National Library of Energy BETA

Sample records for analysis technology characterizations

  1. Renewable energy technology characterizations

    SciTech Connect (OSTI)

    None, None

    1997-12-01

    The Renewable Energy Technology Characterizations describe the technical and economic status of the major emerging renewable energy options for electricity supply.

  2. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to characterize desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide decision-makers and system developers

  3. Final Technical Report: Characterizing Emerging Technologies.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua; Riley, Daniel; Gonzalez, Sigifredo

    2015-12-01

    The Characterizing Emerging Technologies project focuses on developing, improving and validating characterization methods for PV modules, inverters and embedded power electronics. Characterization methods and associated analysis techniques are at the heart of technology assessments and accurate component and system modeling. Outputs of the project include measurement and analysis procedures that industry can use to accurately model performance of PV system components, in order to better distinguish and understand the performance differences between competing products (module and inverters) and new component designs and technologies (e.g., new PV cell designs, inverter topologies, etc.).

  4. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  5. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology...

  6. Characterization, monitoring, and sensor technology catalogue

    SciTech Connect (OSTI)

    Matalucci, R.V.; Esparza-Baca, C.; Jimenez, R.D.

    1995-12-01

    This document represents a summary of 58 technologies that are being developed by the Department of Energy`s (DOE`s) Office of Science and Technology (OST) to provide site, waste, and process characterization and monitoring solutions to the DOE weapons complex. The information was compiled to provide performance data on OST-developed technologies to scientists and engineers responsible for preparing Remedial Investigation/Feasibility Studies (RI/FSs) and preparing plans and compliance documents for DOE cleanup and waste management programs. The information may also be used to identify opportunities for partnering and commercialization with industry, DOE laboratories, other federal and state agencies, and the academic community. Each technology is featured in a format that provides: (1) a description, (2) technical performance data, (3) applicability, (4) development status, (5) regulatory considerations, (6) potential commercial applications, (7) intellectual property, and (8) points-of-contact. Technologies are categorized into the following areas: (1) Bioremediation Monitoring, (2) Decontamination and Decommissioning, (3) Field Analytical Laboratories, (4) Geophysical and Hydrologic Characterization, (5) Hazardous Inorganic Contaminant Analysis, (6) Hazardous Organic Contaminant Analysis, (7) Mixed Waste, (8) Radioactive Contaminant Analysis, (9) Remote Sensing,(10)Sampling and Drilling, (11) Statistically Guided Sampling, and (12) Tank Waste.

  7. Microearthquake Technology for EGS Fracture Characterization; 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technology Program Peer Review Report | Department of Energy Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report Microearthquake Technology for EGS Fracture Characterization; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon seismic_021_foulger.pdf More Documents & Publications Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal

  8. Microearthquake Technology for EGS Fracture Characterization | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Microearthquake Technology for EGS Fracture Characterization Microearthquake Technology for EGS Fracture Characterization Project objectives: To understand how EGS fracture networks develop; To develop technology to determine accurate absolute three-dimensional positions of EGS fracture networks. PDF icon seismic_foulger_microearthquake.pdf More Documents & Publications Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Newberry EGS

  9. Bore II - Advanced Wellbore Technology Characterizes Groundwater...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This Return to Search Bore II - Advanced Wellbore Technology Characterizes Groundwater Flow and Contamination Lawrence Berkeley National Laboratory Contact LBL About This...

  10. Characterization monitoring & sensor technology crosscutting program

    SciTech Connect (OSTI)

    1996-08-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the OFfice of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60).

  11. Expedited site characterization. Innovative technology summary report

    SciTech Connect (OSTI)

    1998-12-01

    Expedited Site Characterization (ESC) has been developed, demonstrated, and deployed as a new time-saving, cost-effective approach for hazardous waste site investigations. ESC is an alternative approach that effectively shortens the length of the assessment period and may significantly reduce costs at many sites. It is not a specific technology or system but is a methodology for most effectively conducting a site characterization. The principal elements of ESC are: a field investigation conducted by an integrated team of experienced professionals working in the field at the same time, analysis, integration and initial validation of the characterization data as they are obtained in the field, and a dynamic work plan that enables the team to take advantage of new insights from recent data to adjust the work plan in the field. This report covers demonstrations that took place between 1989 and 1996. This paper gives a description of the technology and discusses its performance, applications, cost, regulatory and policy issues, and lessons learned.

  12. Characterization, monitoring, and sensor technology crosscutting program: Technology summary

    SciTech Connect (OSTI)

    1995-06-01

    The purpose of the Characterization, Monitoring, and Sensor Technology Crosscutting Program (CMST-CP) is to deliver appropriate characterization, monitoring, and sensor technology (CMST) to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The technology development must also be cost effective and appropriate to EM-30/40/60 needs. Furthermore, the required technologies must be delivered and implemented when needed. Accordingly, and to ensure that available DOE and other national resources are focused an the most pressing needs, management of the technology development is concentrated on the following Focus Areas: Contaminant Plume Containment and Remediation (PFA); Landfill Stabilization (LSFA); High-Level Waste Tank Remediation (TFA); Mixed Waste Characterization, Treatment, and Disposal (MWFA); and Facility Deactivation, Decommissioning, and Material Disposition (FDDMDFA). Brief descriptions of CMST-CP projects funded in FY95 are presented.

  13. NREL: Energy Analysis - Solar Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate

  14. NREL: Energy Analysis - Technology Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Systems Analysis NREL's Technology Systems Analysis examines RD&D areas in terms of potential costs, benefits, risks, uncertainties, and timeframes. The following pages provide information on specific technology areas: Biomass Building Electric Infrastructure Systems Energy Sciences Geothermal Hydrogen and Fuel Cells Solar Vehicles and Fuels Research Wind Key staff analyst Summary bios of staff expertise and interests Team Lead: Margaret Mann Administrative Support: Catherine

  15. NREL: Energy Analysis - Building Technologies Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building Technologies Analysis The Building Technologies analysis supports research and development on technologies and practices for energy efficiency, working closely with the building industry and manufacturers; promotes energy and money-saving opportunities to builders and consumers; and works with state and local regulatory groups to improve building codes and appliance standards. Building Energy Software Tools Directory Described here are 283 energy-related software tools for buildings,

  16. NREL: Energy Analysis - Wind Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind and Hydropower Technology Analysis Wind and hydropower analysis supports advanced technologies that convert more of the nation's wind into electricity. Grid Operational Impact Analysis The wind program will address the variable, normally uncontrollable nature of wind power plant output, and the additional needs that its operation imposes on the overall grid. At present, the generation and transmission operational impacts that occur due to wind variability are not well quantified. This

  17. Nuclear Proliferation Technology Trends Analysis

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Talbert, Robert J.

    2005-10-04

    A process is underway to develop mature, integrated methodologies to address nonproliferation issues. A variety of methodologies (both qualitative and quantitative) are being considered. All have one thing in common, a need for a consistent set of proliferation related data that can be used as a basis for application. One approach to providing a basis for predicting and evaluating future proliferation events is to understand past proliferation events, that is, the different paths that have actually been taken to acquire or attempt to acquire special nuclear material. In order to provide this information, this report describing previous material acquisition activities (obtained from open source material) has been prepared. This report describes how, based on an evaluation of historical trends in nuclear technology development, conclusions can be reached concerning: (1) The length of time it takes to acquire a technology; (2) The length of time it takes for production of special nuclear material to begin; and (3) The type of approaches taken for acquiring the technology. In addition to examining time constants, the report is intended to provide information that could be used to support the use of the different non-proliferation analysis methodologies. Accordingly, each section includes: (1) Technology description; (2) Technology origin; (3) Basic theory; (4) Important components/materials; (5) Technology development; (6) Technological difficulties involved in use; (7) Changes/improvements in technology; (8) Countries that have used/attempted to use the technology; (9) Technology Information; (10) Acquisition approaches; (11) Time constants for technology development; and (12) Required Concurrent Technologies.

  18. Microearthquake Technology for EGS Fracture Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microearthquake Technology for EGS Fracture Characterization Principal Investigator: Gillian R. Foulger Presenter: Bruce R. Julian Foulger Consulting Track Name May 19, 2010 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov * Timeline: - Project start date: 1st January, 2009 - Project end date: 31st December, 2012 - Percent complete: 31% * Budget: - Total project funding: $703,040 - DOE share:

  19. NREL: Energy Analysis - Energy Sciences Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Sciences Technology Analysis To help meet the nation's needs for clean energy, inexpensive alternative fuels, and a healthy environment, researchers in NREL's Energy Sciences are improving our understanding of the science behind renewable energy and energy-efficient technologies. These technologies include photovoltaics (solar cells), fuels and energy systems made from biomass (plants and waste products) and hydrogen, and advanced energy storage and transmission systems. In this work, our

  20. NREL: Energy Analysis - Geothermal Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program focuses in three areas: energy systems research and testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by Sandia National Laboratories; and geoscience and supporting technologies research (exploration and resource management) led by the Idaho National Engineering and Environmental

  1. Environmental data energy technology characterizations: synthetic fuels

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    Environmental Data Energy Technology Characterizations are publications which are intended to provide policy analysts and technical analysts with basic environmental data associated with key energy technologies. This publication provides documentation on synthetic fuels (coal-derived and oil shale). The transformation of the energy in coal and oil shale into a more useful form is described in this publication in terms of major activity areas in the synthetic fuel cycles, that is, in terms of activities which produce either an energy product or a fuel leading to the production of an energy product in a different form. The activities discussed in this document are coal liquefaction, coal gasification, in-situ gasification, and oil shales. These activities represent both well-documented and advanced activity areas. The former activities are characterized in terms of actual operating data with allowance for future modification where appropriate. Emissions are assumed to conform to environmental standards. The advanced activity areas examined are those like coal liquefaction and in-situ retorting of oil shale. For these areas, data from pilot or demonstration plants were used where available; otherwise, engineering studies provided the data. The organization of the chapters in this volume is designed to support the tabular presentation in the summary volume. Each chapter begins with a brief description of the activity under consideration. The standard characteristics, size, availability, mode of functioning and place in the fuel cycle are presented. Next, major legislative and/or technological factors influencing the commercial operation of the activity are offered. Discussions of resources consumed, residuals produced, and economics follow. To aid in comparing and linking the different activity areas, data for each area are normalized to 10/sup 12/ Btu of energy output from the activity.

  2. Characterization and Failure Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Failure Analysis - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  3. NREL: Energy Analysis - Biomass Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Technology Analysis Conducting full life-cycle assessments for biomass products, including electricity, biodiesel, and ethanol, is important for determining environmental benefits. NREL analysts use a life-cycle inventory modeling package and supporting databases to conduct life-cycle assessments. These tools can be applied on a global, regional, local, or project basis. Integrated system analyses, technoeconomic analyses, life-cycle assessments (LCAs), and other analysis tools are

  4. PNNL Technology Systems Analysis Group | Open Energy Information

    Open Energy Info (EERE)

    PNNL Technology Systems Analysis Group (Redirected from Technology Systems Analysis) Jump to: navigation, search Logo: Technology Systems Analysis Name Technology Systems Analysis...

  5. Environmental data energy technology characterizations: coal

    SciTech Connect (OSTI)

    Not Available

    1980-04-01

    This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

  6. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  7. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  8. Oil & Natural Gas Technology Temporal Characterization of Hydrates...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse Electrical Resistivity Methods and In Situ...

  9. Cost Analysis: Technology, Competitiveness, Market Uncertainty | Department

    Office of Environmental Management (EM)

    of Energy Technology to Market » Cost Analysis: Technology, Competitiveness, Market Uncertainty Cost Analysis: Technology, Competitiveness, Market Uncertainty As a basis for strategic planning, competitiveness analysis, funding metrics and targets, SunShot supports analysis teams at national laboratories to assess technology costs, location-specific competitive advantages, policy impacts on system financing, and to perform detailed levelized cost of energy (LCOE) analyses. This shows the

  10. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  11. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon seismic021foulger.pdf More Documents & Publications Monitoring and Modeling Fluid Flow in a...

  12. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect (OSTI)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  13. PNNL Technology Systems Analysis Group | Open Energy Information

    Open Energy Info (EERE)

    PNNL Technology Systems Analysis Group Jump to: navigation, search Logo: Technology Systems Analysis Name Technology Systems Analysis AgencyCompany Organization Pacific Northwest...

  14. Technological Feasibility and Cost Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis » Analysis Methodologies » Technological Feasibility and Cost Analysis Technological Feasibility and Cost Analysis Technology Feasibility and Cost Analysis is performed to determine the potential economic viability of a process or technology, and helps to identify which technologies have the greatest likelihood of economic success. Results from technology feasibility analysis efforts provide input to balanced portfolio development and technology validation plans. The economic

  15. Pump and Fan Technology Characterization and R&D Assessment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Pump and Fan Technology Characterization and R&D Assessment Pump and Fan Technology Characterization and R&D Assessment This report provides the Building Technologies Office (BTO) and the research and development (R&D) community with a technical and market analysis of pumps and fans as they pertain to commercial and residential buildings as well as key conclusions regarding the R&D opportunities that can help achieve BTO's energy savings goals. The analysis found an

  16. Economic Analysis of Commercial Idling Reduction Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction ... A Key Enabler of Expanded U.S. Trade and Economic Growth Comparing Emissions Benefits from ...

  17. Fuel Cell Technologies Office Hydrogen Storage R&D Core Characterization Capabilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office (FCTO) Hydrogen Storage R&D Core Characterization Capabilities An NREL-led National Laboratory Collaboration between NREL, LBNL, PNNL, and NIST NREL CORE CHARACTERIZATION CAPABILITIES The National Renewable Energy Laboratory (NREL) will offer specialized characterization for hydrogen storage materials through its DOE-FCTO core-capability validation laboratory. We offer PCT analysis of hydrogen storage materials to determine their gravimetric and volumetric

  18. Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

  19. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ape_11_kelly.pdf More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate

  20. Introduction - AMO Strategic and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction - AMO Strategic and Technology Analysis AMO Strategic Analysis Technology Manager: Joe Cresko AMO Peer Review May 28, 2015 This presentation does not contain any proprietary, confidential, or otherwise restricted information. Industry and Manufacturing Energy Use by fuel type... U.S. Economy: 95 Quads Industry: 31 Quads Economy- wide energy use Fuel mix shows diverse nature of industry energy use * Renewables consist primarily of biomass energy (2.238 Quads), with the Source: EIA

  1. Pump and Fan Technology Characterization and R&D Assessment ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report provides the Building Technologies Office (BTO) and the research and development (R&D) community with a technical and market analysis of pumps and fans as they pertain ...

  2. NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Technology Analysis NREL's hydrogen systems analysis activities provide direction, insight, and support for the development, demonstration, and deployment of a broad range of hydrogen technologies. Analysis focuses on hydrogen production, storage, and delivery systems for fuel cell electric vehicles (FCEVs) as well as stationary fuel cells and emerging-market applications such as material handling and backup power. NREL's hydrogen systems analysts evaluate R&D goals

  3. Backup Power Cost of Ownership Analysis and Incumbent Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison This cost of ownership...

  4. Software Tools for Analysis of Concentrated Solar Power Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Prepared ... and Codes for Analysis of Concentrating Solar Power Technologies Clifford K. Ho Solar ...

  5. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  6. Prospective Life Cycle and Technology Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prospective Life Cycle and Technology Analysis Advanced Manufacturing Office Peer Review May 28, 2015 Diane J. Graziano E. Masanet R. Huang M.E. Riddle This presentation does not contain any proprietary, confidential, or otherwise restricted information. DOE-AMO Analysis Summary - ANL/NU * Quantifying, from a life-cycle perspective, the enabling effects of advanced manufacturing in achieving AMO's mission for energy savings across the economy * Assessing net energy, emissions, and economic

  7. Analysis of the Climate Change Technology Initiative

    Reports and Publications (EIA)

    1999-01-01

    Analysis of the impact of specific policies on the reduction of carbon emissions and their impact on U.S. energy use and prices in the 2008-2012 time frame. Also, analyzes the impact of the President's Climate Change Technology Initiative, as defined for the 2000 budget, on reducing carbon emissions from the levels forecast in the Annual Energy Outlook 1999 reference case.

  8. Fiber Characterization and Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fiber Characterization and Analysis Images with recognized fiber edges. Diameter equals the measurement between each yellow and red pair lines. The tool is ideal for characterizing fibers in challenging images. Pictured are real images obtained in Argonne National Laboratory experiments, representing different types of nanofiber image challenges: fiber with beads (top left); curved fibers, measured with pre-defined curvature allowance (top right); wetting, which creates reversed contrast (bottom

  9. The Rocky Flats Environmental Technology Site beryllium characterization project

    SciTech Connect (OSTI)

    Morrell, D.M.; Miller, J.R.; Allen, D.F.

    1999-06-01

    A site beryllium characterization project was completed at the Rocky Flats Environmental Technology Site (RFETS) in 1997. Information from historical reviews, previous sampling surveys, and a new sampling survey were used to establish a more comprehensive understanding of the locations and levels of beryllium contamination in 35 buildings. A feature of the sampling strategy was to test if process knowledge was a good predictor of where beryllium contamination could be found. Results revealed that this technique was effective at identifying where surface contamination levels might exceed the RFETS smear control level but that it was not effective in identifying where low concentrations of beryllium might be found.

  10. Evolutionary theory, web-search technology combine for DNA analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sequedex: bioinformatics breakthrough Evolutionary theory, web-search technology combine ... Evolutionary theory, web-search technology combine for DNA analysis Bioinformatics ...

  11. NREL: Energy Analysis - Electric Infrastructure Systems Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Infrastructure Systems Technology Analysis NREL's energy analysis supports distribution and interconnection R&D, which is responsible for distributed resources' system integration. Industrial Distributed Energy Information Resources This link takes you to a directory of white papers and general documents and publications produced by or in conjunction with the EERE Advanced Manufacturing Office's Industrial Distributed Energy activities. Program-specific publications Among these

  12. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect (OSTI)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site`s 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE`s Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  13. Emerging site characterization technologies for volatile organic compounds

    SciTech Connect (OSTI)

    Rohay, V.J.; Last, G.V.

    1992-05-01

    A Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) expedited response action (ERA) has been initiated at Hanford Site's 200 West Area for the removal of carbon tetrachloride from the unsaturated soils. In coordination with the ERA, innovative technology demonstrations are being conducted as part of DOE's Volatile Organic Compounds -- Arid Integrated Demonstration in an effort to improve upon baseline technologies. Improved methods for accessing, sampling, and analyzing soil and soil-vapor contaminants is a high priority. Sonic drilling is being evaluated as an alternative to cable-tool drilling, while still providing the advantages of reliability, containment, and waste minimization. Applied Research Associates, Inc. used their cone penetrometer in the 200 West Area to install a permanent soil-gas monitoring probe and to collect soil-gas profile data. However, successful application of this technology will require the development of an improved ability to penetrate coarse gravel units. A Science and Engineering Associates Membrane Instrumentation and Sampling Technique (SEAMIST) system designed for collecting in situ soil samples and air permeability data in between drilling runs at variable depths is being tested in 200 West Area boreholes. Analytical technologies scheduled for testing include supercritical fluid extraction and analysis for non- and semi-volatile organic co-contaminants and an unsaturated flow apparatus developed by Washington State University for the measurement of transport parameters.

  14. Benefits Analysis for DOE Energy Technology Portfolio Assessment: Background

    SciTech Connect (OSTI)

    Beschen, Darrell

    2006-12-20

    A presentation for the FY 2007 GPRA methodology review on benefits analysis for the DOE energy technology portfolio assessment.

  15. Vehicle Technologies Office: Quarterly Analysis Review June 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Quarterly Analysis Review (QAR) surveys both work supported by the Vehicle Technologies Office Analysis Program within the broader context of energy and automotive U.S. and ...

  16. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage This report presents the results of an analysis evaluating the economic viability of ...

  17. Transuranic waste characterization sampling and analysis plan

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    Los Alamos National Laboratory (the Laboratory) is located approximately 25 miles northwest of Santa Fe, New Mexico, situated on the Pajarito Plateau. Technical Area 54 (TA-54), one of the Laboratory`s many technical areas, is a radioactive and hazardous waste management and disposal area located within the Laboratory`s boundaries. The purpose of this transuranic waste characterization, sampling, and analysis plan (CSAP) is to provide a methodology for identifying, characterizing, and sampling approximately 25,000 containers of transuranic waste stored at Pads 1, 2, and 4, Dome 48, and the Fiberglass Reinforced Plywood Box Dome at TA-54, Area G, of the Laboratory. Transuranic waste currently stored at Area G was generated primarily from research and development activities, processing and recovery operations, and decontamination and decommissioning projects. This document was created to facilitate compliance with several regulatory requirements and program drivers that are relevant to waste management at the Laboratory, including concerns of the New Mexico Environment Department.

  18. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Preliminary Technical Risk Analysis for the Geothermal Technologies Program Preliminary Technical Risk Analysis for the Geothermal Technologies Program This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program. PDF icon 41156.pdf More Documents & Publications U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation

  19. RadBall Technology For Hot Cell Characterization | Department of Energy

    Energy Savers [EERE]

    RadBall Technology For Hot Cell Characterization RadBall Technology For Hot Cell Characterization A new, non-electrical, remote radiation mapping device known as RadBall has been developed by the National Nuclear Laboratory (NNL) in the United Kingdom. PDF icon RadBall Technology For Hot Cell Characterization More Documents & Publications Across the Pond Newsletter Issue 1 CX-005512: Categorical Exclusion Determination EM International Strategic Plan 2010-2015

  20. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  1. Vehicle Technologies Office Merit Review 2014: Catalyst Characterization (Agreement ID:9130) Project ID:18519

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about catalyst characterization.

  2. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  3. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  4. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three

  5. Artificial intelligence technologies applied to terrain analysis

    SciTech Connect (OSTI)

    Wright, J.C. ); Powell, D.R. )

    1990-01-01

    The US Army Training and Doctrine Command is currently developing, in cooperation with Los Alamos National Laboratory, a Corps level combat simulation to support military analytical studies. This model emphasizes high resolution modeling of the command and control processes, with particular attention to architectural considerations that enable extension of the model. A planned future extension is the inclusion of an computer based planning capability for command echelons that can be dynamical invoked during the execution of then model. Command and control is the process through which the activities of military forces are directed, coordinated, and controlled to achieve the stated mission. To perform command and control the commander must understand the mission, perform terrain analysis, understand his own situation and capabilities as well as the enemy situation and his probable actions. To support computer based planning, data structures must be available to support the computer's ability to understand'' the mission, terrain, own capabilities, and enemy situation. The availability of digitized terrain makes it feasible to apply artificial intelligence technologies to emulate the terrain analysis process, producing data structures for uses in planning. The work derived thus for to support the understanding of terrain is the topic of this paper. 13 refs., 5 figs., 6 tabs.

  6. Chapter 5: Increasing Efficiency of Building Systems and Technologies | Building Technologies Office Potential Energy Savings Analysis Supplemental Information

    Office of Environmental Management (EM)

    5: Increasing Efficiency of Building Systems and Technologies Supplemental Information Building Energy Technology Roadmaps Building Technologies Office Potential Energy Savings Analysis ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Building Technologies Office Potential Energy Savings Analysis Chapter 5: Supplemental Information Introduction The analysis undertaken to support Chapter 5 compares the potential energy savings from research,

  7. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  8. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Energy Storage | Department of Energy Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy

  9. NREL: Transportation Research - Vehicle Technology Simulation and Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools Vehicle Technology Simulation and Analysis Tools NREL's systems analysis and integration team uses the following NREL-developed modeling, simulation, and analysis tools to investigate novel vehicle technologies with the potential to achieve significant fuel savings and greenhouse gas reductions. NREL conducts technical analyses of promising technologies and explores trade-offs between component sizes and design goals (e.g., fuel economy versus performance) to find cost-competitive

  10. Analysis of the Climate Change Technology Initiative: Fiscal Year 2001

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of Climate Change Technology Initiative, relative to the baseline energy projections in the Annual Energy Outlook 2000 (AEO2000).

  11. Vehicle Technologies Office Merit Review 2015: Analysis of Film...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry on Silicon Anodes by Advanced In Situ and Operando Vibrational Spectroscopy Vehicle Technologies Office Merit Review 2015: Analysis of Film Formation Chemistry on Silicon ...

  12. Preliminary Environmental Assessment and Analysis of EGS Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environmental Assessment and Analysis of EGS Technologies EGS presentation by Caroline Mann on May 7, 2012 PDF icon gtpegstechanalysis05-2012.pdf More Documents & Publications...

  13. Development of Characterization Technology for Fault Zone Hydrology

    SciTech Connect (OSTI)

    Karasaki, Kenzi; Onishi, Tiemi; Gasperikova, Erika; Goto, Junichi; Tsuchi, Hiroyuki; Miwa, Tadashi; Ueta, Keiichi; Kiho, Kenzo; MIyakawa, Kimio

    2010-08-06

    Several deep trenches were cut, and a number of geophysical surveys were conducted across the Wildcat Fault in the hills east of Berkeley, California. The Wildcat Fault is believed to be a strike-slip fault and a member of the Hayward Fault System, with over 10 km of displacement. So far, three boreholes of ~;; 150m deep have been core-drilled and borehole geophysical logs were conducted. The rocks are extensively sheared and fractured; gouges were observed at several depths and a thick cataclasitic zone was also observed. While confirming some earlier, published conclusions from shallow observations about Wildcat, some unexpected findings were encountered. Preliminary analysis indicates that Wildcat near the field site consists of multiple faults. The hydraulic test data suggest the dual properties of the hydrologic structure of the fault zone. A fourth borehole is planned to penetrate the main fault believed to lie in-between the holes. The main philosophy behind our approach for the hydrologic characterization of such a complex fractured system is to let the system take its own average and monitor a long term behavior instead of collecting a multitude of data at small length and time scales, or at a discrete fracture scale and to ?up-scale,? which is extremely tenuous.

  14. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  15. Advanced vehicle technology analysis and evaluation activities

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    FY 2007 annual progress report evaluating the technologies and performance characteristics of advanced automotive powertrain components and subsystems in an integrated vehicle systems context.

  16. Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery...

  17. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  18. Measurement and Characterization of Unregulated Emissions from Advanced Technologies

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Vehicle Technologies Office Merit Review 2014: Characterization of Catalysts Microstructures

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office Fall 2015 Quarterly Analysis Review

    Broader source: Energy.gov [DOE]

    The Quarterly Analysis Review surveys work supported by the Vehicle Technologies Office Analysis Program within the broader context of energy and automotive U.S. and global markets as well as other analytical studies.

