transferring pressure data between Aspen Plus and Fluent were defined. The ability to include two CFD models in a flow sheet was successfully tested. The capability to handle multiple inlets and outlets in a CO block was tested (Task 2.17). A preliminary version of the Configuration Wizard, which helps a user to make any Fluent model readable from a process simulator, was developed and tested (Task 2.18). Work on constructing a flow sheet model for Demo Case 2 was started. The work on documenting Demo Case 2 is nearing completion (Task 3.2). A Fluent heat exchanger model was installed and tested. Work on calibrating the heat exchanger model was started (Task 4.1). An advisory board meeting was held in conjunction with the Fluent Users Group Meeting on Monday, June 10, 2002. The meeting minutes and presentations for the advisory board meeting have been posted on the project website (Task 5.0). A paper entitled ''Integrated Process Simulation and CFD for Improved Process Engineering'' was presented at the European Symposium on Computer Aided Process Engineering-12, May 26-29, 2002, The Hague, The Netherlands (Task 7.0).

Madhava Syamlal, Ph.D.

2002-07-01T23:59:59.000Z

52

Wet-limestone scrubbing fundamentals  

Science Conference Proceedings (OSTI)

The article examines important concepts of wet-limestone scrubbing. It also addresses the topic of by-product disposal. 3 refs., 1 fig.

Buecker, B.

2006-08-15T23:59:59.000Z

53

DEVELOPMENT OF TECHNOLOGIES AND ANALYTICAL CAPABILITIES FOR VISION 21 ENERGY PLANTS  

DOE Green Energy (OSTI)

DOE Vision 21 project requirements for the support of Global CAPE-OPEN Reaction Kinetics interfaces in Aspen Plus 12 was written (Task 2.4). The software design document was written and posted on the project web site. Intergraph started work on a proof of concept demo of the physical domain software (Task 2.6). The COM-side (Aspen Plus) and CORBA-side (Fluent) pieces of the Vision 21 controller code were written and independently verified. The two pieces of the code were then combined. Debugging of the combined code is underway (Task 2.7). Papers on fuel cell processes were read in preparation for developing an example based on a fuel cell process (Task 2.8). The INDVU code has been used to replace the boiler component in the Aspen Plus flowsheet of the RP&L power plant. The INDVU code receives information from Aspen Plus and iterates on the split backpass LTSH bypass and excess air quantities until the stipulated superheat outlet temperature is satisfied. The combined INDVU-Aspen Plus model has been run for several load conditions (Task 2.14). Work on identifying a second demonstration case involving an advanced power cycle has been started (Task 3.2). Plans for the second Advisory Board meeting in November were made (Task 5.0). Intergraph subcontract was signed and work on a physical domain software demo was started. A second teleconference with Norsk Hydro was conducted to discuss Global CAPE-OPEN standards and issues related to COM-CORBA Bridge (Task 7.0).

Madhava Syamlal, Ph.D.

2001-10-20T23:59:59.000Z

54

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

55

Revised Wet Stack Design Guide  

Science Conference Proceedings (OSTI)

For the past 14 years, the design of wet stacks around the world has been guided by the original EPRI Wet Stacks Design Guide (1996). Since that time, the number of wet stack installations has grown considerably, and a wealth of practical real-world operating and maintenance experience has been obtained. The laws of physics have not changed, and most of the information presented in 1996 is just as valid today as it was when originally published. What has changed is the power-generation ...

2012-12-12T23:59:59.000Z

56

Survey of Wet Electrostatic Precipitators  

Science Conference Proceedings (OSTI)

Wet electrostatic precipitators (ESPs) have found application since they were first installed for sulfuric acid collection on a smelter and patented by Dr. Frederick Cottrell in 1907–1908. Power generation applications typically use dry ESPs for collection of coal fly ash in nonsaturated flue gas streams. This report summarizes the physical installations, specifications, operating environments, and operational experience of wet ESPs currently operating in the United States on power generation ...

2012-12-31T23:59:59.000Z

57

Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations  

Science Conference Proceedings (OSTI)

Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in ...

Bjørn Egil Kringlebotn Nygaard; Hálfdán Ágústsson; Katalin Somfalvi-Tóth

58

Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations  

Science Conference Proceedings (OSTI)

Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in ...

Bjørn Egil Kringlebotn Nygaard; Hálfdán Ágústsson; Katalin Somfalvi-Tóth

2013-10-01T23:59:59.000Z

59

Analytical Chemistry Laboratory Progress Report for FY 1994  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1994 (October 1993 through September 1994). This annual report is the eleventh for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has a research program in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. The ACL has four technical groups -- Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis -- which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL. The Chemical Analysis Group uses wet- chemical and instrumental methods for elemental, compositional, and isotopic determinations in solid, liquid, and gaseous samples and provides specialized analytical services. Major instruments in this group include an ion chromatograph (IC), an inductively coupled plasma/atomic emission spectrometer (ICP/AES), spectrophotometers, mass spectrometers (including gas-analysis and thermal-ionization mass spectrometers), emission spectrographs, autotitrators, sulfur and carbon determinators, and a kinetic phosphorescence uranium analyzer.

Green, D.W.; Boparai, A.S.; Bowers, D.L. [and others

1994-12-01T23:59:59.000Z

60

Wet Chemical Compositional and Near IR Spectra Data Sets ...  

Technology Marketing Summary NREL has developed the following laboratory analytical procedures (LAPs) for standard biomass analysis. The American ...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Analytical Division  

Science Conference Proceedings (OSTI)

The Analytical Division is comprised of members with a variety of interests, including: chromatography (liquid, gas-liquid, high-performance liquid column, thin-layer, and supercritical-fluid), electrophoresis, spectroscopy (UV, IR, NMR, light-scattering)

62

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

63

Analytical modeling of a fracture-injection/falloff sequence and the development of a refracture-candidate diagnostic test  

E-Print Network (OSTI)

Fracture-injection/falloff sequences are routinely used as pre-frac well tests to estimate reservoir pressure and transmissibility, but the current interpretation methods are limited to analyzing specific and very small portions of the pressure falloff data. To remove the current limitations, new analytical fractureinjection/ falloff models are developed that account for fracture propagation, fracture closure, and after fracture closure diffusion. A fracture-injection/falloff differs from a conventional injection/falloff sequence in that pressure during the injection is sufficient to initiate and propagate a hydraulic fracture. By considering fracture propagation as time-dependent storage, three new models are presented for a fractureinjection/ falloff sequence in a well in an infinite slab reservoir with a single vertical fracture created during the injection and with variable fracture and wellbore storage as follows: Â? Equivalent propagating-fracture and before-fracture-closure storage with constant after-fractureclosure storage. Â? Time-dependent propagating-fracture storage, constant before-closure storage, and constant afterclosure storage. Â? Time-dependent propagating-fracture storage, constant before-closure storage with linear flow from the fracture, and constant wellbore storage and skin with after-closure radial flow. When a fracture-injection can be considered as occurring instantaneously, limiting-case solutions of the new fracture-injection/falloff models suggest the observed pressure difference can be integrated to generate an equivalent pressure difference if the rate were constant. Consequently, a fractureinjection/ falloff sequence can be analyzed with constant-rate, variable-storage type curves. The new fracture-injection/falloff theory is also extended to allow for a fracture-injection in a reservoir containing an existing conductive hydraulic fracture. The new multiple-fracture fracture-injection/falloff model forms the basis of a new refracture-candidate diagnostic test that uses characteristic variable-storage behavior to qualitatively diagnose a pre-existing fracture retaining residual width and to determine if a preexisting fracture is damaged. A quantitative analysis methodology is also proposed that uses a new pressure-transient solution for a well in an infinite-slab reservoir producing through multiple arbitrarilyoriented finite- or infinite-conductivity fractures.

Craig, David Paul

2005-05-01T23:59:59.000Z

64

Unique QA/QC requirements for analytical chemistry at LANL  

Science Conference Proceedings (OSTI)

One of the missions of group NMT-1 (Nuclear Materials Technology Division/Analytical Chemistry) at Los Alamos National Laboratory (LANL) is to provide analysis of both radioactive and nonradioactive materials to address the stockpile stewardship needs of the US Department of Energy (DOE). Trace to high levels of various constituents are measured using traditional analytical methods and state-of-the-art instrumental methods. The capabilities include Pu and U assay, wet chemistry, plasma spectroscopy, mass spectrometry radiochemistry, X-ray fluorescence, anion and cation analysis, special standards preparation, surface analysis, and gas analysis. The authors are currently developing and implementing a plan to independently assess the quality of the analytical data produced by NMT-1. Nuclear materials of a matrix similar to the client`s samples but having different concentration levels of analytes that are representative of the client`s samples will be used. Well-characterized, stable, homogeneous materials have been identified as possible candidates for single-blind quality control (QC) samples. These materials include Pu metal, Pu oxide, U metal, U oxide, and U-Pu mixed oxide (MOX) with varying degrees of purity. These single-blind samples will be periodically distributed along with regular client samples to be analyzed by the aforementioned analytical methods.

Tandon, L.; Gautier, M.A.; Hammond, C.F.; Porterfield, D.R. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

65

Unique QA/QC requirements for analytical chemistry at LANL  

Science Conference Proceedings (OSTI)

One of the missions of group NMT-1 (Nuclear Materials Technology Division/Analytical Chemistry) at Los Alamos National Laboratory (LANL) is to provide analysis of both radioactive and nonradioactive materials to address the stockpile stewardship needs of the US Department of Energy (DOE). Trace to high levels of various constituents are measured using traditional analytical methods and state-of-the-art instrumental methods. Capabilities include Pu and U assay, wet chemistry, plasma spectroscopy, mass spectrometry radiochemistry, x-ray fluorescence, anion and cation analysis, special standards preparation, surface analysis, and gas analysis. The authors are currently developing and implementing a plan to independently assess the quality of the analytical data produced by NMT-1. Nuclear materials of a matrix similar to the client`s samples but having different concentration levels of analytes that are representative of the client`s samples will be used. Well-characterized, stable, homogeneous materials have been identified as possible candidates for single-blind quality control (QC) samples. These materials include Pu metal, Pu oxide, uranium metal, uranium oxide, and uranium-plutonium mixed oxide with varying degrees of purity. These single-blind samples will be periodically distributed along with regular client samples to be analyzed by the above mentioned analytical methods.

Tandon, L.; Gautier, M.A.; Hammond, C.F.; Porterfield, D.R.

1998-12-31T23:59:59.000Z

66

Development of the Basis for an Analytical Protocol for Feeds and Products of Bio-oil Hydrotreatment  

SciTech Connect

Methods for easily following the main changes in the composition, stability, and acidity of bio-oil in hydrotreatment are presented. The correlation to more conventional methods is provided. Depending on the final use the upgrading requirement is different. This will create challenges also for the analytical protocol. Polar pyrolysis liquids and their products can be divided into five main groups with solvent fractionation the change in which is easy to follow. This method has over ten years been successfully used for comparison of fast pyrolysis bio-oil quality, and the changes during handling, and storage, provides the basis of the analytical protocol presented in this paper. The method has most recently been used also for characterisation of bio-oil hydrotreatment products. Discussion on the use of gas chromatographic and spectroscopic methods is provided. In addition, fuel oil analyses suitable for fast pyrolysis bio-oils and hydrotreatment products are discussed.

Oasmaa, Anja; Kuoppala, Eeva; Elliott, Douglas C.

2012-04-02T23:59:59.000Z

67

Analytical Dashboards  

Energy.gov (U.S. Department of Energy (DOE))

Analytical Dashboards facilitates easy access to essential high-level corporate-wide safety performance information through key metrics, charts, graphs, and text bullets to provide both managers and operations personnel with a current perspective on safety performance within the Department.

68

Wet cooling towers: rule-of-thumb design and simulation  

DOE Green Energy (OSTI)

A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.

Leeper, S.A.

1981-07-01T23:59:59.000Z

69

Performance evaluation of wet-cooling tower fills with computational fluid dynamics.  

E-Print Network (OSTI)

??ENGLISH ABSTRACT: A wet-cooling tower fill performance evaluation model developed by Reuter is derived in Cartesian coordinates for a rectangular cooling tower and compared to… (more)

Gudmundsson, Yngvi

2012-01-01T23:59:59.000Z

70

Analytical Dashboards  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytical Dashboards Analytical Dashboards Public Final Occurrence Reports: Searchable information on DOE's Final Occurrence Reports since 2009, available to the public and updated daily. Computerized Accident Incident Reporting System (CAIRS) - Injury and Illness Dashboard: The Injury and Illness Dashboard is a tool that allows users to easily explore DOE occupational safety and health injury and illness information. Its features include: Graphical and tabular depictions of injury and illness information Calendar year and fiscal year incidence rates for DOE and DOE contractor total recordable cases (TRC) of injuries and illnesses and cases involving days away from work or on job transfer or restriction (DART) due to injury or illness Incidence rates of injuries and illnesses by DOE program

71

Database and Analytical Tool Development for the Management of Data Derived from US DOE (NETL) Funded Fine Particulate (PM2.5) Research  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase One includes the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two, which is currently underway, involves the development of a platform for on-line data analysis. Phase Two includes the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its forty-eighth month of development activities.

Robinson P. Khosah; Frank T. Alex

2007-02-11T23:59:59.000Z

72

DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM 2.5) RESEARCH  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase One includes the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two, which is currently underway, involves the development of a platform for on-line data analysis. Phase Two includes the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its forty-second month of development activities.

Robinson P. Khosah; Charles G. Crawford

2006-02-11T23:59:59.000Z

73

DATABASE AND ANALYTICAL TOOL DEVELOPMENT FOR THE MANAGEMENT OF DATA DERIVED FROM US DOE (NETL) FUNDED FINE PARTICULATE (PM2.5) RESEARCH  

SciTech Connect

Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project is being conducted in two phases. Phase 1, which is currently in progress and will take twelve months to complete, will include the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. In Phase 2, which will be completed in the second year of the project, a platform for on-line data analysis will be developed. Phase 2 will include the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now into its sixth month of Phase 1 development activities.

Robinson P. Khosah; Charles G. Crawford

2003-03-13T23:59:59.000Z

74

Database and Analytical Tool Development for the Management of Data Derived from US DOE (NETL) Funded Fine Particulate (PM2.5) Research  

Science Conference Proceedings (OSTI)

Advanced Technology Systems, Inc. (ATS) was contracted by the U. S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) to develop a state-of-the-art, scalable and robust web-accessible database application to manage the extensive data sets resulting from the DOE-NETL-sponsored ambient air monitoring programs in the upper Ohio River valley region. The data management system was designed to include a web-based user interface that will allow easy access to the data by the scientific community, policy- and decision-makers, and other interested stakeholders, while providing detailed information on sampling, analytical and quality control parameters. In addition, the system will provide graphical analytical tools for displaying, analyzing and interpreting the air quality data. The system will also provide multiple report generation capabilities and easy-to-understand visualization formats that can be utilized by the media and public outreach/educational institutions. The project was conducted in two phases. Phase One included the following tasks: (1) data inventory/benchmarking, including the establishment of an external stakeholder group; (2) development of a data management system; (3) population of the database; (4) development of a web-based data retrieval system, and (5) establishment of an internal quality assurance/quality control system on data management. Phase Two involved the development of a platform for on-line data analysis. Phase Two included the following tasks: (1) development of a sponsor and stakeholder/user website with extensive online analytical tools; (2) development of a public website; (3) incorporation of an extensive online help system into each website; and (4) incorporation of a graphical representation (mapping) system into each website. The project is now technically completed.

Robinson Khosah

2007-07-31T23:59:59.000Z

75

Assessment and development of an industrial wet oxidation system for burning waste and low upgrade fuels. Final report, Phase 2B: Pilot demonstration of the MODAR supercritical water oxidation process  

DOE Green Energy (OSTI)

Stone & Webster Engineering Corporation is Project Manager for the Development and Demonstration of an Industrial Wet Oxidation System for Burning Wastes and Low Grade Fuel. This program has been ongoing through a Cooperative Agreement sponsored by the Department of Energy, initiated in June 1988. This report presents a comprehensive discussion of the results of the demonstration project conducted under this cooperative agreement with the overall goal of advancing the state-of-the-art in the practice of Supercritical Water Oxidation (SCWO). In recognition of the Government`s support of this project, we have endeavored to include all material and results that are not proprietary in as much detail as possible while still protecting MODAR`s proprietary technology. A specific example is in the discussion of materials of construction where results are presented while, in some cases, the specific materials are not identified. The report presents the results chronologically. Background material on the earlier phases (Section 2) provide an understanding of the evolution of the program, and bring all reviewers to a common starting point. Section 3 provides a discussion of activities from October 1991 through July 1992, during which the pilot plant was designed; and various studies including computational fluid dynamic modeling of the reactor vessel, and a process HAZOP analyses were conducted. Significant events during fabrication are presented in Section 4. The experimental results of the test program (December 1992--August 1993) are discussed in Section 5.

Not Available

1994-01-01T23:59:59.000Z

76

Ionizing wet scrubber for air pollution control  

Science Conference Proceedings (OSTI)

Air pollution control equipment manufacturers are continually developing sophisticated systems designed to dramatically reduce plant emissions. One such system, the ionizing wet scrubber (IWS), has demonstrated outstanding air pollution control characteristics while meeting the challenge of energy efficiency. The IWS system removes fine solid and liquid particulate down to 0.05 micron at high collection efficiencies and low energy comsumption. It also simultaneously removes noxious, corrosive and odor-bearing gases from flue gas streams as well as coarse particulate matter above 1 micron in diameter. Due to its simplified design and low pressure drop, operating energy costs of the IWS are only a fraction of those for alternative air pollution control equipment. Pressure drop through a single-stage IWS is only 0.5 to 1.5 in. Water (125 to 374 pa) column and is controlled primarily by pressure drop through the wet scrubber section. Total system energy usage is approximately 2.0-2.5 bhp/1,000 actual ft/sup 3//min (0.7-0.9 kw/m/sup 3//min) for a single-stage IWS and 4.0-5.0 bhp/1,000 actual ft/sup 3//min for a two-stage installation. These energy requirements represent a significant savings as opposed to other air pollution control systems such as Venturi scrubbers.

Sheppard, S.V.

1986-02-01T23:59:59.000Z

77

Nuclear Analytical Methods  

Science Conference Proceedings (OSTI)

... Nuclear Analytical Methods. Research activities in the Nuclear Analytical Methods Group are focused on the science that ...

78

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

79

Wet Corn Milling Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

80

,"California Federal Offshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Wet Corn Milling Plant EPI | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Wet Corn Milling Plant EPI Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction...

