Powered by Deep Web Technologies
Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Rock Density | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Density of different lithologic units. Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 10.001,000 centUSD 0.01 kUSD 1.0e-5 MUSD 1.0e-8 TUSD / sample

2

Definition: Rock Density | Open Energy Information  

Open Energy Info (EERE)

in crustal rocks. Rock density is a physical characteristic that is governed by the chemical composition (in situ minerals) and pore spaces of a specific rock or rock type.1...

3

Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

Rock Lab Analysis Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Lab Analysis Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Lab Analysis Techniques Information Provided by Technique Lithology: Core and cuttings analysis is done to define lithology. Water rock interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Historic structure and deformation of land.

4

A digital rock density map of New Zealand  

Science Conference Proceedings (OSTI)

Digital geological maps of New Zealand (QMAP) are combined with 9256 samples with rock density measurements from the national rock catalogue PETLAB and supplementary geological sources to generate a first digital density model of New Zealand. This digital ... Keywords: Crust, Database, Density, Geological mapping, Gravimetry, Rock types

Robert Tenzer; Pascal Sirguey; Mark Rattenbury; Julia Nicolson

2011-08-01T23:59:59.000Z

5

Rock Density At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Rock Density At Alum Area (DOE GTP) Rock Density At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Geothermal Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area Exploration Technique Rock Density Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Rock_Density_At_Alum_Area_(DOE_GTP)&oldid=402985" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

6

Category:Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Rock Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Lab Analysis page? For detailed information on exploration techniques, click here. Category:Rock Lab Analysis Add.png Add a new Rock Lab Analysis Technique Pages in category "Rock Lab Analysis" The following 9 pages are in this category, out of 9 total. C Core Analysis Cuttings Analysis I Isotopic Analysis- Rock O Over Core Stress P Paleomagnetic Measurements Petrography Analysis R Rock Density X X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF)

7

Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Rock Details Activities (13) Areas (11) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Isotopic Analysis- Rock: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.

8

Definition: Rock Lab Analysis | Open Energy Information  

Open Energy Info (EERE)

to core recovered from boreholes. They typically involve measuring the physical and chemical properties of the rock. Physical properties include density, elastic modulus, seismic...

9

Density logging and density of rocks in Rainier Mesa Area, Nevada Test Site  

SciTech Connect

Density logs from all 35 vertical drill holes in the Rainier Mesa area in which logs were obtained were evaluated and the distribution of densities of units in the geologic section was derived. Densities were obtained in only 10 holes in which calibrated logging tools had been run. The logs from an additional 10 holes were calibrated with core. Densities vary from nearly 1 g/cc in tunnel bed 5 to over 2.8 g/cc in the dolomitic rocks. Log densities were found to agree well with core data in those subunits (chiefly within tunnel beds 3 and 4) where an adequate number of core measurements were available for comparison. Lithologic correlations based on density log signatures were found to extend for more than 8 km in several units and subunits in the area. Although the volcanic rocks in the Rainier Mesa area are comprised of a wider spectrum of minerals than the petroliferous rocks generally involved in most commercial logging applications, grain density may be estimated with good accuracy with only a knowledge of glass and zeolite content. The variability of the Z/A ratio of the matrix in these volcanic rocks is also negligible compared to the value of 0.5 generally assumed in density logging. However, due to the assumptions made concerning the Z/A of water in deriving the output of commercial density tools, one should be aware of the errors inherent in assuming that recorded log densities are true densities. These errors are normally small, being less than 3 percent for compensated limestone'' tools and 2 percent for tools which output electron density. 35 refs., 25 figs., 12 tabs.

Carroll, R.D.

1989-01-01T23:59:59.000Z

10

Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Density At Silver Peak Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration...

11

Definition: Isotopic Analysis- Rock | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Rock Isotopic Analysis- Rock Jump to: navigation, search Dictionary.png Isotopic Analysis- Rock Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in a given system, while the conditions which increase/decrease the number of neutrons are well understood and measurable.[1] View on Wikipedia Wikipedia Definition References ↑ http://wwwrcamnl.wr.usgs.gov/isoig/isopubs/itchch2.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Isotopic_Analysis-_Rock&oldid=687702" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties

12

DENSITY  

Science Conference Proceedings (OSTI)

... Table 2: Principal mineral phases found in the granite rock. Mineral phase. ... Table 4. Average density of 12 granite rocks by Archimedes and CT. ...

2007-01-08T23:59:59.000Z

13

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith &...  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-...

14

ROCK PROPERTIES MODEL ANALYSIS MODEL REPORT  

SciTech Connect

The purpose of this Analysis and Model Report (AMR) is to document Rock Properties Model (RPM) 3.1 with regard to input data, model methods, assumptions, uncertainties and limitations of model results, and qualification status of the model. The report also documents the differences between the current and previous versions and validation of the model. The rock properties models are intended principally for use as input to numerical physical-process modeling, such as of ground-water flow and/or radionuclide transport. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. This work was conducted in accordance with the following planning documents: WA-0344, ''3-D Rock Properties Modeling for FY 1998'' (SNL 1997, WA-0358), ''3-D Rock Properties Modeling for FY 1999'' (SNL 1999), and the technical development plan, Rock Properties Model Version 3.1, (CRWMS M&O 1999c). The Interim Change Notice (ICNs), ICN 02 and ICN 03, of this AMR were prepared as part of activities being conducted under the Technical Work Plan, TWP-NBS-GS-000003, ''Technical Work Plan for the Integrated Site Model, Process Model Report, Revision 01'' (CRWMS M&O 2000b). The purpose of ICN 03 is to record changes in data input status due to data qualification and verification activities. These work plans describe the scope, objectives, tasks, methodology, and implementing procedures for model construction. The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The work scope for this activity consists of the following: (1) Conversion of the input data (laboratory measured porosity data, x-ray diffraction mineralogy, petrophysical calculations of bound water, and petrophysical calculations of porosity) for each borehole into stratigraphic coordinates; (2) Re-sampling and merging of data sets; (3) Development of geostatistical simulations of porosity; (4) Generation of derivative property models via linear coregionalization with porosity; (5) Post-processing of the simulated models to impart desired secondary geologic attributes and to create summary and uncertainty models; and (6) Conversion of the models into real-world coordinates. The conversion to real world coordinates is performed as part of the integration of the RPM into the Integrated Site Model (ISM) 3.1; this activity is not part of the current analysis. The ISM provides a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site and consists of three components: (1) Geologic Framework Model (GFM); (2) RPM, which is the subject of this AMR; and (3) Mineralogic Model. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 1. Figure 2 shows the geographic boundaries of the RPM and other component models of the ISM.

Clinton Lum

2002-02-04T23:59:59.000Z

15

Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Analysis- Rock At Coso Geothermal Area (1984) Analysis- Rock At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field Notes The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The two earliest rhyolites probably

16

Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open Energy  

Open Energy Info (EERE)

Rock At Coso Geothermal Area (1997) Rock At Coso Geothermal Area (1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1997) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1997 Usefulness useful DOE-funding Unknown Exploration Basis Determine a major lithospheric boundary Notes Sr and Nd isotope ratios of Miocene-Recent basalts in eastern California, when screened for crustal contamination, vary dramatically and indicate the presence of a major lithospheric boundary that is not obvious from surface geology. Isotope ratios from the Coso field form a bull's-eye pattern with very low 87Sr/86Sr (0.7033) centered just south of the geothermal area. The

17

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Woldegabriel & Goff, 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Useful for age determinations - not indicated is useful for exploration. References Giday WoldeGabriel, Fraser Goff (1992) K-Ar Dates Of Hydrothermal

18

Comparison and analysis of reservoir rocks and related clays  

Science Conference Proceedings (OSTI)

A series of instrumental and chemical analyses was made on sedimentary rocks to determine the surface chemical properties of sedimentry rocks and the physical characteristic of the pores. A scanning electron microscope (SEM) with energy dispersive X-ray analytic capability was used to study the morphology of the samples, surface mineral composition and type and location of clays, and to obtain a qualitative estimate of the pore sizes. A centrifuge was used to determine the pore size distributions which are correlated with SEM observations. An atomic absorption spectrophotometer equipped with an inductively coupled plasma for complete spectral analysis was used to obtain analyses of the rocks, clays, and effluents from ion exchange tests. Two of the results are as follows: (1) Sweetwater gas sands have a bimodal pore size distribution composed of pores with a mean diameter of 0.2 microns which is attributed to intergranular spaces and cracks in the expanded laborboratory sample but which will be close under the pressure of the overburden formations, and these Sweetwater sands have a distribution of pores at 2 microns which are solution vugs rather than intergranular porosity since the sand grains are completely packed together with the cementing material due to the high overburden pressures; and (2) Ion-exchange capacities of two rocks were 5.3 meq/kg and 18.0 meq/kg, and the surface areas were 0.9 m/sup 2//g and 2.30 m/sup 2//g, respectively, even though each had almost identical mineral composition, clay type and quantity, and permeability. 7 references, 12 figures, 3 tables.

Crocker, M.E.; Donaldson, E.C.; Marchin, L.M.

1983-10-01T23:59:59.000Z

19

Borehole temperature survey analysis hot dry rock geothermal reservoir  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory (LASL) has been actively investigating the potential for extracting geothermal energy from hot dry rock. A man-made geothermal reservoir has been formed at the Fenton Hill Test Site in northern New Mexico. The 10-MW (thermal) prototype energy extraction circulation loop has been completed and has been continuously operating since January 28 of this year. The performance of the Phase I 1000-h circulation experiment would establish technological assessment of the particular hot dry rock geothermal reservoir. The major parameters of interest include equipment operations, geochemistry, water loss, and reservoir thermal drawdown. Temperature measurements were used extensively as one method to study the man-made geothermal reservoir. The temperature probe is one of the less complex wellbore survey tools that is readily fielded to allow on-line analysis of changing conditions in the hydraulic-fracture system. Several downhole temperature instruments have been designed and fabricated for use in the GT-2/EE-1 wellbores.

Dennis, B.R.; Murphy, H.D.

1978-01-01T23:59:59.000Z

20

New Equipment of Distinguishing Rock from Coal Based on Statistical Analysis of Fast Fourier Transform  

Science Conference Proceedings (OSTI)

A new equipment of distinguishing rock from coal based on statistical analysis of Fast Fourier Transform (FFT) is invented which can be used in the mechanized caving coal locales. First, eight groups of sound signals which had been measured during caving ... Keywords: Threshold of Distinguishing Rock from Coal, Fast Fourier Transform (FFT), Frequency Energy Variance, Frequency Energy Ratio

Gu Tao; Li Xu

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area (Ito & Tanaka, 1995) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon

22

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht,  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid circulation, set limits on the thermal regime, and link the source of the heat to prolonged volcanic activity. At shallow depths in the caldera References Brian M. Smith, Gene A. Suemnicht (1991) Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California

23

Lipoprotein subclass analysis by immunospecific density  

E-Print Network (OSTI)

Apolipoprotein C-1 (apo C-1) enriched HDL has been described as an atherogenic form of HDL associated with an increased risk for cardiovascular disease (CVD). The objective of the present study was to develop a rapid method for the separation, purification, and characterization of Apo C-1 from serum. We isolated and characterize HDL subclasses from individuals with and without angiographically-proven CVD who have elevated and normal-to-low HDL-C levels. Ultracentrifugation was linked with immunoaffinity separations for the specific separation of Apo C-1 enriched HDL from other lipoproteins. A 50 ?L sample of serum is diluted in TRIS HCl buffer (pH 7.5) and incubated with CNBr-activated Sepharose (Amersham) containing antibodies to apo C-1 (Academy Bio-medical Company). The apo C-1-depleted serum is removed by centrifugation and all apo C-1-containing lipoproteins are released from the Sepharose beads at pH 2. The apo C-1-depleted sample and the apo C-1-containing sample were ultracentrifuged to obtain a lipoprotein density profile in the absence and presence of apo C-1. Density Lipoprotein Profiling (DLP) gives relevant information of lipoproteins, such as density and subclass characterization, and is a novel approach to purify apo C-1-enriched HDL. An additional advantage of this approach is that lipoprotein-a (Lp(a)), which is often an interfering component in the HDL density region, is eliminated. Results show feasibility that these methods could be used in a clinical setting, was achieved. This measurement may yield a precise and quantitative profile of the distribution of apo C-1 for all lipoprotein particles including HDL.

Lester, Sandy Marie

2008-12-01T23:59:59.000Z

24

Integrated data analysis at TJ-II: The density profile  

SciTech Connect

An integrated data analysis system based on Bayesian inference has been developed for the TJ-II stellarator. It reconstructs the electron density profile at a single time point, using data from interferometry, reflectometry, Thomson scattering, and the Helium beam, while providing a detailed error analysis. In this work, we present a novel analysis of the ambiguity inherent in profile reconstruction from reflectometry and show how the integrated data analysis approach elegantly resolves it. Several examples of the application of the technique are provided, in both low-density discharges with and without electrode biasing, and in high-density discharges with an (L-H) confinement transition.

Milligen, B. Ph. van; Estrada, T.; Ascasibar, E.; Tafalla, D.; Lopez-Bruna, D.; Fraguas, A. Lopez; Jimenez, J. A.; Garcia-Cortes, I. [Asociacion EURATOM-CIEMAT para Fusion, Avda. Complutense 22, 28040 Madrid (Spain); Dinklage, A. [Max-Planck-Institut fuer Plasmaphysik, Teilinstitut Greifswald, EURATOM Association, Wendelsteinstr. 1, 17 491 Greifswald (Germany); Fischer, R. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany)

2011-07-15T23:59:59.000Z

25

ERNSTMORITZARNDTUNIVERSITAT Absolute number density and kinetic analysis  

E-Print Network (OSTI)

plasma-chemical reactions. Therefore, from the analysis of their kinetics, one can learn more about of the technical applications, many plasma­chemical processes within the discharges as well as mechanisms determines all electron induced plasma-chemical processes and hence influences the kinetics of species

Greifswald, Ernst-Moritz-Arndt-Universität

26

Rock Art in the Public Trust: Managing Prehistoric Rock Art on Federal Land  

E-Print Network (OSTI)

Archaic North America. ? In Handbook of Rock Art Research,Rock Art Analysis. ? In Handbook of Archaeological Methods,Rock Art Analysis,? in Handbook of Archaeological Methods,

Hale, John Patrick

2010-01-01T23:59:59.000Z

27

Power Density Analysis for a Regenerated Closed Brayton Cycle  

Science Conference Proceedings (OSTI)

In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is set as the objective for performance analysis of an irreversible, regenerated and closed Brayton cycle coupled to constant-temperature ...

Lingen Chen; Junlin Zheng; Fengrui Sun; Chih Wu

2001-12-01T23:59:59.000Z

28

Independent Analysis of Seismicity and Rock fall Scenarios for the Yucca Mountain Repository  

SciTech Connect

Yucca Mountain is located in the somewhat seismically active Basin and Range province. Future seismic activity is identified by the US Nuclear Regulatory Commission and the US National Academy of Sciences as a key scenario for safety assessment of a proposed repository at Yucca Mountain. As part of its on-going program of conducting independent analyses of scientific and technical issues that could be important to the licensing of the Yucca Mountain repository, EPRI has conducted an analysis of the combined scenarios of seismic activity and stability of emplacement drifts with respect to the long-term repository safety. In this paper we present the results of 3D finite element simulations of both static and dynamic loading of a degraded waste package. For the static case, the expected maximum static load is determined by utilizing relationships between cave height and the bulking factor. A static load representing 30 meters of broken rock was simulated using the finite element model. For the dynamic case, block size and velocity data from the most recent Drift Degradation AMR are used. Based on this, a rock block with a volume of 3.11 m{sup 3} and with an impact velocity of 4.81 m/s was simulated using the finite element model. In both cases, the results indicate that the waste package remains intact. (authors)

Apted, M.J. [Monitor Scientific, 3900 S. Wadsworth Blvd., Denver, CO 80235 (United States); Kemeny, J.M. [University of Arizona, Dept. Mining and Geological Engineering, Tucson, AZ 85721 (United States); Martin, C.D. [University of Alberta, Dept. Civil and Environmental Engineering, Edmonton, AB T6G 2W2 (Canada); James, R.J. [Anatech Corp., 5435 Oberlin Dr., San Diego, CA 92121 (United States)

2006-07-01T23:59:59.000Z

29

Rock matrix and fracture analysis of flow in western tight gas sands  

SciTech Connect

Advanced core analysis includes measurements on the matrix properties of the rock. Matrix properties are important even in fractured wells since it is these properties which determine the rate of gas flow into the fractures. Cores are being tested from the fluvial, coastal, and paludal zones of the Mesaverde. At least two cores from each of these zones from all three wells will be analyzed. Properties measured include permeability as a function of confining pressure over the range of 500 to 5000 psi. A minimum of two Klinkenberg permeabilities are being determined from at least five data points. Interpretation includes estimates of pore size from gas slippage. Water adsorption and desorption isotherms will be determined for selected samples with data points being obtained at the following relative humidities: 0, 20, 40, 60, 75, 90, 92, 95 and 98. Porosity measurements from both thin section examination and volumetric measurements are being made. These results will be compared with the porosities of the cored internals determined from logs.

Morrow, N.R.; Brower, K.R.; Ward, J.S.

1985-01-01T23:59:59.000Z

30

ASSEMBLAGES ON WASTE ROCK  

E-Print Network (OSTI)

Abstract: Natural regeneration on waste rock was investigated at the old Wangaloa coal mine, south-east Otago. A 450-m long waste rock stack had been created 4050 years ago, and has had little anthropogenic intervention since. The stack is made up of a gradient of three main waste rock types, defined as silt-rich, mixed, and quartz-rich, which reflect different proportions of loess siltstone and quartz gravel conglomerate. Plant species assemblages were quantified in four 5-m 2 quadrats in each waste rock type. Invertebrates were heat extracted from substrate cores (7 cm diameter; depth 5 cm) collected from quadrats over an eight-week period in spring 2003. Ordination analysis showed statistically distinct plant and invertebrate assemblages had arisen on each waste rock type. Revegetation patterns were dominated by native, woody individuals on all waste rock types, particularly manuka (Leptospermum scoparium) and kanuka (Kunzea ericoides). Plant cover on silt-rich waste rock was four-fold that on quartz-rich waste rock. Total numbers of invertebrates were highest on quartz-rich waste rock, but richness greatest on silt-rich waste rock. Collembola dominated the fauna but their numbers were proportionally greatest in poorly vegetated areas. Further work is required to explain the absence of plants and invertebrates from local areas of waste rock. ___________________________________________________________________________________________________________________________________

C. G. Rufaut; S. Hammit; D. Craw; S. G. Clearwater

2006-01-01T23:59:59.000Z

31

Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1  

E-Print Network (OSTI)

1 Tilescope: online analysis pipeline for high-density tiling microarray data Zhengdong D. Zhang1 pipeline Key words: high-density tiling microarray, high-density oligonucleotide microarray, microarray processing pipeline for analyzing tiling array data (http://tilescope.gersteinlab.org). In a completely

Gerstein, Mark

32

Technical and cost analysis of rock-melting systems for producing geothermal wells. [GEOWELL  

DOE Green Energy (OSTI)

The drilling of wells makes up a large fraction of the costs of geothermal energy-extraction plants, and billions of dollars for wells will be needed before geothermal energy is nationally significant. Technical and economic systems studies are summarized regarding the application of the Subterrene concept, i.e., excavating and penetrating rocks or soils by melting, to the production of deep wells such as may be used for dry hot rock or geopressurized geothermal energy-extraction systems. Technically, it was found that Subterrene features are compatible with those of current rotary drilling practices. In fact, some special features could lead to improved well production techniques. These include the buildup of a glass lining along the borehole wall which provides structural resistance to collapse; close control of hole geometry; the existence of a barrier between the drilling fluids and the formations being penetrated; nonrotation; potentially better bit life; and faster rates of penetration in deep, hard rock. A typical optimum-cost well would be rotary-drilled in the upper regions and then rock-melted to total depth. Indicated cost savings are significant: a 30 percent or 3.9 million dollar (1975 $) reduction from rotary-drilled well costs are estimated for a 10-km depth well with a bottom hole temperature of 673 K. Even for relatively cool normal geothermal gradient conditions, the savings for the 1..pi..-km well are estimated as 23 percent of 2.1 million dollars.

Altseimer, J.H.

1976-11-01T23:59:59.000Z

33

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

E-Print Network (OSTI)

and Cooling at the Yucca Mountain Drift Scale Test J.mechanical analysis of the Yucca Mountain Drift Scale Test scale heater test at Yucca Mountain, Nevada, USA. Int J Rock

Rutqvist, J.

2008-01-01T23:59:59.000Z

34

Helicon Plasma Source Configuration Analysis by Means of Density Measurements  

DOE Green Energy (OSTI)

Initial results have been obtained from operation of a helicon plasma source built to conduct optimization studies for space propulsion applications. The source features an easily reconfigurable antenna to test different geometries. Operating with He as the source gas, peak densities >= 1.6X10{sup 19} m{sup -3} have been achieved. Radial and axial plasma profiles have been obtained using a microwave interferometer that can be scanned axially and a Langmuir probe. The source will be used to investigate operation at high magnetic field, frequency, and input power.

Angrilli, F.; Barber, G.C.; Carter, M.D.; Goulding, R.H.; Maggiora, R.; Pavarin, D.; Sparks, D.O.

1999-11-13T23:59:59.000Z

35

A thermal analysis model for high power density beam stops  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) is presently designing and building the 2.5 MeV injector for the Spallation Neutron Source (SNS). The design includes various beam intercepting devices such as beam stops and slits. The target power densities can be as high as 500 kW/cm{sup 2} with a beam stopping range of 25 to 30 microns, producing stresses well above yield in most materials. In order to analyze the induced temperatures and stresses, a finite element model has been developed. The model has been written parametrically to allow the beam characteristics, target material, dimensions, angle of incidence and mesh densities to be easily adjusted. The heat load is applied to the model through the use of a 3-dimensional table containing the calculated volumetric heat rates. The load is based on a bi-gaussian beam shape which is absorbed by the target according to a Bragg peak distribution. The results of several analyses using the SNS Front End beam are presented.

Virostek, S.; Oshatz, D.; Staples, J.

2001-06-08T23:59:59.000Z

36

Event density analysis for event triggered control systems  

Science Conference Proceedings (OSTI)

In event triggered control systems, events occur aperiodically. For the real-time analysis of such systems, an appropriate approximation of the events' stimulation is necessary. Upper bounds have already been found for event triggered systems. For now, ...

Tobias Bund; Benjamin Menhorn; Frank Slomka

2013-03-01T23:59:59.000Z

37

Environmental analysis of the Fenton Hill Hot Dry Rock Geothermal Test Site  

DOE Green Energy (OSTI)

Techniques for the extraction of geothermal energy from hot dry rock within the earth's crust were tested at the first experimental system at Fenton Hill and proved successful. Because new concepts were being tried and new uses of the natural resources were being made, environmental effects were a major concern. Therefore, at all phases of development and operation, the area was monitored for physical, biological, and social factors. The results were significant because after several extended operations, there were no adverse environmental effects, and no detrimental social impacts were detected. Although these results are specific for Fenton Hill, they are applicable to future systems at other locations.

Kaufman, E.L.; Siciliano, C.L.B. (comps.)

1979-05-01T23:59:59.000Z

38

Hot rocks  

Science Conference Proceedings (OSTI)

Four kilometers down below the orange earth of Australias Cooper Basin lies some of the hottest nonvolcanic rock in the worldrock that the geothermal industry had never seriously considered using to make electricity. But next month Geodynamics, an ...

