National Library of Energy BETA

Sample records for analysis wildlife mitigation

  1. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-39)

    SciTech Connect (OSTI)

    N /A

    2004-02-02

    BPA funds the Albeni Falls Wildlife Mitigation Program, which is tasked with the acquisition and restoration of key habitats within the Pend Oreille Watershed. This mitigation program purchases private land to be owned and managed by program participants for the protection, mitigation, and enhancement of wildlife affected by the construction and operation of the Federal hydroelectric facilities on the Columbia River. BPA is currently working with the Kalispel Tribe of Indians to acquire and manage three parcels that total approximately 890 acres of land within Pend Oreille County, Washington. The properties proposed for acquisition contain habitats or potential habitats that will provide BPA with credits for partial mitigation of wildlife habitat losses due to the construction of Albeni Falls Dam. The current proposal includes only the fee title acquisition of these parcels; habitat enhancement activities will likely be carried out by the Kalispel Tribe of Indians in the future following the development of a management plan(s) for the lands.

  2. Supplement Analysis for the Wildlife Mitigation Program EIS (DOE/EIS-0246/SA-40)

    SciTech Connect (OSTI)

    N /A

    2004-07-16

    BPA proposes to fund the acquisition of two parcels in Benewah County, Idaho with the Coeur d'Alene Tribe. These parcels encompass approximately 475 acres of riparian and potential riparian habitat along Hangman Creek on the Coeur d'Alene Indian Reservation. The goal of this project is to protect, mitigate, and enhance wildlife affected by the construction and operation of the Federal hydroelectric facilities on the Columbia River. The current proposal includes only the fee title acquisition of these parcels; habitat enhancement activities will likely be carried out by the Coeur d'Alene Tribe in the future following the development of a management plan(s) for the lands.

  3. WILDLIFE MITIGATION RULE AND RESPONSE

    E-Print Network [OSTI]

    to wildlife by 13 Columbia Basin hydropower dams for which habitat loss statements have been submitted to be general consensus that 35 percent was well . within the losses that could be attributed to hydropower of the habitat losses allocated to hydropower. During the 10- year period, the Council will focus on wildlife

  4. Wildlife and Wildlife Habitat Mitigation Plan for Libby Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Mundinger, John

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Libby hydroelectric project. Mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. The report describes mitigation that has already taken place and 8 recommended mitigation projects designed to complete total wildlife mitigation. 8 refs., 2 figs., 12 tabs.

  5. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  6. EA-1096: Washington Wildlife Mitigation Projects (Programmatic), Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Bonneville Power Administration to fund the portion of the Washington Wildlife Mitigation Agreement...

  7. Wildlife and Wildlife Habitat Mitigation Plan for Hungry Horse Hydroelectric Project, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-01-01

    This report describes the proposed mitigation plan for wildlife losses attributable to the construction of the Hungry Horse hydroelectric project. In this report, mitigation objectives and alternatives, the recommended mitigation projects, and the crediting system for each project are described by each target species. Mitigation objectives for each species (group) were established based on the loss estimates but tailored to the recommended projects. 13 refs., 3 figs., 19 tabs.

  8. Bonneville Power Administration Wildlife Mitigation Program : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1996-08-01

    Bonneville Power Administration (BPA) is responsible for mitigating the loss of wildlife habitat caused by the development of the Federal Columbia River Power System. BPA accomplishes this mitigation by funding projects consistent with those recommended by the Northwest Power Planning Council (Council). The projects are submitted to the Council from Indian Tribes, state agencies, property owners, private conservation groups, and other Federal agencies. Future wildlife mitigation actions with potential environmental impacts are expected to include land acquisition and management, water rights acquisition and management, habitat restoration and enhancement, installation of watering devices, riparian fencing, and similar wildlife conservation actions. BPA needs to ensure that individual wildlife mitigation projects are planned and managed with appropriate consistency across projects, jurisdictions, and ecosystems, as well as across time. BPA proposes to standardize the planning and implementation of individual wildlife mitigation projects funded by BPA. Alternative 1 is the No Action alternative. Five standardizing alternatives are identified to represent the range of possible strategies, goals, and procedural requirements reasonably applicable to BPA-funded projects under a standardized approach to project planning and implementation. All action alternatives are based on a single project planning process designed to resolve site-specific issues in an ecosystem context and to adapt to changing conditions and information.

  9. Albeni Falls Wildlife Mitigation Project, 2008 Annual Report.

    SciTech Connect (OSTI)

    Soults, Scott

    2009-08-05

    The Albeni Falls Interagency Work Group (AFIWG) was actively involved in implementing wildlife mitigation activities in late 2007, but due to internal conflicts, the AFIWG members has fractionated into a smaller group. Implementation of the monitoring and evaluation program continued across protected lands. As of 2008, The Albeni Falls Interagency Work Group (Work Group) is a coalition comprised of wildlife managers from three tribal entities (Kalispel Tribe, Kootenai Tribe, Coeur d Alene Tribe) and the US Army Corps of Engineers. The Work Group directs where wildlife mitigation implementation occurs in the Kootenai, Pend Oreille and Coeur d Alene subbasins. The Work Group is unique in the Columbia Basin. The Columbia Basin Fish and Wildlife Authority (CBFWA) wildlife managers in 1995, approved what was one of the first two project proposals to implement mitigation on a programmatic basis. The maintenance of this kind of approach through time has allowed the Work Group to implement an effective and responsive habitat protection program by reducing administrative costs associated with site-specific project proposals. The core mitigation entities maintain approximately 9,335 acres of wetland/riparian habitats in 2008.

  10. EIS-0246: Wildlife Mitigation Program, Idaho, Montana, Nevada, Washington, Oregon

    Broader source: Energy.gov [DOE]

    BPA has decided to adopt the set of prescriptions (goals, strategies, and procedural requirements) identified in the final EIS as “Alternative 6, Balanced Action (BPA’s Preferred Alternative).” This decision will standardize the planning and implementation process, while achieving balance among all decision factors: (1) meeting the biological objectives of wildlife mitigation projects, (2) achievement of cost and administrative efficiency, (3) compliance with all applicable laws and regulations, and (4) protection and improvement of other environmental resources when such actions would support wildlife mitigation.

  11. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect (OSTI)

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

  12. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  13. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    SciTech Connect (OSTI)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  14. Hellsgate Big Game Winter Range Wildlife Mitigation Site Specific Management Plan for the Hellsgate Project.

    SciTech Connect (OSTI)

    Berger, Matthew T.; Judd, Steven L.

    1999-01-01

    This report contains a detailed site-specific management plan for the Hellsgate Winter Range Wildlife Mitigation Project. The report provides background information about the mitigation process, the review process, mitigation acquisitions, Habitat Evaluation Procedures (HEP) and mitigation crediting, current habitat conditions, desired future habitat conditions, restoration/enhancements efforts and maps.

  15. Oregon Trust Agreement Planning Project : Potential Mitigations to the Impacts on Oregon Wildlife Resources Associated with Relevant Mainstem Columbia River and Willamette River Hydroelectric Projects.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-10-01

    A coalition of the Oregon wildlife agencies and tribes (the Oregon Wildlife Mitigation Coalition) have forged a cooperative effort to promote wildlife mitigation from losses to Oregon wildlife resources associated with the four mainstream Columbia River and the eight Willamette River Basin hydroelectric projects. This coalition formed a Joint Advisory Committee, made up of technical representatives from all of the tribes and agencies, to develop this report. The goal was to create a list of potential mitigation opportunities by priority, and to attempt to determine the costs of mitigating the wildlife losses. The information and analysis was completed for all projects in Oregon, but was gathered separately for the Lower Columbia and Willamette Basin projects. The coalition developed a procedure to gather information on potential mitigation projects and opportunities. All tribes, agencies and interested parties were contacted in an attempt to evaluate all proposed or potential mitigation. A database was developed and minimum criteria were established for opportunities to be considered. These criteria included the location of the mitigation site within a defined area, as well as other criteria established by the Northwest Power Planning Council. Costs were established for general habitats within the mitigation area, based on estimates from certified appraisers. An analysis of the cost effectiveness of various types of mitigation projects was completed. Estimates of operation and maintenance costs were also developed. The report outlines strategies for gathering mitigation potentials, evaluating them, determining their costs, and attempting to move towards their implementation.

  16. Rainwater Wildlife Area Habitat Evaluation Procedures Report; A Columbia Basin Wildlife Mitigation Project.

    SciTech Connect (OSTI)

    Childs, Allen B.

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland cover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglecta). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2}2 plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program.

  17. Wildlife Mitigation and Restoration for Grand Coulee Dam: Blue Creek Project, Phase 1.

    SciTech Connect (OSTI)

    Merker, Christopher

    1993-04-01

    This report is a recommendation from the Spokane Tribe to the Northwest Power Planning Council (NPPC) for partial mitigation for the extensive wildlife and wildlife habitat losses on the Spokane Indian Reservation caused by the construction of Grand Coulee Dam. NPPC`s interim wildlife goal over the next 7 years for the Columbia hydropower system, is to protect, mitigate and enhance approximately 35% basin wide of the lost habitat units. Grand Coulee Dam had the greatest habitat losses of any Dams of the Wildlife Rule.

  18. Malheur River Wildlife Mitigation Project : 2008 Annual Report.

    SciTech Connect (OSTI)

    Kesling, Jason; Abel, Chad; Schwabe, Laurence

    2009-01-01

    In 1998, the Burns Paiute Tribe (BPT) submitted a proposal to Bonneville Power Administration (BPA) for the acquisition of the Malheur River Wildlife Mitigation Project (Project). The proposed mitigation site was for the Denny Jones Ranch and included Bureau of Land Management (BLM) and Oregon Division of State Lands (DSL) leases and grazing allotments. The Project approval process and acquisition negotiations continued for several years until the BPT and BPA entered into a Memorandum of Agreement, which allowed for purchase of the Project in November 2000. The 31,781 acre Project is located seven miles east of Juntura, Oregon and is adjacent to the Malheur River (Figure 1). Six thousand three hundred eighty-five acres are deeded to BPT, 4,154 acres are leased from DSL, and 21,242 acres are leased from BLM (Figure 2). In total 11 grazing allotments are leased between the two agencies. Deeded land stretches for seven miles along the Malheur River. It is the largest private landholding on the river between Riverside and Harper, Oregon. Approximately 938 acres of senior water rights are included with the Ranch. The Project is comprised of meadow, wetland, riparian and shrub-steppe habitats. The BLM grazing allotment, located south of the ranch, is largely shrub-steppe habitat punctuated by springs and seeps. Hunter Creek, a perennial stream, flows through both private and BLM lands. Similarly, the DSL grazing allotment, which lies north of the Ranch, is predominantly shrub/juniper steppe habitat with springs and seeps dispersed throughout the upper end of draws (Figure 2).

  19. Status Review of Wildlife Mitigation at Columbia Basin Hydroelectric Projects, Oregon Facilities, Final Report.

    SciTech Connect (OSTI)

    Bedrossian, Karen L.

    1984-08-01

    The report presents a review and documentation of existing information on wildlife resources at Columbia River Basin hydroelectric facilities within Oregon. Effects of hydroelectric development and operation; existing agreements; and past, current and proposed wildlife mitigation, enhancement, and protection activities were considered. (ACR)

  20. Columbia Basin Wildlife Mitigation Project : Rainwater Wildlife Area Final Management Plan.

    SciTech Connect (OSTI)

    Childs, Allen

    2002-03-01

    This Draft Management Plan has been developed by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) to document how the Rainwater Wildlife Area (formerly known as the Rainwater Ranch) will be managed. The plan has been developed under a standardized planning process developed by the Bonneville Power Administration (BPA) for Columbia River Basin Wildlife Mitigation Projects (See Appendix A and Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus our management actions and prioritize funding during the Fiscal 2001-2005 planning period. This plan is a product of nearly two years of field studies and research, public scoping, and coordination with the Rainwater Advisory Committee. The committee consists of representatives from tribal government, state agencies, local government, public organizations, and members of the public. The plan is organized into several sections with Chapter 1 providing introductory information such as project location, purpose and need, project goals and objectives, common elements and assumptions, coordination efforts and public scoping, and historical information about the project area. Key issues are presented in Chapter 2 and Chapter 3 discusses existing resource conditions within the wildlife area. Chapter 4 provides a detailed presentation on management activities and Chapter 5 outlines a monitoring and evaluation plan for the project that will help assess whether the project is meeting the intended purpose and need and the goals and objectives. Chapter 6 displays the action plan and provides a prioritized list of actions with associated budget for the next five year period. Successive chapters contain appendices, references, definitions, and a glossary.

  1. Wildlife and Wildlife Habitat Mitigation Plan for the Noxon Rapids and Cabinet Gorge Hydroelectric Projects, Final Report.

    SciTech Connect (OSTI)

    Bissell, Gael

    1985-04-01

    Mitigation projects for wildlife species impacted by the Noxon Rapids and Cabinet Gorge hydroelectric projects are recommended. First priority projects encompass the development of long-term wildlife management plans for WWP lands adjacent to the two reservoirs. General objectives for all WWP lands include alternatives designed to protect or enhance existing wildlife habitat. It is also suggested that WWP evaluate the current status of beaver and river otter populations occupying the reservoirs and implement indicated management. Second priority projects include the protection/enhancement of wildlife habitat on state owned or privately owned lands. Long-term wildlife management agreements would be developed with Montana School Trust lands and may involve reimbursement of revenues lost to the state. Third priority projects include the enhancement of big game winter ranges located on Kootenai National Forest lands. 1 ref., 1 fig., 7 tabs.

  2. Albeni Falls Wildlife Mitigation Project; Idaho Department of Fish and Game 2007 Final Annual Report.

    SciTech Connect (OSTI)

    Cousins, Katherine

    2009-04-03

    The Idaho Department of Fish and Game maintained a total of about 2,743 acres of wildlife mitigation habitat in 2007, and protected another 921 acres. The total wildlife habitat mitigation debt has been reduced by approximately two percent (598.22 HU) through the Department's mitigation activities in 2007. Implementation of the vegetative monitoring and evaluation program continued across protected lands. For the next funding cycle, the IDFG is considering a package of restoration projects and habitat improvements, conservation easements, and land acquisitions in the project area.

  3. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Washington . Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  4. Hellsgate Big Game Winter Range Wildlife Mitigation Project : Annual Report 2008.

    SciTech Connect (OSTI)

    Whitney, Richard P.; Berger, Matthew T.; Rushing, Samuel; Peone, Cory

    2009-01-01

    The Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) was proposed by the Confederated Tribes of the Colville Reservation (CTCR) as partial mitigation for hydropower's share of the wildlife losses resulting from Chief Joseph and Grand Coulee Dams. At present, the Hellsgate Project protects and manages 57,418 acres (approximately 90 miles2) for the biological requirements of managed wildlife species; most are located on or near the Columbia River (Lake Rufus Woods and Lake Roosevelt) and surrounded by Tribal land. To date we have acquired about 34,597 habitat units (HUs) towards a total 35,819 HUs lost from original inundation due to hydropower development. In addition to the remaining 1,237 HUs left unmitigated, 600 HUs from the Washington Department of Fish and Wildlife that were traded to the Colville Tribes and 10 secure nesting islands are also yet to be mitigated. This annual report for 2008 describes the management activities of the Hellsgate Big Game Winter Range Wildlife Mitigation Project (Hellsgate Project) during the past year.

  5. EA-1023: Willow Creek Wildlife Mitigation Project, Eugene, Oregon

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration's proposal to fund habitat acquisition (of land or a conservation easement), wildlife...

  6. EA-0939: Blue Creek Winter Range: Wildlife Mitigation Project, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy's Bonneville Power Administration to secure land and conduct wildlife habitat enhancement and long term...

  7. Market-Based Wildlife Mitigation in Wyoming | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: Energy Resources JumpMarion,Market-Based Wildlife

  8. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  9. Wanaket Wildlife Area Management Plan : Five-Year Plan for Protecting, Enhancing, and Mitigating Wildlife Habitat Losses for the McNary Hydroelectric Facility.

    SciTech Connect (OSTI)

    Confederated Tribes of the Umatilla Indian Reservation Wildlife Program

    2001-09-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) propose to continue to protect, enhance, and mitigate wildlife and wildlife habitat at the Wanaket Wildlife Area. The Wanaket Wildlife Area was approved as a Columbia River Basin Wildlife Mitigation Project by the Bonneville Power Administration (BPA) and Northwest Power Planning Council (NWPPC) in 1993. This management plan will provide an update of the original management plan approved by BPA in 1995. Wanaket will contribute towards meeting BPA's obligation to compensate for wildlife habitat losses resulting from the construction of the McNary Hydroelectric facility on the Columbia River. By funding the enhancement and operation and maintenance of the Wanaket Wildlife Area, BPA will receive credit towards their mitigation debt. The purpose of the Wanaket Wildlife Area management plan update is to provide programmatic and site-specific standards and guidelines on how the Wanaket Wildlife Area will be managed over the next five years. This plan provides overall guidance on both short and long term activities that will move the area towards the goals, objectives, and desired future conditions for the planning area. The plan will incorporate managed and protected wildlife and wildlife habitat, including operations and maintenance, enhancements, and access and travel management. Specific project objectives are related to protection and enhancement of wildlife habitats and are expressed in terms of habitat units (HU's). Habitat units were developed by the US Fish and Wildlife Service's Habitat Evaluation Procedures (HEP), and are designed to track habitat gains and/or losses associated with mitigation and/or development projects. Habitat Units for a given species are a product of habitat quantity (expressed in acres) and habitat quality estimates. Habitat quality estimates are developed using Habitat Suitability Indices (HSI). These indices are based on quantifiable habitat features such as vegetation height, shrub cover, or other parameters, which are known to provide life history requisites for mitigation species. Habitat Suitability Indices range from 0 to 1, with an HSI of 1 providing optimum habitat conditions for the selected species. One acre of optimum habitat provides one Habitat Unit. The objective of continued management of the Wanaket Wildlife Mitigation Area, including protection and enhancement of upland and wetland/wetland associated cover types, is to provide and maintain 2,334 HU's of protection credit and generate 2,495 HU's of enhancement credit by the year 2004.

  10. EIS(DOE/EIS-0246/SA-20) Supplement Analysis for the Wildlife...

    Office of Environmental Management (EM)

    for the Wildlife Mitigation Program EIS (DOEEIS-0246SA-20) Allyn Meuleman, KEWU-4 Fish and Wildlife Project Manager Proposed Action: Camas Prairie Acquisition, Anderson Ranch...

  11. Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia

    E-Print Network [OSTI]

    Gruner, Daniel S.

    ,2 This vulnerability is particularly conspicuous in the coal mining regions of the Appalachians, U.S. where surfaceRestoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from

  12. Bias Temperature Instability Analysis, Monitoring and Mitigation for

    E-Print Network [OSTI]

    Bias Temperature Instability Analysis, Monitoring and Mitigation for Nano-scaled Circuits Seyab #12;#12;Bias Temperature Instability Analysis, Monitoring and Mitigation for Nano-scaled Circuits Proefschrift: Semiconductor reliability, Failure mechanisms, Negative Bias Temperature Instability, Failure monitoring, Static

  13. Fish and Wildlife Administrator

    Broader source: Energy.gov [DOE]

    This position is located in the Fish & Wildlife Program, which implements and provides policy and planning support for actions to meet BPAs fish and wildlife mitigation responsibilities under...

  14. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.

    SciTech Connect (OSTI)

    Yde, Chris A.

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

  15. Sharp-Tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project : Final Environmental Assessment.

    SciTech Connect (OSTI)

    Untied States. Bonneville Power Adminsitration.

    1992-10-01

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation.

  16. Sharp-tailed Grouse and Pygmy Rabbit Wildlife Mitigation Project. Final Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The Proposed Action is needed to protect and enhance shrub-steppe and riparian habitat for sharp-tailed grouse (Tympanuchus phasianellus columbianus), Pygmy rabbits (Brachylagus idahoensis), and other indigenous wildlife species. The purpose of the Proposed Action is to compensate, in part, for wildlife habitat lost from the construction of Grand Coulee Dam and the inundation of Lake Roosevelt. Bonneville Power Administration proposes to fund management agreements, conservation easements, acquisition of fee title, or a combination of these on as many as 29,000 acres in Lincoln and Douglas Counties to improve shrub-steppe and riparian habitat for sharp-tailed grouse and pygmy rabbits. The BPA also proposes to fund habitat improvements (enhancements) on project lands including existing public lands. Proposed habitat treatments would include control of grazing; planting of native trees, shrubs, forbs and grasses; protection of wetlands and streambanks; herbicide use; fire prescriptions; and wildfire suppression. Proposed management activities may include predator control, population introductions, and control of crop depredation.

  17. Analysis and Design of New Harmonic Mitigation Approaches 

    E-Print Network [OSTI]

    Aeloiza Matus, Eddy 1972-

    2012-11-01

    are analyzed. Finally, some methods to mitigate the low frequency circulating currents based on eliminating the zero-sequence component, and the introduction of common mode inductors to reduce the high frequency circulating current are studied. Without a doubt...

  18. Project Programming and Commissioning as a Risk Mitigation and Threat Analysis Tool 

    E-Print Network [OSTI]

    Weiss, M. L.

    2006-01-01

    beyond traditional disciplines including risk/threat analysis and mitigation programs. This paper discusses the growing trend of using a commissioning approach as a documentation process for the validation requirements, which are documented in the study...

  19. Aalborg Universitet Harmonic Resonances in Wind Power Plants: Modeling, Analysis and Active Mitigation

    E-Print Network [OSTI]

    Bak, Claus Leth

    Aalborg Universitet Harmonic Resonances in Wind Power Plants: Modeling, Analysis and Active. (2015). Harmonic Resonances in Wind Power Plants: Modeling, Analysis and Active Mitigation Methods from vbn.aau.dk on: juli 04, 2015 #12;Harmonic Resonances in Wind Power Plants: Modeling, Analysis

  20. FINITE ELEMENT ANALYSIS OF THERMAL TENSIONING TECHNIQUES MITIGATING WELD BUCKLING DISTORTION

    E-Print Network [OSTI]

    Michaleris, Panagiotis

    FINITE ELEMENT ANALYSIS OF THERMAL TENSIONING TECHNIQUES MITIGATING WELD BUCKLING DISTORTION. This paper presents a finite element analysis model of the thermal tensioning technique. A series of finite by the finite element simulations, the residual stresses of large size and high heat input welds are reduced

  1. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task 2 Report

    SciTech Connect (OSTI)

    Lu, Shuai; Makarov, Yuri V.; McKinstry, Craig A.; Brothers, Alan J.; Jin, Shuangshuang

    2009-09-18

    Task report detailing low probability tail event analysis and mitigation in BPA control area. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, causing the imbalance between generation and load to become very significant.

  2. Coarse-grained Molecular-level Analysis of Polyurea Properties and Shock-mitigation Potential

    E-Print Network [OSTI]

    Grujicic, Mica

    Coarse-grained Molecular-level Analysis of Polyurea Properties and Shock-mitigation Potential M-phenyl methane); (b) R¢ represents an aromatic/aliphatic long chain functional group (e.g., Poly. This enables the application of conventional spraying technol- ogies for in situ production of PU coatings

  3. Supplement Analysis for the Wildlife Management Program EIS (DOE/EIS-0246/SA-17)

    SciTech Connect (OSTI)

    N /A

    2001-09-13

    BPA proposes to partially fund the acquisition of 7,630 acres of shrub-steppe, riparian, and wetland habitat in northern Franklin County, Washington. Title to the land will be transferred initially to The Conservation Fund and ultimately for inclusion as part of the National Wildlife Refuge System. Passive management practices will take place on the land until an official management plan is developed and approved for the property. Some short-term control of invasive, exotic plant species may occur as necessary prior to the approval of a management plan. The compliance checklist for this project was completed by Randy Hill with the U.S. Fish and Wildlife Service, Columbia National Wildlife Refuge and meets the standards and guidelines for the Wildlife Mitigation Program Environmental Impact Statement (EIS) and Record of Decision (ROD). A comprehensive management plan will be prepared for the property after it is acquired and will follow the guidelines and mitigation measures detailed in the Wildlife Mitigation Program EIS and ROD. No plant or animal species listed under the Endangered Species Act (ESA) will be affected by the fee-title purchase of the subject property. Mark Miller with the Eastern Washington Ecological Services Office of USFWS concurred with this finding on August 3, 2001. Section 7 consultation will be conducted by BPA and USFWS, as necessary, prior to the implementation of any restoration or enhancement activities on the site. In accordance with the National Historic Preservation Act of 1966 (NHPA) and USFWS policy, the addition of the Eagle Lakes property to the National Wildlife Refuge System does not constitute an undertaking as defined by the NHPA, or require compliance with Section 106 of the NHPA. Anan Raymond, Regional Archaeologist with USFWS Region 1 Cultural Resource Team, concurred with this finding on May 4, 2001. Compliance with NHPA, including cultural resources surveys, will be implemented, as necessary, once specific management activities are proposed for the property. In the unlikely event that archaeological material is encountered during developments that might occur prior to a cultural resource survey, an archeologist will immediately be notified and work halted in the vicinity of the finds until they can be inspected and assessed. A Level I Contaminants Survey was completed on April 3, 2000 by Toni Davidson, Environmental Contaminants Specialist with the USFWS Upper Columbia River Basin Field Office. The survey found that overall the lakes, wetlands, and terrestrial habitats on the site appear to be in a healthy condition. The only concern expressed in the survey report was over the presence of two household/farm dumps. As a requirement of the Eagle Lakes sale, the landowner agreed to remove the dumps to the satisfaction of the USFWS contaminant specialist before the title to the land is transferred. A follow-up survey will be conducted to confirm compliance with this requirement of sale. Public involvement associated with this project has included written notification and solicitation of comments to interested parties, adjacent landowners, local tribes, government agencies, non-governmental organizations, and sports clubs. Public response from the mail-out indicated general support for the project, although some questions were raised about the provision of seasonal hunting and fishing on the property. These types of questions will be addressed in the development of a management plan for the Eagle Lakes land. Because of initial favorable comments on this project, it was decided that subsequent public meetings and/or workshops were not warranted.

  4. Preliminary Failure Modes and Effects Analysis of the US Massive Gas Injection Disruption Mitigation System Design

    SciTech Connect (OSTI)

    Lee C. Cadwallader

    2013-10-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a candidate design for the ITER Disruption Mitigation System. This candidate is the Massive Gas Injection System that provides machine protection in a plasma disruption event. The FMEA was quantified with “generic” component failure rate data as well as some data calculated from operating facilities, and the failure events were ranked for their criticality to system operation.

  5. WILDLIFE SECTION 11 FISH AND WILDLIFE PROGRAM 11-1 Seotember 13, 1995

    E-Print Network [OSTI]

    , a number of other activities associated with hydroelectric development have altered land and stream areas increases. Programs to protect, mitigate and enhance wildlife affected by hydroelectric development should

  6. Agricultural Sector Analysis on Greenhouse Gas Emission Mitigation in the United States 

    E-Print Network [OSTI]

    Schneider, Uwe A.

    2000-01-01

    This dissertation analyzes the economic potential of agriculture to participate in greenhouse gas emission mitigation efforts. Major agricultural mitigation strategies are included simultaneously to capture interactions. ...

  7. 332003 Mainstem Amendments to the Columbia River Basin Fish and Wildlife Program Analysis of the Adequacy, Efficiency, Economy and Reliability of

    E-Print Network [OSTI]

    consist of measures to "protect, mitigate, and enhance fish and wildlife affected by the development, operation, and management of [hydropower] facilities while assuring the Pacific Northwest an adequate 16,000 average megawatts. The average regional cost is less than $10 million per year, compared

  8. Operational/Secondary Losses and Wildlife Monitoring Issues Wildlife Advisory Committee

    E-Print Network [OSTI]

    to costs and manpower, likely cannot be applied at the scale needed to fully mitigate operational impacts with dual benefits and strive to mesh both fish and wildlife resources in the development of these ecosystem for the development of ecosystem approaches to mitigation that benefit both fish and wildlife resources, while keeping

  9. Fish & Wildlife Annual Project Summary, 1983.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1984-07-01

    BPA's Division of Fish and Wildlife was created in 1982 to develop, coordinate and manage BPA's fish and wildlife program. Division activities protect, mitigate, and enhance fish and wildlife resources impacted by hydroelectric development and operation in the Columbia River Basin. At present the Division spends 95% of its budget on restoration projects. In 1983, 83 projects addressed all aspects of the anadromous fish life cycle, non-migratory fish problems and the status of wildlife living near reservoirs.

  10. Contributions to the analysis and mitigation of liquefaction in loose sand slopes

    E-Print Network [OSTI]

    Vytiniotis, Antonios

    2012-01-01

    This research analyzes the vulnerability of loose granular waterfront fills to liquefaction in seismic events and considers the effectiveness of Pre-fabricated Vertical (PV) drain systems in mitigating potential damage. ...

  11. WILDLIFE SECTION 11 FISH AND WILDLIFE PROGRAM 11-1 December 14, 1994

    E-Print Network [OSTI]

    , a number of other activities associated with hydroelectric development have altered land and stream areas to protect, mitigate and enhance wildlife affected by hydroelectric development should consider the net

  12. Analysis of Crude Oil Production in the Arctic National Wildlife Refuge

    Reports and Publications (EIA)

    2008-01-01

    This report responds to a request from Senator Ted Stevens that the Energy Information Administration provide an assessment of federal oil and natural gas leasing in the coastal plain of the Arctic National Wildlife Refuge (ANWR) in Alaska.

  13. Analysis and Mapping of Vegetation and Habitat for the Sheldon National Wildlife Refuge

    SciTech Connect (OSTI)

    Tagestad, Jerry D.