82

Dry purification of aspirational air in coke-sorting systems with wet slaking of coke  

Science Conference Proceedings (OSTI)

Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

T.F. Trembach; A.G. Klimenko [Giprokoks, the State Institute for the Design of Coke-Industry Enterprises, Kharkov (Ukraine)

2009-07-15T23:59:59.000Z

83

Evaluation of ammonia as a working fluid for a wet/dry-cooled binary geothermal plant  

DOE Green Energy (OSTI)

The concepts considered in this study involve various arrangments of the binary geothermal power cycle with advanced dry cooling schemes. Brief descriptions of the binary cycle and advanced cooling schemes are included. Also included are descriptions of the base case concept and the ammonia working fluid concept. Performance and cost estimates were developed for a wet-cooled isobutane cycle plant, wet/dry cooled isobutane cycle plant, wet-cooled ammonia cycle plant, and a wet/dry cooled ammonia cycle plant. The performance and cost estimates were calculated using the GEOCOST computer code developed at PNL. Inputs for GEOCOST were calculated based on the Heber sites. The characteristics of the wet/dry cooling system were determined using the BNWGEO computer code developed at PNL. Results of the cooling system analysis are presented, followed by results of the geothermal plant analysis. Conclusions and comments also are included.

Drost, M.K.; Huber, H.D.

1982-10-01T23:59:59.000Z

84

AOCS Analytical Guidelines Am 1a-09  

Science Conference Proceedings (OSTI)

Near Infrared Spectroscopy Instrument Management and Prediction Model Development. Am 1a-09. AOCS Analytical Guidelines Am 1a-09 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads AOCS ...

85

DEVELOPMENT OF ANALYTICAL METHODS FOR THE QUANTIFICATION OF THE CHEMICAL FORMS OF MERCURY AND OTHER TARGET POLLUTANTS IN COAL-FIRED BOILER FLUE GAS  

Science Conference Proceedings (OSTI)

Since approximately 55% of the electrical power produced in the U. S. is generated by coal-based power utility plants, there is serious concern about the massive amounts of coal combustion products emitted into the atmosphere annually. Furthermore, Title III of the 1990 Clean Air Act Amendments (CAAA) requires the measurement and inventory of a possible 189 hazardous air pollutants (HAPs) from any stationary source producing more than 10 tons per year of any one pollutant or more than 25 tons per year of total pollutants. Although power utilities are not presently included on the list of source categories, the CAAA requires the U. S. Environmental Protection Agency to carry out a study of emissions from electricity generation using fossil fuels. Since many of these HAPs are known to be present in coal derived flue gas, coal-fired electric power utilities may be subject to regulation following these studies if Congress considers it necessary. In a cooperative effort with the U. S. Environmental Protection Agency (EPA), the U. S. Department of Energy (DOE) through its Federal Energy Technology Center (FETC) initiated such a study in 1991. DOE-FETC commissioned five primary contractors to conduct emission studies at eight different coal-fired electric utilities. The eight sites represented a cross section of feed coal type, boiler designs, and particulate and gaseous pollutant control technologies. The major goal of these studies was to determine the sampling and analytical methodologies that could be used efficiently to perform these emission tests while producing representative and reliable emission data. The successful methodology could then be recommended to the EPA for use in compliance testing in the event the regulation of air toxic emissions from coal-fired power plants is implemented. A secondary purpose of the testing was to determine the effectiveness of the control technologies in reducing target hazardous air pollutants. Advanced Technology Systems, Inc. (ATS) as a secondary DOE contractor on this project, assessed the sampling and analytical plans and the emission reports of the five primary contractors to determine how successful the contractors were in satisfying their defined objectives. ATS identified difficulties and inconsistencies in a number of sampling and analytical methodologies in these studies. In particular there was uncertainty as to the validity of the sampling and analytical methods used to differentiate the chemical forms of mercury observed in coal flue gas. Considering the differences in the mercury species with regard to human toxicity, the rate of transport through the ecosystem and the design variations in possible emission control schemes, DOE sought an accurate and reliable means to identify and quantify the various mercury compounds emitted by coal-fired utility boilers. ATS, as a contractor for DOE, completed both bench- and pilot-scale studies on various mercury speciation methods. The final validation of the modified Ontario-Hydro Method, its acceptance by DOE and submission of the method for adoption by ASTM was a direct result of these studies carried out in collaboration with the University of North Dakota's Energy and Environmental Research Center (UNDEERC). This report presents the results from studies carried out at ATS in the development of analytical methods to identify and quantify various chemical species, particularly those of mercury, in coal derived flue gas. Laboratory- and pilot-scale studies, not only on mercury species, but also on other inorganics and organics present in coal combustion flue gas are reported.

Terence J. McManus, Ph.D.

1999-06-30T23:59:59.000Z

86

Analytical Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to graduate student(s) in the field of lipid analytical chemistry. Analytical Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edible fa

87

Asbestos/NESHAP adequately wet guidance  

SciTech Connect

The Asbestos NESHAP requires facility owners and/or operators involved in demolition and renovation activities to control emissions of particulate asbestos to the outside air because no safe concentration of airborne asbestos has ever been established. The primary method used to control asbestos emissions is to adequately wet the Asbestos Containing Material (ACM) with a wetting agent prior to, during and after demolition/renovation activities. The purpose of the document is to provide guidance to asbestos inspectors and the regulated community on how to determine if friable ACM is adequately wet as required by the Asbestos NESHAP.

Shafer, R.; Throwe, S.; Salgado, O.; Garlow, C.; Hoerath, E.

1990-12-01T23:59:59.000Z

88

Wetting of a Chemically Heterogeneous Surface  

Science Conference Proceedings (OSTI)

Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

Frink, L.J.D.; Salinger, A.G.

1998-11-20T23:59:59.000Z

89

Reducing the atmospheric impact of wet slaking  

SciTech Connect

Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov [Kuznetsk Basin State Technical University, Kemerovo (Russian Federation)

2009-05-15T23:59:59.000Z

90

Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

91

Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic Feet) Utah Natural Gas Wet After Lease Separation, Reserves in Nonproducing Reservoirs (Billion Cubic...

92

Texas State Offshore Associated-Dissolved Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

93

Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

94

Table 3. Wet natural gas production and resources (trillion cubic ...  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved wet shale gas technically recoverable resources (TRR) 2012 USGS conventional unproved wet natural gas TRR, including reserve

95

Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1...

96

Texas - RRC District 10 Nonassociated Natural Gas, Wet After...  

Annual Energy Outlook 2012 (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

97

Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

98

Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

99

Texas - RRC District 8A Nonassociated Natural Gas, Wet After...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

100

Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

102

New Mexico - East Natural Gas, Wet After Lease Separation Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) New Mexico - East Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

103

Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves...

104

Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

105

Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

106

Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade...

107

Wet/dry cooling tower and method  

DOE Patents (OSTI)

A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

1981-01-01T23:59:59.000Z

108

2009 Update on Mercury Capture by Wet Flue Gas Desulfurization  

Science Conference Proceedings (OSTI)

This technical update presents results of four research and development projects focused on understanding and enhancing mercury emissions control associated with wet flue gas desulfurization (FGD) technology. The first project was directed at characterizing partitioning of elemental and oxidized mercury species in solid, liquid, and gas phases within process streams involved in an operating commercial system. The second project explored dewatering options with an objective of producing low-mercury-conten...

2009-12-15T23:59:59.000Z

109

Development of Analytical and Computational Methods for the Strategic Power Infrastructure Defense (SPID) System: EPRI/DoD Complex I nteractive Networks/Systems Initiative: Second Annual Report  

Science Conference Proceedings (OSTI)

This report details the second-year research accomplishments for one of six research consortia established under the Complex Interactive Networks/Systems Initiative. This particular document discusses analytical and computational methods for the Strategic Power Infrastructure Defense (SPID) System.

2001-06-21T23:59:59.000Z

110

Nanomechanical Sensor Detects and Identifies Chemical Analytes  

ORNL 2010-G00612/jcn UT-B ID 200802066 Nanomechanical Sensor Detects and Identifies Chemical Analytes Technology Summary ORNL researchers developed a ...

111

Reduction of Water Use in Wet FGD Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduction of WateR use in Wet fGd Reduction of WateR use in Wet fGd systems Background Coal-fired power plants require large volumes of water for efficient operation, primarily for cooling purposes. Public concern over water use is increasing, particularly in water stressed areas of the country. Analyses conducted by the U.S. Department of Energy's National Energy Technology Laboratory predict significant increases in power plant freshwater consumption over the coming years, encouraging the development of technologies to reduce this water loss. Power plant freshwater consumption refers to the quantity of water withdrawn from a water body that is not returned to the source but is lost to evaporation, while water withdrawal refers to the total quantity of water removed from a water source.

112

California - Coastal Region Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic Feet)

113

FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS  

SciTech Connect

Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

2003-05-07T23:59:59.000Z

114

Membrane-based wet electrostatic precipitation  

Science Conference Proceedings (OSTI)

Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or waterbased) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at First Energy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with {approximately}15% less collecting area. 15 refs., 7 figs., 6 tabs.

David J. Bayless; Liming Shi; Gregory Kremer; Ben J. Stuart; James Reynolds; John Caine [Ohio University, Athens, OH (US). Ohio Coal Research Center

2005-06-01T23:59:59.000Z

115

ANALYTIC MODELING OF STARSHADES  

SciTech Connect

External occulters, otherwise known as starshades, have been proposed as a solution to one of the highest priority yet technically vexing problems facing astrophysics-the direct imaging and characterization of terrestrial planets around other stars. New apodization functions, developed over the past few years, now enable starshades of just a few tens of meters diameter to occult central stars so efficiently that the orbiting exoplanets can be revealed and other high-contrast imaging challenges addressed. In this paper, an analytic approach to the analysis of these apodization functions is presented. It is used to develop a tolerance analysis suitable for use in designing practical starshades. The results provide a mathematical basis for understanding starshades and a quantitative approach to setting tolerances.

Cash, Webster [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

2011-09-01T23:59:59.000Z

116

Mound Laboratory: Analytical Capability  

SciTech Connect

The Monsanto Research Corporation, Mound Laboratory Analytical Capability report is intended to fulfill a customer need for basic information concerning Mound Laboratory's analytical instrumentation and techniques.

Hendrickson, E. L.

1955-03-01T23:59:59.000Z

117

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, L.G.

1979-08-29T23:59:59.000Z

118

Wet powder seal for gas containment  

DOE Patents (OSTI)

A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

Stang, Louis G. (Sayville, NY)

1982-01-01T23:59:59.000Z

119

Analytical Microscopy Group Homepage  

Science Conference Proceedings (OSTI)

... research on autoradiography and nuclear track methods ... and standards that address critical challenges in ... Public Safety and Security in Analytical ...

2012-10-15T23:59:59.000Z

120

Enhanced Mercury Removal by Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report provides results from testing conducted in 2005 as part of three EPRI co-funded projects that are aimed at enhancing the capture of mercury in flue gas from coal-fired power boilers when scrubbed by wet flue gas desulfurization (FGD) systems. The first project is co-sponsored by the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL) under Cooperative Agreement DE-FC26-01NT41185, "Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD," as well as by two...

2006-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fate of Mercury in Wet FGD Systems  

Science Conference Proceedings (OSTI)

This report describes the results of a bench-scale, laboratory investigation of the fate of flue gas mercury species in wet flue gas desulfurization (FGD) scrubbers that are used for sulfur dioxide (SO2) control in coal-fired power plants. Data collected in the EPA mercury Information Collection Request (ICR), and in research projects sponsored by EPRI show that most wet scrubbers used for SO2 control achieve high removals of oxidized mercury and little or no elemental mercury removal. However, some scru...

2004-03-12T23:59:59.000Z

122

WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES  

SciTech Connect

The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.

Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

2003-02-01T23:59:59.000Z

123

Development of A Cryogenic Drift Cell Spectrometer and Methods for Improving the Analytical Figures of Merit for Ion Mobility-Mass Spectrometry Analysis  

E-Print Network (OSTI)

A cryogenic (325-80 K) ion mobility-mass spectrometer was designed and constructed in order to improve the analytical figures-of-merit for the chemical analysis of small mass analytes using ion mobility-mass spectrometry. The instrument incorporates an electron ionization source, a quadrupole mass spectrometer, a uniform field drift cell spectrometer encased in a cryogenic envelope, and an orthogonal geometry time-of-flight mass spectrometer. The analytical benefits of low temperature ion mobility are discussed in terms of enhanced separation ability, ion selectivity and sensitivity. The distinction between resolving power and resolution for ion mobility is also discussed. Detailed experimental designs and rationales are provided for each instrument component. Tuning and calibration data and methods are also provided for the technique. Proof-of-concept experiments for an array of analytes including rare gases (argon, krypton, xenon), hydrocarbons (acetone, ethylene glycol, methanol), and halides (carbon tetrachloride) are provided in order to demonstrate the advantages and limitations of the instrument for obtaining analytically useful information. Trendline partitioning of small analyte ions based on chemical composition is demonstrated as a novel chemical analysis method. The utility of mobility-mass analysis for mass selected ions is also demonstrated, particularly for probing the ion chemistry which occurs in the drift tube for small mass ions. As a final demonstration of the separation abilities of the instrument, the electronic states of chromium and titanium (ground and excited) are separated with low temperature. The transition metal electronic state separations demonstrated here are at the highest resolution ever obtained for ion mobility methods. The electronic conformational mass isomers of methanol (conventional and distonic) are also partially separated at low temperature. Various drift gases (helium, neon, and argon) are explored for the methanol system in order to probe stronger ion-neutral interaction potentials and effectuate higher resolution separations of the two isomeric ions. Finally, two versatile ion source designs and a method for axially focusing ions at low pressure (1-10 torr) using electrostatic fields is presented along with some preliminary work on the ion sources.

May, Jody C.

2009-08-01T23:59:59.000Z

124

Nonperturbative and analytical approach to Yang-Mills thermodynamics  

E-Print Network (OSTI)

An analytical, macroscopic approach to SU(N) Yang-Mills thermodynamics is developed, tested,and applied.

Ralf Hofmann

2004-04-29T23:59:59.000Z

125

Update of Enhanced Mercury Capture by Wet FGD  

Science Conference Proceedings (OSTI)

This document describes recent progress on three mercury control technology research and development projects. One project is co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE-NETL), the second is funded solely by EPRI, and the third is co-funded by EPRI, DOE-NETL, and several EPRI-member companies. All three projects are focused on understanding and/or enhancing mercury capture (co-removal) by wet flue gas desulfurization (FGD) systems. The first project, c...

2007-03-12T23:59:59.000Z

126

Analytical Chemistry Databases and Links  

Science Conference Proceedings (OSTI)

Analytical chemistry websites, humor, Material Safety Data Sheets,Patent Information, and references. Analytical Chemistry Databases and Links Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDiffer

127

Indian Centre for Wind Energy Technology C WET | Open Energy...  

Open Energy Info (EERE)

Centre for Wind Energy Technology C WET Jump to: navigation, search Name Indian Centre for Wind Energy Technology (C-WET) Place Chennai, India Zip 601 302 Sector Wind energy...

128

Texas - RRC District 5 Natural Gas, Wet After Lease Separation ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 5 Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet)

129

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease ...  

U.S. Energy Information Administration (EIA)

Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet)

130

Budget allocation and the analytic hierarchy process  

SciTech Connect

This report demonstrates that the priorities calculated by the Analytic Hierarchy Process can be used as measures of benefit for budget allocation. A procedure is described that optimally allocates a budget among competing DOE waste minimization projects. The projects are compared using an analytic hierarchy already developed by Sandia National Laboratories. 2 refs., 3 tabs.

Hulme, B.L. (Hulme Mathematics (USA))

1990-10-01T23:59:59.000Z

131

Business Intelligence and Analytics: Research Directions  

Science Conference Proceedings (OSTI)

Business intelligence and analytics (BIA) is about the development of technologies, systems, practices, and applications to analyze critical business data so as to gain new insights about business and markets. The new insights can be used for improving ... Keywords: Business intelligence, business analytics

Ee-Peng Lim; Hsinchun Chen; Guoqing Chen

2013-01-01T23:59:59.000Z

132

Extreme Scale Visual Analytics  

Science Conference Proceedings (OSTI)

Extreme-scale visual analytics (VA) is about applying VA to extreme-scale data. The articles in this special issue examine advances related to extreme-scale VA problems, their analytical and computational challenges, and their real-world applications.

Wong, Pak C.; Shen, Han-Wei; Pascucci, Valerio

2012-05-08T23:59:59.000Z

133

Analytical laboratory quality audits  

SciTech Connect

Analytical Laboratory Quality Audits are designed to improve laboratory performance. The success of the audit, as for many activities, is based on adequate preparation, precise performance, well documented and insightful reporting, and productive follow-up. Adequate preparation starts with definition of the purpose, scope, and authority for the audit and the primary standards against which the laboratory quality program will be tested. The scope and technical processes involved lead to determining the needed audit team resources. Contact is made with the auditee and a formal audit plan is developed, approved and sent to the auditee laboratory management. Review of the auditee's quality manual, key procedures and historical information during preparation leads to better checklist development and more efficient and effective use of the limited time for data gathering during the audit itself. The audit begins with the opening meeting that sets the stage for the interactions between the audit team and the laboratory staff. Arrangements are worked out for the necessary interviews and examination of processes and records. The information developed during the audit is recorded on the checklists. Laboratory management is kept informed of issues during the audit so there are no surprises at the closing meeting. The audit report documents whether the management control systems are effective. In addition to findings of nonconformance, positive reinforcement of exemplary practices provides balance and fairness. Audit closure begins with receipt and evaluation of proposed corrective actions from the nonconformances identified in the audit report. After corrective actions are accepted, their implementation is verified. Upon closure of the corrective actions, the audit is officially closed.

Kelley, William D.

2001-06-11T23:59:59.000Z

134

Wetting heterogeneity in mixed-wet porous media controls flow dissipation  

E-Print Network (OSTI)

Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

Murison, Julie; Baret, Jean-Christophe; Herminghaus, Stephan; Schröter, Matthias; Brinkmann, Martin

2013-01-01T23:59:59.000Z

135

Wetting heterogeneity in mixed-wet porous media controls flow dissipation  

E-Print Network (OSTI)

Wettability is crucial for multiphase flow in porous media. However, the effect of spatial distribution of wetting domains has previously only been dealt with by averaging contact angles over several pores. By preparing tailored bead packings with the same average surface wettability, but differing in the typical spatial extension of the same-type wetting domains, we show that models based solely on averages do not capture the dynamics of two phase flow in such systems. Using X-ray tomography we measure the typical length scale xi of the wetting domains in our samples. In capillary pressure saturation (CPS) experiments we find that xi controls the width of the hysteresis loop for xi <= d, d being the bead diameter. X-Ray tomography of the samples during both water and oil invasion shows that the front morphology is smoothened at small values of xi. Both observations are consistent with an increase of dissipation for small correlation length.