S. Upson

2009-01-01T23:59:59.000Z

39

A New Natural Gamma Radiation Measurement System for Marine Sediment and Rock Analysis  

E-Print Network (OSTI)

A new high-efficiency and low-background system for the measurement of natural gamma radioactivity in marine sediment and rock cores retrieved from beneath the seabed was designed, built, and installed on the JOIDES Resolution research vessel. The system includes eight large NaI(Tl) detectors that measure adjacent intervals of the core simultaneously, maximizing counting times and minimizing statistical error for the limited measurement times available during drilling expeditions. Effect to background ratio is maximized with passive lead shielding, including both ordinary and low-activity lead. Large-area plastic scintillator active shielding filters background associated with the high-energy part of cosmic radiation. The new system has at least an order of magnitude higher statistical reliability and significantly enhances data quality compared to other offshore natural gamma radiation (NGR) systems designed to measure geological core samples. Reliable correlations and interpretations of cored intervals are ...

Vasiliev, M A; Chubarian, G; Olsen, R; Bennight, C; Cobine, T; Fackler, D; Hastedt, M; Houpt, D; Mateo, Z; Vasilieva, Y B

2010-01-01T23:59:59.000Z

40

Structural analysis of porous rock reservoirs subjected to conditions of compressed air energy storage  

DOE Green Energy (OSTI)

Investigations are described which were performed to assess the structural behavior of porous rock compressed air energy storage (CAES) reservoirs subjected to loading conditions of temperature and pressure felt to be typical of such an operation. Analyses performed addressed not only the nominal or mean reservoir response but also the cyclic response due to charge/discharge operation. The analyses were carried out by assuming various geometrical and material related parameters of a generic site. The objective of this study was to determine the gross response of a generic porous reservoir. The site geometry for this study assumed a cylindrical model 122 m in dia and 57 m high including thicknesses for the cap, porous, and base rock formations. The central portion of the porous zone was assumed to be at a depth of 518 m and at an initial temperature of 20/sup 0/C. Cyclic loading conditions of compressed air consisted of pressure values in the range of 4.5 to 5.2 MPa and temperature values between 143 and 204/sup 0/C.Various modes of structural behavior were studied. These response modes were analyzed using loading conditions of temperature and pressure (in the porous zone) corresponding to various operational states during the first year of simulated site operation. The results of the structural analyses performed indicate that the most severely stressed region will likely be in the wellbore vicinity and hence highly dependent on the length of and placement technique utilized in the well production length. Analyses to address this specific areas are currently being pursued.

Friley, J.R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Examination ofmethods to determine free-ion diffusivity and number density from analysis of electrode polarization  

Science Conference Proceedings (OSTI)

Electrode polarization analysis is frequently used to determine free-ion diffusivity and number density in ionic conductors. In the present study, this approach is critically examined in a wide variety of electrolytes, including aqueous and nonaqueous solutions, polymer electrolytes, and ionic liquids. It is shown that the electrode polarization analysis based on theMacdonald-Trukhan model [J. Chem. Phys. 124, 144903 (2006); J. Non-Cryst. Solids 357, 3064 (2011)] progressively fails to give reasonable values of free-ion diffusivity and number density with increasing salt concentration. This should be expected because the original model of electrode polarization is designed for dilute electrolytes. An empirical correction method which yields ion diffusivities in reasonable agreement with pulsed-field gradient nuclear magnetic resonance measurements is proposed. However, the analysis of free-ion diffusivity and number density from electrode polarization should still be exercised with great caution because there is no solid theoretical justification for the proposed corrections.

Wang, Yangyang [ORNL; Sun, Che-Nan [Oak Ridge National Laboratory (ORNL); Fan, Fei [ORNL; Sangoro, Joshua R [ORNL; Berman, Marc [Hunter College of the City University of New York; Greenbaum, Steve [Hunter College of the City University of New York; Zawodzinski, Thomas [University of Tennessee, Knoxville (UTK); Sokolov, Alexei P [ORNL

2013-01-01T23:59:59.000Z

42

In Situ NMR Analysis of Fluids Contained in Sedimentary Rock Thomas M. de Swiet,* Marco Tomaselli,* Martin D. Hurlimann, and Alexander Pines*  

E-Print Network (OSTI)

In Situ NMR Analysis of Fluids Contained in Sedimentary Rock Thomas M. de Swiet,* Marco Tomaselli of pore fluids may be obtained in situ by magic angle spinning (MAS) nuclear magnetic resonance (NMR), which is normally used for solid samples. 1 H MAS­NMR spectra of water and crude oil in Berea sandstone

Pines, Alexander

43

Density-based Energy Decomposition Analysis for Intermolecular Interactions with Variationally Determined Intermediate State Energies  

DOE Green Energy (OSTI)

The first purely density-based energy decomposition analysis (EDA) for intermolecular binding is developed within the density functional theory. The most important feature of this scheme is to variationally determine the frozen density energy, based on a constrained search formalism and implemented with the Wu-Yang algorithm [Q. Wu and W. Yang, J. Chem. Phys. 118, 2498 (2003) ]. This variational process dispenses with the Heitler-London antisymmetrization of wave functions used in most previous methods and calculates the electrostatic and Pauli repulsion energies together without any distortion of the frozen density, an important fact that enables a clean separation of these two terms from the relaxation (i.e., polarization and charge transfer) terms. The new EDA also employs the constrained density functional theory approach [Q. Wu and T. Van Voorhis, Phys. Rev. A 72, 24502 (2005)] to separate out charge transfer effects. Because the charge transfer energy is based on the density flow in real space, it has a small basis set dependence. Applications of this decomposition to hydrogen bonding in the water dimer and the formamide dimer show that the frozen density energy dominates the binding in these systems, consistent with the noncovalent nature of the interactions. A more detailed examination reveals how the interplay of electrostatics and the Pauli repulsion determines the distance and angular dependence of these hydrogen bonds.

Wu, Q.; Ayers, P.W.; Zhang, Y.

2009-10-28T23:59:59.000Z

44

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

Science Conference Proceedings (OSTI)

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

45

Rock matrix and fracture analysis of flow in western tight gas sands: 1986 annual report  

SciTech Connect

This report presents progress for the second year of a five-year project concerned with the pore structure and flow properties of low permeability gas sands. The main objective of work during the first year was to carry out advanced core analysis on cores recovered from the Multi-Well Field Experiment. In Phase 2, the properties of both fractured and non-fractured samples (hereafter referred to as matrix) have been studied. Special attention was given to the combined effect of overburden pressure and water saturation on gas flow. 11 refs., 18 figs., 4 tabs.

Morrow, N.R.; Buckley, J.S.; Cather, S.M.; Brower, K.R.; Dandge, V.; Graham, M.; Gonzales, B.

1987-02-01T23:59:59.000Z

46

Economic predictions for heat mining : a review and analysis of hot dry rock (HDR) geothermal energy technology  

E-Print Network (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components.

Tester, Jefferson W.

1990-01-01T23:59:59.000Z

47

CRC handbook of physical properties of rocks. Volume III  

Science Conference Proceedings (OSTI)

This book presents topics on: Density of rocks and minerals, includes histograms of density ranges; elastic constants of minerals, elastic moduli, thermal properties; inelastic properties, strength and rheology for rocks and minerals, rock mechanics and friction, and stress-strain relations; radioactivity, decay constants and heat production of isotope systems in geology; seismic attenuation, in rocks, minerals, and the earth, with application to oil exploration and terrestrial studies; and index.

Carmichael, R.S.

1984-01-01T23:59:59.000Z

48

Economic Predictions for Heat Mining: A Review and Analysis of Hot Dry Rock (HDR) Geothermal Energy Technology  

DOE Green Energy (OSTI)

The main objectives of this study were first, to review and analyze several economic assessments of Hot Dry Rock (HDR) geothermal energy systems, and second, to reformulate an economic model for HDR with revised cost components. The economic models reviewed include the following studies sponsored by Electric Power Research Institute (EPRI)-Cummings and Morris (1979), Los Alamos National Laboratory (LANL)-Murphy, et al. (1982), United Kingdom (UK)-Shock (1986), Japan-Hori, et al. (1986), Meridian-Entingh (1987) and Bechtel (1988). A general evaluation of the technical feasibility of HDR technology components was also conducted in view of their importance in establishing drilling and reservoir performance parameters required for any economic assessment. In this review, only economic projections for base load electricity produced from HDR systems were considered. Bases of 1989 collars ($) were selected to normalize costs. Following the evaluation of drilling and reservoir performance, power plant choices and cost estimates are discussed in section 6 of the report. In Section 7, the six economics studies cited above are reviewed and compared in terms of their key resource, reservoir and plant performance, and cost assumptions. Based on these comparisons, the report estimates parameters for three composite cases. Important parameters include: (1) resource quality-average geothermal gradient (C/km) and well depth, (2) reservoir performance-effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components-drilling, reservoir formation, and power plant costs and (4) economic factors-discount and interest rates, taxes, etc. In Section 8, composite case conditions were used to reassess economic projections for HDR-produced electricity. In Section 9, a generalized economic model for HDR-produced electricity is presented to show the effects of resource grade, reservoir performance parameters, and other important factors on projected costs. A sensitivity and uncertainty analysis using this model is given in Section 10. Section 11 treats a modification of the economic model for predicting costs for direct, non-electric applications. HDR economic projections for the U.S. are broken down by region in Section 12. In Section 13, the report provides recommendations for continued research and development to reduce technical and economic uncertainties relevant to the commercialization of HDR. [DJE-2005

Tester, Jefferson W.; Herzog, Howard J.

1990-07-01T23:59:59.000Z

49

Thermal conductivity of rocks associated with energy extraction from hot dry rock geothermal systems  

DOE Green Energy (OSTI)

Results of thermal conductivity measurements are given for 14 drill core rock samples taken from two exploratory HDR geothermal wellbores (maximum depth of 2929 m (9608 ft) drilled into Precambrian granitic rock in the Jemez Mountains of northern New Mexico. These samples have been petrographically characterized and in general represent fresh competent Precambrian material of deep origin. Thermal conductivities, modal analyses, and densities are given for all core samples studied under dry and water-saturated conditions. Additional measurements are reported for several sedimentary rocks encountered in the upper 760 m (2500 ft) of that same region. A cut-bar thermal conductivity comparator and a transient needle probe were used for the determinations with fused quartz and Pyroceram 9606 as the standards. The maximum temperature range of the measurements was from the ice point to 250/sup 0/C. The measurements on wet, water-saturated rock were limited to the temperature range below room temperature. Conductivity values of the dense core rock samples were generally within the range from 2 to 2.9 W/mK at 200/sup 0/C. Excellent agreement was achieved between these laboratory measurements of thermal conductivity and those obtained by in situ measurements used in the HDR wellbores. By using samples of sufficient thickness to provide a statistically representative heat flow path, no difference between conductivity values and their temperature coefficients for orthogonal directions (heat flow parallel or perpendicular to core axis) was observed. This isotropic behavior was even found for highly foliated gneissic specimens. Estimates of thermal conductivity based on a composite dispersion analysis utilizing pure minerallic phase conductivities and detailed modal analyses usually agreed to within 9 percent of the experimental values.

Sibbitt, W.L.; Dodson, J.G.; Tester, J.W.

1978-01-01T23:59:59.000Z

50

Single Variable and Multivariate Analysis of Remote Laser-Induced Breakdown Spectra for Prediction of Rb, Sr, Cr, Ba, and V in Igneous Rocks  

SciTech Connect

Laser-induced breakdown spectroscopy (LIBS) will be employed by the ChemCam instrument on the Mars Science Laboratory rover Curiosity to obtain UV, VIS, and VNIR atomic emission spectra of surface rocks and soils. LIBS quantitative analysis is complicated by chemical matrix effects related to abundances of neutral and ionized species in the resultant plasma, collisional interactions within plasma, laser-to-sample coupling efficiency, and self-absorption. Atmospheric composition and pressure also influence the intensity of LIBS plasma. These chemical matrix effects influence the ratio of intensity or area of a given emission line to the abundance of the element producing that line. To compensate for these complications, multivariate techniques, specifically partial least-squares regression (PLS), have been utilized to predict major element compositions (>1 wt.% oxide) of rocks, PLS methods regress one or multiple response variables (elemental concentrations) against multiple explanatory variables (intensity at each pixel of the spectrometers). Because PLS utilizes all available explanatory variable and eliminates multicollinearity, it generally performs better than univariate methods for prediction of major elements. However, peaks arising from emissions from trace elements may be masked by peaks of higher intensities from major elements. Thus in PLS regression, wherein a correlation coefficient is determined for each elemental concentration at each spectrometer pixel, trace elements may show high correlation with more intense lines resulting from optical emissions of other elements. This could result in error in predictions of trace element concentrations. Here, results of simple linear regression (SLR) and multivariate PLS-2 regression for determination of trace Rb, Sr, Cr, Ba, and V in igneous rock samples are compared. This study focuses on comparisons using only line intensities rather than peak areas to highlight differences between SLR and PLS.

Clegg, Samuel M [Los Alamos National Laboratory; Wiens, Roger C. [Los Alamos National Laboratory; Speicher, Elly A [MT HOLYOKE COLLEGE; Dyar, Melinda D [MT HOLYOKE COLLEGE; Carmosino, Marco L [MT HOLYOKE COLLEGE

2010-12-23T23:59:59.000Z

51

Rock Joint Surfaces Measurement and Analysis of Aperture Distribution under Different Normal and Shear Loading Using GIS  

E-Print Network (OSTI)

Geometry of the rock joint is a governing factor for joint mechanical and hydraulic behavior. A new method of evaluating aperture distribution based on measurement of joint surfaces and three dimensional characteristics of each surface is developed. Artificial joint of granite surfaces are measured,processed, analyzed and three dimensional approaches are carried out for surface characterization. Parameters such as asperity's heights, slope angles, and aspects distribution at micro scale,local concentration of elements and their spatial localization at local scale are determined by Geographic Information System (GIS). Changes of aperture distribution at different normal stresses and various shear displacements are visualized and interpreted. Increasing normal load causes negative changes in aperture frequency distribution which indicates high joint matching. However, increasing shear displacement causes a rapid increase in the aperture and positive changes in the aperture frequency distribution which could be ...

Sharifzadeh, Mostafa; Esaki, Tetsuro

2009-01-01T23:59:59.000Z

52

A California Statewide Exploratory Analysis Correlating Land Use Density, Infrastructure Supply and Travel Behavior  

E-Print Network (OSTI)

Land Use Density, Infrastructure Supply and Travel Behaviorof employment and infrastructure supply are used togetherCalifonia. Land use and infrastructure have a significant,

Yoon, Seo Youn; Golob, Thomas F.; Goulias, Konstadinos G.

2008-01-01T23:59:59.000Z

53

Overview: Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-08-01T23:59:59.000Z

54

Overview - Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling Organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, James C.

1992-03-24T23:59:59.000Z

55

Overview: Hard Rock Penetration  

DOE Green Energy (OSTI)

The Hard Rock Penetration program is developing technology to reduce the costs of drilling and completing geothermal wells. Current projects include: lost circulation control, rock penetration mechanics, instrumentation, and industry/DOE cost shared projects of the Geothermal Drilling organization. Last year, a number of accomplishments were achieved in each of these areas. A new flow meter being developed to accurately measure drilling fluid outflow was tested extensively during Long Valley drilling. Results show that this meter is rugged, reliable, and can provide useful measurements of small differences in fluid inflow and outflow rates. By providing early indications of fluid gain or loss, improved control of blow-out and lost circulation problems during geothermal drilling can be expected. In the area of downhole tools for lost circulation control, the concept of a downhole injector for injecting a two-component, fast-setting cementitious mud was developed. DOE filed a patent application for this concept during FY 91. The design criteria for a high-temperature potassium, uranium, thorium logging tool featuring a downhole data storage computer were established, and a request for proposals was submitted to tool development companies. The fundamental theory of acoustic telemetry in drill strings was significantly advanced through field experimentation and analysis. A new understanding of energy loss mechanisms was developed.

Dunn, J.C.

1992-01-01T23:59:59.000Z

56

Feasibility of High-Density Climate Reconstruction Based on Forest Inventory and Analysis (FIA) Collected Tree-Ring Data  

Science Conference Proceedings (OSTI)

This study introduces a novel tree-ring dataset, with unparalleled spatial density, for use as a climate proxy. Ancillary Douglas fir and pion pine tree-ring data collected by the U.S. Forest Service Forest Inventory and Analysis Program (FIA ...

R. Justin DeRose; Shih-Yu Wang; John D. Shaw

2013-02-01T23:59:59.000Z

57

Analysis of Thermally Induced Changes in Fractured Rock Permeability during Eight Years of Heating and Cooling at the Yucca Mountain Drift Scale Test  

SciTech Connect

We analyzed a data set of thermally induced changes in fractured rock permeability during a four-year heating (up to 200 C) and subsequent four-year cooling of a large volume, partially saturated and highly fractured volcanic tuff at the Yucca Mountain Drift Scale Test, in Nevada, USA. Permeability estimates were derived from about 700 pneumatic (air-injection) tests, taken periodically at 44 packed-off borehole intervals during the heating and cooling cycle from November 1997 through November 2005. We analyzed air-permeability data by numerical modeling of thermally induced stress and moisture movements and their impact on air permeability within the highly fractured rock. Our analysis shows that changes in air permeability during the initial four-year heating period, which were limited to about one order of magnitude, were caused by the combined effects of thermal-mechanically-induced stress on fracture aperture and thermal-hydrologically-induced changes in fracture moisture content. At the end of the subsequent four-year cooling period, air-permeability decreases (to as low as 0.2 of initial) and increases (to as high as 1.8 of initial) were observed. By comparison to the calculated thermo-hydro-elastic model results, we identified these remaining increases or decreases in air permeability as irreversible changes in intrinsic fracture permeability, consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). In this paper, we discuss the possibility that such fracture asperity shortening and associated decrease in fracture permeability might be enhanced by dissolution of highly stressed surface asperities over years of elevated stress and temperature.

Rutqvist, J.; Freifeld, B.; Min, K.-B.; Elsworth, D.; Tsang, Y.

2008-06-01T23:59:59.000Z

58

Development of optimized core design and analysis methods for high power density BWRs  

E-Print Network (OSTI)

Increasing the economic competitiveness of nuclear energy is vital to its future. Improving the economics of BWRs is the main goal of this work, focusing on designing cores with higher power density, to reduce the BWR ...

Shirvan, Koroush

2013-01-01T23:59:59.000Z

59

Vibration-Induced Conductivity Fluctuation Measurement for Soil Bulk Density Analysis  

E-Print Network (OSTI)

Soil bulk density affects water storage, water and nutrient movement, and plant root activity in the soil profile. Its measurement is difficult in field conditions. Vibration-induced conductivity fluctuation was investigated to quantify soil bulk density with possible field applications in the future. The AC electrical conductivity of soil was measured using a pair of blade-like electrodes while exposing the soil to periodic vibration. The blades were positioned longitudinally and transversally to the direction of the induced vibration to enable the calculation of a normalized index. The normalized index was expected to provide data independent from the vibration strength and to reduce the effect of soil salinity and water content. The experiment was conducted on natural and salinized fine sand at two moisture conditions and four bulk densities. The blade-shaped electrodes improved electrode-soil contact compared to cylindrical electrodes, and thereby, reduced measurement noise. Simulations on a simplified resistor lattice indicate that the transversal effect increases as soil bulk density decreases. Measurement of dry sand showed a negative correlation between the normalized conductivity fluctuation and soil bulk density for both longitudinal and transversal settings. The decrease in the transversal signal was smaller than expected. The wet natural and salinized soils performed very similarly as hypothesized, but their normalized VICOF response was not significant to bulk density changes.

Andrea Sz. Kishne; Cristine L. S. Morgan; Hung-Chih Chang; Laszlo B. Kish

2007-05-03T23:59:59.000Z

60

Vibration-Induced Conductivity Fluctuation Measurement for Soil Bulk Density Analysis  

E-Print Network (OSTI)

Soil bulk density affects water storage, water and nutrient movement, and plant root activity in the soil profile. Its measurement is difficult in field conditions. Vibration-induced conductivity fluctuation was investigated to quantify soil bulk density with possible field applications in the future. The AC electrical conductivity of soil was measured using a pair of blade-like electrodes while exposing the soil to periodic vibration. The blades were positioned longitudinally and transversally to the direction of the induced vibration to enable the calculation of a normalized index. The normalized index was expected to provide data independent from the vibration strength and to reduce the effect of soil salinity and water content. The experiment was conducted on natural and salinized fine sand at two moisture conditions and four bulk densities. The blade-shaped electrodes improved electrode-soil contact compared to cylindrical electrodes, and thereby, reduced measurement noise. Simulations on a simplified re...

Kishne, Andrea Sz; Chang, Hung-Chih; Kish, Laszlo B

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Lung Density Changes After Stereotactic Radiotherapy: A Quantitative Analysis in 50 Patients  

Science Conference Proceedings (OSTI)

Purpose: Radiologic lung density changes are observed in more than 50% of patients after stereotactic body radiotherapy (SBRT) for lung cancer. We studied the relationship between SBRT dose and posttreatment computed tomography (CT) density changes, a surrogate for lung injury. Methods and Materials: The SBRT fractionation schemes used to treat Stage I lung cancer with RapidArc were three fractions of 18 Gy, five fractions of 11 Gy, or eight fractions of 7.5 Gy, prescribed at the 80% isodose. Follow-up CT scans performed at less than 6 months (n = 50) and between 6 and 9 months (n = 30) after SBRT were reviewed. Posttreatment scans were coregistered with baseline scans using a B-spline deformable registration algorithm. Voxel-Hounsfield unit histograms were created for doses between 0.5 and 50 Gy. Linear mixed effects models were used to assess the effects of SBRT dose on CT density, and the influence of possible confounders was tested. Results: Increased CT density was associated with higher dose, increasing planning target volume size, and increasing time after SBRT (all p 6 Gy, were most prominent in areas receiving >20 Gy, and seemed to plateau above 40 Gy. In regions receiving >36 Gy, the reduction in air-filled fraction of lung after treatment was up to 18%. No increase in CT density was observed in the contralateral lung receiving {>=}3 Gy. Conclusions: A dose-response relationship exists for quantitative CT density changes after SBRT. A threshold of effect is seen at low doses, and a plateau at highest doses.

Palma, David A., E-mail: david.palma@uwo.ca [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Soernsen de Koste, John van; Verbakel, Wilko F.A.R. [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands); Vincent, Andrew [Department of Biometrics, Netherlands Cancer Institute, Amsterdam (Netherlands); Senan, Suresh [Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)

2011-11-15T23:59:59.000Z

62

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

District, Teller County, Colorado," U.S. Geol. Survey Bull.Jamestown District, Colorado," Econ. Geol. , v. 68, pp 1247-Rocks at Powderhorn, Colorado; Economic Geology, Vol. 60,

Murphy, M.

2011-01-01T23:59:59.000Z

63

Energy density functional analysis of shape coexistence in {sup 44}S  

SciTech Connect

The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J. [School of Physical Science and Technology, Southwest University, Chongqing 400715 (China); Physics Department, Faculty of Science, University of Zagreb (Croatia); State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China)

2012-10-20T23:59:59.000Z

64

Using Bayesian Analysis and Gaussian Processes to Infer Electron Temperature and Density Profiles on the MAST Experiment  

E-Print Network (OSTI)

A unified, Bayesian inference of midplane electron temperature and density profiles using both Thompson scattering (TS) and interferometric data is presented. Beyond the Bayesian nature of the analysis, novel features of the inference are the use of a Gaussian process prior to infer a mollification length-scale of inferred profiles and the use of Gauss-Laguerre quadratures to directly calculate the depolarisation term associated with the TS forward model. Results are presented from an application of the method to data from the high resolution TS system on the Mega-Ampere Spherical Tokamak, along with a comparison to profiles coming from the standard analysis carried out on that system.

von Nessi, G T

2013-01-01T23:59:59.000Z

65

Session: Hard Rock Penetration  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

1992-01-01T23:59:59.000Z

66

Analysis of Density Changes in Plutonium Observed from Accelerated Aging Using Pu-238 Enrichment  

Science Conference Proceedings (OSTI)

We present dimensional and density changes in an aging plutonium alloy enriched with 7.3 at.% of {sup 238}Pu and reference alloys of various ages. After 45 equivalent years of aging, the enriched alloys at 35 C have swelled in volume by 0.14 to 0.16% and now exhibit a near linear volume increase, without void swelling. Based on X-ray diffraction measurements, the lattice expansion by self-irradiation appears to be the primary cause for dimensional changes during the initial 2-3 years of aging. Following the initial transient, the density change is primarily cause by a constant helium in-growth rate as a result of {alpha}-particle decay.