  1. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  2. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    SciTech Connect (OSTI)

    2015-09-01

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  3. Characterization and Development of Advanced Heat Transfer Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon ape018_moreno_2010_o.pdf More Documents & Publications Compact, Light-Weight, Single-Phase, Liquid-Cooled Cold Plate Two-Phase Cooling Technology for Power Electronics with Novel Coolants Advanced Liquid Cooling R&D

  4. Preliminary Environmental Assessment and Analysis of EGS Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Preliminary Environmental Assessment and Analysis of EGS Technologies Preliminary Environmental Assessment and Analysis of EGS Technologies EGS presentation by Caroline Mann on May 7, 2012 PDF icon gtp_egs_tech_analysis05-2012.pdf More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Protocol for Addressing Induced Seismicity Associated with Enhanced

  5. Vehicle Technologies Office: Advanced Battery Development, System Analysis,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Testing | Department of Energy Battery Development, System Analysis, and Testing Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full battery systems. The Vehicle Technologies Office's (VTO) Advanced Battery Development, System Analysis, and Testing activity

  6. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    SciTech Connect (OSTI)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  7. Battery Technology Life Verification Testing and Analysis

    SciTech Connect (OSTI)

    Jon P. Christophersen; Gary L. Hunt; Ira Bloom; Ed Thomas; Vince Battaglia

    2007-12-01

    A critical component to the successful commercialization of batteries for automotive applications is accurate life prediction. The Technology Life Verification Test (TLVT) Manual was developed to project battery life with a high level of statistical confidence within only one or two years of accelerated aging. The validation effort that is presently underway has led to several improvements to the original methodology. For example, a newly developed reference performance test revealed a voltage path dependence effect on resistance for lithium-ion cells. The resistance growth seems to depend on how a target condition is reached (i.e., by a charge or a discharge). Second, the methodology for assessing the level of measurement uncertainty was improved using a propagation of errors in the fundamental measurements to the derived response (e.g., resistance). This new approach provides a more realistic assessment of measurement uncertainty. Third, the methodology for allocating batteries to the test matrix has been improved. The new methodology was developed to assign batteries to the matrix such that the average of each test group would be representative of the overall population. These changes to the TLVT methodology will help to more accurately predict a battery technologys life capability with a high degree of confidence.

  8. Regional Analysis And Characterization Of Fractured Aquifers...

    Open Energy Info (EERE)

    become an important source of basic data that can be used to help characterize the nature and extent of hydraulic conductivity in fractured rocks. We plan to continue to...

  9. Life-Cycle Analysis of Geothermal Technologies

    Broader source: Energy.gov [DOE]

    The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects.

  10. Preliminary Technical Risk Analysis for the Geothermal Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program. 41156.pdf More...

  11. Vehicle technologies heavy vehicle program : FY 2008 benefits analysis, methodology and results --- final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the Vehicle Technologies (VT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, and (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 08 the Heavy Vehicles program continued its involvement with various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. These changes are the result of a planning effort that first occurred during FY 04 and was updated in the past year. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY08 Budget Request. The energy savings models are utilized by the VT program for internal project management purposes.

  12. Energy Analysis Models, Tools and Software Technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Analysis » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Marketing Summaries (115) Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  13. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    SciTech Connect (OSTI)

    Kurtz, J.; Saur, G.; Sprik, S.; Ainscough, C.

    2014-09-01

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems. The analysis compares three different backup power technologies (diesel, battery, and fuel cell) operating in similar circumstances in four run time scenarios (8, 52, 72, and 176 hours).

  14. Vehicle Technologies Office Merit Review 2015: Analysis of Film Formation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemistry on Silicon Anodes by Advanced In Situ and Operando Vibrational Spectroscopy | Department of Energy Analysis of Film Formation Chemistry on Silicon Anodes by Advanced In Situ and Operando Vibrational Spectroscopy Vehicle Technologies Office Merit Review 2015: Analysis of Film Formation Chemistry on Silicon Anodes by Advanced In Situ and Operando Vibrational Spectroscopy Presentation given by UC Berkeley at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office

  15. Economic Analysis of Commercial Idling Reduction Technologies: Which idling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reduction system is most economical for truck owners? | Department of Energy Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners? Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system is most economical for truck owners? Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck

  16. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    SciTech Connect (OSTI)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and 4.2 Quads by 2025, or 3.8% to 8.1% of the total commercial and residential energy use by 2025 (52 Quads). Many other technologies will contribute to additional potential for energy-efficiency improvement, while the technical potential of these five technologies on the long term is even larger.

  17. NREL: Measurements and Characterization - Surface Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distributions Analyze a wide range of materials, including photovoltaics, microelectronics, polymers, and biological specimens. Our Surface Analysis group wants to work...

  18. Vehicle Technologies Office: Quarterly Analysis Review June 2015

    Broader source: Energy.gov [DOE]

    The Quarterly Analysis Review (QAR) surveys both work supported by the Vehicle Technologies Office Analysis Program within the broader context of energy and automotive U.S. and global markets as well as other analytical studies. The QAR comprises an hour-long glimpse at the transportation energy ecosystem within which VTO operates.

  19. Characterization of polyimide via FTIR analysis (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Characterization of polyimide via FTIR analysis Citation Details In-Document Search Title: Characterization of polyimide via FTIR analysis Authors: Maurer, M L ; Tooker, A C ; Felix, S H Publication Date: 2014-08-25 OSTI Identifier: 1165755 Report Number(s): LLNL-TR-659320 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Technical Report Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: USDOE Country of

  20. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology

    SciTech Connect (OSTI)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Nitrosi, Andrea; Burani, Aldo

    2013-10-15

    Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results: At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best alternative methods available which are based on the same technology, and similar to others based on an a-Se direct conversion detectors.

  1. Assessment of Technologies Used to Characterize Wildlife Populations in the Offshore Environment

    SciTech Connect (OSTI)

    Duberstein, Corey A.; Tagestad, Jerry D.; Larson, Kyle B.

    2011-12-09

    Wind energy development in the offshore environment can have both direct and indirect effects on wildlife, yet little is known about most species that use near-shore and offshore waters due in part to the difficulty involved in studying animals in remote, challenging environments. Traditional methods to characterize offshore wildlife populations include shipboard observations. Technological advances have provided researches with an array of technologies to gather information about fauna from afar. This report describes the use and application of radar, thermal and optical imagery, and acoustic detection technologies for monitoring birds, bats, and marine mammals in offshore environments.

  2. Vehicle Technologies Office Merit Review 2014: Characterization of Voltage Fade in Lithium-ion Cells with Layered Oxides

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about characterization...

  3. Energy Analysis Models, Tools and Software Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing - Energy Innovation Portal Energy Analysis Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Marketing Summaries (115) Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  4. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    SciTech Connect (OSTI)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-06-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration.

  5. The application of GIS and remote sensing technologies for site characterization and environmental assessment

    SciTech Connect (OSTI)

    Durfee, R.C.; McCord, R.A.; Dobson, J.E.

    1993-01-01

    Environmental cleanup and restoration of hazardous waste sites are major activities at federal facilities around the US. Geographic information systems (GIS) and remote sensing technologies are very useful computer tools to aid in site characterization, monitoring, assessment, and remediation efforts. Results from applying three technologies are presented to demonstrate examples of site characterization and environmental assessment for a federal facility. The first technology involves the development and use of GIS within the comprehensive Oak Ridge Environmental Information System (OREIS) to integrate facility data, terrain models, aerial and satellite imagery, demographics, waste area information, and geographic data bases. The second technology presents 3-D subsurface analyses and displays of groundwater and contaminant measurements within waste areas. In the third application, aerial survey information is being used to characterize land cover and vegetative patterns, detect change, and study areas of previous waste activities and possible transport pathways. These computer technologies are required to manage, analyze, and display the large amounts of environmental and geographic data that must be handled in carrying out effective environmental restoration.

  6. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

  7. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

  8. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Broader source: Energy.gov [DOE]

    This cost of ownership analysis identifies the factors impacting the value proposition for fuel cell backup power and presents the estimated annualized cost of ownership for fuel cell backup power systems compared with the incumbent technologies of battery and diesel generator systems.

  9. Characterization and analysis of polycyclic aromatic hydrocarbons

    SciTech Connect (OSTI)

    Breuer, G.M.; Smith, J.P.

    1984-01-01

    Sampling and analytical procedures were developed for determining the concentrations of polycyclic aromatic hydrocarbons in animal-exposure chambers during studies on exposure to diesel exhaust, coal dust, or mixtures of these two pollutants. Fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(e)pyrene, benzo(k)fluoranthene, and benzo(a)pyrene were used as representative polycyclic aromatic hydrocarbons. High-pressure liquid chromatography with fluorescence detection was used for analysis. Coal-dust only samples revealed a broad, rising background in the chromatogram with small peaks superimposed corresponding to fluoranthene, pyrene, and benzo(a)anthracene, diesel exhaust only samples showed many peaks on a flat baseline including those corresponding to fluoranthene, pyrene, benzo(a)anthracene, benzo(k)fluoranthene, and benzo(a)pyrene. In general, no polynuclear aromatics were noted in the clean air samples. The authors note that relatively minor changes in air/fuel ratio, lubricant, fuel, and load may have substantial effects on very minor components of the exhaust emission.

  10. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    SciTech Connect (OSTI)

    2009-01-18

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program (The Program). The analysis is a task by Princeton Energy Resources International, LLC, in support of the National Renewable Energy Laboratory on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE).

  11. Software and codes for analysis of concentrating solar power technologies.

    SciTech Connect (OSTI)

    Ho, Clifford Kuofei

    2008-12-01

    This report presents a review and evaluation of software and codes that have been used to support Sandia National Laboratories concentrating solar power (CSP) program. Additional software packages developed by other institutions and companies that can potentially improve Sandia's analysis capabilities in the CSP program are also evaluated. The software and codes are grouped according to specific CSP technologies: power tower systems, linear concentrator systems, and dish/engine systems. A description of each code is presented with regard to each specific CSP technology, along with details regarding availability, maintenance, and references. A summary of all the codes is then presented with recommendations regarding the use and retention of the codes. A description of probabilistic methods for uncertainty and sensitivity analyses of concentrating solar power technologies is also provided.

  12. Relating to fossil energy resource characterization, research, technology development, and technology transfer

    SciTech Connect (OSTI)

    Poston, S.W.; Berg, R.R.; Friedman, M.M.; Gangi, A.F.; Wu, C.H.

    1993-12-01

    Geological, geophysical and petroleum engineering aspects of oil recovery from low-permeability reservoirs have been studied over the past three years. Significant advances were made in using Formation Microscanner Surveys (FMS) data to extrapolate fracture orientation, abundance, and spacing from the outcrop to the subsurface. Highly fractured zones within the reservoir can be detected, thus the fracture stratigraphy defined. Multi-component,vertical-seismic profile (VSP), shear wave data were used to improve the detection of fractures. A balancing scheme was developed to improve the geophysical detection of fractures based on balanced source magnitudes and geophone couplings. Resistivity logs can be used to identify the zone of immature organic material, the zone of storage where oil is generated but held in the matrix and the zone of migration whee oil is expelled from the rock to fractures. Natural fractures can be detected in many wells by the response of density logs in combination with gamma-ray, resistivity, and sonic logs. Theoretical studies and analysis of daily production data, from field case histories, have shown the utility of the Chef Type Curves to derive reservoir character from production test data. This information is ordinarily determined from transient pressure data. Laboratory displacement as well as MI and CT studies show that the carbonated water imbibition oil displacement process significantly accelerates and increases recovery from saturated, low-permeability core material. The created gas drive, combined with oil shrinkage significantly increased oil recovery. A cyclic-carbonated-water-imbibition process improves oil recovery. A semi-analytical model (MOD) and a 3-dimensional, 3-phase, dual-porosity, compositional simulator (COMAS) were developed to describe the imbibition carbonated waterflood performance. MOD model is capable of computing the oil recovery and saturation profiles for oil/water viscosity ratios other than one.

  13. Analysis of some potential social effects of four coal technologies

    SciTech Connect (OSTI)

    Walker, C.A.; Gould, L.C.

    1980-09-01

    This is an analysis of the potential social impacts of four coal technologies: conventional combustion, fluidized-bed combustion, liquifaction, and gasification. Because of their flexibility, and the abundance and relatively low costs of coal, the potential benefits of these technologies would seem to outweigh their potential social costs, both in the intermediate and long term. Nevertheless, the social costs of a coal industry are far more obscure and hard to quantify than the benefits. In general, however, it maybe expected that those technologies that can be deployed most quickly, that provide fuels that can substitute most easily for oil and natural gas, that are the cheapest, and that are the most thermally efficient will minimize social costs most in the intermediate term, while technologies that can guide energy infrastructure changes to become the most compatable with the fuels that will be most easily derived from inexhaustible sources (electricity and hydrogen) will minimize social costs most in the long run. An industry structured to favor eastern over western coal and plant sites in moderate sized communities, which could easily adapt to inexhaustible energy technologies (nuclear or solar) in the future, would be favored in either time period.

  14. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ● A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Preliminary Technical Risk Technical Report NREL/TP-640-41156 Analysis for the Geothermal March 2007 Technologies Program J. McVeigh and J. Cohen Princeton Energy Resources International M. Vorum, G. Porro, and G. Nix National Renewable Energy Laboratory NREL is operated by Midwest Research Institute Battelle Contract

  15. Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Backup Power Cost of Ownership Analysis and Incumbent Technology Comparison J. Kurtz, G. Saur, S. Sprik, and C. Ainscough National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Technical Report NREL/TP-5400-60732 September 2014

  16. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect (OSTI)

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  17. Preliminary Technical Risk Analysis for the Geothermal Technologies Program

    SciTech Connect (OSTI)

    McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

    2007-03-01

    This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

  18. Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Natural Gas Technology Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters Final Technical Report Project Period: October 1, 2012 - January 31, 2015 Submitted by: Carol Blanton Lutken, Leonardo Macelloni, Marco D'Emidio, John Dunbar, Paul Higley August, 2015 DOE Award No.: DE- FE0010141 The University of Mississippi Mississippi Mineral Resources

  19. Pump and Fan Technology Characterization and R&D Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pump and Fan Technology Characterization and R&D Assessment M. Guernsey, G. Chung, and W. Goetzler October 2015 (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or

  20. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    SciTech Connect (OSTI)

    BANNING, D.L.

    1999-07-29

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  1. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    SciTech Connect (OSTI)

    BANNING, D.L.

    1999-08-05

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  2. Assessment of NDE Technologies for Detection and Characterization of Stress Corrosion Cracking in LWRs

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Toloczko, Mychailo B.; Bond, Leonard J.; Montgomery, Robert O.

    2012-12-31

    Stress corrosion cracking (SCC) in light water reactors (LWRs) has been a persistent form of degradation in the nuclear industry. Examples of SCC can be found for a range of materials in boiling and pressurized water reactor environments, including carbon steels, stainless steels, and nickel-base stainless alloys. The evolution of SCC is often characterized by a long initiation stage followed by a phase of more rapid crack growth to failure. This provides a relatively short window of opportunity to detect the start of observable SCC, and it is conceivable that SCC could progress from initiation to failure between subsequent examinations when managed by applying periodic in-service inspection techniques. Implementation of advanced aging management paradigms in the current fleet of LWRs will require adaptation of existing measurement technologies and development of new technologies to perform on-line measurements during reactor operation to ensure timely detection of material degradation and to support the implementation of advanced diagnostics and prognostics. This paper considers several non-destructive examination (NDE) technologies with known sensitivity to detection of indicators for SCC initiation and/or propagation, and assesses these technologies with respect to their ability to detect and accurately characterize the significance of an SCC flaw. Potential strategies to improve SCC inspection or monitoring performance are offered to benefit management of SCC degradation in LWRs.

  3. Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data

    SciTech Connect (OSTI)

    LaClair, Tim J

    2012-01-01

    Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

  4. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect (OSTI)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  5. FreedomCAR and vehicle technologies heavy vehicle program FY 2006. Benefits analysis : methodology and results - final report.

    SciTech Connect (OSTI)

    Singh, M.; Energy Systems; TA Engineering, Inc.

    2006-01-31

    This report describes the approach to estimating benefits and the analysis results for the Heavy Vehicle Technologies activities of the Freedom Car and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identification of technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in the activities planned for FY 06. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. These benefits estimates, along with market penetrations and other results, are then modeled as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY06 Budget Request.

  6. Freedom car and vehicle technologies heavy vehicle program : FY 2007 benefits analysis, methodology and results -- final report.

    SciTech Connect (OSTI)

    SIngh, M.; Energy Systems; TA Engineering

    2008-02-29

    This report describes the approach to estimating the benefits and analysis results for the Heavy Vehicle Technologies activities of the FreedomCar and Vehicle Technologies (FCVT) Program of EERE. The scope of the effort includes: (1) Characterizing baseline and advanced technology vehicles for Class 3-6 and Class 7 and 8 trucks, (2) Identifying technology goals associated with the DOE EERE programs, (3) Estimating the market potential of technologies that improve fuel efficiency and/or use alternative fuels, (4) Determining the petroleum and greenhouse gas emissions reductions associated with the advanced technologies. In FY 05 the Heavy Vehicles program activity expanded its technical involvement to more broadly address various sources of energy loss as compared to focusing more narrowly on engine efficiency and alternative fuels. This broadening of focus has continued in subsequent activities. These changes are the result of a planning effort that occurred during FY 04 and 05. (Ref. 1) This narrative describes characteristics of the heavy truck market as they relate to the analysis, a description of the analysis methodology (including a discussion of the models used to estimate market potential and benefits), and a presentation of the benefits estimated as a result of the adoption of the advanced technologies. The market penetrations are used as part of the EERE-wide integrated analysis to provide final benefit estimates reported in the FY07 Budget Request. The energy savings models are utilized by the FCVT program for internal project management purposes.

  7. Analysis of Hydrogen and Competing Technologies for Utility-Scale Energy Storage (Presentation)

    SciTech Connect (OSTI)

    Steward, D.

    2010-02-11

    Presentation about the National Renewable Energy Laboratory's analysis of hydrogen energy storage scenarios, including analysis framework, levelized cost comparison of hydrogen and competing technologies, analysis results, and conclusions drawn from the analysis.

  8. Innovative Direct Push Technologies for Characterization of the 216-Z-9 Trench at DOE's Hanford Site

    SciTech Connect (OSTI)

    Bratton, W.; Moser, K.; Holm, R. [Vista Engineering Technologies, LLC, Washington (United States); Morse, J.; Tortoso, A. [US Department of Energy - Richland Operations Office, Washington (United States)

    2008-07-01

    Because of the significant radiological and chemical hazards present at the 216-Z-9 Trench at the US Department of Energy Hanford Site, the only practical subsurface characterization methods are those that minimize or control airborne vapors and particles. This study evaluates and compares the performance of two Direct Push Technologies (Hydraulic Hammer Rig (HHR) and Cone Penetrometer Testing (CPT)) with traditional cable tool drilling in similar difficult geologic conditions. The performance was based on the depth of penetration, the ability to collect representative vadose zone soil samples, the penetration rate, and the relative cost. The HHR achieved deeper penetration depths and faster penetration rates than CPT techniques, while still maintaining the waste minimization benefits of direct push technologies. Although cable tool drilling achieved the deepest penetration, the safety and disposal concerns due to the soil cuttings that were generated made this drilling approach both slow and costly compared to the direct push techniques. (authors)

  9. Separation, characterization and instrumental analysis of polynuclear aromatic hydrocarbon ring classes in petroleum

    SciTech Connect (OSTI)

    Chmielowiec, J.; Beshai, J.E.; George, A.E.

    1980-08-01

    To develop effective utilization technology for heavy streams from conventional fuels and unconventional resources such as heavy oils and oilsand bitumens, detailed information on the chemical composition of the feedstocks is needed. Attempts were made during the seventies to modify the API Project 60 scheme of analysis or to develop chemically more efficient, and less time-consuming, separation and characterization methods. These attempts aimed to improve characterization by separating the samples into concentrates of different structural types. Samples throughput was increased by using pressure and higher performance chromatographic systems. Other valuable contributions, such as coal-liquid characterization in terms of different chemical functionalities have also been made. The separation of aromatic ring classes and characterization or identification of their major components was our primary objective in this study. A silica-R(NH/sub 2/)/sub 2/-based HPLC system was used in our laboratory to study the analytical potential of this approach; the work was described in a previous publication. In the present study, the applicability of HPLC separation by this system and instrumental spectrometric characterization of 3- and 4-ring PAHs isolated from two Canadian oils were investigated. The oils used, Medicine River and Lloydminster, are examples of hydrocarbon-dominated materials representing light and heavy processing feedstocks, respectively.

  10. China-2050 Wind Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    Pathways analysis, Technology characterizations Country China Eastern Asia References IEA Energy Technology Roadmaps1 This article is a stub. You can help OpenEI by expanding...

  11. WIPP waste characterization program sampling and analysis guidance manual

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastes at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.

  12. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  13. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  14. Tank farms solid waste characterization guide with sampling and analysis plan attachment

    SciTech Connect (OSTI)

    Quigley, J.T.

    1997-04-02

    This document describes methods used, including sampling and analysis, to characterize hazardous chemical constituent in Tank Farms containerized solid waste.

  15. Retrospective Benefit-Cost Analysis of U.S. DOE's Geothermal Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Program Investments | Department of Energy Analysis of U.S. DOE's Geothermal Technologies R&D Program Investments Retrospective Benefit-Cost Analysis of U.S. DOE's Geothermal Technologies R&D Program Investments This report presents the findings from a retrospective economic analysis of technology development supported by the U.S. Department of Energy's (DOE) Geothermal Technologies Program (GTP) in DOE's Office of Energy Efficiency and Renewable Energy (EERE). The purpose of

  16. Enhanced AFCI Sampling, Analysis, and Safeguards Technology Review

    SciTech Connect (OSTI)

    John Svoboda

    2009-09-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. Sampling and analysis of nuclear fuel recycling plant processes is required both to monitor the operations and ensure Safeguards and Security goals are met. In addition, environmental regulations lead to additional samples and analysis to meet licensing requirements. The volume of samples taken by conventional means, can restrain productivity while results samples are analyzed, require process holding tanks that are sized to meet analytical issues rather than process issues (and that create a larger facility footprint), or, in some cases, simply overwhelm analytical laboratory capabilities. These issues only grow when process flowsheets propose new separations systems and new byproduct material for transmutation purposes. Novel means of streamlining both sampling and analysis are being evaluated to increase the efficiency while meeting all requirements for information. This report addresses just a part of the effort to develop and study novel methods by focusing on the sampling and analysis of aqueous samples for metallic elements. It presents an overview of the sampling requirements, including frequency, sensitivity, accuracy, and programmatic drivers, to demonstrate the magnitude of the task. The sampling and analysis system needed for metallic element measurements is then discussed, and novel options being applied to other industrial analytical needs are presented. Inductively coupled mass spectrometry instruments are the most versatile for metallic element analyses and are thus chosen as the focus for the study. Candidate novel means of process sampling, as well as modifications that are necessary to couple such instruments to introduce these samples, are discussed. A suggested path forward based on an automated microchip capillary based sampling system interfaced to the analysis spectrometer is presented. The ability to obtain micro liter volume samples coupled with remote automated means of sample tracking and transport to the instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste. Application of this sampling technique to new types of mass spectrometers for selective elemental isotopic analysis could also provide significant improvements in safeguards and security analyses.

  17. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  18. Fabrication and characterization of hexagonal boron nitride powder by spray drying and calcining-nitriding technology

    SciTech Connect (OSTI)

    Shi Xiaoliang Wang Sheng; Yang Hua; Duan Xinglong; Dong Xuebin

    2008-09-15

    Hexagonal boron nitride (hBN) powder was fabricated prepared by the spray drying and calcining-nitriding technology. The effects of nitrided temperature on the phases, morphology and particle size distribution of hBN powder, were investigated. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transformed infrared spectrum, ultraviolet-visible (UV-vis) spectrum and photoluminescence (PL) spectrum. UV-vis spectrum revealed that the product had one obvious band gap (4.7 eV) and PL spectrum showed that it had a visible emission at 457 nm ({lambda}{sub ex}=230 nm). FESEM image indicated that the particle size of the synthesized hBN was mainly in the range of 0.5-1.5 {mu}m in diameter, and 50-150 nm in thickness. The high-energy ball-milling process following 900 deg. C calcining process was very helpful to obtain fully crystallized hBN at lower temperature. - Graphical abstract: hBN powder was fabricated prepared by spray drying and calcining-nitriding technology. The results indicated that spray drying and calcining-nitriding technology assisted with high-energy ball-milling process following calcined process was a hopeful way to manufacture hBN powder with high crystallinity in industrial scale.

  19. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  20. Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

    Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

  1. Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

    SciTech Connect (OSTI)

    Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

    2014-08-01

    Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  5. Bear Creek Valley characterization area mixed wastes passive in situ treatment technology demonstration project - status report

    SciTech Connect (OSTI)

    Watson, D.; Leavitt, M.; Moss, D.

    1997-03-01

    Historical waste disposal activities within the Bear Creek Valley (BCV) Characterization Area (CA), at the U.S. Department of Energy (DOE) Oak Ridge Y-12 plant, have contaminated groundwater and surface water above human health risk levels and impacted the ecology of Bear Creek. Contaminates include nitrate, radioisotopes, metals, volatile organic chemicals (VOCS), and common ions. This paper provides a status report on a technology demonstration project that is investigating the feasibility of using passive in situ treatment systems to remove these contaminants. Although this technology may be applicable to many locations at the Oak Ridge Y-12 Plant, the project focuses on collecting the information needed to take CERCLA removal actions in 1998 at the S-3 Disposal Ponds site. Phase 1 has been completed and included site characterization, laboratory screening of treatment media (sorbents; and iron), and limited field testing of biological treatment systems. Batch tests using different Y-12 Plant waters were conducted to evaluate the removal efficiencies of most of the media. Phase 1 results suggest that the most promising treatment media are Dowex 21 k resin, peat moss, zero-valent iron, and iron oxides. Phase 2 will include in-field column testing of these media to assess loading rates, and concerns with clogging, by-products, and long-term treatment efficiency and media stability. Continued testing of wetlands and algal mats (MATs) will be conducted to determine if they can be used for in-stream polishing of surface water. Hydraulic testing of a shallow trench and horizontal well will also be completed during Phase 2. 4 refs., 3 tabs.

  6. Technology Assessment: Strategic Energy Analysis Center (SEAC) 2012 Highlights (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01

    This fact sheet lists key analysis products produced by NREL in 2012. Like all NREL analysis products, these aim to increase the understanding of the current and future interactions and roles of energy policies, markets, resources, technologies, environmental impacts, and infrastructure. NREL analysis, data, and tools inform decisions as energy-efficient and renewable energy technologies advance from concept to commercial application.

  7. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    SciTech Connect (OSTI)

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  8. Enhanced Sampling and Analysis, Selection of Technology for Testing

    SciTech Connect (OSTI)

    Svoboda, John; Meikrantz, David

    2010-02-01

    The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. This report details the progress made in the first half of FY 2010 and includes a further consideration of the research focus and goals for this year. Our sampling options and focus for the next generation sampling method are presented along with the criteria used for choosing our path forward. We have decided to pursue the option of evaluating the feasibility of microcapillary based chips to remotely collect, transfer, track and supply microliters of sample solutions to analytical equipment in support of aqueous processes for used nuclear fuel cycles. Microchip vendors have been screened and a choice made for the development of a suitable microchip design followed by production of samples for evaluation by ANL, LANL, and INL on an independent basis.

  9. ANALYSIS OF THE TANK 6F FINAL CHARACTERIZATION SAMPLES-2012

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.; Shine, G.

    2012-06-28

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

  10. Analysis Of The Tank 6F Final Characterization Samples-2012

    SciTech Connect (OSTI)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm-243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

  11. Analysis of the Tank 6F Final Characterization Samples-2012

    SciTech Connect (OSTI)

    Oji, L. N.; Diprete, D. P.; Coleman, C. J.; Hay, M. S.; Shine, E. P.