    2010-06-01

    The Lakeview, Oregon, office of the U.S. Fish and Wildlife Service (USFWS) contracted Pacific Northwest National Laboratory to classify vegetation communities on Sheldon National Wildlife Refuge in northeastern Nevada. The objective of the mapping project was to provide USFWS refuge biologists and planners with detailed vegetation and habitat information that can be referenced to make better decisions regarding wildlife resources, fuels and fire risk, and land management. This letter report describes the datasets and methods used to develop vegetation cover type and shrub canopy cover maps for the Sheldon National Wildlife Refuge. The two map products described in this report are (1) a vegetation cover classification that provides updated information on the vegetation associations occurring on the refuge and (2) a map of shrub canopy cover based on high-resolution images and field data.

  14. Wildlife Diseases 

    E-Print Network [OSTI]

    Texas Wildlife Services

    2007-03-13

    with rodents and rodent- infested areas, by controlling rodent populations, and by proper sanitation. For additional information contact the nearest office of Texas Cooperative Extension?Wildlife Services.. TCE?Wildlife Services P.O. Box 100410 ? San Antonio...

  15. Analysis of hydrogen mitigation for degraded core accidents in the Sequoyah Nuclear Power Plant

    SciTech Connect (OSTI)

    Berman, M.; Sherman, M.P.; Cummings, J.C.; Baer, M.R.; Griffiths, S.K.

    1981-04-01

    The report presents the results of a scoping investigation to ascertain the effectiveness and practicability of three hydrogen control measures for the Sequoyah Nuclear Power Plant--deliberate ignition, water fogging, and Halon addition after accident initiation. The authors conclude that no one of these hydrogen control measures alone is clearly superior to the other under all accident conditions. Advantages and disadvantages were identified for all control measures. In addition to providing a basic discussion of how each measure works to mitigate or control hydrogen combustion, we have answered specific questions posed by the U. S. Nuclear Regulatory Commission.

  16. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use

    E-Print Network [OSTI]

    Rissman, Adena

    Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

  17. A MULTI-MODEL ANALYSIS OF POST-2020 MITIGATION EFFORTS OF FIVE MAJOR ECONOMIES

    SciTech Connect (OSTI)

    van Sluisveld, Mariesse; Gernaat, David; Ashina, Shuichi; Calvin, Katherine V.; Garg, Amit; Isaac, Morna; Lucas, Paul; Mouratiadou, Ioanna; Otto, Sander A.; Rao, Shilpa; Shukla, Priyadarshi R.; Van Vliet, Jasper; Van Vuuren, Detlef

    2013-11-01

    This paper looks into the regional mitigation strategies of five major economies (China, EU, India, Japan, and USA) in the context of the 2°C target, using a multi-model comparison. In order to stay in line with the 2°C target, a tripling or quadrupling of mitigation ambitions is required in all regions by 2050, employing vigorous decarbonization of the energy supply system and achieving negative emissions during the second half of the century. In all regions looked at, decarbonization of energy supply (and in particular power generation) is more important than reducing energy demand. Some differences in abatement strategies across the regions are projected: In India and the USA the emphasis is on prolonging fossil fuel use by coupling conventional technologies with carbon storage, whereas the other main strategy depicts a shift to carbon-neutral technologies with mostly renewables (China, EU) or nuclear power (Japan). Regions with access to large amounts of biomass, such as the USA, China, and the EU, can make a trade-off between energy related emissions and land related emissions, as the use of bioenergy can lead to a net increase in land use emissions. After supply-side changes, the most important abatement strategy focuses on end-use efficiency improvements, leading to considerable emission reductions in both the industry and transport sectors across all regions. Abatement strategies for non-CO2 emissions and land use emissions are found to have a smaller potential. Inherent model, as well as collective, biases have been observed affecting the regional response strategy or the available reduction potential in specific (end-use) sectors.

  18. Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge

    Reports and Publications (EIA)

    2004-01-01

    This study analyzed the impact on future oil imports and expenditures of opening the Arctic National Wildlife Refuge (ANWR) to petroleum development. High, low, and mean ANWR oil resource case projections were compared to the Annual Energy Outlook 2004 reference case. The study also examined whether potential synergies exist in opening ANWR to petroleum development and the construction of an Alaska gas pipeline from the North Slope to the lower 48 states.

  19. Low Probability Tail Event Analysis and Mitigation in BPA Control Area: Task One Report

    SciTech Connect (OSTI)

    Lu, Shuai; Makarov, Yuri V.

    2009-04-01

    This is a report for task one of the tail event analysis project for BPA. Tail event refers to the situation in a power system when unfavorable forecast errors of load and wind are superposed onto fast load and wind ramps, or non-wind generators falling short of scheduled output, the imbalance between generation and load becomes very significant. This type of events occurs infrequently and appears on the tails of the distribution of system power imbalance; therefore, is referred to as tail events. This report analyzes what happened during the Electric Reliability Council of Texas (ERCOT) reliability event on February 26, 2008, which was widely reported because of the involvement of wind generation. The objective is to identify sources of the problem, solutions to it and potential improvements that can be made to the system. Lessons learned from the analysis include the following: (1) Large mismatch between generation and load can be caused by load forecast error, wind forecast error and generation scheduling control error on traditional generators, or a combination of all of the above; (2) The capability of system balancing resources should be evaluated both in capacity (MW) and in ramp rate (MW/min), and be procured accordingly to meet both requirements. The resources need to be able to cover a range corresponding to the variability of load and wind in the system, additional to other uncertainties; (3) Unexpected ramps caused by load and wind can both become the cause leading to serious issues; (4) A look-ahead tool evaluating system balancing requirement during real-time operations and comparing that with available system resources should be very helpful to system operators in predicting the forthcoming of similar events and planning ahead; and (5) Demand response (only load reduction in ERCOT event) can effectively reduce load-generation mismatch and terminate frequency deviation in an emergency situation.

  20. Wildlife Services 

    E-Print Network [OSTI]

    Texas Wildlife Services

    2007-05-23

    in large numbers may damage property and cause human health problems. ? Protecting crops, timber, rangeland and other natural resources from the damage caused by gophers, prairie dogs, feral hogs, raccoons, rabbits, coyotes, grackles, beavers and other... wildlife. When building dams, beavers may cause flooding of timber and pastureland and the loss of trees and field crops. Feral hogs damage field crops, pastures and riparian habitat by their feeding, trampling and rooting activities. ? Protecting livestock...

  1. Wildlife Inventory, Craig Mountain, Idaho.

    SciTech Connect (OSTI)

    Cassirer, E. Frances

    1995-06-01

    Wildlife distribution/abundance were studied at this location during 1993 and 1994 to establish the baseline as part of the wildlife mitigation agreement for construction of Dworshak reservoir. Inventory efforts were designed to (1) document distribution/abundance of 4 target species: pileated woodpecker, yellow warbler, black-capped chickadee, and river otter, (2) determine distribution/abundance of rare animals, and (3) determine presence and relative abundance of all other species except deer and elk. 201 wildlife species were observed during the survey period; most were residents or used the area seasonally for breeding or wintering. New distribution or breeding records were established for at least 6 species. Pileated woodpeckers were found at 35% of 134 survey points in upland forests; estimated densities were 0-0.08 birds/ha, averaging 0.02 birds/ha. Yellow warblers were found in riparian areas and shrubby draws below 3500 ft elev., and were most abundant in white alder plant communities (ave. est. densities 0.2-2. 1 birds/ha). Black-capped chickadees were found in riparian and mixed tall shrub vegetation at all elevations (ave. est. densities 0-0.7 birds/ha). River otters and suitable otter denning and foraging habitat were observed along the Snake and Salmon rivers. 15 special status animals (threatened, endangered, sensitive, state species of special concern) were observed at Craig Mt: 3 amphibians, 1 reptile, 8 birds, 3 mammals. Another 5 special status species potentially occur (not documented). Ecosystem-based wildlife management issues are identified. A monitoring plant is presented for assessing effects of mitigation activities.

  2. Harvesting Rainwater for Wildlife 

    E-Print Network [OSTI]

    Cathey, James; Persyn, Russell A.; Porter, Dana; Dozier, Monty; Mecke, Michael; Kniffen, Billy

    2008-08-11

    Landowners can attract wildlife to their properties by installing rainwater catchment devices. This publication explains wildlife water sources, management considerations, rainfall catchment areas and wildlife tax valuation. It also illustrates...

  3. Mitigative techniques and analysis of generic site conditions for ground-water contamination associated with severe accidents

    SciTech Connect (OSTI)

    Shafer, J.M.; Oberlander, P.L.; Skaggs, R.L.

    1984-04-01

    The purpose of this study is to evaluate the feasibility of using ground-water contaminant mitigation techniques to control radionuclide migration following a severe commercial nuclear power reactor accident. The two types of severe commercial reactor accidents investigated are: (1) containment basemat penetration of core melt debris which slowly cools and leaches radionuclides to the subsurface environment, and (2) containment basemat penetration of sump water without full penetration of the core mass. Six generic hydrogeologic site classifications are developed from an evaluation of reported data pertaining to the hydrogeologic properties of all existing and proposed commercial reactor sites. One-dimensional radionuclide transport analyses are conducted on each of the individual reactor sites to determine the generic characteristics of a radionuclide discharge to an accessible environment. Ground-water contaminant mitigation techniques that may be suitable, depending on specific site and accident conditions, for severe power plant accidents are identified and evaluated. Feasible mitigative techniques and associated constraints on feasibility are determined for each of the six hydrogeologic site classifications. The first of three case studies is conducted on a site located on the Texas Gulf Coastal Plain. Mitigative strategies are evaluated for their impact on contaminant transport and results show that the techniques evaluated significantly increased ground-water travel times. 31 references, 118 figures, 62 tables.

  4. Wildlife Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA? TheWildlife Studies Studying Our

  5. Shillapoo Wildlife Area 2007 Follow-up HEP Report.

    SciTech Connect (OSTI)

    Ashley, Paul R.

    2008-03-01

    In April and May 2007 the Regional HEP Team (RHT) conducted a follow-up HEP analysis on the Egger (612 acres) and Herzog (210 acres) parcels located at the north end of the Shillapoo Wildlife Area. The Egger and Herzog parcels have been managed with Bonneville Power Administration funds since acquired in 1998 and 2001 respectively. Slightly more than 936 habitat units (936.47) or 1.14 HUs per acre was generated as an outcome of the 2007 follow-up HEP surveys. Results included 1.65 black-capped chickadee HUs, 280.57 great blue heron HUs, 581.45 Canada goose HUs, 40 mallard HUs, and 32.80 mink HUs. Introduction A follow-up Habitat Evaluation Procedures (HEP) (USFWS 1980) analysis was conducted by the Columbia Basin Fish and Wildlife Authority's (CBFWA) Regional HEP Team (RHT) during April and May 2007 to document changes in habitat quality and to determine the number of habitat units (HUs) to credit Bonneville Power Administration (BPA) for providing operation and maintenance (O&M) funds since WDFW acquired the parcels. The 2007 follow-up HEP evaluation was limited to Shillapoo Wildlife Area (SWA) parcels purchased with Bonneville Power Administration funds. D. Budd (pers. comm.) reported WDFW purchased the 612 acre Egger Farms parcel on November 2, 1998 for $1,737,0001 and the 210 acre Herzog acquisition on June 21, 2001 for $500,000 with Memorandum of Agreement funds (BPA and WDFW 1996) as partial fulfillment of BPA's wildlife mitigation obligation for construction of Bonneville and John Day Dams (Rasmussen and Wright 1989). Anticipating the eventual acquisition of the Egger and Herzog properties, WDFW conducted HEP surveys on these lands in 1994 to determine the potential number of habitat units to be credited to BPA. As a result, HEP surveys and habitat unit calculations were completed as much as seven years prior to acquiring the sites. The term 'Shillapoo Wildlife Area' will be used to describe only the Herzog and Egger parcels in this document. Details and results of the HEP analysis are included in this report.

  6. Bonneville’s “Balanced Scorecard” Approach to Mitigation, Monitoring, and Adaptive Management

    Broader source: Energy.gov [DOE]

    This year Bonneville Power Administration (BPA), DOE’s power marketing organization in the Pacific Northwest, will spend more than $300 million on mitigation projects to meet its mandate under the 1980 Northwest Power Act to “protect, mitigate and enhance” fish and wildlife affected by construction and operation of the Federal Columbia River Power System. How is BPA meeting its responsibility to ratepayers to ensure that these mitigation funds are spent effectively?

  7. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  8. O&M strategic plan Fish and Wildlife Committee

    E-Print Network [OSTI]

    Update on O&M strategic plan Fish and Wildlife Committee February 10, 2015 #12;Background Over, but will continue to help BPA meet its mitigation requirements. 2 #12;O&M Strategic planning Initial steps #C) Next steps in developing a Strategic Plan for Public Review Proposed Categories Screens

  9. Cooperative Fish and Wildlife

    E-Print Network [OSTI]

    2005 Cooperative Fish and Wildlife Research Units Program Annual Report #12; 2005Annual Report Cooperative Fish and Wildlife Research Units Program www.coopunits.org #12;2 #12;2 Front cover photos

  10. Wildlife Management Areas (Florida)

    Broader source: Energy.gov [DOE]

    Certain sites in Florida are designated as wildlife management areas, and construction and development is heavily restricted in these areas.

  11. The low-frequency environment of the Murchison Widefield Array: radio-frequency interference analysis and mitigation

    E-Print Network [OSTI]

    Offringa, A R; Hurley-Walker, N; Kaplan, D L; Barry, N; Beardsley, A P; Bell, M E; Bernardi, G; Bowman, J D; Briggs, F; Callingham, J R; Cappallo, R J; Carroll, P; Deshpande, A A; Dillon, J S; Dwarakanath, K S; Ewall-Wice, A; Feng, L; For, B -Q; Gaensler, B M; Greenhill, L J; Hancock, P; Hazelton, B J; Hewitt, J N; Hindson, L; Jacobs, D C; Johnston-Hollitt, M; Kapi?ska, A D; Kim, H -S; Kittiwisit, P; Lenc, E; Line, J; Loeb, A; Lonsdale, C J; McKinley, B; McWhirter, S R; Mitchell, D A; Morales, M F; Morgan, E; Morgan, J; Neben, A R; Oberoi, D; Ord, S M; Paul, S; Pindor, B; Pober, J C; Prabu, T; Procopio, P; Riding, J; Shankar, N Udaya; Sethi, S; Srivani, K S; Staveley-Smith, L; Subrahmanyan, R; Sullivan, I S; Tegmark, M; Thyagarajan, N; Tingay, S J; Trott, C M; Webster, R L; Williams, A; Williams, C L; Wu, C; Wyithe, J S; Zheng, Q

    2015-01-01

    The Murchison Widefield Array (MWA) is a new low-frequency interferometric radio telescope built in Western Australia at one of the locations of the future Square Kilometre Array (SKA). We describe the automated radio-frequency interference (RFI) detection strategy implemented for the MWA, which is based on the AOFlagger platform, and present 72-231-MHz RFI statistics from 10 observing nights. RFI detection removes 1.1% of the data. RFI from digital TV (DTV) is observed 3% of the time due to occasional ionospheric or atmospheric propagation. After RFI detection and excision, almost all data can be calibrated and imaged without further RFI mitigation efforts, including observations within the FM and DTV bands. The results are compared to a previously published Low-Frequency Array (LOFAR) RFI survey. The remote location of the MWA results in a substantially cleaner RFI environment compared to LOFAR's radio environment, but adequate detection of RFI is still required before data can be analysed. We include speci...

  12. Libby Mitigation Program, 2007 Annual Progress Report: Mitigation for the Construction and Operation of Libby Dam.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, J.; Garrow, L.

    2009-05-26

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to 'protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to restore the fisheries and fish habitat in basin streams and lakes. 'Mitigation for the Construction and Operation of Libby Dam' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan.

  13. Mitigation Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  14. EIS-0246-SA-19: Supplement Analysis | Department of Energy

    Energy Savers [EERE]

    Goose Heaven Lake on the Coeur d'Alene Indian Reservation as partial mitigation for fish and wildlife impacts caused by the construction and operation of Albeni Falls...

  15. Oregon Fish and Wildlife Mitigation Policy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information OregonLandsEnergyFish and

  16. CO2 Emissions Mitigation and Technological Advance: An

    E-Print Network [OSTI]

    PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Updated Analysis of Advanced/2003) #12;PNNL-18075 CO2 Emissions Mitigation and Technological Advance: An Analysis of Advanced Technology, by itself, the scope or quantity of greenhouse gas emissions reductions needed to achiev

  17. Pete Schmidt Wildlife Biologist

    E-Print Network [OSTI]

    Pete Schmidt Wildlife Biologist March 2009 #12;OverviewOverview Location Importance to Fish system Anadromous fish remain Abundant wildlife remain Others working to improve habitat Connectivity & anadromous fish Local support MBCC support #12;HabitatHabitat TypesTypes Seasonal, forested, & scrub shrub

  18. Staff summary of Issues & Recommendations Resident Fish Substitution/Blocked Area Mitigation

    E-Print Network [OSTI]

    1 Staff summary of Issues & Recommendations Resident Fish Substitution/Blocked Area Mitigation *Preliminary draft, please refer to full recommendations for complete review 10/29/2013 10:08:05 AM 2009 Fish and Wildlife Program Section Section II.C. 1. Substitution for Anadromous Fish Losses Section II. D. 8

  19. Columbia River Basin Fish and Wildlife Program Work Plan for Fiscal Year 1988.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration; Northwest Power Planning Council; Columbia Basin Fish and Wildlife Authority

    1987-10-01

    The FY 1988 Columbia River Basin Fish and Wildlife Program Work Plan (Work Plan) presents Bonneville Power Administration's plans for implementing the Columbia River Basin Fish and Wildlife Program (Program) in FY 1988. The Work Plan focuses on individual Action Items found in the amended Program for which Bonneville Power Administration (BPA) has determined it has authority and responsibility to implement. The FY 1988 Work Plan emphasizes continuation of 95 ongoing projects, most of which involve protection, mitigation, or enhancement of anadromous fishery resources. These continuing activities are summarized briefly by Program area: (1) mainstem passage; (2) artificial propagation; (3) natural propagation; (4) resident fish and wildlife; and (5) planning activities.

  20. Mitigation for the Construction and Operation of Libby Dam, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2005-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana Fish, Wildlife & Parks (MFWP) uses a combination of techniques to collect physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered and threatened species, and the assessment of restoration or management activities designed to restore native fishes and their habitats.

  1. Heat Waves, Global Warming, and Mitigation

    E-Print Network [OSTI]

    Carlson, Ann E.

    2008-01-01

    Heat Waves, Global Warming, and Mitigation Ann E. Carlson*2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 175 stroke2001). 2008]HEAT WAVES, GLOBAL WARMING, AND MITIGATION 177

  2. Mitigation and Adaptation Strategies for Global Change

    E-Print Network [OSTI]

    concerns about rising energy demand and cost, diminishing oil reserves, and climate change, Central a critical analysis of this experience focusing on non-technical barriers to investment. Survey results America . Caribbean basin initiative . Trade and investment . Energy security Mitig Adapt Strateg Glob

  3. Making the Most of Mitigation

    Broader source: Energy.gov [DOE]

    The Los Alamos Field Office uses a comprehensive Mitigation Action Plan to monitor and manage commitments to mitigate adverse environmental impacts associated with the 2008 Los Alamos National Laboratory Site-Wide Environmental Impact Statement (EIS) and multiple project-specific EISs and environmental assessments (EAs). The DOE NEPA Order requires a publicly available annual report on progress made in implementing mitigation commitments and the effectiveness of the mitigation.

  4. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  5. FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995

    E-Print Network [OSTI]

    FUTURE HYDROELECTRIC DEVELOPMENT SECTION 12 FISH AND WILDLIFE PROGRAM 12-1 September 13, 1995 Section 12 FUTURE HYDROELECTRIC DEVELOPMENT Much of this program has focused on mitigating damage done for additional federal hydroelectric projects and to plan for new development in the basin. The Federal Energy

  6. INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS

    E-Print Network [OSTI]

    McCarl, Bruce A.

    INTEGRATING AGRICULTURAL AND FORESTRY GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS GHG MITIGATION RESPONSE INTO GENEARL ECONOMY FRAMEWORKS: DEVELOPING A FAMILY OF RESPONSE FUNCTIONS 1 of economy-wide analysis of greenhouse gas mitigation options can be found in a special issue of the Energy

  7. A Measurement Framework of Alert Characteristics for False Positive Mitigation Models

    E-Print Network [OSTI]

    Young, R. Michael

    : Section 2 provides related work on ACs used in other FP mitigation techniques, Section 3 describes describes the ACs used by other FP mitigation techniques. We include most of these ACs in this work to be unactionable. False positive mitigation techniques utilize information about static analysis alerts, called

  8. Mitigating Wildland Fires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework uses concrete7 AssessmentBusiness andMissionMissionMitigating Wildland

  9. Wildlife management assistance report

    SciTech Connect (OSTI)

    Caudell, M.B.

    1992-05-01

    Thirty-four days were spent administering hunts on Crackerneck Wildlife Management Area with 1773 people participating. Biological data was collected on 76 deer, eight wild turkeys, 33 feral hogs, 58 ducks of two species, 75 gray squirrels, 4 raccoons, 9 bobwhites, and 484 fish of 9 species. Serving as a Coordinating Land User for the SRS Site Use Committee entailed evaluating 81 land use proposals with regard to effects on wildlife populations. The antlerless deer quota program continued in the district with 129 landowners in Aiken, Barnwell, and Orangeburg Counties being approved for antlerless harvest which required field investigations, acreage verification at tax offices, and personal correspondence. Bait sites for turkey trapping were maintained on the SRS for two months. Wildlife census work was conducted on wild turkey, bobwhite, mourning dove, furbearers, fox squirrels, and bald eagles on the SRS and in Aiken and Barnwell Counties. Three wetlands in Aiken County were evaluated for suitability with regard to wood duck boxes. Two wetland environmental review notices for the SRS were evaluated. Additional work on Wildlife Management Area land included reposting 50 miles of boundary in Aiken and Lexington County and removing signs form several tracts lost from the program. Future recommendations for the turkey and regulations brochures were submitted and WMA maps covering Aiken and Lexington Counties were updated.

  10. Transportation and Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2008-01-01

    Summary of transportation greenhouse gas mitigation optionsof alternative fuels. Low greenhouse gas fuels Mixing ofMAC) refrigerant replacement. Greenhouse gas budgets for

  11. Hungry Horse Mitigation; Flathead Lake, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Hansen, Barry; Evarts, Les

    2005-06-01

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote the ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Council in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems, and suppression of non-native fish. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of our efforts to suppress lake trout. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-8.

  12. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    curve analysis for biofuel production. The study is not yetThis level of biofuel production would supply approximatelynullify some biofuel production methods as viable mitigation

  13. Examples of cooler reflective streets for urban heat-island mitigation : Portland cement concrete and chip seals

    E-Print Network [OSTI]

    Pomerantz, M.; Akbari, H.; Chang, S.-C.; Levinson, R.; Pon, B.

    2003-01-01

    1995). “Mitigation of Urban Heat Islands: Materials, UtilityStreets for Urban Heat-Island Mitigation: Portland CementR. Levinson and B. Pon Heat Island Group Energy Analysis

  14. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Lennard, William N.

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  15. Sandia Energy - Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siting and Barrier Mitigation Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Siting and Barrier MitigationTara Camacho-Lopez2015-08-12...

  16. Implantation, Activation, Characterization and Prevention/Mitigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activation, Characterization and PreventionMitigation of Internal Short Circuits in Lithium-Ion Cells Implantation, Activation, Characterization and PreventionMitigation of...

  17. COOPERATIVE FISH AND WILDLIFE RESEARCH

    E-Print Network [OSTI]

    COOPERATIVE FISH AND WILDLIFE RESEARCH UNITS PROGRAM ANNUAL REPORT 2006 #12;Front cover photos: Top. #12;2006 ANNUAL REPORT iANNUAL REPORT 2006 COOPERATIVE FISH AND WILDLIFE RESEARCH UNITS PROGRAM Above Harbor, Alaska, to study the navigational needs of small boats and commercial fishing vessels. Laboratory

  18. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  19. HumanWildlife Conflicts 1(2):205213, Fall 2007 Intrafield patterns of wildlife damage to

    E-Print Network [OSTI]

    Human­Wildlife Conflicts 1(2):205­213, Fall 2007 Intrafield patterns of wildlife damage to corn at reducing wildlife damage to row crops rely on information concerning the spatial nature of wildlife damage at local and landscape scales. In this study we explored spatial patterns of wildlife damage within

  20. Saving Lives and Mitigating Losses

    E-Print Network [OSTI]

    Duchowski, Andrew T.

    Saving Lives and Mitigating Losses Wind and Structural Engineering Research Facility #12;Clemson University's Wind and Structural Engineering Research (WiSER) Facility is a premier laboratory for the study of wind effects on structures. Testing to assess the structural performance of buildings and bridges can

  1. ECONOMICS OF AGRICULTURE AND WILDLIFE A Background Report on the

    E-Print Network [OSTI]

    Instruments for the Conservation and Preservation of Wildlife Habitat in the Lower Fraser River Estuary), Brian Fairley (B.C. Ministry of Agriculture, Fisheries and Food), Kelly Fink (Canadian Forest Service, Fisheries and Food), and Bill Wareham (Ducks' Unlimited). The Forest Economics and Policy Analysis Research

  2. Mitigation for the Construction and Operation of Libby Dam, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James; DeShazer, Jay; Garrow, Larry (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2004-06-01

    ''Mitigation for the Construction and Operation of Libby Dam'' is part of the Northwest Power and Conservation Council's (NPCC) resident fish and wildlife program. The program was mandated by the Northwest Planning Act of 1980, and is responsible for mitigating for damages to fish and wildlife caused by hydroelectric development in the Columbia River Basin. The objective of Phase I of the project (1983 through 1987) was to maintain or enhance the Libby Reservoir fishery by quantifying seasonal water levels and developing ecologically sound operational guidelines. The objective of Phase II of the project (1988 through 1996) was to determine the biological effects of reservoir operations combined with biotic changes associated with an aging reservoir. The objectives of Phase III of the project (1996 through present) are to implement habitat enhancement measures to mitigate for dam effects, to provide data for implementation of operational strategies that benefit resident fish, monitor reservoir and river conditions, and monitor mitigation projects for effectiveness. This project completes urgent and high priority mitigation actions as directed by the Kootenai Subbasin Plan. Montana FWP uses a combination of diverse techniques to collect a variety of physical and biological data within the Kootenai River Basin. These data serve several purposes including: the development and refinement of models used in management of water resources and operation of Libby Dam; investigations into the limiting factors of native fish populations, gathering basic life history information, tracking trends in endangered, threatened species, and the assessment of restoration or management activities intended to restore native fishes and their habitats.

  3. Mitigated subsurface transfer line leak resulting in a surface pool

    SciTech Connect (OSTI)

    SCOTT, D.L.

    1999-02-08

    This analysis evaluates the mitigated consequences of a potential waste transfer spill from an underground pipeline. The spill forms a surface pool. One waste composite, a 67% liquid, 33% solid, from a single shell tank is evaluated. Even drain back from a very long pipeline (50,000 ft), does not pose dose consequences to the onsite or offsite individual above guideline values.

  4. CHALLENGE 2015 WALL OF WIND MITIGATION CHALLENGE

    E-Print Network [OSTI]

    Chen, Shu-Ching

    with the development of the building model. Is wind mitigation being addressed by your solution? What is wind science, sociology, and urban planning when discussing wind mitigation and your solution. WrittenW W! CHALLENGE 2015 WALL OF WIND MITIGATION CHALLENGE Competition at FIU's Engineering & Computing

  5. Human Dimensions of Wildlife Research Norman Dandy

    E-Print Network [OSTI]

    Human Dimensions of Wildlife Research Norman Dandy Social & Economic Research Group #12;Wildlife) · Human-dimensions of species management (HDSM) Research Projects #12;Collaborative Frameworks for Land of woodland landscapes ­ discussion groups, · Choice experiments, · Fellowships / Placements, · Newsletters

  6. Mitigation for the Construction and Operation of Libby Dam, 2001-2002 Annual Report.

    SciTech Connect (OSTI)

    Dunnigan, James L.; Marotz, Brian L.; DeShazer, Jay (Montana Department of Fish, Wildlife and Parks, Libby, MT)

    2003-06-01

    Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin (Columbia River Treaty 1964). Libby Reservoir inundated 109 stream miles of the mainstem Kootenai River in the United States and Canada, and 40 miles of tributary streams in the U.S. that provided habitat for spawning, juvenile rearing, and migratory passage (Figure 1). The authorized purpose of the dam is to provide power (91.5%), flood control (8.3%), and navigation and other benefits (0.2%; Storm et al. 1982). The Pacific Northwest Power Act of 1980 recognized possible conflicts stemming from hydroelectric projects in the northwest and directed Bonneville Power Administration to ''protect, mitigate, and enhance fish and wildlife to the extent affected by the development and operation of any hydroelectric project of the Columbia River and its tributaries...'' (4(h)(10)(A)). Under the Act, the Northwest Power Planning Council was created and recommendations for a comprehensive fish and wildlife program were solicited from the region's federal, state, and tribal fish and wildlife agencies. Among Montana's recommendations was the proposal that research be initiated to quantify acceptable seasonal minimum pool elevations to maintain or enhance the existing fisheries (Graham et al. 1982). Research to determine how operations of Libby Dam affect the reservoir and river fishery and to suggest ways to lessen these effects began in May, 1983. The framework for the Libby Reservoir Model (LRMOD) was completed in 1989. Development of Integrated Rule Curves (IRCs) for Libby Dam operation was completed in 1996 (Marotz et al. 1996). The Libby Reservoir Model and the IRCs continue to be refined (Marotz et al 1999). Initiation of mitigation projects such as lake rehabilitation and stream restoration began in 1996. The primary focus of the Libby Mitigation project now is to redevelop fisheries and fisheries habitat in basin streams and lakes.