Julie Murison; Benoît Semin; Jean-Christophe Baret; Stephan Herminghaus; Matthias Schröter; Martin Brinkmann

2013-10-11T23:59:59.000Z

136

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

We've been part of the SRS family for over 50 years. Mission To safely operate nuclear and environmental laboratories in providing the highest quality analytical services to all of...

137

Induced-Draft Cooling Towers and Parallel Wet/Dry Cooling for Combined-Cycle Plants: Design Best Practices and Procurement Specifica tions  

Science Conference Proceedings (OSTI)

This report contains information and examples of best practices for the design and specification of wet and parallel (hybrid) cooling towers for combined-cycle applications. Two reference (template) specifications are includedone for totally wet cooling systems and one for parallel cooling systems with a wet cooling tower and air-cooled condensers (ACC) in parallel. These template specifications are intended to be the starting point from which the utility or developer can "customize" as needed to fit its...

2011-10-14T23:59:59.000Z

138

Method for the wet quenching of coke  

SciTech Connect

A method and apparatus for the wet quenching of coke is disclosed wherein hot coke is sprayed from above with quenching water, the steam generated by the heat of the coke is condensed by a spray of condensation water from the top of the quenching tower, and the hot condensate-water mixture is collected at the bottom of the quenching tower and recirculated to the top of the tower where it is sprayed between quenching operations to be cooled by a counterflowing stream of air. The cooled condensate water mixture is suitable for reuse as the condensation spray water.

Blase, M.; Flockenhaus, C.; Wagener, D.

1982-03-30T23:59:59.000Z

139

About Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

LOOKING FOR THE RIGHT MIX IN ANALYTICAL SERVICES? LOOKING FOR THE RIGHT MIX IN ANALYTICAL SERVICES? Let's break it down. Analytical Laboratories at the SRS offers a wide-range of analytical capabilities; extensive and highly-specialized facilities; in-depth talent; and an unsurpassed record for providing our customers with the highest quality of service. We've served our nation for more than 50 years. Now, we're ready to provide those same services to you. Call us when you are looking for the right proportion of capabilities, facilities, talent and commitment to excellence. Our Facilities Analytical Laboratories at the SRS offers a wide-range of analytical capabilities; extensive and highly-specialized facilities; in-depth talent; and an unsurpassed record for providing our customers with the highest quality of service. We've served our nation for more than 50 years. Now, we're ready to provide those same services to you. Call us when you are looking for the right proportion of capabilities, facilities, talent and commitment to excellence.

140

Scaling of the normal coefficient of restitution for wet impacts  

E-Print Network (OSTI)

A thorough understanding of the energy dissipation in the dynamics of wet granular matter is essential for a continuum description of natural phenomena such as debris flow, and the development of various industrial applications such as the granulation process. The coefficient of restitution (COR), defined as the ratio between the relative rebound and impact velocities of a binary impact, is frequently used to characterize the amount of energy dissipation associated. We measure the COR by tracing a freely falling sphere bouncing on a wet surface with the liquid film thickness monitored optically. For fixed ratio between the film thickness and the particle size, the dependence of the COR on the impact velocity and various properties of the liquid film can be characterized with the Stokes number, defined as the ratio between the inertia of the particle and the viscosity of the liquid. Moreover, the COR for infinitely large impact velocities derived from the scaling can be analyzed by a model considering the energy dissipation from the inertia of the liquid film.

Thomas Mueller; Frank Gollwitzer; Christof Kruelle; Ingo Rehberg; Kai Huang

2013-01-23T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

METHODS OF INTEREST METHODS OF INTEREST Microwave/hot block digestion of solids Alpha spectroscopy Gamma spectroscopy (fixed and portable) Neutron and gamma ray measurements Gas proportional counting Gas chromatography Liquid scintillation counting Uranium and plutonium concentration and isotopic abundance by thermal ionization mass spectrometry Low mass, high resolution gas analysis by mass spectrometry Metallic impurities by inductively coupled plasma emission spectrometry and mass spectrometry Anion analysis by ion selective electrode and ion chromatography Wet chemistry analysis: pH, conductivity, density, turbidity, acid/base titrations Mercury analysis Carbon analysis Low-level uranium analysis by kinetic phosphorescence Volatile organics by gas chromatography with mass spectrometer detector/GC-MS

142

Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation  

Science Conference Proceedings (OSTI)

Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

Armstrong, Ryan T.; Wildenschild, Dorthe (Oregon State U.)

2012-10-24T23:59:59.000Z

143

Enhanced Control of Mercury by Wet Flue Gas Desulfurization Systems - Site 2 Results  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy and EPRI are co-funding this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project is investigating catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installation...

2000-11-28T23:59:59.000Z

144

Renewable Analytics | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Renewable Analytics Jump to: navigation, search Name Renewable Analytics Place San Francisco,...

145

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS  

E-Print Network (OSTI)

OPERATIONAL WINDOWS FOR DRY-WALL AND WETTED-WALL IFE CHAMBERS F. NAJMABADI* University the trade- offs, to develop operational windows for chamber con- cepts, and to identify high the injection process; (d) for relatively low yield targets ( 250 MJ), an operational window with no buffer gas

California at San Diego, University of

146

Water Treatment For Wet Electrostatic Precipitators: Conceptual Design  

Science Conference Proceedings (OSTI)

Pilot testing has shown that replacement of the last field of a small dry electrostatic precipitator (ESP) with a single wet field can significantly reduce outlet particulate emissions from coal-fired power plants. This report summarizes a pilot wet ESP performance test, cost projections from an economic study, and results from a study of the water use and chemistry issues that need to be resolved to make the wet ESP technology an attractive option for electric utilities.

1997-09-25T23:59:59.000Z

147

Steam Generator Management Program: Generic Plant Qualification and Application Plan for Dispersant Use During Steam Generator Wet L ayup  

Science Conference Proceedings (OSTI)

This report summarizes the results of an Electric Power Research Institute (EPRI) effort to develop dispersant application during steam generator (SG) wet layup as an additional deposit management strategy. Based on the results of this study, the addition of dispersant during wet layup is likely to modestly increase the amount of iron removed from the SGs of nuclear PWRs prior to power ascension, benefitting the utilities by reducing the corrosion product inventory within the SGs upon startup. The inform...

2011-06-30T23:59:59.000Z

148

BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES  

Science Conference Proceedings (OSTI)

Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

Youmans-Mcdonald, L.

2011-02-18T23:59:59.000Z

149

Mercury Emissions Control in Wet FGD Systems  

E-Print Network (OSTI)

The Babcock & Wilcox Company (B&W) and McDermott Technology, Inc. (MTI) have had a continuing program over the past decade for characterizing and optimizing mercury control in flue gas desulfurization (FGD) systems. These efforts have led to the characterization of mercury emissions control at two utility installations and full-scale demonstration (55 MW and 1300 MW) of the effect of a mercury control performance enhancement additive for wet FGD systems. This paper presents the results of the mercury emissions control testing conducted at these two sites. The performance is related to EPA Information Collection Request (ICR) data from an FGD system supplier’s perspective, highlighting the need to consider the effects of system design and operation when evaluating mercury emissions control performance.

Paul S. Nolan; Babcock Wilcox; Kevin E. Redinger; Babcock Wilcox; Gerald T. Amrhein; Gregory A. Kudlac

2002-01-01T23:59:59.000Z

150

Self-oscillations on a partially wetted catalyst pellet in ? ...  

Science Conference Proceedings (OSTI)

and the vapor–gas phases on wetted and dry catalyst pellets, respectively. ... perature and flooding states of the catalyst pellet was first observed, which were ...

151

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

152

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

153

Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

154

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

155

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

156

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

157

,"Utah Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

158

Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet) Decade...

159

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

160

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

162

,"Utah Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annua...

163

,"Utah Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

164

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

165

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Field Discoveries (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

166

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Estimated Production from Reserves (Billion Cubic Feet)...

167

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Reservoir Discoveries in Old Fields (Billion Cubic Feet)...

168

,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

169

,"Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",2011...

170

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

171

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

172

Wet Gasification of Ethanol Residue: A Preliminary Assessment  

DOE Green Energy (OSTI)

A preliminary technoeconomic assessment has been made of several options for the application of catalytic hydrothermal gasification (wet gasification) to ethanol processing residues.

Brown, Michael D.; Elliott, Douglas C.

2008-09-22T23:59:59.000Z

173

,"Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

174

,"Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",20...

175

NETL: Control Technology - Field Testing of a Wet FGD Additive...  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Mercury Control URS Corporation will demonstrate the use of an additive in wet lime or limestone flue gas desulfurization (FGD) systems to prevent oxidized mercury that...

176

,"Louisiana State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

177

,"Louisiana State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

178

,"U.S. Federal Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

179

,"California - Los Angeles Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

180

,"California Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"California State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

182

,"California State Offshore Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

183

,"California - Coastal Region Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

184

,"California Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

185

,"California - San Joaquin Basin Onshore Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

186

,"California Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

187

,"California Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

188

,"Ohio Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

189

,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

190

,"Ohio Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

191

,"Estimated Production of Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production of Natural Gas, Wet After Lease Separation " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Lates...

192

Wetting Properties of Molten Silicon with Graphite Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, The wetting behavior of molten-silicon/refractory-materials system is important in ... Electrorefining of Metallurgical Grade Silicon in Molten Salts.

193

,"Colorado Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

194

,"Colorado Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

195

,"Colorado Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

196

,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

197

Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...  

Gasoline and Diesel Fuel Update (EIA)

Reserves from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200...

198

Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet...  

Annual Energy Outlook 2012 (EIA)

from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters...

199

,"Michigan Associated-Dissolved Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

200

,"Michigan Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Michigan Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

202

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Greater than 200 Meters Deep...

203

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Greater than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Greater than 200 Meters Deep (Billion...

204

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production from Less than 200 Meters Deep (Billion Cubic...

205

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

Less than 200 Meters Deep (Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves from Less than 200 Meters Deep (Billion...

206

,"Texas - RRC District 5 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

207

,"Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

208

,"Texas - RRC District 9 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

209

,"Texas - RRC District 5 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

210

,"Texas - RRC District 8 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

211

,"Texas Nonassociated Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic...

212

,"Texas Natural Gas, Wet After Lease Separation Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

213

,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion...

214

,"Texas - RRC District 6 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

215

,"Texas State Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

216

,"Texas - RRC District 2 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

217

,"Texas - RRC District 10 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

218

,"Texas - RRC District 3 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

219

,"Texas State Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

220

,"Texas - RRC District 8A Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Nonassociated Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

,"Texas - RRC District 1 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

222

,"Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

223

,"Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 5 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

224

,"Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

225

,"Texas - RRC District 7B Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved...

226

,"Texas - RRC District 4 Onshore Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves...

227

,"Texas State Offshore Nonassociated Natural Gas, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves...

228

,"Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

229

,"Texas - RRC District 6 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

230

,"Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved...

231

,"Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

232

,"Texas - RRC District 7C Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved...

233

,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

234

,"Texas - RRC District 8 Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

235

,"Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 6 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

236

,"Texas - RRC District 9 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

237

,"Texas - RRC District 1 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

238

,"Texas - RRC District 10 Nonassociated Natural Gas, Wet After...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved...

239

Visualization and Analytics Software at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytics Analytics Visualization and Analytics AVS/Express AVS/Express includes functionality for data visualization and analysis, image processing and data display. It uses a graphical application development environment. Read More » VisIt - 3D Scientific Visualization VisIt is a point-and-click 3D scientific visualization application that supports most common visualization techniques (e.g., isocontouring and volume rendering) on structured and unstructured grids. Due to its distributed and parallel architecture, VisIt is able to handle very large datasets interactively. In addition, VisIt is extensible, allowing users to add data loaders or additional analysis tools to VisIt. The NERSC Analytics Group has developed extensions to VisIt to support NERSC user applications,

240

Analytical Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryAnalytical Division2013 Members391 Members as of October 1, 2013Abdurahman, SadegWashington State UniversityPullman, WA, USAAbuzaytoun, ReemDalhousie UniversityHalifax, NS, CanadaAdcock, JacquiDeakin Universityaurn Ponds

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

An analytical study and systematic monitoring procedure developed for the load-out operation of the North Rankin Jacket 'A'  

SciTech Connect

The loadout of the 22,000 tonnes North Rankin Jacket 'A' onto a floating barge was successfully accomplished in April, 1982. During the loadout the barge ballast was continually adjusted to compensate for both jacket weight transfer onto the barge and full tide variation. The preparation for the loadout and the operation itself was characterized by newly developed integrated techniques. The techniques included: the development of a barge, jacket and quayside three-dimensional computer model to check the validity of conventional and simple ballast system software. The model was also used to evaluate the control parameters of the operation in a series of analyses which determine the sensitivity of critical steps of the operation to human or equipment errors: the development and operation of an integrated control system for jacket load transfer that relates jacket position to barge level and ballast pump requirements; the development and operation of a tide-expectation computer programme and associated ballast pump time scheduling software to compensate for differences between actual water level and that determined from standard tide tables, and to minimize the effect of short-term, local tide variations that are not forecast; and the incorporation of fail-safe concepts and measures into the operation.

Ferguson, N.; Inokoshi, O.; Kitani, T.; Masuda, S.; Zarate, H.

1983-05-01T23:59:59.000Z

242

A round robin evaluation of the corrosiveness of wet residential insulation by electrochemical measurements  

SciTech Connect

The results of a round cabin evaluation of the use of an electrochemical method of calculating the corrosion rate of low carbon steel in environments related to cellulosic building insulations are reported. Environments included the leachate from a wet cellulosic insulation and solutions based on pure and commercial grades of borax, ammonium sulfate and aluminum sulfate. The pH values of these environments were in the range of 2.5 to 9.5. Electrochemical measurements were made using a direct reading corrosion rate instrument. The calculated corrosion rates were compared with those determined directly by weight loss measurements. Electrochemical measurements were made over a period of 48 hours and weight loss exposures were for two weeks. Poor agreement was observed for the corrosion rates determined electrochemically and the values were consistently larger than those based on weight loss. Reasons proposed for these results included the complex nature of the corrosion product deposits and the control these deposits have on oxygen diffusion to the metal interface. Both factors influence the validity of the calculation of the corrosion rate by the direct reading instrument. It was concluded that development of a viable electrochemical method of general applicability to the evaluation of the corrosiveness of wet residential building thermal insulations were doubtful. Because of the controlling influence of dissolved oxygen on the corrosion rate in the insulation leachate, an alternate evaluation method is proposed in which a thin steel specimen is partially immersed in wet insulation for three weeks. The corrosiveness of the wet insulation is evaluated in terms of the severity of attack near the metal-air-wet insulation interface. With thin metal specimens, complete penetration along the interface is proposed as a pass/fail criterion. An environment of sterile cotton wet with distilled water is proposed as a comparative standard. 9 refs., 2 figs., 3 tabs.

Stansbury, E.E. (Stansbury (E.E.), Knoxville, TN (United States))

1991-10-01T23:59:59.000Z

243

Method for wetting a boron alloy to graphite  

DOE Patents (OSTI)

A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

Storms, E.K.

1987-08-21T23:59:59.000Z

244

Stokes' Cradle: Normal Three-Body Collisions between Wetted Particles  

E-Print Network (OSTI)

In this work, a combination of experiments and theory is used to investigate three-body, normal collisions between solid particles with a liquid coating (i.e., "wetted" particles). Experiments are carried out using a Stokes' cradle, an apparatus inspired by the Newton's cradle desktop toy except with wetted particles. Unlike previous work on two-body systems, which may either agglomerate or rebound upon collision, four outcomes are possible in three-body systems: fully agglomerated, Newton's cradle (striker and target particle it strikes agglomerate), reverse Newton's cradle (targets agglomerate while striker separates), and fully separated. Post-collisional velocities are measured over a range of parameters. For all experiments, as the impact velocity increases, the progression of outcomes observed is fully agglomerated, reverse Newton's cradle, and fully separated. Notably, as the viscosity of the oil increases, experiments reveal a decrease in the critical Stokes number (the Stokes number that demarcates a transition from agglomeration to separation) for both sets of adjacent particles. A scaling theory is developed based on lubrication forces and particle deformation and elasticity. Unlike previous work for two-particle systems, two pieces of physics are found to be critical in the prediction of a regime map that is consistent with experiments: (i) an additional resistance upon rebound of the target particles due to the pre-existing liquid bridge between them (which has no counterpart in two-particle collisions), and (ii) the addition of a rebound criterion due to glass transition of the liquid layer at high pressure between colliding particles.

C. M. Donahue; C. M. Hrenya; R. H. Davis; K. J. Nakagawa; A. P. Zelinskaya; G. G. Joseph

2009-12-18T23:59:59.000Z

245

Requirements for Predictive Analytics  

Science Conference Proceedings (OSTI)

It is important to have a clear understanding of how traditional Business Intelligence (BI) and analytics are different and how they fit together in optimizing organizational decision making. With tradition BI, activities are focused primarily on providing context to enhance a known set of information through aggregation, data cleansing and delivery mechanisms. As these organizations mature their BI ecosystems, they achieve a clearer picture of the key performance indicators signaling the relative health of their operations. Organizations that embark on activities surrounding predictive analytics and data mining go beyond simply presenting the data in a manner that will allow decisions makers to have a complete context around the information. These organizations generate models based on known information and then apply other organizational data against these models to reveal unknown information.