Chung, B W; Saw, C K; Thompson, S R; Quick, T M; Woods, C H; Hopkins, D J; Ebbinghaus, B B

2006-07-11T23:59:59.000Z

67

Rock-ravintolatoiminta : elv rock-musiikkia ravintolaympristss; Rock venue activity : live rock music in the restaurant setting.  

E-Print Network (OSTI)

??Tyn tavoitteena oli tutkia rock-ravintolatoimintaa ja elv rock-musiikkia ravintolaympristss ravintolan, artistin ja asiakkaan nkkulmasta. Tutkimuksessa pyrittiin selvittmn rock-ravintolayrittmisen toimintatapoja ja kartoittamaan alan tmn hetkist tilaa. (more)

Vyli, Jari

2006-01-01T23:59:59.000Z

68

Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications  

SciTech Connect

This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

DECKER,MERLIN K.; SMITH,MARK F.

2000-02-01T23:59:59.000Z

69

Definition: Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search Dictionary.png Density Log Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock (i.e. matrix) and the fluid enclosed in the pore spaces.[1] View on Wikipedia Wikipedia Definition Density logging is a well logging tool that can provide a continuous record of a formation's bulk density along the length of a borehole. In geology, bulk density is a function of the density of the minerals forming a rock and the fluid enclosed in the pore spaces. This is one of three well logging tools that are commonly used to calculate porosity, the other two being sonic logging and neutron porosity logging

70

Thermal-hydraulic analysis of cross-shaped spiral fuel in high power density BWRs  

E-Print Network (OSTI)

Preliminary analysis of the cross-shaped spiral (CSS) fuel assembly suggests great thermal-hydraulic upside. According to computational models, the increase in rod surface area, combined with an increase in coolant turbulence ...

Conboy, Thomas M

2007-01-01T23:59:59.000Z

71

Use of Density Equalizing Map Projections (DEMP) in the analysis of childhood cancer in four California counties. Revision 2  

Science Conference Proceedings (OSTI)

In studying geographic disease distributions, one normally compares rates among arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP). Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease rates are constant. The present report describes the application of the DEMP technique to 401 childhood cancer cases occurring between 1980 and 1988 in four California counties, with the use of map files and population data for the 262 tracts of the 1980 Census. A k`th nearest neighbor analysis provides strong evidence for geographic non-uniformity in tract rates (p < 10{sup {minus}4}). No such effect is observed for artificial cases generated under the assumption of constant rates. Work is in progress to repeat the analysis with improved population estimates derived from both 1980 and 1990 Census data. Final epidemiologic conclusions will be reported when that analysis is complete.

Merrill, D.W.; Close, E.R.; Holmes, H.H. [Lawrence Berkeley Lab., CA (United States); Selvin, S. [Lawrence Berkeley Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States). School of Public Health

1995-10-01T23:59:59.000Z

72

Use of density equalizing map projections (DEMP) in the analysis of childhood cancer in four California counties  

SciTech Connect

In studying geographic disease distributions, one normally compares rates of arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP). Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease rates are constant. The density equalized map portrays both individual cases and rates, and can be understood by untrained observers. Simple statistical techniques can be used to test the uniformity of the transformed map. This report describes application of the DEMP technique to a sizeable `real-world` data set: 401 childhood cancer cases occurring between 1980 and 1988 in four California counties. In an earlier analysis of the same data, the California Department of Health Services (DHS) calculated rates for 101 communities and found no significant geographic variability. The DDS 1980--88 population estimates are no longer available, so in this analysis 1980 Census data were used; geographic units were 262 census tracts. A k`th nearest neighbor analysis, corrected for boundary effects and for within-tract variability, provides strong evidence for geographic nonuniformity in tract rates ({rho} < l0{sup {minus}4}). No such effect is observed for artificial cases generated under the assumption of constant rates. Pending reanalysis with 1980-88 population estimates, no epidemiologic conclusions can be drawn at this time.

Merrill, D.W. Selvin, S.; Close, E.R.; Holmes, H.H.

1995-04-01T23:59:59.000Z

73

Oldest Rock on Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

Canada." and "Some of the oldest surface rock can be found in the Canadian Shield, Australia, Africa and in other more specific places around the world. The ages of...

74

Analysis of pulsed high-density HBr and Cl{sub 2} plasmas: Impact of the pulsing parameters on the radical densities  

Science Conference Proceedings (OSTI)

The dynamic of charged particles in pulsed plasma is relatively well known since the 1990s. In contrast, works reporting on the impact of the plasma modulation frequency and duty cycle on the radicals' densities are scarce. In this work, we analyze the impact of these modulation parameters on the radicals' composition in Cl{sub 2} and HBr plasmas. The radicals' densities are measured by broad-band UV and vacuum-ultraviolet (VUV) absorption spectroscopy and modulated-beam mass spectrometry. We show that pulsing the rf power allows controlling the plasma chemistry and gives access to the plasma conditions that cannot be reached in continuous wave plasmas. In particular, we show that above 500 Hz, the pulsing frequency has no influence on the plasma chemistry, whereas in contrast the duty cycle is an excellent knob to control the fragmentation of the parent gas, thus the chemical reactivity of the discharge. At low duty cycle, a reduced gas fragmentation combined with a large ion flux leads to new etching conditions, compared to cw plasmas and the expected consequences on pulsed-etching processes are discussed.

Bodart, P.; Brihoum, M.; Cunge, G.; Joubert, O.; Sadeghi, N. [Laboratoire des Technologies de la Microelectronique, CNRS-LTM, 17 rue des Martyrs, Grenoble 38054 (France)

2011-12-01T23:59:59.000Z

75

Rock Harbor UNITED STATES  

E-Print Network (OSTI)

Passage Conglomerate Bay Five Finger Bay Lane Cove Stockly Bay Lake Ojibway Siskiwit River Creek Little River Washington Moskey M cCargoe Cove Robinson Bay Amygdaloid Channel Pickerel Cove Chippewa Harbor Crystal Cove Belle Isle Canoe Rocks Caribou Island Saginaw Point Tookers Island The Palisades Raspberry

76

The Landscape of Klamath Basin Rock Art  

E-Print Network (OSTI)

the Lines: Ethnographic Sources and Rock Art Interpretationwhen applying these sources toward rock art interpretation.information source for developing rock art interpretations.

David, Robert James

2012-01-01T23:59:59.000Z

77

Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage  

SciTech Connect

Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline aquifer and surrounding formations. This uncertainty in leakage will be used to feed into risk assessment modeling.

Deng, Hailin [Los Alamos National Laboratory; Dai, Zhenxue [Los Alamos National Laboratory; Jiao, Zunsheng [Wyoming State Geological Survey; Stauffer, Philip H. [Los Alamos National Laboratory; Surdam, Ronald C. [Wyoming State Geological Survey

2011-01-01T23:59:59.000Z

78

Microwave assisted hard rock cutting  

DOE Patents (OSTI)

An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

Lindroth, David P. (Apple Valley, MN); Morrell, Roger J. (Bloomington, MN); Blair, James R. (Inver Grove Heights, MN)

1991-01-01T23:59:59.000Z

79

Session: Hot Dry Rock  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

80

Session: Hot Dry Rock  

SciTech Connect

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Rock Sampling Rock Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Sampling Details Activities (13) Areas (13) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Field Sampling Parent Exploration Technique: Field Sampling Information Provided by Technique Lithology: Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Stratigraphic/Structural: Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting. Hydrological: Isotope geochemistry can reveal fluid circulation of a geothermal system.

82

Density Log | Open Energy Information  

Open Energy Info (EERE)

Density Log Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (6) Areas (6) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Well Log Techniques Information Provided by Technique Lithology: provides data on the bulk density of the rock surrounding the well Stratigraphic/Structural: Stratigraphic correlation between well bores. Hydrological: Porosity of the formations loggesd can be calculated for the Density log andprovide an indication potential aquifers. Thermal: Cost Information Low-End Estimate (USD): 0.4040 centUSD 4.0e-4 kUSD 4.0e-7 MUSD 4.0e-10 TUSD / foot Median Estimate (USD): 0.6868 centUSD

83

Energy from hot dry rock  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Program is described. The system, operation, results, development program, environmental implications, resource, economics, and future plans are discussed. (MHR)

Hendron, R.H.

1979-01-01T23:59:59.000Z

84

The economics of heat mining: An analysis of design options and performance requirements of hot dry rock (HDR) geothermal power systems  

SciTech Connect

A generalized economic model was developed to predict the breakeven price of HDR generated electricity. Important parameters include: (1) resource quality--average geothermal gradient ({sup o}C/km) and well depth, (2) reservoir performance--effective productivity, flow impedance, and lifetime (thermal drawdown rate), (3) cost components--drilling, reservoir formation, and power plant costs and (4) economic factors--discount and interest rates, taxes, etc. Detailed cost correlations based on historical data and results of other studies are presented for drilling, stimulation, and power plant costs. Results of the generalized model are compared to the results of several published economic assessments. Critical parameters affecting economic viability are drilling costs and reservoir performance. For example, high gradient areas are attractive because shallower well depths and/or lower reservoir production rates are permissible. Under a reasonable set of assumptions regarding reservoir impedance, accessible rock volumes and surface areas, and mass flow rates (to limit thermal drawdown rates to about 10 C per year), predictions for HDR-produced electricity result in competitive breakeven prices in the range of 5 to 9 cents/kWh for resources having average gradients above 50 C/km. Lower gradient areas require improved reservoir performance and/or lower well drilling costs.

Tester, Jefferson W.; Herzog, Howard J.

1991-01-25T23:59:59.000Z

85

Workshop on hydrology of crystalline basement rocks  

DOE Green Energy (OSTI)

This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

Davis, S.N. (comp.)

1981-08-01T23:59:59.000Z

86

Analysis of reservoir heterogeneities due to shallowing-upward cycles in carbonate rocks of the Pennsylvanian Wahoo Limestone of Northeastern Alaska. Annual report, October 1990--September 1991  

Science Conference Proceedings (OSTI)

The primary objective of this project is to develop an integrated database to characterize reservoir heterogeneities resulting from numerous small-scale shallowing-upward cycles (parasequences) comprising the carboniferous Pennsylvanian Wahoo Limestone. The Wahoo Limestone is the upper formation of an extensive carbonate platform sequence of the Carboniferous Lisburne Group which is widely exposed in the Brooks Range and is a widespread hydrocarbon reservoir unit in the subsurface of the North Slope of Alaska. A principal goal is to determine lateral and vertical variations in the complex mosaic of carbonate facies comprising the Wahoo Limestone. This report presents the preliminary results of research accomplished by a team of specialists in carbonate petrology, biostratigraphy, and diagenesis during the 1990--1991 fiscal year.It includes a summary of regional geological framework studies, a discussion conodont analyses, an overview of diagenetic studies, a brief description of progress in computerized database development, and appendices containing some of the new data on petrographic analyses, conodont analyses, and locality and sample information. Our correlation scheme, which uses cyclic stratigraphy, biostratigraphy, and cement stratigraphy, will allow interpretation of the depositional history and paleogeographic evolution of the region. We have developed predictive facies models and will make paleogeographic maps to illustrate different stages in the history of the Wahoo carbonate ramp. Our detailed analyses of the Wahoo Limestone will provide a basis for interpreting correlative rocks in the adjacent subsurface of the coastal plain of ANWR, a potential hydrocarbon lease-sale area. In a broader sense, our work will provide an excellent generic example of carbonate shallowing-upward cycles which typify carbonate sediments.

Watts, K.

1992-09-01T23:59:59.000Z

87

Analysis of reservoir heterogeneities due to shallowing-upward cycles in carbonate rocks of the Pennsylvanian Wahoo Limestone of Northeastern Alaska  

Science Conference Proceedings (OSTI)

The primary objective of this project is to develop an integrated database to characterize reservoir heterogeneities resulting from numerous small-scale shallowing-upward cycles (parasequences) comprising the carboniferous Pennsylvanian Wahoo Limestone. The Wahoo Limestone is the upper formation of an extensive carbonate platform sequence of the Carboniferous Lisburne Group which is widely exposed in the Brooks Range and is a widespread hydrocarbon reservoir unit in the subsurface of the North Slope of Alaska. A principal goal is to determine lateral and vertical variations in the complex mosaic of carbonate facies comprising the Wahoo Limestone. This report presents the preliminary results of research accomplished by a team of specialists in carbonate petrology, biostratigraphy, and diagenesis during the 1990--1991 fiscal year.It includes a summary of regional geological framework studies, a discussion conodont analyses, an overview of diagenetic studies, a brief description of progress in computerized database development, and appendices containing some of the new data on petrographic analyses, conodont analyses, and locality and sample information. Our correlation scheme, which uses cyclic stratigraphy, biostratigraphy, and cement stratigraphy, will allow interpretation of the depositional history and paleogeographic evolution of the region. We have developed predictive facies models and will make paleogeographic maps to illustrate different stages in the history of the Wahoo carbonate ramp. Our detailed analyses of the Wahoo Limestone will provide a basis for interpreting correlative rocks in the adjacent subsurface of the coastal plain of ANWR, a potential hydrocarbon lease-sale area. In a broader sense, our work will provide an excellent generic example of carbonate shallowing-upward cycles which typify carbonate sediments.

Watts, K.

1992-09-01T23:59:59.000Z

88

Analysis and Design of a High Power Density Axial Flux Permanent Magnet Linear Synchronous Machine Used for Stirling System  

Science Conference Proceedings (OSTI)

a high power density axial flux permanent magnet linear synchronous machine and the stirling system will be introduced. This machine is a tubular axial flux permanent magnet machine. It comprises two parts: stator and mover. With the 2D finite-element ... Keywords: permanent magnet, stirling engine, linear motor

Ping Zheng; Xuhui Gan; Lin Li

2010-09-01T23:59:59.000Z

89

Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) | Open  

Open Energy Info (EERE)

Armstrong, Et Al., 1995) Armstrong, Et Al., 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995) Exploration Activity Details Location Socorro Mountain Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Corresponding Socorro caldera Carboniferous rocks were studied in the field in 1988-1992-Renault later completed geochemistry and silica-crystallite geothermometry, Armstrong petrographic analysis and cathodoluminescence, Oscarson SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The carbonate-rock classification used in this

90

Shotgun cartridge rock breaker  

DOE Patents (OSTI)

A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

Ruzzi, Peter L. (Eagan, NM); Morrell, Roger J. (Bloomington, MN)

1995-01-01T23:59:59.000Z

91

A Phased Array Approach to Rock Blasting  

SciTech Connect

A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

Leslie Gertsch; Jason Baird

2006-07-01T23:59:59.000Z

92

Integrating domain knowledge with statistical and data mining methods for high-density genomic SNP disease association analysis  

Science Conference Proceedings (OSTI)

Genome-wide association studies can help identify multi-gene contributions to disease. As the number of high-density genomic markers tested increases, however, so does the number of loci associated with disease by chance. Performing a brute-force test ... Keywords: Data integration, Data mining, False discovery rate (FDR), Genome-wide association (GWA), Pathway-based disease association, Single nucleotide polymorphisms (SNP)

Valentin Dinu; Hongyu Zhao; Perry L. Miller

2007-12-01T23:59:59.000Z

93

Post Rock | Open Energy Information  

Open Energy Info (EERE)

Rock Rock Jump to: navigation, search Name Post Rock Facility Post Rock Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Capital Group Developer Wind Capital Group Energy Purchaser Westar Energy Location Ellsworth KS Coordinates 38.87269233°, -98.33059788° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.87269233,"lon":-98.33059788,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

94

Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Florida Mountains Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Florida Mountains Area (Brookins, 1982) Exploration Activity Details Location Florida Mountains Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa)

95

Search for magnetic monopoles in polar volcanic rocks  

E-Print Network (OSTI)

For a broad range of values of magnetic monopole mass and charge, the abundance of monopoles trapped inside the Earth would be expected to be enhanced in the mantle beneath the geomagnetic poles. A search for magnetic monopoles was conducted using the signature of an induced persistent current following the passage of igneous rock samples through a SQUID-based magnetometer. A total of 24.6 kg of rocks from various selected sites, among which 23.4 kg are mantle-derived rocks from the Arctic and Antarctic areas, was analysed. No monopoles were found and a 90% confidence level upper limit of $9.8\\cdot 10^{-5}$/gram is set on the monopole density in the search samples.

K. Bendtz; D. Milstead; H. -P. Hchler; A. M. Hirt; P. Mermod; P. Michael; T. Sloan; C. Tegner; S. B. Thorarinsson

2013-01-28T23:59:59.000Z

96

Rock physics at Los Alamos Scientific Laboratory  

DOE Green Energy (OSTI)

Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

Not Available

1980-01-01T23:59:59.000Z

97

Hot Dry Rock - Summary  

SciTech Connect

Hot Dry Rock adds a new flexibility to the utilization of geothermal energy. Almost always the approach has been to limit that utilization to places where there is a natural source of water associated with a source of heat. Actually, the result was that steam was mined. Clearly there are much larger heat resources available which lack natural water to transport that energy to the surface. Also, as is found in hydrothermal fields being mined for steam, the water supply finally gets used up. There is a strong motive in the existing capital investment to revitalize those resources. Techniques for introducing, recovering and utilizing the water necessary to recover the heat from below the surface of the earth is the subject of this session. Implicit in that utilization is the ability to forecast with reasonable accuracy the busbar cost of that energy to the utility industry. The added element of supplying the water introduces costs which must be recovered while still supplying energy which is competitive. Hot Dry Rock technology can supply energy. That has been proved long since. The basic barrier to its use by the utility industry has been and remains proof to the financial interests that the long term cost is competitive enough to warrant investment in a technology that is new to utility on-grid operations. As the opening speaker for this session states, the test that is underway will ''simulate the operations of a commercial facility in some ways, but it will not show that energy from HDR can be produced at a variety of locations with different geological settings''. Further, the Fenton Hill system is a research facility not designed for commercial production purposes, but it can give indications of how the system must be changed to provide economic HDR operations. And so it is that we must look beyond the long term flow test, at the opportunities and challenges. Proving that the huge HDR resources can be accessed on a worldwide scale must involve the construction of additional sites, preferably to the specifications of the now Federal geothermal community. These facilities will have to be engineered to produce and market energy at competitive prices. At the same time, we must not rest on our technological laurels, though they be many. Design and operational techniques have been conceived which could lead to improved economics and operations for HDR. These must be pursued and where merit is found, vigorously pursued. Accelerated research and development ought to include revolutionary drilling techniques, reservoir interrogation, and system modeling to assure the competitiveness and geographical diversity of applications of HDR. Much of this work will be applicable to the geothermal industry in general. More advanced research ought to include such innovations as the utilization of other operating fluids. Supercritical carbon dioxide and the ammonia/water (Kalina) cycle have been mentioned. But even as the near and more distant outlook is examined, today's work was reported in the HDR session. The start-up operations for the current test series at the Fenton Hill HDR Pilot Plant were described. The surface plant is complete and initial operations have begun. While some minor modifications to the system have been required, nothing of consequence has been found to impede operations. Reliability, together with the flexibility and control required for a research system were shown in the system design, and demonstrated by the preliminary results of the plant operations and equipment performance. Fundamental to the overall success of the HDR energy resource utilization is the ability to optimize the pressure/flow impedance/time relationships as the reservoir is worked. Significant new insights are still being developed out of the data which will substantially affect the operational techniques applied to new systems. However, again, these will have to be proved to be general and not solely specific to the Fenton Hill site. Nevertheless, high efficiency use of the reservoir without unintended reservoir grow

Tennyson, George P. Jr.

1992-03-24T23:59:59.000Z

98

Adsorption of water vapor on reservoir rocks  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

99

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

100

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...  

Open Energy Info (EERE)

Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ...

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Rock units in regional tectonic analysis - Springer  

Science Conference Proceedings (OSTI)

sins, chains of volcanoes, faulting, uplift and subsidence of crustal blocks, and so on. The causative processes remain unseen, and can only be inferred ftom...

102

Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma  

Open Energy Info (EERE)

Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA Details Activities (0) Areas (0) Regions (0) Abstract: Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized previously unrecognized zeolitic alteration throughout the Valles caldera resurgent dome. The alteration assemblage consists primarily of smectite-clinoptilolite-mordenite-silica, which replaces groundmass and fills voids, especially in the tuffs and lacustrine rocks. Original rock textures are routinely preserved. Mineralization typically extends to

103

Laser Rock Perforation Demo - The NE Multimedia Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

rock perforation demo High power laser beam can be used in oil well completion application for perforating oil reservoir rock and increasing rock's permeability for high oil...

104

PARKER-HEADGATE ROCK & PARKER-GILA  

NLE Websites -- All DOE Office Websites (Extended Search)

PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas Figure 1. Project Location Project Location j PARKER-HEADGATE ROCK &...

105

Evaluation of the hot-dry-rock geothermal potential of an area near Mountain Home, Idaho  

DOE Green Energy (OSTI)

Evaluation of an area near Mountain Home, Idaho, was performed to assess the hot dry rock (HDR) potential of the prospect. The techniques reported include telluric and gravity profiling, passive seismic, hydrology and water chemistry surveys, and lineament analysis. Gravity and telluric surveys were unsuccessful in locating fractures buried beneath recent volcanics and sediments of the plain because density and conductivity contrasts were insufficient. Gravity modeling indicated areas where granite was not likely to be within drilling depth, and telluric profiling revealed an area in the northwest part of the prospect where higher conductivity suggested the presence of fractures or water or both, thereby making it unsuitable for HDR. Water geochemistry indicated that (hot water) reservoir temperatures do not exceed 100/sup 0/C. An area in the east central part of the prospect was delineated as most favorable for HDR development. Temperature is expected to be 200/sup 0/C at 3-km depth, and granitic rock of the Idaho Batholith should be intersected at 2- to 3-km depth.

Arney, B.H.; Goff, F.

1982-05-01T23:59:59.000Z

106

Hot dry rock geothermal heat extraction  

DOE Green Energy (OSTI)

A man-made geothermal reservoir has been created at a depth of 2.7 km in hot, dry granite by hydraulic fracturing. The system was completed by directionally drilling a second well in close proximity with the top of the vertical fracture. In early 1978 heat was extracted from this reservoir for a period of 75 days. During this period thermal power was produced at an average rate of 4 MW(t). Theoretical analysis of th measured drawdown suggests a total fracture heat transfer area of 16,000 m/sup 2/. Viscous impedance to through-flow declined continuously so that at the end of the experiment this impedance was only one-fifth its initial value. Water losses to the surrounding rock formation also decreased continuously, and eventually this loss rate was less than 1% of the circulated flow rate. Geochemical analyses suggest that, with scale up of the heat transfer area and deeper, hotter reservoirs, hot dry rock reservoirs can ultimately produce levels of power on a commercial scale.

Murphy, H.D.