    2013-01-31

    The Savannah River National Laboratory (SRNL) was requested by Savannah River Remediation (SRR) to provide sample preparation and analysis of the Tank 6F final characterization samples to determine the residual tank inventory prior to grouting. Fourteen residual Tank 6F solid samples from three areas on the floor of the tank were collected and delivered to SRNL between May and August 2011. These Tank 6F samples were homogenized and combined into three composite samples based on a proportion compositing scheme and the resulting composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 6F composite samples include bulk density and water leaching of the solids to account for water soluble components. The composite Tank 6F samples were analyzed and the data reported in triplicate. Sufficient quality assurance standards and blanks were utilized to demonstrate adequate characterization of the Tank 6F samples. The main evaluation criteria were target detection limits specified in the technical task request document. While many of the target detection limits were met for the species characterized for Tank 6F some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The isotopes whose detection limits were not met in all cases included Sn-126, Sb-126, Sb-126m, Eu-152, Cm- 243 and Cf-249. SRNL, in conjunction with the customer, reviewed all of these cases and determined that the impacts of not meeting the target detection limits were acceptable. Based on the analyses of variance (ANOVA) for the inorganic constituents of Tank 6F, all the inorganic constituents displayed heterogeneity. The inorganic results demonstrated consistent differences across the composite samples: lowest concentrations for Composite Sample 1, intermediate-valued concentrations for Composite Sample 2, and highest concentrations for Composite Sample 3. The Hg and Mo results suggest possible measurement outliers. However, the magnitudes of the differences between the Hg 95% upper confidence limit (UCL95) results with and without the outlier and the magnitudes of the differences between the Mo UCL95 results with and without the outlier do not appear to have practical significance. It is recommended to remove the potential measurement outliers. Doing so is conservative in the sense of producing a higher UCL95 for Hg and Mo than if the potential outliers were included in the calculations. In contrast to the inorganic results, most of the radionuclides did not demonstrate heterogeneity among the three Tank 6F composite sample characterization results.

  12. Vehicle Technologies Office Winter 2015/2016 Quarterly Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Review The Quarterly Analysis Review, known colloquially as the "QAR," surveys work supported by the VTO Analysis Program within the broader context of energy and...

  13. Vehicle Technologies Office Merit Review 2014: Impact Analysis: VTO Baseline and Scenario (BaSce) Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impact analysis...

  14. Vehicle Technologies Office Merit Review 2015: Impact Analysis: VTO Baseline and Scenario (BaSce) Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about impact analysis:...

  15. Vehicle Technologies Office Merit Review 2014: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cell analysis,...

  16. Vehicle Technologies Office Merit Review 2015: Cell Analysis, Modeling, and Prototyping (CAMP) Facility Research Activities

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cell Analysis,...

  17. Information Technology Specialist (SystemsAnalysis/Applications Software)

    Broader source: Energy.gov [DOE]

    This position is located in Asset Management and Engineering Applications (JST), Software Development Operations (JS), Information Technology (J), Bonneville Power Administration (BPA). Asset...

  18. NREL: Energy Analysis - Annual Technology Baseline and Standard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and conventional technologies presented in MS Excel. ATB Summary Presentation This tandem PowerPoint summary augments the data in the ATB spreadsheet with a description and...

  19. Comparison of different computed radiography systems: Physical characterization and contrast detail analysis

    SciTech Connect (OSTI)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Nitrosi, Andrea; Burani, Aldo; Acchiappati, Domenico

    2010-02-15

    Purpose: In this study, five different units based on three different technologies--traditional computed radiography (CR) units with granular phosphor and single-side reading, granular phosphor and dual-side reading, and columnar phosphor and line-scanning reading--are compared in terms of physical characterization and contrast detail analysis. Methods: The physical characterization of the five systems was obtained with the standard beam condition RQA5. Three of the units have been developed by FUJIFILM (FCR ST-VI, FCR ST-BD, and FCR Velocity U), one by Kodak (Direct View CR 975), and one by Agfa (DX-S). The quantitative comparison is based on the calculation of the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE). Noise investigation was also achieved by using a relative standard deviation analysis. Psychophysical characterization is assessed by performing a contrast detail analysis with an automatic reading of CDRAD images. Results: The most advanced units based on columnar phosphors provide MTF values in line or better than those from conventional CR systems. The greater thickness of the columnar phosphor improves the efficiency, allowing for enhanced noise properties. In fact, NPS values for standard CR systems are remarkably higher for all the investigated exposures and especially for frequencies up to 3.5 lp/mm. As a consequence, DQE values for the three units based on columnar phosphors and line-scanning reading, or granular phosphor and dual-side reading, are neatly better than those from conventional CR systems. Actually, DQE values of about 40% are easily achievable for all the investigated exposures. Conclusions: This study suggests that systems based on the dual-side reading or line-scanning reading with columnar phosphors provide a remarkable improvement when compared to conventional CR units and yield results in line with those obtained from most digital detectors for radiography.

  20. An integrated, subsurface characterization system for real-time, in-situ field analysis

    SciTech Connect (OSTI)

    Baumgart, C.W.; Creager, J.; Mathes, J.; Pounds, T.; VanDeusen, A.; Warthen, B.

    1996-02-01

    This paper describes current efforts at AlliedSignal Federal Manufacturing and Technologies (FM and T) to develop and field an in-situ, data analysis platform to acquire, process, and display site survey data in near real-time. In past years, FM and T has performed a number of site survey tasks. Each of these surveys was unique in application as well as in the type of data processing and analysis that was required to extract and visualize useful site characterization information. However, common to each of these surveys were the following specific computational and operational requirements: (1) a capability to acquire, process, and visualize the site survey data in the field; (2) a capability to perform all processing in a timely fashion (ideally real-time); and (3) a technique for correlating (or fusing) data streams from multiple sensors. Two more general, but no less important, requirements include system architecture modularity and positioning capability. Potential applications include: survey, evaluation, and remediation of numerous Department of Defense and Department of Energy waste sites; real-time detection and characterization of unexploded ordnance and landmines; survey, evaluation, and remediation of industrial waste sites; location of underground utility lines; and providing law enforcement agencies with real-time surveys of crime scenes. The paper describes an integrated data acquisition, processing, and visualization platform that is capable of performing in-situ data processing, interpretation, and visualization in real-time.

  1. Sandia capabilities for the measurement, characterization, and analysis of heliostats for CSP.

    SciTech Connect (OSTI)

    Andraka, Charles E.; Christian, Joshua Mark; Ghanbari, Cheryl M.; Gill, David Dennis; Ho, Clifford Kuofei; Kolb, William J.; Moss, Timothy A.; Smith, Edward J.; Yellowhair, Julius

    2013-07-01

    The Concentrating Solar Technologies Organization at Sandia National Laboratories has a long history of performing important research, development, and testing that has enabled the Concentrating Solar Power Industry to deploy full-scale power plants. Sandia continues to pursue innovative CSP concepts with the goal of reducing the cost of CSP while improving efficiency and performance. In this pursuit, Sandia has developed many tools for the analysis of CSP performance. The following capabilities document highlights Sandia's extensive experience in the design, construction, and utilization of large-scale testing facilities for CSP and the tools that Sandia has created for the full characterization of heliostats. Sandia has extensive experience in using these tools to evaluate the performance of novel heliostat designs.

  2. Characterization and assessment of novel bulk storage technologies : a study for the DOE Energy Storage Systems program.

    SciTech Connect (OSTI)

    Huff, Georgianne; Tong, Nellie; Fioravanti, Richard; Gordon, Paul; Markel, Larry; Agrawal, Poonum; Nourai, Ali

    2011-04-01

    This paper reports the results of a high-level study to assess the technological readiness and technical and economic feasibility of 17 novel bulk energy storage technologies. The novel technologies assessed were variations of either pumped storage hydropower (PSH) or compressed air energy storage (CAES). The report also identifies major technological gaps and barriers to the commercialization of each technology. Recommendations as to where future R&D efforts for the various technologies are also provided based on each technology's technological readiness and the expected time to commercialization (short, medium, or long term). The U.S. Department of Energy (DOE) commissioned this assessment of novel concepts in large-scale energy storage to aid in future program planning of its Energy Storage Program. The intent of the study is to determine if any new but still unproven bulk energy storage concepts merit government support to investigate their technical and economic feasibility or to speed their commercialization. The study focuses on compressed air energy storage (CAES) and pumped storage hydropower (PSH). It identifies relevant applications for bulk storage, defines the associated technical requirements, characterizes and assesses the feasibility of the proposed new concepts to address these requirements, identifies gaps and barriers, and recommends the type of government support and research and development (R&D) needed to accelerate the commercialization of these technologies.

  3. Analysis Activities at Fossil Energy/ National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  4. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  5. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  6. Pyrite surface characterization and control for advanced fine coal desulfurization technologies

    SciTech Connect (OSTI)

    Wang, Xiang-Huai.

    1991-01-01

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  7. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  8. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...

    Open Energy Info (EERE)

    6,000, and the turn around time is a few weeks. Authors David I. Norman and Joseph Moore Published Geothermal Technologies Legacy Collection, 2004 DOI Not Provided Check for...

  9. Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

  10. Analysis Of The Tank 5F Final Characterization Samples-2011

    SciTech Connect (OSTI)

    Oji, L. N.; Diprete, D.; Coleman, C. J.; Hay, M. S.

    2012-09-27

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  11. ANALYSIS OF THE TANK 5F FINAL CHARACTERIZATION SAMPLES-2011

    SciTech Connect (OSTI)

    Oji, L.; Diprete, D.; Coleman, C.; Hay, M.

    2012-08-03

    The Savannah River National Laboratory (SRNL) was requested by SRR to provide sample preparation and analysis of the Tank 5F final characterization samples to determine the residual tank inventory prior to grouting. Two types of samples were collected and delivered to SRNL: floor samples across the tank and subsurface samples from mounds near risers 1 and 5 of Tank 5F. These samples were taken from Tank 5F between January and March 2011. These samples from individual locations in the tank (nine floor samples and six mound Tank 5F samples) were each homogenized and combined in a given proportion into 3 distinct composite samples to mimic the average composition in the entire tank. These Tank 5F composite samples were analyzed for radiological, chemical and elemental components. Additional measurements performed on the Tank 5F composite samples include bulk density and water leaching of the solids to account for water soluble species. With analyses for certain challenging radionuclides as the exception, all composite Tank 5F samples were analyzed and reported in triplicate. The target detection limits for isotopes analyzed were based on customer desired detection limits as specified in the technical task request documents. SRNL developed new methodologies to meet these target detection limits and provide data for the extensive suite of components. While many of the target detection limits were met for the species characterized for Tank 5F, as specified in the technical task request, some were not met. In a few cases, the relatively high levels of radioactive species of the same element or a chemically similar element precluded the ability to measure some isotopes to low levels. The Technical Task Request allows that while the analyses of these isotopes is needed, meeting the detection limits for these isotopes is a lower priority than meeting detection limits for the other specified isotopes. The isotopes whose detection limits were not met in all cases included the following: Al-26, Sn-126, Sb-126, Sb-126m, Eu-152 and Cf-249. SRNL, in conjunction with the plant customer, reviewed all these cases and determined that the impacts were negligible.

  12. Vehicle Technologies Office Spring 2016 Quarterly Analysis Review

    Broader source: Energy.gov [DOE]

    The Quarterly Analysis Review, known colloquially as the “QAR,” surveys work supported by the VTO Analysis Program within the broader context of energy and automotive U.S. and global markets as well as other analytical studies.

  13. Vehicle Technologies Office Fall 2015 Quarterly Analysis Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Quarterly Analysis Review, known colloquially as the "QAR," surveys work supported by the VTO Analysis Program within the broader context of energy and automotive U.S. and ...

  14. Field-Based Site Characterization Technologies Short Course Presented by the U.S. Environmental Protection Agency's Technology Innovation Office

    Office of Environmental Management (EM)

    EPA Page-1 U.S. EPA Superfund Remedial Program's Approach for Risk Harmonization when addressing Chemical and Radioactive Contamination Stuart Walker U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation (OSRTI) Presented to the Performance & Risk Assessment Community of Practice (P&RA CoP) Steering Committee Webinar on Tuesday October 13, 2015 EPA Page-2 EPA Addresses Site Cleanup Under Several Laws, Programs This talk discusses only the

  15. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  17. Developing Effluent Analysis Technologies to Support Nonproliferation Initiatives, Arms Control and Nonproliferation Technologies, Third quarter 1995

    SciTech Connect (OSTI)

    Schubert, S A; Staehle, G; Alonzo, G M

    1995-01-01

    This issue provides an overview of the Effluent Research Program of the DOE Office of Research and Development, highlighting a number of representative projects within this program in support of nonproliferation initiatives. Technologies reported include portable instruments for on-site inspections, standoff detectors, fieldable, real-time instruments, field collection techniques, and ultrasensitive laboratory techniques.

  18. Preliminary analysis of patent trends for sodium/sulfur battery technology

    SciTech Connect (OSTI)

    Triplett, M.B.; Winter, C.; Ashton, W.B.

    1985-07-01

    This document summarizes development trends in sodium/sulfur battery technology based on data from US patents. Purpose of the study was to use the activity, timing and ownership of 285 US patents to identify and describe broad patterns of change in sodium/sulfur battery technology. The analysis was conducted using newly developed statistical and computer graphic techniques for describing technology development trends from patent data. This analysis suggests that for some technologies trends in patent data provide useful information for public and private R and D planning.

  19. Analysis of nuclear proliferation resistance reprocessing and recycling technologies

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann; Gary Cerefice; Marcela Stacey; Steven Bakhtiar

    2011-05-01

    The PUREX process has been progressively and continuously improved during the past three decades, and these improvements account for successful commercialization of reprocessing in a few countries. The renewed interest in nuclear energy and the international growth of nuclear electricity generation do not equate and should not be equated -with increasing proliferation risks. Indeed, the nuclear renaissance presents a unique opportunity to enhance the culture of non-proliferation. With the recent revival of interest in nuclear technology, technical methods for prevention of nuclear proliferation are being revisited. Robust strategies to develop new advanced separation technologies are emerging worldwide for sustainability and advancement of nuclear energy with enhanced proliferation resistance. On the other hand, at this moment, there are no proliferation resistance advanced technologies. . Until now proliferation resistance as it applies to reprocessing has been focused on not separating a pure stream of weapons-usable plutonium. France, as an example, has proposed a variant of the PUREX process, the COEX TM process, which does not result on a pure plutonium product stream. A further step is to implement a process based on group extraction of actinides and fission products associated with a homogeneous recycling strategy (UNEX process in the US, GANEX process in France). Such scheme will most likely not be deployable on an industrial scale before 2030 or so because it requires intensive R&D and robust flowsheets. Finally, future generation recycling schemes will handle the used nuclear fuel in fast neutron reactors. This means that the plutonium throughput of the recycling process may increase. The need is obvious for advanced aqueous recycling technologies that are intrinsically more proliferation resistant than the commercial PUREX process. In this paper, we review the actual PUREX process along with the advanced recycling technologies that will enhance technical barriers, making plutonium diversion more difficult by not isolating plutonium or/and coexistence of fission products with plutonium.

  20. Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 4.6.6 Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems Presentation Number: 033 Investigator: Rose, Peter (University of Utah) Objectives: To develop through novel high-temperature tracing approaches three technologies for characterizing fracture creation within Enhanced Geothermal Systems (EGS). Average Overall Score: 3.6/4.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Relevance/ Impact Scientific/ Technical Approach Accomplishments/ Progress Project Management/

  1. Vehicle Technologies Office Winter 2015/2016 Quarterly Analysis Review

    Broader source: Energy.gov [DOE]

    The Quarterly Analysis Review, known colloquially as the “QAR,” surveys work supported by the VTO Analysis Program within the broader context of energy and automotive U.S. and global markets as well as other analytical studies. This is the Winter 2015/2016 presentation of the QAR.

  2. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    SciTech Connect (OSTI)

    Steward, D.; Saur, G.; Penev, M.; Ramsden, T.

    2009-11-01

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage technologies: batteries, pumped hydro, and compressed air energy storage (CAES).

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  4. FY2009 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2010-02-19

    Annual Progress Report for fiscal year 2009 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  5. 2008 Annual Progress Report - Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program

    SciTech Connect (OSTI)

    none,

    2009-02-24

    Annual Progress Report for fiscal year 2008 for the Advanced Vehicle Technology Analysis and Evaluation (AVTAE) team activities

  6. 4.1.1.50 High Level Techno-Economic Analysis of Innovative Technology Concepts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IOWA STATE UNIVERSITY DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review 4.1.1.50 High Level Techno-Economic Analysis of Innovative Technology Concepts 3-24-2015 Analysis & Sustainability Pacific Northwest National Laboratory: Sue Jones Iowa State University: Mark Wright This presentation does not contain any proprietary, confidential, or otherwise restricted information IOWA STATE UNIVERSITY Goal Statement 2 GOAL: Enable R&D of economically viable biomass derived liquid

  7. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and their potential significance to energy use in the industries, and new evaluation of additional seven technologies. The re-assessments were essentially updated with recent information that we searched and collected from literature to the extent possible. The progress of selected technologies as they diffused into the marketplace from 2000 to 2010 was then discussed in this report. The report also includes updated detailed characterizations of 15 technologies studied in 2000, with comparisons noted.

  8. Analysis of a US Department of Energy Emergent Technologies Cohort

    SciTech Connect (OSTI)

    Strader, Cliff; Ellis, Elizabeth; Barrie, Martin D; Tankersley, William; Wallace, Phil

    2012-12-12

    As a major user of engineered nanoparticles, the U.S. Department of Energy (DOE) uses various methods to monitor the health of emergent technologies workers (ETW) who handle or could potentially be exposed to unbound engineered nanoparticles (UNP). Using data from DOEs Illness and Injury Surveillance Program (IISP), Oak Ridge Associated Universities (ORAU) created a registry of ETWs. IISP currently tracks 125,000 workers at 14 DOE facilities. Workers in IISP, who were classified as ETWs, were placed in a separate database using Microsoft Access. Using SAS (Version 9.2; Cary, NC), the health status of this cohort was analyzed by a variety of different variables such as age, gender, occupation, years of employment, number of years classified as an ETW, and site.

  9. 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VEHICLE TECHNOLOGY ANALYSIS AND EVALUATION ACTIVITIES AND HEAVY VEHICLE SYSTEMS OPTIMIZATION PROGRAM annual progress report 2008 V e h i c l e T e c h n o l o g i e s P r o g r a m U.S. Department of Energy Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2008 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Submitted to: U.S. Department of Energy Energy Efficiency and

  10. Oak Ridge D and D Plan 3515 Project - Technology Review (2007) and GammaCam Technology Demonstration for Characterizing Building 3515 at Oak Ridge (2007)

    SciTech Connect (OSTI)

    Byrne-Kelly, D.; Hart, A.; Brown, Ch.; Jordan, D.; Phillips, E.

    2008-07-01

    This paper presents the results from the Characterization, Decontamination and Decommissioning (CD and D) Study performed by MSE Technology Application, Inc. (MSE) to assist the U.S. Department of Energy (DOE) and Oak Ridge National Laboratory (ORNL) in the preparation of a Project Execution Plan and Remediation Plan for Building 3515 at ORNL. Primary objectives of this study were to identify innovative CD and D technologies and methodologies and recommend alternatives applicable to the CD and D of Building 3515. Building 3515 is a small heavily shielded concrete and cement block structure centrally located in the Bethel Valley portion of the ORNL. The building's interior is extensively contaminated with Cesium 137 (Cs-137), the primary contaminant of concern. A previous attempt to characterize the building was limited to general interior area radiation exposure level measurements and a few surface smears gathered by inserting monitoring equipment into the building on long poles. Consequently, the spatial distribution of the gamma radiation source inside the building was not determined. A subsequent plan for D and D of the building presented a high risk of worker radiation dose in excess of as low as reasonably achievable (ALARA) because the source of the interior gamma radiation field is not completely understood and conventional practices required workers to be in close proximity of the building. As part of an initial literature search, MSE reviewed new generation gamma source characterization technologies and identified the GammaCam{sup TM} portable gamma ray imaging system as an innovative technology applicable to locating the dominant gamma ray sources within the building. The GammaCam{sup TM} gamma-ray imaging system is a commercially available technology marketed by the EDO Corporation. This system consists of a sensor head with a co-aligned camera and a portable computer. The system is designed to provide two-dimensional spatial mappings of gamma ray emitting nuclides in real time. The gamma radiation sensor and camera can be set up within or outside of the radiation field while the system operator and PC can be located 30 to 60 m (100 to 200 ft) from the sensor head. The system has been used successfully at numerous DOE and commercial nuclear facilities to precisely locate gamma radiation sources. However, literature attesting to the ability of this technology to detect radiation sources within heavily shielded structures was not available. Consequently, MSE was not certain if this technology would be capable of locating gamma ray sources within the heavily shielded Building 3515. To overcome this uncertainty, MSE sent two individuals to the EDO Corporation for training. At completion of the training, MSE leased the GammaCam{sup TM} portable system and brought it to ORNL to evaluate the capability of the system. An overview from this evaluation is summarized in this paper. (authors)

  11. Vehicle Technologies Office Merit Review 2014: Residual Stress of Bimetallic Joints and Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about residual stress...

  12. Energy technology characterizations handbook: environmental pollution and control factors. Third edition

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    This Handbook deals with environmental characterization information for a range of energy-supply systems and provides supplementary information on environmental controls applicable to a select group of environmentally characterized energy systems. Environmental residuals, physical-resource requirements, and discussion of applicable standards are the principal information provided. The quantitative and qualitative data provided are useful for evaluating alternative policy and technical strategies and for assessing the environmental impact of facility siting, energy production, and environmental controls.

  13. Assessment of technologies for hazardous waste site remediation: Non-treatment technologies and pilot scale facility implementation -- excavation -- storage technology -- safety analysis and review statement. Final report

    SciTech Connect (OSTI)

    Johnson, H.R.; Overbey, W.K. Jr.; Koperna, G.J. Jr.

    1994-02-01

    The purpose of this study is to assess the state-of-the-art of excavation technology as related to environmental remediation applications. A further purpose is to determine which of the excavation technologies reviewed could be used by the US Corp of Engineers in remediating contaminated soil to be excavated in the near future for construction of a new Lock and Dam at Winfield, WV. The study is designed to identify excavation methodologies and equipment which can be used at any environmental remediation site but more specifically at the Winfield site on the Kanawha River in Putnam County, West Virginia. A technical approach was determined whereby a functional analysis was prepared to determine the functions to be conducted during the excavation phase of the remediation operations. A number of excavation technologies were identified from the literature. A set of screening criteria was developed that would examine the utility and ranking of the technologies with respect to the operations that needed to be conducted at the Winfield site. These criteria were performance, reliability, implementability, environmental safety, public health, and legal and regulatory compliance. The Loose Bulk excavation technology was ranked as the best technology applicable to the Winfield site. The literature was also examined to determine the success of various methods of controlling fugitive dust. Depending upon any changes in the results of chemical analyses, or prior remediation of the VOCs from the vadose zone, consideration should be given to testing a new ``Pneumatic Excavator`` which removes the VOCs liberated during the excavation process as they outgas from the soil. This equipment however would not be needed on locations with low levels of VOC emissions.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  15. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  16. Tensor analysis methods for activity characterization in spatiotemporal data

    SciTech Connect (OSTI)

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M.

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  17. Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis

    SciTech Connect (OSTI)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01

    NREL conducted an annual program risk analysis on behalf of the U.S. Department of Energy Geothermal Technologies Program (GTP). NREL implemented a probabilistic risk analysis of GTP-sponsored research, development, and demonstration (RD&D) work, primarily for enhanced geothermal systems (EGS). The analysis examined estimates of improvement potential derived from program RD&D work for two types of technology performance metric (TPM): EGS-enabling technologies potential and EGS cost improvement potential. Four risk teams (exploration, wells/pumps/tools, reservoir engineering, and power conversion) comprised of industry experts, DOE laboratory researchers, academic researchers, and laboratory subcontractors estimated the RD&D impacts and TPM-improvement probability distributions. The assessment employed a risk analysis spreadsheet add-in that uses Monte Carlo simulation to drive the Geothermal Electric Technology Evaluation Model (GETEM). The GETEM-based risk analysis used baseline data from the experts' discussion of multiple reports and data sources. Risk results are expressed in terms of each metric's units and/or the program's top-level metric: levelized costs of electricity (LCOE). Results--both qualitative comments and quantitative improvement potential--are thorough and cohesive in three of the four expert groups. This conference paper summarizes the industry's current thinking on various metrics and potential for research improvement in geothermal technologies.

  18. Technology-gap analysis of CNG refueling systems. Final report, July 1990-September 1991

    SciTech Connect (OSTI)

    Webb, R.F.

    1991-09-01

    The report provides a review and analysis of existing and emerging Compressed Natural Gas (CNG) refueling technology aimed at defining opportunities for improvements and areas where technical solutions might be sought. Interpretation of technical areas is broad, including not only scientific and engineering studies, laboratory work and technology demonstration (the usual areas for GRI support), but also technology transfer, support to develop and simplify regulations and economic analysis of technology options. The CNG refueling system is analyzed at several levels from an initial overview of the CNG market, at the area, refueling site, major equipment and component levels. The information has been used to generate a portfolio of 24 tasks for consideration by GRI in development of its future R and D program in support of CNG. The Appendix contains detail, references, a glossary and a report on the GRI Refueling Workshop held in Chicago January 16, 1991 (workshop findings are included in the main report but are not segregated from other findings).

  19. Technology and Research Requirements for Combating Human Trafficking: Enhancing Communication, Analysis, Reporting, and Information Sharing

    SciTech Connect (OSTI)

    Kreyling, Sean J.; West, Curtis L.; Olson, Jarrod

    2011-03-17

    DHS Science & Technology Directorate directed PNNL to conduct an exploratory study on the domain of human trafficking in the Pacific Northwest in order to examine and identify technology and research requirements for enhancing communication, analysis, reporting, and information sharing activities that directly support efforts to track, identify, deter, and prosecute human trafficking including identification of potential national threats from smuggling and trafficking networks. This effort was conducted under the Knowledge Management Technologies Portfolio as part of the Integrated Federal, State, and Local/Regional Information Sharing (RISC) and Collaboration Program.

  20. Improved Characterization and Monitoring of Electromagnetic Sources -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Improved Characterization and Monitoring of Electromagnetic Sources Lawrence Livermore National Laboratory Contact LLNL About This Technology Technology Marketing Summary LLNL's technology is useful in fields such as power systems engineering, security monitoring, and vehicle tracking to identify, locate and monitor a particular source of

  1. Performance specifications for technology development: Application for characterization of volatile organic compounds in the environment

    SciTech Connect (OSTI)

    Carpenter, S.E.; Doskey, P.V.; Erickson, M.D.; Lindahl, P.C.

    1994-07-01

    This report contains information about technology development for the monitoring and remediation of environmental pollution caused by the release of volatile organic compounds. Topics discussed include: performance specification processes, gas chromatography, mass spectrometer, fiber-optic chemical sensors, infrared spectroscopy, Raman spectroscopy, piezoelectric sensors and electrochemical sensors. These methods are analyzed for their cost efficiency, accuracy, and the ability to meet the needs of the customer.

  2. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and...

  3. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_031_horne.pdf More Documents &

  4. Long-Term Modeling of Solar Energy: Analysis of Concentrating Solar Power (CSP) and PV Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.