Troy Hiltbrand

2012-03-01T23:59:59.000Z

246

Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13 1980's 23 25 1990's 25 23 30 46 56 44 38 30 28 27 2000's 29 26 31 32 32 29 18 20 19 29 2010's 38 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After

247

California State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 234 1980's 166 256 254 243 235 1990's 194 60 63 65 63 59 49 56 44 77 2000's 91 85 91 83 87 90 90 83 57 57 2010's 66 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

248

Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0 1980's 0 0 0 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 26 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

249

California Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,881 1980's 1,792 1,424 1,230 1,120 1,006 1990's 911 901 799 817 808 736 610 570 453 355 2000's 754 842 796 759 767 799 780 686 621 612 2010's 503 510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Nonassociated Natural Gas Proved Reserves, Wet After

250

Texas State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,112 1,073 739 634 564 610 1990's 461 477 350 337 230 313 293 290 350 419 2000's 400 468 436 456 321 265 305 261 220 164 2010's 131 118 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 TX, State Offshore Natural Gas Reserves Summary as of Dec. 31 Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

251

Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

252

California State Offshore Nonassociated Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8 1980's 6 12 22 22 29 1990's 6 5 4 2 4 3 2 2 5 19 2000's 5 5 6 7 2 1 5 4 3 4 2010's 3 3 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet

253

Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 142 1980's 146 181 47 50 63 52 95 53 56 48 1990's 50 62 82 87 56 37 40 13 22 13 2000's 23 64 80 120 98 118 120 226 263 271 2010's 353 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After

254

Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 432 1980's 282 165 158 396 364 395 522 477 749 686 1990's 844 805 780 763 780 699 715 594 548 777 2000's 717 631 772 823 767 714 801 926 886 799 2010's 742 684 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Ohio Nonassociated Natural Gas Proved Reserves, Wet After Lease

255

Analytic Power LLC | Open Energy Information  

Open Energy Info (EERE)

Analytic Power LLC Analytic Power LLC Jump to: navigation, search Name Analytic Power LLC Place Woburn, Massachusetts Zip 01801 Sector Hydrogen Product Fuel cell developer Website http://www.analytic-power.com/ Coordinates 42.4884618°, -71.1329685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4884618,"lon":-71.1329685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

256

Development of a dual-porosity model for vapor-dominated fractured geothermal reservoirs using a semi-analytical fracture/matrix interaction term  

DOE Green Energy (OSTI)

A new type of dual-porosity model is being developed to simulate two-phase flow processes in fractured geothermal reservoirs. At this time it is assumed that the liquid phase in the matrix blocks remains immobile. By utilizing the effective compressibility of a two-phase water/steam mixture in a porous rock, flow within the matrix blocks can be modeled by a single diffusion equation. This equation in turn is replaced by a non-linear ordinary differential equation that utilizes the mean pressure and mean saturation in the matrix blocks to calculate the rate of fluid flow between the matrix blocks and fractures. This equation has been incorporated into the numerical simulator TOUGH to serve as a source/sink term for computational gridblocks that represent the fracture system. The new method has been compared with solutions obtained using fully-discretized matrix blocks, on a problem involving a three-dimensional vapor-dominated reservoir containing an injection and a production well, and has been found to be quite accurate.

Zimmerman, R.W.; Hadgu, T.; Bodvarsson, G.S.

1993-02-01T23:59:59.000Z

257

ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1  

NLE Websites -- All DOE Office Websites (Extended Search)

, . - - ANALYTICAL CHEMISTRY AND MEASUREMENT SCIENCE (What Has DOE Done For Analytical Chemistry?) CONF-8904181--1 DE89 009559 W. D. Shults Analytical Chemistry Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6129 ABSTRACT Over the past forty years, analytical scientists within the DOE complex have had a tremendous impact on the field of analytical chemistry. This paper suggests six "high impact" research/development areas that either originated within or wcce brought to maturity within the DOE laboratories. "High impact" means they lead to new subdisciplines or to new ways of doing business. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

258

Development and analytical validation of a gas chromatography-mass spectrometry method for the assessment of gastrointestinal permeability and intestinal absorptive capacity in dogs  

E-Print Network (OSTI)

Assessment of gastrointestinal permeability in vivo is considered a suitable method for the evaluation of gastrointestinal mucosal integrity. Probes commonly used include lactulose (L) and rhamnose (R) for the assessment of intestinal permeability, xylose (X) and 3-O-methylglucose (M) for the evaluation of intestinal absorptive capacity, and sucrose (S) for the assessment of gastric permeability. Traditionally, various methods have been used to quantify these markers in the urine after orogastric administration. However, urine collection is difficult and uncomfortable. A protocol based on the analysis of blood samples would be easier to perform. Thus, the aim of the first part of this project was to develop and validate a new gas chromatography-mass spectrometry (GC-MS) method for the quantification of five sugar probes in canine serum. The method was sensitive, accurate, precise, and reproducible for the simultaneous quantification of 5 sugar probes in serum. The aim of the second part of this project was to assess the kinetic profiles of these 5 sugar probes in serum after orogastric administration in dogs and to determine the optimal time point for sample collection. Dogs received a solution containing L (10 g/L), R (10 g/L), X (10 g/L), M (5 g/L), and S (40 g/L) by orogastric intubation. Baseline blood samples were collected. Subsequent timed blood samples were taken for a 24 hours period. Significant changes in serum concentrations of all 5 sugars were detected after administration of the test dose (p<0.0001 for all 5 probes). Serum concentrations of L and R were significantly different from baseline concentrations from 90 to 240 and from 60 to 300 min post dosing respectively, and those of X, M, and S were significantly different from 30 to 240 min after dosing (p<0.05 for all 5 probes). Variations of the mean sugar concentrations of all dogs at 90, 120, and 180 minutes were analyzed using a Kruskal-Wallis test. Based on the results, only two blood samples, one taken at baseline and a second sample obtained between 90 and 180 after dosing, appear to be sufficient for assessment of intestinal permeability and mucosal absorptive capacity using these sugar probes.

Rodriguez Frausto, Heriberto

2008-12-01T23:59:59.000Z

259

Analytical Division Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the March newsletter from the Analytical Division. Analytical Division Newsletter April 2013 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Me

260

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Services Services Our Capabilities Analytical Laboratories at the SRS performs analyses on a wide range of materials, including soil, water, gases, foodstuffs, decommissioning debris, waste, urine, fecal matter and process control samples. The laboratories maintain certifications and qualifications through a variety of governing bodies, which allows multiple applications of our services. Each year, we process over 200,000 samples and over half a million determinations, with an error-free rate better than 99.99%. Our Services We offer a full complement of nuclear counting and chemical processing methods, including microwave/hot block digestion of solids; alpha pulse height analyzer (PHA), gamma PHA and liquid scintillation counter, diode array spectrophotometer, ICP emission spectrometer, ICP mass spectrometer, thermal ionization mass spectrometer, chemical titrators, and IR analyzer. In addition, we offer unique environmental and industrial hygiene analytical services, including rapid analysis of radiological contaminants in water, soil, and human matrices; Radiological American Industrial Hygiene Association-accredited beryllium, lead, other metals, hexavalent chromium, and asbestos analyses.

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reduction of Water Use in Wet FGD Systems  

Science Conference Proceedings (OSTI)

Cooperative Agreement DE-FC26-06NT42726 was established in January 2006, and is current through Amendment 2, April 2006. The current reporting period, April 1, 2008 through June 30, 2008, is the eighth progress-reporting period for the project. However, this report will be the final report (instead of a quarterly report) because this project is being terminated. Efforts to bring this project to a close over the past several months focused on internal project discussions, and subsequent communications with NETL, regarding the inherent difficulty with completing this project as originally scoped, and the option of performing an engineering study to accomplish some of the chief project objectives. However, NETL decided that the engineering study did indeed constitute a significant scope deviation from the original concepts, and that pursuit of this option was not recommended. These discussions are summarized in the Results and Discussion, and the Conclusion sections. The objective of this project by a team lead by URS Group was to demonstrate the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption in wet flue gas desulphurization (FGD) systems on coal-fired boilers. Furthermore, the project intended to demonstrate that regenerative heat exchange to cool flue gas upstream of the electrostatic precipitator (ESP) and reheat flue gas downstream of the FGD system would result in the following benefits to air pollution control (APC) systems on coal-fired power plants: (1) Improve ESP performance due to reduced gas volume and improved ash resistivity characteristics, (2) Control SO3 emissions through condensation on the fly ash, and (3) Avoid the need to install wet stacks or to provide flue gas reheat. Finally, operation at cooler flue gas temperatures offered the potential benefit of increasing mercury (Hg) removal across the ESP and FGD systems. This project planned to conduct pilot-scale tests of regenerative heat exchange to determine the reduction in FGD water consumption that can be achieved and assess the resulting impact on APC systems. An analysis of the improvement in the performance of the APC systems and the resulting reduction in capital and operating costs were going to be conducted. The tests were intended to determine the impact of operation of cooling flue gas temperatures on FGD water consumption, ESP particulate removal, SO{sub 3} removal, and Hg removal, and to assess the potential negative impact of excessive corrosion rates in the regenerative heat exchanger. Testing was going to be conducted on Columbian coal (with properties similar to low-sulfur Eastern bituminous coal) and SO{sub 3} will be spiked onto the flue gas to simulate operation with higher SO{sub 3} concentrations resulting from firing a higher sulfur coal, or operating with a selective catalytic reduction (SCR) unit. The project was also going to include associate planning, laboratory analytical support, reporting, and management activities. The URS project team finalized a conceptual alternative approach to demonstrate, via an engineering study, the use of regenerative heat exchange to reduce flue gas temperature and minimize evaporative water consumption. This idea was presented in summary format to NETL for consideration. NETL determined that this alternative approach deviated from the original project objectives, and that it would be in the best interest of all parties involved to cancel the project.

David Rencher

2008-06-30T23:59:59.000Z

262

Methods Development  

Science Conference Proceedings (OSTI)

ISO committee and more information on standardization effects pertaining to AOCS. Methods Development Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDifferential scanning calorimetry chemist chemi

263

Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Analytical Modeling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Analytical Modeling Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Analytical Modeling: A mathematical modeling technique used for simulating, explaining, and making predictions about the mechanisms involved in complex physical processes. Other definitions:Wikipedia Reegle Introduction Analytical models are mathematical models that have a closed form solution. Or in other words the solution to the equations used to describe changes in

264

California Federal Offshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 249 1980's 307 1,110 1,249 1,312 1,252 1990's 1,229 995 987 976 1,077 1,195 1,151 498 437 488 2000's 500 490 459 456 412 776 756 752 702 731 2010's 722 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

265

Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 733 1980's 883 758 719 824 774 689 577 569 491 432 1990's 408 437 352 328 357 326 347 281 228 227 2000's 214 159 214 269 193 153 192 179 148 77 2010's 72 77 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

266

Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Natural Gas Reserves Summary as of Dec. 31

267

Miscellaneous States Natural Gas, Wet After Lease Separation Proved  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 156 1980's 180 193 74 81 77 77 136 66 84 87 1990's 72 76 93 96 67 69 68 44 39 67 2000's 42 83 100 134 110 132 139 241 272 349 2010's 363 393 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Miscellaneous Natural Gas Reserves Summary as of Dec. 31

268

North Dakota Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 485 1980's 594 654 696 673 643 650 610 578 593 625 1990's 650 533 567 585 568 518 512 531 501 475 2000's 487 495 524 497 465 508 539 572 603 1,213 2010's 1,869 2,652 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 North Dakota Natural Gas Reserves Summary as of Dec. 31

269

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

270

Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 166 1980's 194 184 174 194 189 157 150 145 157 145 1990's 67 136 133 93 85 104 89 56 38 41 2000's 39 30 38 37 40 46 44 37 12 20 2010's 29 46 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

271

California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 307 1980's 265 265 325 344 256 254 261 243 220 233 1990's 228 220 196 135 145 109 120 129 116 233 2000's 244 185 197 173 188 269 208 211 150 168 2010's 178 172 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

272

Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 1980's 1,308 1,336 870 921 825 884 823 801 834 889 1990's 920 848 875 684 727 792 806 769 789 851 2000's 892 907 914 1,068 1,002 998 1,069 1,067 1,014 993 2010's 959 792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Montana Natural Gas Reserves Summary as of Dec. 31

273

Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 51 1980's 122 89 81 108 77 91 98 97 101 68 1990's 86 66 61 53 55 53 51 42 52 67 2000's 70 85 94 112 130 161 195 219 197 312 2010's 302 270 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

274

Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53 2010's 73 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

275

New York Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 211 1980's 208 262 226 295 387 367 457 410 351 364 1990's 354 331 329 264 240 195 229 223 217 212 2000's 320 311 315 365 324 346 361 365 360 196 2010's 271 245 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

276

California - Los Angeles Basin Onshore Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 176 1980's 207 163 104 115 163 188 149 155 158 141 1990's 110 120 103 108 108 115 112 146 154 174 2000's 204 195 218 196 184 186 161 154 81 91 2010's 92 102 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Natural Gas Reserves Summary as of

277

Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 786 1980's 1,186 1,247 789 813 748 793 725 704 733 821 1990's 834 782 814 631 672 739 755 727 737 784 2000's 822 822 820 956 872 837 874 848 817 681 2010's 657 522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

278

California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1 1980's 0 1 1 1 1 3 0 0 0 0 1990's 0 0 3 0 0 0 0 3 1 0 2000's 1 1 0 0 0 0 0 0 0 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Los Angeles Basin Onshore Nonassociated Natural Gas Proved

279

California - Coastal Region Onshore Natural Gas, Wet After Lease Separation  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - Coastal Region Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 395 1980's 330 325 384 405 284 277 275 255 232 238 1990's 232 231 215 201 205 163 168 176 118 233 2000's 244 185 197 174 196 277 214 212 151 169 2010's 180 173 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 CA, Coastal Region Onshore Natural Gas Reserves Summary as of Dec.

280

Utah Natural Gas, Wet After Lease Separation Reserves Sales ...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

282

Utah Natural Gas, Wet After Lease Separation Reserves Acquisitions...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

283

Utah Nonassociated Natural Gas, Wet After Lease Separation, New...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Utah Nonassociated Natural Gas, Wet After Lease Separation, New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

284

Utah Natural Gas, Wet After Lease Separation Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

285

Utah Natural Gas, Wet After Lease Separation Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

286

Utah Natural Gas, Wet After Lease Separation Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

287

Utah Natural Gas, Wet After Lease Separation Reserves Extensions...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

288

Utah Natural Gas, Wet After Lease Separation Reserves New Field...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

289

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

290

Utah Natural Gas, Wet After Lease Separation Reserves Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production (Billion Cubic Feet) Utah Natural Gas, Wet After Lease Separation Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

291

Results of WetNet PIP-2 Project  

Science Conference Proceedings (OSTI)

The second WetNet Precipitation Intercomparison Project (PIP-2) evaluates the performance of 20 satellite precipitation retrieval algorithms, implemented for application with Special Sensor Microwave/Imager (SSM/I) passive microwave (PMW) ...

E. A. Smith; J. E. Lamm; R. Adler; J. Alishouse; K. Aonashi; E. Barrett; P. Bauer; W. Berg; A. Chang; R. Ferraro; J. Ferriday; S. Goodman; N. Grody; C. Kidd; D. Kniveton; C. Kummerow; G. Liu; F. Marzano; A. Mugnai; W. Olson; G. Petty; A. Shibata; R. Spencer; F. Wentz; T. Wilheit; E. Zipser

1998-05-01T23:59:59.000Z

292

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Gasoline and Diesel Fuel Update (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

293

Impact of Initial Soil Wetness on Seasonal Atmospheric Prediction  

Science Conference Proceedings (OSTI)

This study investigates the importance of initial soil wetness in seasonal predictions with dynamical models. Two experiments are performed, each consisting of two ensembles of global climate model integrations initialized from early June ...

M. J. Fennessy; J. Shukla

1999-11-01T23:59:59.000Z

294

Spatial Coherence and Predictability of Indonesian Wet Season Rainfall  

Science Conference Proceedings (OSTI)

Rainfall from 63 stations across Indonesia is examined for the period 1950–98 to determine the spatial coherence of wet season anomalies. An example of almost unrelated anomalies at two neighboring stations is presented. Principal component ...

Malcolm Haylock; John McBride

2001-09-01T23:59:59.000Z

295

North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 284 1980's 355 401 448 416 376 319 317 302 327 312 1990's 316 290 301 311 293 255 257 274 240 225 2000's 223 225 209 181 145 165 182 155 119 143 2010's 152 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

296

Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14 1980's 34 12 27 31 14 25 41 13 28 39 1990's 22 14 11 9 11 32 28 31 17 54 2000's 19 19 20 14 12 14 19 15 9 78 2010's 10 104 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

297

Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease...  

Annual Energy Outlook 2012 (EIA)

(Billion Cubic Feet) Gulf of Mexico Federal Offshore Natural Gas, Wet After Lease Separation, Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

298

California Federal Offshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 73 1980's 107 227 217 258 267 1990's 240 179 149 147 110 94 115 58 52 48 2000's 76 50 56 55 47 49 55 53 3 9 2010's 3 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore California Nonassociated Natural Gas Proved

299

Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

300

Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

302

Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation...  

Annual Energy Outlook 2012 (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)...

303

Air Toxics Control by Wet Flue Gas Desulfurization Systems  

Science Conference Proceedings (OSTI)

This report provides an update on three tasks associated with the EPRI project, Air Toxics Control by Wet Flue Gas Desulfurization (FGD) Systems. The first task is an investigation of the factors that influence and control the oxidation-reduction potential (ORP) at which a limestone forced oxidation FGD system operates. Both a literature review and a numerical analysis of full-scale wet FGD data were conducted. Results from this task are presented and discussed in Section 2 of the ...

2012-12-31T23:59:59.000Z

304

Demonstration of a Last Field Wet ESP Conversion -- Installation Summary  

Science Conference Proceedings (OSTI)

This report describes the conversion of the electrostatic precipitator (ESP) on Unit 3 at Mirant's (formerly Potomac Electric Power Company's) Dickerson Generating Station to hybrid, dry-wet operation. This Tailored Collaboration project was undertaken to determine, at full scale, if the conversion of a single field of a conventional dry ESP to wet operation could significantly reduce particulate emissions and provide reliable operation with an acceptable level of maintenance. Specifically, the performan...

2001-02-27T23:59:59.000Z

305

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Material Dissolution from Destructive Analysis Measurements Nuclear Material Dissolution from Destructive Analysis Measurements Overview The Savannah River Site F/H Laboratories perform nuclear material dissolution of Pu/U oxides and metals plus Np oxide to support site productions/remediation projects. Nuclear material dissolutions are performed in glovebox containment via microwaves, hot blocks and hot plates. Resulting solutions are aliquotted for a variety of elemental and compound analyses. Features Varying sample size (100 mg - 30 g) High temperature digestions up to 200°C computer-controlled temperature and pressure dissolutions Excellent analyte recovery in destructive analysis Commercially-available electronic equipment with trained operators capable of handling high alpha activity levels (facility source term limit of 310 Alpha Curies)

306

Analytical modeling of SRAM dynamic stability  

Science Conference Proceedings (OSTI)

In this paper, for the first time, a theory for evaluating dynamic noise margins of SRAM cells is developed analytically. The results allow predicting the transient error susceptibility of an SRAM cell using a closed-form expression. The key innovation ...