1979-01-01T23:59:59.000Z

107

Hot dry rock energy project  

DOE Green Energy (OSTI)

A proof-of-concept experimental project by the Los Alamos Scientific Laboratory endeavors to establish the feasibility of exploitation of the thermal energy contained in the earth's crust where such energy and a transporting fluid have not been juxtaposed in nature. A region of high heat flow and apparently unfaulted basement rock formation was selected. Two boreholes, drilled to a total depth of about 3 km (10,000 ft) and penetrating about 2.5 km (7500 ft) into the Precambrian formation, to a rock temperature of 200/sup 0/C, have been connected at depth by a hydraulically fractured zone to form the heat extraction surface. Energy was extracted at a rate of 3.2 MW(t) with water temperature of 132/sup 0/C during a 96-h preliminary circulating test run performed late in September 1977. This paper traces the progress of the project, summarizes procedures and salient events, and references detailed reports and specialized topics.

Hendron, R.H.

1977-01-01T23:59:59.000Z

108

Relative Permeability of Fractured Rock  

DOE Green Energy (OSTI)

Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

Mark D. Habana

2002-06-30T23:59:59.000Z

109

Rock bed storage with heat pump. Final report  

SciTech Connect

The study, Rock Bed Storage with Heat Pump, established the feasibility of mating a heat pump to a rock bed storage to effect optimal performance at the lowest cost in single family residences. The operating characteristics of off-the-shelf components of heat pump/rock bed storage systems were studied, and the results were used to formulate configurations of representative systems. These systems were modeled and subsequently analyzed using the TRNSYS computer program and a life cycle cost analysis program called LCCA. A detailed load model of a baseline house was formulated as part of the TRNSYS analysis. Results of the analysis involved the development of a technique to confine the range of heat pump/rock bed storage systems to those systems which are economical for a specific location and set of economic conditions. Additionally, the results included a comparison of the detailed load model with simple UA models such as the ASHRAE bin method. Several modifications and additions were made to the TRNSYS and LCCA computer programs during the course of the study.

Remmers, H.E.; Mills, G.L.

1979-05-01T23:59:59.000Z

110

Dispersivity as an oil reservoir rock characteristic  

Science Conference Proceedings (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

111

Hot Dry Rock Overview at Los Alamos  

DOE Green Energy (OSTI)

The Hot Dry Rock (HDR) geothermal energy program is a renewable energy program that can contribute significantly to the nation's balanced and diversified energy mix. Having extracted energy from the first Fenton Hill HDR reservoir for about 400 days, and from the second reservoir for 30 days in a preliminary test, Los Alamos is focusing on the Long Term Flow Test and reservoir studies. Current budget limitations have slowed preparations thus delaying the start date of that test. The test is planned to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other salient information will address geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to pumping power requirements. During this year of ''preparation'' we have made progress in modeling studies, in chemically reactive tracer techniques, in improvements in acoustic or microseismic event analysis.

Berger, Michael; Hendron, Robert H.

1989-03-21T23:59:59.000Z

112

Hot Dry Rock; Geothermal Energy  

SciTech Connect

The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic engineering procedures at depth may still be attained if high temperature sites with extensive fracturing are developed or exploited. [DJE -2005

1990-01-01T23:59:59.000Z

113

Preliminary assessment of high-resistivity cap-rock shale in the Frio Formation of the Texas Gulf Coast. Annual report  

DOE Green Energy (OSTI)

Mapping of high resistivity cap rock shales in the Frio Formation of the Texas Gulf Coast shows that few areas of thin cap rock occur in the upper Texas Gulf Coast, and more extensive, thicker cap rock occurs in the lower Texas Gulf Coast. Increases in (1) maximum shale resistivity, (2) unstable minerals (volcanic rock fragments, detrital carbonate grains), and (3) authigenic cementation parallel the increase in cap rock from the upper to the lower Gulf Coast. Similarity in cap rock distribution in two major Frio deltaic depocenters is not evident. Facies analysis of regional cross sections in the lower Texas Gulf Coast and of cross sections in Sarita East field, Kenedy County, shows preferential development of cap rock in the delta-front/slope facies of the Norias delta system. Sand content of the cap rock interval varies from 23 to 41 percent in part of Sarita East field, suggesting that if cap rock is due to authigenic cementation, such sands may act as fluid conduits during mineralization. Cap rock is rarely developed in the shale-rich prodelta and distal delta-front facies. High resistivity cap rock shales have been considered a result of authigenic calcite cementation, but definite evidence for this origin is lacking. Preliminary mineralogic analyses of well cuttings have not yielded satisfactory results. Analysis of core through cap rock and non-cap rock intervals will be required to determine the mineralogic variability within each interval and to accurately assess any mineralogic control of the high resistivity log response.

Finley, R.J.

1982-05-01T23:59:59.000Z

114

DOE hot dry rock program  

DOE Green Energy (OSTI)

Hydraulic fracturing has been used to create and subsequently to enlarge the first hot dry rock heat-extraction loop at Fenton Hill, New Mexico. Encouraging results prompted the DOE to expand this project into a program of national scope. The elements of that Program and their present status are discussed. Emphasis is given the ongoing Fenton Hill Project where techniques and information developed in the existing research system will soon be used to produce a multiply-fractured engineering system in hotter rock at the same site. Recent results from research loop operation and progress in constructing the engineering system are reported. Although acoustic mapping and system geometry indicate that the primary hydraulic fractures are essentially vertical, relatively low fracturing pressure and absence of a sharp breakdown suggest that at Fenton Hill fracture initiation occurs by reopening of old natural fractures rather than by initiation of new ones. Flow patterns and temperature behavior suggest opening of additional old fractures as the loop is operated. Except where the hot fluid leaves the crack system to enter the production well, flow impedances are very low without either artificial propping or inflation by pressurization.

Nunz, G.J.

1980-01-01T23:59:59.000Z

115

Rock Energy Cooperative (Illinois) | Open Energy Information  

Open Energy Info (EERE)

Cooperative (Illinois) Jump to: navigation, search Name Rock Energy Cooperative Place Illinois Utility Id 16196 References EIA Form EIA-861 Final Data File for 2010 - File220101...

116

Schmid et al. Inclusion Behavior in Deforming Rocks Inclusion Behavior in Deforming Rocks  

E-Print Network (OSTI)

Schmid et al. Inclusion Behavior in Deforming Rocks Inclusion Behavior in Deforming Rocks Dani Podladchikov, PGP, University of Oslo, Norway Intro 1 #12;Schmid et al. Inclusion Behavior in Deforming Rocks Motivation 2 The single most useful thing to understand! #12;Schmid et al. Inclusion Behavior in Deforming

Cesare, Bernardo

117

Definition: Petrography Analysis | Open Energy Information  

Open Energy Info (EERE)

is the study of rocks. A petrographic analysis is an in depth investigation of the chemical and physical features of a particular rock sample. A complete analysis should include...

118

The hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

The paper presents a simplified description of the Department of Energy's Hot-Dry-Rock program conducted at Fenton Hill, New Mexico. What a hot-dry-rock resource is and what the magnitude of the resource is are also described.

Smith, M.C.

1987-09-01T23:59:59.000Z

119

Proceedings of hot dry rock geothermal workshop  

DOE Green Energy (OSTI)

Abstracts of 38 papers are included on the following subjects: rock mechanics, part 1: hydraulic fracturing; fracture imaging and borehole surveying; fluid flow-pressure analyses; rock mechanics, part 2: hydraulic fracturing and thermal cracking; geochemistry; heat extraction modeling; and economics and energy conversion. (MHR)

Elsner, D.B. (comp.)

1978-09-01T23:59:59.000Z

120

Eagle Rock Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

Eagle Rock Geothermal Facility Eagle Rock Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eagle Rock Geothermal Facility General Information Name Eagle Rock Geothermal Facility Facility Eagle Rock Sector Geothermal energy Location Information Location The Geysers, California Coordinates 38.826770222484°, -122.80002593994° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.826770222484,"lon":-122.80002593994,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Definition: Rock Sampling | Open Energy Information  

Open Energy Info (EERE)

Sampling Sampling Jump to: navigation, search Dictionary.png Rock Sampling Systematic rock sampling can be used to characterize a geothermal reservoir. The physical and chemical properties of rock samples provide important information for determining whether a power generation or heat utilization facility can be developed. Some general rock properties can be measured by visual inspection, but detailed properties require laboratory techniques. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core hole". A variety of core samplers exist to sample

122

2008 Rock Deformation GRC - Conference August 3-8, 2008  

Science Conference Proceedings (OSTI)

The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the shallow crust that are important for developing ideas in CO2 sequestration, geothermal and petrochemical research and the mechanics of shallow faults.

James G. Hirth

2009-09-21T23:59:59.000Z

123

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

124

FRACTURE DETECTION IN CRYSTALLINE ROCK USING ULTRASONIC SHEAR WAVES  

E-Print Network (OSTI)

the piezoelectric source plate and the rock surface. With aThe S^j sources were bonded to the rock surface with a fast-^ source plate was epoxied in position on the rock specimen.

Waters, K.H.

2011-01-01T23:59:59.000Z

125

Rock mass sealing: experimental assessment of borehole plug performance. Annual report, June 1983-May 1984  

Science Conference Proceedings (OSTI)

This report describes experimental field and laboratory borehole plugging performance assessment studies that have been performed, completed, started, or planned during the period June 1, 1983-May 31, 1984. Results are given from field flow tests on three cement plugs installed in vertical boreholes in basalt and on one nearly horizontal cement plug. The horizontal plus seals the borehole very well, as does one of the vertical plugs. The initial hydraulic conductivity of the other two vertical field plugs has been relatively high, and remedial action is described. Laboratory simulations have been performed to study the influence of dynamic loading on cement plug performance, and no detrimental effects have been detected. Conversely, drying of cement plugs, especially over extended periods of time and at elevated temperatures does increase the hydraulic conductivity of the plugs severely, as well as reducing their bond strength along the plug-rock interface. Microscopic inspection, strength and flow tests on boreholes in basalt have been used to identify the characteristics of a drilling-induced damaged zone in basalt. While such a damaged zone exists, and has typical features (e.g., fracture density, size, location, orientation) determined by the drilling method and the rock characteristics, it is thin and not likely to be a preferential flowpath. A comprehensive suite of standard engineering characterization tests has been performed on seven commercial bentonites, complemented by flow tests on bentonite plugs, chemical analysis and swelling tests. Experimental designs are given for the study of size and of thermal effects on plug performance, and a few preliminary results are presented. Results are included from ongoing cement push-out tests and swelling measurements.

Daemen, J.J.K.; Greer, W.B.; Adisoma, G.S.; Fuenkajorn, K.; Sawyer, W.D. Jr.; Yazdandoost, A.; Akgun, H.; Kousari, B.

1985-03-01T23:59:59.000Z

126

A Study of Hydraulic Fracturing Initiation in Transversely Isotropic Rocks  

E-Print Network (OSTI)

Hydraulic fracturing of transverse isotropic reservoirs is of major interest for reservoir stimulation and in-situ stress estimation. Rock fabric anisotropy not only causes in-situ stress anisotropy, but also affects fracture initiation from the wellbore. In this study a semi-analytical method is used to investigate these effects with particular reference to shale stimulation. Using simplifying assumptions, equations are derived for stress distribution around the wellbore's walls. The model is then used to study the fracture initiation pressure variations with anisotropy. A sensitivity analysis is carried out on the impact of Young's modulus and Poisson's ration, on the fracture initiation pressure. The results are useful in designing hydraulic fractures and also can be used to develop information about in-situ rock properties using failure pressure values observed in the field. Finally, mechanical and permeability anisotropy are measured using Pulse Permeameter and triaxial tests on Pierre shale.

Serajian, Vahid

2011-08-01T23:59:59.000Z

127

Some approaches to rock mass hydrofracture theory  

Science Conference Proceedings (OSTI)

A new engineering method has been developed at the Leningrad Mining Institute for defining hot dry rock hydrofracturing parameters. It reflects the structural features of a real jointed rock mass, its gravity-tectonic components of the stress tensor and volume character of deformations, taking into account the inertial effects of hydrodynamics in the non-Darcy zone of radial fluid flow near the injection well, and conversion of the heat energy extracted from hot rock by circulating water partly into filtration-flow additional pressure. Results of calculations are compared to field experiments at Fenton Hill, NM, and are used for the first HDR circulation systems in the USSR.

Dyadkin, Yuri, D.

1991-01-01T23:59:59.000Z

128

Rock of Ages | Open Energy Information  

Open Energy Info (EERE)

of Ages of Ages Jump to: navigation, search Name Rock of Ages Facility Rock of Ages Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Rock of Ages Energy Purchaser Rock of Ages Location Graniteville VT Coordinates 44.14668574°, -72.48180896° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.14668574,"lon":-72.48180896,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

129

Rock bed heat accumulators. Final report  

DOE Green Energy (OSTI)

The principal objectives of the research program on rock bed heat accumulators (or RBHA) are: (1) to investigate the technical and economic feasibility of storing large amounts of thermal energy (in the tens of MWt range) at high temperature (up to 500/sup 0/C) over extended periods of time (up to 6 months) using native earth or rock materials; (2) to conduct studies to establish the performance characteristics of large rock bed heat accumulators at various power and temperature levels compatible with thermal conversion systems; and (3) to assess the materials and environmental problems associated with the operation of such large heat accumulators. Results of the study indicate that rock bed heat accumulators for seasonal storage are both technically and economically feasible, and hence could be exploited in various applications in which storage plays an essential role such as solar power and total energy systems, district and cogeneration heating systems.

Riaz, M.

1977-12-01T23:59:59.000Z

130

Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Details Activities (5) Areas (2) Regions (0) Abstract: Two hot dry rock (HDR) geothermal energy reservoirs have been created by hydraulic fracturing of Precambrian granitic rock between two wells on the west flank of the Valles Caldera in the Jemez Mountains of northern New Mexico. Heat is extracted by injecting water into one well,

131

Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) | Open Energy  

Open Energy Info (EERE)

Zuni Mountains Nm Area (Brookins, 1982) Zuni Mountains Nm Area (Brookins, 1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) Exploration Activity Details Location Zuni Mountains Nm Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radiogenic heat production analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger Silicic Rocks Of The Zuni And Florida Mountains, New Mexico (Usa) Retrieved from "http://en.openei.org/w/index.php?title=Rock_Sampling_At_Zuni_Mountains_Nm_Area_(Brookins,_1982)&oldid=387056" Category: Exploration Activities

132

Method and apparatus for measuring surface density of explosive and inert dust in stratified layers  

SciTech Connect

A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

Sapko, Michael J. (Finleyville, PA); Perlee, Henry E. (Bethel Park, PA)

1988-01-01T23:59:59.000Z

133

Analysis of the causes of the decrease in the electroluminescence efficiency of AlGaInN light-emitting-diode heterostructures at high pumping density  

SciTech Connect

The study is devoted to theoretical explanation of a decrease in the electroluminescence efficiency as the pump current increases, which is characteristic of light-emitting-diode (LED) heterostructures based on AlInGaN. Numerical simulation shows that the increase in the external quantum efficiency at low current densities J {approx} 1 A/cm{sup 2} is caused by the competition between radiative and nonradiative recombination. The decrease in the quantum efficiency at current densities J > 1 A/cm{sup 2} is caused by a decrease in the efficiency of hole injection into the active region. It is shown that the depth of the acceptor energy level in the AlGaN emitter, as well as low electron and hole mobilities in the p-type region, plays an important role in this effect. A modified LED heterostructure is suggested in which the efficiency decrease with the pump current should not occur.

Rozhansky, I. V., E-mail: igor@quantum.ioffe.ru; Zakheim, D. A. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

2006-07-15T23:59:59.000Z

134

Seismic-Scale Rock Physics of Methane Hydrate  

SciTech Connect

We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

Amos Nur

2009-01-08T23:59:59.000Z

135

Deep drilling technology for hot crystalline rock  

SciTech Connect

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

136

Analysis of low stress oil shale Hugoniots  

SciTech Connect

Analysis of low stress Hugoniot data on Anvil Points oil shale was accomplished through careful categorization of data depending upon density. Density is directly related to kerogen content and kerogen content is a strong variable in determining the Hugoniot. For a given density (kerogen content), the shock velocity-particle velocity data show a minimum in shock velocity believed related to yielding in the rock constituent of the oil shale. Low stress Hugoniot data blend smoothly with high pressure data. Further data selection permitted evaluation of the orientation dependence (approximately 15 percent in wave speed) of the shock velocity. Wave propagation speed in a direction normal to the bedding planes is less than that parallel to the bedding planes. A weak minimum in wave speed occurs between 0 and 45/sup 0/.

Munson, D.E.

1977-10-01T23:59:59.000Z

137

The nature of fire-cracked rock: new insights from ethnoarchaeological and laboratory experiments  

E-Print Network (OSTI)

Fire-cracked rock (FCR) is the archaeological by-product of the systemic use of hot rocks for cooking and heating purposes. As a record of various cooking and heating facilities, FCR has substantial potential for addressing research questions on past settlement and subsistence systems. To be able to address these questions requires reliable methods that can identify or infer how a given FCR was used. A series of ethnoarchaeological replication experiments are conducted in order to improve the understanding of the geothennodynamics of FCR production. FCR from two experimental data sets are cut to expose flat surfaces that are inspected for thermal-weathering characteristics under low-power magnification. Analytical results indicate that rock structure and the length of heat application have the most control over thermal weathering. The five most important rock structure characteristics are (1) strength of the bond between grains/crystals, (2) degree of porosity, (3) grain/crystal mineralogy, (4) presence of discontinuities, and (5) grain size; thin section analysis can identify these characteristics for any rock sample. The length of heat application varies dependent on the type of cooking or heating facility, for instance, a typical earth oven remains hot for a longer duration than a typical stone-boil facility; multiple uses of a rock in a facility also increases the sum total of heat application. In broad terms, experimental tests indicate igneous rock types withstand thermal weathering better than metamorphic or sedimentary rock types. Ethnoarchaeological results are applied to six archaeological FCR features, and provide new insights on the use-history of five of the features. Microscopic observations of archaeological FCR also all for the re-evaluation of the current model which explains the occurrence of various FCR shape types within features.

Jackson, Michael A

1998-01-01T23:59:59.000Z

138

Rock-brine chemical interactions. Final report  

DOE Green Energy (OSTI)

The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

Not Available

1982-02-01T23:59:59.000Z

139

Rock melting tool with annealer section  

DOE Patents (OSTI)

A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

Bussod, Gilles Y. (Santa Fe, NM); Dick, Aaron J. (Oakland, CA); Cort, George E. (Montrose, CO)

1998-01-01T23:59:59.000Z

140

Category:Little Rock, AR | Open Energy Information  

Open Energy Info (EERE)

AR AR Jump to: navigation, search Go Back to PV Economics By Location Media in category "Little Rock, AR" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Little Rock AR Entergy Arkansas Inc.png SVFullServiceRestauran... 71 KB SVHospital Little Rock AR Entergy Arkansas Inc.png SVHospital Little Rock... 69 KB SVLargeHotel Little Rock AR Entergy Arkansas Inc.png SVLargeHotel Little Ro... 70 KB SVLargeOffice Little Rock AR Entergy Arkansas Inc.png SVLargeOffice Little R... 71 KB SVMediumOffice Little Rock AR Entergy Arkansas Inc.png SVMediumOffice Little ... 68 KB SVMidriseApartment Little Rock AR Entergy Arkansas Inc.png SVMidriseApartment Lit... 70 KB SVOutPatient Little Rock AR Entergy Arkansas Inc.png SVOutPatient Little Ro...

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Summary - Hot Dry Rock R&D Strategies and Applications  

DOE Green Energy (OSTI)

In geothermal energy technology, the hydrothermal systems rely on volcanic hot rocks being fortuitously co-located with an adequate supply of natural ground water, usually at some considerable depth within the earth. This represents essentially two accidents in the same place, and the occurrence is relatively rare. Yellowstone Park and the desert valley of southern California are the most noteworthy US. examples. Since the heat is the energy needed, if we could just get the water down to it and back. Well, that's what is being done with the hot dry rock program. A well is drilled down to where there is adequate heat in the rocks. The well is then pressurized until the rock fractures creating what amounts to a reservoir full of hot, shattered rock. Finally, a well is drilled into the reservoir and water is pumped in one well, heated by the rock, and taken out through the other well at useful temperatures and pressures. We are getting ready to run significant long-term flow tests at the Fenton Hill Hot Dry Rock site west of Los Alamos, New Mexico. We expect the operational information to provide the data to forecast the energy life of the wells as a production facility. This kind of resource is much more common than regular geothermal resources. Robert H. Hendron described the Long Term Flow Test and reservoir studies for which the project is preparing. A shortfall of available funding has slowed preparations, delaying the start of that test. The test is planning to gather data for more definitive reservoir modeling with energy availability or reservoir lifetime of primary interest. Other interests include geochemistry and tracer studies, microseismic response, water requirements and flow impedance which relates directly to the pumping power required. Progress has been made in modeling studies, chemically reactive tracer techniques, and in improvements in acoustic or microseismic event analysis. Donald W. Brown discussed reservoir modeling as it relates to production management of the HDR well. For wells which are fracture dominated rather than matrix-permeability controlled, a knowledge of the pressure-dependent permeability of the interconnected system of natural joints (or pre-existing fractures is critical to long-term power production from the wells) through optimized pressure management. It was mentioned that a knowledge of the pressure-dependent joint permeability could aid in designing more appropriate secondary recovery strategies in petroleum reservoirs, or reinjection I procedures of geothermal reservoirs. Dr. Bruce A. Robinson discussed the development of fluid flow and transport models for simulation of HDR geothermal reservoirs. These models are also expected to provide accurate predictions of long-term behavior and help in the development of strategies for reservoir improvement and operation. Two approaches were discussed. The discrete fracture approach is based on a random fracture network subject to prescribed statistical properties of the fracture set. It is used to simulate steady state fluid flow and solute transport. The other approach used the continuum approximation. This type of model is appropriate when the reservoir consists of many interconnected fractures, as is the case at Fenton Hill.

Tennyson, George P..

1989-03-21T23:59:59.000Z

142

The oil and gas potential of southern Bolivia: Contributions from a dual source rock system  

Science Conference Proceedings (OSTI)

The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

Hartshorn, K.G. [Chevron Petroleum Company of Colombia, Santafe de Bogota (Colombia)

1996-08-01T23:59:59.000Z

143

Rim Rock Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Rim Rock Wind Farm Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NaturEner Developer NaturEner Energy Purchaser San Diego Gas & Electric Location Glacier and Toole Counties MT Coordinates 48.779564°, -112.061291° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.779564,"lon":-112.061291,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Hot-dry-rock geothermal resource 1980  

DOE Green Energy (OSTI)

The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

Heiken, G.; Goff, F.; Cremer, G. (ed.)

1982-04-01T23:59:59.000Z

145

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

Brown, D.W.

1997-11-11T23:59:59.000Z

146

Segmentation of cracks in shale rock  

Science Conference Proceedings (OSTI)

In this paper the use of morphological connected filters are studied for segmenting sheet- and thread-like cracks in images of shale rock. A volume formed from a stack of 2-D X-ray images is processed using 3-D attributes. The shape-preserving property ...

Erik R. Urbach; Marina Pervukhina; Leanne Bischof

2011-07-01T23:59:59.000Z

147

STANFORD ROCK PHYSICS BOREHOLE GEOPHYSICS PROJECT  

E-Print Network (OSTI)

TABLE OF CONTENTS A: Rock Physics and Geology. Pressure-solution models and the velocity......................................................... A3 Pressure trends of compressional-and shear-wave velocities measured measured in sands to 20 MPA.....................................................C3 Properties of pore fluids at very high pressures from equations of state. Walls & Dvorkin

Nur, Amos

148

Storage capacity in hot dry rock reservoirs  

DOE Patents (OSTI)

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

149

Transfer of hot dry rock technology  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Development Program has focused worldwide attention on the facts that natural heat in the upper part of the earth's crust is an essentially inexhaustible energy resource which is accessible almost everywhere, and that practical means now exist to extract useful heat from the hot rock and bring it to the earth's surface for beneficial use. The Hot Dry Rock Program has successfully constructed and operated a prototype hot, dry rock energy system that produced heat at the temperatures and rates required for large-scale space heating and many other direct uses of heat. The Program is now in the final stages of constructing a larger, hotter system potentially capable of satisfying the energy requirements of a small, commercial, electrical-generating power plant. To create and understand the behavior of such system, it has been necessary to develop or support the development of a wide variety of equipment, instruments, techniques, and analyses. Much of this innovative technology has already been transferred to the private sector and to other research and development programs, and more is continuously being made available as its usefulness is demonstrated. This report describes some of these developments and indicates where this new technology is being used or can be useful to industry, engineering, and science.