  7. Columbia Basin Fish and Wildlife

    E-Print Network [OSTI]

    the impacts of hydropower dams on fish and wildlife. It also helps direct more than $250 million each year habitats in tributaries that have been damaged by development. A broad range of entities propose projects issues, as well as an independent panel of economists to provide guidance on questions of cost

  8. Urban Surfaces and Heat Island Mitigation Potentials

    E-Print Network [OSTI]

    Akbari, Hashem

    2008-01-01

    Finster. 2000. “The Urban Heat Island, Photochemical Smog,2001. “EPA/NASA Urban Heat Island Pilot Project,” GlobalSystem Urban Surfaces and Heat Island Mitigation Potentials

  9. Estimating Mitigation Potential of Agricultural Projects: an...

    Open Energy Info (EERE)

    Tool (EX-ACT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Brazil-Estimating Mitigation Potential of Agricultural Projects: an Application of the...

  10. Industrial Energy Efficiency and Climate Change Mitigation

    E-Print Network [OSTI]

    Worrell, Ernst

    2009-01-01

    mitigate 21 MtCO 2 . Cogeneration (also called Combined Heatefficiencies. Industrial cogeneration is an important partpotential for industrial cogeneration is estimated at almost

  11. Environmental Mitigation Technology (Innovative System Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine Environmental Mitigation Technology (Innovative System...

  12. Climate Change 2007: Mitigation of Climate Change.

    E-Print Network [OSTI]

    Schiavon, Stefano; Zecchin, Roberto

    2007-01-01

    2007: Mitigation of Climate Change. Full report. WorkingIntergovernmental Panel on Climate Change www.webcda.it LaIntergovernmental Panel on Climate Change”. Il Rapporto

  13. Ocean Fertilization and Other Climate Change Mitigation Strategies: An Overview

    SciTech Connect (OSTI)

    Huesemann, Michael H.

    2008-07-29

    In order to evaluate ocean fertilization in the larger context of other proposed strategies for reducing the threat of the global warming, a wide range of different climate change mitigation approaches are compared in terms of their long-term potential, stage of development, relative costs and potential risks, as well as public acceptance. This broad comparative analysis is carried out for the following climate change mitigation strategies: supply-side and end-use efficiency improvements, terrestrial and geological carbon sequestration, CO2 ocean disposal and iron fertilization, nuclear power, and renewable energy generation from biomass, passive solar, solar thermal, photovoltaics, hydroelectric and wind. In addition, because of the inherent problems of conducting an objective comparative cost-benefit analysis, two non-technological solutions to global warming are also discussed: curbing population growth and transitioning to a steady-state economy.

  14. A National Assessment of the Intrastructure for Urban Wildlife Management 

    E-Print Network [OSTI]

    Murphy, Michaela Rene

    2014-08-01

    ecosystems. Universities and state wildlife agencies are the main driving forces for research and management, and it is crucial that these institutions provide support for managing wildlife in urban environments. Universities (n = 73) and state wildlife...

  15. A Novel Paradigm in Greenhouse Gas Mitigation

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    A Novel Paradigm in Greenhouse Gas Mitigation Abdul-Majeed Azad, Eric McDaniel, and Sirhan Al CO2 and H2O, two well- known greenhouse gases responsible for contributing considerably to the global for addressing the issue of mitigating the CO2-related greenhouse gas emission. The process uses either a fer

  16. CARBON MITIGATION HS 2014 Prof. Nicolas Gruber

    E-Print Network [OSTI]

    Fischlin, Andreas

    CARBON MITIGATION HS 2014 Prof. Nicolas Gruber Mondays 10-12, CHN E42 (nicolas & Introduction (Gruber) Introduction to the carbon mitigation problem 9/22 2 Geological CO2 sequestration (Mazzotti) Putting the CO2 underground... 9/29 3 No class ­ group formation 10/06 4 Carbon sinks on land

  17. QER- Comment of National Wildlife Foundation

    Broader source: Energy.gov [DOE]

    Mollie Simon Climate and Energy National Wildlife Federation - National Advocacy Center 901 E. Street, NW Suite 400 Washington, DC 20004 +1 202.797.6651

  18. EA-0956: South Fork Snake River/Palisades Wildlife Mitigation Project, Bonneville County, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Bonneville Power Administration proposal to fund the implementation of the South Fork Snake River Programmatic...

  19. Wildlife/motorist vehicle collisions in Maine: current status and mitigation opportunities

    E-Print Network [OSTI]

    Van-Riper, Robert

    2001-01-01

    VEHICLE COLLISIONS IN MAINE: CURRENT STATUS AND MITIGATIONEnvironmental Office, Maine Department of Transportation,State House Station 16, Augusta, Maine 04333. Email:

  20. Malheur River Subbasin Assessment and Management Plan For Fish and Wildlife Mitigation

    E-Print Network [OSTI]

    .........................................................................................................11 2.2 WATER RESOURCES ...............................................................................................................14 2.2.3 Water Use..............................................................................................................................16 2.2.4 Water Quality

  1. Market-based Wildlife Mitigation in Wyoming: A Primer | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,InformationIllinois: Energy Resources JumpMarion,Market-Based

  2. OAR 635-415 - Fish and Wildlife Habitat Mitigation Policy | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis, Minnesota:Nulato,Nyack, New JumpandInformation OAR

  3. Columbia River System Operation Review : Final Environmental Impact Statement, Appendix N: Wildlife.

    SciTech Connect (OSTI)

    Columbia River System Operation Review

    1995-11-01

    The Columbia River System is a vast and complex combination of Federal and non-Federal facilities used for many purposes including power production, irrigation, navigation, flood control, recreation, fish and wildlife habitat and municipal and industrial water supply. Each river use competes for the limited water resources in the Columbia River Basin. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. The environmental impact statement (EIS) itself and some of the other appendices present analyses of the alternative approaches to the other three decisions considered as part of the SOR. This document is the product of the Wildlife Work Group, focusing on wildlife impacts but not including fishes. Topics covered include the following: scope and process; existing and affected environment, including specific discussion of 18 projects in the Columbia river basin. Analysis, evaluation, and alternatives are presented for all projects. System wide impacts to wildlife are also included.

  4. 2009 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano; R. D. Teel

    2009-09-30

    This document details the results of revegetation and mitigation monitoring conducted in 2009, including 25 revegetation/restoration projects, one revegetation/mitigation project, and three bat mitigation projects.

  5. U.S. Fish and Wildlife Service National Conservation Training...

    Broader source: Energy.gov (indexed) [DOE]

    Fish and Wildlife Service National Conservation Training Center Shepherdstown, West Virginia, is the home of the U.S. Fish and Wildlife Service (USFWS) National Conservation...

  6. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural...

  7. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office: Association of Fish and Wildlife Agencies Agricultural Conservation Committee Meeting Bioenergy Technologies Office: Association of Fish and Wildlife...

  8. Mexico-Standard Assessment of Mitigation Potential and Livelihoods...

    Open Energy Info (EERE)

    Mexico-Standard Assessment of Mitigation Potential and Livelihoods in Smallholder Systems (SAMPLES) Jump to: navigation, search Name Mexico-Standard Assessment of Mitigation...

  9. Validation of techniques to mitigate copper surface contamination...

    Office of Scientific and Technical Information (OSTI)

    Validation of techniques to mitigate copper surface contamination in CUORE Citation Details In-Document Search Title: Validation of techniques to mitigate copper surface...

  10. Recent Diesel Engine Emission Mitigation Activities of the Maritime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Emission Mitigation Activities of the Maritime Administration Energy Technologies Program Recent Diesel Engine Emission Mitigation Activities of the Maritime...

  11. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    Climate Change Mitigation in the Energy and Forestry Sectors of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation in the...

  12. Korea's Green Growth Strategy: Mitigating Climate Change and...

    Open Energy Info (EERE)

    Korea's Green Growth Strategy: Mitigating Climate Change and Developing New Growth Engines Jump to: navigation, search Name Korea's Green Growth Strategy: Mitigating Climate Change...

  13. Natural Gas Infrastructure R&D and Methane Emissions Mitigation...

    Energy Savers [EERE]

    Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop The Advanced Manufacturing Office...

  14. Improving Department of Energy Capabilities for Mitigating Beyond...

    Energy Savers [EERE]

    Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events Improving Department of Energy Capabilities for Mitigating Beyond Design Basis Events April...

  15. Transmission/Resource Library/Enviromental Resources and Mitigation...

    Open Energy Info (EERE)

    Enviromental Resources and Mitigation < Transmission | Resource Library(Redirected from TransmissionResource LibraryMitigation) Redirect page Jump to: navigation, search...

  16. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012...

  17. Sandia Energy - Siting: Wind Turbine/Radar Interference Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation (TSPEAR & IFT&E) Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Siting: Wind TurbineRadar Interference...

  18. November 18 PSERC Webinar: Quantifying and Mitigating the Impacts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution Systems November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution...

  19. Carbon mitigation: A holistic approach to the issue

    SciTech Connect (OSTI)

    Plasynski, S.I.; Bose, A.C.; Bergman, P.D.; Dorchak, T.P.; Hyman, D.M.; Loh, H.P.; Ness, H.M.

    1999-07-01

    One of the hottest topics currently is that of global warming that may be caused by the anthropogenic release of CO{sub 2} from burning fossil fuels. Within the Power and Environmental Systems Division at the Federal Energy Technology Center (FETC), a Greenhouse Gas Team has been assembled to implement a program for addressing the issues of greenhouse gases. This team is looking at the various questions of how to avoid, capture, utilize and/or sequester CO{sub 2} and other greenhouse gases. This paper will present an integrated approach to addressing the issue of carbon mitigation and will highlight some of the research work and projects being sponsored by FETC. The Greenhouse Gas Team has defined the component of carbon mitigation broadly as ocean sequestration, geological sequestration, capture, utilization, energy production, and analysis.

  20. Wildlife / dangerous Tree assessor's Course Workbook

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Wildlife / dangerous Tree assessor's Course Workbook Wildland fire safeTy Course Module Revised from the "Wildlife/Danger Tree Assessor's Course ­ Forest Harvesting and Silviculture." Jeff Mc contributions to this current course workbook. #12;Danger Tree Assessor's Course July 2010 ii Library

  1. Revised May 2008 Wildlife/Danger Tree

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Revised May 2008 Wildlife/Danger Tree Assessor's Course Workbook Forest Harvesting and Silviculture: Ministry of Forests and Range Ministry of Environment #12;#12;Wildlife/Danger Tree Assessor's Course Workbook: Forest Harvesting and Silviculture Module May 2008 iii DANGEROUS TREE ASSESSMENT IN BRITISH

  2. Chickasaw Plum for Wildlife in Oklahoma

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Chickasaw Plum for Wildlife in Oklahoma E-1026 Oklahoma Cooperative Extension Service Division of Agricultural Sciences and Natural Resources Oklahoma State University #12;Chickasaw Plum for Wildlife in Oklahoma Authors from the Department of Natural Resource Ecology and Management, Oklahoma State University

  3. Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,WhatUtilityRateNamingHelper JumpWild HorseWildlife

  4. Forestry herbicide influences on biodiversity and wildlife habitats in Southern forests.

    SciTech Connect (OSTI)

    Miller, Karl V.

    2004-01-01

    Abstract In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicide used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.

  5. Forestry herbicide influences on biodiversity and wildlife habitat in Southern forests.

    SciTech Connect (OSTI)

    Miller, Karl V.; Miller, James, H.

    2004-07-01

    Abstract In the southern United States, herbicide use continues to increase for timber management in commercial pine (Pinus spp.) plantations, for modifying wildlife habitats, and for invasive plant control. Several studies have reported that single applications of forestry herbicides at stand initiation have minor and temporary impacts on plant communities and wildlife habitat conditions, with some reports of enhanced habitat conditions for both game and nongame species. Due to the high resiliency of floral communities, plant species richness and diversity rebound rapidly after single herbicide treatments, with short- and long-term compositional shifts according to the selectivity and efficacy of the herbicide used. Recently, however, a shift to the Southeast in North American timber supplies has resulted in increased forest management intensity. Current site-preparation techniques rely on herbicide combinations, often coupled with mechanical treatments and >1 years of post-planting applications to enhance the spectrum and duration of vegetation control. This near-total control of associated vegetation at establishment and more rapid pine canopy closure, coupled with shortened and repeated rotations, likely will affect plant diversity and wildlife habitat quality. Development of mitigation methods at the stand and landscape levels will be required to minimize vegetative and wildlife impacts while allowing continued improvement in pine productivity. More uncertain are long-term impacts of increasing invasive plant occupation and the projected increase in herbicide use that will be needed to reverse this worsening situation. In addition, the potential of herbicides to meet wildlife management objectives in areas where traditional techniques have high social costs (e.g., prescribed fire) should be fully explored.

  6. Evaluating the implementation of environmental review mitigation in local planning and development processes

    SciTech Connect (OSTI)

    Slotterback, Carissa Schively

    2008-11-15

    The implementation of mitigation strategies and outcomes of environmental review remains a challenge for planners and regulators. While the process and content of environmental review is clearly defined, there is often little attention to what happens after the review is completed. This paper presents the results of an evaluation of the implementation of the outcomes of environmental review, specifically mitigation measures designed to respond to environmental impacts identified in the environmental impact analysis. Drawing on previous evaluations of environmental review outcomes and plan implementation, the research provides a methodology for evaluating the implementation of mitigation efforts, points to the challenges associated with implementing the mitigation outcomes of local environmental review in planning and development processes, and identifies opportunities to integrate planning and environmental review processes.

  7. The Role of Asia in Mitigating Climate Change: Results from the Asia Modeling Exercise

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Clarke, Leon E.; Krey, Volker; Blanford, Geoffrey J.; Jiang, Kejun; Kainuma, M.; Kriegler, Elmar; Luderer, Gunnar; Shukla, Priyadarshi R.

    2012-12-01

    In 2010, Asia accounted for 60% of global population, 39% of Gross World Product, 44% of global energy consumption and nearly half of the world’s energy system CO2 emissions. Thus, Asia is an important region to consider in any discussion of climate change or climate change mitigation. This paper explores the role of Asia in mitigating climate change, by comparing the results of 23 energy-economy and integrated assessment models. We focus our analysis on seven key areas: base year data, future energy use and emissions absent climate policy, the effect of urban and rural development on future energy use and emissions, the role of technology in emissions mitigation, regional emissions mitigation, and national climate policies

  8. Place-based Mitigation of Climate Change

    E-Print Network [OSTI]

    Place-based Mitigation of Climate Change Robert Socolow Princeton University socolow should provide at least one wedge. #12;"The Wedge Model is the iPod of climate change: You fill

  9. Wildlife Rehabilitation Centers: Survey of Rehabilitators' Attitudes, Motivations, and Knowledge and Study of Animal Admittance to the South Plains Wildlife Rehabilitation

    E-Print Network [OSTI]

    Wallace, Mark C.

    Wildlife Rehabilitation Centers: Survey of Rehabilitators' Attitudes, Motivations, and Knowledge and Study of Animal Admittance to the South Plains Wildlife Rehabilitation Center by E. Kathleen Wildlife Rehabilitation Center for allowing me access to the wildlife admittance records and providing

  10. Reviewing the human dimensions of wildlife management and recreation

    E-Print Network [OSTI]

    to wildlife management? Who opposes wildlife management and why? Change in the human dimensions of wildlifeReviewing the human dimensions of wildlife management and recreation Mariella Marzano Norman Dandy Centre for Human & Ecological Sciences Forest Research #12;Human Dimensions of Species Management http

  11. WILDLIFE RESPONSE TO STAND STRUCTURE OF GREEN ASH WOODLANDS

    E-Print Network [OSTI]

    WILDLIFE RESPONSE TO STAND STRUCTURE OF GREEN ASH WOODLANDS by Robert A. Hodorff A thesis submitted Sciences, South Dakota State University. 1985 #12;WILDLIFE RESPONSE TO STAND STRUCTURE OF GREEN ASH, Department of Wildlife and Fisheries Sciences Date #12;WILDLIFE RESPONSE TO STAND STRUCTURE OF GREEN ASH

  12. wildlife

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 FederalRivers andMEDA Station3/%2A| National48/%2A en

  13. Advanced Mitigating Measures for the Cell Internal Short Risk (Presentation)

    SciTech Connect (OSTI)

    Darcy, E.; Smith, K.

    2010-04-01

    This presentation describes mitigation measures for internal short circuits in lithium-ion battery cells.

  14. Shillapoo Wildlife Area, Annual Report 2007-2008.

    SciTech Connect (OSTI)

    Calkins, Brian

    2007-10-01

    This report summarizes accomplishments, challenges and successes on WDFW's Shillapoo Wildlife Area funded under Bonneville Power Administration's (BPA) Wildlife Mitigation Program (BPA project No.2003-012-00) during the Fiscal Year 08 contract period October 1, 2007-September 30, 2008. The information presented here is intended to supplement that contained in BPA's PISCES contract development and reporting system. The organization below is by broad categories of work but references are made to individual work elements in the PISCES Statement of Work as appropriate. Significant progress was realized in almost all major work types. Of particular note was progress made in tree plantings and pasture rehabilitation efforts. This year's tree planting effort included five sites detailed below and in terms of the number of plants was certainly the largest effort on the wildlife area to date in one season. The planting itself took a significant amount of time, which was anticipated. However, installation of mats and tubes took much longer than expected which impacted planned fence projects in particular. Survival of the plantings appears to be good. Improvement to the quality of waterfowl pasture habitats is evident on a number of sites due to replanting and weed control efforts. Continuing long-term weed control efforts will be key in improving this particular type of habitat. A prolonged cold, wet spring and a number of equipment breakdowns presented stumbling blocks that impacted schedules and ultimately progress on planned activities. The unusual spring weather delayed fieldwork on pasture planting projects as well as weed control and slowed the process of maintaining trees and shrubs. This time lag also caused the continued deferral of some of our fencing projects. The large brush hog mower had the driveline break twice and the smaller tractor had an engine failure that caused it to be down for over a month. We have modified our budget plan for next year to include a temporary employee that will work primarily on tree maintenance and fencing projects to make sure that we make progress in these areas and we will be investigating whether a heavier duty driveline can be obtained for the mower.

  15. Threatened and endangered wildlife species of the Hanford Site related to CERCLA characterization activities

    SciTech Connect (OSTI)

    Fitzner, R.E.; Weiss, S.G.; Stegen, J.A.

    1994-06-01

    The US Department of Energy`s (DOE) Hanford Site has been placed on the National Priorities List, which requires that it be remediated under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) or Superfund. Potentially contaminated areas of the Hanford Site were grouped into operable units, and detailed characterization and investigation plans were formulated. The DOE Richland Operations Office requested Westinghouse Hanford Company (WHC) to conduct a biological assessment of the potential impact of these characterization activities on the threatened, endangered, and sensitive wildlife species of the Hanford Site. Additional direction for WHC compliances with wildlife protection can be found in the Environmental Compliance Manual. This document is intended to meet these requirements, in part, for the CERCLA characterization activities, as well as for other work comparable in scope. This report documents the biological assessment and describes the pertinent components of the Hanford Site as well as the planned characterization activities. Also provided are accounts of endangered, threatened, and federal candidate wildlife species on the Hanford Site and information as to how human disturbances can affect these species. Potential effects of the characterization activities are described with recommendations for mitigation measures.

  16. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    SciTech Connect (OSTI)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

  17. Fish and Wildlife Toxicology Lecture Syllabus

    E-Print Network [OSTI]

    Washington at Seattle, University of

    ; methods used to assess hazards contaminants pose to fish and wildlife; sublethal and indirect effects" Session 2: Laboratory Toxicity Tests/ "Anatomy of an Oil Spill" Session 3: Factors Governing Test Results

  18. Disruption mitigation using high pressure gas jets

    SciTech Connect (OSTI)

    Dennis G. Whyte

    2007-10-11

    The goal of this research is to establish credible disruption mitigation scenarios based on the technique of massive gas injection. Disruption mitigation seeks to minimize or eliminate damage to internal components that can occur due to the rapid dissipation of thermal and magnetic energy during a tokamak disruption. In particular, the focus of present research is extrapolating mitigation techniques to burning plasma experiments such as ITER, where disruption-caused damage poses a serious threat to the lifetime of internal vessel components. A majority of effort has focused on national and international collaborative research with large tokamaks: DIII-D, Alcator C-Mod, JET, and ASDEX Upgrade. The research was oriented towards empirical trials of gas-jet mitigation on several tokamaks, with the goal of developing and applying cohesive models to the data across devices. Disruption mitigation using gas jet injection has proven to be a viable candidate for avoiding or minimizing damage to internal components in burning plasma experiments like ITER. The physics understanding is progress towards a technological design for the required gas injection system in ITER.

  19. Habitat Evaluation Procedures (HEP) Report : Rainwater Wildlife Area, 1998-2001 Technical Report.

    SciTech Connect (OSTI)

    Childs, Allen

    2004-01-01

    The 8,768 acre Rainwater Wildlife Area was acquired in September 1998 by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) through an agreement with Bonneville Power Administration (BPA) to partially offset habitat losses associated with construction of the John Day and McNary hydroelectric facilities on the mainstem Columbia River. U.S. Fish and Wildlife Service (USFWS) Habitat Evaluation Procedures (HEP) were used to determine the number of habitat units credited to BPA for acquired lands. Upland and riparian forest, upland and riparian shrub, and grassland rover types are evaluated in this study. Targeted wildlife species include downy woodpecker (Picoides pubescens), black-capped chickadee (Parus atricopillus), blue grouse (Dendragapus obscurus), great blue heron (Ardea herodias), yellow warbler (Dendroica petechia), mink (Mustela vison), and Western meadowlark (Sturnella neglects). Habitat surveys were conducted in 1998 and 1999 in accordance with published HEP protocols and included 65,300, 594m{sup 2} plots, and 112 one-tenth-acre plots. Between 153.3 and 7,187.46 acres were evaluated for each target wildlife mitigation species. Derived habitat suitability indices were multiplied by corresponding cover-type acreages to determine the number of habitat units for each species. The total baseline habitat units credited to BPA for the Rainwater Wildlife Area and its seven target species is 5,185.3 habitat units. Factors limiting habitat suitability are related to the direct, indirect, and cumulative effects of past livestock grazing, road construction, and timber harvest which have simplified the structure, composition, and diversity of native plant communities. Alternatives for protecting and improving habitat suitability include exclusion of livestock grazing, road de-commissioning/obliteration, reforestation and thinning, control of competing and unwanted vegetation (including noxious weeds), reestablishing displaced or reduced native vegetation species, allowance of normative processes such as fire occurrence, and facilitating development of natural stable stream channels and associated floodplains. Implementation of habitat enhancement and restoration activities could generate an additional 1,850 habitat units in 10 years. Baseline and estimated future habitat units total 7,035.3 for the Rainwater Wildlife Area. Habitat protection, enhancement and restoration will require long-term commitments from managers to increase probabilities of success and meet the goals and objectives of the Northwest Power Planning Council's Fish and Wildlife Mitigation Program. Longer-term benefits of protection and enhancement activities include increases in native species diversity and plant community resiliency in all cover types. Watershed conditions, including floodplain/riparian, and instream habitat quality should improve as well providing multiple benefits for terrestrial and aquatic resources. While such benefits are not necessarily recognized by HEP models and reflected in the number of habitat units generated, they are consistent with the NPPC Fish and Wildlife Program.

  20. Gas powered fluid gun with recoil mitigation

    SciTech Connect (OSTI)

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  1. 46 The Wildlife Professional, Winter 2012 The Wildlife Society A New Forest Fire Paradigm

    E-Print Network [OSTI]

    DeSante, David F.

    46 The Wildlife Professional, Winter 2012 © The Wildlife Society A New Forest Fire Paradigm paradigm--which holds that severe forest fires are always harmful--to a new one that embraces among forest types and regions, and fire severity differs with vegetation type, geographical location

  2. Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site

    E-Print Network [OSTI]

    Firestone, Jeremy

    Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project would be located. Within the tidal marsh there were also tidal creeks and guts. The following list

  3. Rapid energy savings in London's households to mitigate an energy crisis

    E-Print Network [OSTI]

    Julien, Aurore; Barrett, Mark; Croxford, Ben

    2011-01-01

    to mitigate an energy crisis Wood, G. & Newborough, M. ,households to mitigate an energy crisis Chen, A. , 2008.households to mitigate an energy crisis Rapid energy savings

  4. Wildlife Management Plan for the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Giffen, Neil R; Evans, James W.; Parr, Patricia Dreyer

    2007-10-01

    This document outlines a plan for management of the wildlife resources on the Department of Energy's (DOE's) Oak Ridge Reservation. Management includes wildlife population control through hunting, trapping, removal, and habitat manipulation; wildlife damage control; restoration of wildlife species; preservation, management, and enhancement of wildlife habitats; coordination of wildlife studies and characterization of areas; and law enforcement. Wildlife resources are divided into several categories, each with a specific set of objectives and procedures for attaining them. These objectives are management of (1) wildlife habitats to ensure that all resident wildlife species exist on the Reservation in viable numbers; (2) featured species to produce selected species in desired numbers on designated land units; (3) game species for research, education, recreation, and public safety; (4) the Three Bend Scenic and Wildlife Management Refuge Area; (5) nuisance wildlife, including nonnative species, to achieve adequate population control for the maintenance of health and safety on the Reservation; (6) sensitive species (i.e., state or federally listed as endangered, threatened, of special concern, or in need of management) through preservation and protection of both the species and habitats critical to the survival of those species; and (7) wildlife disease. Achievement of the objectives is a joint effort between the Tennessee Wildlife Resources Agency (TWRA) and the Oak Ridge National Laboratory through agreements between TWRA and DOE and between DOE and UT-Battelle, LLC.

  5. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect (OSTI)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2004-07-15

    This report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project for the period ending 06/30/2004. The major accomplishment was the modification of the header and harvesting work, with a system designed to distribute algae at startup, sustain operations and harvest in one unit.

  6. Mitigating Greenhouse Gas Emissions: Voluntary Reporting 1996

    Reports and Publications (EIA)

    1997-01-01

    Presents information on voluntary actions to reduce greenhouse gases or remove such gases from the atmosphere in 1995. It provides an overview of participation in the Voluntary Reporting Program, a perspective on the composition of activities reported, and a review of some key issues in interpreting and evaluating achievements associated with reported emissions mitigation initiatives.

  7. Highly concentrated foam formulation for blast mitigation

    DOE Patents [OSTI]

    Tucker, Mark D. (Albuquerque, NM); Gao, Huizhen (Albuquerque, NM)

    2010-12-14

    A highly concentrated foam formulation for blast suppression and dispersion mitigation for use in responding to a terrorism incident involving a radiological dispersion device. The foam formulation is more concentrated and more stable than the current blast suppression foam (AFC-380), which reduces the logistics burden on the user.

  8. Nationally Appropriate Mitigation Actions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to:Information Wildlife Refuge System

  9. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.

    SciTech Connect (OSTI)

    Ward, David L.

    2000-12-01

    The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

  10. Understanding and Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems

    E-Print Network [OSTI]

    Martínez, José F.

    Understanding and Mitigating Refresh Overheads in High-Density DDR4 DRAM Systems Janani Mukundan as part of JEDEC's DDR4 DRAM specification that at- tempts to tackle this problem by creating a range conduct an analysis of DDR4 DRAM's FGR feature, and show that there is no one-size-fits-all option across

  11. ITEP Webinar: Climate Change Impacts on Fish and Wildlife

    Broader source: Energy.gov [DOE]

    Attend this Institute for Tribal Environmental Professionals (ITEP) webinar and learn the climate change challenges for fish and wildlife and what can be done to help safeguard fish, wildlife, and plants and the communities and economies that depend on them.

  12. The Pennsylvania 4-H Wildlife Habitat Evaluation Project (WHEP)

    E-Print Network [OSTI]

    The Pennsylvania 4-H Wildlife Habitat Evaluation Project (WHEP) Originally Written By: Edward L. Neilson, Jr. and Delwin E. Benson, Ph.D. Adapted From the 4-H Wildlife Habitat Evaluation Program National..........................................................................................................................3 A Real Life Project

  13. 2008 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey; K. A. Gano

    2008-09-30

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2008 and includes 22 revegetation/restoration projects, one revegetation/mitigation project, and two bat habitat mitigation projects.

  14. 2007 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    K. A. Gano; C. T. Lindsey

    2007-09-27

    The purpose of this report is to document the status of revegetation projects and natural resources mitigation efforts that have been conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of National Priorities List waste sites at Hanford. This report documents the results of revegetation and mitigation monitoring conducted in 2007 and includes 11 revegetation/restoration projects, one revegetation/mitigation project, and 3 bat habitat mitigation projects.

  15. Recommendation 195: Mitigation of Contamination in Bear Creek Burial Grounds

    Office of Energy Efficiency and Renewable Energy (EERE)

    The ORSSAB requests DOE provide possible remedial actions to mitigate releases of contamination from Bear Creek Burial Grounds.

  16. Estimating exposure of terrestrial wildlife to contaminants

    SciTech Connect (OSTI)

    Sample, B.E.; Suter, G.W. II

    1994-09-01

    This report describes generalized models for the estimation of contaminant exposure experienced by wildlife on the Oak Ridge Reservation. The primary exposure pathway considered is oral ingestion, e.g. the consumption of contaminated food, water, or soil. Exposure through dermal absorption and inhalation are special cases and are not considered hereIN. Because wildlife mobile and generally consume diverse diets and because environmental contamination is not spatial homogeneous, factors to account for variation in diet, movement, and contaminant distribution have been incorporated into the models. To facilitate the use and application of the models, life history parameters necessary to estimate exposure are summarized for 15 common wildlife species. Finally, to display the application of the models, exposure estimates were calculated for four species using data from a source operable unit on the Oak Ridge Reservation.