    2007-08-16

    This report presents an overview of research conducted on solar energy technologies and their implementation in the ObjECTS framework. The topics covered include financing assumptions and selected issues related to the integration of concentrating thermal solar power (CSP) and photovoltaics PV technologies into the electric grid. A review of methodologies for calculating the levelized energy cost of capital-intensive technologies is presented, along with sensitivity tests illustrating how the cost of a solar plant would vary depending on financing assumptions. An analysis of the integration of a hybrid concentrating thermal solar power (CSP) system into the electric system is conducted. Finally a failure statistics analysis for PV plants illustrates the central role of solar irradiance uncertainty in determining PV grid integration characteristics.

  5. The revenue requirement approach to analysis of alternative technologies in the electric utility industry

    SciTech Connect (OSTI)

    Lohrasbi, J. )

    1990-01-01

    The advancement of coal-based power generation technology is of primary interest to the U.S. Department of Energy (DOE). The interests are well-founded due to increasing costs for premium fuels and, more importantly, the establishment of energy independence to promote national security. One of DOE's current goals is to promote the development of coal-fired technology for the electric utility industry. This paper is concerned with the economic comparison of two alternative technologies: the coal gasification-combined cycle (GCC) and the coal-fired magnetohydrodynamic (MHD)-combined cycle. The revenue requirement analysis was used for the economic evaluation of engineering alternatives in the electric utility industry. The results were compared based on year-by-year revenue requirement analysis. A computer program was written in Fortran to perform the calculations.

  6. AR-CITE: Analysis of Search Results for the Clarification and Identification of Technology Emergence

    Energy Science and Technology Software Center (OSTI)

    2012-06-15

    The Analysis of Search Results for the Clarification and Identification of Technology Emergence (AR-CITE) computer code examines a scientometric model that tracks the emergence of an identified technology from initial discovery (via original scientific and conference literature), through critical discoveries (via original scientific, conference literature and patents), transitioning through Technology Readiness Levels (TRLs) and ultimately on to commercial currency of citations, collaboration indicators, and on-line news patterns are identified. The combinations of four distinct andmore »separate searchable on-line networked sources (i.e. scholarly publications and citation, world patents, news archives, and on-line mapping networks) are assembled to become one collective network (a dataset for analysis of relations). This established network becomes the basis from which to quickly analyze the temporal flow of activity (searchable events) for the subject domain to be clarified and identified.« less

  7. Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

    2003-02-25

    The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

  8. Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants with Advanced Technology

    Reports and Publications (EIA)

    2001-01-01

    This analysis responds to a request of Senators James M. Jeffords and Joseph I. Lieberman. This report describes the impacts of technology improvements and other market-based opportunities on the costs of emissions reductions from electricity generators, including nitrogen oxides, sulfur dioxide, mercury, and carbon dioxide.

  9. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    SciTech Connect (OSTI)

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  10. Slang characterization and removal using pulse detonation technology during coal gasification

    SciTech Connect (OSTI)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

    1997-03-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

  11. Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Preliminary Findings from an Analysis of Building Energy Information System Technologies

    SciTech Connect (OSTI)

    Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish; Price, Philip

    2009-06-01

    Energy information systems comprise software, data acquisition hardware, and communication systems that are intended to provide energy information to building energy and facilities managers, financial managers, and utilities. This technology has been commercially available for over a decade, however recent advances in Internet and other information technology, and analytical features have expanded the number of product options that are available. For example, features such as green house gas tracking, configurable energy analyses and enhanced interoperability are becoming increasingly common. Energy information systems are used in a variety of commercial buildings operations and environments, and can be characterized in a number of ways. Basic elements of these systems include web-based energy monitoring, web-based energy management linked to controls, demand response, and enterprise energy management applications. However the sheer number and variety of available systems complicate the selection of products to match the needs of a given user. In response, a framework was developed to define the capabilities of different types of energy information systems, and was applied to characterize approximately 30 technologies. Measurement is a critical component in managing energy consumption and energy information must be shared at all organizational levels to maintain persistent, efficient operations. Energy information systems are important to understand because they offer the analytical support to process measured data into information, and they provide the informational link between the primary actors who impact building energy efficiency - operators, facilities and energy managers, owners and corporate decision makers. In this paper, preliminary findings are presented, with a focus on overall trends and the general state of the technology. Key conclusions include the need to further pursue standardization and usability, x-y plotting as an under-supported feature, and a general convergence of visualization and display capabilities.

  13. Technical Comparative Analysis of "Best of Breed" Turnkey Si-Based Processes and Equipment, to be Used to Produce a Combined Multi-entity Research and Development Technology Roadmap for Thick and Thin Silicon PV

    SciTech Connect (OSTI)

    Hovel, Harold; Prettyman, Kevin

    2015-03-27

    A side-by-side analysis was done on then currently available technology, along with roadmaps to push each particular option forward. Variations in turnkey line processes can and do result in finished solar device performance. Together with variations in starting material quality, the result is a distribution of effciencies. Forensic analysis and characterization of each crystalline Si based technology will determine the most promising approach with respect to cost, efficiency and reliability. Forensic analysis will also shed light on the causes of binning variations. Si solar cells were forensically analyzed from each turn key supplier using a host of techniques

  14. Aqueous nitrate waste treatment: Technology comparison, cost/benefit, and market analysis

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this analysis is to provide information necessary for the Department of Energy (DOE) to evaluate the practical utility of the Nitrate to Ammonia and Ceramic or Glass (NAC/NAG/NAX) process, which is under development in the Oak Ridge National Laboratory. The NAC/NACx/NAX process can convert aqueous radioactive nitrate-laden waste to a glass, ceramic, or grout solid waste form. The tasks include, but are not limited to, the following: Identify current commercial technologies to meet hazardous and radiological waste disposal requirements. The technologies may be thermal or non-thermal but must be all inclusive (i.e., must convert a radionuclide-containing nitrate waste with a pH around 12 to a stable form that can be disposed at permitted facilities); evaluate and compare DOE-sponsored vitrification, grouting, and minimum additive waste stabilization projects for life-cycle costs; compare the technologies above with respect to material costs, capital equipment costs, operating costs, and operating efficiencies. For the NAC/NAG/NAX process, assume aluminum reactant is government furnished and ammonia gas may be marketed; compare the identified technologies with respect to frequency of use within DOE for environmental management applications with appropriate rationale for use; Assess the potential size of the DOE market for the NAC/NAG/NAX process; assess and off-gas issues; and compare with international technologies, including life-cycle estimates.

  15. Cognitive tasks in information analysis: Use of event dwell time to characterize component activities

    SciTech Connect (OSTI)

    Sanquist, Thomas F.; Greitzer, Frank L.; Slavich, Antoinette L.; Littlefield, Rik J.; Littlefield, Janis S.; Cowley, Paula J.

    2004-09-28

    Technology-based enhancement of information analysis requires a detailed understanding of the cognitive tasks involved in the process. The information search and report production tasks of the information analysis process were investigated through evaluation of time-stamped workstation data gathered with custom software. Model tasks simulated the search and production activities, and a sample of actual analyst data were also evaluated. Task event durations were calculated on the basis of millisecond-level time stamps, and distributions were plotted for analysis. The data indicate that task event time shows a cyclic pattern of variation, with shorter event durations (< 2 sec) reflecting information search and filtering, and longer event durations (> 10 sec) reflecting information evaluation. Application of cognitive principles to the interpretation of task event time data provides a basis for developing cognitive signatures of complex activities, and can facilitate the development of technology aids for information intensive tasks.

  16. Method of multi-dimensional moment analysis for the characterization of signal peaks

    DOE Patents [OSTI]

    Pfeifer, Kent B; Yelton, William G; Kerr, Dayle R; Bouchier, Francis A

    2012-10-23

    A method of multi-dimensional moment analysis for the characterization of signal peaks can be used to optimize the operation of an analytical system. With a two-dimensional Peclet analysis, the quality and signal fidelity of peaks in a two-dimensional experimental space can be analyzed and scored. This method is particularly useful in determining optimum operational parameters for an analytical system which requires the automated analysis of large numbers of analyte data peaks. For example, the method can be used to optimize analytical systems including an ion mobility spectrometer that uses a temperature stepped desorption technique for the detection of explosive mixtures.

  17. HTGR Economic / Business Analysis and Trade Studies Market Analysis for HTGR Technologies and Applications

    SciTech Connect (OSTI)

    Richards, Matt; Hamilton, Chris

    2013-11-01

    This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal to liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.

  18. EV Charging Through Wireless Power Transfer: Analysis of Efficiency Optimization and Technology Trends

    SciTech Connect (OSTI)

    Miller, John M; Rakouth, Heri; Suh, In-Soo

    2012-01-01

    This paper is aimed at reviewing the technology trends for wireless power transfer (WPT) for electric vehicles (EV). It also analyzes the factors affecting its efficiency and describes the techniques currently used for its optimization. The review of the technology trends encompasses both stationary and moving vehicle charging systems. The study of the stationary vehicle charging technology is based on current implementations and on-going developments at WiTricity and Oak Ridge National Lab (ORNL). The moving vehicle charging technology is primarily described through the results achieved by the Korean Advanced Institute of Technology (KAIST) along with on-going efforts at Stanford University. The factors affecting the efficiency are determined through the analysis of the equivalent circuit of magnetic resonant coupling. The air gap between both transmitting and receiving coils along with the magnetic field distribution and the relative impedance mismatch between the related circuits are the primary factors affecting the WPT efficiency. Currently the industry is looking at an air gap of 25 cm or below. To control the magnetic field distribution, Kaist has recently developed the Shaped Magnetic Field In Resonance (SMFIR) technology that uses conveniently shaped ferrite material to provide low reluctance path. The efficiency can be further increased by means of impedance matching. As a result, Delphi's implementation of the WiTricity's technology exhibits a WPT efficiency above 90% for stationary charging while KAIST has demonstrated a maximum efficiency of 83% for moving vehicle with its On Line Vehicle (OLEV) project. This study is restricted to near-field applications (short and mid-range) and does not address long-range technology such as microwave power transfer that has low efficiency as it is based on radiating electromagnetic waves. This paper exemplifies Delphi's work in powertrain electrification as part of its innovation for the real world program geared toward a safer, greener and more connected driving. Moreover, it draws from and adds to Dr. Andrew Brown Jr.'s SAE books 'Active Safety and the Mobility Industry', 'Connectivity and Mobility Industry', and 'Green Technologies and the Mobility Industry'. Magnetic resonant coupling is the foundation of modern wireless power transfer. Its efficiency can be controlled through impedance matching and magnetic field shaping. Current implementations use one or both of these control methods and enable both stationary and mobile charging with typical efficiency within the 80% and 90% range for an air gap up to 25 cm.

  19. Sensitivity to Energy Technology Costs: A Multi-model comparison analysis

    SciTech Connect (OSTI)

    Bosetti, Valentina; Marangoni, Giacomo; Borgonovo, Emanuele; Anadon, Laura Diaz; Barron, Robert W.; McJeon, Haewon C.; Politis, Savvas; Friley, Paul

    2015-05-01

    In the present paper we use the output of multiple expert elicitation surveys on the future cost of key low-carbon technologies and use it as input of three Integrated Assessment models, GCAM, MARKAL_US and WITCH. By means of a large set of simulations we aim to assess the implications of these subjective distributions of technological costs over key model outputs. We are able to detect what sources of technology uncertainty are more influential, how this differs across models, and whether and how results are affected by the time horizon, the metric considered or the stringency of the climate policy. In unconstrained emission scenarios, within the range of future technology performances considered in the present analysis, the cost of nuclear energy is shown to dominate all others in affecting future emissions. Climate-constrained scenarios, stress the relevance, in addition to that of nuclear energy, of biofuels, as they represent the main source of decarbonization of the transportation sector and bioenergy, since the latter can be coupled with CCS to produce negative emissions.

  20. An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies

    SciTech Connect (OSTI)

    Spencer, D.F.

    1997-12-31

    This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

  1. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. First annual report, September 1, 1990--August 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof, are directed at identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  2. The US Support Program Assistance to the IAEA Safeguards Information Technology, Collection, and Analysis 2008

    SciTech Connect (OSTI)

    Tackentien,J.

    2008-06-12

    One of the United States Support Program's (USSP) priorities for 2008 is to support the International Atomic Energy Agency's (IAEA) development of an integrated and efficient safeguards information infrastructure, including reliable and maintainable information systems, and effective tools and resources to collect and analyze safeguards-relevant information. The USSP has provided funding in support of this priority for the ISIS Re-engineering Project (IRP), and for human resources support to the design and definition of the enhanced information analysis architecture project (nVision). Assistance for several other information technology efforts is provided. This paper will report on the various ongoing support measures undertaken by the USSP to support the IAEA's information technology enhancements and will provide some insights into activities that the USSP may support in the future.

  3. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect (OSTI)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  4. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    719 November 2009 Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage D. Steward, G. Saur, M. Penev, and T. Ramsden National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Technical Report

  5. Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

  6. High-throughput metagenomic technologies for complex microbial community analysis. Open and closed formats

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa

    2015-01-27

    Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications andmore » focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.« less

  7. Materials Characterization Capabilities at the HTML: Surface/Sub-surface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    dislocation density analysis of forming samples using advanced characterization techniques | Department of Energy HTML: Surface/Sub-surface dislocation density analysis of forming samples using advanced characterization techniques Materials Characterization Capabilities at the HTML: Surface/Sub-surface dislocation density analysis of forming samples using advanced characterization techniques 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and

  8. Double Quarter Wave Crab Cavity Field Profile Analysis and Higher Order Mode Characterization

    SciTech Connect (OSTI)

    Marques, Carlos; Xiao, B. P.; Belomestnykh, S.

    2014-06-01

    The Large Hadron Collider (LHC) is underway for a major upgrade to increase its luminosity by an order of magnitude beyond its original design specifications. This novel machine configuration known as the High Luminosity LHC (HL-LHC) will rely on various innovative technologies including very compact and ultra-precise superconducting crab cavities for beam rotation. A double quarter wave crab cavity (DQWCC) has been designed at Brookhaven National Laboratory for the HL-LHC. This cavity as well as the structural support components were fabricated and assembled at Niowave. The field profile of the crabbing mode for the DQWCC was investigated using a phase shift bead pulling technique and compared with simulated results to ensure proper operation or discover discrepancies from modeled results and/or variation in fabrication tolerances. Higher-Order Mode (HOM) characterization was also performed and correlated with simulations.

  9. Post-test Cell Characterization Facility | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    test Cell Characterization Facility Post-test Cell Characterization Facility 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es166_bloom_2012_o.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at

  10. Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization

    SciTech Connect (OSTI)

    Watney, W.L.; Guy, W.J.; Gerlach, P.M.

    1997-08-01

    Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

  11. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  12. Development of an Updated Induced Seismicity Protocol for the Application of Microearthquake (MEQ) Monitoring for Characterizing Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 4.5.4 Development of an Updated Induced Seismicity Protocol for the Application of Microearthquake (MEQ) Monitoring for Characterizing Enhanced Geothermal Systems Presentation Number: 024 Investigator: Majer, Ernie (Lawrence Berkeley National Laboratory) Objectives: To develop an updated protocol/best engineering practices to address public and industry issues associated with induced seismicity; to identify critical technology and research needs/approaches to advance the understanding of

  13. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    SciTech Connect (OSTI)

    Parker, W

    2009-09-18

    Non-destructive gamma-ray analysis is a fundamental part of nuclear safeguards, including nuclear energy safeguards technology. Developing safeguards capabilities for nuclear energy will certainly benefit from the advanced use of gamma-ray spectroscopy as well as the ability to model various reactor scenarios. There is currently a wide variety of nuclear data that could be used in computer modeling and gamma-ray spectroscopy analysis. The data can be discrepant (with varying uncertainties), and it may difficult for a modeler or software developer to determine the best nuclear data set for a particular situation. To use gamma-ray spectroscopy to determine the relative isotopic composition of nuclear materials, the gamma-ray energies and the branching ratios or intensities of the gamma-rays emitted from the nuclides in the material must be well known. A variety of computer simulation codes will be used during the development of the nuclear energy safeguards, and, to compare the results of various codes, it will be essential to have all the {gamma}-ray libraries agree. Assessing our nuclear data needs allows us to create a prioritized list of desired measurements, and provides uncertainties for energies and especially for branching intensities. Of interest are actinides, fission products, and activation products, and most particularly mixtures of all of these radioactive isotopes, including mixtures of actinides and other products. Recent work includes the development of new detectors with increased energy resolution, and studies of gamma-rays and their lines used in simulation codes. Because new detectors are being developed, there is an increased need for well known nuclear data for radioactive isotopes of some elements. Safeguards technology should take advantage of all types of gamma-ray detectors, including new super cooled detectors, germanium detectors and cadmium zinc telluride detectors. Mixed isotopes, particularly mixed actinides found in nuclear reactor streams can be especially challenging to identify. The super cooled detectors have a marked improvement in energy resolution, allowing the possibility of deconvolution of mixtures of gamma rays that was unavailable with high purity germanium detectors. Isotopic analysis codes require libraries of gamma rays. In certain situations, isotope identification can be made in the field, sometimes with a short turnaround time, depending on the choice of detector and software analysis package. Sodium iodide and high purity germanium detectors have been successfully used in field scenarios. The newer super cooled detectors offer dramatically increased resolution, but they have lower efficiency and so can require longer collection times. The different peak shapes require software development for the specific detector type and field application. Libraries can be tailored to specific scenarios; by eliminating isotopes that are certainly not present, the analysis time may be shortened and the accuracy may be increased. The intent of this project was to create one accurate library of gamma rays emitted from isotopes of interest to be used as a reliable reference in safeguards work. All simulation and spectroscopy analysis codes can draw upon this best library to improve accuracy and cross-code consistency. Modeling codes may include MCNP and COG. Gamma-ray spectroscopy analysis codes may include MGA, MGAU, U235 and FRAM. The intent is to give developers and users the tools to use in nuclear energy safeguards work. In this project, the library created was limited to a selection of actinide isotopes of immediate interest to reactor technology. These isotopes included {sup 234-238}U, {sup 237}Np, {sup 238-242}Pu, {sup 241,243}Am and {sup 244}Cm. These isotopes were examined, and the best of gamma-ray data, including line energies and relative strengths were selected.

  14. Vehicle Technologies Office Merit Review 2015: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence LIvermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office Merit Review 2014: Synthesis and Characterization of Structured Si-Carbon Nanocomposite Anodes and Functional Polymer Binders

    Broader source: Energy.gov [DOE]

    Presentation given by The Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about synthesis...

  16. Vehicle Technologies Office Merit Review 2014: International Energy Agency (IEA IA-AMT) International Characterization Methods (Agreement ID:26462)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about International...

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  2. Characterization of plutonium-bearing wastes by chemical analysis and analytical electron microscopy

    SciTech Connect (OSTI)

    Behrens, R.G.; Buck, E.C.; Dietz, N.L.; Bates, J.K.; Van Deventer, E.; Chaiko, D.J.

    1995-09-01

    This report summarizes the results of characterization studies of plutonium-bearing wastes produced at the US Department of Energy weapons production facilities. Several different solid wastes were characterized, including incinerator ash and ash heels from Rocky Flats Plant and Los Alamos National Laboratory; sand, stag, and crucible waste from Hanford; and LECO crucibles from the Savannah River Site. These materials were characterized by chemical analysis and analytical electron microscopy. The results showed the presence of discrete PuO{sub 2}PuO{sub 2{minus}x}, and Pu{sub 4}O{sub 7} phases, of about 1{mu}m or less in size, in all of the samples examined. In addition, a number of amorphous phases were present that contained plutonium. In all the ash and ash heel samples examined, plutonium phases were found that were completely surrounded by silicate matrices. Consequently, to achieve optimum plutonium recovery in any chemical extraction process, extraction would have to be coupled with ultrafine grinding to average particle sizes of less than 1 {mu}m to liberate the plutonium from the surrounding inert matrix.

  3. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  4. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  5. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  6. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANALYSIS SECTION Multi-Year Research, Development, and Demonstration Plan Page 4.0 - 1 4.0 Systems Analysis The Fuel Cell Technologies Office (The Office) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the Office's decision-making process by evaluating

  7. APPLIED TECHNOLOGY R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » APPLIED TECHNOLOGY R&D APPLIED TECHNOLOGY R&D rdplan-thumb.jpg Applied technology R&D projects monitor SSL technology advances and provide laboratory and field evaluations of emerging products. Impartial, trusted analysis from DOE identifies and characterizes technology problems early on, alerting manufacturers to needed improvements, and helping to put detailed information into the hands of buyers, which when used in discussions with manufacturers can

  8. Vehicle Technologies Office Merit Review 2014: Cummins-ORNL\\FEERC Combustion CRADA: Characterization & Reduction of Combustion Variations

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Cummins-ORNL...

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  10. Reservoir characterization based on tracer response and rank analysis of production and injection rates

    SciTech Connect (OSTI)

    Refunjol, B.T.; Lake, L.W.

    1997-08-01

    Quantification of the spatial distribution of properties is important for many reservoir-engineering applications. But, before applying any reservoir-characterization technique, the type of problem to be tackled and the information available should be analyzed. This is important because difficulties arise in reservoirs where production records are the only information for analysis. This paper presents the results of a practical technique to determine preferential flow trends in a reservoir. The technique is a combination of reservoir geology, tracer data, and Spearman rank correlation coefficient analysis. The Spearman analysis, in particular, will prove to be important because it appears to be insightful and uses injection/production data that are prevalent in circumstances where other data are nonexistent. The technique is applied to the North Buck Draw field, Campbell County, Wyoming. This work provides guidelines to assess information about reservoir continuity in interwell regions from widely available measurements of production and injection rates at existing wells. The information gained from the application of this technique can contribute to both the daily reservoir management and the future design, control, and interpretation of subsequent projects in the reservoir, without the need for additional data.

  11. Microgrid Design Analysis Using Technology Management Optimization and the Performance Reliability Model

    SciTech Connect (OSTI)

    Stamp, Jason E.; Eddy, John P.; Jensen, Richard P.; Munoz-Ramos, Karina

    2016-01-01

    Microgrids are a focus of localized energy production that support resiliency, security, local con- trol, and increased access to renewable resources (among other potential benefits). The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) Joint Capa- bility Technology Demonstration (JCTD) program between the Department of Defense (DOD), Department of Energy (DOE), and Department of Homeland Security (DHS) resulted in the pre- liminary design and deployment of three microgrids at military installations. This paper is focused on the analysis process and supporting software used to determine optimal designs for energy surety microgrids (ESMs) in the SPIDERS project. There are two key pieces of software, an ex- isting software application developed by Sandia National Laboratories (SNL) called Technology Management Optimization (TMO) and a new simulation developed for SPIDERS called the per- formance reliability model (PRM). TMO is a decision support tool that performs multi-objective optimization over a mixed discrete/continuous search space for which the performance measures are unrestricted in form. The PRM is able to statistically quantify the performance and reliability of a microgrid operating in islanded mode (disconnected from any utility power source). Together, these two software applications were used as part of the ESM process to generate the preliminary designs presented by SNL-led DOE team to the DOD. Acknowledgements Sandia National Laboratories and the SPIDERS technical team would like to acknowledge the following for help in the project: * Mike Hightower, who has been the key driving force for Energy Surety Microgrids * Juan Torres and Abbas Akhil, who developed the concept of microgrids for military instal- lations * Merrill Smith, U.S. Department of Energy SPIDERS Program Manager * Ross Roley and Rich Trundy from U.S. Pacific Command * Bill Waugaman and Bill Beary from U.S. Northern Command * Tarek Abdallah, Melanie Johnson, and Harold Sanborn of the U.S. Army Corps of Engineers Construction Engineering Research Laboratory * Colleagues from Sandia National Laboratories (SNL) for their reviews, suggestions, and participation in the work.

  12. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    SciTech Connect (OSTI)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ``ideal system,`` could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  13. A comparison of surface topography characterization technologies for use in comparing spent bullet and cartridge case signatures

    SciTech Connect (OSTI)

    Batishko, C.R.; Hickman, B.J.; Cuta, F.M.

    1992-11-01

    The Pacific Northwest Laboratory was tasked by the US Department of Energy to provide technical assistance to the Federal Bureau of Investigation in evaluating and ranking technologies potentially useful in high-speed comparison of unique spent bullet and cartridge case surface signatures. Information sources included vendor input, current relevant literature, vendor phone contacts, other FBI resources, relevant PNL reports, and personal contact with numerous PNL technical staff. A comprehensive list of technologies was reduced to a list of 38 by grouping very similar methodologies, and further reduced to a short list of six by applying a set of five minimum functional requirements. A total of 14 primary criteria, many having secondary criteria, were subsequently used to evaluate each technology. The ranked short list results are reported and supported in this document, and their scores normalized to a hypothetical ideal system are as follows: (1) confocal microscopy 82.13; (2) laser dynamic focusing 72.04; (3)moire interferometry V70.94; (4)fringe field capacitance;(5)laser triangulation 66.18; (6)structured/sectioned light 65.55. Information available within the time/budget constraints which was used for the evaluation and ranking was not sufficiently detailed to evaluate specific implementations of the technologies. Each of the technologies in the short list was judged potentially capable of meeting the minimum requirements. Clever, novel engineering solutions resulting in a more cost-effective system, or a closer fit to the ideal system,'' could result in a reordering of the short list when actual technical proposals are evaluated. Therefore, it is recommended that a Request for Proposal not be limited to only the highest ranked technology, but include all six technologies in the short list.

  14. Microtopography for Ductile Fracture Process Characterization - Part 2: Application for CTOA Analysis

    SciTech Connect (OSTI)

    Lloyd, Wilson Randolph; F. A. McClintock

    2003-02-01

    The crack tip opening angle (CTOA) is seeing increased use to characterize fracture in so-called "low constraint" geometries, such as thin sheet aerospace structures and thin-walled pipes. With this increase in application comes a need to more fully understand and measure actual CTOA behavior. CTOA is a measure of the material response during ductile fracture, a "crack tip response function". In some range of crack extension following growth initiation, a constant value of CTOA is often assumed. However, many questions concerning the use of CTOA as a material response-characterizing parameter remain. For example, when is CTOA truly constant? What three-dimensional effects may be involved (even in thin sheet material)? What are the effects of crack tunneling on general CTOA behavior? How do laboratory specimen measurements of CTOA compare to actual structural behavior? Measurements of CTOA on the outer surface of test specimens reveal little about threedimensional effects in the specimen interior, and the actual measurements themselves are frequently difficult. The Idaho National Engineering and Environmental Laboratory (INEEL) use their microtopography system to collect data from the actual fracture surfaces following a test. Analyses of these data provide full three-dimensional CTOA distributions, at any amount of crack extension. The analysis is accomplished using only a single specimen and is performed entirely after the completion of a test. The resultant CTOA distributions allow development of full and effective understanding of CTOA behaviors. This paper presents underlying principles, various sources of measurement error and their corrections, and experimental and analytical verification of CTOA analysis with the microtopography method.

  15. Analysis of Debris Trajectories at the Scaled Wind Farm Technology (SWiFT) Facility

    SciTech Connect (OSTI)

    White, Jonathan R.; Burnett, Damon J.