Bin Zhang; Ari Arapostathis; Sani Nassif; Michael Orshansky

2006-11-01T23:59:59.000Z

307

Enhancing Law Enforcement Using Data & Visual Analytics  

E-Print Network (OSTI)

Authority of New York and New Jersey (PA NY/NJ), Pacific Northwest National Labs (PNNL), Intuidex will integrate visual analytics methods developed at PNNL to mine valuable links between entities in order Authority of New York and New Jersey (PA NY/NJ) · Pacific Northwest National Laboratory (PNNL) · Intuidex

308

Analytical Theory of Graphene Nanoribbon Transistors  

Science Conference Proceedings (OSTI)

Graphene has emerged as one of the most promising materials to address scaling challenges in the post silicon era. A simple model for graphene nanoribbon field-effect transistors (GNRFETs) is developed for treating the effects of edge bond relaxation, ... Keywords: Graphene nanoribbons, analytical model, edge bond relaxation, third nearest neighbor interaction, edge scattering

Pei Zhao; Mihir Choudhury; Kartik Mohanram; Jing Guo

2008-09-01T23:59:59.000Z

309

Appendix C, Analytical Data | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

C, Analytical Data Appendix C, Analytical Data Docket No. EO-05-01: Appendix C, Analytical Data from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating...

310

Analytical Chemistry Laboratory: Progress report for FY 1988  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for fiscal year 1988 (October 1987 through September 1988). The Analytical Chemistry Laboratory is a full-cost recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. In addition, the ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems, from routine standard analyses to unique problems that require significant development of methods and techniques.

Green, D.W.; Heinrich, R.R.; Graczyk, D.G.; Lindahl, P.C.; Erickson, M.D.

1988-12-01T23:59:59.000Z

311

ICTASDiscoveryAnalyticsCenter Sustainable  

E-Print Network (OSTI)

IDAC ICTASDiscoveryAnalyticsCenter Nanoscale Science Nano-Bio Interface Sustainable Energy on the basis of race, gender, disability, age, veteran status, national origin, religion, sexual orientation

Beex, A. A. "Louis"

312

NERSC Job Logs and Analytics  

NLE Websites -- All DOE Office Websites (Extended Search)

& Allocations Policies Data Analytics & Visualization Science Gateways User Surveys NERSC Users Group User Announcements Help Operations for: Passwords & Off-Hours Status...

313

Welcome to Analytical Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

capabilities, facilities, talent, and commitment to excellence. Photo Photo Photo Designed by Knowledge Resource Development, Savannah River Nuclear Solutions, LLC DOE Logo EM Logo...

314

Advanced wet-dry cooling tower concept  

E-Print Network (OSTI)

The purpose of this years' work has been to test and analyze the new dry cooling tower surface previously developed. The model heat transfer test apparatus built last year has been instrumented for temperature, humidity ...

Snyder, Troxell Kimmel

315

Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Florida Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 108 1980's 122 99 86 64 90 81 69 62 69 57 1990's 53 45 55 59 117 110 119 112 106 100 2000's 93 96 102 92 88 87 50 110 1 7 2010's 30 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After

316

Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2 1980's 11 14 12 19 17 13 17 19 19 22 1990's 8 10 8 6 47 27 24 26 20 29 2000's 27 25 25 25 19 30 36 34 34 32 2010's 111 98 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Associated-Dissolved Natural Gas Proved Reserves, Wet After

317

Improved steamflood analytical model  

E-Print Network (OSTI)

The Jeff Jones steamflood model incorporates oil displacement by steam as described by Myhill and Stegemeier, and a three-component capture factor based on empirical correlations. The main drawback of the model however is the unsatisfactory prediction of the oil production peak: usually significantly lower than the actual. Our study focuses on improving this aspect of the Jeff Jones model. In our study, we simulated the production performance of a 5-spot steamflood pattern unit and compared the results against those based on the Jeff Jones model. Three reservoir types were simulated using 3-D Cartesian black oil models: Hamaca (9�°API), San Ardo (12�°API) and that based on the SPE fourth comparative solution project (14�°API). In the first two field cases, a 45x23x8 model was used that represented 1/8 of a 10-acre 5-spot pattern unit, using typical rock and reservoir fluid properties. In the SPE project case, three models were used: 23x12x12 (2.5 ac), 31x16x12 (5 ac) and 45x23x8 (10 ac), that represented 1/8 of a 5-spot pattern unit. To obtain a satisfactory match between simulation and Jeff Jones analytical model results of the start and height of the production peak, the following refinements to the Jeff Jones model were necessary. First, the dimensionless steam zone size AcD was modified to account for decrease in oil viscosity during steamflood and its dependence on the steam injection rate. Second, the dimensionless volume of displaced oil produced VoD was modified from its square-root format to an exponential form. The modified model gave very satisfactory results for production performance up to 20 years of simulated steamflood, compared to the original Jeff Jones model. Engineers will find the modified model an improved and useful tool for prediction of steamflood production performance.

Chandra, Suandy

2005-08-01T23:59:59.000Z

318

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

319

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

2010-12-31T23:59:59.000Z

320

Explanatory Business Analytics in OLAP  

Science Conference Proceedings (OSTI)

In this paper the authors describe a method to integrate explanatory business analytics in OLAP information systems. This method supports the discovery of exceptional values in OLAP data and the explanation of such values by giving their underlying causes. ... Keywords: Business Analytics, Exception Reporting, Explanation, OLAP, Variance Analysis

Emiel Caron, Hennie Daniels

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

MHK Technologies/WET NZ | Open Energy Information  

Open Energy Info (EERE)

NZ NZ < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The WET NZ device is planned to have a modular generation capability of up to 500 kW with onboard controls that will be able to accurately forecast incoming waves and adjust the response to changing wave patterns The device will be largely sub surface so that as much of the device as possible interacts directly with the wave energy Technology Dimensions

322

Electro-osmotic transport in wet processing of textiles  

DOE Patents (OSTI)

Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1--5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric. 5 figs.

Cooper, J.F.

1998-09-22T23:59:59.000Z

323

Electro-osmotic transport in wet processing of textiles  

DOE Patents (OSTI)

Electro-osmotic (or electrokinetic) transport is used to efficiently force a solution (or water) through the interior of the fibers or yarns of textile materials for wet processing of textiles. The textile material is passed between electrodes that apply an electric field across the fabric. Used alone or in parallel with conventional hydraulic washing (forced convection), electro-osmotic transport greatly reduces the amount of water used in wet processing. The amount of water required to achieve a fixed level of rinsing of tint can be reduced, for example, to 1-5 lbs water per pound of fabric from an industry benchmark of 20 lbs water/lb fabric.

Cooper, John F. (Oakland, CA)

1998-01-01T23:59:59.000Z

324

Analytical Controlled Losses of Potassium from Straw  

E-Print Network (OSTI)

of the ashing process. Chlorine is present in the strawsuch as potassium and chlorine in biomass ash is criticalnitrogen sulfur oxygen chlorine moisutre (% wet basis)

Thy, P.; Grundvig, S.; Jenkins, B. M.; Shiraki, R.; Lesher, C. E.

2005-01-01T23:59:59.000Z

325

ANALYTICAL DATA SHEET hlul ANALYTICAL DEPT. - HEALTH ANI SAFETY...  

Office of Legacy Management (LM)

hlul ANALYTICAL DEPT. - HEALTH ANI SAFETY DlVlSlON Industrial Hygiene or Medical Dept. 1956 I. H. 1093 Sample Nos. 9 -Date Collected- 812 by-LLP Route to I"? Lo,--tionrOGERS...

326

Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 633 1980's 502 796 965 845 786 753 761 717 686 617 1990's 703 674 613 636 715 730 749 785 665 1,180 2000's 1,645 2,428 3,070 3,514 4,445 4,608 6,660 7,846 9,390 11,100 2010's 12,587 9,963 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

327

Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6,411 6,191 6,956 6,739 6,745 6,504 1990's 6,884 6,305 6,353 6,138 5,739 5,674 5,240 4,799 4,452 4,507 2000's 5,030 5,404 4,967 4,235 3,258 2,807 2,360 2,173 1,937 1,822 2010's 1,456 1,015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

328

West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,593 1980's 2,437 1,881 2,169 2,238 2,173 2,104 2,207 2,210 2,299 2,244 1990's 2,243 2,513 2,293 2,408 2,569 2,514 2,722 2,887 2,925 2,952 2000's 2,929 2,777 3,477 3,376 3,489 4,553 4,638 4,865 5,243 6,066 2010's 7,134 10,480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

329

Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,334 1980's 1,551 1,252 1,200 1,353 1,193 1,064 1,242 1,571 1,434 1,443 1990's 1,330 1,404 1,290 1,218 1,379 1,344 2,125 2,256 2,386 2,313 2000's 2,772 3,032 3,311 3,488 3,154 2,961 3,117 3,691 3,253 2,805 2010's 2,975 2,549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

330

California Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,842 1980's 5,137 4,084 3,893 3,666 3,513 1990's 3,311 3,114 2,892 2,799 2,506 2,355 2,193 2,390 2,332 2,505 2000's 2,952 2,763 2,696 2,569 2,773 3,384 2,935 2,879 2,538 2,926 2010's 2,785 3,042 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 California Natural Gas Reserves Summary as of Dec. 31

331

Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,725 1980's 1,796 1,821 1,974 2,081 2,240 2,032 2,011 2,018 2,000 1,782 1990's 1,739 1,672 1,752 1,555 1,610 1,566 1,472 1,479 1,332 1,546 2000's 1,584 1,619 1,654 1,666 1,837 1,967 2,271 3,306 5,628 10,872 2010's 14,181 16,374 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

332

Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 10,824 1980's 10,065 10,443 10,128 10,183 9,981 9,844 11,093 11,089 10,530 10,509 1990's 10,004 9,946 10,302 9,872 9,705 9,093 8,145 7,328 6,862 6,248 2000's 5,682 5,460 5,329 5,143 5,003 4,598 4,197 4,248 3,795 3,500 2010's 3,937 3,747 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

333

Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,657 1980's 2,970 2,969 3,345 3,200 2,932 2,928 3,008 2,912 3,572 4,290 1990's 4,249 5,329 5,701 5,817 5,948 6,520 7,009 6,627 7,436 8,591 2000's 9,877 11,924 13,251 14,707 13,956 15,796 16,141 20,642 22,159 22,199 2010's 23,001 23,633 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

334

Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 1980's 200 259 206 173 208 167 190 219 177 236 1990's 510 682 762 1,162 1,088 1,072 1,055 533 772 781 2000's 960 1,025 1,097 1,186 1,293 1,326 1,541 1,838 2,010 1,882 2010's 2,371 2,518 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

335

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

336

Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,559 1980's 1,602 1,637 1,800 1,887 2,051 1,875 1,861 1,873 1,843 1,637 1990's 1,672 1,536 1,619 1,462 1,525 1,462 1,383 1,423 1,294 1,505 2000's 1,545 1,589 1,616 1,629 1,797 1,921 2,227 3,269 5,616 10,852 2010's 14,152 16,328 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

337

Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 46,803 46,620 44,319 42,192 41,404 41,554 1990's 41,411 39,288 38,141 37,847 39,020 39,736 41,592 41,108 40,793 43,350 2000's 45,419 46,462 47,491 48,717 53,275 60,178 65,805 76,357 81,843 85,034 2010's 94,287 104,454 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Texas Natural Gas Reserves Summary as of Dec. 31

338

Mississippi Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Mississippi Natural Gas Reserves Summary as of Dec. 31

339

Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 35,971 35,867 34,584 32,852 32,309 32,349 1990's 32,412 30,729 29,474 29,967 31,071 31,949 33,432 33,322 33,429 35,470 2000's 38,585 40,376 41,104 42,280 46,728 53,175 58,736 68,827 74,284 76,272 2010's 84,157 90,947 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

340

California Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,961 1980's 3,345 2,660 2,663 2,546 2,507 1990's 2,400 2,213 2,093 1,982 1,698 1,619 1,583 1,820 1,879 2,150 2000's 2,198 1,922 1,900 1,810 2,006 2,585 2,155 2,193 1,917 2,314 2010's 2,282 2,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,516 1980's 951 1,265 1,430 1,882 1,576 1,618 1,562 1,650 2,074 1,644 1990's 1,722 1,631 1,533 1,722 1,806 1,488 1,702 1,861 1,848 1,780 2000's 1,740 1,782 2,225 2,497 2,371 2,793 3,064 3,377 3,594 7,018 2010's 14,068 26,719 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

342

Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 504 1980's 536 561 592 600 647 806 883 940 957 1,015 1990's 1,047 1,187 1,126 1,036 1,025 1,102 1,046 1,429 1,295 1,530 2000's 1,837 1,950 1,999 1,971 1,982 2,240 2,369 2,588 2,846 2,919 2010's 2,785 2,128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Kentucky Natural Gas Reserves Summary as of Dec. 31

343

Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 502 1980's 525 547 580 581 630 793 866 921 938 993 1990's 1,039 1,177 1,118 1,030 978 1,075 1,022 1,403 1,275 1,501 2000's 1,810 1,925 1,974 1,946 1,963 2,210 2,333 2,554 2,812 2,887 2010's 2,674 2,030 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

344

Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838 29,906 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

345

California Federal Offshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 322 1980's 414 1,337 1,466 1,570 1,519 1990's 1,469 1,174 1,136 1,123 1,187 1,289 1,266 556 489 536 2000's 576 540 515 511 459 825 811 805 705 740 2010's 725 711 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Federal Offshore, Pacific (California) Natural Gas Reserves Summary

346

Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 732 1980's 683 870 708 960 714 754 716 639 1,002 1,037 1990's 744 660 606 540 586 498 523 950 1,101 1,165 2000's 1,037 1,024 1,047 1,047 1,184 1,148 1,048 1,029 987 1,456 2010's 2,332 5,227 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

347

Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 680 1980's 659 658 1990's 4,159 5,437 5,840 5,166 4,842 4,886 5,062 4,983 4,615 4,338 2000's 4,241 3,931 3,891 4,313 4,127 3,977 3,945 4,016 3,360 2,919 2010's 2,686 2,522 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

348

Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5,058 1980's 4,828 4,373 4,188 3,883 4,120 3,131 2,462 2,983 2,910 2,821 1990's 2,466 2,924 3,002 3,492 3,326 3,310 3,216 2,957 2,768 2,646 2000's 2,564 2,309 2,157 2,081 2,004 1,875 1,447 1,270 1,139 1,090 2010's 1,021 976 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

349

California - San Joaquin Basin Onshore Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 4,037 1980's 4,434 4,230 4,058 3,964 3,808 3,716 3,404 3,229 3,033 2,899 1990's 2,775 2,703 2,511 2,425 2,130 2,018 1,864 2,012 2,016 2,021 2000's 2,413 2,298 2,190 2,116 2,306 2,831 2,470 2,430 2,249 2,609 2010's 2,447 2,685 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

350

Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 693 1980's 682 683 1990's 4,184 5,460 5,870 5,212 4,898 4,930 5,100 5,013 4,643 4,365 2000's 4,269 3,958 3,922 4,345 4,159 4,006 3,963 4,036 3,379 2,948 2010's 2,724 2,570 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Alabama Natural Gas Reserves Summary as of Dec. 31

351

Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

352

GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water  

Science Conference Proceedings (OSTI)

Emerging networks of Global Positioning System (GPS) receivers can be used in the remote sensing of atmospheric water vapor. The time-varying zenith wet delay observed at each GPS receiver in a network can be transformed into an estimate of the ...

Michael Bevis; Steven Businger; Steven Chiswell; Thomas A. Herring; Richard A. Anthes; Christian Rocken; Randolph H. Ware

1994-03-01T23:59:59.000Z

353

Wet-Bulb Temperature from Relative Humidity and Air Temperature  

Science Conference Proceedings (OSTI)

An equation is presented for wet-bulb temperature as a function of air temperature and relative humidity at standard sea level pressure. It was found as an empirical fit using gene-expression programming. This equation is valid for relative ...

Roland Stull

2011-11-01T23:59:59.000Z

354

Preliminary Study of California Wintertime Model Wet Bias  

Science Conference Proceedings (OSTI)

The Weather Research and Forecasting (WRF) model version 3.0.1 is used in both short-range (days) and long-range (years) simulations to explore the California wintertime model wet bias. California is divided into four regions (the coast, central ...

Hung-Neng S. Chin; Peter M. Caldwell; David C. Bader

2010-09-01T23:59:59.000Z

355

Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Louisiana Natural Gas Reserves Summary as of Dec. 31

356

Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 601 1980's 668 494 481 529 419 375 665 1,002 943 1,011 1990's 922 967 938 890 1,022 1,018 1,778 1,975 2,158 2,086 2000's 2,558 2,873 3,097 3,219 2,961 2,808 2,925 3,512 3,105 2,728 2010's 2,903 2,472 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease

357

Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 1,923 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

358

Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 122 175 216 235 253 248 230 217 1990's 138 225 904 1,322 1,833 1,836 1,930 2,446 1,973 2,017 2000's 1,704 1,752 1,673 1,717 1,742 2,018 2,302 2,529 2,378 3,091 2010's 3,215 2,832 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 Virginia Natural Gas Reserves Summary as of Dec. 31

359

West Virginia Natural Gas, Wet After Lease Separation Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) West Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,669 1980's 2,559 1,944 2,252 2,324 2,246 2,177 2,272 2,360 2,440 2,342 1990's 2,329 2,672 2,491 2,598 2,702 2,588 2,793 2,946 2,968 3,040 2000's 3,062 2,825 3,498 3,399 3,509 4,572 4,654 4,881 5,266 6,090 2010's 7,163 10,532 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

360

Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916 2,969 2010's 2,995 2,615 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

An Analytic Five-Layer Quasigeostrophic Model for Initial-Value Problems  

Science Conference Proceedings (OSTI)

A five-layer analytic model of quasigeostrophic flow is developed. The model provides exact analytic solutions to the nonlinear quasigeostrophic omega and vorticity equations for various atmospheric temperature and geopotential structures. These ...

Paul A. Hirschberg; J. Michael Fritsch

1991-12-01T23:59:59.000Z

362

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

363

Video Analytics for Business Intelligence  

Science Conference Proceedings (OSTI)

Closed Circuit TeleVision (CCTV) cameras have been increasingly deployed pervasively in public spaces including retail centres and shopping malls. Intelligent video analytics aims to automatically analyze content of massive amount of public space video ...

Caifeng Shan; Fatih Porikli; Tao Xiang; Shaogang Gong

2012-04-01T23:59:59.000Z

364

Computing $\\pi(x)$ Analytically  

E-Print Network (OSTI)

We describe a rigorous implementation of the Lagarias and Odlyzko Analytic Method to evaluate the prime counting function and its use to compute unconditionally the number of primes less than $10^{24}$.