  17. Climate change mitigation through forestry measures: potentials, options, practice

    E-Print Network [OSTI]

    Climate change mitigation through forestry measures: potentials, options, practice Robert Matthews KINGDOM #12;18 May 2010 Climate change mitigation and forestry measures What I will cover · Inherent;18 May 2010 Climate change mitigation and forestry measures GHG dynamics in forest systems · Emissions

  18. Riparian Buffers for Wildlife Benefits of Riparian Buffers

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    , develop- ment, and recreation. Losing these buffers has negatively affected wildlife habitat and water the information you will need to create an effective riparian buffer for wildlife while pro- tecting water quality for wildlife; but they also improve water quality for humans. In general, the wider and more diversely planted

  19. Power Planning and Fish and Wildlife Program Development

    E-Print Network [OSTI]

    Power Planning and Fish and Wildlife Program Development RELATIONSHIP OF THE POWER PLAN TO THE FISH AND WILDLIFE The Power Act requires that the Council's power plan and Bonneville's resource acquisition program and to accommodate system operations to benefit fish and wildlife. The central purpose of this chapter of the power

  20. Demand for Wildlife Hunting in the Southeastern United States

    E-Print Network [OSTI]

    Gray, Matthew

    1 Demand for Wildlife Hunting in the Southeastern United States Presented by: Neelam C. Poudyal... Number of studies scrutinized demand for wildlife hunting (Ziemer et al. 1980; Miller and Hay,1981). Essential to understand what influences hunting demand. Projecting how the future of wildlife hunting

  1. Wind Energy Development & Wildlife Striving for Co-existence

    E-Print Network [OSTI]

    McCalley, James D.

    for Wind Farm Sitings #12;Ohio Map of Survey Effort #12;Wind Energy & Nebraska's Wildlife Map #12Wind Energy Development & Wildlife ­ Striving for Co-existence Caroline Jezierski Nebraska Wind Energy & Wildlife Project Coordinator ISU ­ October 26, 2012 #12;#12;Installed Wind Power Capacity http://www.windpoweringamerica.gov/wind

  2. Buildings GHG Mitigation Estimator Worksheet, Version 1

    Broader source: Energy.gov [DOE]

    Xcel document describes Version 1 of the the Buildings GHG Mitigation Estimator tool. This tool assists federal agencies in estimating the greenhouse gas mitigation reduction from implementing energy efficiency measures across a portfolio of buildings. It is designed to be applied to groups of office buildings, for example, at a program level (regional or site) that can be summarized at the agency level. While the default savings and cost estimates apply to office buildings, users can define their own efficiency measures, costs, and savings estimates for inclusion in the portfolio assessment. More information on user-defined measures can be found in Step 2 of the buildings emission reduction guidance. The output of this tool is a prioritized set of activities that can help the agency to achieve its greenhouse gas reduction targets most cost-effectively.

  3. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Anderson, J. (Ambien Climate Technologies), 2003. Personalon climate change mitigation technology alternatives fromregrets” climate change mitigation technologies – where the

  4. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H. (Frederick County, MD)

    2001-06-12

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  5. 300 Area Building Retention Evaluation Mitigation Plan

    SciTech Connect (OSTI)

    D. J. McBride

    2007-07-03

    Evaluate the long-term retention of several facilities associated with the PNNL Capability Replacement Laboratory and other Hanfor mission needs. WCH prepared a mitigation plan for three scenarios with different release dates for specific buildings. The evaluations present a proposed plan for providing utility services to retained facilities in support of a long-term (+20 year) lifespan in addition to temporary services to buildings with specified delayed release dates.

  6. Property:EnvironmentalMitigation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation, searchEnvironmentalMitigation Jump to: navigation, search

  7. Journal of Wildlife Diseases, 39(3), 2003, pp. 712717 Wildlife Disease Association 2003

    E-Print Network [OSTI]

    Gompper, Matthew E.

    37996, USA; 3 New York State Museum, CEC 3140, Albany, New York 12230, USA; 4 Wildlife Conservation is important for understanding coyote pop- ulation limitation and understanding po- tential risks that coyote

  8. White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.

    SciTech Connect (OSTI)

    Mallette, Christine [Oregon Department of Fish and Wildlife

    2009-07-28

    We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

  9. WFS 350 -WILDLIFE DAMAGE MANAGEMENT SPRING 2004

    E-Print Network [OSTI]

    Muller, Lisa

    . Omaha, Nebraska, USA. Available on-line at: www.ianr.unl.edu/wildlife/solutions/handbook the lecture material, field trips, and assigned readings. General Reports: You must locate one current (no.). The written report will be graded as follows: 1. Report format, article selection, etc. 20 pts. 2. Writing

  10. WILDLIFE HABITAT RELATIONS AND HABITAT FRAGMENTATION

    E-Print Network [OSTI]

    in California's Hardwood Rangelands1 Barrett A. Garrison2 Frank W. Davis3 The nine papers in the following. Tech. Rep. PSW-GTR-160. 1997. Garrison and Davis Brief Overview of the Session on Wildlife Habitat and described a coordinated regional planning effort to conserve remaining habitats. Garrison and Standiford

  11. Modeling radio communication blackout and blackout mitigation in hypersonic vehicles

    E-Print Network [OSTI]

    Kundrapu, Madhusudhan; Beckwith, Kristian; Stoltz, Peter; Shashurin, Alexey; Keidar, Michael

    2014-01-01

    A procedure for the modeling and analysis of radio communication blackout of hypersonic vehicles is presented. A weakly ionized plasma generated around the surface of a hypersonic reentry vehicle traveling at Mach 23 was simulated using full Navier-Stokes equations in multi-species single fluid form. A seven species air chemistry model is used to compute the individual species densities in air including ionization - plasma densities are compared with experiment. The electromagnetic wave's interaction with the plasma layer is modeled using multi-fluid equations for fluid transport and full Maxwell's equations for the electromagnetic fields. The multi-fluid solver is verified for a whistler wave propagating through a slab. First principles radio communication blackout over a hypersonic vehicle is demonstrated along with a simple blackout mitigation scheme using a magnetic window.

  12. Global climate change and the mitigation challenge

    SciTech Connect (OSTI)

    Frank Princiotta

    2009-10-15

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO{sub 2}), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8{sup o}C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO{sub 2} emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5{sup o}C in 2100, the recent annual 3% CO{sub 2} emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required. 20 refs., 18 figs., 4 tabs.

  13. Webinar: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Video recording of the Fuel Cell Technologies Office webinar, Micro-Structural Mitigation Strategies for PEM Fuel Cells, originally presented on November 19, 2013.

  14. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) (Redirected from Monitoring and Assessment of Greenhouse Gas Emissions and...

  15. Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided...

    Open Energy Info (EERE)

    Costa Rica-Mitigation of Greenhouse Gas Emissions through Avoided Deforestation of Tropical Rainforests on Privately-owned Lands in High Conservation Value Areas Jump to:...

  16. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation...

    Open Energy Info (EERE)

    Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) Jump to: navigation, search Logo: Monitoring and Assessment of Greenhouse Gas...

  17. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage 2012 DOE Hydrogen and Fuel...

  18. Passive injection: A strategy for mitigating reservoir pressurization...

    Office of Scientific and Technical Information (OSTI)

    Passive injection: A strategy for mitigating reservoir pressurization, induced seismicity and brine migration in geologic CO2 storage Citation Details In-Document Search Title:...

  19. Appropriate Use of Mitigation and Monitoring and Clarifying the...

    Energy Savers [EERE]

    the appropriate use of mitigated "Findings of No Significant Impact" under the National Environmental Policy Act (NEPA). The guidance explains the requirements of NEPA and the...

  20. Blast damage mitigation of steel structures from near- contact charges

    E-Print Network [OSTI]

    Wolfson, Janet Crumrine

    2008-01-01

    OF CALIFORNIA, SAN DIEGO Blast Damage Mitigation of Steel35  Damage Levels Observed in LaboratoryFigure 3.34: Progression of damage for a Ballistic Loading

  1. Indonesia-Bringing a Range of Supported Mitigation Activities...

    Open Energy Info (EERE)

    Indonesia-Bringing a Range of Supported Mitigation Activities in Selected Countries to the Next Level Jump to: navigation, search Name Indonesia-Bringing a Range of Supported...

  2. FAO Global Inventory of Agricultural Mitigation Projects in Developing...

    Open Energy Info (EERE)

    Agricultural Mitigation Projects in Developing Countries AgencyCompany Organization: Food and Agriculture Organization of the United Nations Sector: Land Focus Area: Agriculture...

  3. Agricultural Technologies for Climate Change Mitigation and Adaptation...

    Open Energy Info (EERE)

    Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovations and Technology Diffusion Jump to: navigation, search Tool...

  4. Financing Climate Adaptation and Mitigation in Rural Areas of...

    Open Energy Info (EERE)

    Financing Climate Adaptation and Mitigation in Rural Areas of Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Financing Climate Adaptation and...

  5. China-Transportation Demand Management in Beijing: Mitigation...

    Open Energy Info (EERE)

    China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing -...

  6. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  7. Natural hazard phenomena and mitigation -- 1995; PVP-Volume 308...

    Office of Scientific and Technical Information (OSTI)

    hazard phenomena and mitigation -- 1995; PVP-Volume 308. DOE facilities programsdesign criteria and methods for: Impact, wave, high frequency, and seismic loads Citation...

  8. After the Conservation Reserve Program: Economic Decisions with Wildlife in Mind 

    E-Print Network [OSTI]

    Cearley, Kenneth A.; Amosson, Stephen H.; Warminski , Patrick; Jones, DeDe

    2009-04-07

    and includes drilling, casing, capping, gravel, packing, and slush pit digging. Windmill expenses include mill, tower, sucker rod, pipe removal and replacement, and cylinder pump. Storage facilities are not included in the estimate. In some areas 4 gallons... with conventional agricultural operations. Using partial budget analysis for planning will help de- termine if a landowner?s return on investment is greater than the proposed expenditures. Implementing a sound wildlife management plan that fits landowner...

  9. Linking Statewide Connectivity Planning to Highway Mitigation: Taking the Next Step in Linking

    E-Print Network [OSTI]

    Kintsch, Julia

    2007-01-01

    School launched the Citizen Science Wildlife Monitoringof this structure. The Citizen Science Program has been

  10. Role of domestic dogs in diseases of significance to humans and wildlife health in central Chile 

    E-Print Network [OSTI]

    Acosta-Jamett, Gerardo

    2010-01-01

    The higher proximity among humans, domestic animals and wildlife favours disease spill-over both from wildlife to domestic animals and vice versa, which is a potential risk for the extinction of wildlife populations and ...

  11. California Department of Fish and Wildlife: Federal Energy Regulatory...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife: Federal Energy Regulatory Commission (FERC) Hydroelectric Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  12. Bioenergy Technologies Office: Association of Fish and Wildlife...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy Bioenergy Technologies Office Association of Fish & Wildlife Agencies Agricultural Conservation Committee Meeting March 29, 2013 Kristen Johnson...

  13. California Department of Fish and Wildlife Environmental Review...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife Environmental Review and Permitting Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California...

  14. United States Fish and Wildlife Service - Habitat Conservation...

    Open Energy Info (EERE)

    United States Fish and Wildlife Service - Habitat Conservation Plans Under the Endangered Species Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  15. California Department of Fish and Wildlife Consistency Determination...

    Open Energy Info (EERE)

    California Department of Fish and Wildlife Consistency Determination Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: California Department of...

  16. BPA celebrates protection of Lemhi River fish and wildlife habitat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates-protection-of-Lemhi-River-fish-and-wildlife-habitat Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives...

  17. Nevada Department of Wildlife Energy Planning and Conservation...

    Open Energy Info (EERE)

    Nevada Department of Wildlife Energy Planning and Conservation Fund Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Department of...

  18. The Wildlife Society (TWS) GIS Annual Remote Sensing Meeting

    E-Print Network [OSTI]

    Dwyer, Chris

    1996-01-01

    Secretary/Treasurer, TWS GIS & Remote Sensing Working Group.The Wildlife Society (TWS) GIS Annual Remote Sensing Meetinghosted a special meeting of GIS and remote sensing interests

  19. International perspectives on mitigating laboratory biorisks.

    SciTech Connect (OSTI)

    Pinard, William J.; Salazar, Carlos A.

    2010-11-01

    The International Perspectives on Mitigating Laboratory Biorisks workshop, held at the Renaissance Polat Istanbul Hotel in Istanbul, Republic of Turkey, from October 25 to 27, 2010, sought to promote discussion between experts and stakeholders from around the world on issues related to the management of biological risk in laboratories. The event was organized by Sandia National Laboratories International Biological Threat Reduction program, on behalf of the US Department of State Biosecurity Engagement Program and the US Department of Defense Cooperative Biological Engagement Program. The workshop came about as a response to US Under Secretary of State Ellen O. Tauscher's statements in Geneva on December 9, 2009, during the Annual Meeting of the States Parties to the Biological Weapons Convention (BWC). Pursuant to those remarks, the workshop was intended to provide a forum for interested countries to share information on biorisk management training, standards, and needs. Over the course of the meeting's three days, participants discussed diverse topics such as the role of risk assessment in laboratory biorisk management, strategies for mitigating risk, measurement of performance and upkeep, international standards, training and building workforce competence, and the important role of government and regulation. The meeting concluded with affirmations of the utility of international cooperation in this sphere and recognition of positive prospects for the future. The workshop was organized as a series of short presentations by international experts on the field of biorisk management, followed by breakout sessions in which participants were divided into four groups and urged to discuss a particular topic with the aid of a facilitator and a set of guiding questions. Rapporteurs were present during the plenary session as well as breakout sessions and in particular were tasked with taking notes during discussions and reporting back to the assembled participants a brief summary of points discussed. The presentations and breakout sessions were divided into five topic areas: 'Challenges in Biorisk Management,' 'Risk Assessment and Mitigation Measures,' 'Biorisk Management System Performance,' 'Training,' and 'National Oversight and Regulations.' The topics and questions were chosen by the organizers through consultation with US Government sponsors. The Chattham House Rule on non-attribution was in effect during question and answer periods and breakout session discussions.

  20. Safety Evaluation for Packaging 101-SY Hydrogen Mitigation Mixer Pump package

    SciTech Connect (OSTI)

    Carlstrom, R.F.

    1994-10-05

    This Safety Evaluation for Packaging (SEP) provides analysis and considered necessary to approve a one-time transfer of the 101-SY Hydrogen Mitigation Mixer Pump (HMMP). This SEP will demonstrate that the transfer of the HMMP in a new shipping container will provide an equivalent degree of safety as would be provided by packages meeting US Department of Transportation (DOT)/US Nuclear Regulatory Commission (NRC) requirements. This fulfills onsite, transportation requirements implemented by WHC-CM-2-14.

  1. Sagebrush Flat Wildlife Area 2008 Annual Report.

    SciTech Connect (OSTI)

    Peterson, Dan [Washington Department of Fish and Wildlife

    2008-11-03

    The Sagebrush Flat Wildlife Area is a 12,718 acre complex located in Douglas County, Washington. Four distinct management units make up the area: Bridgeport, Chester Butte, Dormaier and Sagebrush Flat. The four Units are located across a wide geographic area within Douglas County. The Units are situated roughly along a north/south line from Bridgeport in the north to the Douglas/Grant county line in the south, 60 miles away. The wildlife area was established to conserve and enhance shrubsteppe habitat for the benefit shrubsteppe obligate and dependent wildlife species. In particular, the Sagebrush Flat Wildlife Area is managed to promote the recovery of three state-listed species: Columbian sharp-tailed grouse (threatened), greater sage grouse (threatened) and the pygmy rabbit (endangered). The US Fish and Wildlife Service also list the pygmy rabbit as endangered. Wildlife area staff seeded 250 acres of old agricultural fields located on the Sagebrush Flat, Dormaier and Chester Butte units. This has been a three project to reestablish high quality shrubsteppe habitat on fields that had either been abandoned (Dormaier) or were dominated by non-native grasses. A mix of 17 native grasses and forbs, most of which were locally collected and grown, was used. First year maintenance included spot spraying Dalmatian toadflax on all sites and mowing annual weeds to reduce competition. Photo points were established and will be integral to long term monitoring and evaluation. Additional monitoring and evaluation will come from existing vegetation transects. This year weed control efforts included spot treatment of noxious weeds, particularly Dalmatian toadflax, in previously restored fields on the Bridgeport Unit (150 acres). Spot treatment also took place within fields scheduled for restoration (40 acres) and in areas where toadflax infestations are small and relatively easily contained. Where toadflax is so widespread that chemical treatment would be impractical, we use the bioagent Mecinus janthinus, available through Professor Gary Piper of Washington State University. This year we released 4,000 M. janthinus on the Bridgeport Unit at 6 separate locations. Since 2002 we have released approximately 14,400 of these insects, 80% of these on the Bridgeport Unit. Additional weed control activities included mowing and spot spraying more than 32 miles of roads, cutting and removal of annual weeds within fenced deer exclosures. We upgraded the solar powered irrigation system that supplies water to a stand of water birch trees planted in 2002. Wildlife area staff designed and built a new solar array and installed a higher capacity pump. The increased capacity will ensure that these trees receive adequate water through the hot summer months and allow us to create at least one additional stand. This project is an important part in our effort to expand the available winter habitat for sharp-tailed grouse on the Bridgeport Unit. Maintenance of fences, parking areas and roads continued during throughout the year. Two parking areas, at Chester Butte and Bridgeport, were graded and additional gravel added. Roads on the Bridgeport Unit were graded and repaired following spring runoff. Trespass and dumping issues have increased in recent years on the Bridgeport Unit. To address these problems we constructed four steel gates at access points on this unit. Each gate is tubular steel attached to 8-inch diameter steel posts, 10 feet long that are cemented into the ground. Two gates allow access to BPA substation facilities and power-line right-of ways so placement, construction and locking issues had to be coordinated with BPA's Real Estate staff in Spokane. Environmental Compliance Documentation issues were addressed again this year. This process has the potential to cause delays the completion of projects within the fiscal year. With this in mind and an eye toward the future, we requested that several projects planned for the coming years be surveyed this year. Beginning in August of 2007, area staff worked with BPA staff to identify work elements

  2. Mitigation of Malicious Attacks on Networks

    E-Print Network [OSTI]

    Schneider, Christian M; Andrade, Jose S; Havlin, Shlomo; Herrmann, Hans J; 10.1073/pnas.1009440108

    2011-01-01

    Terrorist attacks on transportation networks have traumatized modern societies. With a single blast, it has become possible to paralyze airline traffic, electric power supply, ground transportation or Internet communication. How and at which cost can one restructure the network such that it will become more robust against a malicious attack? We introduce a unique measure for robustness and use it to devise a method to mitigate economically and efficiently this risk. We demonstrate its efficiency on the European electricity system and on the Internet as well as on complex networks models. We show that with small changes in the network structure (low cost) the robustness of diverse networks can be improved dramatically while their functionality remains unchanged. Our results are useful not only for improving significantly with low cost the robustness of existing infrastructures but also for designing economically robust network systems.

  3. Mitigation of radiation induced surface contamination

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA); Stulen, Richard H. (Livermore, CA)

    2003-01-01

    A process for mitigating or eliminating contamination and/or degradation of surfaces having common, adventitious atmospheric contaminants adsorbed thereon and exposed to radiation. A gas or a mixture of gases is introduced into the environment of a surface(s) to be protected. The choice of the gaseous species to be introduced (typically a hydrocarbon gas, water vapor, or oxygen or mixtures thereof) is dependent upon the contaminant as well as the ability of the gaseous species to bind to the surface to be protected. When the surface and associated bound species are exposed to radiation reactive species are formed that react with surface contaminants such as carbon or oxide films to form volatile products (e.g., CO, CO.sub.2) which desorb from the surface.

  4. U.S. Agriculture's Role Greenhouse Gas Emission Mitigation World

    E-Print Network [OSTI]

    McCarl, Bruce A.

    U.S. Agriculture's Role in a Greenhouse Gas Emission Mitigation World: An Economic Perspective the IMPAC project. #12;Abstract International agreements are likely to stimulate greenhouse gas mitigation Words Agricultural Sinks, Emissions Trading, Greenhouse Gas Emission Reductions, Kyoto Protocol #12

  5. Pre-Disaster Mitigation Plan Montana State University -Bozeman

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ) - Bozeman PDM Plan identifies the potential hazards that the campus faces and assesses the vulnerability Projects Database and FCI Reports as they relate to life safety issues #12;Pre-Disaster Mitigation Plan-structural mitigation practices. Install seismic shut-off valves on buildings with natural gas. Develop plans

  6. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect (OSTI)

    Gresham, Doug [Otak, Inc.

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  7. Mitigation of Sounding Pilot Contamination in Massive MIMO Systems

    E-Print Network [OSTI]

    Bahk, Saewoong

    Mitigation of Sounding Pilot Contamination in Massive MIMO Systems Taeseop Lee, Hyung-Sin Kim contamination of cell edge users or a lowered number of serviced users in a multi-cell scenario. In this paper the quality of service (QoS) of mobile users by mitigating the pilot contamination as well as minimize

  8. Numerical modelling of tsunami mitigation by mangroves Putu Harry Gunawan

    E-Print Network [OSTI]

    Mancini, Simona

    Numerical modelling of tsunami mitigation by mangroves Putu Harry Gunawan LAMA (Laboratoire d'Analyse et de Mathmatiques Appliques) UPEM putu-harry.gunawan@univ.paris-est.fr Abstract Figure 1: Mangrove-Tsunami Model. The role of mangroves (coastal forests) in the mitigation of tsunami impacts is a debated topic

  9. Innovative Grid Technologies Applied to Bioinformatics and Hurricane Mitigation

    E-Print Network [OSTI]

    Sadjadi, S. Masoud

    Innovative Grid Technologies Applied to Bioinformatics and Hurricane Mitigation Rosa BADIA a Gargi and hurricane mitigation. This paper describes some of these innovative technologies, such as the support to provide solutions to pharmagenomics problems and hurricane prediction ensemble simulations. Keywords. Meta

  10. U.S. Fish and Wildlife Service Moves toward Net-Zero Buildings (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This fact sheet is an overview of the U.S. Fish and Wildlife Service's net-zero energy visitor's center at the Assabet River National Wildlife.

  11. The Muzzi marsh: a case study and analysis of wetland restoration decision-making in San Francisco Bay 

    E-Print Network [OSTI]

    Brah, William Joseph

    1982-01-01

    were subject to the requirements of the Act. As to these, the wildlife agen- cies can recommend that the requested permit be denied or that app1icants develop mitigation plans to prevent or lessen damage to wetland habitat and to improve habitat... have learned that they have a better chance in securing approval of a permit if they propose mitigation or restoration programs. Others coun- ter that it is not fair to impose extensive restoration requirements on permit applicants when...

  12. List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services in Texas is divided into two groups

    E-Print Network [OSTI]

    List of Texas Fuel Mitigation Vendors This list of fuel mitigation vendors that offer services as a service to communities and landowners seeking assistance with fuel mitigation practices on their land/5/2015 #12;List of Fuel Mitigation Vendorscontinued Texas A&M Forest Service Austin Land Service Austin Wod

  13. The role of US agricultural and forest activities in global climate change mitigation 

    E-Print Network [OSTI]

    Zhu, En

    2009-05-15

    cost strategies to help with this mitigation principally through carbon sequestration but must be competitive with mitigation costs in the rest of the economy. A general equilibrium approach is used herein to evaluate the role of AF mitigation...

  14. 2011Columbia River Basin Fish and Wildlife Program

    E-Print Network [OSTI]

    2011Columbia River Basin Fish and Wildlife Program Costs Report AnnuAl RePoRt to the noRthWest Gove | Northwest Power & Conservation Council Document 2012-11 | September 2012 #12;FIsh & WIlDlIFe Costs ANNUAL REPORt tO thE NORthWESt GOvERNORS costs 08

  15. APPENDIX C AEERPS FISH AND WILDLIFE PROGRAM December 21, 1994

    E-Print Network [OSTI]

    and wildlife affected by the development, operation, and management of [hydropower] facilities while assuring that have significant capital and/or operating costs that would be borne, at least in part, by the power that the Council would develop the fish and wildlife program immediately after passage of the Act.5 In contrast

  16. Wind Energy Development and its Impacts on Wildlife

    E-Print Network [OSTI]

    Gray, Matthew

    PotentialWind Energy Resource Potential New U.S. Generating CapacityNew U.S. Generating Capacity Wind energy1 Wind Energy Development and its Impacts on Wildlife Carrie Lowe, M.S. Candidate UniversityOutline · Introduction · Wind energy in the U.S. I t ildlif· Impacts on wildlife · Guidelines · Future directions

  17. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  18. Wildlife and Wind Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: EnergyMaryland:MeadowWikiSysop's blog HomeWildlife and Wind Energy

  19. Fish and Wildlife Service | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport Jump to: navigation,FirstGeoTherm GmbH JumpFishWildlife

  20. World Wildlife Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: navigation, searchWorld FuelWildlife Fund Jump

  1. Climate Change Mitigation Through Land-Use Measures in the Agriculture...

    Open Energy Info (EERE)

    Climate Change Mitigation Through Land-Use Measures in the Agriculture and Forestry Sectors Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Change Mitigation...

  2. Analysis of blast mitigation strategies exploiting fluid-structure interaction

    E-Print Network [OSTI]

    Kambouchev, Nayden Dimitrov, 1980-

    2007-01-01

    Blast attacks have become the most pervasive threat in both civil and military contexts. However, there is currently a limited understanding of the mechanisms of loading, damage and failure of structures, and injury to ...

  3. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. David J. Bayless; Dr. Morgan Vis; Dr. Gregory Kremer; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-01-16

    This is the first quarterly report of the project Enhanced Practical Photosynthetic CO{sub 2} Mitigation. The official project start date, 10/02/2000, was delayed until 10/31/2000 due to an intellectual property dispute that was resolved. However, the delay forced a subsequent delay in subcontracting with Montana State University, which then delayed obtaining a sampling permit from Yellowstone National Park. However, even with these delays, the project moved forward with some success. Accomplishments for this quarter include: Culturing of thermophilic organisms from Yellowstone; Testing of mesophilic organisms in extreme CO{sub 2} conditions; Construction of a second test bed for additional testing; Purchase of a total carbon analyzer dedicated to the project; Construction of a lighting container for Oak Ridge National Laboratory optical fiber testing; Modified lighting of existing test box to provide more uniform distribution; Testing of growth surface adhesion and properties; Experimentation on water-jet harvesting techniques; and Literature review underway regarding uses of biomass after harvesting. Plans for next quarter's work and an update on the project's web page are included in the conclusions.

  4. Greenhouse gas mitigation options for Washington State

    SciTech Connect (OSTI)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  5. UNDERSTANDING METHANE EMISSIONS SOURCES AND VIABLE MITIGATION MEASURES IN THE NATURAL GAS TRANSMISSION SYSTEMS: RUSSIAN AND U.S. EXPERIENCE

    SciTech Connect (OSTI)

    Ishkov, A.; Akopova, Gretta; Evans, Meredydd; Yulkin, Grigory; Roshchanka, Volha; Waltzer, Suzie; Romanov, K.; Picard, David; Stepanenko, O.; Neretin, D.

    2011-10-01

    This article will compare the natural gas transmission systems in the U.S. and Russia and review experience with methane mitigation technologies in the two countries. Russia and the United States (U.S.) are the world's largest consumers and producers of natural gas, and consequently, have some of the largest natural gas infrastructure. This paper compares the natural gas transmission systems in Russia and the U.S., their methane emissions and experiences in implementing methane mitigation technologies. Given the scale of the two systems, many international oil and natural gas companies have expressed interest in better understanding the methane emission volumes and trends as well as the methane mitigation options. This paper compares the two transmission systems and documents experiences in Russia and the U.S. in implementing technologies and programs for methane mitigation. The systems are inherently different. For instance, while the U.S. natural gas transmission system is represented by many companies, which operate pipelines with various characteristics, in Russia predominately one company, Gazprom, operates the gas transmission system. However, companies in both countries found that reducing methane emissions can be feasible and profitable. Examples of technologies in use include replacing wet seals with dry seals, implementing Directed Inspection and Maintenance (DI&M) programs, performing pipeline pump-down, applying composite wrap for non-leaking pipeline defects and installing low-bleed pneumatics. The research methodology for this paper involved a review of information on methane emissions trends and mitigation measures, analytical and statistical data collection; accumulation and analysis of operational data on compressor seals and other emission sources; and analysis of technologies used in both countries to mitigate methane emissions in the transmission sector. Operators of natural gas transmission systems have many options to reduce natural gas losses. Depending on the value of gas, simple, low-cost measures, such as adjusting leaking equipment components, or larger-scale measures, such as installing dry seals on compressors, can be applied.