    2016-01-01

    Sandia National Laboratories operates the Scaled Wind Farm Technology Facility (SWiFT) on behalf of the Department of Energy Wind and Water Power Technologies Office. An analysis was performed to evaluate the hazards associated with debris thrown from one of SWiFT’s operating wind turbines, assuming a catastrophic failure. A Monte Carlo analysis was conducted to assess the complex variable space associated with debris throw hazards that included wind speed, wind direction, azimuth and pitch angles of the blade, and percentage of the blade that was separated. In addition, a set of high fidelity explicit dynamic finite element simulations were performed to determine the threshold impact energy envelope for the turbine control building located on-site. Assuming that all of the layered, independent, passive and active engineered safety systems and administrative procedures failed (a 100% failure rate of the safety systems), the likelihood of the control building being struck was calculated to be less than 5/10,000 and ballistic simulations showed that the control building would not provide passive protection for the majority of impact scenarios. Although options exist to improve the ballistic resistance of the control building, the recommendation is not to pursue them because there is a low probability of strike and there is an equal likelihood personnel could be located at similar distances in other areas of the SWiFT facility which are not passively protected, while the turbines are operating. A fenced exclusion area has been created around the turbines which restricts access to the boundary of the 1/100 strike probability. The overall recommendation is to neither relocate nor improve passive protection of the control building as the turbine safety systems have been improved to have no less than two independent, redundant, high quality engineered safety systems. Considering this, in combination with a control building strike probability of less than 5/10,000, the overall probability of turbine debris striking the control building is less than 1/1,000,000.

  16. Mammographic quantitative image analysis and biologic image composition for breast lesion characterization and classification

    SciTech Connect (OSTI)

    Drukker, Karen Giger, Maryellen L.; Li, Hui; Duewer, Fred; Malkov, Serghei; Joe, Bonnie; Kerlikowske, Karla; Shepherd, John A.; Flowers, Chris I.; Drukteinis, Jennifer S.

    2014-03-15

    Purpose: To investigate whether biologic image composition of mammographic lesions can improve upon existing mammographic quantitative image analysis (QIA) in estimating the probability of malignancy. Methods: The study population consisted of 45 breast lesions imaged with dual-energy mammography prior to breast biopsy with final diagnosis resulting in 10 invasive ductal carcinomas, 5 ductal carcinomain situ, 11 fibroadenomas, and 19 other benign diagnoses. Analysis was threefold: (1) The raw low-energy mammographic images were analyzed with an established in-house QIA method, QIA alone, (2) the three-compartment breast (3CB) composition measurederived from the dual-energy mammographyof water, lipid, and protein thickness were assessed, 3CB alone, and (3) information from QIA and 3CB was combined, QIA + 3CB. Analysis was initiated from radiologist-indicated lesion centers and was otherwise fully automated. Steps of the QIA and 3CB methods were lesion segmentation, characterization, and subsequent classification for malignancy in leave-one-case-out cross-validation. Performance assessment included box plots, BlandAltman plots, and Receiver Operating Characteristic (ROC) analysis. Results: The area under the ROC curve (AUC) for distinguishing between benign and malignant lesions (invasive and DCIS) was 0.81 (standard error 0.07) for the QIA alone method, 0.72 (0.07) for 3CB alone method, and 0.86 (0.04) for QIA+3CB combined. The difference in AUC was 0.043 between QIA + 3CB and QIA alone but failed to reach statistical significance (95% confidence interval [0.17 to + 0.26]). Conclusions: In this pilot study analyzing the new 3CB imaging modality, knowledge of the composition of breast lesions and their periphery appeared additive in combination with existing mammographic QIA methods for the distinction between different benign and malignant lesion types.

  17. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing. The PRIMA Project

    SciTech Connect (OSTI)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by todays high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-Productivity Supercomputing (VI-HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-HPS training activities together within the past three years.

  18. Performance Refactoring of Instrumentation, Measurement, and Analysis Technologies for Petascale Computing: the PRIMA Project

    SciTech Connect (OSTI)

    Malony, Allen D.; Wolf, Felix G.

    2014-01-31

    The growing number of cores provided by todays high-end computing systems present substantial challenges to application developers in their pursuit of parallel efficiency. To find the most effective optimization strategy, application developers need insight into the runtime behavior of their code. The University of Oregon (UO) and the Juelich Supercomputing Centre of Forschungszentrum Juelich (FZJ) develop the performance analysis tools TAU and Scalasca, respectively, which allow high-performance computing (HPC) users to collect and analyze relevant performance data even at very large scales. TAU and Scalasca are considered among the most advanced parallel performance systems available, and are used extensively across HPC centers in the U.S., Germany, and around the world. The TAU and Scalasca groups share a heritage of parallel performance tool research and partnership throughout the past fifteen years. Indeed, the close interactions of the two groups resulted in a cross-fertilization of tool ideas and technologies that pushed TAU and Scalasca to what they are today. It also produced two performance systems with an increasing degree of functional overlap. While each tool has its specific analysis focus, the tools were implementing measurement infrastructures that were substantially similar. Because each tool provides complementary performance analysis, sharing of measurement results is valuable to provide the user with more facets to understand performance behavior. However, each measurement system was producing performance data in different formats, requiring data interoperability tools to be created. A common measurement and instrumentation system was needed to more closely integrate TAU and Scalasca and to avoid the duplication of development and maintenance effort. The PRIMA (Performance Refactoring of Instrumentation, Measurement, and Analysis) project was proposed over three years ago as a joint international effort between UO and FZJ to accomplish these objectives: (1) refactor TAU and Scalasca performance system components for core code sharing and (2) integrate TAU and Scalasca functionality through data interfaces, formats, and utilities. As presented in this report, the project has completed these goals. In addition to shared technical advances, the groups have worked to engage with users through application performance engineering and tools training. In this regard, the project benefits from the close interactions the teams have with national laboratories in the United States and Germany. We have also sought to enhance our interactions through joint tutorials and outreach. UO has become a member of the Virtual Institute of High-Productivity Supercomputing (VI-HPS) established by the Helmholtz Association of German Research Centres as a center of excellence, focusing on HPC tools for diagnosing programming errors and optimizing performance. UO and FZJ have conducted several VI-HPS training activities together within the past three years.

  19. Characterization of Used Nuclear Fuel with Multivariate Analysis for Process Monitoring

    SciTech Connect (OSTI)

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2014-01-01

    The Multi-Isotope Process (MIP) Monitor combines gamma spectroscopy and multivariate analysis to detect anomalies in various process streams in a nuclear fuel reprocessing system. Measured spectra are compared to models of nominal behavior at each measurement location to detect unexpected changes in system behavior. In order to improve the accuracy and specificity of process monitoring, fuel characterization may be used to more accurately train subsequent models in a full analysis scheme. This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict fuel burnup. Nuclide activities for prototypic used fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this work are artificially low, because the models were trained, optimized, and tested on simulated, noise-free data. However, these results indicate that the developed models may generalize well to new data and that the proposed approach constitutes a viable first step in developing a fuel characterization algorithm based on gamma spectra.

  20. Risk analysis of remediation technologies for a DOE facility. Master`s thesis

    SciTech Connect (OSTI)

    Wilson, H.A.

    1998-03-01

    The Department of Energy is responsible for selecting a remediation technology to cleanup the Waste Area Group (WAG) 6 site at the Paducah Gaseous Diffusion Plant (PGDP) in Kentucky. WAG 6 is contaminated with an uncertain amount of trichloroethylene (TCE) and technetium-99 (Tc-99). Selecting a remediation technology involves a certain degree of risk because many of these technologies are new or proven only for a specific type of contaminant or a particular set of site conditions. Differences between contaminant type and site conditions are enough to make the performance of a remediation technology uncertain. This research identifies the technological risks of two remediation technologies: Dynamic Underground Stripping (DUS) and In Situ Chemical Oxidation (ISCO). Risk is defined as the likelihood of undesirable events occurring during the implementation of a technology at WAG 6.

  1. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  2. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  3. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  4. Destructive analysis capabilities for plutonium and uranium characterization at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Tandon, Lav; Kuhn, Kevin J; Drake, Lawrence R; Decker, Diana L; Walker, Laurie F; Colletti, Lisa M; Spencer, Khalil J; Peterson, Dominic S; Herrera, Jaclyn A; Wong, Amy S

    2010-01-01

    Los Alamos National Laboratory's (LANL) Actinide Analytical Chemistry (AAC) group has been in existence since the Manhattan Project. It maintains a complete set of analytical capabilities for performing complete characterization (elemental assay, isotopic, metallic and non metallic trace impurities) of uranium and plutonium samples in different forms. For a majority of the customers there are strong quality assurance (QA) and quality control (QC) objectives including highest accuracy and precision with well defined uncertainties associated with the analytical results. Los Alamos participates in various international and national programs such as the Plutonium Metal Exchange Program, New Brunswick Laboratory's (NBL' s) Safeguards Measurement Evaluation Program (SME) and several other inter-laboratory round robin exercises to monitor and evaluate the data quality generated by AAC. These programs also provide independent verification of analytical measurement capabilities, and allow any technical problems with analytical measurements to be identified and corrected. This presentation will focus on key analytical capabilities for destructive analysis in AAC and also comparative data between LANL and peer groups for Pu assay and isotopic analysis.

  5. Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 4.5.7 Analysis of Geothermal Reservoir Stimulation Using Geomechanics-based Stochastic Analysis of Injection-induced Seismicity Presentation Number: 027 Investigator: Ghassemi, Ahmad (Texas A&M University) Objectives: To develop a model for seismicity-based reservoir characterization (SBRC) by combining rock mechanics, finite element modeling, geostatistical concepts to establish relationships between microseismicity, reservoir flow and geomechanical characteristics. Average Overall Score:

  6. Source characterization and control technology assessment of methylene chloride emissions from Eastman Kodak Company, Rochester, NY. Final report, July 1988-April 1989

    SciTech Connect (OSTI)

    Walata, S.A.; Rehm, R.M.

    1989-07-01

    This report gives results of an assessment of potential control technologies for methylene chloride (also known as dichloromethane or DCM) emission sources at Eastman Kodak Company's Kodak Park facility in Rochester, NY. DCM is a solvent used by Kodak in the manufacture of cellulose triacetate film support. Work has involved: a plant visit where major DCM emission sources were inspected, and evaluation of current and potential control technologies for the DCM emission sources. The report contains information gathered during the plant visit to the Kodak Park facility. Included are emission estimates determined by Kodak of all emission points greater than 8000 lb (3600 kg)/yr DCM, as well as a description of each point observed during the visit. Also included are results of an evaluation of control technologies that might be applied to the major emission sources. A cost analysis of different add-on control devices is provided for four of the uncontrolled emission points.

  7. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental Impacts Energy Storage & Distributed Resources

  8. Vehicle Technologies Office Merit Review 2014: APEEM Components Analysis and Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about APEEM...

  9. Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

  10. Vehicle Technologies Office Merit Review 2014: Medium Duty ARRA Data Reporting and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  11. Vehicle Technologies Office Merit Review 2015: Medium Duty ARRA Data Reporting and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  12. Vehicle Technologies Office Merit Review 2014: Advanced Wireless Power Transfer and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  13. Vehicle Technologies Office Merit Review 2015: Model Development and Analysis of Clean & Efficient Engine Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about model...

  14. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    SciTech Connect (OSTI)

    Ebadian, M.A. Ross, T.L.

    1998-01-01

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  15. eFRMAC Overview: Data Management and Enabling Technologies for Characterization of a Radiological Release A Case Study: The Fukushima Nuclear Power Plant Incident

    SciTech Connect (OSTI)

    Blumenthal, Daniel J.; Clark, Harvey W.; Essex, James J.; Wagner, Eric C.

    2013-07-01

    The eFRMAC enterprise is a suite of technologies and software developed by the United States Department of Energy, National Nuclear Security Administration’s Office of Emergency Response to coordinate the rapid data collection, management, and analysis required during a radiological emergency. This enables the Federal Radiological Monitoring and Assessment Center assets to evaluate a radiological or nuclear incident efficiently to facilitate protective actions to protect public health and the environment. This document identifies and describes eFRMAC methods including (1) data acquisition, (2) data management, (3) data analysis, (4) product creation, (5) quality control, and (6) dissemination.

  16. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  18. Mixed waste characterization reference document

    SciTech Connect (OSTI)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization.

  19. Live Webinar on the Funding Opportunity for Environmental Stewardship for Renewable Energy Technologies: MHK Environmental and Resource Characterization Instrumentation

    Broader source: Energy.gov [DOE]

    This FOA will support the development of instrumentation, associated signal processing algorithms or software, and integration of instrumentation packages for monitoring the environmental impacts of marine and hydrokinetic technologies. It will also support the development and testing of sensors, instrumentation, or processing techniques to collect physical data on ocean waves (e.g., height, period, directionality, steepness). Join us for an informational webinar on March 20, 2014. The purpose of this webinar will be to give applicants a chance to ask questions about the FOA process generally. Reserve your webinar seat now at: https://www1.gotomeeting.com/register/553062432

  20. Demonstration, testing and evaluation of nonintrusive characterization technologies at operable Unit 2 of Rocky Flats Plant. Final report

    SciTech Connect (OSTI)

    1994-09-01

    A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy`s (DOE) request for demonstration, testing and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-09OR22000.

  1. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect (OSTI)

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  2. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    SciTech Connect (OSTI)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  3. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    SciTech Connect (OSTI)

    Muenster, M.; Meibom, P.

    2010-12-15

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO{sub 2} quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO{sub 2} quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected.

  4. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  5. Vehicle Technologies Office Merit Review 2014: CLEERS: Aftertreatment Modeling and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Lab at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CLEERS, a R...

  6. Vehicle Technologies Office Merit Review 2015: Impact Analysis: PEV Consumer Behavior in Practice

    Broader source: Energy.gov [DOE]

    Presentation given by University of California, Davis at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PEV consumer...

  7. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis

    SciTech Connect (OSTI)

    Ringer, M.; Putsche, V.; Scahill, J.

    2006-11-01

    A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

  8. Vehicle Technologies Office Merit Review 2014: Modeling for Market Analysis: HTEB, TRUCK, and LVChoice

    Broader source: Energy.gov [DOE]

    Presentation given by TA Engineering, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about HTEB, TRUCK, and...

  9. Vehicle Technologies Office Merit Review 2015: Modeling for Light and Heavy Vehicle Market Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Energetics at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about modeling for light and heavy...

  10. Vehicle Technologies Office Merit Review 2015: 12 Volt Auxiliary Load On-road Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about 12 volt auxiliary...

  11. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  12. Assessment of the potential for refinery applications of inorganic membrane technology: An identification and screening analysis. Final report

    SciTech Connect (OSTI)

    Johnson, H.E.; Schulman, B.L.

    1993-05-01

    Commercial application of membrane technology in the separation of gas, liquid, and solid streams has grown to a business with worldwide revenues exceeding $1 billion annually. Use of organic membranes for industrial gas separation, particularly in the refining industry, is one of the major growth areas. However, organic membranes based on polymeric separation barriers, are susceptible to damage by liquids, and careful precautions must be taken to retain the system integrity. Researchers are currently developing small pore sized inorganic membranes which may substantially increase the efficiency and economics in selected refinery separation applications. Expected advantages of these advanced inorganic membranes include high permeability, high selectivity, and low manufacturing cost. SFA Pacific conducted a screening analysis to identify applications for inorganic membrane technology in the petroleum refining industry and their potential cost advantages over competing separation systems. Two meetings were held in connection with this project. Copies of Viewgraphs presented by SFA Pacific at these meetings are attached in Appendices A and C. Potential high priority applications and market impacts of advanced inorganic membrane technology in the refining industry are addressed in this report, and include the following areas: Competitive separation technologies; application of those technologies; incentives for inorganic membranes; market benefits and impacts of inorganic membranes.

  13. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This report describes the results of an in-depth analysis of markets for US-developed, advanced coal-combustion technology (ACT) in the residential, commercial, and industrial sectors of three countries -- Spain, Italy, and Turkey. These countries were chosen in a previous study, in which member countries of the Organization for Economic Cooperation and Development (OECD) were rated on eight factors influencing their propensity to use small-scale, US-developed ACT. 76 refs., 16 figs., 14 tabs.

  14. Phase 1 Characterization sampling and analysis plan West Valley demonstration project.

    SciTech Connect (OSTI)

    Johnson, R. L.

    2011-06-30

    The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

  15. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    T. Scott Hickman; James J. Justice

    2002-01-09

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect (OSTI)

    Tom Beebe

    2003-05-05

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the seventh annual reporting period (8/3/00-8/2/01) covered by this report, work continued on interpretation of the interwell seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted and the acquired data processed and interpretation started. Only limited well work and facility construction were conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and six wells had experienced gas (CO{sub 2}) breakthrough.

  18. Cashew nut roasting: Chemical characterization of particulate matter and genotocixity analysis

    SciTech Connect (OSTI)

    Oliveira Galvo, Marcos Felipe de; Melo Cabral, Thiago de; Andr, Paulo Afonso de; Ftima Andrade, Maria de; Miranda, Regina Maura de; Saldiva, Paulo Hilrio Nascimento; Castro Vasconcellos, Prola de; Batistuzzo de Medeiros, Silvia Regina

    2014-05-01

    Background: Particulate matter (PM) is potentially harmful to health and related to genotoxic events, an increase in the number of hospitalizations and mortality from respiratory and cardiovascular diseases. The present study conducted the first characterization of elemental composition and polycyclic aromatic hydrocarbon (PAH) analysis of PM, as well as the biomonitoring of genotoxic activity associated to artisanal cashew nut roasting, an important economic and social activity worldwide. Methods: The levels of PM{sub 2.5} and black carbon were also measured by gravimetric analysis and light reflectance. The elemental composition was determined using X-ray fluorescence spectrometry and PAH analysis was carried out by gas chromatographymass spectrometry. Genotoxic activity was measured by the Tradescantia pallida micronucleus bioassay (Trad-MCN). Other biomarkers of DNA damage, such as nucleoplasmic bridges and nuclear fragments, were also quantified. Results: The mean amount of PM{sub 2.5} accumulated in the filters (January 2124.2 g/m{sup 3}; May 1022.2 g/m{sup 3}; September 1291.9 g/m{sup 3}), black carbon (January 363.6 g/m{sup 3}; May 70 g/m{sup 3}; September 69.4 g/m{sup 3}) and concentrations of Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb were significantly higher than the non-exposed area. Biomass burning tracers K, Cl, and S were the major inorganic compounds found. Benzo[k]fluoranthene, indene[1,2,3-c,d]pyrene, benzo[ghi]perylene, phenanthrene and benzo[b]fluoranthene were the most abundant PAHs. Mean benzo[a]pyrene-equivalent carcinogenic power values showed a significant cancer risk. The Trad-MCN bioassay revealed an increase in micronucleus frequency, 27 times higher than the negative control and significantly higher in all the months analyzed, possibly related to the mutagenic PAHs found. Conclusions: This study demonstrated that artisanal cashew nut roasting is a serious occupational problem, with harmful effects on workers' health. Those involved in this activity are exposed to higher PM{sub 2.5} concentrations and to 12 PAHs considered potentially mutagenic and/or carcinogenic. The Trad-MCN with T. pallida was sensitive and efficient in evaluating the genotoxicity of the components and other nuclear alterations may be used as effective biomarkers of DNA damage. - Highlights: The cashew nut roasting generated high concentrations of particulate matter fine. The biomass burning tracers K, Cl, S were the major inorganic compounds found. It was identified 12 PAHs considered to be potentially mutagenic and/or carcinogenic. The genotoxic potential of this activity was confirmed by the Trad MCN assay. This activity is a serious occupational problem with harmful effects to health workers.

  19. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    SciTech Connect (OSTI)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.; Henckel, George; Gruetzmacher, Kathleen M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorized Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)

  20. Cost analysis of paint-waste-incineration technology at U. S. Army depots. Final report, Nov 88-Oct 91

    SciTech Connect (OSTI)

    Hall, F.D.; McKibben, R.S.

    1991-10-01

    The U.S. Army Depot System Command (DESCOM) has 16 maintenance depots located throughout the U.S. Several army depots generate paint wastes that must be disposed of. These depots are located in different parts of the country, and a comprehensive strategy is required to manage the disposal of the paint wastes generated at the individual depots. Incineration is a candidate technology for disposal of such wastes. This report presents an economic analysis of developing an incineration strategy. The economic analysis of paint waste incineration was limited to six major maintenance depots: Anniston, Corpus Christi, Letterkenny, Red River, Tobyhanna, and Tooele. These particular depots are included in the analysis because they are responsible for the majority of all paint wastes generated annually be DESCOM. Three scenarios were evaluated: (1) locating an incinerator at each depot, (2) locating an incinerator at a single site and transporting waste from other depots to this location, and (3) using multiple units at two or more depots. The analysis considers the locations of the army depots, the types and quantities of the wastes they generate, and transportation of the wastes. It also assumes that the individual army depots are equally equipped for proper management of the paint waste by the incineration technology and that the waste can be transferred between the depots without any restrictions. It is further assumed that only incinerable paint wastes will be treated.

  1. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 78 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  2. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    SciTech Connect (OSTI)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed natural gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.

  3. The heavy-duty vehicle future in the United States: A parametric analysis of technology and policy tradeoffs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Askin, Amanda Christine; Barter, Garrett; West, Todd H.; Manley, Dawn Kataoka

    2015-02-14

    Here, we present a parametric analysis of factors that can influence advanced fuel and technology deployments in U.S. Class 7–8 trucks through 2050. The analysis focuses on the competition between traditional diesel trucks, natural gas vehicles (NGVs), and ultra-efficient powertrains. Underlying the study is a vehicle choice and stock model of the U.S. heavy-duty vehicle market. Moreover, the model is segmented by vehicle class, body type, powertrain, fleet size, and operational type. We find that conventional diesel trucks will dominate the market through 2050, but NGVs could have significant market penetration depending on key technological and economic uncertainties. Compressed naturalmore » gas trucks conducting urban trips in fleets that can support private infrastructure are economically viable now and will continue to gain market share. Ultra-efficient diesel trucks, exemplified by the U.S. Department of Energy's SuperTruck program, are the preferred alternative in the long haul segment, but could compete with liquefied natural gas (LNG) trucks if the fuel price differential between LNG and diesel increases. However, the greatest impact in reducing petroleum consumption and pollutant emissions is had by investing in efficiency technologies that benefit all powertrains, especially the conventional diesels that comprise the majority of the stock, instead of incentivizing specific alternatives.« less

  4. Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

  5. Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  6. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. Overview of biomass technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The biomass overview of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  8. Milestones for Selection Characterization and Analysis of the Performance of a Repository for Spent Nuclear Fuel and HIh-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2015-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis throu gh 2009 of the performance of a repository for spent nuclear fuel and high - level radi oactive waste at Yucca Mou ntain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and an alogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment - specific laboratory experiments, in - situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site - specific characterization . The current sixth period beyond 2010 represents a new effort to set waste management policy in the United States. Because the relationship is important to understanding the evolution of the Yucca Mountain Project , the tabulation also shows the interaction between the policy realm and technical realm using four broad categories of events : (a ) R egulatory requirements and related federal policy in laws and court decisions, (c ) Presidential and agency directives, (c) technical milestones of implemen ting institutions, and (d ) critiques of the Yucca Mountai n P roject and pertinent national and world events related to nuclear energy and radioactive waste. Preface The historical progression of technical milestones for the Yucca Mountain Project was originally developed for 10 journal articles in a special issue of Reliability Engineering System Safe ty on the performance assessment for the Yucca Mountain license application [ 1 - 10 ] . The listing of mile stones , a distinct feature of those articles, has been collected and tabulated here. A lthough a brief description is presented here (based on the summaries in the 10 journal articles) , t he emphasis remains on the tab ulation because of its usefulness in pro viding a comprehensive but concise history of the Yucca Mountain Project . T he tabulation presented here is more elaborate than originally presented in that many of the interactions that occurred between the technical realm and policy realm can be depicted in separate columns . The usefulness of the milestones table is due in part to L.A. Connolly, for editorial and reference support, and S.K. Best, Raytheon, and L. May s, Sandia National Laboratories ( SNL ) , for illustration support. Reviewers P.N. Swift, SNL , and K. Gupta, University of Oklahoma, helped improve the discussion. The historical perspective presented is that of the author and is not necessarily held by reviewers, Sandia National Laboratories , and the US Department of Energy. As a historic perspect ive, the author is reporting on the work of others; however, any interpretative erro r s of the documentation are those of the author alone. The characterization and modeling of the Yucca Mountain disposal system required numerous participants with expertise in many areas of science a nd technology, as evident from the extensive reference list. Their d iligent efforts are generally acknowledged here and through the many references to their impressive work , but the 10 journal articles acknowledge by name many of the numerous participants that contributed to the Yucca Mountain Project .

  9. Cross-cutting Technologies for Advanced Biofuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-cutting Technologies for Advanced Biofuels Report-Out Webinar February 9, 2012 Adam Bratis, Ph.D. NREL Energy Efficiency & Renewable Energy eere.energy.gov 2 Cross-cutting Technology Areas: Feedstock Supply and Logistics  growth, harvesting, delivery Analysis  economic, life-cycle, resource assessment Catalysis  design, characterization, testing Separations  contaminant removal, product recovery Dr. Adam Bratis Biomass Program Manager National Renewable Energy Laboratory

  10. Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Analysis Home/Tag:Analysis - Electricity use by water service sector and county. Shown are electricity use by (a) large-scale conveyance, (b) groundwater irrigation pumping, (c) surface water irrigation pumping, (d) drinking water, and (e) wastewater. Aggregate electricity use across these sectors (f) is also mapped. Permalink Gallery Sandians Recognized in Environmental Science & Technology's Best Paper Competition Analysis, Capabilities,

  11. Lifecycle Cost Analysis of Hydrogen Versus Other Technologies for Electrical Energy Storage

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report presents the results of an analysis evaluating the economic viability of hydrogen for medium- to large-scale electrical energy storage applications compared with three other storage techno

  12. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.41

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.41 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  13. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.40

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.40 meets Internal Revenue Code §179D, Notice 2006-52, dated April 10, 2009, for calculating commercial building energy and power cost savings.

  14. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.34

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.34 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  15. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.31

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.31 meets Internal Revenue Code 179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  16. Building Technologies Program: Tax Deduction Qualified Software- Hourly Analysis Program (HAP) version 4.50

    Broader source: Energy.gov [DOE]

    Provides required documentation that Hourly Analysis Program (HAP) version 4.50 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  17. Existing technology transfer report: analytical capabilities. Volume 2. Appendix A. [Methods and procedures for analysis

    SciTech Connect (OSTI)

    Tewari, K.C.

    1984-06-01

    This volume contains 10 attachments entitled: Monthly progress reports; Method CHN-4 (Carbon, Hydrogen and Nitrogen analysis by Perkin-Elmer elemental analyses); Method Oxygen-6 (oxygen analyzer); Method Nitrogen-8 (Low level nitrogen analysis by Perkin-Elmer 240 elemental analyzer); Method Sulfur-10 (sulfur analysis by oxidative microcoulometry); Method TGA-3 (thermogravimetric analysis of coal liquefaction products and process solvents); Method DSC-5 (Determination of glass transition temperature by differential scanning calorimetry); Method GC-1 (gas chromatography of Fischer-Tropsch products); Method GC-2 (gas chromatography of distillate products from coal liquefaction); Analytical Method No. 1160 (estimation of OH, NH, NH/sub 2/, concentration in methylene chloride soluble materials from SRC liquids); x-ray diffraction method for determining the orientation tendency in calcined coke; and evaluation of mass spectrometers.