Smith, M.C.

1985-11-01T23:59:59.000Z

150

Density-dependent covariant energy density functionals  

Science Conference Proceedings (OSTI)

Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

Lalazissis, G. A. [Physics Department, Aristotle University of Thessaloniki, GR-54124 (Greece)

2012-10-20T23:59:59.000Z

151

Esimation of field-scale thermal conductivities of unsaturated rocks from in-situ temperature data  

E-Print Network (OSTI)

vicinity of the heat source, and rock temperature exceededand the dry rock near the heat source. The other differencesources, heat transfer takes place through the wet rock (see

Mukhopadhyay, Sumit; Tsang, Yvonne W.; Birkholzer, Jens T.

2008-01-01T23:59:59.000Z

152

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

Index Appendix 1. Sources of Information Rock properties -various sources, and list of mines in crystalline rock whichoz SOURCE EOLOGY INFORMATION MINERALOGY OF HOST ROCKS GULF

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

153

Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock  

E-Print Network (OSTI)

toward the heat source, or into the rock underlying the heatcharacterizing DNAPL source zones in fractured rock at theby a point source injection in fractured rock with multiple

Faybishenko, Boris; Witherspoon, Paul A.

2004-01-01T23:59:59.000Z

154

Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics  

E-Print Network (OSTI)

systems and rock fall source and impact areas, it possible to a rock fall source area in the possible to a rock fall source area. There are

Zimmer, Valerie Louise

2011-01-01T23:59:59.000Z

155

Little Rock, Arkansas Small Business IT Security Workshop  

Science Conference Proceedings (OSTI)

... Twitter, Facebook & Blogs Free Workshop helps Small Business Owners Reduce Cyber Threats LITTLE ROCK--The US ...

2013-08-19T23:59:59.000Z

156

Simulation of water-rock interaction in the Yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to simulate the chemical and hydrological effects of water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to simulate the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, Patrick F.; Salah, Sonia; Spycher, Nicolas; Sonnenthal, Eric L.

2003-04-28T23:59:59.000Z

157

Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT  

DOE Green Energy (OSTI)

The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite.

Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

2003-04-28T23:59:59.000Z

158

Rock River Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Rock River Wind Farm Facility Rock River Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind Energy Developer SeaWest Energy Purchaser PacifiCorp Location Arlington and Carbon Counties WY Coordinates 41.6996°, -107.003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6996,"lon":-107.003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Low Pore Connectivity in Natural Rock  

SciTech Connect

As repositories for CO? and radioactive waste, as oil and gas reservoirs, and as contaminated sites needing remediation, rock formations play a central role in energy and environmental management. The connectivity of the rock's porespace strongly affects fluid flow and solute transport. This work examines pore connectivity and its implications for fluid flow and chemical transport. Three experimental approaches (imbibition, tracer concentration profiles, and imaging) were used in combination with network modeling. In the imbibition results, three types of imbibition slope [log (cumulative imbibition) vs. log (imbibition time)] were found: the classical 0.5, plus 0.26, and 0.26 transitioning to 0.5. The imbibition slope of 0.26 seen in Indiana sandstone, metagraywacke, and Barnett shale indicates low pore connectivity, in contrast to the slope of 0.5 seen in the well-connected Berea sandstone. In the tracer profile work, rocks exhibited different distances to the plateau porosity, consistent with the pore connectivity from the imbibition tests. Injection of a molten metal into connected pore spaces, followed by 2-D imaging of the solidified alloy in polished thin sections, allowed direct assessment of pore structure and lateral connection in the rock samples. Pore-scale network modeling gave results consistent with measurements, confirming pore connectivity as the underlying cause of both anomalous behaviors: imbibition slope not having the classical value of 0.5, and accessible porosity being a function of distance from the edge. A poorly connected porespace will exhibit anomalous behavior in fluid flow and chemical transport, such as a lower imbibition slope (in airwater system) and diffusion rate than expected from classical behavior.

Hu, Qinhong; Ewing, Robert P.; Dultz, Stefan

2012-05-15T23:59:59.000Z

160

Dynamic rock fragmentation: oil shale applications  

SciTech Connect

Explosive rock fragmentation techniques used in many resource recovery operations have in the past relied heavily upon traditions of field experience for their design. As these resources, notably energy resources, become less accessible, it becomes increasingly important that fragmentation techniques be optimized and that methods be developed to effectively evaluate new or modified explosive deployment schemes. Computational procedures have significant potential in these areas, but practical applications must be preceded by a thorough understanding of the rock fracture phenomenon and the development of physically sound computational models. This paper presents some of the important features of a rock fragmentation model that was developed as part of a program directed at the preparation of subterranean beds for in situ processing of oil shale. The model, which has been implemented in a two-dimensional Lagrangian wavecode, employs a continuum damage concept to quantify the degree of fracturing and takes into account experimental observations that fracture strength and fragment dimensions depend on tensile strain rates. The basic premises of the model are considered in the paper as well as some comparisons between calculated results and observations from blasting experiments.

Boade, R. R.; Grady, D. E.; Kipp, M. E.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Gage for measuring displacements in rock samples  

DOE Patents (OSTI)

A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

Holcomb, David J. (Albuquerque, NM); McNamee, Michael J. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

162

Los Alamos hot dry rock geothermal project  

DOE Green Energy (OSTI)

The greatest potential for geothermal energy is the almost unlimited energy contained in the vast regions of hot, but essentially impermeable, rock within the first six or seven km of the Earth's crust. For the past five years, the Los Alamos Scientific Laboratory has been investigating and developing a practical, economical and environmentally acceptable method of extracting this energy. By early 1978, a 10 MW (thermal) heat extraction experiment will be in operation. In the Los Alamos concept, a man-made geothermal reservoir is formed by drilling into a region of suitably hot rock, and then creating within the rock a very large surface for heat transfer by large-scale hydraulic-fracturing techniques. After a circulation loop is formed by drilling a second hole to intersect the fractured region, the heat contained in this reservoir is brought to the surface by the buoyant closed-loop circulation of water. The water is kept liquid throughout the loop by pressurization, thereby increasing the rate of heat transport up the withdrawal hole compared to that possible with steam.

Brown, D.W.; Pettitt, R.A.

1977-01-01T23:59:59.000Z

163

Development of hot dry rock resources  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is the only U.S. field test of this geothermal resource. In the LASL concept, a man-made geothermal reservoir would be formed by drilling a deep hole into relatively impermeable hot rock, creating a large surface area for heat transfer by fracturing the rock hydraulically, then drilling a second hole to intersect the fracture to complete the circulation loop. In 1974, the first hole was drilled to a depth of 2929 m (9610 ft) and a hydraulic fracture was produced near the bottom. In 1975, a second hole was directionally drilled to intersect the fracture. Although the desired intersection was not achieved, a connection was made through which water was circulated. After a year's study of the fracture system, drilling began again in April 1977 and an improved connection was achieved. In September of 1977 a 5 MW (thermal) heat extraction and circulation experiment was conducted for 100 h as a preliminary test of the concept. An 1800-h circulation experiment was concluded on April 13, 1978 to determine temperature-drawdown, permeation water loss and flow characteristics of the pressurized reservoir, to examine chemistry changes in the circulating fluid, and to monitor for induced seismic effects.

Pettitt, R.A.; Tester, J.W.

1978-01-01T23:59:59.000Z

164

Gage for measuring displacements in rock samples  

DOE Patents (OSTI)

A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

Holcomb, D.J.; McNamee, M.J.

1985-07-18T23:59:59.000Z

165

Calculation of explosive rock breakage: oil shale  

SciTech Connect

Improved efficiency in explosive rock breakage becomes increasingly important as mining costs and the need to tap underground resources continue to grow. Industry has recognized this need for many years and has done a great deal in developing new products and new blasting techniques, generally by purely empirical means. One particular application that has received added attention within the past several years, and one that lends itself to a more objective theoretical study, is explosive fracture of oil shale for conventional and in situ fossil energy recovery. Numerical calculation of oil shale fracturization with commercial explosives has the potential to add to an objective understanding of the breakage process. Often, in such numerical studies, only one or two parts of the total problem are addressed with any degree of sophistication or completeness. Here an attempt is made to treat the entire problem, i.e., explosive characterization, constitutive behavior of intact rock, and a mathematical description of rock fracture. The final results are two-dimensional calculations of explosively induced fracture damage in oil shale.

Johnson, J.N.

1979-01-01T23:59:59.000Z

166

Artificial geothermal reservoirs in hot volcanic rock  

SciTech Connect

S>Some recent results from the Los Alamos program in which hydraulic fracturing is used for the recovery of geothermal energy are discussed. The location is about 4 kilometers west and south of the ring fault of the enormous Jemez Caldera in the northcentral part of New Mexico. It is shown that geothermal energy may be extracted from hot rock that does not contain circulating hot water or steam and is relatively impermeable. A fluid is pumped at high pressure into an isolated section of a wellbore. If the well is cased the pipe in this pressurized region is perforated as it is in the petroleum industry, so that the pressure may be applied to the rock, cracking it. A second well is drilled a few hundred feet away from the first. Cold water is injected through the first pipe, circulates through the crack, and hot water returns to the surface through the second pipe. Results are described and circumstances are discussed under which artiflcial geothermal reservoirs might be created in the basaltic rock of Hawaii. (MCW)

Aamodt, R.L.

1974-02-08T23:59:59.000Z

167

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

During Fiscal Year 1987, emphasis in the Hot Dry Rock Geothermal Energy Development Program was on preparations for a Long-Term Flow Test'' of the Phase II'' or Engineering'' hot dry rock energy system at Fenton Hill, New Mexico. A successful 30-day flow test of the system during FY86 indicated that such a system would produce heat at a temperature and rate that could support operation of a commercial electrical power plant. However, it did not answer certain questions basic to the economics of long-term operation, including the rate of depletion of the thermal reservoir, the rate of water loss from the system, and the possibility of operating problems during extended continuous operation. Preparations for a one-year flow test of the system to answer these and more fundamental questions concerning hot dry rock systems were made in FY87: design of the required surface facilities; procurement and installation of some of their components; development and testing of slimline logging tools for use through small-diameter production tubing; research on temperature-sensitive reactive chemical tracers to monitor thermal depletion of the reservoir; and computer simulations of the 30-day test, extended to modeling the planned Long-Term Flow Test. 45 refs., 34 figs., 5 tabs.

Smith, M.C.; Hendron, R.H.; Murphy, H.D.; Wilson, M.G.

1989-12-01T23:59:59.000Z

168

Experimentally determined rock-fluid interactions applicable to a natural hot-dry-rock geothermal system  

DOE Green Energy (OSTI)

The field program cnsists of experiments in which hot rock of low permeability is hydraulically fractured between two wellbores. Water is circulated from one well to the other through the fractured hot rock. Our field experiments are designed to test reservoir engineering parameters such as heat-extraction rates, water-loss rates, flow characteristics including impedance and buoyancy, seismic activity, and fluid chemistry. Laboratory experiments were designed to provide information on the mineral-water reactivity encountered during the field program. Two experimental circulation systems tested the rates of dissolution and alteration during dynamic flow. Solubility of rock in agitated systems was studied. Moreover, pure minerals, samples of the granodiorite from the actual reservoir, and Tijeras Canyon granite have been reacted with distilled water and various solutions of NaCl, NaOH, and Na/sub 2/CO/sub 3/. The results of these experimental systems are compared to the observations made in field experiments done within the hot dry rock reservoir at a depth of approximately 3 km where the initial rock temperature was 150 to 200/sup 0/C.

Charles, R.W.; Grigsby, C.O.; Holley, C.E. Jr.; Tester, J.W.; Blatz, L.A.

1981-01-01T23:59:59.000Z

169

TWO-DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS  

NLE Websites -- All DOE Office Websites (Extended Search)

DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS DIMENSIONAL MODELING OF LASER SPALLATION DRILLING OF ROCKS P532 Zhiyue Xu, Yuichiro Yamashita 1 , and Claude B. Reed Argonne National Laboratory, Argonne, IL 60439, USA 1 Now with Kyushu University, Japan Abstract High power lasers can weaken, spall, melt and vaporize natural earth materials with thermal spallation being the most energy efficient rock removal mechanism. Laser rock spallation is a very complex phenomenon that depends on many factors. Computer numerical modeling would provides great tool to understand the fundamental of this complex phenomenon, which is crucial to the success of its applications. Complexity of modeling laser rock spallation is due to: 1) rock is a porous media, to which traditional theories of heat transfer and rock mechanics can not be directly

170

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

171

Mechanical and acoustic properties of weakly cemented granular rocks  

SciTech Connect

This paper presents the results of laboratory measurements on the mechanical and acoustic properties of weakly cemented granular rock. Artificial rock samples were fabricated by cementing sand and glass beads with sodium silicate binder. During uniaxial compression tests, the rock samples showed stress-strain behavior which was more similar to that of soils than competent rocks, exhibiting large permanent deformations with frictional slip. The mechanical behavior of the samples approached that of competent rocks as the amount of binder was increased. For very weak samples, acoustic waves propagating in these rocks showed very low velocities of less than 1000 m/sec for compressional waves. A borehole made within this weakly cemented rock exhibited a unique mode of failure that is called ''anti-KI mode fracture'' in this paper. The effect of cementation, grain type, and boundary conditions on this mode of failure was also examined experimentally.

Nakagawa, S.; Myer, L.R.

2001-05-09T23:59:59.000Z

172

LINDENS: A program for lineament length and density ...  

Science Conference Proceedings (OSTI)

... or horizontal strata, lineaments are related to fractures and faults ... give an idea of the fracture pattern of ... and density analysis of recent fracturing in the ...

2013-07-15T23:59:59.000Z

173

047 Glass-Ceramic Composites for High Energy Density Capacitors  

Science Conference Proceedings (OSTI)

047 Glass-Ceramic Composites for High Energy Density Capacitors .... 150 Analysis of Hf-Ta Alloys for Oxidation Protection in Ultra High Temperature...

174

Organic matter characteristics of CenomanianTuronian source rocks: implications for petroleum and gas  

E-Print Network (OSTI)

and shale source rocks . In: Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (Ed. by G of petroleum . In: Petroleum Geochemistry and Source Rock Potential of Carbonate Rocks (Ed. by G. Palacas of petroleum in Mesozoic reservoirs to carbonate source rocks of Jurassic Smackover Formation, southwestern

Paris-Sud XI, Université de

175

Density | OpenEI  

Open Energy Info (EERE)

Density Density Dataset Summary Description This dataset is part of a larger internal dataset at the National Renewable Energy Laboratory (NREL) that explores various characteristics of large solar electric (both PV and CSP) facilities around the United States. This dataset focuses on the land use characteristics for solar facilities that are either under construction or currently in operation. Source Land-Use Requirements for Solar Power Plants in the United States Date Released June 25th, 2013 (5 months ago) Date Updated Unknown Keywords acres area average concentrating solar power csp Density electric hectares km2 land land requirements land use land-use mean photovoltaic photovoltaics PV solar statistics Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon Master Solar Land Use Spreadsheet (xlsx, 1.5 MiB)

176

Single-Nucleon Densities  

NLE Websites -- All DOE Office Websites (Extended Search)

Densities Densities This web page presents single-nucleon densities calculated for a variety of nuclei in the range A=2-10 with some preliminary results for A=11,12. These are from variational Monte Carlo calculations (VMC) using the Argonne v18 two-nucleon and Urbana X three-nucleon potentials (AV18+UX). (Urbana X is intermediate between the Urbana IX and Illinois-7 models; it has the form of UIX supplemented with a two-pion S-wave piece, while the strengths of its terms are taken from the IL7 model. It does NOT have the three-pion-ring term of IL7.) These VMC wave functions are the starting trial functions for a number of recent Green's function Monte Carlo (GFMC) calculations: Brida, et al., Phys. Rev. C 84, 024319 (2011); McCutchan, et al., Phys. Rev. C 86, 024315 (2012);

177

An evaluation of near-field host rock temperatures for a spent fuel repository  

SciTech Connect

A repository heat transfer analysis has been performed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy's Performance Assessment Scientific Support Program. The objective of this study was to evaluate the near-field thermal environmental conditions for a spent fuel repository system. A spent fuel logistics analysis was performed using a waste management system simulation model, WASTES-II, to evaluate the thermal characteristics of spent fuel received at the repository. A repository-scale thermal analysis was performed using a finite difference heat transfer code, TEMPEST, to evaluate the near-field host rock temperature. The calculated temporal and spatial distributions of near-field host rock temperatures provide input to the repository source term model in evaluations of engineered barrier system performance. 9 refs., 10 figs., 2 tabs.

Altenhofen, M.K.; Lowery, P.S.

1988-11-01T23:59:59.000Z

178

An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples  

SciTech Connect

Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an axisymmetric diffusion experiment coupled with tracer profiling may be a promising approach to estimate of diffusion anisotropy of sedimentary rocks.

Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

2011-02-01T23:59:59.000Z

179

MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS  

SciTech Connect

This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

Gary Mavko

2000-10-01T23:59:59.000Z

180

Hot dry rock venture risks investigation:  

DOE Green Energy (OSTI)

This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

Not Available

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

Alger, T.W.

1994-09-06T23:59:59.000Z

182

Multiple density layered insulator  

DOE Patents (OSTI)

A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

Alger, Terry W. (Tracy, CA)

1994-01-01T23:59:59.000Z

183

Rock mechanics contributions from defense programs  

SciTech Connect

An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

Heuze, F.E.

1992-02-01T23:59:59.000Z

184

Hot Dry Rock at Fenton Hill, USA  

DOE Green Energy (OSTI)

The Hot Dry Rock Geothermal Energy Project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program, operated by the Los Alamos National Laboratory, has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the Precambrian basement rock at Fenton Hill, outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase 1, 1978--1980) producing up to 5 MWt at 132/degree/C. A second (Phase 2) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/degree/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development. 17 refs., 3 figs., 1 tab.

Hendron, R.H.

1988-01-01T23:59:59.000Z

185

The US Hot Dry Rock project  

DOE Green Energy (OSTI)

The Hot Dry Rock geothermal energy project began in the early 1970's with the objective of developing a technology to make economically available the large ubiquitous thermal energy of the upper earth crust. The program has been funded by the Department of Energy (and its predecessors) and for a few years with participation by West Germany and Japan. An energy reservoir was accessed by drilling and hydraulically fracturing in the precambrian basement rock outside the Valles Caldera of north-central New Mexico. Water was circulated through the reservoir (Phase I, 1978-1980) producing up to 5 MWt at 132/sup 0/C. A second (Phase II) reservoir has been established with a deeper pair of holes and an initial flow test completed producing about 10 MWt at 190/sup 0/C. These accomplishments have been supported and paralleled by developments in drilling, well completion and instrumentation hardware. Acoustic or microseismic fracture mapping and geochemistry studies in addition to hydraulic and thermal data contribute to reservoir analyses. Studies of some of the estimated 430,000 quads of HDR resources in the United States have been made with special attention focused on sites most advantageous for early development.

Hendron, R.H.

1987-01-01T23:59:59.000Z

186

Seepage into drifts in unsaturated fractured rock at Yucca Mountain  

E-Print Network (OSTI)

Fractured Rock at Yucca Mountain Jens Birkholzer, Guomin Lrepository site at Yucca Mountain, Nevada, as it is locatedclimate conditions at Yucca Mountain. The numerical study is

Birkholzer, Jens; Li, Guomin; Tsang, Chin-Fu; Tsang, Yvonne

1998-01-01T23:59:59.000Z

187

Rock Sampling At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling...

188

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Open Energy Info (EERE)

Technologies Project Type Topic 2 Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more...

189

Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...  

Open Energy Info (EERE)

Hot Springs And Associated Deposits In Yellowstone National Park Using Aster And Aviris Remote Sensing Retrieved from "http:en.openei.orgwindex.php?titleRockSamplingAtYel...

190

Using Ornamental Rock Waste in the Manufacture of Pressed Brick ...  

Science Conference Proceedings (OSTI)

... is a major producer of rock trimmest, with its production destined largely for export. ... Application of Electrospun Gas Diffusion Nanofibre-membranes in the...

191

Jazz and Blues Legends Rock the Northeast, Help Save Louisiana ...  

U.S. Energy Information Administration (EIA)

Jazz and Blues Legends Rock the Northeast, Help Save Louisiana's Coastal Wetlands. 6.8.2006 Neville Brothers, Dr. John and Mavis Staples Highlight the ...

192

ROCK MASS CHARACTERIZATION FOR STORAGE OF NUCLEAR WASTE IN GRANITE  

E-Print Network (OSTI)

effect of pressure on electrical resistivity of rocks. J..exceptionally high electrical resistivity and low waterwater content is the electrical resistivity which in igneous

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

193

ROCK INSTRUMENTATION PROBLEMS EXPERIENCED DURING IN-SITU HEATER TESTS  

E-Print Network (OSTI)

and R. Haught, Instrumentation evaluation, calibration, and27 - 30,1979. ROCK INSTRUMENTATION PROBLEMS EXPERIENCEDdiscussed here,l INSTRUMENTATION AND DATA ACQUISITION SYSTEM

Binnall, E.

2012-01-01T23:59:59.000Z

194

Paradox Basin source rock, southeastern Utah : organic geochemical characterization of Gothic and Chimney Rock units, Ismay and Desert Creek zones, within a sequence stratigraphic framework.  

E-Print Network (OSTI)

??The Chimney Rock and Gothic units of the Pennsylvanian Paradox Formation have long been considered source rocks for the rich hydrocarbon fields of southeastern Utah. (more)

Tischler, Keith Louris

2012-01-01T23:59:59.000Z

195

Geochemistry of Sediments from the Rock Analysis Storage System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Email Unique Identifier DOI-26 Public Access Level public Data Dictionary included in metadata Data Download URL http:tin.er.usgs.govplutosoil...

196

Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

source History View New Pages Recent Changes All Special Pages Semantic SearchQuerying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook...

197

Rock Rapids Municipal Utility | Open Energy Information  

Open Energy Info (EERE)

Rapids Municipal Utility Rapids Municipal Utility Jump to: navigation, search Name Rock Rapids Municipal Utility Place Iowa Utility Id 16206 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Power (Single-Phase) Commercial Commercial Power (Three-Phase) Commercial Residential Power Residential Average Rates Residential: $0.0807/kWh Commercial: $0.0633/kWh Industrial: $0.0899/kWh

198

High-Velocity Rocks Final Report  

DOE Green Energy (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

199

Hot dry rock Phase II reservoir engineering  

DOE Green Energy (OSTI)

Early attempts to hydraulically fracture and connect two wells drilled at the Hot Dry Rock site at Fenton Hill in New Mexico failed. Microearthquakes triggered by hydraulic fracturing indicated that the fracture zones grew in unexpected directions. Consequently one of the wells was sidetracked at a depth of 2.9 km; was redrilled into the zones of most intense microseismic activity; and a flow connection was achieved. Hydraulic communication was improved by supplemental fracturing using recently developed high temperature and high pressure open hole packers. Preliminary testing indicates a reservoir with stimulated joint volume which already surpasses that attained in the earlier phase I reservoir after several years of development. 12 refs., 6 figs.

Murphy, H.D.