  6. Appendix A -1 Appendix A: The Columbia River Basin Fish and Wildlife

    E-Print Network [OSTI]

    Appendix A - 1 Appendix A: The Columbia River Basin Fish and Wildlife Program The 2000 Fish and Wildlife Program is the fifth revision of the Columbia River Basin Fish and Wildlife Program since the NPCC principles. The 2000 NPCC Fish and Wildlife Program marks a significant departure from past versions, which

  7. iJanuary 2001 Department of Fish and Wildlife Washington State Elk Herd Plan

    E-Print Network [OSTI]

    iJanuary 2001 Department of Fish and Wildlife Washington State Elk Herd Plan BLUE MOUNTAINS ELK 98501-1091 Prepared by Pat E. Fowler, District Wildlife Biologist January 2001 Director, Washington Department of Fish and Wildlife Date #12;iiJanuary 2001 Department of Fish and Wildlife TABLE OF CONTENTS

  8. Management of wildlife causing damage at Argonne National Laboratory-East, DuPage County, Illinois

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    The DOE, after an independent review, has adopted an Environmental Assessment (EA) prepared by the US Department of Agriculture (USDA) which evaluates use of an Integrated Wildlife Damage Management approach at Argonne National Laboratory-East (ANL-E) in DuPage County, Illinois (April 1995). In 1994, the USDA issued a programmatic Environmental Impact Statement (EIS) that covers nationwide animal damage control activities. The EA for Management of Wildlife Causing Damage at ANL-E tiers off this programmatic EIS. The USDA wrote the EA as a result of DOE`s request to USDA to prepare and implement a comprehensive Wildlife Management Damage Plan; the USDA has authority for animal damage control under the Animal Damage Control Act of 1931, as amended, and the Rural Development, Agriculture and Related Agencies Appropriations Act of 1988. DOE has determined, based on the analysis in the EA, that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an EIS is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  9. Impacts of greenhouse gas mitigation policies on agricultural land

    E-Print Network [OSTI]

    Wang, Xiaodong, Ph. D. Massachusetts Institute of Technology

    2008-01-01

    Greenhouse gas (GHG) emissions are widely acknowledged to be responsible for much of the global warming in the past century. A number of approaches have been proposed to mitigate GHG emissions. Since the burning of ...

  10. Local Promise for Climate Mitigation: An Empirical Assessment

    E-Print Network [OSTI]

    Feiock, Richard C.; Outka, Uma

    2012-01-01

    This interdisciplinary work contributes empirical grounding to the growing literature in law and public policy on local governments and climate mitigation. Much of the recent scholarship presents an optimistic view of the potential in local climate...

  11. Gearbox Typical Failure Modes, Detection, and Mitigation Methods (Presentation)

    SciTech Connect (OSTI)

    Sheng, S.

    2014-01-01

    This presentation was given at the AWEA Operations & Maintenance and Safety Seminar and focused on what the typical gearbox failure modes are, how to detect them using detection techniques, and strategies that help mitigate these failures.

  12. Centrifuge Modelling of the Performance of Liquefaction Mitigation Measures for

    E-Print Network [OSTI]

    Centrifuge Modelling of the Performance of Liquefaction Mitigation Measures for Shallow Foundations Centrifuge Stored Angular Momentum Actuator Equivalent Shear Beam Container Automatic Sand Pourer Hostun Sand Methylcellulose 3 #12;Experimental Techniques and Materials 10 m Turner Beam Centrifuge Stored

  13. Introduction to Administrative Programs that Mitigate the Insider Threat

    SciTech Connect (OSTI)

    Gerke, Gretchen K.; Rogers, Erin; Landers, John; DeCastro, Kara

    2012-09-01

    This presentation begins with the reality of the insider threat, then elaborates on these tools to mitigate the insider threat: Human Reliability Program (HRP); Nuclear Security Culture (NSC) Program; Employee Assistance Program (EAP).

  14. 2011 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    West, W. J.; Lucas, J. G.; Gano, K. A.

    2011-11-14

    This report documents the status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 cleanup of National Priorities List waste sites at Hanford. This report contains the vegetation monitoring data that was collected in the spring and summer of 2011 from the River Corridor Closure Contractor’s revegetation and mitigation areas on the Hanford Site.

  15. 2010 River Corridor Closure Contractor Revegetation and Mitigation Monitoring Report

    SciTech Connect (OSTI)

    C. T. Lindsey, A. L. Johnson

    2010-09-30

    This report documents eh status of revegetation projects and natural resources mitigation efforts conducted for remediated waste sites and other activities associated with CERLA cleanup of National Priorities List waste sites at Hanford. This report contains vegetation monitoring data that were collected in the spring and summer of 2010 from the River Corridor Closure Contract’s revegetation and mitigation areas on the Hanford Site.

  16. Release mitigation spray safety systems for chemical demilitarization applications.

    SciTech Connect (OSTI)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  17. A statistical approach to designing mitigation for induced ac voltages

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences, Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines collocated with overhead electric power transmission lines are usually mitigated by means of grounding the pipeline. Maximum effectiveness is obtained when grounds are placed at discrete locations along the pipeline where the peak induced voltages occur. The degree of mitigation achieved is dependent upon the local soil resistivity at these locations. On occasion it may be necessary to employ an extensive distributed grounding system, for example, a parallel buried wire connected to the pipe at periodic intervals. In this situation the a priori calculation of mitigated voltage levels is sometimes made assuming an average value for the soil resistivity. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability upon the predicted mitigated voltage levels is examined. It is found that the predicted levels exhibit a statistical variability which precludes a precise determination of the mitigated voltage levels. Thus, post commissioning testing of the emplaced mitigation system is advisable.

  18. Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

    E-Print Network [OSTI]

    Massive Gas Injection Experiments at JET – Performance and Characterisation of the Disruption Mitigation Valve

  19. An International Environmental Agreement for Space Debris Mitigation Among Asymmetric Nations

    E-Print Network [OSTI]

    Singer, Michael Jay

    2012-01-01

    IEA model . . . . . . . . . . . . . . . . . . . .IEA model framework . . . . . . . . . . . . . . . . . . .Application of IEA Model to Debris Mitigation Elements of

  20. Greenhouse Gas Emissions from Aviation and Marine Transportation: Mitigation Potential and Policies

    E-Print Network [OSTI]

    McCollum, David L; Gould, Gregory; Greene, David L

    2010-01-01

    Aviation and Marine Transportation: Mitigation Potential and Policies Additional optimization of shipping logistics, routing and maintenance

  1. California high speed rail proposal: “High speed rail and wildlife

    E-Print Network [OSTI]

    Wilkerson, Cynthia

    2005-01-01

    Chapter Wildlife and High Speed Rail C ALIFORNIA H IGH SDan Leavitt, California High Speed Rail Authority) AbstractThe California High Speed Rail (HSR) Proposal is in the

  2. Tribal Wildlife Grant (FWS)- Grant Writing Strategy Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prosper Sustainably is hosting a free webinar on July 23, 2014 at 1pm PST that reviews the FWS Tribal Wildlife Grant funding opportunity. During the webinar Josh Simmons, Prosper Sustainably’s...

  3. Wildlife studies on the Hanford Site: 1993 Highlights report

    SciTech Connect (OSTI)

    Cadwell, L.L.

    1994-04-01

    The Pacific Northwest Laboratory (PNL) Wildlife Resources Monitoring Project was initiated by DOE to track the status of wildlife populations to determine whether Hanford operations affected them. The project continues to conduct a census of wildlife populations that are highly visible, economically or aesthetically important, and rare or otherwise considered sensitive. Examples of long-term data collected and maintained through the Wildlife Resources Monitoring Project include annual goose nesting surveys conducted on islands in the Hanford Reach, wintering bald eagle surveys, and fall Chinook salmon redd (nest) surveys. The report highlights activities related to salmon and mollusks on the Hanford Reach of the Columbia River; describes efforts to map vegetation on the Site and efforts to survey species of concern; provides descriptions of shrub-steppe bird surveys, including bald eagles, Canada geese, and hawks; outlines efforts to monitor mule deer and elk populations on the Site; and describes development of a biological database management system.

  4. Native American Fish and Wildlife Society Pacific Region Conference...

    Broader source: Energy.gov (indexed) [DOE]

    Montana Kwa-Taq-Nuk Casino Resort 49708 US-93 Polson, MT 59860 The Native American Fish and Wildlife Society is hosting a two-day conference featuring tribal roundtables on...

  5. Nevada Department of Wildlife Application for Energy Projects...

    Open Energy Info (EERE)

    Nevada Department of Wildlife Application for Energy Projects "Fund for the Recovery of Costs" Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  6. SPECIES PROFILE New Hampshire Wildlife Action PlanA-328

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-328 Federal Listing: Not listed State Listing roost sites, each within rock crevices in outcrops near the base of the Surry Mountain Lake dam

  7. Segmenting participants on nonconsumptive wildlife-related recreation: a comparison of casual wildlife watchers and serious birders 

    E-Print Network [OSTI]

    Cole, James Stuart

    1998-01-01

    birders. For this study, casual wildlife watchers were represented by holders of Texas Conservation Passports and serious birders were represented by member of the American Birding Association. These two subgroups were surveyed using a mail...

  8. PRACTICAL TECHNIQUES FOR VALLEY ELDERBERRY LONGHORN BEETLE MITIGATION1

    E-Print Network [OSTI]

    -24, 1988, Davis, California 2 Resource Ecologist, Jones & Stokes Associates Inc., Sacramento, Calif.; Entomologist, U.S. Fish and Wildlife Service, Sacramento Endangered Species Office, Sacramento Calif of Flood Management, Sacramento Calif.; Owner and Manager, Cornflower Farms, Elk Grove, Calif. The valley

  9. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    SciTech Connect (OSTI)

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which ecological systems are experiencing anthropogenic disturbance and change in structure and function is critical for long term conservation of biotic diversity in the face of changing landscapes and land use. KTOI and the RDRT propose a concept based on incorporating hydrologic, aquatic, and terrestrial components into an operations-based assessment framework to assess ecological losses as shown in Figure E-1.

  10. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2001-10-15

    This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many factors, most significantly the configuration and orientation of the growth surfaces in the bioreactor. For the growth surface subsystem we have identified advantages and disadvantages for several candidate growth surface materials, we have built and tested various ''screen'' systems and fluid delivery systems, and we continue to test compatibility of the candidate materials with the organisms and with the moisture delivery and harvesting system designs. These tests will be ongoing until an ''optimum'' combination of growth surface material/organism type/harvesting system is identified. For the harvesting system, a nozzle-based water jet system has been shown to be effective, but it has disadvantages for the overall system design in terms of space utilization. A streamlined and integrated screen wetting/harvesting system design is currently under development and will be the focus of harvesting system tests in the foreseeable future. This report addresses each of the key project tasks as defined in the statement of work, giving both a summary of key accomplishments over the past year and a plan for future work.

  11. ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION

    SciTech Connect (OSTI)

    Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis; Dr. Michael Prudich; Dr. Keith Cooksey; Dr. Jeff Muhs

    2002-01-15

    This quarterly report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/3/2001 through 1/02/2002. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. Our research team has made significant progress towards completion of our Phase I objectives, and our current efforts remain focused on fulfilling these research objectives in accordance with the project timeline. Overall, we believe that we are on schedule to complete Phase I activities by 10/2002, which is the milestone date from the original project timeline. Specific results and accomplishments for the fourth quarter of 2001 include: (1) New procedures and protocols have been developed to increase the chances of successful implementation in the bioreactor of organisms that perform well in the lab. The new procedures include pre-screening of organisms for adhesion characteristics and a focus on identifying the organisms with maximum growth rate potential. (2) Preliminary results show an increase in adhesion to glass and a decrease in overall growth rates when using growth media prepared with tap water rather than distilled water. (3) Several of the organisms collected from Yellowstone National Park using the new procedures are currently being cultured in preparation for bioreactor tests. (4) One important result from a test of growth surface temperature distribution as a function of gas stream and drip-fluid temperatures showed a high dependence of membrane temperature on fluid temperature, with gas stream temperature having minimal effect. This result indicates that bioreactor growth surface temperatures can be controlled using fluid delivery temperature. The possible implications for implementation of the bioreactor concept are encouraging, since it may be possible to use the bioreactor with very high gas stream temperatures by controlling the temperature of the organisms with the fluid temperature. (5) Investigation of growth surface materials continues, with Omnisil and Scotch Brite emerging as the leading candidates. More investigation of these and other material types is still needed to determine the best material for particular combinations of organisms and harvesting methods. (6) Tests of harvesting methods and harvesting system designs have shown that desirable levels of ''percentage algae removal'' can be achieved for particular organisms and growth surface materials, for example Cyanidium on polyester felt. Additional testing continues to better characterize sensitivity of the ''percentage removal'' to various system design parameters, but these tests have been delayed due to the lack of suitable organisms for the tests. (7) The solar collectors and the pilot-scale bioreactor light distribution panels for the deep-penetration hybrid solar lighting system have been designed. One solar lighting system (solar collector tracking unit, fiber optic light transmission cables, light distribution panels) is almost completely prepared for installation during the next quarter in the pilot scale bioreactor system. (8) Pressure drop results from tests on the enhanced mass transfer CO{sub 2} absorption technique (the translating slug flow reactor) are encouraging, with reasonable values of 2.5 psi maximum over an 11.48 meter distance between pressure taps for test conditions of 0.6 m/sec slug velocity and approximately 10 m/sec gas velocity. Preparations are under way for CO{sub 2} scrubbing tests.

  12. Applied zooarchaeology: the relevance of faunal analysis to

    E-Print Network [OSTI]

    Wolverton, Steve

    rcalrn of modern wildlife management by applying the knowledge it gains from its unique perspcctivcApplied zooarchaeology: the relevance of faunal analysis to wildlife management R. bee Lagman to define the boundaries of biological preserves meant to prescr~~cbiota in perpetuity are all subjects

  13. FISH & WILDLIFE COSTS < 13TH ANNUAL REPORT TO THE NORTHWEST GOVERNORS < PAGE 1 2013 Columbia River Basin

    E-Print Network [OSTI]

    FISH & WILDLIFE COSTS Basin Fish and Wildlife Program Costs Report 13TH ANNUAL REPORT TO THE NORTHWEST GOVERNORS #12;PAGE 2 > 13TH ANNUAL REPORT TO THE NORTHWEST GOVERNORS > FISH & WILDLIFE COSTS 851 S.W. SIXTH AVENUE, SUITE

  14. Detection, Prevention and Mitigation of Cascading Events

    E-Print Network [OSTI]

    minutes. Technical Analysis of the August 14, 2003 Blackout. North American Electric Reliability Council. July 13, 2004. p. 109. Recent blackout events (such as the 1996 Western U.S. events, the 2004 Northeastern disturbance, and the 2004 Italian blackout) have demonstrated the need for new automatic

  15. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, R.P.

    1996-12-24

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water. 3 figs.

  16. Method to prevent/mitigate steam explosions in casting pits

    DOE Patents [OSTI]

    Taleyarkhan, Rusi P. (Knoxville, TN)

    1996-01-01

    Steam explosions can be prevented or mitigated during a metal casting process by the placement of a perforated flooring system in the casting pit. An upward flow of compressed gas through this perforated flooring system is introduced during the casting process to produce a buffer layer between any spilled molten metal and the cooling water in the reservoir. This buffer layer provides a hydrodynamic layer which acts to prevent or mitigate steam explosions resulting from hot, molten metal being spilled into or onto the cooling water.

  17. Enhanced Practical Photosynthetic CO2 Mitigation

    SciTech Connect (OSTI)

    Gregory Kremer; David J. Bayless; Morgan Vis; Michael Prudich; Keith Cooksey; Jeff Muhs

    2006-01-15

    This final report highlights significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation Project during the period from 10/1/2001 through 01/02/2006. As indicated in the list of accomplishments below, our efforts during this project were focused on the selection of candidate organisms and growth surfaces and initiating long-term tests in the bench-scale and pilot-scale bioreactor test systems. Specific results and accomplishments for the program include: (1) CRF-2 test system: (a) Sampling test results have shown that the initial mass of algae loaded into the Carbon Recycling Facility Version 2 (CRF-2) system can be estimated with about 3% uncertainty using a statistical sampling procedure. (b) The pressure shim header pipe insert design was shown to have better flow for harvesting than the drilled-hole design. (c) The CRF-2 test system has undergone major improvements to produce the high flow rates needed for harvesting (as determined by previous experiments). The main changes to the system are new stainless steel header/frame units, with increased flow capacity and a modified pipe-end-sealing method to improve flow uniformity, and installation and plumbing for a new high flow harvesting pump. Qualitative system tests showed that the harvesting system performed wonderfully, cleaning the growth surfaces within a matter of seconds. (d) Qualitative tests have shown that organisms can be repopulated on a harvested section of a bioreactor screen, demonstrating that continuous bioreactor operation is feasible, with continuous cycles of harvesting and repopulating screens. (e) Final preparations are underway for quantitative, long-term tests in the CRF-2 with weekly harvesting. (2) Pilot-scale test system: (a) The construction of the pilot-scale bioreactor was completed, including the solar collector and light distribution system. Over the course of the project, the solar collector used in the light delivery system showed some degradation, but performed well overall. (b) Testing confirmed that algae can be grown in a sustainable fashion in the pilot bioreactor, even with intermittent availability of sunlight. (c) The pilot-scale tests indicated that algal growth rate followed photon delivery during productivity testing. (3) Organisms and Growth Surfaces: (a) The aeration of growth media with 5% CO{sub 2} in air stimulates cyanobacterial growth 10-20 times over that with air alone. It is possible that the rate of the stimulation of cyanobacterial growth in the CRF will be higher because cyanobacteria will be grown as a biofilm. We plan to increase the concentration to 15% CO{sub 2} in air. (b) Tests have shown a doubling time of the cyanobacterial culture of about 7.5 hours with illumination of about 170 {micro}mol m{sup -2} sec{sup -1}. All lower levels of illumination led to a decrease in the cyanobacterial growth rate. (c) Macroscopical and microscopical observations suggest that the culture of this isolate undergoes significant morphological changes after 60-70 hours of incubation in the batch culture mode. First of all, the culture begins to clump. This clumping could lead to the decrease of effective illumination of culture and may reflect a medium alkalinization. (d) Organization of our collection of the thermophilic cyanobacteria isolated from Yellowstone National Park has resulted in 13 unialgal cultures of thermophilic cyanobacteria. (e) A new species (even probably a new genus) of cyanobacteria, 5.2 s. c. 1, isolated from LaDuke Spring in Great Yellowstone Basin, demonstrates an elevated resistance to some compounds of iron. This might be very important for our project, because plant gases may have elevated amount of iron. Our study of the effect of different concentration of FeCl{sub 3}* 6H{sub 2}O on the growth of the 5.2 s.c.1 isolate showed that iron additions stimulated rather then inhibited the growth of the isolate. Because of this we would recommend this isolate for further experiments. (f) The shape of the Chlorogloeopsis siderophila cells (cyanobacteria) was found to be affected b

  18. Using Wildlife Species Richness to Identify Land Protection Priorities in California's Hardwood

    E-Print Network [OSTI]

    . 2 Wildlife Biologist, California Department of Forestry and Fire Protection (CDF), Sacramento; Senior Wildlife Biologist, Jones and Stokes Associates, Inc. Sacramento, California; Operations Research and GIS Specialist, CDF, Sacramento; and GIS Manager, Teale Data Center, Sacramento. Nancy D. Tosta2

  19. Privatization and regulatory oversight of commercial wildlife control activities in the United States 

    E-Print Network [OSTI]

    Lindsey, Kieran J.

    2009-05-15

    Urbanization decreases the amount of natural habitat available to wildlife but some species are able to adapt to and even thrive in human-dominated landscapes. When humans and wildlife live in close proximity the number ...

  20. Nuisance Wildlife Education and Prevention Plan for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Giffen, Neil R [ORNL

    2007-05-01

    This document outlines a plan for management of nuisance wildlife at the Oak Ridge National Laboratory (ORNL). Nuisance wildlife management includes wildlife population control through hunting, trapping, removal, and habitat manipulation; wildlife damage control; and law enforcement. This plan covers the following subjects: (1) roles and responsibilities of individuals, groups, and agencies; (2) the general protocol for reducing nuisance wildlife problems; and (3) species-specific methodologies for resolving nuisance wildlife management issues for mammals, birds, snakes, and insects. Achievement of the objectives of this plan will be a joint effort between the Tennessee Wildlife Resources Agency (TWRA); U. S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS)-Wildlife Services (WS); and ORNL through agreements between TWRA and the U.S. Department of Energy (DOE); DOE and UT-Battelle, LLC; and UT-Battelle, LLC; and USDA, APHIS-WS.

  1. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling...

    Office of Environmental Management (EM)

    Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data The Wind Program hosted a...

  2. PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT

    E-Print Network [OSTI]

    Laughlin, Robert B.

    PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC OF WORLD OIL PRODUCTION III. WHY TRANSITION WILL BE TIME CONSUMING IV. LESSONS FROM PAST EXPERIENCE V REMARKS APPENDICES #12;4 EXECUTIVE SUMMARY The peaking of world oil production presents the U

  3. Planning Tools For Seismic Risk Mitigation. Rules And Applications

    SciTech Connect (OSTI)

    De Paoli, Rosa Grazia

    2008-07-08

    Recently, Italian urban planning research in the field of seismic risk mitigation are renewing. In particular, it promotes strategies that integrate urban rehabilitation and aseismic objectives, and also politicizes that are directed to revitalizes urban systems, coupling physical renewal and socio-economic development.In Italy the first law concerning planning for seismic mitigation dates back 1974, the law n. 64 'Regulation for buildings with particular rules for the seismic areas' where the rules for buildings in seismic areas concerning also the local hazard. This law, in fact, forced the municipalities to acquire, during the formation of the plans, a preventive opinion of compatibility between planning conditions and geomorphology conditions of the territory. From this date the conviction that the seismic risk must be considered inside the territorial planning especially in terms of strategies of mitigation has been strengthened.The town planners have started to take an interest in seismic risk in the [80]s when the Irpinia's earthquake took place. The researches developed after this earthquake have established that the principal cause of the collapse of buildings are due to from the wrong location of urban settlements (on slopes or crowns) After Irpinia's earthquake the first researches on seismic risk mitigation, in particular on the aspects related to the hazards and to the urban vulnerability were made.

  4. COMMUNICATION VULNERABILITIES AND MITIGATIONS IN WIND POWER SCADA SYSTEMS

    E-Print Network [OSTI]

    1 COMMUNICATION VULNERABILITIES AND MITIGATIONS IN WIND POWER SCADA SYSTEMS American Wind Energy/ Abstract This paper focuses on securing wind power Supervisory Control And Data Acquisition (SCADA) systems security vulnerabilities. To address these new vulnerabilities in wind power SCADA systems, we apply

  5. Lesson Summary Students will learn about a mitigation process

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    -Offs The Designed World Energy Sources and Uses NSES Science Standards Unifying Concepts and Processes Systems The Carbon Mitigation Initiative is a joint project of Princeton University, BP, and Ford Motor Company of atmospheric carbon dioxide over pre-industrial levels. The following pages contain: · An introduction

  6. The Role of China in Mitigating Climate Change

    E-Print Network [OSTI]

    Paltsev, S.

    We explore short- and long-term implications of several energy scenarios of China’s role in efforts to mitigate global climate risk. The focus is on the impacts on China’s energy system and GDP growth, and on global climate ...

  7. Interference Mitigation in Femtocell Network Using Anonymous Author(s)

    E-Print Network [OSTI]

    Freitas, Nando de

    the power adaptation process of the FUEs and MUE to be a discrete multi agent Markov decision problem 050 051 052 053 Interference Mitigation in Femtocell Network Using Q-learning Anonymous Author problems is the so-called co-tier and cross-tier interference caused by the new femtocell network layer

  8. How can cities mitigate and adapt to climate change?

    E-Print Network [OSTI]

    Hunt, Julian

    in the follow-up to the World Summit on Sustainable Development held in Johannesburg in August 2002 change can be partially mitigated if the world's big cities sub- stantially reduce their environmental impact. Consequently, it is only through transformation of their infrastructure, especially transport

  9. Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM)

    E-Print Network [OSTI]

    MacDonald, Lee

    Center for Greenhouse Gas Mitigation through Natural Resource Management (CGGM) NREL Scientists Ngugi, Gabe Olchin, Catherine Stewart Summary Greenhouse gas (GHG) emissions and climate change pose one-induced warming of the planet. Hence, improved management practices are essential for reducing greenhouse gas (CO2

  10. Mitigating Market Power in Deregulated Electricity Markets Seth Blumsack1

    E-Print Network [OSTI]

    Blumsack, Seth

    or transmission, will increase costs past the point of efficiency savings from restructuring. Additional University Abstract Conventional measures of market structure used by economists, such as the Herfindahl will likely decrease system operating efficiency. Long-term contracts will not mitigate market power unless

  11. GNSS Multipath Mitigation using High-Frequency Antenna Motion

    E-Print Network [OSTI]

    Psiaki, Mark L.

    GNSS Multipath Mitigation using High- Frequency Antenna Motion Tunc Ertan, Mark L. Psiaki, Brady W. O'Hanlon, Richard A. Merluzzi and Steven P. Powell, Cornell University, Ithaca, NY BIOGRAPHIES Tunc interests are in the areas of GNSS technologies, and nonlinear estimation and filtering. Mark L. Psiaki

  12. 1999 Leak Detection and Monitoring and Mitigation Strategy Update

    SciTech Connect (OSTI)

    OHL, P.C.

    1999-09-23

    This document is a complete revision of WHC-SD-WM-ES-378, Rev 1. This update includes recent developments in Leak Detection, Leak Monitoring, and Leak Mitigation technologies, as well as, recent developments in single-shell tank retrieval technologies. In addition, a single-shell tank retrieval release protection strategy is presented.

  13. Economic Consideration of Mitigation of Foreign Animal Disease Introduction *

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Economic Consideration of Mitigation of Foreign Animal Disease Introduction * Levan Elbakidze, Bruce A. McCarl Department of Agricultural Economics National Center for Foreign Animal and Zoonotic Disease Defense (FAZDD), Texas A&M University, College Station TX, USA The economic implications

  14. Mitigating Cascading Failures in Interdependent Power Grids and Communication Networks

    E-Print Network [OSTI]

    Hay, David

    -time monitoring and rapid control decisions for mitigating failures led to a catastrophic blackout which affected 50 million people in Northeast Amer- ica. According to the final report of the 2003 blackout [6 than 5 minutes and led to a full blackout in the Northeast United States and parts of Canada

  15. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    SciTech Connect (OSTI)

    Newman, David E [University of Alaska; Carreras, Benjamin A [ORNL; Lynch, Vickie E [ORNL; Dobson, Ian [University of Wisconsin, Madison

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system to a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.

  16. SEMIACTIVE CONTROL OF CIVIL STRUCTURES FOR NATURAL HAZARD MITIGATION

    E-Print Network [OSTI]

    Spencer Jr., Billie F.

    will investigate innovative smart structures, including the seismic protection of buildings and the mitigation of these smart structures, identifying viable semiactive control strategies, assessing the mer- its building control is shown to be a viable method to protect tall buildings from seismic excitation. Various

  17. Sensitivity of climate mitigation strategies to natural disturbances

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

    2013-02-19

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

  18. DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION

    SciTech Connect (OSTI)

    WHYTE, DG; JERNIGAN, TC; HUMPHREYS, DA; HYATT, AW; LASNIER, CJ; PARKS, PB; EVANS, TE; TAYLOR, PL; KELLMAN, AG; GRAY, DS; HOLLMANN, EM

    2002-10-01

    OAK A271 DISRUPTION MITIGATION WITH HIGH-PRESSURE NOBLE GAS INJECTION. High-pressure gas jets of neon and argon are used to mitigate the three principal damaging effects of tokamak disruptions: thermal loading of the divertor surfaces, vessel stress from poloidal halo currents and the buildup and loss of relativistic electrons to the wall. The gas jet penetrates as a neutral species through to the central plasma at its sonic velocity. The injected gas atoms increase up to 500 times the total electron inventory in the plasma volume, resulting in a relatively benign radiative dissipation of >95% of the plasma stored energy. The rapid cooling and the slow movement of the plasma to the wall reduce poloidal halo currents during the current decay. The thermally collapsed plasma is very cold ({approx} 1-2 eV) and the impurity charge distribution can include > 50% fraction neutral species. If a sufficient quantity of gas is injected, the neutrals inhibit runaway electrons. A physical model of radiative cooling is developed and validated against DIII-D experiments. The model shows that gas jet mitigation, including runaway suppression, extrapolates favorably to burning plasmas where disruption damage will be more severe. Initial results of real-time disruption detection triggering gas jet injection for mitigation are shown.

  19. Short communication Buried relic seawall mitigates Hurricane Sandy's impacts

    E-Print Network [OSTI]

    Lynett, Patrick

    Short communication Buried relic seawall mitigates Hurricane Sandy's impacts Jennifer L. Irish a Accepted 6 June 2013 Available online xxxx Keywords: Hurricanes Storm surge Waves Storm damage Seawalls of Hurricane Sandy revealed clear differences in patterns of the impact between two neighboring boroughs along

  20. Mitigating Climate Change with Managed Forests: Balancing Expectations,

    E-Print Network [OSTI]

    Vermont, University of

    Mitigating Climate Change with Managed Forests: Balancing Expectations, Opportunity, and Risk David and biomass energy) and di- rect substitution for more energy-intensive building mate- rials (e.g., concrete effect (but accounting for storage), intensive approaches do not ap- pear to compare favorably with more

  1. Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

  2. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Assessing Habitat Quality of

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

  3. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note

  4. Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note EN-007

  5. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Relationships between Elevation and Slope

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

  6. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Silvicultural Treatments for Enhancing

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS EXECUTIVE SUMMARY

  7. Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

    E-Print Network [OSTI]

    Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

  8. Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management

    E-Print Network [OSTI]

    Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS ABSTRACT

  9. JUVENILE SALMON MIGRATION SECTION 5 FISH AND WILDLIFE PROGRAM 5-16 September 13, 1995

    E-Print Network [OSTI]

    JUVENILE SALMON MIGRATION SECTION 5 FISH AND WILDLIFE PROGRAM 5-16 September 13, 1995 blank page #12;SECTION 5 JUVENILE SALMON MIGRATION September 13, 1995 5-16 FISH AND WILDLIFE PROGRAM temperature MIGRATION SECTION 5 FISH AND WILDLIFE PROGRAM 5-17 September 13, 1995 program. If there are conflicting

  10. SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT 208 Appendix A: Assessment Tools

    E-Print Network [OSTI]

    SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT 208 Appendix A: Assessment Tools #12;SOUTHEAST WASHINGTON SUBBASIN PLANNING ECOREGION WILDLIFE ASSESSMENT A-1 Interactive and Washington during the Wildlife-Habitat Types in Oregon and Washington project. IBIS data is currently being

  11. Examining Local Jurisdictions' Capacity and Commitment For Hazard Mitigation Policies and Strategies along the Texas Coast 

    E-Print Network [OSTI]

    Husein, Rahmawati

    2012-07-16

    the local capacity and commitment affect the adoption and implementation of land use and development regulations to mitigate any type of hazards in the coastal areas. This study investigates hazard mitigation policies and practices at municipal and county...