  18. Vehicle Technologies Office Merit Review 2014: Analysis of Film Formation Chemistry on Silicon Anodes by Advanced in-situ and operando Vibrational Spectroscopy

    Broader source: Energy.gov [DOE]

    Presentation given by UC Berkeley at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the analysis of film formation...

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-14

    Through June 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the third quarter 2000 revising the draft 1997-2000 Annual Report submitted last quarter, writing final reports on the research projects mentioned above, and operating the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. Further geomechanics work should be conducted. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures increased back to steam chest fill-up pressures of 90% hydrostatic pressure by March 2000 and have been maintained through September 2000. When the ''T'' sands reached fill-up in October 1999, net ''T'' sand injection remained at a high rate through April 2000 and reservoir pressures stabilized at 98% hydrostatic pressure. The objective is to lower ''T'' sand pressure slowly to 90% hydrostatic. Net injection was reduced and ''T'' sand reservoir pressure was at 97% hydrostatic in September 2000. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    Through March 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the second quarter 2000 writing the 1997-2000 Annual Report, completing research for the project on the subjects mentioned above, and operating the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. Further geomechanics work should be conducted. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection remained at a high rate and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery oper

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    Through December 1999, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone in order to focus the remaining time on using the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current thermal operations in the Wilm

  2. Analysis of the energy impacts of the DOE Appropriate Energy Technology Small Grants Program: methods and results

    SciTech Connect (OSTI)

    Lucarelli, B.; Kessel, J.; Kay, J.; Linse, J.; Tompson, S.; Homer, M.

    1981-02-01

    In 1977, Congress directed DOE to create an energy grants program with the object of funding individuals, small businesses, and nonprofit organizations to develop technologies that use renewable energy resources. The Small Grants Program was created and this report assesses the energy savings potential of the program. The first step in the analysis was to assess the energy-savings potential of 57 projects. Program energy savings were then estimated from project savings using statistical inference. Chapter 2 presents estimates of direct energy savings for the 57 projects and discusses direct energy savings. Chapter 3 discusses the methods and results of the economic analysis. Chapter 4 examines the indirect savings. Because of the large size of the sample, neither project descriptions nor specific details of each project analysis are included. Instead, two examples from the analysis are presented in Chapters 2, 3, and 4 to illustrate the methods. The results of the analysis and key project data are summarized. Chapter 5 presents estimates of program energy savings and the methods used to obtain them. The report concludes with a discussion of how improved project selection can increase program energy savings and present two approaches for conducting future energy-impact studies.

  3. Aqueous-stream uranium-removal technology cost/benefit and market analysis

    SciTech Connect (OSTI)

    1994-03-01

    The primary purpose of this report is to present information that was gathered by Kapline Enterprises, Inc. (KEI) in order to help the Department of Energy (DOE) determine the merit of continued biosorption research funding. However, in the event that funding is continued, it is also intended to help the researchers in their efforts to develop a better uranium-removal process. This report (1) provides a comparison of DOE sites that may utilize aqueous-stream, uranium-removal biosorption technology, (2) presents a comparison of the biosorption and ion exchange processes, and (3) establishes performance criteria by which the project can be measured. It also attempts to provide focus for biosorbent ground-water-remediation research and to ask questions that need to be answered. This report is primarily a study of the US market for technologies that remove uranium from aqueous streams, but it also addresses the international market-particularly for Germany. Because KEI`s access to international market information is extremely limited, the material presented in this report represents a best effort to obtain this data. Although uranium-contaminated aqueous streams are a problem in other countries as well, the scope of this report is primarily limited to the US and Germany for two reasons: (1) Germany is the country of the biosorbent-CRADA partner and (2) time constraints.

  4. Integrated Information Technology Framework for Analysis of Data from Enrichment Plants to Support the Safeguards Mission

    SciTech Connect (OSTI)

    Marr, Clifton T.; Thurman, David A.; Jorgensen, Bruce V.

    2008-07-15

    ABSTRACT Many examples of software architectures exist that support process monitoring and analysis applications which could be applied to enrichment plants in a fashion that supports the Safeguards Mission. Pacific Northwest National Laboratory (PNNL) has developed mature solutions that will provide the framework to support online statistical analysis of enrichment plans and the entire nuclear fuel cycle. Most recently, PNNL has developed a refined architecture and supporting tools that address many of the common problems analysis and modeling environments experience: pipelining, handling large data volumes, and real-time performance. We propose the architecture and tools may be successfully used in furthering the goals of nuclear material control and accountability as both an aid to processing plant owners and as comprehensive monitoring for oversight teams.

  5. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  6. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Fourth quarterly technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai

    1991-12-31

    The objective of this project is to conduct extensive studies on the surfaces reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of the pyrite rejection in coal flotation. The product as well as their structure, the mechanism and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc., are directed at identifying the cause and possible solutions of the pyrite rejection problems in coal cleaning.

  7. Pyrite surface characterization and control for advanced fine coal desulfurization technologies. Third quarterly technical progress report, March 1, 1991--May 30, 1991

    SciTech Connect (OSTI)

    Wang, Xiang-Huai; Leonard, J.W.; Parekh, B.K.; Raichur, A.M.; Jiang, Chengliang

    1991-12-31

    The objective of this project is to conduct extensive studies on the surface reactivity of pyrite by using electrochemical, surface analysis, potentiometric and calorimetric titration, and surface hydrophobicity characterization techniques and to correlate the alteration of the coal-pyrite surface with the efficiency of pyrite rejection in coal flotation. The products as well as their structure, the mechanisms and the kinetics of the oxidation of coal-pyrite surfaces and their interaction with various chemical reagents will be systematically studied and compared with that of mineral-pyrite and synthetic pyrite to determine the correlation between the surface reactivity of pyrite and the bulk chemical properties of pyrite and impurities. The surface chemical studies and the studies of floatability of coal-pyrite and the effect of various parameters such as grinding media and environment, aging under different atmospheres, etc. on thereof will lead to identifying the causes and possible solutions of the pyrite rejection problems in coal cleaning.

  8. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Surface/Near Surface Indication - Characterization of Surface Anomalies from Magnetic Particle and Liquid Penetrant Indications

    SciTech Connect (OSTI)

    Griffin, John

    2014-02-20

    The systematic study and characterization of surface indications has never been conducted. Producers and users of castings do not have any data on which they can reliably communicate the nature of these indications or their effect on the performance of parts. Clearly, the ultimate intent of any work in this area is to eliminate indications that do in fact degrade properties. However, it may be impractical physically and/or financially to eliminate all surface imperfections. This project focused on the ones that actually degrade properties. The initial work was to identify those that degrade properties. Accurate numerical simulations of casting service performance allow designers to use the geometric flexibility of castings and the superior properties of steel to produce lighter weight and more energy efficient components for transportation systems (cars and trucks), construction, and mining. Accurate simulations increase the net melting energy efficiency by improving casting yield and reducing rework and scrap. Conservatively assuming a 10% improvement in yield, approximately 1.33 x 1012 BTU/year can be saved with this technology. In addition, CO2 emissions will be reduced by approximately 117,050 tons per year.

  9. Characterizations of Hydrogen Energy Technologies

    SciTech Connect (OSTI)

    Energetics Inc

    2003-04-01

    In 1996, Dr. Ed Skolnik of Energetics, Incorporated, began a series of visits to the locations of various projects that were part of the DOE Hydrogen Program. The site visits/evaluations were initiated to help the DOE Program Management, which had limited time and limited travel budgets, to get a detailed snapshot of each project. The evaluations were soon found to have other uses as well: they provided reviewers on the annual Hydrogen Program Peer Review Team with an in-depth look at a project--something that is lacking in a short presentation--and also provided a means for hydrogen stakeholders to learn about the R&D that the Hydrogen Program is sponsoring. The visits were conducted under several different contract mechanisms, at project locations specified by DOE Headquarters Program Management, Golden Field Office Contract Managers, or Energetics, Inc., or through discussion by some or all of the above. The methodology for these site-visit-evaluations changed slightly over the years, but was fundamentally as follows: Contact the Principal Investigator (PI) and arrange a time for the visit; Conduct a literature review. This would include a review of the last two or three years of Annual Operating Plan submittals, monthly reports, the paper submitted with the last two or three Annual Peer Review, published reviewers' consensus comments from the past few years, publications in journals, and journal publications on the same or similar topics by other researchers; Send the PI a list of questions/topics about a week ahead of time, which we would discuss during the visit. The types of questions vary depending on the project, but include some detailed technical questions that delve into some fundamental scientific and engineering issues, and also include some economic and goal-oriented topics; Conduct the site-visit itself including--Presentations by the PI and/or his staff. This would be formal in some cases, informal in others, and merely a ''sit around the table'' discussion in others; The format was left to the discretion of the PI; A tour of the facility featuring, whenever possible, a demonstration of the process in operation; Detailed discussions of the questions sent to the PI and other topics; and Writing a report on the visit. This compilation presents the reports for all the site-visits held between February 1996 and July 2001, each written shortly after the visit. While nothing has been changed in the actual content of any of the reports, reformatting for uniformity did occur. In each report, where the questions and their respective answers are discussed, the questions are shown in bold. In several cases, the PI chose to answer these questions in writing. When this occurs, the PI's answers are produced ''verbatim, in quotes, using a different font.'' Discussion of the questions, tour/demonstration, and anything else raised during the visit is presented in normal type. Comments that represent the opinion of Dr. Skolnik, including those added during the writing of the report are shown in italics. The reports compiled here, as stated, covers a period through July 2001. Since then, site-visits to various project locations and the accompanying evaluations have continued. Thus, a second compilation volume should follow in the fall of 2003. Following the compilation of reports, is an afterward that briefly discusses what has happened to some of the projects or project personnel since that particular report was written.

  10. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Deutsches Elektronen-Synchrotron, Hamburg; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; et al

    2015-04-14

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  11. Design Improvements and Analysis of Innovative High-Level Waste Pipeline Unplugging Technologies - 12171

    SciTech Connect (OSTI)

    Pribanic, Tomas; Awwad, Amer; Crespo, Jairo; McDaniel, Dwayne; Varona, Jose; Gokaltun, Seckin; Roelant, David

    2012-07-01

    Transferring high-level waste (HLW) between storage tanks or to treatment facilities is a common practice performed at the Department of Energy (DoE) sites. Changes in the chemical and/or physical properties of the HLW slurry during the transfer process may lead to the formation of blockages inside the pipelines resulting in schedule delays and increased costs. To improve DoE's capabilities in the event of a pipeline plugging incident, FIU has continued to develop two novel unplugging technologies: an asynchronous pulsing system and a peristaltic crawler. The asynchronous pulsing system uses a hydraulic pulse generator to create pressure disturbances at two opposite inlet locations of the pipeline to dislodge blockages by attacking the plug from both sides remotely. The peristaltic crawler is a pneumatic/hydraulic operated crawler that propels itself by a sequence of pressurization/depressurization of cavities (inner tubes). The crawler includes a frontal attachment that has a hydraulically powered unplugging tool. In this paper, details of the asynchronous pulsing system's ability to unplug a pipeline on a small-scale test-bed and results from the experimental testing of the second generation peristaltic crawler are provided. The paper concludes with future improvements for the third generation crawler and a recommended path forward for the asynchronous pulsing testing. (authors)

  12. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  13. Geothermal fracture stimulation technology. Volume IV. Proppant analysis at geothermal conditions

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Crushing and degradation mechanisms of proppants are examined to characterize proppants and assess their usability in geothermal wells. Short-term tests can tell the physical strength of a proppant, but long-term tests are required to ascertain any interrelated chemical effects. Degradation of proppants is measured as a loss in permeability and can be correlated to temperature, time, and closure stress. Sand is a common proppant which is strongly affected by higher temperature and closure stress. Even at low stress levels, sand degrades in brine or hot water with long-term exposure. Most geothermal waters and their pH levels can also be detrimental to sand. There are some proppants with desirable properties at geothermal conditions. These are resistant to the crushing loads or closure stress in geothermal wells and will not react or dissolve in high temperature brines. While there are limits to these proppants, an unqualified list of possible geothermal proppants is given: aluminum oxide, garnet, resin-coated proppants, and sintered bauxite.

  14. Eleventh symposium on energy engineering sciences: Proceedings. Solid mechanics and processing: Analysis, measurement and characterization

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Eleventh Symposium on Energy Engineering Sciences was held on May 3--5, 1993, at the Argonne National Laboratory, Argonne, Illinois. These proceedings include the program, list of participants, and the papers that were presented during the eight technical sessions held at this meeting. This symposium was organized into eight technical sessions: Surfaces and interfaces; thermophysical properties and processes; inelastic behavior; nondestructive characterization; multiphase flow and thermal processes; optical and other measurement systems; stochastic processes; and large systems and control. Individual projects were processed separately for the databases.

  15. 2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D

    SciTech Connect (OSTI)

    McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

    2010-11-01

    The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

  16. Applications of nuclear reaction analysis to metal hydride film characterization at the GEND 200 KeV accelerator facility

    SciTech Connect (OSTI)

    Malbrough, D.J.; Becker, R.H.

    1985-01-01

    Nuclear reaction analysis (NRA) is a quantitative analytical technique that usually involves the use of MeV ion beams and resonant nuclear reactions to non-destructively probe materials for elemental content and depth profiles. Low energy, non-resonant nuclear reactions can also be exploited for NRA and procedures have been developed for using the GEND 200-KeV accelerator to characterize neutron generator components by that technique. The procedures involve the detection and analysis of fusion reaction products generated by the interactions of deuteron beams with light elements in metal hydride films. A description of the accelerator system is presented along with some of the unique NRA procedures that have recently been developed for its use. The system is used to measure neutron output efficiencies of metal deuterides and tritides by the associated particle technique (APT) and accurate neutron yield measurements have been made for a number of materials for which data was formerly not available.

  17. Statistical analysis of surface lineaments and fractures for characterizing naturally fractured reservoirs

    SciTech Connect (OSTI)

    Guo, Genliang; George, S.A.; Lindsey, R.P.

    1997-08-01

    Thirty-six sets of surface lineaments and fractures mapped from satellite images and/or aerial photos from parts of the Mid-continent and Colorado Plateau regions were collected, digitized, and statistically analyzed in order to obtain the probability distribution functions of natural fractures for characterizing naturally fractured reservoirs. The orientations and lengths of the surface linear features were calculated using the digitized coordinates of the two end points of each individual linear feature. The spacing data of the surface linear features within an individual set were, obtained using a new analytical sampling technique. Statistical analyses were then performed to find the best-fit probability distribution functions for the orientation, length, and spacing of each data set. Twenty-five hypothesized probability distribution functions were used to fit each data set. A chi-square goodness-of-fit test was used to rank the significance of each fit. A distribution which provides the lowest chi-square goodness-of-fit value was considered the best-fit distribution. The orientations of surface linear features were best-fitted by triangular, normal, or logistic distributions; the lengths were best-fitted by PearsonVI, PearsonV, lognormal2, or extreme-value distributions; and the spacing data were best-fitted by lognormal2, PearsonVI, or lognormal distributions. These probability functions can be used to stochastically characterize naturally fractured reservoirs.

  18. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect (OSTI)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  19. Analysis of energy recovery potential using innovative technologies of waste gasification

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Energy recovery from waste by gasification was simulated. Black-Right-Pointing-Pointer Two processes: high temperature gasification and gasification associated to plasma. Black-Right-Pointing-Pointer Two types of feeding waste: Refuse Derived Fuel (RDF) and pulper residues. Black-Right-Pointing-Pointer Different configurations for the energy cycles were considered. Black-Right-Pointing-Pointer Comparison with performances from conventional Waste-to-Energy process. - Abstract: In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production.

  20. Application of reservoir characterization and advanced technology to improve recovery and economics in a lower quality shallow shelf carbonate reservoir. [Quarterly report], October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Taylor, A.R.

    1996-01-01

    West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, TX. This field was discovered early 1940`s and produces oil under a solution gas drive mechanism from the Sand Adres formation at {approx}4800 ft. This field has been under waterflood for 30 yr and a significant portion has been infill drilled on 20-ac density. A 1982-86 CO{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a CO{sub 2} pipeline near the field allowed phased development of a miscible CO{sub 2} injection project at the South Welch Unit. Reservoir quality is poorer at West Welch Unit due to relative position to sea level during deposition, and this unit is ideal for demonstrating methods for enhancing economics of IOR projects in lower quality SSC (shallow shelf carbonate) reservoirs. This Class 2 project concentrates on the efficient design of a miscible CO{sub 2} project based on detailed reservoir characterization. During the quarter, progress was made on petrophysical analysis and tomography processing. The geologic model is dependent on these, and the actual reservoir simulation cannot start until the geologic model is complete, although all the preliminary simulation work is being done.

  1. Compression Algorithm Analysis of In-Situ (S)TEM Video: Towards Automatic Event Detection and Characterization

    SciTech Connect (OSTI)

    Teuton, Jeremy R.; Griswold, Richard L.; Mehdi, Beata L.; Browning, Nigel D.

    2015-09-23

    Precise analysis of both (S)TEM images and video are time and labor intensive processes. As an example, determining when crystal growth and shrinkage occurs during the dynamic process of Li dendrite deposition and stripping involves manually scanning through each frame in the video to extract a specific set of frames/images. For large numbers of images, this process can be very time consuming, so a fast and accurate automated method is desirable. Given this need, we developed software that uses analysis of video compression statistics for detecting and characterizing events in large data sets. This software works by converting the data into a series of images which it compresses into an MPEG-2 video using the open source avconv utility [1]. The software does not use the video itself, but rather analyzes the video statistics from the first pass of the video encoding that avconv records in the log file. This file contains statistics for each frame of the video including the frame quality, intra-texture and predicted texture bits, forward and backward motion vector resolution, among others. In all, avconv records 15 statistics for each frame. By combining different statistics, we have been able to detect events in various types of data. We have developed an interactive tool for exploring the data and the statistics that aids the analyst in selecting useful statistics for each analysis. Going forward, an algorithm for detecting and possibly describing events automatically can be written based on statistic(s) for each data type.

  2. Characterization, propagation and analysis of aleatory and epistemic uncertainty in the 2008 performance assessment for the proposed repository for radioactive waste at Yucca Mountain, Nevada.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Sallaberry, Cedric M.; Hansen, Clifford W.

    2010-10-01

    The 2008 performance assessment (PA) for the proposed repository for high-level radioactive waste at Yucca Mountain (YM), Nevada, illustrates the conceptual structure of risk assessments for complex systems. The 2008 YM PA is based on the following three conceptual entities: a probability space that characterizes aleatory uncertainty; a function that predicts consequences for individual elements of the sample space for aleatory uncertainty; and a probability space that characterizes epistemic uncertainty. These entities and their use in the characterization, propagation and analysis of aleatory and epistemic uncertainty are described and illustrated with results from the 2008 YM PA.

  3. EVALUATION OF THE EFFECTIVENESS OF TRUCK EFFICIENCY TECHNOLOGIES IN CLASS 8 TRACTOR-TRAILERS BASED ON A TRACTIVE ENERGY ANALYSIS USING MEASURED DRIVE CYCLE DATA

    SciTech Connect (OSTI)

    LaClair, Tim J; Gao, Zhiming; Fu, Joshua S.; Calcagno, Jimmy; Yun, Jeongran

    2014-01-01

    Quantifying the fuel savings that can be achieved from different truck fuel efficiency technologies for a fleet s specific usage allows the fleet to select the combination of technologies that will yield the greatest operational efficiency and profitability. This paper presents an analysis of vehicle usage in a commercial vehicle fleet and an assessment of advanced efficiency technologies using an analysis of measured drive cycle data for a class 8 regional commercial shipping fleet. Drive cycle measurements during a period of a full year from six tractor-trailers in normal operations in a less-than-truckload (LTL) carrier were analyzed to develop a characteristic drive cycle that is highly representative of the fleet s usage. The vehicle mass was also estimated to account for the variation of loads that the fleet experienced. The drive cycle and mass data were analyzed using a tractive energy analysis to quantify the fuel efficiency and CO2 emissions benefits that can be achieved on class 8 tractor-trailers when using advanced efficiency technologies, either individually or in combination. Although differences exist among class 8 tractor-trailer fleets, this study provides valuable insight into the energy and emissions reduction potential that various technologies can bring in this important trucking application.

  4. Steel Industry Marginal Opportunity Analysis

    SciTech Connect (OSTI)

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  5. Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Patel, Kamlesh D [Ken]; SNL,

    2013-01-25

    Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  6. Technology Application R&D

    Broader source: Energy.gov [DOE]

    Technology application R&D projects monitor SSL technology advances and provide laboratory and field evaluations of emerging products. Impartial, trusted analysis from DOE identifies and...

  7. ORNL Quasi-Static Mechanical Characterization and Analysis: FY09 Annual Report to TARDEC

    SciTech Connect (OSTI)

    Wereszczak, Andrew A; Kirkland, Timothy Philip; Strong, Kevin T; Holmquist, Timothy

    2009-12-01

    The testing and evaluation of candidate glasses for transparent armor served as a primary goal. Other armor ceramics were evaluated too, in support of the development of innovative test methods, whose use will ultimately help in the improvement of armor ceramics or help in better predicting their ballistic performance. The following summarizes this report and this year's work: (1) The elastic properties of a spherical indenter affect the forces necessary to initiate fracture in a target ceramics. The lower the elastic modulus of an indenter material, the easier (i.e., lower forces required) it is to initiate fracture. This implies the fracture initiation of an armor ceramic will depend on the elastic properties of a projectile material, and that this effect, represented by the Dundurs Parameter, can be managed to guide improvement of both armor and projectile materials. (2) The largest flaws in a population dictate both contact damage and fracture initiations. This implies the ballistic response of armor ceramics will improve if those large flaws are precluded from appearing in the materials during their processing. (3) Failure stress dependence on effective area for Hertzian indentation was developed. Such analysis is adaptable to predict ballistically produced fracture initiation as a function of projectile material and projectile size. (4) A simple, quick, and inexpensive test method was developed to measure the apparent yield stress of armor ceramics. This is significant because yield stress is used as input in ballistic models, and yield stress is traditionally measured using (complex, timeconsuming, and expensive) shock physics experiments. (5) Radial confinement increases the necessary indentation forces to initiate fracture and yield-like responses in ceramics. Ballistic improvement of an armor ceramic will occur if the ceramic can be compressively pre-stressed. (6) The median crack produced by a Hertzian indent is associated with a dramatic increase in target ceramic compliance. More so than any other produced damage mechanism. This suggests that a ballistically induced median crack in an armor ceramic may be associated with the dwell penetration event. (7) Glass exhibits tensile strength that is very much dependent on the amount of material, the side being tested (air versus tin if a float glass), and where it is being tensile stressed (in the middle or near an edge). The management of these effects will improve ballistic resistance of transparent armor (or any ceramic armor that is undergoing deflection as a consequence of a ballistic impact). (8) Plasma-arc heat treatment is a quick and relatively inexpensive method to improve the strength of glass. It is implementable into the production line for the mass production of glass. Increased strain-to-failure and bending deflections are concomitant with increased strength, and therefore, ballistic resistance is improvable using this method. (9) The Hertzian stress field at high contact stresses is very similar to the stress field from a ballistic impact. This is significant because the results from Hertzian indentation measurements have the prospect of being used as input in ballistic models to predict dwell conditions. (10) The understanding of glass densification and fragmentation behaviors are aided by piezo-Raman spectroscopy and quasi-static, high-energy fracture. Continued refinement of these test methods will improve the understanding of glass impact resistance. (11) In addition to glass, strength-size scaling was evident in SiC and B{sub 4}C. Previously proposed strength dependencies on rate from shock experiments may instead be explained by this strength-size scaling effect. (12) The quantification of strength-size scaling in armor ceramics clearly shows there is no single strength value that can be used to describe that ceramic. A ballistic modeler can therefore use more appropriate failure stress value(s) as input to predict deflection and expanding cavity responses in the ceramic target. These follow-on efforts are recommended based on the above statem

  8. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  9. Plant Phenotype Characterization System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Phenotype Characterization System Plant Phenotype Characterization System New X-Ray Technology Accelerates Plant Research The ability to analyze plant root structure and...

  10. Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis

    SciTech Connect (OSTI)

    Sullivan, P.; Eurek, K.; Margolis, R.

    2014-07-01

    Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

  11. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  12. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle...

  13. Vehicle Technologies Office Merit Review 2015: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about transportation...

  14. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  15. High Performance Commercial Buildings Technology Roadmap | Open...

    Open Energy Info (EERE)

    Company Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Energy Efficiency, Buildings Topics: Technology characterizations Resource Type: Dataset...

  16. Characterization and analysis methods for the examination of the heterogeneous solid oxide fuel cell electrode microstructure: Part 2. Quantitative measurement of the microstructure and contributions to transport losses

    SciTech Connect (OSTI)

    Grew, Kyle N.; Peracchio, Aldo A.; Chiu, W. K. S.

    2010-12-15

    Advanced characterization and analysis of multifunctional materials, such as the materials found in heterogeneous solid oxide fuel cell (SOFC) electrode architectures, can help to provide a qualitative and quantitative understanding of how these structures respond to different manufacturing and operating practices. Dense, opaque materials, which have large X-ray mass absorption coefficients and features on sub-micrometer length scales, can make characterization difficult. Advances in tomographic X-ray imaging can permit this level of detailed characterization, and complement stereographic scanning electron microscope measurements that have also been reported. In this second part of a two-part study, details regarding quantitative characterization methods that have been used to examine the SOFC anode microstructure are reported. The detailed formulation and validation of a phase size distributions for the three constitutive phases, as well as resistive loss microstructure-induced resistive loss distributions in the nickel (Ni) and yttria-stabilized zirconia (YSZ) phases are provided in this section.

  17. National incinerator testing and evaluation program: The environmental characterization of refuse-derived fuel (RDF) Combustion Technology, Mid-Connecticut Facility, Hartford, Connecticut. Final report, June 1987-March 1993

    SciTech Connect (OSTI)

    Finklestein, A.; Klicius, R.D.

    1994-12-01

    The report gives results of an environmental characterization of refuse-derived (RDF) semi-suspension burning technology at a facility in Hartford, Connecticut, that represents state-of-the-art technology, including a spray dryer/fabric filter flue-gas cleaning (FGC) system for each unit. Results were obtained for a variety of steam production rates, combustion conditions, flue gas temperatures, and acid gas removal efficiencies. All incoming wastes and residue streams were weighed, sampled, and analyzed. Key combustor and FGC system operating variables were monitored on a real time basis. A wide range of analyses for acid gases, trace organics, and heavy metals was carried out on gas emissions and all ash residue discharges.

  18. Characterizing the marker-dye correction for Gafchromic EBT2 film: A comparison of three analysis methods

    SciTech Connect (OSTI)

    McCaw, Travis J.; Micka, John A.; DeWerd, Larry A.