Platt, David J

2012-01-01T23:59:59.000Z

365

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

366

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bearing Analytics Bearing Analytics National Clean Energy Business Plan Competition 2013 355 likes Bearing Analytics Purdue University Avoidable bearing failures cost the US industrial economy $50B in damage and downtime every year. Current bearing health monitoring systems do not adequately detect failure until it is too late. Bearing Analytics offers a patent-pending micro-sensor technology that monitors temperature and vibration directly on the bearing cage helping predict performance degradation and impending failure while improving operating, performance, and energy efficiencies. Our technology does all of that with a better accuracy, faster response time, and increased reliability over any other competing solution today. We intend to target the wind turbine industry as our initial target point

367

An Analytical Model of Atmospheric Feedback and Global Temperature Change  

Science Conference Proceedings (OSTI)

An analytical model of the globally averaged surface temperature response to changes in radiative forcing induced by greenhouse gases is developed from a time-dependent version of the global energy budget. The model clarifies the role of feedback ...

John A. Dutton

1995-05-01T23:59:59.000Z

368

Analytical approach to nonperturbative Yang-Mills thermodynamics  

E-Print Network (OSTI)

An analytical and inductive approach to hot SU(N) Yang-Mills dynamics is developed. For N=2,3 pressure and energy density are pointwise compared with lattice data.

Ralf Hofmann

2003-12-03T23:59:59.000Z

369

ANALYTICAL CHEMISTRY DIVISION ANNUAL PROGRESS REPORT FOR PERIOD ENDING NOVEMBER 15, 1963  

SciTech Connect

Research and development progress is reported on analytical instrumentation, chemical analysis of advanced reactor fuels, analytical studies of molten-salt systems, special research problems, reactor projects, effects of radiation on analytical methods, x-ray and spectrochemical analyses, spectroscopy, optical and electron microscopy, nuclear and radiochemical analyses, inorganic preparations, organic preparations, and analytical development. Service analyses are also described. Separate abstracts were prepared for each topic. (M.C.G.)

1964-02-18T23:59:59.000Z

370

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

371

Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

Gary M. Blythe

2006-03-31T23:59:59.000Z

372

Analytical steam injection model for layered systems  

SciTech Connect

Screening, evaluation and optimization of the steam flooding process in homogeneous reservoirs can be performed by using simple analytical predictive models. In the absence of any analytical model for layered reservoirs, at present, only numerical simulators can be used. And these are expensive. In this study, an analytical model has been developed considering two isolated layers of differing permeabilities. The principle of equal flow potential is applied across the two layers. Gajdica`s (1990) single layer linear steam drive model is extended for the layered system. The formulation accounts for variation of heat loss area in the higher permeability layer, and the development of a hot liquid zone in the lower permeability layer. These calculations also account for effects of viscosity, density, fractional flow curves and pressure drops in the hot liquid zone. Steam injection rate variations in the layers are represented by time weighted average rates. For steam zone calculations, Yortsos and Gavalas`s (1981) upper bound method is used with a correction factor. The results of the model are compared with a numerical simulator. Comparable oil and water flow rates, and breakthrough times were achieved for 100 cp oil. Results with 10 cp and 1000 cp oils indicate the need to improve the formulation to properly handle differing oil viscosities.

Abdual-Razzaq; Brigham, W.E.; Castanier, L.M.

1993-08-01T23:59:59.000Z

373

Top Ten Interaction Challenges in Extreme-Scale Visual Analytics  

Science Conference Proceedings (OSTI)

The chapter presents ten selected user interfaces and interaction challenges in extreme-scale visual analytics. The study of visual analytics is often referred to as 'the science of analytical reasoning facilitated by interactive visual interfaces' in the literature. The discussion focuses on the issues of applying visual analytics technologies to extreme-scale scientific and non-scientific data ranging from petabyte to exabyte in sizes. The ten challenges are: in situ interactive analysis, user-driven data reduction, scalability and multi-level hierarchy, representation of evidence and uncertainty, heterogeneous data fusion, data summarization and triage for interactive query, analytics of temporally evolving features, the human bottleneck, design and engineering development, and the Renaissance of conventional wisdom. The discussion addresses concerns that arise from different areas of hardware, software, computation, algorithms, and human factors. The chapter also evaluates the likelihood of success in meeting these challenges in the near future.

Wong, Pak C.; Shen, Han-Wei; Chen, Chaomei

2012-05-31T23:59:59.000Z

374

Analytical Division Seed Oil Translation Table  

Science Conference Proceedings (OSTI)

seed oil translation table nomencalture Analytical Division Seed Oil Translation Table Analytical Chemistry Analytical Chemistry aocs articles atomic)FluorometryDifferential scanning calorimetry chemistry Chromatography (liquid detergents esters fats fo

375

Analytical model for Stirling cycle machine design  

E-Print Network (OSTI)

In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

Formosa, Fabien; 10.1016/j.enconman.2010.02.010

2013-01-01T23:59:59.000Z

376

Comparison of Soil Wetness Indices for Inducing Functional Similarity of Hydrologic Response across Sites in Illinois  

Science Conference Proceedings (OSTI)

The comparative ability of four soil wetness indices to normalize soil moisture dependence of rootzone fluxes across a range of sites in Illinois is investigated. The soil wetness indices examined are various transformations of the water stored ...

Jennifer A. Saleem; Guido D. Salvucci

2002-02-01T23:59:59.000Z

377

The Impact of Wet Soil and Canopy Temperatures on Daytime Boundary–Layer Growth  

Science Conference Proceedings (OSTI)

The impact of very wet soil and canopy temperatures on the surface sensible heat flux, and on related daytime boundary-layer properties is evaluated. For very wet soils, two winter situations are considered, related to significant changes in soil ...

M. Segal; J. R. Garratt; G. Kallos; R. A. Pielke

1989-12-01T23:59:59.000Z

378

Wetting and free surface flow modeling for potting and encapsulation.  

Science Conference Proceedings (OSTI)

As part of an effort to reduce costs and improve quality control in encapsulation and potting processes the Technology Initiative Project ''Defect Free Manufacturing and Assembly'' has completed a computational modeling study of flows representative of those seen in these processes. Flow solutions are obtained using a coupled, finite-element-based, numerical method based on the GOMA/ARIA suite of Sandia flow solvers. The evolution of the free surface is solved with an advanced level set algorithm. This approach incorporates novel methods for representing surface tension and wetting forces that affect the evolution of the free surface. In addition, two commercially available codes, ProCAST and MOLDFLOW, are also used on geometries representing encapsulation processes at the Kansas City Plant. Visual observations of the flow in several geometries are recorded in the laboratory and compared to the models. Wetting properties for the materials in these experiments are measured using a unique flowthrough goniometer.

Brooks, Carlton, F.; Brooks, Michael J. (Los Alamos National Laboratory, Los Alamos, NM); Graham, Alan Lyman (Los Alamos National Laboratory, Los Alamos, NM); Noble, David F. (David Frederick) (.; )); Notz, Patrick K.; Hopkins, Matthew Morgan; Castaneda, Jaime N.; Mahoney, Leo James (Kansas City Plant, Kansas City, MO); Baer, Thomas A.; Berchtold, Kathryn (Los Alamos National Laboratory, Los Alamos, NM); Adolf, Douglas Brian; Wilkes, Edward Dean; Rao, Rekha Ranjana; Givler, Richard C.; Sun, Amy Cha-Tien; Cote, Raymond O.; Mondy, Lisa Ann; Grillet, Anne Mary; Kraynik, Andrew Michael

2007-06-01T23:59:59.000Z

379

Ecologic Analytics | Open Energy Information  

Open Energy Info (EERE)

Ecologic Analytics Ecologic Analytics Jump to: navigation, search Name Ecologic Analytics Place Bloomington, Minnesota Zip 55425 Product Minnesota-based meter data management company. Coordinates 42.883574°, -90.926122° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.883574,"lon":-90.926122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Analytical Dashboards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reporting » Analytical Dashboards Reporting » Analytical Dashboards Analytical Dashboards Public Final Occurrence Reports: Searchable information on DOE's Final Occurrence Reports since 2009, available to the public and updated daily. Computerized Accident Incident Reporting System (CAIRS) - Injury and Illness Dashboard: The Injury and Illness Dashboard is a tool that allows users to easily explore DOE occupational safety and health injury and illness information. Its features include: Graphical and tabular depictions of injury and illness information Calendar year and fiscal year incidence rates for DOE and DOE contractor total recordable cases (TRC) of injuries and illnesses and cases involving days away from work or on job transfer or restriction (DART) due to injury or illness Incidence rates of injuries and illnesses by DOE program

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wet-steam erosion of steam turbine disks and shafts  

SciTech Connect

A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

Averkina, N. V. [JSC 'NPO TsKTI' (Russian Federation); Zheleznyak, I. V. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation); Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G., E-mail: orlikvg@mail.ru [JSC 'NPO TsKTI' (Russian Federation); Shishkin, V. I. [Leningradskaya AES branch of JSC 'Kontsern Rosenergoatom' (Russian Federation)

2011-01-15T23:59:59.000Z

382

Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's 4,954 4,859 3,968 3,506 3,168 3,051 3,058 2,960 2,445 2,463 2010's 2,496 2,125 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

383

Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,127 1980's 1,117 1,265 1,322 1,477 1,911 2,100 2,169 2,106 1,989 1,789 1990's 1,835 1,841 1,692 1,790 1,926 1,876 2,088 1,681 1,906 2,301 2000's 3,089 4,206 4,588 5,398 6,525 9,560 12,591 17,224 20,420 22,602 2010's 24,686 28,147 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

384

Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 8,073 1980's 7,216 6,620 6,084 6,064 5,362 5,246 5,254 4,973 4,738 4,403 1990's 4,323 4,023 3,792 3,569 3,267 3,218 3,069 2,886 2,727 2,947 2000's 3,345 3,405 3,284 3,032 3,266 3,829 3,891 4,267 4,506 3,950 2010's 3,777 3,006 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

385

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

386

Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576 15,176 16,301 17,337 17,735 19,225 21,155 23,115 2010's 26,873 27,683 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

387

New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,634 1980's 2,266 2,377 2,331 2,214 2,117 2,001 1,750 1,901 2,030 2,131 1990's 2,290 2,073 1,948 1,860 1,791 1,648 1,612 1,694 1,694 1,880 2000's 2,526 2,571 2,632 2,205 2,477 2,569 2,605 2,633 2,737 2,658 2010's 2,612 2,475 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

388

New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,568 1980's 12,267 12,913 11,562 10,868 10,458 9,948 11,094 11,176 17,030 15,219 1990's 17,094 18,204 18,802 18,354 16,947 17,069 16,232 15,280 14,816 15,172 2000's 16,922 17,112 16,971 16,681 18,109 17,683 17,332 16,556 15,592 14,662 2010's 14,316 13,586 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

389

Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,710 1980's 3,622 3,653 3,749 4,279 4,087 4,274 4,324 4,151 4,506 5,201 1990's 5,345 4,856 4,987 5,170 5,131 5,425 5,690 5,616 5,691 5,562 2000's 5,901 6,016 6,161 6,572 7,564 8,999 9,205 11,468 12,207 12,806 2010's 14,958 15,524 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

390

Mercury removal in utility wet scrubber using a chelating agent  

DOE Patents (OSTI)

A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

Amrhein, Gerald T. (Louisville, OH)

2001-01-01T23:59:59.000Z

391

WETTING BEHAVIOR OF SELECTED CRUDE OIL/BRINE/ROCK SYSTEMS  

Science Conference Proceedings (OSTI)

The effect of aging and displacement temperatures, and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea Sandstone using three distinctly different crude oils and three reservoir brines. Brine concentration was varied by changing the concentration of total dissolved solids of the synthetic brine in proportion to give brine of twice, one tenth, and one hundredth of the reservoir brine concentration. Aging and displacement temperatures were varied independently. For all crude oils, water-wetness and oil recovery increased with increase in displacement temperature. Tests on the effect of brine concentration showed that salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the reservoir brine with dilution of both the initial (connate) and invading brine or dilution of either. Removal of light components from the crude oil resulted in increased water-wetness. Addition of alkanes to the crude oil reduced the water-wetness, and increased oil recovery. Relationships between waterflood recovery and wettability are summarized.

G.Q. Tang; N.R. Morrow

1997-04-01T23:59:59.000Z

392

Catalytic gasification of wet biomass in supercritical water  

Science Conference Proceedings (OSTI)

Wet biomass (water hyacinth, banana trees, cattails, green algae, kelp, etc.) grows rapidly and abundantly around the world. As a biomass crop, aquatic species are particularly attractive because their cultivation does not compete with land-based agricultural activities designed to produce food for consumption or export. However, wet biomass is not regarded as a promising feed for conventional thermochemical conversion processes because the cost associated with drying it is too high. This research seeks to address this problem by employing water as the gasification medium. Prior work has shown that low concentrations of glucose (a model compound for whole biomass) can be completely gasified in supercritical water at 600{degrees}C and 34.5 Wa after a 30 s reaction time. Higher concentrations of glucose (up to 22% by weight in water) resulted in incomplete conversion under these conditions. The gas contained hydrogen, carbon dioxide, carbon monoxide, methane, ethane, propane, and traces of other hydrocarbons. The carbon monoxide and hydrocarbons are easily converted to hydrogen by commercial technology available in most refineries. This prior work utilized capillary tube reactors with no catalyst. A larger reactor system was fabricated and the heterogeneous catalytic gasification of glucose and wet biomass slurry of higher concentration was studied to attain higher conversions.

Antal, M.J. Jr.; Matsumura, Yukihiko; Xu, Xiaodong [Univ. of Hawaii, Honolulu, HI (United States)] [and others

1995-12-31T23:59:59.000Z

393

New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

- West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9,934 1980's 10,001 10,536 9,231 8,654 8,341 7,947 9,344 9,275 15,000 13,088 1990's 14,804 16,131 16,854 16,494 15,156 15,421 14,620 13,586 13,122 13,292 2000's 14,396 14,541 14,339 14,476 15,632 15,114 14,727 13,923 12,855 12,004 2010's 11,704 11,111 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014

394

Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation,  

U.S. Energy Information Administration (EIA) Indexed Site

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Lower 48 States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 143,852 1980's 139,421 143,515 142,984 143,469 141,226 138,464 139,070 135,256 141,211 139,798 1990's 141,941 140,584 138,883 136,953 138,213 139,369 141,136 140,382 139,015 142,098 2000's 154,113 159,612 163,863 166,512 171,547 183,197 189,329 213,851 224,873 249,406 2010's 280,880 305,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013

395

Appendix C Analytical Chemistry Data  

Office of Legacy Management (LM)

Analytical Chemistry Data This page intentionally left blank Contents Section Analytical Data for Deleted Contaminants of Concern ............................................................. C1.O Mol~tezuma Creek Hardness Dat Surface Water Copper Data Summa ................ CI-9 Surface Water Radium-228 Dat Surface Water Radon-222 Data Summary ....................... ....................................... . . . . . . . . . . . C l - I 2 Alluvial Ground Water Aln~noniuu~ as Nitrogen Data Summary ....................... . . . ................................ Cl-15 Alluvial Ground Water Cobalt Data Summary ........... Alluvial Ground Water Copper Data Sumrl Alluvial Ground Water Lead Data Su~nmary ................................. C1-19 Alluvial Ground Water Lead-210 Data Sutl~rnary

396

Analytical Chemistry Laboratory, progress report for FY 1993  

Science Conference Proceedings (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analytical chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.

Not Available

1993-12-01T23:59:59.000Z

397

Analytical Chemistry Laboratory. Progress report for FY 1996  

DOE Green Energy (OSTI)

The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1996. This annual report is the thirteenth for the ACL. It describes effort on continuing and new projects and contributions of the ACL staff to various programs at ANL. The ACL operates in the ANL system as a full-cost-recovery service center, but has a mission that includes a complementary research and development component: The Analytical Chemistry Laboratory will provide high-quality, cost-effective chemical analysis and related technical support to solve research problems of our clients -- Argonne National Laboratory, the Department of Energy, and others -- and will conduct world-class research and development in analytical chemistry and its applications. Because of the diversity of research and development work at ANL, the ACL handles a wide range of analytical chemistry problems. Some routine or standard analyses are done, but the ACL usually works with commercial laboratories if our clients require high-volume, production-type analyses. It is common for ANL programs to generate unique problems that require significant development of methods and adaption of techniques to obtain useful analytical data. Thus, much of the support work done by the ACL is very similar to our applied analytical chemistry research.

Green, D.W.; Boparai, A.S.; Bowers, D.L.

1996-12-01T23:59:59.000Z

398

Analytic properties of transition amplitudes  

E-Print Network (OSTI)

are vectors in Lorent z s pace . 10. Dirac y-mat r ' ces. It i s sually supposed that i ts precise f orm has no effe ct on the analytic pro~ rties of the integr , so t ha t i t suff i ces to t ake V = 1, al though under certain condit ions t his...

Landshoff, Peter Vincent

1962-12-07T23:59:59.000Z

399

PARABOLIC EXHAUSTIONS AND ANALYTIC COVERINGS  

E-Print Network (OSTI)

PARABOLIC EXHAUSTIONS AND ANALYTIC COVERINGS Finnur L´arusson January 31, 1993 Abstract. Let be a parabolic exhaustion on a Stein manifold X such that is strictly plurisubharmonic at its zeros. The metric to be parabolic because its logarithm is plurisubharmonic and satisfies the so-called Monge-Amp`ere equation

Lárusson, Finnur

400

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2002-10-04T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-05-01T23:59:59.000Z

402

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-07-01T23:59:59.000Z

403

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

Gary M. Blythe

2002-07-17T23:59:59.000Z

404

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

Gary M. Blythe

2003-01-21T23:59:59.000Z

405

The Sea-Breeze Front Analytical Model  

Science Conference Proceedings (OSTI)

Analytical solutions to the nonlinear equations of motion are used to describe the sea breeze front.

Yizhak Feliks

1988-03-01T23:59:59.000Z

406

Statistically qualified neuro-analytic failure detection method and system  

DOE Patents (OSTI)

An apparatus and method for monitoring a process involve development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two stages: deterministic model adaption and stochastic model modification of the deterministic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics, augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation error minimization technique. Stochastic model modification involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system. Illustrative of the method and apparatus, the method is applied to a peristaltic pump system.

Vilim, Richard B. (Aurora, IL); Garcia, Humberto E. (Idaho Falls, ID); Chen, Frederick W. (Naperville, IL)

2002-03-02T23:59:59.000Z

407

Specs add confidence in use of wet welding. [Underwater welding  

SciTech Connect

Underwater wet welding can now be utilized with the same confidence as dry welding, provided certain guidelines are followed. A new electrode is discussed that has been delivering exceptionally high quality welds by a diving firm in Houston. With the issuance of the American Welding Society's specifications (ANS/LAWS D3.6-83) much of the confusion surrounding underwater welding should be eliminated. The new specifications establish the levels of quality for underwater welding and gives everyone in the business a common language.