1985-01-01T23:59:59.000Z

200

Influence of Rock Types on Seismic Monitoring of CO2 Sequestration in Carbonate Reservoirs  

E-Print Network (OSTI)

Although carbonates hold more than 60 percent of the world's oil reserves, they, nevertheless, exhibit much lower average recovery factor values than terrigenous sandstone reservoirs. Thus, utilization of advanced enhanced oil recovery (EOR) techniques such as high pressure CO2 injection may normally be required to recover oil in place in carbonate reservoirs. This study addresses how different rock types can influence the seismic monitoring of CO2 sequestration in carbonates. This research utilizes an elastic parameter, defined in a rock physics model of poroelasticity and so-called as the frame flexibility factor, to successfully quantify the carbonate pore types in core samples available from the Great Bahama Bank (GBB). This study shows that for carbonate samples of a given porosity the lower the frame flexibility factors the higher is the sonic wave velocity. Generally, samples with frame flexibility values of 4 are rocks with intercrystalline and microporosity. Hence, different carbonate pore geometries can be quantitatively predicted using the elastic parameters capable of characterizing the porous media with a representation of their internal structure on the basis of the flexibility of the frame and pore connectivity. In this research, different fluid substitution scenarios of liquid and gaseous CO2 saturations are demonstrated to characterize the variations in velocity for carbonate-specific pore types. The results suggest that the elastic response of CO2 flooded rocks is mostly governed by pore pressure conditions and carbonate rock types. Ultrasonic P-wave velocities in the liquid-phase CO2 flooded samples show a marked decrease in the order of 0.6 to 16 percent. On the contrary, samples flooded with gaseous-phase CO2 constitute an increase in P-wave velocities for moldic and intraframe porosities, while establishing a significant decrease for samples with intercrystalline and micro-porosities. Such velocity variations are explained by the stronger effect of density versus compressibility, accounting for the profound effect of pore geometries on the acoustic properties in carbonates. The theoretical results from this research could be a useful guide for interpreting the response of time-lapse seismic monitoring of carbonate formations following CO2 injection at depth. In particular, an effective rock-physics model can aid in better discrimination of the profound effects of different pore geometries on seismic monitoring of CO2 sequestration in carbonates.

Mammadova, Elnara

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Density Functional Theory Approach to Nuclear Fission  

E-Print Network (OSTI)

The Skyrme nuclear energy density functional theory (DFT) is used to model neutron-induced fission in actinides. This paper focuses on the numerical implementation of the theory. In particular, it reports recent advances in DFT code development on leadership class computers, and presents a detailed analysis of the numerical accuracy of DFT solvers for near-scission calculations.

N. Schunck

2012-12-13T23:59:59.000Z

202

Determining inert content in coal dust/rock dust mixture  

DOE Patents (OSTI)

A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

Sapko, Michael J. (Finleyville, PA); Ward, Jr., Jack A. (Oakmont, PA)

1989-01-01T23:59:59.000Z

203

High Energy Density Capacitors  

SciTech Connect

BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

None

2010-07-01T23:59:59.000Z

204

Property:HostRockLithology | Open Energy Information  

Open Energy Info (EERE)

HostRockLithology HostRockLithology Jump to: navigation, search Property Name HostRockLithology Property Type String Description Condensed description of the lithology of the reservoir rock. This is a property of type Page. Subproperties This property has the following 14 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area D Desert Peak Geothermal Area G Geysers Geothermal Area H Heber Geothermal Area L Lightning Dock Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area Steamboat Springs Geothermal Area S cont. Stillwater Geothermal Area V Valles Caldera - Sulphur Springs Geothermal Area W Wabuska Hot Springs Geothermal Area Pages using the property "HostRockLithology"

205

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams  

NLE Websites -- All DOE Office Websites (Extended Search)

Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Drilling Large Diameter Holes in Rocks Using Multiple Laser Beams (504) Richard Parker,. Parker Geoscience Consulting, LLC, Arvada, Colorado, USA; Zhiyue Xu and Claude Reed, Argonne National Laboratory, Argonne, Illinois, USA; Ramona Graves, Department of Petroleum Engineering, Colorado School of Mines, Golden, Colorado, USA; Brian Gahan and Samih Batarseh, Gas Technology Institute, Des Plaines, Illinois, USA ABSTRACT Studies on drilling petroleum reservoir rocks with lasers show that modern infrared lasers have the capability to spall (thermally fragment), melt and vaporize natural earth materials with the thermal spallation being the most efficient rock removal mechanism. Although laser irradiance as low as 1000 W/cm 2 is sufficient to spall rock, firing the

206

Property:HostRockAge | Open Energy Information  

Open Energy Info (EERE)

HostRockAge HostRockAge Jump to: navigation, search Property Name HostRockAge Property Type String Description Describes the age of the reservoir rock by epoch, era, or period per available data. This is a property of type Page. Subproperties This property has the following 10 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area D Desert Peak Geothermal Area G Geysers Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area Steamboat Springs Geothermal Area W Wabuska Hot Springs Geothermal Area Pages using the property "HostRockAge" Showing 11 pages using this property. A Amedee Geothermal Area + Mesozoic + B Blue Mountain Geothermal Area + Triassic + C Coso Geothermal Area + Mesozoic +

207

Electrical Conductivity of Soils and Rocks | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electrical Conductivity of Soils and Rocks Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Electrical Conductivity of Soils and Rocks Author J.D. McNeill Organization Geonics Limited Published Geonics Limited, 1980 Report Number TN-5 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Electrical Conductivity of Soils and Rocks Citation J.D. McNeill (Geonics Limited). 1980. Electrical Conductivity of Soils and Rocks. TN-5 Edition. ?: Geonics Limited. Report No.: TN-5. Retrieved from "http://en.openei.org/w/index.php?title=Electrical_Conductivity_of_Soils_and_Rocks&oldid=695344"

208

Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At Coso Geothermal Area (1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Coso Geothermal Area (1995) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Rock Sampling Activity Date 1995 Usefulness not indicated DOE-funding Unknown Notes Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material. References Lutz, S.J.; Moore, J.N. ; Copp, J.F. (1 June 1995) Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area,

209

Property:CapRockLithology | Open Energy Information  

Open Energy Info (EERE)

CapRockLithology CapRockLithology Jump to: navigation, search Property Name CapRockLithology Property Type String Description Condensed description of the lithology of the cap rock. Subproperties This property has the following 6 subproperties: B Beowawe Hot Springs Geothermal Area Brady Hot Springs Geothermal Area D Desert Peak Geothermal Area E East Mesa Geothermal Area H Heber Geothermal Area S Salton Sea Geothermal Area Pages using the property "CapRockLithology" Showing 6 pages using this property. A Amedee Geothermal Area + volcanic; lacustrine sediments + B Blue Mountain Geothermal Area + Hydrothermal alteration layer + G Geysers Geothermal Area + Hydrothermal alteration layer + K Kilauea East Rift Geothermal Area + Overlapping a'a' and pahoehoe flows + L Long Valley Caldera Geothermal Area + Metasedimentary Landslide Block; Hydrothermal Alteration Layer +

210

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program Rock Hill Utilities - Water Heater and Heat Pump Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Water Heater: up to $275 Heat Pump Replacement: $400 Provider Rock Hill Utilities Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed above. If both the water heater and heat pump are purchased then the customer may qualify for the Great Rate program. The Great Rate program will add a 25% discount to a

211

Anomalous evolution of Ar metastable density with electron density in high density Ar discharge  

SciTech Connect

Recently, an anomalous evolution of argon metastable density with plasma discharge power (electron density) was reported [A. M. Daltrini, S. A. Moshkalev, T. J. Morgan, R. B. Piejak, and W. G. Graham, Appl. Phys. Lett. 92, 061504 (2008)]. Although the importance of the metastable atom and its density has been reported in a lot of literature, however, a basic physics behind the anomalous evolution of metastable density has not been clearly understood yet. In this study, we investigated a simple global model to elucidate the underlying physics of the anomalous evolution of argon metastable density with the electron density. On the basis of the proposed simple model, we reproduced the anomalous evolution of the metastable density and disclosed the detailed physics for the anomalous result. Drastic changes of dominant mechanisms for the population and depopulation processes of Ar metastable atoms with electron density, which take place even in relatively low electron density regime, is the clue to understand the result.

Park, Min; Chang, Hong-Young [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, Shin-Jae; Kim, Jung-Hyung [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon, 305-306 (Korea, Republic of); Shin, Yong-Hyeon

2011-10-15T23:59:59.000Z

212

Thermal Density Functional Theory in Context  

E-Print Network (OSTI)

This chapter introduces thermal density functional theory, starting from the ground-state theory and assuming a background in quantum mechanics and statistical mechanics. We review the foundations of density functional theory (DFT) by illustrating some of its key reformulations. The basics of DFT for thermal ensembles are explained in this context, as are tools useful for analysis and development of approximations. We close by discussing some key ideas relating thermal DFT and the ground state. This review emphasizes thermal DFT's strengths as a consistent and general framework.

Pribram-Jones, Aurora; Gross, E K U; Burke, Kieron

2013-01-01T23:59:59.000Z

213

Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics  

E-Print Network (OSTI)

38 th U.S. Rock Mechanics Symposium. 1321-?1333. 38 th U.S. Rock Mechanics Symposium, 1313-?1320. Introduction to Rock Mechanics. John Wiley and

Zimmer, Valerie Louise

2011-01-01T23:59:59.000Z

214

Full waveform inversion of a 3-D source inside an artificial rock  

E-Print Network (OSTI)

of a 3-D Source Inside an Artificial Rock Albert C. To andof a 3-D source inside an artificial rock plate inof a 3-D source inside an artificial rock plate is

To, A C; Glaser, Steven D

2005-01-01T23:59:59.000Z

215

Charge Density Wave Compounds  

NLE Websites -- All DOE Office Websites (Extended Search)

Fisher Research Group Fisher Research Group Layered Chalcogenides 29 February 2008 Controlling the Wave by Brad Plummer, SLAC Communications Stanford University researchers working in part at SSRL have discovered a novel set of properties pertaining to a compound of materials called tritellurides. These compounds, composed of three atoms of tellurium and a single atom of one of the rare earth elements, demonstrate unique electronic properties that can be controlled by altering the temperature of the material. The tritellurides display phenomena known as charge density waves (CDW). In a normal conductive metal, electrons persist in a "sea" wherein they are evenly distributed and equally available, or conductive. A CDW occurs under certain circumstances and causes the electrons to clump together, lowering their availability, and thereby lowering the compound's conductivity. Tellurium, when crystallized into quasi-two-dimensional planes and combined with rare earth elements, produces a material with CDWs that can be manipulated and controlled.

216

Low density microcellular foams  

DOE Patents (OSTI)

Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

LeMay, James D. (Castro Valley, CA)

1992-01-01T23:59:59.000Z

217

Low density microcellular foams  

DOE Patents (OSTI)

Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

LeMay, James D. (Castro Valley, CA)

1991-01-01T23:59:59.000Z

218

Density Coordinate Mixed Layer Models  

Science Conference Proceedings (OSTI)

The development of mixed layer models in so-called density coordinates is discussed. Density coordinates, or isopycnal coordinates as they are sometimes called, are becoming increasingly popular for use in ocean models due to their highly ...

William K. Dewar

2001-02-01T23:59:59.000Z

219

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

DOE Green Energy (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

220

Modeling rock fracturing in bench-blasting problems  

SciTech Connect

A computational model of rock blasting is being developed to examine the blasting problems associated with in situ oil shale processing. This model, however, will also be useful as a design tool for the traditional problems in rock blasting. The model includes fundamental treatment of both shock-wave propagation and the accumulation of brittle fracture in the rock. As a result, the model accurately predicts the degree and extent of fracturing as functions of design parameters. The model has proven useful for making parametric studies and for evaluation of alternate blast designs. This paper demonstrates the use of the numerical model to simulate the fracturing induced by the detonation of a vertical explosive column near a bench. The fracturing induced by three different explosives indicate that (in the chosen geometry) the most efficient breakage is done by a column of ammonium nitrate and fuel oil mixture (ANFO) used with a toe charge of aluminized ANFO. There was too much unfractured rock left when ANFO was used alone; aluminized ANFO used for the entire explosive column caused excessive fracturing. A final case involves ANFO used alone to fracture a different rock type. This case points out that in a different rock type, the ANFO will not leave excessive unfractured rock.

Kuszmaul, J.S.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hot Dry Rock Geothermal Energy Development Program  

DOE Green Energy (OSTI)

The overall objective of the Hot Dry Rock (HDR) Geothermal Energy Development Program is to determine the technical and economic feasibility of HDR as a significant energy source and to provide a basis for its timely commercial development. Principal operational tasks are those activities required to enable a decision to be made by FY86 on the ultimate commercialization of HDR. These include development and analyis of a 20- to 50-MW Phase II HDR reservoir at Site 1 (Fenton Hill) with the potential construction of a pilot electric generating station, Phase III; selection of a second site with subsequent reservoir development and possible construction of a direct heat utilization pilot plant of at least 30 MW thermal thereon; the determination of the overall domestic HDR energy potential; and the evaluation of 10 or more target prospect areas for future HDR plant development by commercial developers. Phase I of the Los Alamos Scientific Laboratory's Fenton Hill project was completed. Phase I evaluated a small subterranean system comprised of two boreholes connected at a depth of 3 km by hydraulic fracturing. A closed-loop surface system has been constructed and tests involving round-the-clock operation have yielded promising data on heat extraction, geofluid chemistry, flow impedance, and loss of water through the underground reservoir between the two holes, leading to cautions optimism for the future prospects of private-sector HDR power plants. (MHR)

Franke, P.R.

1979-01-01T23:59:59.000Z

222

Relative basicities of the oxygen sites in [V{sub 10}O{sub 28}]{sup 6-}. An analysis of the ab initio determined distributions of the electrostatic potential and of the Laplacian of charge density  

SciTech Connect

An ab initio SCF wave function has been generated for the ground state of the [V{sub 10}V{sub 28}]{sup 6-} ion, with a basis set of triple-zeta quality for the valence shell of oxygen. This wave function has been the starting point for theoretical studies on the relative basicities of the six external oxygen sites of the title ion in order to interpret the experimental findings concerning the preferred sites of proton fixation. The topology of the distribution of the electrostatic potentials (ESP) around the ion is deduced from the determination of V(r) in some specific planes and on spherical surfaces centered on each of the six oxygen sites. Several ESP minima not equivalent by symmetry have been characterized, most of them, but not all, lying in the vicinity of a specific oxygen atom. The two deepest nonequivalent ESP minima are associated with the two distinct sites, referred to as O{sub B} and O{sub C} undergoing protonation in [H{sub 3}V{sub 10}{sub 28}]{sup 3-}. An analysis of the Laplacian of the charge of density shows that the direction of the maxima in -{triangledown}{sup 2}p which characterize the local charge concentrations around the oxygen atoms, coincides within a few degrees with the direction of the ESP minima when existing, and with that of the protons in [H{sub 3}V{sub 10}O{sub 28}]{sup 3-} in the vicinity of sites O{sub B} and O{sub C}. 32 refs., 16 fig., 5 tab.

Kempf, J.Y.; Rohmer, M.M.; Poblet, J.M.; Bo, C.; Benard, M., [Universite Louis Pasteur, Strasbourg (France)

1992-02-12T23:59:59.000Z

223

Rock Sampling At The Needles Area (Kratt, Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

The Needles Area (Kratt, Et Al., 2005) The Needles Area (Kratt, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At The Needles Area (Kratt, Et Al., 2005) Exploration Activity Details Location The Needles Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Over 2000 km2 of 5-m resolution Hymap hyperspectral data was acquired in 2004. Subsequent image processing and data analysis has identified reflectance spectra for alunite, kaolinite/halloysite, illite, gypsum, vegetation, and carbonate. A portable spectrometer is being used for in situ validation, along with laboratory measurements and x-ray diffraction analyses of samples collected in teh field. We are in the process of producing and validating mineral maps that will be used to narrow the scope

224

Dual-energy neutron tomography of water in rock using the Argonne IPNS  

DOE Green Energy (OSTI)

In dual-energy hydrogen imaging, the increase in hydrogen neutron cross-section at subthermal neutron energies is used to enhance the imaging of small amounts of hydrogen against a background of other absorbing materials by subtracting a tomographic image obtained for higher energy neutrons from that obtained for subthermal neutrons (picking energies such that the other absorbing materials have nearly the same cross-sections at both energies). This technique was used to provide dual-energy imaging of water in tuffaceous rock, with the goal being to track water flow through porous rock for site risk analysis of permanent disposal of radwaste. A feasibility experiment was conducted at the IPNS facility with coarse spatial resolution, yielding promising results.

Rhodes, E.; Kupperman, D.S.; Hitterman, R.L.

1992-07-01T23:59:59.000Z

225

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

Science Conference Proceedings (OSTI)

Excellent progress has been made on all project objectives and goals. All tasks have been completed in the Phase 1 study area, the initial area of project focus. Primary elements of this work include the following: The stratigraphic architecture has been established through correlation of wireline logs guided by core and outcrop studies of facies and cyclicity. A porosity model has been developed that creates a basis for calculation of porosity for wells in the study area. Rock fabrics have been defined by sampling, analysis, and description of cores and used to create transforms for calculating permeability and oil saturation from porosity data. Finally, a preliminary 3-D model has been constructed that incorporates stratigraphic architecture, rock-fabric data, and petrophysical data. Reservoir volumetrics calculated from the model show that a very large fraction of the original oil in place remains.

Stephen C. Ruppel

2003-01-01T23:59:59.000Z

226

A coupled model of fluid flow in jointed rock  

SciTech Connect

We present a fully coupled model of fluid flow in jointed rock, where the fluid flow depends on the joint openings and the joint openings depend on the fluid pressure. The joints and rock blocks are modeled discretely using the finite element method. Solutions for the fluid and rock are obtained and iteration is performed until both solutions converge. Example applications include an examination of the effects of back-pressure on flow in a geothermal reservoir and transient fluid injection into a reservoir.

Swenson, Daniel; Martineau, Rick; James, Mark; Brown, Don

1991-01-01T23:59:59.000Z

227

Rock properties in support of geothermal resource development  

DOE Green Energy (OSTI)

Geothermal rock mechanics needs have been defined and subsequently a test system was designed and built for providing appropriate material properties. The development areas identified as requiring rock mechanics were stimulation, reservoir engineering, subsidence prediction, surface exploration and subsurface evaluation, and drilling. The resulting test system provides mechanical, electrical, thermal and physical properties on 2 and 4 inch diameter cores at confining pressures and pore fluid pressures to 200 MPa (30,000 psi) and temperatures to 535/sup 0/C (1000/sup 0/F). The test system development was continued and site specific rock mechanics requirements were identified. (MHR)

Butters, S.W.

1979-01-01T23:59:59.000Z

228

EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon EA-1897: AltaRock's Newberry Volcano EGS Demonstration near Bend, Oregon Summary This EA evaluates the...

229

GEOTECHNICAL ASSESSMENT AND INSTRUMENTATION NEEDS FOR NUCLEAR WASTE ISOLATION IN CRYSTALLINE AND ARGILLACEOUS ROCKS SYMPOSIUM  

E-Print Network (OSTI)

Masses. FIELD TESTS FOR RADIONUCLIDE TRANSPORT . BOREHOLE,Rock Masses . Radionuclide Field Tests. Borehole andaints. . Barriers to Radionuclide Movement. THE ROCK

Authors, Various

2011-01-01T23:59:59.000Z

230

Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes  

SciTech Connect

The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

2003-11-15T23:59:59.000Z

231

An Analytical Model for Solute Transport in Unsaturated Flow through a Single Fracture and Porous Rock Matrix  

E-Print Network (OSTI)

fracture matrix solute source rock matrix rock matrix vin fracture; b) solute source in rock matrix. Draft 8-11-04for a point source in the rock matrix are presented in

Houseworth, J.E.

2004-01-01T23:59:59.000Z

232

Sliding and Rocking of Unanchored Components and Structures: Chapter 7.6 ASCE 4 Revision 2  

SciTech Connect

Chapter 7.6 of ASCE 4-Rev 2, Seismic Analysis of Safety-Related Nuclear Structures: Standard and Commentary, provides updated guidance for analysis of rocking and sliding of unanchored structures and components subjected to seismic load. This guidance includes provisions both for simplified approximate energy-based approaches, and for detailed probabilistic time history analysis using nonlinear methods. Factors to be applied to the analytical results are also provided with the intent of ensuring achievement of the 80% non-exceedence probability target of the standard. The present paper surveys the published literature supporting these provisions. The results of available testing and analysis are compared to results produced by both simplified and probabilistic approaches. In addition, adequacy of the standard's provisions for analysis methods and factors is assessed. A comparison is made between the achieved level of conservatism and the standard's non-exceedence probability target.

S. R. Jensen

2011-04-01T23:59:59.000Z

233

Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report  

DOE Green Energy (OSTI)

The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

Norton, D.

1981-11-01T23:59:59.000Z

234

Core Analysis For The Development And Constraint Of Physical Models Of  

Open Energy Info (EERE)

For The Development And Constraint Of Physical Models Of For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Core Analysis For The Development And Constraint Of Physical Models Of Geothermal Reservoirs Details Activities (2) Areas (2) Regions (0) Abstract: Effective reservoir exploration, characterization, and engineering require a fundamental understanding of the geophysical properties of reservoir rocks and fracture systems. Even in the best of circumstances, spatial variability in porosity, fracture density, salinity, saturation, tectonic stress, fluid pressures, and lithology can all potentially produce and/or contribute to geophysical anomalies. As a result, serious uniqueness problems frequently occur when interpreting

235

DOE - Office of Legacy Management -- Rock Island Arsenal - IL 09  

NLE Websites -- All DOE Office Websites (Extended Search)

Rock Island Arsenal - IL 09 Rock Island Arsenal - IL 09 FUSRAP Considered Sites Site: ROCK ISLAND ARSENAL ( IL.09 ) Eliminated from consideration under FUSRAP - Referred to DOD Designated Name: Not Designated Alternate Name: None Location: Rock Island , Illinois IL.09-1 Evaluation Year: 1987 IL.09-2 Site Operations: Site located on a DOD facility and operated under AEC control. Exact nature or time period of operations not clear. No indication that radioactive materials were involved. Contract work with Albuquerque Operations office performed. IL.09-1 IL.09-2 Site Disposition: Eliminated - No Authority - Referred to DOD IL.09-2 Radioactive Materials Handled: None Indicated IL.09-2 Primary Radioactive Materials Handled: None Indicated Radiological Survey(s): None Indicated

236

DOE - Office of Legacy Management -- WNI Split Rock Site - 043  

NLE Websites -- All DOE Office Websites (Extended Search)

Split Rock Site - 043 Split Rock Site - 043 FUSRAP Considered Sites Site: WNI Split Rock Site (043) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Western Nuclear, Inc. (WNI) Split Rock site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Jeffrey City, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of

237

Photo of the Week: Laser Beats Rock | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laser Beats Rock Laser Beats Rock Photo of the Week: Laser Beats Rock April 8, 2013 - 5:28pm Addthis On August 5, 2012, the Curiosity rover touched down on the surface of Mars. The ChemCam instrument package, developed at Los Alamos National Laboratory, is a device mounted on the Mars Curiosity rover that uses two remote sensing instruments: the Laser-Induced Breakdown Spectrometer (LIBS) and a Remote Micro-Imager (RMI). The LIBS fires a powerful laser that determines chemical compositions of rock and soil samples, while the RMI takes photos of the samples within the rover's vicinity. In this photo, the ChemCam is being prepared in the clean room prior to the launch of NASA's Mars Science Laboratory mission. Learn more about the ChemCam. | Photo courtesy of Los Alamos National Laboratory.

238

Permeability Estimation From Velocity Anisotropy In Fractured Rock  

E-Print Network (OSTI)

Cracks in a rock mass subjected to a uniaxial stress will be preferentially closed depending on the angle between the fracture normal vectors and the direction of the applied stress. If the prestress fracture orientation ...