    2011-10-15

    Purpose: Gafchromic EBT2 film has a yellow marker dye incorporated into the active layer of the film that can be used to correct the film response for small variations in thickness. This work characterizes the effect of the marker-dye correction on the uniformity and uncertainty of dose measurements with EBT2 film. The effect of variations in time postexposure on the uniformity of EBT2 is also investigated. Methods: EBT2 films were used to measure the flatness of a {sup 60}Co field to provide a high-spatial resolution evaluation of the film uniformity. As a reference, the flatness of the {sup 60}Co field was also measured with Kodak EDR2 films. The EBT2 films were digitized with a flatbed document scanner 24, 48, and 72 h postexposure, and the images were analyzed using three methods: (1) the manufacturer-recommended marker-dye correction, (2) an in-house marker-dye correction, and (3) a net optical density (OD) measurement in the red color channel. The field flatness was calculated from orthogonal profiles through the center of the field using each analysis method, and the results were compared with the EDR2 measurements. Uncertainty was propagated through a dose calculation for each analysis method. The change in the measured field flatness for increasing times postexposure was also determined. Results: Both marker-dye correction methods improved the field flatness measured with EBT2 film relative to the net OD method, with a maximum improvement of 1% using the manufacturer-recommended correction. However, the manufacturer-recommended correction also resulted in a dose uncertainty an order of magnitude greater than the other two methods. The in-house marker-dye correction lowered the dose uncertainty relative to the net OD method. The measured field flatness did not exhibit any unidirectional change with increasing time postexposure and showed a maximum change of 0.3%. Conclusions: The marker dye in EBT2 can be used to improve the response uniformity of the film. Depending on the film analysis method used, however, application of a marker-dye correction can improve or degrade the dose uncertainty relative to the net OD method. The uniformity of EBT2 was found to be independent of the time postexposure.

  19. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  20. Coal liquefaction technology. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-09-01

    The bibliography contains citations concerning the technologies and processes for converting coal to liquid chemicals and fuels. Topics include materials characterization of liquefaction processes, catalysis, pyrolysis, depolymerization, coprocessing, and integrated liquefaction. Also discussed are liquid fuel use in automobiles and power generation, low-temperature carbonization technology, multi-stage liquefaction, cost benefit analysis, and commercialization of liquefaction technology. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Ethanol Effects on Lean-Burn and Stoichiometric GDI Emissions Measurement and Characterization of Unregulated Emissions from Advanced Technologies...

  2. Emerging Energy-Efficient Technologies for Industry

    SciTech Connect (OSTI)

    Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliot, Neal; Shipley, Anna; Thorn, Jennifer

    2005-05-05

    U.S. industry consumes approximately 37 percent of thenation's energy to produce 24 percent of the nation's GDP. Increasingly,society is confronted with the challenge of moving toward a cleaner, moresustainable path of production and consumption, while increasing globalcompetitiveness. Technology is essential in achieving these challenges.We report on a recent analysis of emerging energy-efficient technologiesfor industry, focusing on over 50 selected technologies. The technologiesare characterized with respect to energy efficiency, economics andenvironmental performance. This paper provides an overview of theresults, demonstrating that we are not running out of technologies toimprove energy efficiency, economic and environmental performance, andneither will we in the future. The study shows that many of thetechnologies have important non-energy benefits, ranging from reducedenvironmental impact to improved productivity, and reduced capital costscompared to current technologies.

  3. Low Temperature Performance Characterization & Modeling | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Low Temperature Performance Characterization & Modeling Low Temperature Performance Characterization & Modeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon esp_04_jansen.pdf More Documents & Publications Overview of Applied Battery Research Analysis and Simulation of Electrochemical Energy Systems Key Issues Regarding Electrolytes at Interfacial Regions (subtask

  4. CLEERS Activities: Diesel Soot Filter Characterization & NOx Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fundamentals | Department of Energy Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ace_21_herling.pdf More Documents & Publications CLEERS Aftertreatment Modeling and Analysis Hydrocarbon Inhibition and HC Storage Modeling

  5. Vehicle Technologies Office Merit Review 2015: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  6. Vehicle Technologies Office Merit Review 2014: Joint Development and Coordination of Emissions Control Data and Models (CLEERS Analysis and Coordination)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the joint...

  7. Vehicle Technologies Office Merit Review 2014: Transportation Energy Transition Modeling and Analysis: the LAVE-Trans Model

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the LAVE-Trans...

  8. Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

  9. Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure, Part 1: Volumetric Measurements of the Heterogeneous Structure

    SciTech Connect (OSTI)

    Grew, Kyle N.; Peracchio, Aldo A.; Joshi, Abhijit S.; Izzo, Jr., John R.; Chiu, W. K. S.

    2010-12-15

    Advanced imaging and characterization methods have permitted the 3-D and phase-specific reconstruction of dense and opaque samples with features that have a length scale on the order of tens of nanometers and comprised of materials with large X-ray mass absorption coefficients. Engineered materials, like those found in solid oxide fuel cell (SOFC) electrodes, use complex materials that have often limited opportunities to perform 3-D characterization and analysis. Still, characterization and analysis methods are needed to better understand these structures and their functional impact. The development, verification, and validation of methods used by the authors for the characterization and analysis of the heterogeneous SOFC anode are discussed in this work. These methods include the measurement of the volume fractions of the individual phases, contiguity or volumetric connectivity, tortuosity, and interfacial properties. A second and complementary part of this work will examine quantitative methods that provide detailed descriptions of the structure and its relations to the transport processes that it must support. These efforts are intended to describe the formulation of methods developed to provide insight into the SOFC anode nano/microstructure.

  10. Re-use of drinking water treatment plant (DWTP) sludge: Characterization and technological behaviour of cement mortars with atomized sludge additions

    SciTech Connect (OSTI)

    Husillos Rodriguez, N.; Martinez Ramirez, S.; Blanco Varela, M.T.; Guillem, M.; Puig, J.; Larrotcha, E.; Flores, J.

    2010-05-15

    This paper aims to characterize spray-dried DWTP sludge and evaluate its possible use as an addition for the cement industry. It describes the physical, chemical and micro-structural characterization of the sludge as well as the effect of its addition to Portland cements on the hydration, water demand, setting and mechanical strength of standardized mortars. Spray drying DWTP sludge generates a readily handled powdery material whose particle size is similar to those of Portland cement. The atomized sludge contains 12-14% organic matter (mainly fatty acids), while its main mineral constituents are muscovite, quartz, calcite, dolomite and seraphinite (or clinoclor). Its amorphous material content is 35%. The mortars were made with type CEM I Portland cement mixed with 10 to 30% atomized sludge exhibited lower mechanical strength than the control cement and a decline in slump. Setting was also altered in the blended cements with respect to the control.

  11. NREL SBV Pilot Bioenergy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conversion technologies, biomass process and sustainability analysis, and feedstock logistics. Capabilities The NREL National Bioenergy Center develops, refines, and validates...

  12. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  13. Final Report: DoE SBIR Phase 2 Low-Cost Small Diameter NMR Technologies for In-Situ Subsurface Characterization and Monitoring

    SciTech Connect (OSTI)

    Walsh, David Oliver

    2010-09-03

    In this Phase 2 SBIR program, Vista Clara successfully developed and field-tested small diameter NNR logging tools for subsurface characterization and monitoring. This effort involved the design and development surface electronics, a winch with 470ft cable, and three interchangeable downhole probes: a 3.5? diameter borehole NMR probe, a 1.67? diameter borehole NMR probe, and a 2.5? diameter NMR probe that can be deployed using a Geoprobe direct push machine. The 3.5? probe was tested extensively over a 6 week period including 4? to 8? boreholes in Washington, Idaho, Nebraska, Colorado, Kansas, Connecticut and Massachusetts. The field test campaign was highly successful. The 1.67? probe was assembled, tested and calibrated in the laboratory. The 2.5? Geoprobe probe is in final assembly and testing at the time of this report. The completed Phase 2 R&D program has resulted in the first NMR logging tool that can be deployed in boreholes of 4? diameter, the first NMR logging tool that can be deployed in boreholes on 2? diameter, and the first NMR logging tool that can be deployed by a direct push machine. These small diameter tools make NMR logging technically and economically feasible, for the first time. Previously available NMR logging tools were developed for oilfield applications and are prohibitively large and expensive for the majority of near surface groundwater characterization problems.

  14. Catalyst Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon pm028_watkins_2010_p.pdf More Documents & Publications Catalyst Characterization Catalyst Characterization Vehicle Technologies Office Merit Review 2014: Biofuel Impacts on Aftertreatment Devices (Agreement ID:26463) Project ID:18519

  15. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially availablebiomass, geothermal, hydropower, solar PV, CSP, and wind-powered systemsare included in the modeling analysis. Some of these renewable technologiessuch as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomassare relatively mature and well-characterized. Other renewable technologiessuch as fixed-bottom offshore wind, solar PV, and solar CSPare at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  16. Tools and techniques for failure analysis and qualification of MEMS.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Tools and techniques for failure analysis and qualification of MEMS. Citation Details In-Document Search Title: Tools and techniques for failure analysis and qualification of MEMS. Many of the tools and techniques used to evaluate and characterize ICs can be applied to MEMS technology. In this paper we discuss various tools and techniques used to provide structural, chemical, and electrical analysis and how these data aid in qualifying MEMS technologies.

  17. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  18. Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment

    SciTech Connect (OSTI)

    Nancy Moller Weare

    2006-07-25

    This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

  19. Use of thermal analysis techniques (TG-DSC) for the characterization of diverse organic municipal waste streams to predict biological stability prior to land application

    SciTech Connect (OSTI)

    Fernandez, Jose M.; Plaza, Cesar; Polo, Alfredo; Plante, Alain F.

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Thermal analysis was used to assess stability and composition of organic matter in three diverse municipal waste streams. Black-Right-Pointing-Pointer Results were compared with C mineralization during 90-day incubation, FTIR and {sup 13}C NMR. Black-Right-Pointing-Pointer Thermal analysis reflected the differences between the organic wastes before and after the incubation. Black-Right-Pointing-Pointer The calculated energy density showed a strong correlation with cumulative respiration. Black-Right-Pointing-Pointer Conventional and thermal methods provide complimentary means of characterizing organic wastes. - Abstract: The use of organic municipal wastes as soil amendments is an increasing practice that can divert significant amounts of waste from landfill, and provides a potential source of nutrients and organic matter to ameliorate degraded soils. Due to the high heterogeneity of organic municipal waste streams, it is difficult to rapidly and cost-effectively establish their suitability as soil amendments using a single method. Thermal analysis has been proposed as an evolving technique to assess the stability and composition of the organic matter present in these wastes. In this study, three different organic municipal waste streams (i.e., a municipal waste compost (MC), a composted sewage sludge (CS) and a thermally dried sewage sludge (TS)) were characterized using conventional and thermal methods. The conventional methods used to test organic matter stability included laboratory incubation with measurement of respired C, and spectroscopic methods to characterize chemical composition. Carbon mineralization was measured during a 90-day incubation, and samples before and after incubation were analyzed by chemical (elemental analysis) and spectroscopic (infrared and nuclear magnetic resonance) methods. Results were compared with those obtained by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. Total amounts of CO{sub 2} respired indicated that the organic matter in the TS was the least stable, while that in the CS was the most stable. This was confirmed by changes detected with the spectroscopic methods in the composition of the organic wastes due to C mineralization. Differences were especially pronounced for TS, which showed a remarkable loss of aliphatic and proteinaceous compounds during the incubation process. TG, and especially DSC analysis, clearly reflected these differences between the three organic wastes before and after the incubation. Furthermore, the calculated energy density, which represents the energy available per unit of organic matter, showed a strong correlation with cumulative respiration. Results obtained support the hypothesis of a potential link between the thermal and biological stability of the studied organic materials, and consequently the ability of thermal analysis to characterize the maturity of municipal organic wastes and composts.

  20. NREL's Field Data Repository Supports Accurate Home Energy Analysis (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Data Repository Supports Accurate Home Energy Analysis The Residential Buildings Research Group at the National Renewable Energy Laboratory (NREL) has developed a repository of research-level residential building characteristics and historical energy use data to support ongoing efforts to improve the accuracy of residential energy analysis tools and the efficiency of energy assessment processes. The Field Data Repository currently includes data collected from historical programs where

  1. GLOVEBOX GLOVE CHARACTERIZATION SUMMARY

    SciTech Connect (OSTI)

    Korinko, P.

    2012-05-14

    A task was undertaken to determine primarily the permeation behavior of various glove compounds from four manufacturers. As part of the basic characterization task, the opportunity to obtain additional mechanical and thermal properties presented itself. Consequently, a total of fifteen gloves were characterized for permeation, Thermogravimetric Analysis, Puncture Resistance, Tensile Properties and Dynamic Mechanical Analysis. Detailed reports were written for each characterization technique used. This report contains the summary of the results.

  2. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-07-31

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications are in the process of being acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  3. Basin Analysis and Petroleum System Characterization and Modelling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-09-30

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  4. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-12-31

    The principal research effort for Year 1 of Phase 2 (Concept Demonstration) of the project is Smackover petroleum system characterization and modeling. The necessary software applications have been acquired to accomplish this work. No major problems have been encountered to date, and the project is on schedule.

  5. Application of reservoir characterization and advanced technologies to improve recovery and economics in a lower quality shallow shelf Sand Andreas Reservoir: Quarterly technical report, January 1, 1997--March 31, 1997

    SciTech Connect (OSTI)

    Taylor, A.R., Hickman, T.S., Justice, J.J.

    1997-04-30

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: l.Advanced petrophysics 1547 2.Three-dimensional (3-D) seismic 3.Cross-well bore tomography 4.Advanced reservoir simulation 5.Carbon dioxide (CO{sub 2}) stimulation treatments 6.Hydraulic fracturing design and monitoring 7. Mobility control agents SUMMARY OF TECHNICAL PROGRESS West Welch Unit is one of four large waterflood units in the Welch Field in the northwestern portion of Dawson County, Texas. The Welch Field was discovered in the early 1940`s and produces oil under a solution gas drive mechanism from the San Andres formation at approximately 4800 ft. The field has been under waterflood for 30 years and a significant portion has been infill-drilled on 20-ac density. A 1982- 86 Pilot C0{sub 2} injection project in the offsetting South Welch Unit yielded positive results. Recent installation of a C0{sub 2} pipeline near the field allowed the phased development of a miscible CO injection project at the South Welch Unit.

  6. A Multiattribute Utility Analysis of Sites Nominated For Characterization For the First Radioactive Waste Repository- A Decision Aiding Methodology

    Broader source: Energy.gov [DOE]

    In December 1984, the Department of Energy (DOE) published draft environmental assessments (EAs) to support the proposed nomination of five sites and the recommendation of three sites for characterization for the first radioactive-waste repository. A chapter common to all the draft EAs (Chapter 7) presented rankings of the five sites against the postclosure and the preclosure technical siting guidelines. To determine which three sites appeared most favorable for recommendation for characterization, three simple quantitative methods were used to aggregate the rankings assigned to each site for the various technical guidelines. In response to numerous comments on the methods, the DOE has undertaken a formal application of one of them (hereafter referred to as the decision-aiding methodology) for the purpose of obtaining a more rigorous evaluation of the nominated sites.

  7. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  8. Legal analysis of the Export Trading Company Act and its impact of the export of energy technology

    SciTech Connect (OSTI)

    Lewis, E.R.

    1985-08-01

    Two case studies, one involving a proposed synfuels technology licensing/technical assistance agreement and one a joint marketing of energy production and conservation equipment, illustrate how antitrust laws can affect export activities. The Export Trading Company Act embodies two different approaches to the problem. Title III provides antitrust preclearance protection in the form of immunity from antitrust suits and procedural advantages in private suits against the holder of an export trade certificate of review. The costs of these certificates of review include the time and money spent in preparing the application and negotiating the contents. There may also be costly delays in business plans and a cost in the disclosure of confidential business information. After reviewing the costs and benefits, the author concludes that Title III certificates of review will cost more in the long run, but will provide more benefits.

  9. Technology Transfer | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Through partnerships and licensing of its intellectual property rights, NREL seeks to reduce private sector risk in early stage technologies, enable investment in the adoption of renewable energy and energy efficiency technologies, reduce U.S. reliance on foreign energy sources, reduce carbon emissions, and increase U.S. industrial competitiveness. A photo of three men looking at a colorful, floor-to-ceiling, 3-D visualization of a biomass analysis model. View a summary of

  10. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A ...

  11. NREL: Energy Analysis - Jordan Macknick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jordan Macknick Photo of Jordan Macknick Jordan Macknick is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Energy and Environmental Analyst On staff since September 2009 Phone number: 303-275-3828 E-mail: jordan.macknick@nrel.gov Areas of expertise Renewable energy technological characterizations Database development Policy analysis Primary research interests Interface of energy and water in policy planning Environmental impacts of renewable energy

  12. Application of Surface Analysis Methods to Nanomaterials: Summaryof ISO/TC 201 Technical Report: ISO 14187:2011 -Surface Chemical Analysis- Characterization of Nanomaterials

    SciTech Connect (OSTI)

    Baer, Donald R.

    2012-09-01

    ISO Technical Report (TR) 14187 provides an introduction to (and examples of) the information that can be obtained about nanostructured materials using surface-analysis tools. In addition, both general issues and challenges associated with characterising nanostructured materials and the specific opportunities and challenges associated with individual analytical methods are identified. As the size of objects or components of materials approaches a few nanometres, the distinctions among 'bulk', 'surface' and 'particle' analysis blur. This Technical Report focuses on issues specifically relevant to surface chemical analysis of nanostructured materials. The report considers a variety of analysis methods but focuses on techniques that are in the domain of ISO/TC 201 including Auger electron spectroscopy, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, and scanning probe microscopy. Measurements of nanoparticle surface properties such as surface potential that are often made in a solution are not discussed.

  13. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  14. An analysis of markets for small-scale, advanced coal-combustion technology in Spain, Italy, and Turkey

    SciTech Connect (OSTI)

    Placet, M.; Gerry, P.A.; Kenski, D.M.; Kern, D.M.; Nehring, J.L.; Szpunar, C.B.

    1989-09-01

    This report discusses the examination of potential overseas markets for using small-scale, US-developed, advanced coal-combustion technologies (ACTs). In previous work, member countries of the Organization for Economic Cooperation and Development (OECD) were rated on their potential for using ACTs through a comprehensive screening methodology. The three most promising OECD markets were found to be Spain, Italy, and Turkey. This report provides in-depth analyses of these three selected countries. First, it addresses changes in the European Community with particular reference to the 1992 restructuring and its potential effect on the energy situation in Europe, specifically in the three subject countries. It presents individual country studies that examine demographics, economics, building infrastructures, and energy-related factors. Potential niches for ACTs are explored for each country through regional analyses. Marketing channels, strategies, and the trading environments in each country are also discussed. The information gathered indicates that Turkey is a most promising market, Spain is a fairly promising market, and Italy appears to be a somewhat limited market for US ACTs. 76 refs., 16 figs., 14 tabs.

  15. Automated Image Analysis of Fibers - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Startup America Startup America Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Automated Image Analysis of Fibers Automatic Nanofiber Characterization and Recognition Software Argonne National Laboratory Contact ANL About This Technology Image with recognized fiber edges<br /> <br /> Diameter - Measure between each yellow and red tail. Image with recognized fiber edges Diameter - Measure between each yellow

  16. Chevron, GE form Technology Alliance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chevron, GE form Technology Alliance February 3, 2014 HOUSTON, TX, Feb. 3, 2014-Chevron Energy Technology Company and GE Oil & Gas announced today the creation of the Chevron GE Technology Alliance, which will develop and commercialize valuable technologies to solve critical needs for the oil and gas industry. The Alliance builds upon a current collaboration on flow analysis technology for oil and gas wells. It will leverage research and development from GE's newest Global Research Center,

  17. Appendix A: Energy storage technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The project financial evaluation section of the Renewable Energy Technology Characterizations describes structures and models to support the technical and economic status of emerging renewable energy options for electricity supply.

  18. Window Industry Technology Roadmap | Open Energy Information

    Open Energy Info (EERE)

    AgencyCompany Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide...

  19. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization | Department of Energy 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon geophysical_imaging_peer2013.pdf More Documents & Publications Advanced 3D Geophysical Imaging Technologies for

  20. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  1. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  2. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island Salt Dome

    SciTech Connect (OSTI)

    Sattler, A.R.

    1996-06-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the U.S. Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run.

  3. Baseline Environmental Analysis Report for the K-1251 Barge Facility at the East Tennessee Technology Park, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Van Winkle J.E.

    2007-08-24

    This report documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) K-1251 Barge Facility, which is located at the East Tennessee Technology Park (ETTP). DOE is proposing to lease the facility to the Community Reuse Organization of East Tennessee (CROET). This report provides supporting information for the use, by a potential lessee, of government-owned facilities at ETTP. This report is based upon the requirements of Sect. 120(h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). The lease footprint is slightly over 1 acre. The majority of the lease footprint is defined by a perimeter fence that surrounds a gravel-covered area with a small concrete pad within it. Also included is a gravel drive with locked gates at each end that extends on the east side to South First Avenue, providing access to the facility. The facility is located along the Clinch River and an inlet of the river that forms its southern boundary. To the east, west, and north, the lease footprint is surrounded by DOE property. Preparation of this report included the review of government records, title documents, historic aerial photos, visual and physical inspections of the property and adjacent properties, and interviews with current and former employees involved in the operations on the real property to identify any areas on the property where hazardous substances and petroleum products or their derivatives and acutely hazardous wastes were known to have been released or disposed. Radiological surveys were conducted and chemical samples were collected to assess the facility's condition.

  4. Characterizing Photometric Flicker

    Energy Savers [EERE]

    Characterizing Photometric Flicker February 2016 Prepared for: Solid-State Lighting Program Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Pacific Northwest National Laboratory Characterizing Photometric Flicker Prepared in support of the DOE Solid-State Lighting Program Study Participants: Pacific Northwest National Laboratory U.S. Department of Energy TE Perrin CC Brown ME Poplawski NJ Miller February 2016 Prepared for:

  5. Characterization using thermomechanical and differential thermal analysis of the sinterization of Portland clinker doped with CaF{sub 2}

    SciTech Connect (OSTI)

    Dominguez, O.; Torres-Castillo, A.; Flores-Velez, L.M.; Torres, R.

    2010-04-15

    In this work, the sintering process of Portland cement was studied by combining thermomechanical analysis (TMA) and differential thermal analysis (DTA), together with X-ray diffraction (XRD) and scanning electron microscopy (SEM). Thermal analysis results employing both techniques indicted that phase transformations appeared at lower temperatures when CaF{sub 2} was incorporated in the raw materials. Besides, it was observed at high temperature that in some phase transformations TMA conducts to better resolution compared with the DTA measurements. Furthermore, mechanical properties and X-ray diffraction patterns corroborate the TMA and DTA results, corroborating that the final amount of alite (Ca{sub 3}SiO{sub 5}) is higher when a certain amount of CaF{sub 2} was present during the clinkerization process.

  6. Yucca Mountain transportation routes: Preliminary characterization and risk analysis; Volume 2, Figures [and] Volume 3, Technical Appendices

    SciTech Connect (OSTI)

    Souleyrette, R.R. II; Sathisan, S.K.; di Bartolo, R.

    1991-05-31

    This report presents appendices related to the preliminary assessment and risk analysis for high-level radioactive waste transportation routes to the proposed Yucca Mountain Project repository. Information includes data on population density, traffic volume, ecologically sensitive areas, and accident history.

  7. Global Assessment of Hydrogen Technologies Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOEs high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  8. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island salt dome

    SciTech Connect (OSTI)

    Sattler, A.R.

    1996-04-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the US Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to Provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run. Neutron and density logs were run from inside the well casing because of the extremely unstable condition of the deltaic alluvium overburden above the salt dome. The logging program provided important information about the salt dome and the overburden in that (1) the top of the salt dome was identified at {approximately}189 ft bgl (103 ft msl), and the top of the dome contains relatively few fractures; (2) the water table is approximately 1 ft msl, (3) this aquifer appears to become steadily more saline with depth; and (4) the water saturation of much of the alluvium over the salt dome is shown to be influenced by the prevalent heavy rainfall. This logging program, a part of the sinkhole diagnostics, provides unique information about this salt dome and the overburden.

  9. Materials Characterization Capabilities at the HTML: Surface...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HTML: SurfaceSub-surface dislocation density analysis of forming samples using advanced characterization techniques Materials Characterization Capabilities at the HTML: Surface...

  10. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  11. CBEI Transitioning Technology to Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... for control technologies to meet minimum payback periods 7 Preliminary Results of Market Analysis Potential Market Partners for Commercialization & Deployment: Synthesis of key ...

  12. Policy and Analysis Data and Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data and Tools Policy and Analysis Data and Tools Policy and Analysis provides foundational datasets and web-accessible tools for EERE decision-makers and the public covering cost and performance characterizations of EERE technologies, US energy trends, and market and policy conditions for energy technologies. For a comprehensive list of EERE Data and Tools, visit the DOE Open Data Catalog on OpenEI. Resources Policies Database of State Incentives for Renewables and Efficiency (DSIRE) Status and

  13. CLEERS Aftertreatment Modeling and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ace023_lee_2011_o.pdf More Documents & Publications CLEERS Aftertreatment Modeling and Analysis CLEERS Aftertreatment Modeling and Analysis CLEERS Activities: Diesel Soot Filter Characterization & NOx Control Fundamentals

  14. Measurements and Characterization (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Measurements and Characterization that includes scope, core competencies and capabilities, and contact/web information for Analytical Microscopy, Electro-Optical Characterization, Surface Analysis, and Cell and Module Performance.

  15. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect (OSTI)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

  16. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on Processing technologies for high level waste, formulation of matrices and characterization of waste forms (T21027), and specific task Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles (17208).

  17. Melt processed crystalline ceramic waste forms for advanced nuclear fuel cycles: CRP T21027 1813: Processing technologies for high level waste, formulation of matrices and characterization of waste forms, Task 17208: Final report

    SciTech Connect (OSTI)

    Amoroso, J. W.; Marra, J. C.

    2015-08-26

    A multi-phase ceramic waste form is being developed at the Savannah River National Laboratory (SRNL) for treatment of secondary waste streams generated by reprocessing commercial spent nuclear. The envisioned waste stream contains a mixture of transition, alkali, alkaline earth, and lanthanide metals. Ceramic waste forms are tailored (engineered) to incorporate waste components as part of their crystal structure based on knowledge from naturally found minerals containing radioactive and non-radioactive species similar to the radionuclides of concern in wastes from fuel reprocessing. The ability to tailor ceramics to mimic naturally occurring crystals substantiates the long term stability of such crystals (ceramics) over geologic timescales of interest for nuclear waste immobilization [1]. A durable multi-phase ceramic waste form tailored to incorporate all the waste components has the potential to broaden the available disposal options and thus minimize the storage and disposal costs associated with aqueous reprocessing. This report summarizes results from three years of work on the IAEA Coordinated Research Project on Processing technologies for high level waste, formulation of matrices and characterization of waste forms (T21027), and specific task Melt Processed Crystalline Ceramic Waste Forms for Advanced Nuclear Fuel Cycles (17208).

  18. Evaluation of flyash surface phenomena and the application of surface analysis technology. Summary report: Phase I. [44 elements; 86 references

    SciTech Connect (OSTI)

    Smith, R.D.