1984-02-01T23:59:59.000Z

408

US PRACTICE FOR INTERIM WET STORAGE OF RRSNF  

DOE Green Energy (OSTI)

Aluminum research reactor spent nuclear fuel is currently being stored or is anticipated to be returned to the United States and stored at Department of Energy storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper summarizes the current practices to provide for continued safe interim wet storage in the U.S. Aluminum fuel stored in poor quality water is subject to aggressive corrosion attack and therefore water chemistry control systems are essential to maintain water quality. Fuel with minor breaches are safely stored directly in the basin. Fuel pieces and heavily damaged fuel is safely stored in isolation canisters.

Vinson, D.

2010-08-05T23:59:59.000Z

409

Energy Analytics | Open Energy Information  

Open Energy Info (EERE)

Energy Analytics Energy Analytics Place Brewster, New York Product New York-based energy management and curtailment company. Coordinates 48.099675°, -119.78091° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.099675,"lon":-119.78091,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Application of light emitting diodes as solid state light sources in analytical chemistry.  

E-Print Network (OSTI)

??Several analytical systems were developed with light emitting diodes (LEDs) as solid state light sources. With an LED as a light source, liquid core waveguide… (more)

Eom, In Yong

2005-01-01T23:59:59.000Z

411

Hanford analytical sample projections FY 1998--FY 2002  

SciTech Connect

Analytical Services projections are compiled for the Hanford site based on inputs from the major programs for the years 1998 through 2002. Projections are categorized by radiation level, protocol, sample matrix and program. Analyses requirements are also presented. This document summarizes the Hanford sample projections for fiscal years 1998 to 2002. Sample projections are based on inputs submitted to Analytical Services covering Environmental Restoration, Tank Waste Remediation Systems (TWRS), Solid Waste, Liquid Effluents, Spent Nuclear Fuels, Transition Projects, Site Monitoring, Industrial Hygiene, Analytical Services and miscellaneous Hanford support activities. In addition, details on laboratory scale technology (development) work, Sample Management, and Data Management activities are included. This information will be used by Hanford Analytical Services (HAS) and the Sample Management Working Group (SMWG) to assure that laboratories and resources are available and effectively utilized to meet these documented needs.

Joyce, S.M.

1998-02-12T23:59:59.000Z

412

1988 Wet deposition temporal and spatial patterns in North America  

DOE Green Energy (OSTI)

The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

1992-03-01T23:59:59.000Z

413

1986 wet deposition temporal and spatial patterns in North America  

DOE Green Energy (OSTI)

The focus of this report is on North American wet deposition temporal patterns from 1979 to 1986 and spatial patterns for 1986. The report provides statistical distribution summaries of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. The data in the report are from the Acid Depositing System (ADS) for the statistical reporting of North American deposition data. Isopleth maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1986 annual, winter, and summer periods. The temporal pattern analyses use a subset of 30 sites over an 8-year (1979-1986) period and an expanded subset of 137 sites with greater spatial coverage over a 5-year (1982-1986) period. The 8-year period represents the longest period with wet deposition monitoring data unavailable that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. 19 refs., 105 figs., 29 tabs.

Olsen, A.R.

1989-07-01T23:59:59.000Z

414

1988 Wet deposition temporal and spatial patterns in North America  

DOE Green Energy (OSTI)

The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

1992-03-01T23:59:59.000Z

415

Predictive modeling of reactive wetting and metal joining.  

SciTech Connect

The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

van Swol, Frank B.

2013-09-01T23:59:59.000Z

416

Data Intensive Architecture for Scalable Cyber Analytics  

SciTech Connect

Cyber analysts are tasked with the identification and mitigation of network exploits and threats. These compromises are difficult to identify due to the characteristics of cyber communication, the volume of traffic, and the duration of possible attack. It is necessary to have analytical tools to help analysts identify anomalies that span seconds, days, and weeks. Unfortunately, providing analytical tools effective access to the volumes of underlying data requires novel architectures, which is often overlooked in operational deployments. Our work is focused on a summary record of communication, called a flow. Flow records are intended to summarize a communication session between a source and a destination, providing a level of aggregation from the base data. Despite this aggregation, many enterprise network perimeter sensors store millions of network flow records per day. The volume of data makes analytics difficult, requiring the development of new techniques to efficiently identify temporal patterns and potential threats. The massive volume makes analytics difficult, but there are other characteristics in the data which compound the problem. Within the billions of records of communication that transact, there are millions of distinct IP addresses involved. Characterizing patterns of entity behavior is very difficult with the vast number of entities that exist in the data. Research has struggled to validate a model for typical network behavior with hopes it will enable the identification of atypical behavior. Complicating matters more, typically analysts are only able to visualize and interact with fractions of data and have the potential to miss long term trends and behaviors. Our analysis approach focuses on aggregate views and visualization techniques to enable flexible and efficient data exploration as well as the capability to view trends over long periods of time. Realizing that interactively exploring summary data allowed analysts to effectively identify events, we utilized multidimensional OLAP data cubes. The data cube structure supports interactive analysis of summary data across multiple dimensions, such as location, time, and protocol. Cube technology also allows the analyst to drill-down into the underlying data set, when events of interest are identified and detailed analysis is required. Unfortunately, when creating these cubes, we ran into significant performance issues with our initial architecture, caused by a combination of the data volume and attribute characteristics. Overcoming, these issues required us to develop a novel, data intensive computing infrastructure. In particular, we ended up combining a Netezza Twin Fin data warehouse appliance, a solid state Fusion IO ioDrive, and the Tableau Desktop business intelligence analytic software. Using this architecture, we were able to analyze a month's worth of flow records comprising 4.9B records, totaling approximately 600GB of data. This paper describes our architecture, the challenges that we encountered, and the work that remains to deploy a fully generalized cyber analytical infrastructure.

Olsen, Bryan K.; Johnson, John R.; Critchlow, Terence J.

2011-11-15T23:59:59.000Z

417

Google Analytics | OpenEI Community  

Open Energy Info (EERE)

Google Analytics Home Rmckeel's picture Submitted by Rmckeel(287) Contributor 8 November, 2012 - 13:58 OpenEI dashboard Google Analytics mediawiki OpenEI statistics wiki OpenEI web...

418

Analytical Division Newsletter September 201/span>3  

Science Conference Proceedings (OSTI)

Read the September newsletter from the Analytical Division. Analytical Division Newsletter September 201/span>3 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a

419

Analytical Requirements for Petroleum Contaminated Soils  

E-Print Network (OSTI)

Analytical Requirements for Petroleum Contaminated Soils According to 20 NMAC 9.1.704 704. REQUIRED), or other applicable statutes. Page 1 of 1Analytical Requirements for Petroleum Contaminated Soils 4

420

Definition: Analytical Modeling | Open Energy Information  

Open Energy Info (EERE)

Analytical Modeling Jump to: navigation, search Dictionary.png Analytical Modeling 1. A simple version: A model is a simplified representation of some aspect of the real world. 2....

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Data, information and analytics as services  

Science Conference Proceedings (OSTI)

While organizations are trying to become more agile to better respond to market changes in the midst of rapidly globalizing competition by adopting service orientation-commoditization of business processes, architectures, software, infrastructures and ... Keywords: Agile analytics, Analytics-as-a-service, Business analytics, Cloud computing, Data-as-a-service, Information-as-a-service, Service-orientation

Dursun Delen, Haluk Demirkan

2013-04-01T23:59:59.000Z

422

Using google analytics to explore ETDs use  

Science Conference Proceedings (OSTI)

This poster presents preliminary Google Analytics usage data for a collection of electronic theses and dissertations (ETDs). Correlation of page views with page type, user location, and source (referring link) shows that, during the study period, most ... Keywords: ETDs, evaluation, google analytics, usage, web analytics, web metrics

Midge Coates

2013-07-01T23:59:59.000Z

423

MHK Technologies/WET EnGen | Open Energy Information  

Open Energy Info (EERE)

EnGen EnGen < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage WET EnGen.jpg Technology Profile Primary Organization Wave Energy Technologies Inc Project(s) where this technology is utilized *MHK Projects/Sandy Cove Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The EnGen point absorber, which features 'Smart Float' technology that allows the device to travel along a rigid spar at an incline of 45 degrees. The spar is moored at a single point of contact which allows the device to be fully compliant on all three axes (pitch, roll and yaw). Mooring Configuration Proprietary

424

Effects of corn processing and dietary wet corn gluten feed on newly received and growing cattle.  

E-Print Network (OSTI)

??Effects of corn processing with or without the inclusion of wet corn gluten feed (WCGF) on growth and performance were analyzed in two experiments. Treatments… (more)

Siverson, Anna

2012-01-01T23:59:59.000Z

425

,"U.S. Federal Offshore Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic...

426

,"U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves...

427

Dynamic wetting and heat transfer behaviour of aluminium droplets impinging and solidifying on copper substrates.  

E-Print Network (OSTI)

??The present work describes an experimental set-up built to simulate dynamic wetting and heat transfer occurring in many rapid solidification processes. Tests were performed with… (more)

Leboeuf, Sébastien

2004-01-01T23:59:59.000Z

428

,"U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation",10,"Annual",20...

429

,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

430

Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE))

This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Wet Air Oxidation.

431

Performance analysis of heat transfer processes from wet and dry surfaces : cooling towers and heat exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

432

Numerical modelling of heat and mass transfer and optimisation of a natural draft wet cooling tower.  

E-Print Network (OSTI)

??The main contribution of this work is to answer several important questions relating to natural draft wet cooling tower (NDWCT) modelling, design and optimisation. Specifically,… (more)

Williamson, Nicholas J

2007-01-01T23:59:59.000Z

433

Performance Analysis of Heat Transfer Processes from Wet and Dry Surfaces: Cooling Towers and Heat Exchangers.  

E-Print Network (OSTI)

??The objective of this work is to study the thermal and hydraulic performance of evaporatively cooled heat exchangers, including closed wet cooling towers, and dry… (more)

Hasan, Ala Ali

2005-01-01T23:59:59.000Z

434

,"Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

435

,"Texas - RRC District 8A Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

436

,"Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 8A Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

437

,"Texas - RRC District 7B Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

438

,"Texas - RRC District 7C Natural Gas, Wet After Lease Separation...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion...

439

,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved...

440

Statistically Qualified Neuro-Analytic system and Method for Process Monitoring  

DOE Patents (OSTI)

An apparatus and method for monitoring a process involves development and application of a statistically qualified neuro-analytic (SQNA) model to accurately and reliably identify process change. The development of the SQNA model is accomplished in two steps: deterministic model adaption and stochastic model adaptation. Deterministic model adaption involves formulating an analytic model of the process representing known process characteristics,augmenting the analytic model with a neural network that captures unknown process characteristics, and training the resulting neuro-analytic model by adjusting the neural network weights according to a unique scaled equation emor minimization technique. Stochastic model adaptation involves qualifying any remaining uncertainty in the trained neuro-analytic model by formulating a likelihood function, given an error propagation equation, for computing the probability that the neuro-analytic model generates measured process output. Preferably, the developed SQNA model is validated using known sequential probability ratio tests and applied to the process as an on-line monitoring system.

Vilim, Richard B.; Garcia, Humberto E.; Chen, Frederick W.

1998-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

PSD-IT Lab Analytical Evaluation  

E-Print Network (OSTI)

Today you will develop your skills in analytic evaluation, as you use the cognitive walkthrough method to assess different methods of interaction on the website eBay. Setting the scene In your groups, you will be acting as if you are consultants who have been called in to review the search facility available on the website eBay. As a group of user interaction design experts you have decided to use a cognitive walkthrough to conduct this evaluation. Cognitive Walkthrough (5 mins) Using your lecture notes you should conduct a cognitive evaluation of the search facility of the website eBay. Reminder: 1) The user sets a goal to be accomplished with the system (for example, "find the new Brittney Spears Album for sale"). 2) The user searches the interface for currently available actions (menu items, buttons, command-line inputs, etc.).

unknown authors

2007-01-01T23:59:59.000Z

442

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

SciTech Connect

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

Gary M. Blythe

2002-04-26T23:59:59.000Z

443

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

Gary M. Blythe

2003-10-01T23:59:59.000Z

444

Robustness for a single railway line: Analytical and simulation methods  

Science Conference Proceedings (OSTI)

Railway scheduling has been a significant issue in the railway industry. Over the last few years, numerous approaches and tools have been developed to compute railway scheduling. However, robust solutions are necessary to absorb short disruptions. In ... Keywords: Analytical measures, Railway timetabling, Robustness, Simulation tool

Miguel A. Salido; Federico Barber; Laura Ingolotti

2012-12-01T23:59:59.000Z

445

Game Analytics: Maximizing the Value of Player Data  

Science Conference Proceedings (OSTI)

Developing a successful game in todays market is a challenging endeavor. Thousands of titles are published yearly, all competing for players time and attention. Game analytics has emerged in the past few years as one of the main resources for ensuring ...

Magy Seif El-Nasr, Anders Drachen, Alessandro Canossa

2013-03-01T23:59:59.000Z

446

NATIONAL ,LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL...  

Office of Legacy Management (LM)

OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET NO. DISTRIBUTION OF COPIES 1 Analytical Laboratory (RECORD COPP) 2 Industrial Hygiene 8 Radiotion...

447

NATIONAL LEAD COMPANY OF OHIO HEALTH AND SAFETY DIVISION - ANALYTICAL...  

Office of Legacy Management (LM)

HEALTH AND SAFETY DIVISION - ANALYTICAL DEPT. ANALYTICAL DATA SHEET NLO NO. DISTRIBUTION OF COPIES 1 Analytical Loboratory (RECORD COPY) 2 Industrial Hygiene & Radiation Dept. 3...

448

OCIO Technology Summit: Data Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OCIO Technology Summit: Data Analytics OCIO Technology Summit: Data Analytics May 13, 2013 - 1:51pm Addthis OCIO Technology Summit: Data Analytics The Energy Department's Office of...

449

Hybrid wet paper coding mechanism for steganography employing n-indicator and fuzzy edge detector  

Science Conference Proceedings (OSTI)

Data hiding technique can facilitate security and the safe transmission of important information in the digital domain, which generally requires a high embedding payload and good stego image quality. Recently, a steganographic framework known as wet ... Keywords: Fuzzy edge detector, Indicator, Security, Steganography, Wet paper coding

Chin-Chen Chang; Jung-San Lee; T. Hoang Ngan Le

2010-07-01T23:59:59.000Z

450

Probabilistic Forecasts of the Onset of the North Australian Wet Season  

Science Conference Proceedings (OSTI)

The amount and timing of early wet-season rainfall are important for the management of many agricultural industries in north Australia. With this in mind, a wet-season onset date is defined based on the accumulation of rainfall to a predefined ...

Fiona Lo; Matthew C. Wheeler; Holger Meinke; Alexis Donald

2007-10-01T23:59:59.000Z

451

Droughts and Persistent Wet Spells over the United States and Mexico  

Science Conference Proceedings (OSTI)

Droughts and persistent wet spells over the United States and northwest Mexico have preferred regions of occurrence and persistence. Wet or dry conditions that persist more than 1 yr tend to occur over the interior United States west of 90°–95°W ...

Kingtse C. Mo; Jae E. Schemm

2008-03-01T23:59:59.000Z

452

Top Ten Challenges in Extreme-Scale Visual Analytics  

Science Conference Proceedings (OSTI)

In the current special issue of IEEE Computer Graphics and Applications (CG&A), researchers share their research and development (R&D) findings and results on applying visual analytics to extreme-scale data. Having surveyed the special issue articles and other related R&D efforts in the area, we have identified what we consider to be the top challenges of extreme-scale visual analytics. To cater to the diverse readership of CG&A, our discussion evaluates challenges in all areas of the field, including algorithms, hardware, software, engineering, and social issues.

Wong, Pak C.; Shen, Han-Wei; Johnson, Christopher R.; Chen, Chaomei; Ross, Rob

2012-05-08T23:59:59.000Z

453

PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

Gary M. Blythe

2002-02-22T23:59:59.000Z

454

Analytical Chemistry Laboratory progress report for FY 1984  

DOE Green Energy (OSTI)

Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has three technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.

Green, D.W.; Heinrich, R.R.; Jensen, K.J.; Stetter, J.R.

1985-03-01T23:59:59.000Z

455

Widget:AnalyticsSummary | Open Energy Information  

Open Energy Info (EERE)

AnalyticsSummary AnalyticsSummary Jump to: navigation, search Google Analytics widget that returns an HTML summary of site-wide analytics. Use any arbitrary number of days; for instance, 30-31 days will say "a month", 7 days will say "a week", 1 day will say "a day", 365 days will say "a year", and all other day rates will say "n days". How to call it: {{#Widget:AnalyticsSummary|days=30}} Example Output Loading... Statistics summary for the last 1 7 30 365 days Retrieved from "http://en.openei.org/w/index.php?title=Widget:AnalyticsSummary&oldid=535712" Category: Widgets What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

456

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

457

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

458

AOCS Analytical Guidelines S 3-64  

Science Conference Proceedings (OSTI)

Methods for the Testing of Epoxidized Oils AOCS Analytical Guidelines S 3-64 Methods Downloads Methods Downloads AOCS DEFINITION Not applicable  SCOPE

459

Moving zone Marangoni drying of wet objects using naturally evaporated solvent vapor  

DOE Patents (OSTI)

A surface tension gradient driven flow (a Marangoni flow) is used to remove the thin film of water remaining on the surface of an object following rinsing. The process passively introduces by natural evaporation and diffusion of minute amounts of alcohol (or other suitable material) vapor in the immediate vicinity of a continuously refreshed meniscus of deionized water or another aqueous-based, nonsurfactant rinsing agent. Used in conjunction with cleaning, developing or wet etching application, rinsing coupled with Marangoni drying provides a single-step process for (1) cleaning, developing or etching, (2) rinsing, and (3) drying objects such as flat substrates or coatings on flat substrates without necessarily using heat, forced air flow, contact wiping, centrifugation or large amounts of flammable solvents. This process is useful in one-step cleaning and drying of large flat optical substrates, one-step developing/rinsing and drying or etching/rinsing/drying of large flat patterned substrates and flat panel displays during lithographic processing, and room-temperature rinsing/drying of other large parts, sheets or continuous rolls of material. 5 figs.

Britten, J.A.

1997-08-26T23:59:59.000Z

460

Balance Calibration and Use in an Analytical Environment ...  

Science Conference Proceedings (OSTI)

... the sources of weighing errors in analytical environments, methodologies for ... to use of balances in an analytical environment where compliance ...