Gibson, Richard L., Jr.

1990-01-01T23:59:59.000Z

239

Figure 2. Stratigraphic Summary of Ages, Names and Rock Types...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive Reservoirs and Plays Assessed by...

240

Influence of soil parameters on the motion of rocking walls  

E-Print Network (OSTI)

Introduced as a system in earthquake engineering in 2004 [6], rocking walls are a fairly new system in earthquake engineering. Their performance has been proven, both in research as in practice. However, a few uncertainties ...

Houbrechts, Jeroen J. J. (Jeroen Jose Julien)

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Laser Rock Drilling Demo - The NE Multimedia Collection  

NLE Websites -- All DOE Office Websites (Extended Search)

Demo A high power pulsed Nd:YAG laser beam at Argonne's Laser Applications Lab is being shown in this movie to drill oil reservoir rock, a potential application in gas and oil well...

242

Laser Spallation of Rocks for Oil Well Drilling  

NLE Websites -- All DOE Office Websites (Extended Search)

LASER SPALLATION OF ROCKS FOR OIL WELL DRILLING Zhiyue Xu 1 , Claude B. Reed 1 , Richard Parker 2 , Ramona Graves 3 1 Argonne National Laboratory, Argonne, IL 60439, USA 2 Parker...

243

Geothermal: Sponsored by OSTI -- CO2-Rock Interactions in EGS...  

Office of Scientific and Technical Information (OSTI)

CO2-Rock Interactions in EGS-CO2: New Zealand TVZ Geothermal Systems as a Natural Analog Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

244

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

245

Mixed Layer Density Ratio from the Levitus Data  

Science Conference Proceedings (OSTI)

An analysis of the Levitus data is employed to examine Stommel's mixed layer density ratio regulator hypothesis. Three different methods of computing the lateral density ratio (Rl???T/??S) are used and the least squares method was found to have ...

Liang Gui Chen

1995-04-01T23:59:59.000Z

246

Rock Physics of Geologic Carbon Sequestration/Storage  

SciTech Connect

This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock?s elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

Dvorkin, Jack; Mavko, Gary

2013-05-31T23:59:59.000Z

247

Mimbres rock art: a graphic legacy of cultural expression  

E-Print Network (OSTI)

Rock art abounds along the Mimbres River banks and drainage tributaries reflecting the rich cultural remains of the ancient Mimbres people. The Mimbres are a well established cultural group who lived in southwest New Mexico and northern Mexico from A.D. 200 and A.D. 1150. Physical remains of pithouses, pueblos, irrigation systems, artifacts, and rock art have survived the years to provide clues for contemporary understanding of this prehistoric culture and society. Knowledge of the symbolism and belief system has eluded understanding or remained sketchy as a result of examining only physical remains. Based on the hypothesis that by studying the archaeological record and the established characteristics of cultures with origins similar to those of the Mimbres, then assumptions can be made and applied to the understanding of the symbolism, purpose, and use of the rock art for the Mimbres. Specific to this study is the rock art adjacent to and within a one and one-half mile radius of the NAN Ranch Ruin. Research reveals how the rock art of the NAN Ranch Ruin connects to: 1) cultural context to other regional systems, 2) spatial context within the landscape, 3) temporal context with respect to Mimbres development, and 4) symbolic context, tying the rock art to its environment and revealing it as a living part of the universe as it fits into the world view of those who created it.

Tidemann, Kathryn

2002-01-01T23:59:59.000Z

248

A Neutral Density Variable for the Worlds Oceans  

Science Conference Proceedings (OSTI)

The use of density surfaces in the analysis of oceanographic data and in models of the ocean circulation is widespread. The present best method of fitting these isopycnal surfaces to hydrographic data is based on a linked sequence of potential ...

David R. Jackett; Trevor J. McDougall

1997-02-01T23:59:59.000Z

249

The Circulation Dynamics and Thermodynamics of Upper Ocean Density Fronts  

Science Conference Proceedings (OSTI)

This paper extends a previous hydrodynamic circulation model of established, persistent upper ocean density fronts by including a thermodynamic or buoyancy equation in the integral treatment. An analysis is also conducted of the variables related ...

Richard W. Garvine

1980-12-01T23:59:59.000Z

250

Turbulence Patch Identification in Potential Density or Temperature Profiles  

Science Conference Proceedings (OSTI)

The Thorpe analysis is a recognized method used to identify and characterize turbulent regions within stably stratified fluids. By comparing an observed profile of potential temperature or potential density to a reference profile obtained by ...

Richard Wilson; Hubert Luce; Francis Dalaudier; Jacques Lefrre

2010-06-01T23:59:59.000Z

251

Density rise experiment on PLT  

SciTech Connect

The evolution of the density profile in PLT during intense gas puffing is documented and analyzed. Measurements of the spectrum of low energy edge neutrals and of the change in central neutral density indicate that charge-exchange processes alone cannot account for the central density rise. The transient density profile changes can be reproduced numerically by a diffusivity of approx. 10/sup 4/ cm/sup 2//s, and a spatially averaged inward flow of 10/sup 3/ cm/s. These transport coefficients are 10 ..-->.. 10/sup 2/ times larger than neoclassical. The ion energy confinement is reduced, the small scale density fluctuations are increased, and runaway electrons losses are increased during the density rise.

Strachan, J.D.; Bretz, N.; Mazzucato, E.

1982-05-01T23:59:59.000Z

252

Location, age, and rock type of volcanic rocks younger than 5 million years in Arizona and New Mexico  

DOE Green Energy (OSTI)

As part of the assessment of the Hot Dry Rock geothermal energy potential of Arizona and New Mexico, a compilation of the locations and ages of volcanic rocks less than 5 Myr was made. The locations of those rocks less than 3 Myr are shown on a map of the region. Because the compiled information has many uses in addition to geothermal exploration, the entire compilation is presented as a tabulation. The table is organized first by state and secondly by latitude and longitude within each state. Rock type, age and error, method of dating, and original reference are also given. The K-Ar dates have not been recalculated using the most recent decay constants for /sup 40/K. A few references gave only verbal descriptions of sample location; these locations were converted to approximate latitude and longitude.

Aldrich, M.J. Jr.; Laughlin, A.W.

1981-04-01T23:59:59.000Z

253

Energy Densities for LLNL EMB  

Summary of Projected Power and Energy Density Parameters for the New Generation LLNL Electromechanical Batteries R.F. Post June 24, 2013

254

Effect of Rock Transverse Isotropy on Stress Distribution and Wellbore Fracture  

E-Print Network (OSTI)

Unconventional oil and gas, which is of major interest in petroleum industry, often occur in reservoirs with transversely isotropic rock properties such as shales. Overlooking transverse isotropy may result in deviation in stress distribution around wellbore and inaccurate estimation of fracture initiation pressure which may jeopardize safe drilling and efficient fracturing treatment. In this work, to help understand the behavior of transversely isotropic reservoirs during drilling and fracturing, the principle of generalized plane-strain finite element formulation of anisotropic poroelastic problems is explained and a finite element model is developed from a plane-strain isotropic poroelastic model. Two numerical examples are simulated and the finite element results are compared with a closed form solution and another FE program. The validity of the developed finite element model is demonstrated. Using the validated finite element model, sensitivity analysis is carried out to evaluate the effects of transverse isotropy ratios, well azimuth, and rock bedding dip on pore pressure and stress distribution around a horizontal well. The results show that their effect cannot be neglected. The short term pore pressure distribution is sensitive to Young modulus ratio, while the long term pore pressure distribution is only sensitive to permeability ratio. The total stress distribution generally is not sensitive to transverse isotropy ratios. The effective stress and fracture initiation are very sensitive to Young modulus ratio. As the well rotates from minimum horizontal in-situ stress to maximum horizontal in-situ stress, the pore pressure and stress distributions tend to be more unevenly distributed around the wellbore, making the wellbore easier to fracture. The pore pressure and stress distributions tend to "rotate" in correspondence with the rock bedding plane. The fracture initiation potential and position will alter when rock bedding orientation varies.

Lu, Chunyang

2013-08-01T23:59:59.000Z

255

Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

1994-09-01T23:59:59.000Z

256

Deriving the shape factor of a fractured rock matrix  

SciTech Connect

Fluid flow from a fractured rock matrix was investigated for accurately predicting oil recovery from fractured reservoirs. To relate the oil rate with rock geometry and average rock matrix pressure, a shape factor is used in the mathematical model of fractured reservoirs. The shape factor in the transfer function was derived by solving the three-dimensional diffusivity equation of a rock matrix block under unsteady-state production, in contrast to the quasi-steady-state condition assumed by most previous studies denoted in the literature. The diffusivity equation in the x, y, and z coordinate was solved in four cases by assuming different boundary conditions of (1) constant fracture pressure; (2) constant flow rate; (3) constant fracture pressure followed by linearly declining fracture pressure; and (4) linearly declining fracture pressure followed by constant fracture pressure. Shape factor values are high at the initial depletion stage under an unsteady-state condition. When the fracture pressure is constant, the shape factor converges to {pi}{sup 2}/L{sup 2}, 2{pi}{sup 2}/L{sup 2}, and 3{pi}{sup 2}/L{sup 2} for one-, two-, and three-dimensional rock matrix, respectively, at the dimensionless time ({tau}) of about 0.1. When the flow rate between the rock matrix and the fracture is constant, the fracture pressure varies with location on the rock surface. Based on the average fracture pressure, the shape factor decreases with production time until a {tau} value of 0.1 is reached. The boundary conditions of constant fracture pressure followed by a constant decline in fracture pressure are equivalent to the condition of a constant fracture pressure followed by a period of constant flow rate.

Chang, Ming-Ming

1993-09-01T23:59:59.000Z

257

Density-based logistic regression  

Science Conference Proceedings (OSTI)

This paper introduces a nonlinear logistic regression model for classification. The main idea is to map the data to a feature space based on kernel density estimation. A discriminative model is then learned to optimize the feature weights as well as ... Keywords: density estimation, logistic regression, medical prediction, nonlinear classification

Wenlin Chen, Yixin Chen, Yi Mao, Baolong Guo

2013-08-01T23:59:59.000Z

258

Environmental studies conducted at the Fenton Hill Hot Dry Rock geothermal development site  

DOE Green Energy (OSTI)

An environmental investigation of Hot Dry Rock (HDR) geothermal development was conducted at Fenton Hill, New Mexico, during 1976-1979. Activities at the Fenton Hill Site included an evaluation of baseline data for biotic and abiotic ecosystem components. Identification of contaminants produced by HDR processes that had the potential for reaching the surrounding environment is also discussed. Three dominant vegetative communities were identified in the vicinity of the site. These included grass-forb, aspen, and mixed conifer communities. The grass-forb area was identified as having the highest number of species encountered, with Phleum pratense and Dactylis glomerata being the dominant grass species. Frequency of occurrence and mean coverage values are also given for other species in the three main vegetative complexes. Live trapping of small mammals was conducted to determine species composition, densities, population, and diversity estimates for this component of the ecosystem. The data indicate that Peromyscus maniculatus was the dominant species across all trapping sites during the study. Comparisons of relative density of small mammals among the various trapping sites show the grass-forb vegetative community to have had the highest overall density. Comparisons of small mammal diversity for the three main vegetative complexes indicate that the aspen habitat had the highest diversity and the grass-forb habitat had the lowest. Analyses of waste waters from the closed circulation loop indicate that several trace contaminants (e.g., arsenic, cadmium, fluoride, boron, and lithium) were present at concentrations greater than those reported for surface waters of the region.

Miera, F.R. Jr.; Langhorst, G.; McEllin, S.; Montoya, C.

1984-05-01T23:59:59.000Z

259

Adsorption of water vapor on reservoir rocks. First quarterly report, January--March 1993  

DOE Green Energy (OSTI)

Progress is reported on: adsorption of water vapor on reservoir rocks; theoretical investigation of adsorption; estimation of adsorption parameters from transient experiments; transient adsorption experiment -- salinity and noncondensible gas effects; the physics of injection of water into, transport and storage of fluids within, and production of vapor from geothermal reservoirs; injection optimization at the Geysers Geothermal Field; a model to test multiwell data interpretation for heterogeneous reservoirs; earth tide effects on downhole pressure measurements; and a finite-difference model for free surface gravity drainage well test analysis.

Not Available

1993-07-01T23:59:59.000Z

260

PARKER-HEADGATE ROCK & PARKER-GILA  

NLE Websites -- All DOE Office Websites (Extended Search)

PARKER-HEADGATE ROCK & PARKER-GILA PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas Figure 1. Project Location Project Location j PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas Figure 2a. Project Area (North) Staging Area #4 Structure 3/5 Structure 3/6 Structure 3/4 Structure 3/7 Structure 3/5 Structure 3/6 PARKER-HEADGATE ROCK 161-kV TRANSMISSION LINE PARKER-GILA 161-kV TRANSMISSION LINE Structure 4/6 Legal Description N N 1:24000 scale 1:24000 scale Section Township Range 17 20 2 N 27 E 31 11 N 18 W 6 10 N USGS TOPO MAP: Cross Roads, Arizona-California USGS TOPO MAP: Cross Roads, Arizona-California PARKER-HEADGATE ROCK & PARKER-GILA 161-kV TRANSMISSION LINE Cross Arm Repair and Helicopter Staging Areas

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Energy extraction characteristics of hot dry rock geothermal systems  

DOE Green Energy (OSTI)

The LASL Hot Dry Rock Geothermal Energy Project is investigating methods to extract energy at useful temperatures and rates from naturally heated crustal rock in locations where the rock does not spontaneously yield natural steam or hot water at a rate sufficient to support commercial utilization. Several concepts are discussed for application to low and high permeability formations. The method being investigated first is intended for use in formations of low initial permeability. It involves producing a circulation system within the hot rock by hydraulic fracturing to create a large crack connecting two drilled holes, then operating the system as a closed pressurized-water heat-extration loop. With the best input assumptions that present knowledge provides, the fluid-flow and heat-exchange calculations indicate that unpumped (buoyant) circulation through a large hydraulic fracture can maintain a commercially useful rate of heat extraction throughout a usefully long system life. With a power cycle designed for the temperature of the fluid produced, total capital investment and generating costs are estimated to be at least competitive with those of fossil-fuel-fired and nuclear electric plants. This paper discusses the potential of the hot dry rock resource, various heat extraction concepts, prediction of reservoir performance, and economic factors, and summarizes recent progress in the LASL field program.

Tester, J.W.; Smith, M.C.

1977-01-01T23:59:59.000Z

262

Los Alamos hot dry rock geothermal energy experiment  

DOE Green Energy (OSTI)

Recent heat flow data indicates that about 95,000 sq. mi. in 13 western U.S. states is underlain, at a depth of 5 km (16,400 ft) by hot dry rock at temperatures above 290/sup 0/C (440/sup 0/F.). Therefore a geothermal energy development program was undertaken to develop methods from extracting thermal energy from hot rock in the earth crust by man-made underground circulation systems; demonstrate the commercial feasibility of such systems; and encourage use of this technology. Experiments performed on the Jemez Plateau in New Mexico are described with information on the drilling of boreholes, hydraulic fracturing of hot rocks, well logging, and environmental monitoring to establish base line data and define the potential effects of the project. The technical achievements of the project include boreholes were drilled to 3k (10,000 ft) with bottomhole temperatures of approximately 200/sup 0/C (390/sup 0/F); hydraulic fracturing produced fractured regions with 150 m (500 ft) radii; at least 90 percent of the water injected was recovered; and data was obtained on geologic conditions, seismic effects, and thermal, fracturing, and chemical properties of the downhole rocks. A geothermal power-production system model was formulated for evaluating the total cost of developing power production using a hot-dry-rock geothermal energy source. (LCL)

Pettitt, R.A.

1976-01-01T23:59:59.000Z

263

The Effect of Heterogeneity on Matrix Acidizing of Carbonate Rocks  

E-Print Network (OSTI)

In matrix acidizing, the goal is to dissolve minerals in the rock to increase well productivity. This is accomplished by injecting an application-specific solution of acid into the formation at a pressure between the pore pressure and fracture pressure. A hydrochloric acid solution is used in carbonate reservoirs, which actually dissolves the calcite rock matrix in the form of conductive channels called wormholes. These wormholes propagate from the wellbore out into the reservoir, bypassing the damaged zone. In matrix acidizing of carbonates, there are four parameters that affect performance: the concentration of calcite present, injection rate of the acid, reaction type, and heterogeneity. Of these parameters, this paper will focus on how rock heterogeneity affects performance. To do this, a coreflood and acidizing apparatus was used to acidize heterogeneous limestone core samples. Rock characterizations and volumetric measurements were considered with the results from these experiments, which made it possible to correlate and quantify the results with rock and volume parameters. It was found that the core samples with more and larger heterogeneities generally required less acid (measured in pore volumes) to achieve breakthrough, that is, a wormhole created axially from one end of the core to the other. This value for pore volumes to breakthrough was one to two orders of magnitude less than more homogeneous samples. The general procedure and best practices for acidizing the core samples is also detailed in this thesis. This procedure was followed for preparation, coreflooding, and acidizing for all core samples.

Keys, Ryan S.

2009-12-01T23:59:59.000Z

264

Proceedings of the scientific visit on crystalline rock repository development.  

Science Conference Proceedings (OSTI)

A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.

Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka [RAWRA, Czech Republic

2013-02-01T23:59:59.000Z

265

Black Rock III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Black Rock III Geothermal Project Black Rock III Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Black Rock III Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

266

3rd Rock Systems and Technologies | Open Energy Information  

Open Energy Info (EERE)

Rock Systems and Technologies Rock Systems and Technologies Jump to: navigation, search Name 3rd Rock Systems and Technologies Place Burlingame, California Zip 94010 Sector Renewable Energy, Services Product Provides proven renewable energy technologies and consulting services to residential, commercial, and industrial clients. Coordinates 38.753055°, -95.834619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.753055,"lon":-95.834619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

AltaRock Energy Inc | Open Energy Information  

Open Energy Info (EERE)

AltaRock Energy Inc AltaRock Energy Inc Jump to: navigation, search Name AltaRock Energy Address 7900 E Green Lake Drive N Place Seattle, Washington Zip 98103 Sector Geothermal energy Product Creates geothermal energy reservoirs, develops geothermal facilities Website http://www.altarockenergy.com/ Coordinates 47.6855466°, -122.3364827° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6855466,"lon":-122.3364827,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Chimney Rock Public Power Dist | Open Energy Information  

Open Energy Info (EERE)

Chimney Rock Public Power Dist Chimney Rock Public Power Dist Jump to: navigation, search Name Chimney Rock Public Power Dist Place Nebraska Utility Id 3495 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png ELECTRIC THERMAL STORAGE Commercial GENERAL SEASONAL Commercial IRRIGATION SERVICE Single Phase Commercial IRRIGATION SERVICE Three Phase Commercial IRRIGATION STANDBY RATE, Single Phase Commercial IRRIGATION STANDBY RATE, Three Phase Commercial LARGE POWER SERVICE Commercial RESIDENTIAL SERVICE AND SEASONAL SERVICE Residential

269

City of Rock Hill, South Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

Rock Hill, South Carolina (Utility Company) Rock Hill, South Carolina (Utility Company) Jump to: navigation, search Name City of Rock Hill Place South Carolina Utility Id 16195 Utility Location Yes Ownership M NERC Location SERC Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175 Watt HPS lighting Lighting Economic Development Rate (Schedule EDR -1) Commercial Economic Development Rate (Schedule EDR -2) Industrial Flood Lighting Rate 1000 Watt HPS Lighting Flood Lighting Rate 400 Watt HPS Lighting General Service/ Non Demand (Schedule GS) Commercial General Service/Demand (Schedule GD) Industrial

270

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions | Open  

Open Energy Info (EERE)

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

271

Alternate operating strategies for Hot Dry Rock geothermal reservoirs  

DOE Green Energy (OSTI)

Flow testing and heat extraction experiments in prototype Hot Dry Rock (HDR) geothermal reservoirs have uncovered several challenges which must be addressed before commercialization of the technology is possible. Foremost among these is the creation of a reservoir which simultaneously possesses high permeability pathways and a large volume of fractured rock. The current concept of heat extraction -- a steady state circulation system with fluid pumping from the injection well to a single, low pressure production well -- may limit our ability to create heat extraction systems which meet these goals. A single injection well feeding two production wells producing fluid at moderate pressures is shown to be a potentially superior way to extract heat. Cyclic production is also demonstrated to have potential as a method for sweeping fluid through a larger volume of rock, thereby inhibiting flow channeling and increasing reservoir lifetime. 10 refs., 4 figs., 2 tabs.

Robinson, B.A.

1991-01-01T23:59:59.000Z

272

Density and pair-density scaling for deriving the Euler equation in density-functional and pair-density-functional theory  

Science Conference Proceedings (OSTI)

A link between density and pair density functional theories is presented. Density and pair density scaling are used to derive the Euler equation in both theories. Density scaling provides a constructive way of obtaining approximations for the Pauli potential. The Pauli potential (energy) of the density functional theory is expressed as the difference of the scaled and original exchange-correlation potentials (energies).

Nagy, A. [Department of Theoretical Physics, University of Debrecen, H-4010 Debrecen (Hungary)

2011-09-15T23:59:59.000Z

273

Application of real rock pore-threat statistics to a regular pore network model  

SciTech Connect

This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data.

Rakibul, M.; Sarker, H.; McIntyre, D.; Ferer, M.; Siddiqui, S.; Bromhal. G.

2011-01-01T23:59:59.000Z

274

Application of real rock pore-throat statistics to a regular pore network model  

SciTech Connect

This work reports the application of real rock statistical data to a previously developed regular pore network model in an attempt to produce an accurate simulation tool with low computational overhead. A core plug from the St. Peter Sandstone formation in Indiana was scanned with a high resolution micro CT scanner. The pore-throat statistics of the three-dimensional reconstructed rock were extracted and the distribution of the pore-throat sizes was applied to the regular pore network model. In order to keep the equivalent model regular, only the throat area or the throat radius was varied. Ten realizations of randomly distributed throat sizes were generated to simulate the drainage process and relative permeability was calculated and compared with the experimentally determined values of the original rock sample. The numerical and experimental procedures are explained in detail and the performance of the model in relation to the experimental data is discussed and analyzed. Petrophysical properties such as relative permeability are important in many applied fields such as production of petroleum fluids, enhanced oil recovery, carbon dioxide sequestration, ground water flow, etc. Relative permeability data are used for a wide range of conventional reservoir engineering calculations and in numerical reservoir simulation. Two-phase oil water relative permeability data are generated on the same core plug from both pore network model and experimental procedure. The shape and size of the relative permeability curves were compared and analyzed and good match has been observed for wetting phase relative permeability but for non-wetting phase, simulation results were found to be deviated from the experimental ones. Efforts to determine petrophysical properties of rocks using numerical techniques are to eliminate the necessity of regular core analysis, which can be time consuming and expensive. So a numerical technique is expected to be fast and to produce reliable results. In applied engineering, sometimes quick result with reasonable accuracy is acceptable than the more time consuming results. Present work is an effort to check the accuracy and validity of a previously developed pore network model for obtaining important petrophysical properties of rocks based on cutting-sized sample data. Introduction

Sarker, M.R.; McIntyre, D.; Ferer, M.; Siddigui, S.; Bromhal. G.