  12. Land-Use Analysis of Croplands for Sustainable Food and Energy Production in the United States

    E-Print Network [OSTI]

    Zumkehr, Andrew Lee

    2013-01-01

    part analysis of energy and sustainability related topicsChair Energy security and environmental sustainability areenergy system by mitigating the effects of intermittent power production. However, the sustainability

  13. Development Of Regional Climate Mitigation Baseline For A DominantAgro-Ecological Zone Of Karnataka, India

    SciTech Connect (OSTI)

    Sudha, P.; Shubhashree, D.; Khan, H.; Hedge, G.T.; Murthy, I.K.; Shreedhara, V.; Ravindranath, N.H.

    2007-06-01

    Setting a baseline for carbon stock changes in forest andland use sector mitigation projects is an essential step for assessingadditionality of the project. There are two approaches for settingbaselines namely, project-specific and regional baseline. This paperpresents the methodology adopted for estimating the land available formitigation, for developing a regional baseline, transaction cost involvedand a comparison of project-specific and regional baseline. The studyshowed that it is possible to estimate the potential land and itssuitability for afforestation and reforestation mitigation projects,using existing maps and data, in the dry zone of Karnataka, southernIndia. The study adopted a three-step approach for developing a regionalbaseline, namely: i) identification of likely baseline options for landuse, ii) estimation of baseline rates of land-use change, and iii)quantification of baseline carbon profile over time. The analysis showedthat carbon stock estimates made for wastelands and fallow lands forproject-specific as well as the regional baseline are comparable. Theratio of wasteland Carbon stocks of a project to regional baseline is1.02, and that of fallow lands in the project to regional baseline is0.97. The cost of conducting field studies for determination of regionalbaseline is about a quarter of the cost of developing a project-specificbaseline on a per hectare basis. The study has shown the reliability,feasibility and cost-effectiveness of adopting regional baseline forforestry sectormitigation projects.

  14. HPNAIDM: The High-Performance Network Anomaly/Intrusion Detection and Mitigation System

    SciTech Connect (OSTI)

    Chen, Yan [Northwesten University] [Northwesten University

    2013-12-05

    Identifying traffic anomalies and attacks rapidly and accurately is critical for large network operators. With the rapid growth of network bandwidth, such as the next generation DOE UltraScience Network, and fast emergence of new attacks/virus/worms, existing network intrusion detection systems (IDS) are insufficient because they: • Are mostly host-based and not scalable to high-performance networks; • Are mostly signature-based and unable to adaptively recognize flow-level unknown attacks; • Cannot differentiate malicious events from the unintentional anomalies. To address these challenges, we proposed and developed a new paradigm called high-performance network anomaly/intrustion detection and mitigation (HPNAIDM) system. The new paradigm is significantly different from existing IDSes with the following features (research thrusts). • Online traffic recording and analysis on high-speed networks; • Online adaptive flow-level anomaly/intrusion detection and mitigation; • Integrated approach for false positive reduction. Our research prototype and evaluation demonstrate that the HPNAIDM system is highly effective and economically feasible. Beyond satisfying the pre-set goals, we even exceed that significantly (see more details in the next section). Overall, our project harvested 23 publications (2 book chapters, 6 journal papers and 15 peer-reviewed conference/workshop papers). Besides, we built a website for technique dissemination, which hosts two system prototype release to the research community. We also filed a patent application and developed strong international and domestic collaborations which span both academia and industry.

  15. New Hampshire Coverts Project Volunteers Working for Wildlife

    E-Print Network [OSTI]

    New Hampshire, University of

    New Hampshire Coverts Project Volunteers Working for Wildlife 2014 Annual Report Written by: Haley) 862-5327 October 31, 2014 The New Hampshire Coverts Project is sponsored by UNH Cooperative Extension and New Hampshire Fish & Game. The program also receives support from the New Hampshire Division

  16. SPECIES PROFILE New Hampshire Wildlife Action Plan A-323

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-323 Federal Listing: Not listed State Listing Silver-haired bats do not remain in New Hampshire during the winter (see Izor 1979 for discussion to their summer habitat in New Hampshire (or, more gener- ally, to northern states; Cryan and Veilleux in press

  17. SPECIES PROFILE New Hampshire Wildlife Action PlanA-534

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-534 Federal Listing: Not listed State Listing: Special Concern Global Rank: G5 State Rank: S3 Author: Carol R. Foss, New Hampshire Audubon Element 1 was listed as Threatened in New Hampshire between 1980 and 1986, was on the American Birds Blue List through

  18. SPECIES PROFILE New Hampshire Wildlife Action PlanA-184

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-184 Federal Listing: None State Listing 1989). Natu- ral vegetation commonly occurring in these New Hampshire sandy soils include white pine't occur in Vermont or Maine. New Hampshire's peripheral population of hognose snakes is state threatened

  19. SPECIES PROFILE New Hampshire Wildlife Action Plan A-553

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-553 Federal Listing: Not listed State Listing: Not listed Global Rank: G4 State Rank: S2 Author: Carol R. Foss, New Hampshire Audubon Element 1: Distribution and Habitat 1.1 Habitat description Breeding habitat for the rusty blackbird in New Hampshire

  20. HABITAT PROFILE New Hampshire Wildlife Action Plan B-209

    E-Print Network [OSTI]

    New Hampshire, University of

    HABITAT PROFILE New Hampshire Wildlife Action Plan B-209 Associated Species: spruce grouse: Carol R. Foss Affiliation: New Hampshire Audubon Element 1: Distribution and Habitat 1.1 Habitat on mineral soils. In northern New Hampshire, these range from well or moderately well drained upland forests

  1. HABITAT PROFILE New Hampshire Wildlife Action PlanB-10

    E-Print Network [OSTI]

    New Hampshire, University of

    HABITAT PROFILE New Hampshire Wildlife Action PlanB-10 Associated Species: Timber rattlesnake. Foss, Audubon Society of New Hampshire Element 1: Distribution and Habitat 1.1 Habitat description Appalachian oak pine forest systems are found mostly below 900 ft elevation in southern New Hampshire south

  2. SPECIES PROFILE New Hampshire Wildlife Action PlanA-218

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-218 Federal Listing: None State Listing: None Global Rank: G5 State Rank: S3 Authors: Kim A. Tuttle and M. N. Marchand, New Hampshire Fish and Game grass- lands, pine barrens, blueberry barrens, and grassy hilltops (Klemens 1993, New Hampshire Reptile

  3. SPECIES PROFILE New Hampshire Wildlife Action Plan A-221

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-221 Federal Listing: Not listed State Listing found in similar shallow-water habitats in southernNewHampshire(JenkinsandBabbitt2003). The spotted, and a Species of Special concern in Massachusetts and New Hampshire. Because their habitat overlaps

  4. SPECIES PROFILE New Hampshire Wildlife Action PlanA-580

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-580 Federal Listing: Not listed State Listing: Not listed Global Rank: G5 State Rank: S3 Author: Jillian R. Kelly, New Hampshire Fish and Game Element 1). In the winter, spruce grouse feed entirely on short conifer needles (Nature- Serve 2005). New Hampshire natural

  5. SPECIES PROFILE New Hampshire Wildlife Action PlanA-64

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-64 Federal Listing: Not listed State Listing, and Wisconsin (NatureServe 2004). New Hampshire and Maine represent the northernmost extent of the known to New Jersey are vulnerable to development. In New Hampshire, ringed boghaunter populations are limited

  6. SPECIES PROFILE New Hampshire Wildlife Action PlanA-276

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-276 Federal Listing: Not listed State Listing Eastern red bats inhabit New Hampshire during the summer. Individuals migrate to southern states in the fall and return to New Hampshire and other northern states in the spring (Cryan and Veilleux in press

  7. SPECIES PROFILE New Hampshire Wildlife Action Plan A-523

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-523 Federal Listing: Not listed State Listing included peer-re- viewed literature, Breeding Bird Survey Database, New Hampshire's Breeding Bird Atlas, and expert consultation. 1.8 Extent and Quality of Data The annual breeding bird survey, New Hampshire

  8. Wildlife damage management professionals deal with very few

    E-Print Network [OSTI]

    , environmental degradation, or disease transmission, feral hogs play a substantial role. Earlier this year damage caused by feral hogs, a growing threat is transmission of diseases, primarily pseudorabies, Washington, DC 20250-3402, USA William H. Clay #12;138 Human­Wildlife C

  9. Lower Columbia Salmon Recovery Fish & Wildlife Subbasin Plan

    E-Print Network [OSTI]

    .F. Kalama Subbasin II.G. Lewis Subbasin II.H. Lower Columbia Tributaries II.I. Washougal Subbasin II.J. Wind by recovery and subbasin planning. Appdx. D Economic Framework Potential costs and economic considerations;Lower Columbia Recovery Plan Steering Committee Mark Bagdovitz, US Fish and Wildlife Service John

  10. Lower Columbia Salmon Recovery Fish & Wildlife Subbasin Plan

    E-Print Network [OSTI]

    .F. Kalama Subbasin II.G. Lewis Subbasin II.H. Lower Columbia Tributaries II.I. Washougal Subbasin II.J. Wind by recovery and subbasin planning Appdx. D Economic Framework Potential costs and economic considerations;Lower Columbia Recovery Plan Steering Committee Mark Bagdovitz, US Fish and Wildlife Service John

  11. Lower Columbia Salmon Recovery Fish & Wildlife Subbasin Plan

    E-Print Network [OSTI]

    II.I. Washougal Subbasin II.J. Wind Subbasin II.K. Little White Salmon Subbasin II.L. Columbia Gorge Framework Potential costs and economic considerations for recovery and subbasin planning. Appdx. E Committee Mark Bagdovitz, US Fish and Wildlife Serv

  12. Lower Columbia Salmon Recovery Fish & Wildlife Subbasin Plan

    E-Print Network [OSTI]

    Subbasin II.G. Lewis Subbasin II.H. Lower Columbia Tributaries II.I. Washougal Subbasin II.J. Wind Subbasin by recovery and subbasin planning. Appdx. D Economic Framework Potential costs and economic considerations;Lower Columbia Recovery Plan Steering Committee Mark Bagdovitz, US Fish and Wildlife Service John

  13. Wildlife studies on the Hanford site: 1994 Highlights report

    SciTech Connect (OSTI)

    Cadwell, L.L. [ed.

    1995-04-01

    The purposes of the project are to monitor and report trends in wildlife populations; conduct surveys to identify, record, and map populations of threatened, endangered, and sensitive plant and animal species; and cooperate with Washington State and federal and private agencies to help ensure the protection afforded by law to native species and their habitats. Census data and results of surveys and special study topics are shared freely among cooperating agencies. Special studies are also conducted as needed to provide additional information that may be required to assess, protect, or manage wildlife resources at Hanford. This report describes highlights of wildlife studies on the Site in 1994. Redd counts of fall chinook salmon in the Hanford Reach suggest that harvest restrictions directed at protecting Snake River salmon may have helped Columbia River stocks as well. The 1994 count (5619) was nearly double that of 1993 and about 63% of the 1989 high of approximately 9000. A habitat map showing major vegetation and land use cover types for the Hanford Site was completed in 1993. During 1994, stochastic simulation was used to estimate shrub characteristics (height, density, and canopy cover) across the previously mapped Hanford landscape. The information provided will be available for use in determining habitat quality for sensitive wildlife species. Mapping Site locations of plant species of concern continued during 1994. Additional sensitive plant species data from surveys conducted by TNC were archived. The 10 nesting pairs of ferruginous hawks that used the Hanford Site in 1993 represented approximately 25% of the Washington State population.

  14. 8 Connecticut Wildlife March/April 2012 "How suddenly they

    E-Print Network [OSTI]

    Skelly, David Kiernan

    8 Connecticut Wildlife March/April 2012 "How suddenly they awake! Yesterday, as it were, asleep ­ Connecticut Science Center ; photos by Jonathan Richardson Filling occurs once leaves have fallen from in southern Connecticut to breed in March. Two images from the same vernal pond in central Connecticut

  15. Validation of techniques to mitigate copper surface contamination in CUORE

    E-Print Network [OSTI]

    F. Alessandria; R. Ardito; D. R. Artusa; F. T. Avignone III; O. Azzolini; M. Balata; T. I. Banks; G. Bari; J. Beeman; F. Bellini; A. Bersani; M. Biassoni; T. Bloxham; C. Brofferio; C. Bucci; X. Z. Cai; L. Canonica; S. Capelli; L. Carbone; L. Cardani; M. Carrettoni; N. Casali; N. Chott; M. Clemenza; C. Cosmelli; O. Cremonesi; R. J. Creswick; I. Dafinei; A. Dally; V. Datskov; A. De Biasi; M. M. Deninno; S. Di Domizio; M. L. di Vacri; L. Ejzak; R. Faccini; D. Q. Fang; H. A. Farach; E. Ferri; F. Ferroni; E. Fiorini; M. A. Franceschi; S. J. Freedman; B. K. Fujikawa; A. Giachero; L. Gironi; A. Giuliani; J. Goett; A. Goodsell; P. Gorla; C. Gotti; E. Guardincerri; T. D. Gutierrez; E. E. Haller; K. Han; K. M. Heeger; H. Z. Huang; R. Kadel; K. Kazkaz; G. Keppel; L. Kogler; Yu. G. Kolomensky; D. Lenz; Y. L. Li; C. Ligi; X. Liu; Y. G. Ma; C. Maiano; M. Maino; M. Martinez; R. H. Maruyama; Y. Mei; N. Moggi; S. Morganti; T. Napolitano; S. Newman; S. Nisi; C. Nones; E. B. Norman; A. Nucciotti; F. Orio; D. Orlandi; J. L. Ouellet; M. Pallavicini; V. Palmieri; L. Pattavina; M. Pavan; M. Pedretti; G. Pessina; S. Pirro; E. Previtali; V. Rampazzo; R. Reil; F. Rimondi; C. Rosenfeld; C. Rusconi; S. Sangiorgio; N. D. Scielzo; M. Sisti; A. R. Smith; L. Sparks; F. Stivanello; L. Taffarello; M. Tenconi; W. D. Tian; C. Tomei; S. Trentalange; G. Ventura; M. Vignati; B. S. Wang; H. W. Wang; C. A. Whitten Jr; T. Wise; A. Woodcraft; L. Zanotti; C. Zarra; B. X. Zhu; S. Zucchelli

    2013-04-04

    In this article we describe the background challenges for the CUORE experiment posed by surface contamination of inert detector materials such as copper, and present three techniques explored to mitigate these backgrounds. Using data from a dedicated test apparatus constructed to validate and compare these techniques we demonstrate that copper surface contamination levels better than 10E-07 - 10E-08 Bq/cm2 are achieved for 238U and 232Th. If these levels are reproduced in the final CUORE apparatus the projected 90% C.L. upper limit on the number of background counts in the region of interest is 0.02-0.03 counts/keV/kg/y depending on the adopted mitigation technique.

  16. Tank vapor mitigation requirements for Hanford Tank Farms

    SciTech Connect (OSTI)

    Rakestraw, L.D.

    1994-11-15

    Westinghouse Hanford Company has contracted Los Alamos Technical Associates to listing of vapors and aerosols that are or may be emitted from the High Level Waste (HLW) tanks at Hanford. Mitigation requirements under Federal and State law, as well as DOE Orders, are included in the listing. The lists will be used to support permitting activities relative to tank farm ventilation system up-grades. This task is designated Task 108 under MJB-SWV-312057 and is an extension of efforts begun under Task 53 of Purchase Order MPB-SVV-03291 5 for Mechanical Engineering Support. The results of that task, which covered only thirty-nine tanks, are repeated here to provide a single source document for vapor mitigation requirements for all 177 HLW tanks.

  17. IPCC WGIII Assessment Reprot: Chapter 6. Mitigation Options in Buildings 

    E-Print Network [OSTI]

    Urge-Vorsatz, D.; Levine, M. D.

    2007-01-01

    • Shading devices • Multiple glazing layers, low-emissivity coatings • Spectrally selective windows • Electrochromic and thermochromic glazing – The rate of exchange of inside and outside air • In cold climates, air leakage can cause >1/2 of heat loss..., 2005 Co-benefits of GHG Mitigation 3. Improved quality of life and comfort #0;? Improved thermal comfort - Fewer cold surfaces such as windows #0;? Reduced level of outdoor noise infiltration and indoor pollution from outdoors - Triple glazed windows...

  18. Mitigating Pollution Concerns through Process Integration Technology Steps 

    E-Print Network [OSTI]

    Tripathi, P.; Shukla, D.; Smith, S.

    1991-01-01

    dioxide occur primarily due to the burning of natural gas, coal, petroleum and wood chips. One of the ways of mitigating the pollution problem is through waste minimization measures. Sometimes, the introduction of waste minimization measures require...' C02 and x which results in the acid rain and greenhouse effect. The emission of S02 in this country can almost exclusively be traced to the stationary combustion of coal. The oxides of Nitrogen and Carbon dioxide occur primarily due to the burning...

  19. EA-1617: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinal EnvironmentalFinalMitigation Action Plan

  20. EA-1628: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinal EnvironmentalFinalMitigation Action8:

  1. EA-1704: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinalin Fairbault, MN8: Finding of NoofMitigation

  2. EA-1855: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinalinDepartmentSaginaw,EnergyMitigation

  3. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 PeerRecordRecordStatementDepartmentMitigation Action Plan

  4. EIS-0409: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5Department oftoStatementMitigation Action Plan EIS-0409:

  5. EIS-0425: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5DepartmentStatement |Management and4:Statement |Mitigation

  6. Mitigation Action Plans (MAP) and Related Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department ofMayMissionMitigation Action Plans (MAP) and

  7. Can land management and biomass utilization help mitigate global warming?

    SciTech Connect (OSTI)

    Schlamadinger, B.; Lauer, M.

    1996-12-31

    With rising concern about the increase of the CO{sub 2} concentration in the earth`s atmosphere there is considerable interest in various land-use based mitigation options, like afforestation of surplus agricultural land with or without subsequent harvest; improved forest management; strategies that rely on wood plantations managed in short rotation or agricultural crops with high yields to produce bioenergy, timber and other biomass products. In the first step of this study, the net carbon benefits of such strategies will be calculated per unit of land, i.e., per hectare, because it is assumed that land is the limiting resource for such strategies in the future, and thus, the benefits per unit land need to be optimized. For these calculations a computer model has been developed. The results take into account the time dependence of carbon storage in the biosphere and are shown graphically both for land and for plantation systems with constant output of biomass over time. In the second step, these results will be combined with data on available land for Austria. The potential contribution of each of the above strategies towards mitigating the Austrian CO{sub 2} emissions will be demonstrated. A comparison to other renewable mitigation options, like solar thermal or photovoltaics, will be drawn in terms of available land resources and overall CO{sub 2} reductions.

  8. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect (OSTI)

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  9. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect (OSTI)

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  10. HumanWildlife Conflicts 1(2):129131, Fall 2007 This issue of Human-Wildlife Conflicts focuses

    E-Print Network [OSTI]

    on the management of feral hogs (Sus scrofa). As this exotic species has become more numerous apparent and alarming. How best to manage feral hogs has become one of the most vexing questions for wildlife agencies today, owing to society's mixed attitudes towards feral hogs (Rollins et al. 2007

  11. HumanWildlife Interactions 8(2):251260, Fall 2014 Wildlife strikes with U.S. military rotary-

    E-Print Network [OSTI]

    during deployments in the Middle East (e.g., Iraq), whereas, strikes to U.S. Air Force aircraft occurred, Iraq, military, rotary-wing aircraft, wildlife strikes During the last 2 decades, a great deal of armed conflict, and political upheaval has occurredintheMiddleEast(e.g.,Iraq)andsouth- central Asia (e

  12. National and Sectoral GHG Mitigation Potential: A Comparison Across Models

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to:Information Wildlife Refuge System Administration|

  13. MAINE GAP ANALYSIS VERTEBRATE DATA -PART I: DISTRIBUTION, HABITAT RELATIONS, AND STATUS OF

    E-Print Network [OSTI]

    Boone, Randall B.

    MAINE GAP ANALYSIS VERTEBRATE DATA - PART I: DISTRIBUTION, HABITAT RELATIONS, AND STATUS OF AMPHIBIANS, REPTILES AND MAMMALS IN MAINE Randall B. Boonea Department of Wildlife Ecology and Maine Cooperative Fish and Wildlife Research Unit University of Maine, Orono, ME 04469-5755 and William B. Krohn

  14. MAINE GAP ANALYSIS VERTEBRATE DATA -PART II: DISTRIBUTION, HABITAT RELATIONS, AND STATUS OF

    E-Print Network [OSTI]

    Boone, Randall B.

    MAINE GAP ANALYSIS VERTEBRATE DATA - PART II: DISTRIBUTION, HABITAT RELATIONS, AND STATUS OF BREEDING BIRDS IN MAINE Randall B. Boonea Department of Wildlife Ecology and Maine Cooperative Fish and Wildlife Research Unit University of Maine, Orono, ME 04469-5755 and William B. Krohn USGS Biological

  15. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  16. Waste-to-energy sector and the mitigation of greenhouse gas emissions

    SciTech Connect (OSTI)

    Fotis, S.C. [Van Ness Feldman, Washington, DC (United States); Sussman, D. [Poubelle Associates, Washington, DC (United States)

    1997-12-01

    The waste-to-energy sector provides one important avenue for the United States to reduce greenhouse gas (GHG) emissions. The purpose of this paper is to highlight the significant GHG reductions capable of being achieved by the waste-to-energy (WTE) sector through avoided fossil generation and reduced municipal landfills. The paper begins with a review of the current voluntary reporting mechanism for {open_quotes}registering{close_quotes} GHG reduction credits under section 1605(b) of the Energy Policy Act of 1992. The paper then provides an overview of possible emerging international and domestic trends that could ultimately lead to mandatory targets and timetables for GHG mitigation in the United States and other countries. The paper ends with an analysis of the GHG benefits achievable by the WTE sector, based on the section 1605(b) report filed by the Integrated Waste Services Association IWSA on the GHG emissions avoided for year 1995.

  17. Fish & Wildlife Section Head Smithers BC

    E-Print Network [OSTI]

    Northern British Columbia, University of

    assessment support, cumulative effects assessment, natural resource research, geospatial analysis Market Adjustment The vision of the Ministry of Forests, Lands, and Natural Resource Operations (FLNRO of program and project management across a range of natural resource fields. As part of the regional Resource

  18. A greenhouse-gas information system monitoring and validating emissions reporting and mitigation

    SciTech Connect (OSTI)

    Jonietz, Karl K; Dimotakis, Paul E; Walker, Bruce C

    2011-09-26

    Current GHG-mitigating regimes, whether internationally agreed or self-imposed, rely on the aggregation of self-reported data, with limited checks for consistency and accuracy, for monitoring. As nations commit to more stringent GHG emissions-mitigation actions and as economic rewards or penalties are attached to emission levels, self-reported data will require independent confirmation that they are accurate and reliable, if they are to provide the basis for critical choices and actions that may be required. Supporting emissions-mitigation efforts and agreements, as well as monitoring energy- and fossil-fuel intensive national and global activities would be best achieved by a process of: (1) monitoring of emissions and emission-mitigation actions, based, in part, on, (2) (self-) reporting of pertinent bottom-up inventory data, (3) verification that reported data derive from and are consistent with agreed-upon processes and procedures, and (4) validation that reported emissions and emissions-mitigation action data are correct, based on independent measurements (top-down) derived from a suite of sensors in space, air, land, and, possibly, sea, used to deduce and attribute anthropogenic emissions. These data would be assessed and used to deduce and attribute measured GHG concentrations to anthropogenic emissions, attributed geographically and, to the extent possible, by economic sector. The validation element is needed to provide independent assurance that emissions are in accord with reported values, and should be considered as an important addition to the accepted MRV process, leading to a MRV&V process. This study and report focus on attributes of a greenhouse-gas information system (GHGIS) needed to support MRV&V needs. These needs set the function of such a system apart from scientific/research monitoring of GHGs and carbon-cycle systems, and include (not exclusively): the need for a GHGIS that is operational, as required for decision-support; the need for a system that meets specifications derived from imposed requirements; the need for rigorous calibration, verification, and validation (CV&V) standards, processes, and records for all measurement and modeling/data-inversion data; the need to develop and adopt an uncertainty-quantification (UQ) regimen for all measurement and modeling data; and the requirement that GHGIS products can be subjected to third-party questioning and scientific scrutiny. This report examines and assesses presently available capabilities that could contribute to a future GHGIS. These capabilities include sensors and measurement technologies; data analysis and data uncertainty quantification (UQ) practices and methods; and model-based data-inversion practices, methods, and their associated UQ. The report further examines the need for traceable calibration, verification, and validation processes and attached metadata; differences between present science-/research-oriented needs and those that would be required for an operational GHGIS; the development, operation, and maintenance of a GHGIS missions-operations center (GMOC); and the complex systems engineering and integration that would be required to develop, operate, and evolve a future GHGIS. Present monitoring systems would be heavily relied on in any GHGIS implementation at the outset and would likely continue to provide valuable future contributions to GHGIS. However, present monitoring systems were developed to serve science/research purposes. This study concludes that no component or capability presently available is at the level of technological maturity and readiness required for implementation in an operational GHGIS today. However, purpose-designed and -built components could be developed and implemented in support of a future GHGIS. The study concludes that it is possible to develop and provide a capability-driven prototype GHGIS, as part of a Phase-1 effort, within three years from project-funding start, that would make use of and integrate existing sensing and system capabilities. As part of a Phase-2 effort, a requirem

  19. Tritium Formation and Mitigation in High-Temperature Reactor Systems

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots; Hans A. Schmutz

    2013-03-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  20. Tritium Formation and Mitigation in High-Temperature Reactors

    SciTech Connect (OSTI)

    Piyush Sabharwall; Carl Stoots

    2012-10-01

    Tritium is a radiologically active isotope of hydrogen. It is formed in nuclear reactors by neutron absorption and ternary fission events and can subsequently escape into the environment. To prevent the tritium contamination of proposed reactor buildings and surrounding sites, this study examines the root causes and potential mitigation strategies for permeation of tritium (such as: materials selection, inert gas sparging, etc...). A model is presented that can be used to predict permeation rates of hydrogen through metallic alloys at temperatures from 450–750 degrees C. Results of the diffusion model are presented for a steady production of tritium

  1. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  2. Property:NEPA Resource Applicant Mitigation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2 Jump to: navigation, searchContDiv JumpTechDscTypeApplicant Mitigation

  3. EA-1915: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratoryofNotices |DynegyPowerexMorganBigassesses theMitigation

  4. EIS-0380: Mitigation Action Plan Annual Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 Mitigation Action Plan Annual Report

  5. EIS-0380: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 Mitigation Action Plan Annual

  6. EIS-0419: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 Mitigation The Federal

  7. EIS-0460: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 MitigationEISbriefly describes those

  8. EIS-0472: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2Conduct PublicDOE'sMitigation Action

  9. Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJersey Logo:BraxenergyInformation Mitigation

  10. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH JumpLLC JumpMissouri EthanolMitigation Action

  11. Appropriate Use of Mitigation and Monitoring and Clarifying the Appropriate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research at 1Comments|L.L.C.Whole-House SolutionsUse of Mitigated

  12. EA-1595: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP91:Finding6:Mitigation Action

  13. EA-1636: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinal EnvironmentalFinalMitigation1: Finding of5:6:

  14. EA-1870: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8: DOE Notice ofFinal70: DraftMitigation Action

  15. EA-1913: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8: DOEFinding of NoDraftFinalMitigation Action

  16. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 PeerRecord of3:2:-SA-01:Department ofof19:Mitigation Action

  17. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 PeerRecord of3:2:-SA-01:Department ofof19:Mitigation

  18. EIS-0384: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5Department of Energy Notice of Intent toMitigation

  19. EIS-0422: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5DepartmentStatement | Department ofEnergyFinalMitigation

  20. Montana Building with Wildlife Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004)Michigan:Montana Building with Wildlife

  1. Wildlife Monitoring and Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL's BioEnergyWildlife Monitoring and

  2. US Fish and Wildlife Service lands biomonitoring operations manual

    SciTech Connect (OSTI)

    Rope, R.C.; Breckenridge, R.P.

    1993-08-01

    This is Volume 1 of an operations manual designed to facilitate the development of biomonitoring strategies for U.S. Fish and Wildlife Service Lands. It is one component of the U.S. Fish and Wildlife Service Lands Biomonitoring Operations Manual. The Volume contains the Introduction to the Manual, background information on monitoring, and procedures for developing a biomonitoring strategy for Service lands. The purpose of the Biomonitoring Operations Manual is to provide an approach to develop and implement biomonitoring activities to assess the status and trends of U.S. Fish and Wildlife Service trust resources. It also provides field sampline methods and documentation protocols for contaminant monitoring activities. The strategy described in the Manual has been designed as a stand alone process to characterize the presence of contaminants on lands managed by the Service. This process can be sued to develop a monitoring program for any tract of real estate with potential threats from on- or off-site contaminants. Because the process was designed to address concerns for Service lands that span the United States from Alaska to the Tropical Islands, it has a generic format that can be used in al types of ecosystems, however, significant site specific informtion is required to complete the Workbook and make the process work successfully.