2013-02-19T23:59:59.000Z

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

(Symposium on the Analytic Hierarchy Process)  

SciTech Connect

The Analytic Hierarchy Process (AHP) is a methodology proposed by T.L. Saaty, USA, in 1977, in finding solutions to unstructured decision problems. This first International Symposium was sponsored by the Systems Engineering Society of China, the Operations Research Society of China, the Operations Research Society of Japan, and the National Science Foundation of the USA. This symposium was held at Tianjin University, Tianjin, China, during September 6--9, 1988. There were more than 160 participants, with about 15 from the United States, 7 from Japan, one from USSR, one from Finland, and one from Canada. During the last three years, this methodology was used extensively in the People's Republic of China by decision makers, and books are published on this topic along with the development of computer software. More than 200 papers seem to be in print. The Program Committee, of which I am a member, recommended to hold the Second International Conference on AHP in 1991 at Pittsburgh, Pennsylvania, USA. The latest developments summarized by computer software experts are relevant to the CO{sub 2} Project and CASE Tools Project at Oak Ridge.

Uppuluri, V.R.R.

1988-09-22T23:59:59.000Z

462

Guided Text Search Using Adaptive Visual Analytics  

SciTech Connect

This research demonstrates the promise of augmenting interactive visualizations with semi- supervised machine learning techniques to improve the discovery of significant associations and insights in the search and analysis of textual information. More specifically, we have developed a system called Gryffin that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source documents related to critical national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term-frequency views, and multiple coordinate views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the US Department of Homeland Security s Fusion Center, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in the search and investigative analysis of textual information.

Steed, Chad A [ORNL; Symons, Christopher T [ORNL; Senter, James K [ORNL; DeNap, Frank A [ORNL

2012-10-01T23:59:59.000Z

463

Guided Text Analysis Using Adaptive Visual Analytics  

SciTech Connect

This paper demonstrates the promise of augmenting interactive visualizations with semi-supervised machine learning techniques to improve the discovery of significant associations and insight in the search and analysis of textual information. More specifically, we have developed a system called Gryffin that hosts a unique collection of techniques that facilitate individualized investigative search pertaining to an ever-changing set of analytical questions over an indexed collection of open-source publications related to national infrastructure. The Gryffin client hosts dynamic displays of the search results via focus+context record listings, temporal timelines, term- frequency views, and multiple coordinated views. Furthermore, as the analyst interacts with the display, the interactions are recorded and used to label the search records. These labeled records are then used to drive semi-supervised machine learning algorithms that re-rank the unlabeled search records such that potentially relevant records are moved to the top of the record listing. Gryffin is described in the context of the daily tasks encountered at the Department of Homeland Securitys Fusion Centers, with whom we are collaborating in its development. The resulting system is capable of addressing the analysts information overload that can be directly attributed to the deluge of information that must be addressed in search and investigative analysis of textual information.

Steed, Chad A [ORNL; Symons, Christopher T [ORNL; DeNap, Frank A [ORNL; Potok, Thomas E [ORNL

2012-01-01T23:59:59.000Z

464

Analytical modeling and parameter extraction of top and bottom contact structures of organic thin film transistors  

Science Conference Proceedings (OSTI)

This paper proposes a structure based model of an organic thin film transistor (OTFT) and analyzes its device physics. The analytical model is developed for the top contact structure by mapping the overlap region to the resistance (in the vertical direction) ... Keywords: Analytical modeling, Contact resistance, Organic thin film transistor, Overlap region, Parameter extraction, Top and bottom contact structure, Vertical resistance

Brijesh Kumar, B. K. Kaushik, Y. S. Negi, S. Saxena, G. D. Varma

2013-09-01T23:59:59.000Z

465

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Grid  

E-Print Network (OSTI)

1st International Workshop on High Performance Computing, Networking and Analytics for the Power Transient Stability" #12;1st International Workshop on High Performance Computing, Networking and Analytics (University of Vermont). "Developing a Dynamic Model of Cascading Failure for High Performance Computing using

466

The Evolving Leadership Path of Visual Analytics  

Science Conference Proceedings (OSTI)

This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

2012-01-02T23:59:59.000Z

467

Technosocial predictive analytics for illicit nuclear trafficking  

Science Conference Proceedings (OSTI)

Illicit nuclear trafficking networks are a national security threat. These networks can directly lead to nuclear proliferation, as state or nonstate actors attempt to identify and acquire nuclear weapons-related expertise, technologies, components, and ... Keywords: analytical gaming, decision making, illicit trafficking, knowledge management, modeling, nuclear proliferation, predictive analytics

Antonio Sanfilippo; Scott Butner; Andrew Cowell; Angela Dalton; Jereme Haack; Sean Kreyling; Rick Riensche; Amanda White; Paul Whitney

2011-03-01T23:59:59.000Z

468

Nanochannel and its application in analytical chemistry  

Science Conference Proceedings (OSTI)

The nanochannels method for the separation and detection of analytes plays an important role in the analytical chemistry and is exhibiting the great potential advantages and promising future. In this review we bring together and discuss a number of nanochannels ... Keywords: applications, nanochannels, preparation, separation

Zenglian Yue; Guoqing Zhao; Bin Peng; Shasheng Huang

2009-12-01T23:59:59.000Z

469

Strong Analytic Controllability for Hydrogen Control Systems  

E-Print Network (OSTI)

The realization and representation of so(4,2) associated with the hydrogen atom Hamiltonian are derived. By choosing operators from the realization of so(4,2) as interacting Hamiltonians, a hydrogen atom control system is constructed, and it is proved that this control system is strongly analytically controllable based on a time-dependent strong analytic controllability theorem.

Chunhua Lan; Tzyh-Jong Tarn; Quo-Shin Chi; John W. Clark

2004-09-22T23:59:59.000Z

470

eoretical Terms without Analytic Truths Michael Strevens  

E-Print Network (OSTI)

eoretical Terms without Analytic Truths Michael Strevens To appear in Philosophical Studies A When new theoretical terms are introduced into scienti c discourse, pre- vailing accounts imply, analytic a new account of the intro- duction of theoretical terms that avoids both de nition and reference- xing

Strevens, Michael

471

Visual Analytics at the Pacific Northwest  

E-Print Network (OSTI)

customers. The success of PNNL's information visualization software, such as IN-SPIRETM and StarlightTM, and publications in top visualization journals and conference proceedings are the results of PNNL researchers with a focus on analytical reasoning facilitated by interactive visual interfaces. PNNL's visual analytics team

472

Scale and complexity in visual analytics  

Science Conference Proceedings (OSTI)

The fundamental problem that we face is that a variety of large-scale problems in security, public safety, energy, ecology, health care and basic science all require that we process and understand increasingly vast amounts and variety of data. There ... Keywords: analytics, scalability, visual analytics, visualization

George Robertson; David Ebert; Stephen Eick; Daniel Keim; Ken Joy

2009-12-01T23:59:59.000Z

473

Development of more efficacious Tc-99m organ imaging agents for use in nuclear medicine by analytical characterization of radiopharmaceutical mixtures. Progress report, May 1, 1981-April 30, 1982  

SciTech Connect

The objectives of this year's research were to develop a method for rapidly determining TcO/sub 4//sup -/ in /sup 99/Mo//sup 99m/Tc generator eluates, to improve the ability to chromatographically determine individual Tc-HEDP complexes in radiopharmaceuticals, and to investigate the effects of TcO/sub 4//sup -/ concentration and electrochemical reduction on the types and relative amounts of Tc-HEDP complexes present in a radiopharmaceutical formulation. A rapid and sensitive high performance liquid chromatographic (HPLC) method for the quantitative determination of pertechnetate (TcO/sub 4//sup -/) was developed. This HPLC-based analysis may be of considerable utility in assessing the history and function of /sup 99/MO/sup 99m/Tc generators as well as in the routine analysis of reduced technetium radiopharmaceuticals for the presence of undesired TcO/sub 4//sup -/. Encouraging results were obtained on a dimethyl amine column using aqueous (NH/sub 4/)/sub 2/SO/sub 4/ as the mobile phase. The preparation of Tc(NaBH/sub 4/) HEDP radiopharmaceutical analogues using varying concentrations of total TcO/sub 4//sup -/ shows a dramatic effect in the number and distribution of Tc-HEDP complexes over a TcO/sub 4//sup -/ concentration range of 10/sup -2/ to 10/sup -8/M. These results suggest that total TcO/sub 4//sup -/ concentration is an important parameter to be considered in the preparation of a specific Tc-HEDP complex to improve skeletal imaging. The preparation of Tc(electrode) HEDP radiopharmaceutical analogues by using electrochemical reduction was explored. The resulting solutions contain Tc-HEDP complexes that are tentatively identified as being the same complexes formed by NaBH/sub 4/ reduction, although the relative concentrations of these complexes are quite different with the two modes of reduction. Thus, electrochemical reduction shows promise as a viable route to the preparation of specific Tc-HEDP complexes for improved skeletal imaging.

Heineman, W.R.; Deutsch, E.A.

1981-12-01T23:59:59.000Z

474

Astrophysics Visual Analytics at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

energy may well require the development of new theories of physics and cosmology. Dark energy acts to accelerate the expansion of the universe (as opposed to gravity, which acts...

475

Bearing Analytics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University 31 likes SiNode Systems is a battery materials venture developing silicon-graphene anodes for the next generation of lithium-ion batteries. SiNode anodes offer higher...

476

The Streaming Potential Generated by Flow of Wet Steam in Capillary Tubes  

SciTech Connect

For a constant pressure differential, the flow of wet steam generated electric potentials which increased with time and did not reach equilibrium values. These potentials were found to increase to values greater than 100 volts. The reason for this kind of potential build-up behavior was the presence of tiny flowing water slugs which were interspersed with electrically nonconductive steam vapor slugs. The measured electric potential for wet steam increased with pressure differential, but the relationship was not linear. The increase in potential with pressure drop was attributed both to an increase in fluid flow rate and changes in the wet steam quality.

Marsden, S.S. Jr.; Tyran, Craig K.

1986-01-21T23:59:59.000Z

477

Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report  

DOE Green Energy (OSTI)

A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

1993-07-01T23:59:59.000Z

478

The Use of Electrochemical Techniques to Characterize Wet Steam Environments  

SciTech Connect

The composition of a steam phase in equilibrium with a water phase at high temperature is remarkably affected by the varying capabilities of the water phase constituents to partition into the steam. Ionic impurities (sodium, chloride, sulfate, etc.) tend to remain in the water phase, while weakly ionic or gaseous species (oxygen) partition into the steam. Analysis of the water phase can provide misleading results concerning the steam phase composition or environment. This paper describes efforts that were made to use novel electrochemical probes and sampling techniques to directly characterize a wet steam phase environment in equilibrium with high temperature water. Probes were designed to make electrochemical measurements in the thin film of water existing on exposed surfaces in steam over a water phase. Some of these probes were referenced against a conventional high temperature electrode located in the water phase. Others used two different materials (typically tungsten and platinum) to make measurements without a true reference electrode. The novel probes were also deployed in a steam space removed from the water phase. It was necessary to construct a reservoir and an external, air-cooled condenser to automatically keep the reservoir full of condensed steam. Conventional reference and working electrodes were placed in the water phase of the reservoir and the novel probes protruded into the vapor space above it. Finally, water phase probes (both reference and working electrodes) were added to the hot condensed steam in the external condenser. Since the condensing action collapsed the volatiles back into the water phase, these electrodes proved to be extremely sensitive at detecting oxygen, which is one of the species of highest concern in high temperature power systems. Although the novel steam phase probes provided encouraging initial results, the tendency for tungsten to completely corrode away in the steam phase limited their usefulness. However, the conventional water phase electrodes, installed both in the reservoir and in the external condensing coil, provided useful data showing the adverse impact of oxygen and carbon dioxide on the REDOX potential and high temperature pH, respectively.

Bruce W. Bussert; John A. Crowley; Kenneth J. Kimball; Brian J. Lashway

2003-04-30T23:59:59.000Z

479

Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After  

U.S. Energy Information Administration (EIA) Indexed Site

2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 955 1980's 921 806 780 747 661 570 517 512 428 430 1990's 407 352 308 288 299 245 252 235 204 202 2000's 115 65 70 81 76 109 118 137 72 72 2010's 134 924 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

480

New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) New Mexico - West Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 151 1980's 156 150 146 180 194 181 214 213 259 178 1990's 184 156 127 107 97 119 108 106 98 92 2000's 115 99 103 89 90 98 82 87 86 82 2010's 105 143 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

Note: This page contains sample records for the topic "analytical development wet" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31 LA, State Offshore Associated-Dissolved Natural Gas Proved Reserves,

482

Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 367 1980's 414 335 325 360 341 391 410 471 475 442 1990's 455 469 309 289 286 277 301 310 209 321 2000's 348 303 359 299 290 308 317 368 321 601 2010's 631 909 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

483

Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Kansas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 167 1980's 185 139 112 132 110 115 132 115 103 101 1990's 114 115 94 93 75 67 82 51 60 52 2000's 40 105 66 85 80 83 82 83 85 83 2010's 79 127 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

484

North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) North Dakota Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 201 1980's 239 253 248 257 267 331 293 276 266 313 1990's 334 243 266 274 275 263 255 257 261 250 2000's 264 270 315 316 320 343 357 417 484 1,070 2010's 1,717 2,511 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

485

Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,047 1980's 1,417 800 984 1,635 1,178 938 898 594 480 589 1990's 371 376 381 343 315 355 399 391 342 402 2000's 469 340 346 304 208 184 174 101 99 97 2010's 90 74 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

486

Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After  

Gasoline and Diesel Fuel Update (EIA)

4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 4 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,416 1980's 1,292 1,005 890 765 702 684 596 451 393 371 1990's 301 243 228 215 191 209 246 368 394 182 2000's 176 140 150 136 165 148 110 117 127 96 2010's 91 61 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

487

California State Offshore Associated-Dissolved Natural Gas, Wet After Lease  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 226 1980's 160 244 232 221 206 1990's 188 55 59 63 59 56 47 54 39 58 2000's 86 80 85 76 85 89 85 79 54 53 2010's 63 79 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

488

Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease  

U.S. Energy Information Administration (EIA) Indexed Site

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Texas - RRC District 1 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 209 1980's 172 180 216 175 170 260 241 205 204 251 1990's 333 401 361 191 151 248 446 68 51 67 2000's 69 43 47 48 45 57 61 72 60 67 2010's 267 900 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

489

West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) West Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 76 1980's 122 63 83 86 73 73 65 150 141 98 1990's 86 159 198 190 133 74 71 59 43 88 2000's 98 48 21 23 20 19 16 16 23 24 2010's 29 52 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec. 31

490

SiC Fiber Strengths after Oxidation in Wet and Dry Air, Steam, and ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Data for SiC fiber strengths after oxidation in wet and dry air, steam, and low pO2 are reviewed. Oxidation and scale crystallization kinetics are  ...

491

The Wet and Dry Spells across India during 1951–2007  

Science Conference Proceedings (OSTI)

Characteristics of wet spells (WSs) and intervening dry spells (DSs) are extremely useful for water-related sectors. The information takes on greater significance in the wake of global climate change and climate-change scenario projections. The ...

Nityanand Singh; Ashwini Ranade

2010-02-01T23:59:59.000Z

492

A History and Review of the Global Soil Wetness Project (GSWP)  

Science Conference Proceedings (OSTI)

The Global Soil Wetness Project (GSWP) is an international land surface modeling research effort involving dataset production, validation, model comparison, and scientific investigation in the areas of land surface hydrology and climatology. GSWP ...

Paul A. Dirmeyer

2011-10-01T23:59:59.000Z

493

Large-Scale Changes of Soil Wetness Induced by an Increase in Atmospheric Carbon Dioxide  

Science Conference Proceedings (OSTI)

The change in soil wetness in response to an increase of atmospheric concentration of carbon dioxide is investigated by two versions of a climate model which consists of a general circulation model of the atmosphere and a static mixed layer ...

S. Manabe; R. T. Wetherald

1987-04-01T23:59:59.000Z

494

Flight-Level Thermodynamic Instrument Wetting Errors in Hurricanes. Part I: Observations  

Science Conference Proceedings (OSTI)

Flight-level thermodynamic errors caused by the wetting of temperature and moisture sensors immersed within the airstream are studied using data from 666 radial legs collected in 31 hurricanes at pressure levels ranging from 850 to 500 mb. ...

Matthew D. Eastin; Peter G. Black; William M. Gray

2002-04-01T23:59:59.000Z

495

The Influence of Meteorological Conditions on the Wet Deposition of Mercury in Southern Florida  

Science Conference Proceedings (OSTI)

Source–receptor relationships for mercury (Hg) and other trace elements wet deposited in southeastern Florida were investigated using daily event precipitation samples collected over a 1-yr period in 1995–96. Data collected in Davie, Florida, ...

J. Timothy Dvonch; Gerald J. Keeler; Frank J. Marsik

2005-09-01T23:59:59.000Z

496

Wet Microburst Activity over the Southeastern United States: Implications for Forecasting  

Science Conference Proceedings (OSTI)

The thermodynamic properties of wet-microburst-producing days, as observed during the 1986 MIST (MIcroburst and Severe Thunderstorm) field project, conducted in northern Alabama, have been examined and are shown to exhibit common characteristics. ...

Nolan T. Atkins; Roger M. Wakimoto

1991-12-01T23:59:59.000Z

497

Influence of “Realistic” Land Surface Wetness on Predictability of Seasonal Precipitation in Boreal Summer  

Science Conference Proceedings (OSTI)

Outputs from two ensembles of atmospheric model simulations for 1951–98 define the influence of “realistic” land surface wetness on seasonal precipitation predictability in boreal summer. The ensembles consist of one forced with observed sea ...

Shinjiro Kanae; Yukiko Hirabayashi; Tomohito Yamada; Taikan Oki

2006-04-01T23:59:59.000Z

498

Flight-Level Thermodynamic Instrument Wetting Errors in Hurricanes. Part II: Implications  

Science Conference Proceedings (OSTI)

The implications of flight-level instrument wetting error removal upon the mean thermodynamic structure across the eyewall, buoyancy of rainband vertical motions, and vertical energy fluxes near the top of the inflow layer are studied. ...

Matthew D. Eastin; Peter G. Black; William M. Gray

2002-04-01T23:59:59.000Z

499

Effects of Surface Wetness on the Evolution and Vertical Transport of Submicron Particles  

Science Conference Proceedings (OSTI)

Simulations have been carried out with a numerical model describing air chemistry, aerosol microphysics, and turbulent mixing, in order to study the behavior of fine sulfate particles in the atmospheric surface layer over wet surfaces. ...

I. Y. Lee; M. L. Wesely

1989-03-01T23:59:59.000Z

500

Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer  

E-Print Network (OSTI)

Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

Xiao, Rong, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z