    1981-06-01

    The factors governing the formation of flyash surfaces during and following coal combustion are reviewed. The competing chemical and physical processes during the evolution of inorganic material in coal during combustion into flyash are described with respect to various surface segregation processes. Two mechanisms leading to surface enrichment are volatilization-condensation processes and diffusion processes within individual flyash particles. The experimental evidence for each of these processes is reviewed. It is shown that the volatilization-condensation process is the major factor leading to trace element enrichment in smaller flyash particles. Evidence also exists from surface analyses of flyash and representative mineral matter that diffusion processes may lead to surface enrichment of elements not volatilized or cause transport of surface-condensed elements into the flyash matrix. The semiquantitative determination of the relative importance of these two processes can be determined by comparison of concentration versus particle size profiles with surface-depth profiles obtained using surface analysis techniques. A brief description of organic transformations on flyash surfaces is also presented. The various surface analytical techniques are reviewed and the relatively new technique of Static-Secondary Ion Mass Spectroscopy is suggested as having significant advantages in studies of surfaces and diffusion processes in model systems. Several recommendations are made for research relevant to flyash formation and processes occurring on flyash surfaces.

  19. Characterization and Development of Advanced Heat Transfer Technologie...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Characterization and Development of Advanced Heat Transfer Technologies Advanced Power Electronics and Electric Machines Compact,...

  20. SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in

    Energy Savers [EERE]

    the Dynamics of Coupled Systems | Department of Energy SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems SWiFT Turbines Full Dynamic Characterization Opens Doors for Research in the Dynamics of Coupled Systems March 31, 2014 - 11:19am Addthis Research conducted at the Scaled Wind Farm Technology Facility (SWiFT) in Lubbock, Texas, drew a lot of interest from attendees at the International Modal Analysis Conference held in Orlando,

  1. Characterization of options and their analysis requirements for the long-term management of depleted uranium hexafluoride

    SciTech Connect (OSTI)

    Dubrin, J.W.; Rosen, R.S.; Zoller, J.N.; Harri, J.W.; Schwertz, N.L.

    1995-12-01

    The Department of Energy (DOE) is examining alternative strategies for the long-term management of depleted uranium hexafluoride (UF{sub 6}) currently stored at the gaseous diffusion plants at Portsmouth, Ohio, and Paducah, Kentucky, and on the Oak Ridge Reservation in Oak Ridge, Tennessee. This paper describes the methodology for the comprehensive and ongoing technical analysis of the options being considered. An overview of these options, along with several of the suboptions being considered, is presented. The long-term management strategy alternatives fall into three broad categories: use, storage, or disposal. Conversion of the depleted UF6 to another form such as oxide or metal is needed to implement most of these alternatives. Likewise, transportation of materials is an integral part of constructing the complete pathway between the current storage condition and ultimate disposition. The analysis of options includes development of pre-conceptual designs; estimates of effluents, wastes, and emissions; specification of resource requirements; and preliminary hazards assessments. The results of this analysis will assist DOE in selecting a strategy by providing the engineering information necessary to evaluate the environmental impacts and costs of implementing the management strategy alternatives.

  2. Fracture Characterization Technologies | Open Energy Information

    Open Energy Info (EERE)

    ogle","zoom":14,"width":"600px","height":"350px","centre":false,"layers":,"controls":"pan","zoom","type","scale","streetview","zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoi...

  3. Microearthquake Technology for EGS Fracture Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineered Geothermal System through Hydraulic and Thermal Stimulation Integration of Noise and Coda Correlation Data into Kinematic and Waveform Inversions Newberry EGS...

  4. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction ...

  5. Measurement and Characterization of Unregulated Emissions from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 -- Washington D.C. PDF icon ace30storey.pdf More Documents & Publications Measurement and Characterization of Unregulated Emissions from Advanced Technologies Synergies...

  6. Ultrasonic Characterization of Wastes | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ultrasonic Characterization of Wastes It's commonplace for seeing babies in utero, fish underwater and submarines in the ocean, but now sonar technology will be giving DOE an image...

  7. Technology Catalogue. First edition

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Department of Energy`s Office of Environmental Restoration and Waste Management (EM) is responsible for remediating its contaminated sites and managing its waste inventory in a safe and efficient manner. EM`s Office of Technology Development (OTD) supports applied research and demonstration efforts to develop and transfer innovative, cost-effective technologies to its site clean-up and waste management programs within EM`s Office of Environmental Restoration and Office of Waste Management. The purpose of the Technology Catalogue is to provide performance data on OTD-developed technologies to scientists and engineers assessing and recommending technical solutions within the Department`s clean-up and waste management programs, as well as to industry, other federal and state agencies, and the academic community. OTD`s applied research and demonstration activities are conducted in programs referred to as Integrated Demonstrations (IDs) and Integrated Programs (IPs). The IDs test and evaluate.systems, consisting of coupled technologies, at specific sites to address generic problems, such as the sensing, treatment, and disposal of buried waste containers. The IPs support applied research activities in specific applications areas, such as in situ remediation, efficient separations processes, and site characterization. The Technology Catalogue is a means for communicating the status. of the development of these innovative technologies. The FY93 Technology Catalogue features technologies successfully demonstrated in the field through IDs and sufficiently mature to be used in the near-term. Technologies from the following IDs are featured in the FY93 Technology Catalogue: Buried Waste ID (Idaho National Engineering Laboratory, Idaho); Mixed Waste Landfill ID (Sandia National Laboratories, New Mexico); Underground Storage Tank ID (Hanford, Washington); Volatile organic compound (VOC) Arid ID (Richland, Washington); and VOC Non-Arid ID (Savannah River Site, South Carolina).

  8. Intelligent Grid Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Intelligent Grid Technologies Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (611 KB) Technology Marketing Summary With the increasing demand for new energy distribution methods including increased efficiency and alternative sources, Intelligent Grid technologies are on the cutting edge of demand. The

  9. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  10. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  11. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  12. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  13. Characterization of Cerro Negro crude. Part II. Chemical analysis. [Project sponsored by Bartlesville Energy Technology Center and Institute de Tecnologico del Venezolana Petroleo

    SciTech Connect (OSTI)

    Sturm, G.P. Jr.; Grindstaff, Q.G.; Hirsch, D.E.; Scheppele, S.E.; Hazos, M.

    1981-09-01

    The cooperative research program is explained in Part I. An evaluation is presented of the resolution attained in the separation of a 425 to 550/sup 0/C petroleum distillate fraction according to compound classes using 2 chromatographic methods. Samples were separated by high performance liquid chromatography using 2 columns in series containing 2,4-dinitroanalinopropyl silica and silica, respectively. Initial elution was attained using 1% methylene chloride in pentane followed by a linear gradient up to 30% methylene chloride. In the 2nd method, developed in the American Petroleum Institute's Research Project 60, fractions designated as saturates, monoaromatics, diaromatics, and polyaromatics were collected froma dual silica/alumina column using step gradient elution with pentane, 5% benzene in pentane, 15% benzene in pentane, and 20% ethyl ether, 20% benzene, 60% methanol, followed by pure methanol. The results wil be used to evaluate the quality of the separation in terms of the success in producing fractions containing similar compound classes. 1 figure, 4 tables.

  14. Development of an Advanced Computational Fluid Dynamics Technology for the Next-Generation Nuclear Reactor System Analysis and Safety Margin Characterization Code

    SciTech Connect (OSTI)

    Luo, Hong; Nourgaliev, Robert

    2015-04-06

    This report describes the research activities we have conducted at NCSU for our NEUP project. The work toward achieving the objectives of the project is reported. The significant achievements and accomplishments are presented. A number of numerical experiments are conducted to demonstrate that the goal of the proposed work has been successfully achieved. Issues, recommendations, and future work are discussed.

  15. Technology Assessment

    Energy Savers [EERE]

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  16. Scenario Evaluation and Regionalization Analysis (SERA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scenario Evaluation and Regionalization Analysis (SERA) Model (National Renewable Energy Laboratory) Objectives Determine optimal regional infrastructure development patterns for hydrogen and other transportation fuels, given resource availability and technology cost estimates. Geospatially and temporally resolve the expansion of production, transmission, and distribution infrastructure components. Identify and characterize niche markets and synergies related to refueling station placement and

  17. CHARACTERIZATION OF SALT PARTICLE INDUCED CORROSION PROCESSES BY SYNCHROTRON GENERATED X-RAY FLUORESCENCE AND COMPLEMENTARY SURFACE ANALYSIS TOOLS.

    SciTech Connect (OSTI)

    NEUFELD, A.K.; COLE, I.S.; BOND, A.M.; ISAACS, H.S.; FURMAN, S.A.

    2001-03-25

    The benefits of using synchrotron-generated X-rays and X-ray fluorescence analysis in combination with other surface analysis techniques have been demonstrated. In studies of salt-induced corrosion, for example, the detection of Rb ions in the area of secondary spreading when salt-containing micro-droplets are placed on zinc surfaces, further supports a mechanism involving cation transport during the corrosion and spreading of corrosive salt on exposed metal surfaces. Specifically, the new analytical data shows that: (a) cations are transported radially from a primary drop formed from a salt deposit in a thin film of secondary spreading around the drop; (b) subsequently, micro-pools are formed in the area of secondary spreading, and it is likely that cations transported within the thin film accumulate in these micro-pools until the area is dehydrated; (c) the mechanism of cation transport into the area of secondary spreading does not include transport of the anions; and (d) hydroxide is the counter ion formed from oxygen reduction at the metal surface within the spreading layer. Data relevant to iron corrosion is also presented and the distinct differences relative to the zinc situation are discussed.

  18. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (358) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  19. Characterization of Particulate Emissions from GDI Engine Combustion with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alcohol-blended Fuels | Department of Energy Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures PDF icon p-19_seong.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2014: Fuel and Lubricant

  20. Portable sample preparation and analysis system for micron and sub-micron particle characterization using light scattering and absorption spectroscopy

    DOE Patents [OSTI]

    Stark, Peter C.; Zurek, Eduardo; Wheat, Jeffrey V.; Dunbar, John M.; Olivares, Jose A.; Garcia-Rubio, Luis H.; Ward, Michael D.

    2011-07-26

    There is provided a method and device for remote sampling, preparation and optical interrogation of a sample using light scattering and light absorption methods. The portable device is a filtration-based device that removes interfering background particle material from the sample matrix by segregating or filtering the chosen analyte from the sample solution or matrix while allowing the interfering background particles to be pumped out of the device. The segregated analyte is then suspended in a diluent for analysis. The device is capable of calculating an initial concentration of the analyte, as well as diluting the analyte such that reliable optical measurements can be made. Suitable analytes include cells, microorganisms, bioparticles, pathogens and diseases. Sample matrixes include biological fluids such as blood and urine, as well as environmental samples including waste water.

  1. East Tennessee Technology Park | Department of Energy

    Office of Environmental Management (EM)

    East Tennessee Technology Park East Tennessee Technology Park East Tennessee Technology Park | September 2012 Aerial View East Tennessee Technology Park | September 2012 Aerial View East Tennessee Technology Park (ETTP) mission includes managing radioactive wastes, maintaining facilities pending their disposition, characterizing hazardous materials and conditions, D&D of facilities, and environmental cleanup and restoration for the eventual site transition to public use. Enforcement August

  2. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  3. Catalyst Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon pmp_19_watkins.pdf More Documents & Publications Catalyst Characterization Accelerated Thermal Aging of Fe-Zeolite SCR Catalysts Using an Engine-Based Systems Approach Degradation Mechanisms of Urea Selective Catalytic Reduction Technology

  4. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  5. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  6. Technology Pathways | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis » Technology Pathways Technology Pathways The Bioenergy Technologies Office (BETO) pursues a pathway approach for advancing research and development (R&D) of converting biomass into renewable fuels and products. Following the BETO's successful demonstration of cost-competitive cellulosic ethanol production technologies-R&D efforts now focus on the conversion of biomass into hydrocarbon fuels and intermediates that lead to "drop-in" replacements for gasoline, diesel,

  7. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  8. Catalyst Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon pm028_watkins_2011_p.pdf More Documents & Publications Catalyst Characterization Catalyst Characterization Catalysts via First Principles (Agreement ID:10635)

  9. Genome Science/Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Genome Genome Science/Technologies Los Alamos using cutting-edge sequencing, finishing, and analysis, impact valuable genomic data. Srinivas Iyer Bioscience Group Leader Email Get Expertise David Bruce Bioscience Deputy Group Leader Email Momchilo Vuyisich Scientist Email Rebecca McDonald Bioscience Communications Email State-of-the art technology and extensive genomics expertise Protein research Read caption + Los Alamos National Laboratory graduate student, Patricia Langan, changes the

  10. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-04-30

    The final data package has been completed for the Mississippi State University, DIAL FTP Wall Depth Removal Characterization Technology. The package has been sent to DIAL for comments. Work is progressing on completing the transfer of glove boxes and tanks from Rocky Flats to FIU-HCET for the purpose of performing size reduction technology assessments. Vendors are being identified and security measures are being put in place to meet the High Risk Property criteria required by Rocky Flats. The FIU-HCET Technology Assessment Program has been included as one of 11 verification programs across the US and Canada described in the Interstate Technology Regulatory Cooperation (ITRC) document, ''Multi-state Evaluation of Elements Important to the Verification of Remediation Technologies'', dated January 1999. FIU-HCET will also participate in a panel discussion on technology verification programs at the International Environmental Technology Expo '99.

  11. Analysis of energy use in building services of the industrial sector in California: A literature review and a preliminary characterization

    SciTech Connect (OSTI)

    Akbari, H.; Borgers, T.; Gadgil, A.; Sezgen, O.

    1991-04-01

    Energy use patterns in many of California's fastest-growing industries are not typical of those in the mix of industries elsewhere in the US. Many California firms operate small and medium-sized facilities, often in buildings used simultaneously or interchangeably for commercial (office, retail, warehouse) and industrial activities. In these industrial subsectors, the energy required for building services'' to provide occupant comfort and necessities (lighting, HVAC, office equipment, computers, etc.) may be at least as important as the more familiar process energy requirements -- especially for electricity and on-peak demand. In this report, published or unpublished information on energy use for building services in the industrial sector have been compiled and analyzed. Seven different sources of information and data relevant to California have been identified. Most of these are studies and/or projects sponsored by the Department of Energy, the California Energy Commission, and local utilities. The objectives of these studies were diverse: most focused on industrial energy use in general, and, in one case, the objective was to analyze energy use in commercial buildings. Only one of these studies focused directly on non-process energy use in industrial buildings. Our analysis of Northern California data for five selected industries shows that the contribution of total electricity consumption for lighting ranges from 9.5% in frozen fruits to 29.1% in instruments; for air-conditioning, it ranges from nonexistent in frozen fruits to 35% in instrument manufacturing. None of the five industries selected had significant electrical space heating. Gas space heating ranges from 5% in motor vehicles facilities to more than 58% in the instrument manufacturing industry. 15 refs., 15 figs., 9 tabs.

  12. Annual Technology Baseline

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory is conducting a study sponsored by the U.S. Department of Energy DOE, Office of Energy Efficiency and Renewable Energy (EERE), that aims to document and implement an annual process designed to identify a realistic and timely set of input assumptions (e.g., technology cost and performance, fuel costs), and a diverse set of potential futures (standard scenarios), initially for electric sector analysis. This primary product of the Annual Technology Baseline (ATB) project component includes detailed cost and performance data (both current and projected) for both renewable and conventional technologies. This data is presented in MS Excel.

  13. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  14. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  15. New technology for the independent producer

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This technology transfer conference consisted of the following six sessions: reservoir characterization; drilling, testing and completion; enhanced oil recovery; 3-d seismic and amplitude variation with offset (AVO); biotechnology for field applications; and well logging technology. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  16. Environmental technologies program, Fiscal year 1994

    SciTech Connect (OSTI)

    1994-12-31

    This document presents details of the technology that is currently being demonstrated at the Hanford Site. The program is testing technology for cost and time savings in the following clean-up areas: detection and characterization; soil and ground water remediation; remote handling; waste minimization; and high-level, low-level, and mixed waste treatment. This document also contains a technology integration section.

  17. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Technology Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective and credible information about new fuel cell technologies with a focus on performance, durability, and price. As demand for fuel cells grows, U.S. manufacturers are developing these technologies for a

  18. Large-scale computations in analysis of structures

    SciTech Connect (OSTI)

    McCallen, D.B.; Goudreau, G.L.

    1993-09-01

    Computer hardware and numerical analysis algorithms have progressed to a point where many engineering organizations and universities can perform nonlinear analyses on a routine basis. Through much remains to be done in terms of advancement of nonlinear analysis techniques and characterization on nonlinear material constitutive behavior, the technology exists today to perform useful nonlinear analysis for many structural systems. In the current paper, a survey on nonlinear analysis technologies developed and employed for many years on programmatic defense work at the Lawrence Livermore National Laboratory is provided, and ongoing nonlinear numerical simulation projects relevant to the civil engineering field are described.

  19. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  20. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting Americas wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  1. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  2. Infrastructure Development and Financial Analysis | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Analysis Technological Feasibility & Cost Analysis Environmental Analysis Delivery Analysis Infrastructure Development & Financial Analysis Energy Market Analysis DOE H2A ...

  3. NREL: Energy Analysis - Emily K. Newes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emily K. Newes Photo of Emily K. Newes. Emily K. Newes is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Energy Analyst - Impacts & Barriers Characterization Supervisor On staff since September 2009 Phone number: 303-275-3802 Email: emily.newes@nrel.gov Areas of expertise Investigating the relationship between fossil and renewable resources by development of the Stochastic Energy Deployment System (SEDS) Analyzing variation in

  4. Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drilling

    SciTech Connect (OSTI)

    1998-01-01

    Infill drilling if wells on a uniform spacing without regard to reservoir performance and characterization foes not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations.

  5. 2012 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  6. 2013 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2013 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and

  7. 2014 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Office | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office 2014 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and

  8. 2010 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Program | Department of Energy 0 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2010 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2010 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  9. 2011 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Fuel Cell Technologies Program | Department of Energy 1 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office

  10. Vehicle Technologies Office Merit Review 2015: Enabling High-Energy/Voltage Lithium-Ion Cells for Transportation Applications: Part 1 Baseline Protocols and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enabling high...

  11. Vehicle Technologies Office Merit Review 2015: Electrode Coating Defect Analysis and Processing NDE for High-Energy Lithium-Ion Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrode...

  12. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  13. Sustainability & Strategic Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kristen Johnson Technology Manager Bioenergy Technologies Office Peer Review March 23, 2015 Sustainability & Strategic Analysis 2 | Bioenergy Technologies Office * The Team * Goals & Objectives * Challenges * Approach & Partnerships * Budget * Key Accomplishments * Future Directions * Upcoming Activities Introduction: Analysis & Sustainability (A&S) 3 | Bioenergy Technologies Office Introductions: Analysis & Sustainability Staff Alison Goss Eng Alicia Lindauer Zia Haq

  14. Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Home/Analysis - Structures of the zwitterionic coatings synthesized for this study. Permalink Gallery Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Analysis, Capabilities, Energy, News, News & Events, Renewable Energy, Research & Capabilities, Water Power Investigations on Anti-biofouling Zwitterionic Coatings for MHK Is Now in Press Sandia's Marine Hydrokinetic (MHK) Advanced Materials program has a new publication on the antifouling efficacy

  15. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  16. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  17. Technology certification and technology acceptance: Promoting interstate cooperation and market development for innovative technologies

    SciTech Connect (OSTI)

    Brockbank, B.R.

    1995-03-01

    In the past two years, public and private efforts to promote development and deployment of innovative environmental technologies have shifted from the analysis of barriers to the implementation of a variety of initiatives aimed at surmounting those barriers. Particular attention has been directed at (1) streamlining fragmented technology acceptance processes within and among the states, and (2) alleviating disincentives, created by inadequate or unverified technology cost and performance data, for users and regulators to choose innovative technologies. Market fragmentation currently imposes significant cost burdens on technology developers and inhibits the investment of private capital in environmental technology companies. Among the responses to these problems are state and federal technology certification/validation programs, efforts to standardize cost/performance data reporting, and initiatives aimed at promoting interstate cooperation in technology testing and evaluation. This paper reviews the current status of these initiatives, identifies critical challenges to their success, and recommends strategies for addressing those challenges.

  18. Seismic Fracture Characterization Methods for Enhanced Geothermal Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 Geothermal Technology Program Peer Review Report | Department of Energy Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon seismic_022_queen.pdf More Documents & Publications Microearthquake Technology for EGS Fracture

  19. 1994 Fernald field characterization demonstration program data report

    SciTech Connect (OSTI)

    Rautman, C.A.; Cromer, M.V.; Newman, G.C.; Beiso, D.A.

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  20. Performance Characterization

    Broader source: Energy.gov [DOE]

    Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

  1. National Energy Technology Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal NETL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories National Energy Technology Laboratory

  2. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  3. Robotics Technology Development Program. Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Robotics Technology Development Program (RTDP) is a ``needs-driven`` effort. A lengthy series of presentations and discussions at DOE sites considered critical to DOE`s Environmental Restoration and Waste Management (EM) Programs resulted in a clear understanding of needed robotics applications toward resolving definitive problems at the sites. A detailed analysis of the Tank Waste Retrieval (TWR), Contaminant Analysis Automation (CAA), Mixed Waste Operations (MWO), and Decontamination & Dismantlement (D&D). The RTDP Group realized that much of the technology development was common (Cross Cutting-CC) to each of these robotics application areas, for example, computer control and sensor interface protocols. Further, the OTD approach to the Research, Development, Demonstration, Testing, and Evaluation (RDDT&E) process urged an additional organizational break-out between short-term (1--3 years) and long-term (3--5 years) efforts (Advanced Technology-AT). The RDTP is thus organized around these application areas -- TWR, CAA, MWO, D&D and CC&AT -- with the first four developing short-term applied robotics. An RTDP Five-Year Plan was developed for organizing the Program to meet the needs in these application areas.

  4. National Energy Technology Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Technology Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Energy...

  5. Experimental Characterization of a Grid-Loss Event on a 2.5-MW Dynamometer Using Advanced Operational Modal Analysis: Preprint

    SciTech Connect (OSTI)

    Helsen, J.; Weijtjens, W.; Guo, Y.; Keller, J.; McNiff, B.; Devriendt, C.; Guillaume, P.

    2015-02-01

    This paper experimentally investigates a worst case grid loss event conducted on the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) drivetrain mounted on the 2.5MW NREL dynamic nacelle test-rig. The GRC drivetrain has a directly grid-coupled, fixed speed asynchronous generator. The main goal is the assessment of the dynamic content driving this particular assess the dynamic content of the high-speed stage of the GRC gearbox. In addition to external accelerometers, high frequency sampled measurements of strain gauges were used to assess torque fluctuations and bending moments both at the nacelle main shaft and gearbox high-speed shaft (HSS) through the entire duration of the event. Modal analysis was conducted using a polyreference Least Squares Complex Frequency-domain (pLSCF) modal identification estimator. The event driving the torsional resonance was identified. Moreover, the pLSCF estimator identified main drivetrain resonances based on a combination of acceleration and strain measurements. Without external action during the grid-loss event, a mode shape characterized by counter phase rotation of the rotor and generator rotor determined by the drivetrain flexibility and rotor inertias was the main driver of the event. This behavior resulted in significant torque oscillations with large amplitude negative torque periods. Based on tooth strain measurements of the HSS pinion, this work showed that at each zero-crossing, the teeth lost contact and came into contact with the backside flank. In addition, dynamic nontorque loads between the gearbox and generator at the HSS played an important role, as indicated by strain gauge-measurements.

  6. Geothermal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Marketing Summaries (11) Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  7. Technology Validation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation Technology Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon tv_0_garbak.pdf More Documents & Publications Scenario Analysis Meeting 2010 Fuel Cell Project Kick-off Welcome Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  8. Site Characterization Awards | Department of Energy

    Energy Savers [EERE]

    Site Characterization Awards Site Characterization Awards A description of projects for the Site Characterization Awards. The total funding value of the projects is approximately $75.5 million over three years. The work will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. PDF icon Site Characterization Awards More Documents & Publications Training Awards ICCS_Project_Selections.pdf Industrial Carbon Capture Project Selections

  9. Pathways to Commercial Success: Technologies and Products Supported by the

    Office of Scientific and Technical Information (OSTI)

    Fuel Cell Technologies Office - 2014 (Technical Report) | SciTech Connect Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014 Citation Details In-Document Search Title: Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014 This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that

  10. 2009 Pathways to Commercial Success: Technologies and Products Supported by

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Hydrogen, Fuel Cells and Infrastructure Technologies Program | Department of Energy Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program 2009 Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies

  11. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  12. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  13. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  14. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon geophysicalimagingpeer2013.pdf More...

  15. Effects of Advanced Combustion Technologies on Particulate Matter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions from Advanced Technologies Efficient Emissions Control for Multi-Mode Lean DI Engines Measurement and Characterization of Lean NOx Adsorber Regeneration and...

  16. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  17. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    SciTech Connect (OSTI)

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  18. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    SciTech Connect (OSTI)

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  19. Characterizing the DNA damage response by cell tracking algorithms and cell features classification using high-content time-lapse analysis

    SciTech Connect (OSTI)

    Georgescu, Walter; Osseiran, Alma; Rojec, Maria; Liu, Yueyong; Bombrun, Maxime; Tang, Jonathan; Costes, Sylvain V.; Huen, Michael Shing-Yan

    2015-06-24

    Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were able to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 m2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation.

  20. Characterizing the DNA damage response by cell tracking algorithms and cell features classification using high-content time-lapse analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Georgescu, Walter; Osseiran, Alma; Rojec, Maria; Liu, Yueyong; Bombrun, Maxime; Tang, Jonathan; Costes, Sylvain V.; Huen, Michael Shing-Yan

    2015-06-24

    Traditionally, the kinetics of DNA repair have been estimated using immunocytochemistry by labeling proteins involved in the DNA damage response (DDR) with fluorescent markers in a fixed cell assay. However, detailed knowledge of DDR dynamics across multiple cell generations cannot be obtained using a limited number of fixed cell time-points. Here we report on the dynamics of 53BP1 radiation induced foci (RIF) across multiple cell generations using live cell imaging of non-malignant human mammary epithelial cells (MCF10A) expressing histone H2B-GFP and the DNA repair protein 53BP1-mCherry. Using automatic extraction of RIF imaging features and linear programming techniques, we were ablemore » to characterize detailed RIF kinetics for 24 hours before and 24 hours after exposure to low and high doses of ionizing radiation. High-content-analysis at the single cell level over hundreds of cells allows us to quantify precisely the dose dependence of 53BP1 protein production, RIF nuclear localization and RIF movement after exposure to X-ray. Using elastic registration techniques based on the nuclear pattern of individual cells, we could describe the motion of individual RIF precisely within the nucleus. We show that DNA repair occurs in a limited number of large domains, within which multiple small RIFs form, merge and/or resolve with random motion following normal diffusion law. Large foci formation is shown to be mainly happening through the merging of smaller RIF rather than through growth of an individual focus. We estimate repair domain sizes of 7.5 to 11 µm2 with a maximum number of ~15 domains per MCF10A cell. This work also highlights DDR which are specific to doses larger than 1 Gy such as rapid 53BP1 protein increase in the nucleus and foci diffusion rates that are significantly faster than for spontaneous foci movement. We hypothesize that RIF merging reflects a "stressed" DNA repair process that has been taken outside physiological conditions when too many DSB occur at once. High doses of ionizing radiation lead to RIF merging into repair domains which in turn increases DSB proximity and misrepair. Furthermore, such finding may therefore be critical to explain the supralinear dose dependence for chromosomal rearrangement and cell death measured after exposure to ionizing radiation.« less