  3. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    SciTech Connect (OSTI)

    Makundi, Willy R.

    1998-06-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are describe in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct a baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land and in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those, which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries .

  4. Hungry Horse Dam Fisheries Mitigation Implementation Plan, 1990-2003 Progress (Annual) Report.

    SciTech Connect (OSTI)

    Montana Department of Fish, Wildlife and Parks; Confederated Salish and Kootenai Tribes

    1993-03-10

    In this document the authors present mitigation implementation activities to protect and enhance resident fish and aquatic habitat affected by the construction and operation of Hungry Horse Dam. This plan only addresses non-operational actions (mitigation measures that do not affect dam operation) described in the 'Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam' (Mitigation Plan) submitted to the Northwest Power Planning Council (Council) in March 1991 and in accordance with subsequent Council action on that Mitigation Plan. Operational mitigation was deferred for consideration under the Columbia Basin System Operation Review (SOR) process. This document represents an implementation plan considered and conditionally approved by the Council in March of 1993.

  5. Sharing Texas resources: interpretation handbook for the Texas Parks and Wildlife Department 

    E-Print Network [OSTI]

    Herrick, Tommie L.

    1994-01-01

    Sharing Texas Resources: Interpretation Handbook for the Texas Parks and Wildlife Department Tommie L. Herrick Nay 1994 Record of Study SHARZNG TEXAS RESOURCES: INTERPRETATION HANDBOOK POR THE TEXAS PARKS AND WILDLIFE DEPARTMENT A... Department Natural Resources Development SHARING TEXAS RESOURCES: INTERPRETATION HANDBOOK FOR THE TEXAS PARKS AND WILDLIFE DEPARTNENT A Professional Paper by Tommie L. Herrick Approved as to style and content by: Dr. Edward H. Heath (Chairman...

  6. The potential for commercial use of wildlife in some North-Eastern Tuli Block farms 

    E-Print Network [OSTI]

    Nchunga, Mushanana Lawrence

    1978-01-01

    THE POTENTIAL FOR COMMERCIAL USE OF WILDLIFE IN SOME NORTH ? EASTERN TULI BLOCK FARMS A Thesis by Mushanana Lawrence Nchunga Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1978 Major Subject: Wildlife and Fisheries Sciences THE POTENTIAL FOR COMMERCIAL USE OF WILDLIFE IN SOME NORTH-EASTERN TULI BLOCK FARMS A Thesis Mushanana Lawrence Nchunga A proved as to style and content by: ) (Chairman...

  7. COLLISIONS BETWEEN LARGE WILDLIFE AND MOTOR VEHICLE IN MAINE: 1998 - 2001

    E-Print Network [OSTI]

    Van-Riper, Robert

    2003-01-01

    Source: As part of Maine Department of TransportationWILDLIFE AND MOTOR VEHICLE IN MAINE: 1998 - 2001 Robert Van-Environmental Office, Maine Department of Transportation,

  8. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling...

    Broader source: Energy.gov (indexed) [DOE]

    of Renewable Energy Programs Bureau of Ocean Energy Management Scott Johnston U.S. Fish and Wildlife Service Brian Kinlan NCCOS-CMA-Biogeography Branch National Oceanographic...

  9. A GIS-based identification of potentially significant wildlife habitats associated with roads in Vermont

    E-Print Network [OSTI]

    Austin, John M.; Viani, Kevin; Hammond, Forrest; Slesar, Chris

    2005-01-01

    Capen. 1997. A report on the biophysical regions in Vermont.report prepared for the Vermont Ecomapping Roundtable.scientist with the Vermont Fish and Wildlife Department and

  10. Final Report of the Mid-Atlantic Marine Wildlife Surveys, Modeling...

    Broader source: Energy.gov (indexed) [DOE]

    A: Workshop Agenda July 2013 Appendix A: Workshop Agenda Mid-Atlantic Marine Wildlife Surveys, Modeling, and Data: Workshop to Establish Coordination & Communication Dates: July...

  11. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  12. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01

    Shipley, and E. Brown, 2003. CHP Five Years Later: Federaland Paper Industries by Applying CHP Technologies. Lawrence112 Table 27. Potential GHG mitigation from CHP

  13. Mitigating the Risks of Thresholdless Metrics in Machine Learning Kendrick Boyd

    E-Print Network [OSTI]

    Page Jr., C. David

    Mitigating the Risks of Thresholdless Metrics in Machine Learning Evaluation by Kendrick Boyd on Empirical Evaluation 24 3.1 Introduction 24 3.2

  14. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden

    E-Print Network [OSTI]

    Shonkoff, Seth Berrin

    2012-01-01

    Climate Change and Urban Heat Island Mitigation: LocalisingCity size and the urban heat island." Atmos. Environ. 7:inequitable distribution of the heat island. equity and the

  15. Rapid energy savings in London's households to mitigate an energy crisis

    E-Print Network [OSTI]

    Julien, Aurore; Barrett, Mark; Croxford, Ben

    2011-01-01

    3), pp.325-343. A. Julien, UCL Energy Institute, London, UKConference 2011, Washington Rapid energy savings in London'shouseholds to mitigate an energy crisis Wood, G. &

  16. Upcoming Webinar November 19: Micro-Structural Mitigation Strategies for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    On November 19, the Energy Department will present a webinar on micro-structural mitigation strategies for PEM fuel cells focusing on morphological simulations and experimental approaches.

  17. JICA's Assistance for Mitigation to Climate Change - The Co-Benefits...

    Open Energy Info (EERE)

    JICA's Assistance for Mitigation to Climate Change - The Co-Benefits Approach to Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: JICA's Assistance for...

  18. Sandia Energy - PV Arc-Fault and Ground Fault Detection and Mitigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Arc-Fault and Ground Fault Detection and Mitigation Program PV...

  19. IEAB Independent Economic Analysis Board

    E-Print Network [OSTI]

    . Huppert Noelwah R. Netusil JunJie Wu Cost-Effectiveness of Fish Tagging Technologies and Programs in the Columbia River Basin1 Independent Economic Analysis Board Fish and Wildlife Program Northwest Power and Conservation Council June 2, 2013 1 This report benefitted from the meetings of the Fish Tagging Forum

  20. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    SciTech Connect (OSTI)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  1. Land Condition -Trend Analysis Data Dictionary

    E-Print Network [OSTI]

    and wildlife resources to characterize an installation's natural resources in a cost- and time-effective manner (USACERL) developed the Land Condition Trend Analysis (LCTA) program to meet the need for natural resources of natural resources data collection, analysis, and reporting designed to meet multiple goals and objectives

  2. strongly recommends that other actions other than land acquisition occur to assist in the mitigation of impacts to fish and wildlife.

    E-Print Network [OSTI]

    includes: · adoption of a `stepwise' approach to project implementation; · a commitment to assessment and monitoring prior to, during, and after completion of the project; and · a cyclical review of incoming 2000 by Canada as one of the Parties to the United Nations 1992 Convention on Biodiversity. 3 Subbasin

  3. Trading places - an innovative SO{sub 2} trading program to mitigate potential adverse impacts on class I areas: part II. Mitigation plan

    SciTech Connect (OSTI)

    Louis Militana; Cindy Huber; Christopher Colbert; Chris Arrington; Don Shepherd

    2005-08-01

    This is the second of two articles describing a plan that was developed to mitigate the effects of acid deposition and visibility impairment in four Class I areas from the proposed Longview Power Project. Part I (published in July 2005) discussed the air quality impacts of the proposed coal-fired power plant. Part II discusses the mitigation plan. 2 refs., 1 fig., 3 tabs.

  4. Electrodes mitigating effects of defects in organic electronic devices

    DOE Patents [OSTI]

    Heller, Christian Maria Anton (Albany, NY)

    2008-05-06

    A compound electrode for organic electronic devices comprises a thin first layer of a first electrically conducting material and a second electrically conducting material disposed on the first layer. In one embodiment, the second electrically conducting material is formed into a plurality of elongated members. In another embodiment, the second material is formed into a second layer. The elongated members or the second layer has a thickness greater than that of the first layer. The second layer is separated from the first layer by a conducting material having conductivity less than at least the material of the first layer. The compound electrode is capable of mitigating adverse effects of defects, such as short circuits, in the construction of the organic electronic devices, and can be included in light-emitting or photovoltaic devices.

  5. Characterizing and Mitigating Work Time Inflation in Task Parallel Programs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olivier, Stephen L.; de Supinski, Bronis R.; Schulz, Martin; Prins, Jan F.

    2013-01-01

    Task parallelism raises the level of abstraction in shared memory parallel programming to simplify the development of complex applications. However, task parallel applications can exhibit poor performance due to thread idleness, scheduling overheads, and work time inflation – additional time spent by threads in a multithreaded computation beyond the time required to perform the same work in a sequential computation. We identify the contributions of each factor to lost efficiency in various task parallel OpenMP applications and diagnose the causes of work time inflation in those applications. Increased data access latency can cause significant work time inflation in NUMAmore »systems. Our locality framework for task parallel OpenMP programs mitigates this cause of work time inflation. Our extensions to the Qthreads library demonstrate that locality-aware scheduling can improve performance up to 3X compared to the Intel OpenMP task scheduler. « less

  6. Pressurized water nuclear reactor system with hot leg vortex mitigator

    DOE Patents [OSTI]

    Lau, Louis K. S. (Monroeville, PA)

    1990-01-01

    A pressurized water nuclear reactor system includes a vortex mitigator in the form of a cylindrical conduit between the hot leg conduit and a first section of residual heat removal conduit, which conduit leads to a pump and a second section of residual heat removal conduit leading back to the reactor pressure vessel. The cylindrical conduit is of such a size that where the hot leg has an inner diameter D.sub.1, the first section has an inner diameter D.sub.2, and the cylindrical conduit or step nozzle has a length L and an inner diameter of D.sub.3 ; D.sub.3 /D.sub.1 is at least 0.55, D.sub.2 is at least 1.9, and L/D.sub.3 is at least 1.44, whereby cavitation of the pump by a vortex formed in the hot leg is prevented.

  7. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  8. Near-Term Climate Mitigation by Short-Lived Forcers

    SciTech Connect (OSTI)

    Smith, Steven J.; Mizrahi, Andrew H.

    2013-08-12

    Emissions reductions focused on anthropogenic climate forcing agents with relatively short atmospheric lifetimes such as methane (CH4) and black carbon (BC) have been suggested as a strategy to reduce the rate of climate change over the next several decades. We find that reductions of methane and BC would likely have only a modest impact on near-term climate warming. Even with maximally feasible reductions phased in from 2015 to 2035, global mean temperatures in 2050 are reduced by 0.16 °C, with an uncertainty range of 0.04-0.36°C, with the high end of this range only possible if total historical aerosol forcing is small. More realistic mitigation scenarios would likely provide a smaller climate benefit. The climate benefits from targeted reductions in short-lived forcing agents are smaller than previously estimated and are not substantially different in magnitude from the benefits due to a comprehensive climate policy.

  9. Timelines for mitigating methane emissions from energy technologies

    E-Print Network [OSTI]

    Roy, Mandira; Trancik, Jessika E

    2015-01-01

    Energy technologies emitting differing proportions of methane and carbon dioxide vary in their relative climate impacts over time, due to the different atmospheric lifetimes of the two gases. Standard technology comparisons using the global warming potential (GWP) emissions equivalency metric do not reveal these dynamic impacts, and may not provide the information needed to assess technologies and emissions mitigation opportunities in the context of broader climate policy goals. Here we formulate a portfolio optimization model that incorporates changes in technology impacts as a radiative forcing (RF) stabilization target is approached. An optimal portfolio, maximizing allowed energy consumption while meeting the RF target, is obtained by year-wise minimization of the marginal RF impact in an intended stabilization year. The optimal portfolio calls for using certain higher methane-emitting technologies prior to an optimal switching year, followed by methane-light technologies as the stabilization year approac...

  10. Imaging an event horizon: mitigation of scattering toward Sagittarius A*

    SciTech Connect (OSTI)

    Fish, Vincent L.; Lu, Ru-Sen; Doeleman, Sheperd S.; Pankratius, Victor [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Johnson, Michael D.; Narayan, Ramesh; Vertatschitsch, Laura E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bouman, Katherine L.; Zoran, Daniel; Freeman, William T. [Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 32 Vassar Street, Cambridge, MA 02139 (United States); Psaltis, Dimitrios [Astronomy and Physics Departments, University of Arizona, 933 North Cherry Street, Tucson, AZ 85721 (United States); Broderick, Avery E. [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Gwinn, Carl R., E-mail: vfish@haystack.mit.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

    2014-11-10

    The image of the emission surrounding the black hole in the center of the Milky Way is predicted to exhibit the imprint of general relativistic (GR) effects, including the existence of a shadow feature and a photon ring of diameter ?50 ?as. Structure on these scales can be resolved by millimeter-wavelength very long baseline interferometry. However, strong-field GR features of interest will be blurred at ? ? 1.3 mm due to scattering by interstellar electrons. The scattering properties are well understood over most of the relevant range of baseline lengths, suggesting that the scattering may be (mostly) invertible. We simulate observations of a model image of Sgr A* and demonstrate that the effects of scattering can indeed be mitigated by correcting the visibilities before reconstructing the image. This technique is also applicable to Sgr A* at longer wavelengths.

  11. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOE Patents [OSTI]

    Mirkarimi, Paul B. (Sunol, CA); Bajt, Sasa (Livermore, CA); Stearns, Daniel G. (Los Altos, CA)

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  12. Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Coastal and Waterfront Smart Growth

    E-Print Network [OSTI]

    1 Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Achieving Hazard-Resilient Coastal & Waterfront Smart Growth #12;2 Achieving Hazard-Resilient Coastal & Waterfront Smart Growth www

  13. COMPILATION AND REVIEW OF COMPLETED RESTORATION AND MITIGATION STUDIES IN DEVELOPING AN

    E-Print Network [OSTI]

    US Army Corps of Engineers

    COMPILATION AND REVIEW OF COMPLETED RESTORATION AND MITIGATION STUDIES IN DEVELOPING;#12;COMPILATION AND REVIEW OF COMPLETED RESTORATION AND MITIGATION STUDIES IN DEVELOPING AN EVALUATION FRAMEWORK-R-5 Investments Research Program April 1995 #12;#12;Compilation and Review of Completed

  14. Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Economic Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Bruce A. Mc Potential of Biomass Based Fuels for Greenhouse Gas Emission Mitigation Today society faces important concentrations to stabilize once emissions have stabilized; and c) decades to fully retrofit and/or replace

  15. Aalborg Universitet Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator

    E-Print Network [OSTI]

    Hu, Weihao

    Aalborg Universitet Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Synchronous Generator Variable-Speed Wind Turbines. Energies, 6(8), 3807-3821. 10.3390/en6083807 General.mdpi.com/journal/energies Article Flicker Mitigation by Speed Control of Permanent Magnet Synchronous Generator Variable-Speed Wind

  16. Mitigating Interference between IEEE 802.16 Systems Operating in License-exempt Mode

    E-Print Network [OSTI]

    Murphy, Liam

    Mitigating Interference between IEEE 802.16 Systems Operating in License-exempt Mode Omar Ashagi approach to mitigate interference issues in license-exempt 802.16 systems is presented. This approach can be divided into two mode of operation: licensed mode of operation, and license-exempt mode

  17. ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR

    E-Print Network [OSTI]

    ASSESSING CLIMATE CHANGE MITIGATION WITH A HYBRID ENERGY-ECONOMY APPROACH FOR AFRICA, THE MIDDLE Management Title of Thesis: Assessing Climate Change Mitigation with a Hybrid Energy-Economy Approach create a hybrid energy-economy model for developing countries in Africa, the Middle East and Latin

  18. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Climate change mitigation and co-benefits of feasible transport demand policies in Beijing Felix i n f o Keywords: Climate change mitigation Transport demand management External costs Urban transportation Road charging a b s t r a c t Urban car transportation is a cause of climate change but is also

  19. Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Agriculture, Climate Change and Climate Change Mitigation Bruce A. McCarl Regents Professor Change Happen Let's Avoid Climate Change Mitigation Effects Presented at Texas Recycling and Sustainability Summit San Antonio, Sept 29, 2004 #12;Climate Change has in part a human cause Source http

  20. Effectiveness of advanced coating systems for mitigating blast effects on steel components

    E-Print Network [OSTI]

    Effectiveness of advanced coating systems for mitigating blast effects on steel components C. Chen1 of this work is to study the effectiveness of an advanced coating material, polyurea, as a blast mitigation tool for steel components. The response of polyurea coated steel components under blast loading

  1. TQ1. Volcanoes/Earthquakes How can we help predict and mitigate earthquake and

    E-Print Network [OSTI]

    Christian, Eric

    TQ1. Volcanoes/Earthquakes How can we help predict and mitigate earthquake and volcanic hazards potentially effective information to aid in predicting possible eruptions and improve earthquake forecasts. How can we predict and mitigate earthquake and volcanic hazards through detection of transient thermal

  2. U.S. Fish and Wildlife Service Moves toward Net-Zero Buildings

    SciTech Connect (OSTI)

    2012-12-03

    First they had a vision: welcome people into a building embracing environmental stewardship on land that is steeped in history. The designers of the U.S. Fish and Wildlife Service took this vision and designed a new energy-efficient and environmentally friendly visitor center for the Assabet River National Wildlife Refuge located in Sudbury, Massachusetts.

  3. Participatory wildlife surveys in communal lands: a case study from Simanjiro, Tanzania

    E-Print Network [OSTI]

    Participatory wildlife surveys in communal lands: a case study from Simanjiro, Tanzania Fortunata U and Sustainability, University of Edinburgh, Edinburgh EH9 3JN, U.K.; 3 Tanzania National Parks, PO Box 3134, Arusha, Tanzania; 4 Tanzania Wildlife Research Institute, PO Box 661, Arusha, Tanzania; 5 Center for Collaborative

  4. AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL

    E-Print Network [OSTI]

    Firestone, Jeremy

    AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT RELATIVE TO FOSSIL FUEL POWER. Jarvis All Rights Reserved #12;AN EVALUATION OF THE WILDLIFE IMPACTS OF OFFSHORE WIND DEVELOPMENT in offshore wind energy. I would also like to thank my committee members, Dr. Jeremy Firestone

  5. HumanWildlife Conflicts 2(2):240247, Fall 2008 Mammalian hazards at small airports in

    E-Print Network [OSTI]

    fence maintenance is vital for effective wildlife- strike management at small airports. Key words,000 hours of aircraft downtime each year and cost the civil aviation industry >$556 million annually (Cleary the inception of aviation 100 years ago (Sodhi 2002). Unfortunately, the probability of wildlife strikes

  6. INDEPENDENT SCIENTIFIC ADVISORY BOARD (ISAB) REVIEW OF THE 2009 FISH AND WILDLIFE PROGRAM

    E-Print Network [OSTI]

    INDEPENDENT SCIENTIFIC ADVISORY BOARD (ISAB) REVIEW OF THE 2009 FISH AND WILDLIFE PROGRAM Kate of ocean conditions on fish and wildlife populations." #12;Relationship between CRB and Ocean Ecosystems Columbia R Basin Ecosystem Ocean Ecosystem Anadromous fish Viability Abundance, productivity, spatial

  7. University of New Hampshire Cooperative Extension Forestry, Wildlife and Water Resources Programs Newsletter HabitatsHabitats

    E-Print Network [OSTI]

    New Hampshire, University of

    University of New Hampshire Cooperative Extension · Forestry, Wildlife and Water Resources Programs are reaching out to these varied interests to form a coalition to secure the necessary funding appreciation of the natural world and how they might act to insure that wildlife remains a part of it

  8. New Dimensions of Visual Landscape Assessment Wildlands Management for Wildlife Viewing1

    E-Print Network [OSTI]

    Standiford, Richard B.

    preservation and other activities associated with traditional game management. Fortunately, much of the knowledge and techniques developed for game #12;management can be transferred to considerations of wildlifeNew Dimensions of Visual Landscape Assessment Wildlands Management for Wildlife Viewing1 Tamsie

  9. Hydrogeologic Assessment of the Pixley National WildlifeRefuge

    SciTech Connect (OSTI)

    Quinn, Nigel W.T.

    2007-10-01

    A hydrogeological assessment of Pixley National Wildlife Refuge was conducted using published reports from the USGS and private engineering consultants that pertained to land in close proximity to the Refuge and from monitoring conducted by refuge staff in collaboration with Reclamation. The compiled data clearly show that there are a large number of agricultural wells throughout the Basin and that water levels are responsive to rates of pumping - in some cases declining more than 100 ft in a matter of a few years. Aquifer properties support a groundwater conjunctive use solution to the provision of additional water supply to the Refuge. The report provides justification for this approach.

  10. National Wildlife Refuge System Administration Act | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to:Information Wildlife Refuge System Administration

  11. Texas Parks and Wildlife Department | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJ Automation JumpSetIdaho: EnergyNatural Resources Code JumpWildlife

  12. Colorado Parks and Wildlife Rules and Regulations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open EnergyColorado Parks and Wildlife Rules and Regulations

  13. The potential to mitigate global warming with no-tillage management is only realized when practised in the long term

    E-Print Network [OSTI]

    Six, J; Ogle, S M; Breidt, F J; Conant, R T; Mosier, A R; Paustian, K

    2004-01-01

    The potential to mitigate global warming with no-tillageNT adoption reduces the net global warming potential (GWP)soil for purposes of global warming mitigation. Our results

  14. Mitigation Measures Following a Loss-of-Residual-Heat-Removal Event During Shutdown

    SciTech Connect (OSTI)

    Seul, Kwang Won; Bang, Young Seok; Kim, Hho Jung

    2000-10-15

    The transient following a loss-of-residual-heat-removal event during shutdown was analyzed to determine the containment closure time (CCT) to prevent uncontrolled release of fission products and the gravity-injection path and rate (GIPR) for effective core cooling using the RELAP5/MOD3.2 code. The plant conditions of Yonggwang Units 3 and 4, a pressurized water reactor (PWR) of 2815-MW(thermal) power in Korea, were reviewed, and possible event sequences were identified. From the CCT analysis for the five cases of typical plant configurations, it was estimated for the earliest CCT to be 40 min after the event in a case with a large cold-leg opening and emptied steam generators (SGs). However, the case with water-filled SGs significantly delayed the CCT through the heat removal to the secondary side. From the GIPR analysis for the six possible gravity-injection paths from the refueling water storage tank (RWST), the case with the injection point and opening on the other leg side was estimated to be the most suitable path to avoid core boiling. In addition, from the sensitivity study, it was evaluated for the plant to be capable of providing the core cooling for the long-term transient if nominal RWST water is available. As a result, these analysis methods and results will provide useful information in understanding the plant behavior and preparing the mitigation measures after the event, especially for Combustion Engineering-type PWR plants. However, to directly apply the analysis results to the emergency procedure for such an event, additional case studies are needed for a wide range of operating conditions such as reactor coolant inventory, RWST water temperature, and core decay heat rate.

  15. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    SciTech Connect (OSTI)

    Eder, D C; Throop, A; Brown, Jr., C G; Kimbrough, J; Stowell, M L; White, D A; Song, P; Back, N; MacPhee, A; Chen, H; DeHope, W; Ping, Y; Maddox, B; Lister, J; Pratt, G; Ma, T; Tsui, Y; Perkins, M; O'Brien, D; Patel, P

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHz and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our results are directly relevant to planned short-pulse ARC (advanced radiographic capability) operation on NIF.

  16. Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

    Broader source: Energy.gov [DOE]

    Environmental Mitigation Technology (Innovative System Testing)-Deployment and Testing of the Alden Hydropower Fish-Friendly Turbine

  17. A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

    E-Print Network [OSTI]

    Pivi, M T F; Celata, C M; Cooper, F; Furman, M A; Kharakh, D; King, F K; Kirby, R E; Kuekan, B; Lipari, J J; Munro, M; Ng, J S T; Olszewski, J; Raubenheimer, T O; Seeman, J; Smith, B; Spencer, C M; Wang, L; Wittmer, W

    2008-01-01

    A New Chicane Experiment In PEP-II to Test Mitigations of the Electron Cloud Effect for Linear Colliders

  18. Microsoft Word - BPA analysis summarizing PT block contract ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proceeding. 1 BPA established its forecast of Mid-C 1 Refer to section 2.4 of the Risk Analysis and Mitigation Study in the WP-10 rate proceeding for a more complete description...

  19. Microsoft Word - BPA analysis summarizing CFAC block contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    draft Resource Program released September 30 th . 3 1 Refer to section 2.4 of the Risk Analysis and Mitigation Study in the WP-10 rate proceeding for a more complete description...

  20. Microsoft Word - BPA analysis summarizing ALCOA block contract...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    draft Resource Program released September 30 th . 3 1 Refer to section 2.4 of the Risk Analysis and Mitigation Study in the WP-10 rate proceeding for a more complete description...

  1. Interoperable software for parametric structural analysis and optimization

    E-Print Network [OSTI]

    Jones, Garrett P. (Garrett Pierce)

    2013-01-01

    The advent of building information modeling in the structural engineering profession has brought forth new challenges to the traditional methods of design and analysis. The need for faster, more robust analyses to mitigate ...

  2. Impact Mitigation and Monitoring of the BPA 500-kV Garrison-Taft Transmission Line : Effects on Elk Security and Hunter Opportunity, Final Report.

    SciTech Connect (OSTI)

    Canfield, Jodie E.

    1988-11-01

    This study was conducted by the Montana Department of Fish, Wildlife and Parks from 1984--1988 to assess the impacts of the Garrison-Taft segment of a 500-kV powerline on elk summer-fall habitat. Construction of the powerline began in 1983, and the powerline was energized in 1985. The Garrison-Taft powerline corridor crossed 251 km of mountainous terrain in western Montana; about 465 km of new roads were constructed to provide permanent access to the powerline towers. The objectives of the study were: (1) to monitor the effectiveness of mitigation measures, including timing restrictions on construction activities and road closures on newly-built access roads, and (2) to determine if opening previously-unroaded elk security habitats to hunters by powerline access roads affected elk habitat use, distribution, use of security areas, or elk harvest. In addition, both the potential for accelerated timber harvest in areas crossed by the powerline that would not have otherwise been logged because of marginal economics and lack of haul roads and the potential effect of powerline flashovers on future prescribed burning of elk winter-ranges were evaluated. 83 refs., 88 figs., 15 tabs.

  3. Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian-Pacific Countries

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Greenhouse Gas Mitigation Through Energy Crops in the U.S. With Implications for Asian&M University Seniority of authorship is shared November 2001 #12;Greenhouse Gas Mitigation Through Energy Crops in greenhouse gas (GHG) emission mitigation efforts has increased in recent years. While the original text

  4. Mitigation of Severe Accident Consequences Using Inherent Safety Principles

    SciTech Connect (OSTI)

    R. A. Wigeland; J. E. Cahalan

    2009-12-01

    Sodium-cooled fast reactors are designed to have a high level of safety. Events of high probability of occurrence are typically handled without consequence through reliable engineering systems and good design practices. For accidents of lower probability, the initiating events are characterized by larger and more numerous challenges to the reactor system, such as failure of one or more major engineered systems and can also include a failure to scram the reactor in response. As the initiating conditions become more severe, they have the potential for creating serious consequences of potential safety significance, including fuel melting, fuel pin disruption and recriticality. If the progression of such accidents is not mitigated by design features of the reactor, energetic events and dispersal of radioactive materials may result. For severe accidents, there are several approaches that can be used to mitigate the consequences of such severe accident initiators, which typically include fuel pin failures and core disruption. One approach is to increase the reliability of the reactor protection system so that the probability of an ATWS event is reduced to less than 1 x 10-6 per reactor year, where larger accident consequences are allowed, meeting the U.S. NRC goal of relegating such accident consequences as core disruption to these extremely low probabilities. The main difficulty with this approach is to convincingly test and guarantee such increased reliability. Another approach is to increase the redundancy of the reactor scram system, which can also reduce the probability of an ATWS event to a frequency of less than 1 x 10-6 per reactor year or lower. The issues with this approach are more related to reactor core design, with the need for a greater number of control rod positions in the reactor core and the associated increase in complexity of the reactor protection system. A third approach is to use the inherent reactivity feedback that occurs in a fast reactor to automatically respond to the change in reactor conditions and to result in a benign response to these events. This approach has the advantage of being relatively simple to implement, and does not face the issue of reliability since only fundamental physical phenomena are used in a passive manner, not active engineered systems. However, the challenge is to present a convincing case that such passive means can be implemented and used. The purpose of this paper is to describe this third approach in detail, the technical basis and experimental validation for the approach, and the resulting reactor performance that can be achieved for ATWS events.

  5. Annual Adaptive Management Report for Compensatory Mitigation at Keyport Lagoon: Mitigation of Pier B Development at the Bremerton Naval Facilities - Compensatory Mitigation at Keyport Lagoon - Naval Underwater Warfare Center Division - Keyport, Washington

    SciTech Connect (OSTI)

    Vavrinec, John; Borde, Amy B.; Woodruff, Dana L.; Brandenberger, Jill M.; Thom, Ronald M.; Wright, Cynthia L.; Cullinan, Valerie I.

    2012-06-01

    Unites States Navy capital improvement projects are designed to modernize and improve mission capacity. Such capital improvement projects often result in unavoidable environmental impacts by increasing over-water structures, which results in a loss of subtidal habitat within industrial areas of Navy bases. In the Pacific Northwest, compensatory mitigation often targets alleviating impacts to Endangered Species Act-listed salmon species. The complexity of restoring large systems requires limited resources to target successful and more coordinated mitigation efforts to address habitat loss and improvements in water quality that will clearly contribute to an improvement at the site scale and can then be linked to a cumulative net ecosystem improvement.

  6. THE USE OF DI WATER TO MITIGATE DUSTING FOR ADDITION OF DWPF FRIT TO THE SLURRY MIX EVAPORATOR

    SciTech Connect (OSTI)

    Hansen, E.

    2010-07-21

    The Defense Waste Processing Facility (DPWF) presently is in the process to determine means to reduce water utilization in the Slurry Mix Evaporator (SME) process, thus reducing effluent and processing times. The frit slurry addition system mixes the dry frit with water, yielding approximately a 50 weight percent slurry containing frit and the other fraction water. This slurry is discharged into the SME and excess water is removed via boiling. To reduce this water load to the SME, DWPF has proposed using a pneumatic system in conveying the frit to the SME, in essence a dry delivery system. The problem associated with utilizing a dry delivery system with the existing frit is the generation of dust when discharged into the SME. The use of water has been shown to be effective in the mining industry as well in the DOE complex to mitigate dusting. The method employed by SRNL to determine the quantity of water to mitigate dusting in dry powders was effective, between a lab and bench scale tests. In those tests, it was shown that as high as five weight percent (wt%) of water addition was required to mitigate dust from batches of glass forming minerals used by the Waste Treatment Plant at Hanford, Washington. The same method used to determine the quantity of water to mitigate dusting was used in this task to determine the quantity of water to mitigate this dusting using as-received frit. The ability for water to mitigate dusting is due to its adhesive properties as shown in Figure 1-1. Wetting the frit particles allows for the smaller frit particles (including dust) to adhere to the larger frit particles or to agglomerate into large particles. Fluids other than water can also be used, but their adhesive properties are different than water and the quantity required to mitigate dusting is different, as was observed in reference 1. Excessive water, a few weight percentages greater than that required to mitigate dusting can cause the resulting material not to flow. The primary objective of this task is to perform bench scale testing on various frits that have been used at DWPF or in test programs at SRNL to determine the quantity of de-ionized (DI) water required to mitigate dusting per mass basis of frit. The quantity of DI water required was determined visually by observing the effluent port of the mixer, and DI water addition was made to the point where no visible dust was observed leaving the effluent port. A total of eight different frits were selected for testing. Secondary objectives in this task include the following: (1) Video taping of the de-dusting procedure, (2) Particle size distribution analyses of the dry and wetted frits at the weight fraction of water required for de-dusting, (3) Plate flow tests to determine angle of flow and quantity of material remaining on plate at 90 degrees, (4) Microscopy of dry and wetted frit, and (5) Effect of excess water for selected frits on plate flow. The above analyses were performed within one hour of water addition, to minimize the effect of evaporative water losses. To better understand the size of dust particles, perform settling tests on selected frits and capture the fines. Analyze the fines for particle size distribution. Finally, it is expected that the surface area of frit is an important parameter in the quantity of water required for dust mitigation. An analysis of particle size distribution (PSD) data of as-received frit analyzed by SRNL over the past two to three years will be performed to determine the variation in the distribution of as-received frit. The following objectives were stated in the Technical Task Request4 as objectives that given adequate time would provide insight in helping DWPF in assessing equipment or processes for de-dusting and processing of dry frit. Due to time constraints, commercial methods for dedusting are provided. These results are detailed in section 3.7. Obtain design information from Hanford with respective to equipment used for dedusting. Suggestions on enhanced design features, such as flush water, pipe air purges, humidified compresse

  7. ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)

    SciTech Connect (OSTI)

    J.R. Paterek; G. Husmillo; V. Trbovic

    2003-01-01

    The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verify the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.

  8. Security Informatics Research Challenges for Mitigating Cyber Friendly Fire

    SciTech Connect (OSTI)

    Carroll, Thomas E.; Greitzer, Frank L.; Roberts, Adam D.

    2014-09-30

    This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly re (FF). We dene cyber FF as intentional o*ensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission e*ectiveness of friendly or neutral forces. We describe examples of cyber FF and discuss how it ts within a general conceptual framework for cyber security failures. Because it involves human failure, cyber FF may be considered to belong to a sub-class of cyber security failures characterized as unintentional insider threats. Cyber FF is closely related to combat friendly re in that maintaining situation awareness (SA) is paramount to avoiding unintended consequences. Cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and o*ensive countermeasures that may be applied to thwart network attacks. We describe a test bed designed to support empirical research on factors a*ecting cyber FF. Finally, we discuss mitigation strategies to combat cyber FF, including both training concepts and suggestions for decision aids and visualization approaches.

  9. Performance of Wireless Networks with Hidden Nodes: A Queuing-Theoretic Analysis

    E-Print Network [OSTI]

    Starobinski, David

    challenges" in fu- ture wireless architectures. Although some hid- den node mitigation techniques do exist performance. Instead, most previous works have focused on hid- den node mitigation techniques, see [7] and ref their applicability to predict the performance of IEEE 802.11 networks with hidden nodes. The simulation and analysis

  10. An Integrated Approach to Evaluating Risk Mitigation Measures for UAV Operational Concepts in the NAS

    E-Print Network [OSTI]

    Weibel, Roland E

    2005-09-26

    An integrated approach is outlined in this paper to evaluate risks posed by operating Unmanned Aerial Vehicles in the National Airspace System. The approach supports the systematic evaluation of potential risk mitigation ...

  11. Strategies for mitigating adverse environmental impacts due to structural building materials

    E-Print Network [OSTI]

    Chaturvedi, Swati, 1976-

    2004-01-01

    This thesis assesses the problem of adverse environmental impacts due to the use of Portland cement and structural steel in the construction industry. The thesis outlines three technology and policy strategies to mitigate ...

  12. Gas jet disruption mitigation studies on Alcator C-Mod and DIII-D

    E-Print Network [OSTI]

    Hollmann, E. M.

    High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the requirements of fast response time and reliability, without degrading subsequent discharges. Previously reported gas jet ...

  13. Collective action for community-based hazard mitigation: a case study of Tulsa project impact 

    E-Print Network [OSTI]

    Lee, Hee Min

    2005-11-01

    During the past two decades, community-based hazard mitigation (CBHM) has been newly proposed and implemented as an alternative conceptual model for emergency management to deal with disasters comprehensively in order to curtail skyrocketing...

  14. Strategies for Mitigating the Reduction in Economic Value of Variable Generation with Increasing Penetration Levels

    SciTech Connect (OSTI)

    Mills, Andrew; Wiser, Ryan

    2014-03-03

    In this report, we evaluate individual options that have the potential to stem the decline in the marginal value of variable generation (VG) with increasing penetration levels. We focus only on the effectiveness of mitigation measures for wind and PV.

  15. The detection, prevention and mitigation of cascading outages in the power system 

    E-Print Network [OSTI]

    Song, Hongbiao

    2009-05-15

    This dissertation studies the causes and mechanism of power system cascading outages and develops new methods and new tools to help detect, prevent and mitigate the outages. Three effective solutions: a steady state control scheme, a transient...

  16. Fast Detection and Mitigation of Cascading Outages in the Power System 

    E-Print Network [OSTI]

    Pang, Chengzong

    2012-02-14

    This dissertation studies the causes and mechanism of power system cascading outages and proposes the improved interactive scheme between system-wide and local levels of monitoring and control to quickly detect, classify and mitigate the cascading...

  17. Characterization of Section 404 Permit Mitigation Plans, Coastal Margin and Associated Watersheds, Upper Texas Coast 

    E-Print Network [OSTI]

    Conkey, April A.

    2010-01-14

    A predicted loss of agricultural rice-wetlands and increasing urbanization and development threatens the remaining freshwater wetlands along the upper Texas coast. To avoid, minimize, and mitigate wetland loss, the U.S. Army Corps of Engineers...

  18. Characterization and mitigation of process variation in digital circuits and systems

    E-Print Network [OSTI]

    Drego, Nigel Anthony, 1980-

    2009-01-01

    Process variation threatens to negate a whole generation of scaling in advanced process technologies due to performance and power spreads of greater than 30-50%. Mitigating this impact requires a thorough understanding of ...

  19. Mitigation Options in Forestry, Land-Use, Change and Biomass Burning in Africa

    E-Print Network [OSTI]

    Makundi, Willy R.

    1998-01-01

    reduces emissions. (iii) Bio-energy Initiatives These wouldThe mitigation options in the bio-energy field will mainlyof such programs in the bio-energy field. The experiences of

  20. Evaluating service mitigation proposals for the MBTA Green Line extension construction delay using simplified planning methods

    E-Print Network [OSTI]

    Rosen, Jamie C. (Jamie Cara)

    2013-01-01

    This thesis reviews a select group of transit environmental mitigation proposals through the application of ridership estimation methodologies. In recent years, rider demands and environmental concerns have led many transit ...

  1. Thailand-National Energy Efficiency Plan and Evidence-based Mitigation...

    Open Energy Info (EERE)

    Thailand-National Energy Efficiency Plan and Evidence-based Mitigation Strategy Jump to: navigation, search Name GIZ-Thailand-National energy efficiency plan as a core element for...

  2. Linking mitigation and adaptation in local climate change planning : the opportunity facing Somerville, Massachusetts

    E-Print Network [OSTI]

    Goldwasser, Mia R. (Mia Rebecca)

    2015-01-01

    As climate change impacts are beginning to be felt and scientists project unavoidable levels of future change-cities are beginning to adapt. Simultaneously, they are expanding their commitment to mitigate carbon emissions, ...

  3. Development of a Digital Controller for a Vertical Wind Tunnel (VWT) Prototype to Mitigate Ball Fluctuations 

    E-Print Network [OSTI]

    Silva, Ramon A.

    2011-08-08

    The objective of this research was to mitigate fluctuations of a levitated ping pong ball within a vertical wind tunnel (VWT) prototype. This was made possible by remodeling the VWT system with its inherent nonlinear characteristics instead...

  4. Planning for the Future: Climate Adaptation in Hazard Mitigation Plans and Comprehensive Water Resource Management Plans

    E-Print Network [OSTI]

    Bailey, Gregory

    This project investigated whether hazard mitigation plans (HMPs) and comprehensive water resource management plans (CWRMPs) completed by cities and towns in Massachusetts account for the long term effects of climate change. ...

  5. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOE Patents [OSTI]

    Mulligan, Anthony C. (Tucson, AZ); Rigali, Mark J. (Tucson, AZ); Sutaria, Manish P. (Malden, MA); Popovich, Dragan (Redmond, WA); Halloran, Joseph P. (Tucson, AZ); Fulcher, Michael L. (Tucson, AZ); Cook, Randy C. (Tucson, AZ)

    2009-04-14

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  6. A program to design asphalt concrete overlays to mitigate reflection cracking 

    E-Print Network [OSTI]

    Satyanarayana Rao, Sindhu

    2002-01-01

    . Various engineering reinforcing grids have been used in recent years to mitigate the occurrence and propagation of reflection cracking. Reinforcing grids made of fiberglass or polypropylene has been used for this purpose. The main objectives...

  7. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOE Patents [OSTI]

    Mulligan, Anthony C.; Rigali, Mark J.; Sutaria, Manish P.; Popovich, Dragan; Halloran, Joseph P.; Fulcher, Michael L.; Cook, Randy C.

    2005-12-13

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  8. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments

    DOE Patents [OSTI]

    Rigali, Mark J.; Sutaria, Manish P.; Mulligan, Anthony C.; Popovich, Dragan

    2004-03-23

    Fibrous monolith composites having architectures that provide increased flaw insensitivity, improved hardness, wear resistance and damage tolerance and methods of manufacture thereof are provided for use in dynamic environments to mitigate impact damage and increase wear resistance.

  9. Original Full Length Article Low magnitude mechanical signals mitigate osteopenia without compromising

    E-Print Network [OSTI]

    expansion. Given bone's inherent mechanosensitivity, low intensity vibration (LIV), a mechanical signal-frequency mechanical signals induced via low intensity vibration (LIV) are anabolic to bone, perhaps servingOriginal Full Length Article Low magnitude mechanical signals mitigate osteopenia without

  10. Application of a Novel Clay Stabilizer to Mitigate Formation Damage due to Clay Swelling 

    E-Print Network [OSTI]

    Clarke, Timothy

    2014-12-09

    and drilling engineers’ responsibilities. This research focuses on the application of a cationic inorganic Al/Zr-based polymer clay stabilizer to prevent swelling of smectite particles in a sandstone matrix. Previous work has focused on mitigating fines...

  11. Three Essays on Climate Change Impacts, Adaptation and Mitigation in Agriculture 

    E-Print Network [OSTI]

    Wang, Wei Wei

    2012-10-19

    This dissertation investigates three economic aspects of the climate change issue: optimal allocation of investment between adaptation and mitigation, impacts on a ground water dependent regional agricultural economy and ...

  12. Monitoring and Mitigation Alternatives for Protection of North Atlantic Right Whales during Offshore Wind Farm Installation

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Halvorsen, Michele B.; Matzner, Shari; Copping, Andrea E.; Stavole, Jessica

    2012-09-01

    Progress report on defining and determining monitoring and mitigation measures for protecting North Atlantic Right Whales from the effects of pile driving and other activities associated with installation of offshore wind farms.

  13. Effectiveness of PV Drains for Mitigating Earthquake-Induced Deformations in Sandy Slopes

    E-Print Network [OSTI]

    Vytiniotis, Antonios

    This paper considers the effectiveness of a Pre-fabricated Vertical (PV) drain array for mitigating the earthquake-induced permanent ground deformations of a water-fronting loose sand fill based on results of numerical ...

  14. Knock mitigation on boosted Controlled Auto-Ignition engines with fuel stratification and Exhaust Gas Recycling

    E-Print Network [OSTI]

    Sang, Wen, Ph. D. Massachusetts Institute of Technology

    2014-01-01

    This research is carried out to understand the mechanism of using fuel stratification and Exhaust Gas Recycling (EGR) for knock mitigation on boosted Controlled Auto-Ignition (CAl) engines. Experiments were first conducted ...

  15. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing

    SciTech Connect (OSTI)

    Vammen Larsen, Sanne; Kornov, Lone; Wejs, Anja

    2012-02-15

    This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations as to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural-cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments in a more systematic and integrated manner. - Highlights: Black-Right-Pointing-Pointer Synergies between climate change mitigation, adaptation and other environmental concerns are not addressed in Danish SEA. Black-Right-Pointing-Pointer Institutional explanations relate to organisational set-ups and understandings of climate change as a new planning issue. Black-Right-Pointing-Pointer The paper points to a need for developing SEA to include climate change in a more systematic and integrated manner.

  16. Gas Jet Disruption Mitigation Studies on Alcator C-Mod and DIII-D

    E-Print Network [OSTI]

    Gas Jet Disruption Mitigation Studies on Alcator C-Mod and DIII-D R.S. Granetz1, E.M. Hollmann2, D-pressure noble gas jet High-pressure noble gas jets can mitigate 3 problems arising from disruptions, without molybdenum Be, W, C #12;Specific goals of these DIII-D and C-Mod gas jet experiments · Determine penetration

  17. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    SciTech Connect (OSTI)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  18. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2010-02-04

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  19. Assessment and Mitigation of Electromagnetic Pulse (EMP) Impacts at Short-pulse Laser Facilities

    SciTech Connect (OSTI)

    Brown, Jr., C G; Bond, E; Clancy, T; Dangi, S; Eder, D C; Ferguson, W; Kimbrough, J; Throop, A

    2009-10-02

    The National Ignition Facility (NIF) will be impacted by electromagnetic pulse (EMP) during normal long-pulse operation, but the largest impacts are expected during short-pulse operation utilizing the Advanced Radiographic Capability (ARC). Without mitigation these impacts could range from data corruption to hardware damage. We describe our EMP measurement systems on Titan and NIF and present some preliminary results and thoughts on mitigation.

  20. A statistical approach to designing mitigation for induced AC voltages on pipelines

    SciTech Connect (OSTI)

    Dabkowski, J. [Electro Sciences Inc., Crystal Lake, IL (United States)

    1996-08-01

    Induced voltage levels on buried pipelines co-located with overhead electric power transmission lines are usually mitigated by grounding the pipeline. Maximum effectiveness is obtained when grounds are placed where the peak induced voltages occur. Mitigation depends on the local soil resistivity. It may be necessary to employ an extensive distributed grounding system. Over long distances, however, the soil resistivity generally varies as a log-normally distributed random variable. The effect of this variability is examined.

  1. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-09-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  2. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-07-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming and water gas shift mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRB and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  3. Fossil fuel decarbonization technology for mitigating global warming

    SciTech Connect (OSTI)

    Steinberg, M.

    1998-04-01

    It has been understood that production of hydrogen from fossil and carbonaceous fuels with reduced CO{sub 2} emission to the atmosphere is key to the production of hydrogen-rich fuels for mitigating the CO{sub 2} greenhouse gas climate change problem. The conventional methods of hydrogen production from fossil fuels (coal, oil, gas and biomass) include steam reforming process, mainly of natural gas (SRM). In order to suppress CO{sub 2} emission from the steam reforming process, CO{sub 2} must be concentrated and sequestered either in or under the ocean or in or underground (in aquifers, or depleted oil or gas wells). Up to about 40% of the energy is lost in this process. An alternative process is the pyrolysis or the thermal decomposition of methane, natural gas (TDM) to hydrogen and carbon. The carbon can either be sequestered or sold on the market as a materials commodity or used as a fuel at a later date under less severe CO{sub 2} restraints. The energy sequestered in the carbon amounts to about 42% of the energy in the natural gas resource which is stored and not destroyed. A comparison is made between the well developed conventional SRM and the less developed TDM process including technological status, efficiency, carbon management and cost. The TDM process appears to have advantages over the well developed SRM process. It is much easier to sequester carbon as a stable solid than CO{sub 2} as a reactive gas or low temperature liquid. It is also possible to reduce cost by marketing the carbon as a filler or construction material. The potential benefits of the TDM process justifies its further efficient development. The hydrogen can be used as a transportation fuel or converted to methanol by reaction with CO{sub 2} from fossil fuel fired power plant stack gases, thus allowing reuse of the carbon in conventional IC automobile engines or in advanced fuel cell vehicles.

  4. Degradation of Thermal Barrier Coatings from Deposits and Its Mitigation

    SciTech Connect (OSTI)

    Nitin Padture

    2011-12-31

    Ceramic thermal barrier coatings (TBCs) used in gas-turbine engines afford higher operating temperatures, resulting in enhanced efficiencies and performance. However, in the case of syngas-fired engines, fly ash particulate impurities that may be present in syngas can melt on the hotter TBC surfaces and form glassy deposits. These deposits can penetrate the TBCs leading to their failure. In experiments using lignite fly ash to simulate these conditions we show that conventional TBCs of composition 93wt% ZrO{sub 2} + 7wt% Y{sub 2}O{sub 3} (7YSZ) fabricated using the air plasma spray (APS) process are completely destroyed by the molten fly ash. The molten fly ash is found to penetrate the full thickness of the TBC. The mechanisms by which this occurs appear to be similar to those observed in degradation of 7YSZ TBCs by molten calcium-magnesium-aluminosilicate (CMAS) sand and by molten volcanic ash in aircraft engines. In contrast, APS TBCs of Gd{sub 2Zr{sub 2}O{sub 7} composition are highly resistant to attack by molten lignite fly ash under identical conditions, where the molten ash penetrates ~25% of TBC thickness. This damage mitigation appears to be due to the formation of an impervious, stable crystalline layer at the fly ash/Gd{sub 2}Zr{sub 2}O{sub 7} TBC interface arresting the penetrating moltenfly- ash front. Additionally, these TBCs were tested using a rig with thermal gradient and simultaneous accumulation of ash. Modeling using an established mechanics model has been performed to illustrate the modes of delamination, as well as further opportunities to optimize coating microstructure. Transfer of the technology was developed in this program to all interested parties.

  5. INTRODUCTION SECTION 1 FISH AND WILDLIFE PROGRAM 1-13 September 13, 1995

    E-Print Network [OSTI]

    -site measures and programs -- respond to the impacts on fish and wildlife caused by the region's hydroelectric and management of hydroelectric facilities located on the Columbia River and its tributaries, while assuring

  6. The Fish and Wildlife Service Manual, Part 340 FW 3: Rights-of...

    Open Energy Info (EERE)

    The Fish and Wildlife Service Manual, Part 340 FW 3: Rights-of-Way and Road Closings Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  7. SampleSize 1.1 Sample Size Calculations for Fish and Wildlife

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Bonneville Power Administration Division of Fish and Wildlife P.O. Box 3621 Portland, OR 97208-3621 Project of design variables. This project is funded by the Bonneville Power Administration, US Department of Energy

  8. Assessing Attitudes Toward Wildlife Ownership in United StatesMexico Borderlands

    E-Print Network [OSTI]

    , Park & Tourism Sciences, Texas A&M University, College Station, Texas, USA ANGELA G. MERTIG Department or access to it on game ranches) made some wildlife species a potentially valuable asset for landowners

  9. Evaluation of a wildlife underpass on Vermont State Highway 289 in Essex, Vermont

    E-Print Network [OSTI]

    Austin, John M.; Garland, Larry

    2001-01-01

    Scharf, technicians for the Vermont Department of Fish andEVALUATION OF A WILDLIFE UNDERPASS ON VERMONT STATE HIGHWAY289 IN ESSEX, VERMONT John M. Austin and Larry Garland,

  10. The wired wilderness : electronic surveillance and environmental values in wildlife biology

    E-Print Network [OSTI]

    Benson, Etienne Samuel

    2006-01-01

    In the second half of the twentieth century, American wildlife biologists incorporated Cold War-era surveillance technologies into their practices in order to render wild animals and their habitats legible and manageable. ...

  11. A study of wind waves in the Gulf Intracoastal Waterway near the Arkansas National Wildlife Refuge 

    E-Print Network [OSTI]

    Hershberger, Darla Anne

    1993-01-01

    The Aransas National Wildlife Refuge has been experiencing extensive erosion along the bank of the Gulf Intracoastal Waterway. A project was initiated to study the wave conditions in the channel in order to evaluate the respective energies...

  12. HumanWildlife Conflicts 3(2):296297, Fall 2009 Richard A. Dolbeer: scientist, innovator,

    E-Print Network [OSTI]

    and produced advances in how airport habitats should be managedtoreduceusebywildlife,inthedesign of turbine-powered engines and airframes to withstand bird strikes, and in how wildlife strike data are reported

  13. Hydrogen Mitigation Strategy of the APR1400 Nuclear Power Plant for a Hypothetical Station Blackout Accident

    SciTech Connect (OSTI)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Sang-Baik; Kim, Hee-Dong [Korea Atomic Energy Research Institute (Korea, Republic of)

    2005-06-15

    In order to analyze the hydrogen distribution during a hypothetical station blackout accident in the Korean next-generation Advanced Power Reactor 1400 (APR1400) containment, the three-dimensional computational fluid dynamics code GASFLOW was used. The source of the hydrogen and steam for the GASFLOW analysis was obtained from a MAAP calculation. The discharged water, steam, and hydrogen from the pressurizer are released into the water of the in-containment refueling water storage tank (IRWST). Most of the discharged steam is condensed in the IRWST water because of its subcooling, and dry hydrogen is released into the free volume of the IRWST; finally, it goes out to the annular compartment above the IRWST through the vent holes. From the GASFLOW analysis, it was found that the gas mixture in the IRWST becomes quickly nonflammable by oxygen starvation but the hydrogen is accumulated in the annular compartment because of the narrow ventilation gap between the operating deck and containment wall when the igniters installed in the IRWST are not operated. When the igniters installed in the APR1400 were turned on, a short period of burning occurred in the IRWST, and then the flame was extinguished by the oxygen starvation in the IRWST. The unburned hydrogen was released into the annular compartment and went up to the dome because no igniters are installed around the annular compartment in the base design of the APR1400. From this result, it could be concluded that the control of the hydrogen concentration is difficult for the base design. In this study design modifications are proposed and evaluated with GASFLOW in view of the hydrogen mitigation strategy.

  14. Overview of multivariate methods and their application to studies of wildlife habitat

    SciTech Connect (OSTI)

    Shugart, H.H. Jr.

    1980-01-01

    Multivariate statistical techniques as methods of choice in analyzing habitat relations among animals have distinct advantages over competitive methodologies. These considerations, joined with a reduction in the cost of computer time, the increased availability of multivariate statistical packages, and an increased willingness on the part of ecologists to use mathematics and statistics as tools, have created an exponentially increasing interest in multivariate statistical methods over the past decade. It is important to note that the earliest multivariate statistical analyses in ecology did more than introduce a set of appropriate and needed methodologies to ecology. The studies emphasized different spatial and organizational scales from those typically emphasized in habitat studies. The new studies, that used multivariate methods, emphasized individual organisms' responses in a heterogeneous environment. This philosophical (and to some degree, methodological) emphasis on heterogeneity has led to a potential to predict the consequences of disturbances and management on wildlife habitat. One recent development in this regard has been the coupling of forest succession simulators with multivariate analysis of habitat to predict habitat availability under different timber management procedures.

  15. Environmental Guidance Program Reference Book: Endangered Species Act and the Fish and Wildlife Coordination Act. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Endangered Species Act and the Fish and Wildlife Coordination Act are major federal statutes designed to protect plant and animal resources from adverse effects due to development projects. Both Acts require consultation with wildlife authorities prior to committing resources to certain types of projects. The purposes and requirements of the two statutes are summarized in the following subsections. Also presented is a list of contacts in the regional and field offices of the US Fish and Wildlife Service.

  16. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    SciTech Connect (OSTI)

    Wu, May; Zhang, Zhonglong

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was clearly attributable to the conversion of a large amount of land to switchgrass. The Middle Lower Missouri River and Lower Missouri River were identified as hot regions. Further analysis identified four subbasins (10240002, 10230007, 10290402, and 10300200) as being the most vulnerable in terms of sediment, nitrogen, and phosphorus loadings. Overall, results suggest that increasing the amount of switchgrass acreage in the hot spots should be considered to mitigate the nutrient loads. The study provides an analytical method to support stakeholders in making informed decisions that balance biofuel production and water sustainability.

  17. Annual Review of BPA-Funded Fish and Wildlife Projects in Montana, November 28-29, 1984.

    SciTech Connect (OSTI)

    Drais, Gregory

    1985-01-01

    Brief summaries of projects investigating the impacts of hydroelectric power projects in Montana on fish and wildlife values are presented. (ACR)

  18. Strategies for restoring ecological connectivity and establishing wildlife passage for the upgrade of Route 78 in Swanton, Vermont: an overview

    E-Print Network [OSTI]

    Austin, John M.; Ferguson, Mark; Gingras, Glenn; Bakos, Greg

    2003-01-01

    on Black bears in Vermont. Stratton Mountain Black BearStudy. Final Report. Vermont Agency of Natural Resources,biologist with the Vermont Fish and Wildlife Department.

  19. Threatened and endangered fish and wildlife of the midwest

    SciTech Connect (OSTI)

    Schafer, D.W.; Robeck, K.E.

    1980-06-01

    This report contains information of federally-listed endangered and/or threatened fish and wildlife occurring in the midwestern states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, Ohio, and Wisconsin. The information was compiled as a support document for the Regional Issue Identification and Assessment (RIIA) project sponsored by the Regional Assessments Division of the Office of Technology Impacts within the Department of Energy. The information on midwestern endangered species distribution, habitats, and reasons for population decline included in this document are designed to help assess the potential for adverse impacts if energy activities are sited within the general range of an endangered species. It is hoped that this document will thereby enhance the reliability of one portion of energy-related assessments performed in the Midwest. This report considers only those species listed prior to October 1979 as endangered and/or threatened in the federal endangered species list published in the Federal Register and that have been known to occur in the region in the last 20 years.

  20. FOAM FORMATION IN THE SALTSTONE PRODUCTION FACILITY: EVALUATION OF SOURCES AND MITIGATION

    SciTech Connect (OSTI)

    Cozzi, A.

    2011-01-18

    The Saltstone Production Facility receives waste from Tank 50H for treatment. Influents into Tank 50H include the Effluent Treatment Project waste concentrate, H-Canyon low activity waste and General Purpose Evaporator bottoms, Modular Caustic Side Solvent Extraction Unit decontaminated salt solution, and salt solution from the Deliquification, Dissolution and Adjust campaign. Using the Waste Characterization System (WCS), this study tracks the relative amounts of each influent into Tank 50H, as well as the total content of Tank 50H, in an attempt to identify the source of foaming observed in the Saltstone Production Facility hopper. Saltstone has been using antifoam as part of routine processing with the restart of the facility in December 2006. It was determined that the maximum admix usage in the Saltstone Production Facility, both antifoam and set retarder, corresponded with the maximum concentration of H-Canyon low activity waste in Tank 50H. This paper also evaluates archived salt solutions from Waste Acceptance Criteria analysis for propensity to foam and the antifoam dosage required to mitigate foaming. It was determined that Effluent Treatment Project contributed to the expansion factor (foam formation) and General Purpose Evaporator contributed to foaminess (persistence). It was also determined that undissolved solids contribute to foam persistence. It was shown that additions of Dow Corning Q2-1383a antifoam reduced both the expansion factor and foaminess of salt solutions. The evaluation of foaming in the grout hopper during the transition from water to salt solution indicated that higher water-to-premix ratios tended to produce increased foaming. It was also shown that additions of Dow Corning Q2-1383a antifoam reduced foam formation and persistence.