2011-01-01T23:59:59.000Z

275

Simulation of blasting induced rock motion using spherical element models  

SciTech Connect

Control of the rock motion associated with blasting can have significant economic benefits. For example, surface coal mining can be made more efficient if the overburden material can be cast further with explosives, leaving less work for mechanical equipment. The final muck pile shape in very type of surface and underground blasting is controlled by the blasting induced motion of the rock. A theoretically sound method of predicting rock motion will be beneficial to understanding the blasting process. Discrete element methods have been used for some time to predict rock motion resulting from blasting. What all of these approaches had in common was the use of polygonal elements with corners and sides as well as aspect ratio. Reasonably good results were obtained but treatment of the interactions of the corners and sides of elements was a computationally intensive process that made long simulations with many elements expensive to perform. The use of spherical elements showed increased efficiency but lacked the mechanisms for treating the bulking of the rock mass. The computer program developed was converted from an explicit code to an event-driven code and some bulking mechanisms were added that allowed spherical elements to exert a torque on other spherical elements with which contact was made. The architecture of this program and its event-driven nature made it difficult to vectorize for efficient execution on vector processing machines. A new code called DMC (Distinct Motion Code) has been developed this past year. DMC was designed and written especially to take advantage of super computer vector processing capabilities. This paper will discuss the use of DMC to perform accurate rock motion calculations with very reasonable computation times. 9 refs., 7 figs., 3 tabs.

Taylor, L.M.; Preece, D.S. (Hibbitt, Karlsson and Sorensen, Providence, RI (USA); Sandia National Labs., Albuquerque, NM (USA))

1989-01-01T23:59:59.000Z

276

Analysis of solar neutrino problem by means of Ntzold and Nakagawa's approach including the interference term- Hyperbolic-tangent profile for electron density in the sun and exact solution -  

E-Print Network (OSTI)

Using an exact solution with the hyperbolic-tangent profile for the electron density in the sun, which is developed by N\\"{o}tzold and later modified by Nakagawa, we have analyzed the solar neutrino problem. An interference term in their approach is correctly taken into account. Combining the hyperbolic-tangent profile with the BP2000, we obtain a phenomenological fitting in the analytic form. Combining recent observed results for survival probability $P(\

Masahiro Kaneyama; Minoru Biyajima

2002-11-18T23:59:59.000Z

277

Microfractures in rocks from two geothermal areas | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Microfractures in rocks from two geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microfractures in rocks from two geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: Core samples from the Dunes, California, and Raft River, Idaho, geothermal areas show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Sealed fractures can act as barriers to fluid flow. Sealed fractures often mark boundaries between regions of significantly

278

Los Alamos hot-dry-rock project: recent results  

DOE Green Energy (OSTI)

A new deeper reservoir is presently being investigated at the Laboratory's Fenton Hill Hot Dry Rock (HDR) site. The region surrounding the lower of two inclined boreholes, directionally-drilled to about 4 km in hot crystalline rock, has been pressurized in a sequence of injection tests. Based primarily on the measurements made by two close-in microseismic detectors, two similar volumetric reservoir regions have been developed by massive hydraulic fracturing, but with no significant hydraulic communication with the upper borehole as yet.

Brown, D.W.

1982-01-01T23:59:59.000Z

279

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

Science Conference Proceedings (OSTI)

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

Gary Mavko

2003-10-01T23:59:59.000Z

280

Ozone generation by rock fracture: Earthquake early warning?  

Science Conference Proceedings (OSTI)

We report the production of up to 10 ppm ozone during crushing and grinding of typical terrestrial crust rocks in air, O{sub 2} and CO{sub 2} at atmospheric pressure, but not in helium or nitrogen. Ozone is formed by exoelectrons emitted by high electric fields, resulting from charge separation during fracture. The results suggest that ground level ozone produced by rock fracture, besides its potential health hazard, can be used for early warning in earthquakes and other catastrophes, such as landslides or land shifts in excavation tunnels and underground mines.

Baragiola, Raul A.; Dukes, Catherine A.; Hedges, Dawn [Engineering Physics, University of Virginia, Charlottesville, Virginia 22904 (United States)

2011-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Petrography Analysis | Open Energy Information  

Open Energy Info (EERE)

Petrography Analysis Petrography Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Petrography Analysis Details Activities (6) Areas (5) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Provides detailed information about rock composition and morphology Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 275.0027,500 centUSD 0.275 kUSD 2.75e-4 MUSD 2.75e-7 TUSD / sample Median Estimate (USD): 420.0042,000 centUSD 0.42 kUSD 4.2e-4 MUSD 4.2e-7 TUSD / sample High-End Estimate (USD): 625.0062,500 centUSD 0.625 kUSD 6.25e-4 MUSD 6.25e-7 TUSD / sample

282

Low density carbonized composite foams  

DOE Patents (OSTI)

A carbonized composite foam having a density less than about 50 mg/cm{sup 3} and individual cell sizes no greater than about 1 {mu}m in diameter is described, and the process of making it. 3 figs.

Kong, Fung-Ming.

1989-12-07T23:59:59.000Z

283

Quarkonium at nonzero isospin density  

E-Print Network (OSTI)

We calculate the energies of quarkonium bound states in the presence of a medium of nonzero isospin density using lattice QCD. The medium, created using a canonical (fixed isospin charge) approach, induces a reduction of ...

Detmold, William

284

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

NONE

1995-01-01T23:59:59.000Z

285

Hot dry rock energy: Hot dry rock geothermal development program. Progress report. Fiscal year 1993  

DOE Green Energy (OSTI)

Extended flow testing at the Fenton Hill Hot Dry Rock (HDR) test facility concluded in Fiscal Year 1993 with the completion of Phase 2 of the long-term flow test (LTFT) program. As is reported in detail in this report, the second phase of the LTFT, although only 55 days in duration, confirmed in every way the encouraging test results of the 112-day Phase I LTFT carried out in Fiscal Year 1992. Interim flow testing was conducted early in FY 1993 during the period between the two LTFT segments. In addition, two brief tests involving operation of the reservoir on a cyclic schedule were run at the end of the Phase 2 LTFT. These interim and cyclic tests provided an opportunity to conduct evaluations and field demonstrations of several reservoir engineering concepts that can now be applied to significantly increase the productivity of HDR systems. The Fenton Hill HDR test facility was shut down and brought into standby status during the last part of FY 1993. Unfortunately, the world`s largest, deepest, and most productive HDR reservoir has gone essentially unused since that time.

Salazar, J.; Brown, M. [eds.

1995-03-01T23:59:59.000Z

286

Fluid-rock interaction: A reactive transport approach  

SciTech Connect

Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be irreversible. Helgeson's pioneering approach was given a more formal kinetic basis (including the introduction of real time rather than reaction progress as the independent variable) in subsequent studies (Lasaga 1981; Aagaard and Helgeson 1982; Lasaga 1984). The reaction path approach can be used to describe chemical processes in a batch or closed system (e.g., a laboratory beaker), but such systems are of limited interest in the Earth sciences where the driving force for most reactions is transport. Lichtner (1988) clarified the application of the reaction path models to water-rock interaction involving transport by demonstrating that they could be used to describe pure advective transport through porous media. By adopting a reference frame which followed the fluid packet as it moved through the medium, the reaction progress variable could be thought of as travel time instead. Multi-component reactive transport models that could treat any combination of transport and biogeochemical processes date back to the early 1980s. Berner and his students applied continuum reactive transport models to describe processes taking place during the early diagenesis of marine sediments (Berner 1980). Lichtner (1985) outlined much of the basic theory for a continuum model for multicomponent reactive transport. Yeh and Tripathi (1989) also presented the theoretical and numerical basis for the treatment of reactive contaminant transport. Steefel and Lasaga (1994) presented a reactive flow and transport model for nonisothermal, kinetically-controlled water-rock interaction and fracture sealing in hydrothermal systems based on simultaneous numerical solution of both reaction and transport This chapter begins with a review of the important transport processes that affect or even control fluid-rock interaction. This is followed by a general introduction to the governing equations for reactive transport, which are broadly applicable to both qualitative and quantitative interpretations of fluid-rock interactions. This framework is expanded through a discussion of specific topics that are the f

Steefel, C.; Maher, K.

2009-04-01T23:59:59.000Z

287

Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lab Analysis Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Lab Analysis Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Water rock interaction; Rapid and unambiguous identification of unknown minerals; Bulk and trace element analysis of rocks, minerals, and sediments; Obtain detailed information about rock composition and morphology; Determine detailed information about rock composition and morphology; Cuttings are used to define lithology; Core analysis is done to define lithology

288

Roth Rock Wind Power Project | Open Energy Information  

Open Energy Info (EERE)

Rock Wind Power Project Rock Wind Power Project Jump to: navigation, search Name Roth Rock Wind Power Project Facility Roth Rock Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Gestamp Wind North America Developer Synergics Energy Purchaser Delmarva Power Location South of Red House MD Coordinates 39.30105°, -79.458032° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.30105,"lon":-79.458032,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Practices of information and secrecy in a punk rock subculture  

Science Conference Proceedings (OSTI)

By examining the information practices of a punk-rock subculture, we investigate the limits of social media systems, particularly limits exposed by practices of secrecy. Looking at the exchange of information about "underground" shows, we use qualitative ... Keywords: information practices, secrecy, social network sites, subcultures

Jessica Lingel; Aaron Trammell; Joe Sanchez; Mor Naaman

2012-02-01T23:59:59.000Z

290

Hot dry rock heat mining: An alternative energy progress report  

DOE Green Energy (OSTI)

Mining Heat from the hot dry rock (HDR) resource that lies beneath the earth's crust may provide an almost inexhaustible supply of energy for mankind with minimal environmental effects. In the heat mining process, water is pumped down an injection well into a mass of hydraulically fractured hot rock. As the water flows under high pressure through the opened rock joints, it becomes heated by the rock. It is returned to the surface through a production well (or wells) located some distance from the injector where its thermal energy is recovered by a heat exchanger. The same water is then recirculated through the system to extract more thermal energy. In this closed-loop process, nothing but heat is released to the environment during normal operation. The technical feasibility of HDR heat mining already has been proven by field testing. A long-term flow test is scheduled to begin in 1991 at the world's largest HDR heat mine in New Mexico, USA, to demonstrate that energy can be produced from HDR on a continuous basis over an extended time period. Significant HDR programs are also underway in several other countries. The paper describes the HDR resource, the heat mining concept, environmental characteristics, economics, developments at Los Alamos to date, and HDR development outside the US. 15 refs., 5 figs., 2 tabs.

Duchane, D.V.

1991-01-01T23:59:59.000Z

291

New oil source rocks cut in Greek Ionian basin  

SciTech Connect

The Ionian zone of Northwest Greece (Epirus region) constitutes part of the most external zones of the Hellenides (Paxos zone, Ionian zone, Gavrovo Tripolitza zone). The rocks of the Ionian zone range from Triassic evaporites and associated breccias through a varied series of Jurassic through Upper Eocene carbonates and lesser cherts and shales followed by Oligocene flysch. The surface occurrences of petroleum in the Ionian zone are mainly attributed to Toarcian Lower Posidonia beds source rocks and lesser to late Callovian-Tithonian Upper Posidonia beds and to the Albian-Cenomanian Upper Siliceous zone or Vigla shales of the Vigla limestones. Oil that could not be attributed to the above source rocks is believed to have an origin from Triassic formations that contain potential source rocks in Albania and Italy. However, several samples of the shales of Triassic breccias from outcrops and drillholes were analyzed in the past, but the analytical results were not so promising since their hydrocarbon potential was low. In this article, the authors will present their analytical results of the Ioannina-1 well, where for the first time they identified some very rich source beds in the Triassic breccias formation of Northwest Greece.

Karakitsios, V. [Univ. of Athens (Greece); Rigakis, N. [Public Petroleum Corp., Athens (Greece)

1996-02-12T23:59:59.000Z

292

Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan  

SciTech Connect

This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

Carlson, Thomas J.; Johnson, Gary E.

2010-01-29T23:59:59.000Z

293

Micro-crack Damage Evolution of Fracturing Rock Chaotic Characteristics  

Science Conference Proceedings (OSTI)

Chaotic theory and bifurcation of modern nonlinear science were used to study the evolution of micro-cracks under the hydraulic fracturing of the rock mass characteristics, the tensor damage variable which described the chao evolution of micro-cracks ... Keywords: chaos theory, bifurcation theory, damage evolution

Zhaowan Chun; Wang Tingting

2010-06-01T23:59:59.000Z

294

Research paper Rock magnetic stratigraphy of a mafic layered sill  

E-Print Network (OSTI)

Research paper Rock magnetic stratigraphy of a mafic layered sill: A key to the Karoo volcanics intrusion and part of the Karoo Large Igneous Province in South Africa. This well-exposed intrusion consists reserved. Keywords: AMS; magnetic susceptibility; Karoo; Insizwa; gabbro 1. Introduction Studies of Large

Ferré, Eric

295

Rock mass response to the decline in underground coal mining  

SciTech Connect

Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

Holub, K. [Academy of Science in Czech Republic, Prague (Czech Republic)

2006-01-15T23:59:59.000Z

296

1 INTRODUCTION Stressing brittle rocks leads to the development of  

E-Print Network (OSTI)

-dependent creep driven by stress corrosion and subcritical crack growth (Lockner, 1998). This creep strongly1 INTRODUCTION Stressing brittle rocks leads to the development of distributed damage long before, 1994, Lyakhovsky et al. 1997; Lockner, 1998). Further, the stress-induced damage may facilitate time

Ze'ev, Reches

297

New project for Hot Wet Rock geothermal reservoir design concept  

SciTech Connect

This paper presents the outlines of a new Hot Wet Rock (HWR) geothermal project. The goal of the project is to develop a design methodology for combined artificial and natural crack geothermal reservoir systems with the objective of enhancing the thermal output of existing geothermal power plants. The proposed concept of HWR and the research tasks of the project are described.

Takahashi, Hideaki; Hashida, Toshiyuki

1992-01-01T23:59:59.000Z

298

GEOS898 History on the Rocks Assignment 2  

E-Print Network (OSTI)

Goggles and aprons Magnifier Graph paper Ruler Colored pencils Small white marker boards (2x3 ft) (Prepare the remaining pictures and rock samples and continue drawing the column using graph paper, rules and colored pencils. (Additional pictures may be used from textbook and internet sources for added clarity.) (20

Frank, Tracy D.

299

Issues facing the developmt of hot dry rock geothermal resources  

DOE Green Energy (OSTI)

Technical and economic issues related to the commercial feasibility of hot dry rock geothermal energy for producing electricity and heat will be discussed. Topics covered will include resource characteristics, reservoir thermal capacity and lifetime, drilling and surface plant costs, financial risk and anticipated rate of return.

Tester, J.W.

1979-01-01T23:59:59.000Z

300

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

W. Nazarewicz; P. -G. Reinhard; W. Satula; D. Vretenar

2013-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Symmetry energy in nuclear density functional theory  

E-Print Network (OSTI)

The nuclear symmetry energy represents a response to the neutron-proton asymmetry. In this survey we discuss various aspects of symmetry energy in the framework of nuclear density functional theory, considering both non-relativistic and relativistic self-consistent mean-field realizations side-by-side. Key observables pertaining to bulk nucleonic matter and finite nuclei are reviewed. Constraints on the symmetry energy and correlations between observables and symmetry-energy parameters, using statistical covariance analysis, are investigated. Perspectives for future work are outlined in the context of ongoing experimental efforts.

Nazarewicz, W; Satula, W; Vretenar, D

2013-01-01T23:59:59.000Z

302

Fluid Migration During Ice/Rock Planetesimal Differentiation  

E-Print Network (OSTI)

Much speculation on extraterrestrial life has focused on finding environments where water is present. Heating of smaller icy bodies may create and sustain a possible liquid layer below the surface. If liquid water was sustained for geologically significant times (> 108 years) within the ubiquitous small bodies in the outer solar system, the opportunities for development of simple life are much greater. The lifetime of the liquid water layer will depend on several factors, including the rate of rock/water reaction, which will depend on the rate at which water can be segregated from a melting ice/rock core. For the liquid water phase to migrate toward the surface, the denser rock phase must compact. The primary question that this thesis will answer is how fast melt water can segregate from the core of an ice-rich planetesimal. To answer this question we treat the core as two phase flow problem: a compacting viscous solid (ice/rock mixture) and a segregating liquid (melt water). The model developed here is based on the approach derived to study a different partially molten solid: in the viscously deforming partially molten upper mantle. We model a planetesimal core that initially a uniform equal mixture of solid ice and rock. We assume chondritic levels of radiogenic heating as the only heat source, and numerically solve for the evolution of solid and melt velocities and the distribution of melt fraction (porosity) during the first few million years after accretion. From a suite of numerical models, we have determined that the meltwater is segregated out of the core as fast as it is created, except in the case of very fast melting times (0.75 My vs. 0.62 My), and small ore radius (~25 to 150 km, depending on the viscosity of the ice/rock mixture in the solid core). In these latter cases, segregation is slower than migration and a high water fraction develops in the core. Heat released by water-rock reactions (not included in this model) will tend to drive up melting rates in all cases, which may favor this latter endmember.

Raney, Robert 1987-

2012-12-01T23:59:59.000Z

303

Joint inversion of marine seismic AVA and CSEM data using statistical rock-physics models and Markov random fields: Stochastic inversion of AVA and CSEM data  

SciTech Connect

Joint inversion of seismic AVA and CSEM data requires rock-physics relationships to link seismic attributes to electrical properties. Ideally, we can connect them through reservoir parameters (e.g., porosity and water saturation) by developing physical-based models, such as Gassmanns equations and Archies law, using nearby borehole logs. This could be difficult in the exploration stage because information available is typically insufficient for choosing suitable rock-physics models and for subsequently obtaining reliable estimates of the associated parameters. The use of improper rock-physics models and the inaccuracy of the estimates of model parameters may cause misleading inversion results. Conversely, it is easy to derive statistical relationships among seismic and electrical attributes and reservoir parameters from distant borehole logs. In this study, we develop a Bayesian model to jointly invert seismic AVA and CSEM data for reservoir parameter estimation using statistical rock-physics models; the spatial dependence of geophysical and reservoir parameters are carried out by lithotypes through Markov random fields. We apply the developed model to a synthetic case, which simulates a CO{sub 2} monitoring application. We derive statistical rock-physics relations from borehole logs at one location and estimate seismic P- and S-wave velocity ratio, acoustic impedance, density, electrical resistivity, lithotypes, porosity, and water saturation at three different locations by conditioning to seismic AVA and CSEM data. Comparison of the inversion results with their corresponding true values shows that the correlation-based statistical rock-physics models provide significant information for improving the joint inversion results.

Chen, J.; Hoversten, G.M.

2011-09-15T23:59:59.000Z

304

ON THE LOCAL DARK MATTER DENSITY  

SciTech Connect

An analysis of the kinematics of 412 stars at 1-4 kpc from the Galactic midplane by Moni Bidin et al. has claimed to derive a local density of dark matter that is an order of magnitude below standard expectations. We show that this result is incorrect and that it arises from the assumption that the mean azimuthal velocity of the stellar tracers is independent of Galactocentric radius at all heights. We substitute the assumption, supported by data, that the circular speed is independent of radius in the midplane. We demonstrate that the assumption of constant mean azimuthal velocity is implausible by showing that it requires the circular velocity to drop more steeply than allowed by any plausible mass model, with or without dark matter, at large heights above the midplane. Using the approximation that the circular-velocity curve is flat in the midplane, we find that the data imply a local dark matter density of 0.008 {+-} 0.003 M{sub Sun} pc{sup -3} = 0.3 {+-} 0.1 GeV cm{sup -3}, fully consistent with standard estimates of this quantity. This is the most robust direct measurement of the local dark matter density to date.

Bovy, Jo; Tremaine, Scott [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

2012-09-01T23:59:59.000Z

305

Hot dry rock fracture propagation and reservoir characterization  

DOE Green Energy (OSTI)

North America's largest hydraulic fracturing opeations have been conducted at Fenton hill, New mexico to creae hot dry rock geothermal reservoirs. Microearthquakes induced by these fracturing operations were measured with geophones. The large volume of rock over which the microearthquakes were distributed indicates a mechanism of hydraulic stimulation which is at odds with conventional fracturing theory, which predicts failure along a plane which is perpendicular to the least compressive earth stress. Shear slippage along pre-existing joints in the rock is more easily induced than conventional tensile failure, particularly when the difference between minimum and maximum earth stresses is large and the pre-existing joints are oriented at angles between 30 and 60)degree) to the principal earth stresses, and a low viscosity fluid like water is injected. Shear slippage results in local redistribution of stresses, which allows a branching, or dendritic, stimulation pattern to evolve, in agreement with the patterns of microearthquake locations. Field testing of HDR reservoirs at the Fenton Hill site shows that significant reservoir growth occurred as energy was extracted. Tracer, microseismic, and geochemical measurements provided the primary quantitative evidence for the increases in accessible reservoir volume and fractured rock surface area. These temporal increases indicate that augmentation of reservoir heat production capacity in hot dry rock system occurred. For future reservoir testing, Los Alamos is developing tracer techniques using reactive chemicals to track thermal fronts. Recent studies have focused on the kinetics of hydrolysis of derivatives of bromobenzene, which can be used in reservoirs as hot as 275)degree)C.

Murphy, H.; Fehler, M.; Robinson, B.; Tester, J.; Potter, R.; Birdsell, S.

1988-01-01T23:59:59.000Z

306

Rock Physics Based Determination of Reservoir Microstructure for Reservoir Characterization  

E-Print Network (OSTI)

One of the most important, but often ignored, factors affecting the transport and the seismic properties of hydrocarbon reservoir is pore shape. Transport properties depend on the dimensions, geometry, and distribution of pores and cracks. Knowledge of pore shape distribution is needed to explain the often-encountered complex interrelationship between seismic parameters (e.g. seismic velocity) and the independent physical properties (e.g. porosity) of hydrocarbon reservoirs. However, our knowledge of reservoir pore shape distribution is very limited. This dissertation employs a pore structure parameter via a rock physics model to characterize mean reservoir pore shape. The parameter was used to develop a new physical concept of critical clay content in the context of pore compressibility as a function of pore aspect ratio for a better understanding of seismic velocity as a function of porosity. This study makes use of well log dataset from offshore Norway and from North Viking Graben in the North Sea. In the studied North Sea reservoir, porosity and measured horizontal permeability was found to increase with increasing pore aspect ratio (PAR). PAR is relatively constant at 0.23 for volumes of clay (V_cl) less than 32% with a significant decrease to 0.04 for V_cl above 32%. The point of inflexion at 32% in the PAR V_cl plane is defined as the critical clay volume. Much of the scatters in the compressional velocity-porosity cross-plots are observed where V_cl is above this critical value. For clay content higher than the critical value, Hertz-Mindlin (HM) contact theory over-predicts compressional velocity (V_p) by about 69%. This was reduced to 4% when PAR distribution was accounted for in the original HM formulation. The pore structure parameter was also used to study a fractured carbonate reservoir in the Sichuan basin, China. Using the parameter, the reservoir interval can be distinguished from those with no fracture. The former has a pore structure parameter value that is ? 3.8 whereas it was < 3.8 for the latter. This finding was consistent with the result of fracture analysis, which was based on FMI image. The results from this dissertation will find application in reservoir characterization as the industry target more complex, deeper, and unconventional reservoirs.

Adesokan, Hamid 1976-

2013-05-01T23:59:59.000Z

307

A rock mechanics perspective on the effects of hard rock workings in close proximity to overlying coal seams  

Science Conference Proceedings (OSTI)

Mining in the Coalfields has been ongoing for many years, however prior to the discovery of coal, Gold was being mined in the form of the Kimberley Reef. Today it is the coal that has our interest and is the primary mineral being extracted from the ground. ... Keywords: mining, pillars, rock mechanics, slabbing, stress

K. Naidoo; C. Dekker

2010-07-01T23:59:59.000Z

308

First measurement of low intensity fast neutron background from rock at the Boulby Underground Laboratory  

E-Print Network (OSTI)

A technique to measure low intensity fast neutron flux has been developed. The design, calibrations, procedure for data analysis and interpretation of the results are discussed in detail. The technique has been applied to measure the neutron background from rock at the Boulby Underground Laboratory, a site used for dark matter and other experiments, requiring shielding from cosmic ray muons. The experiment was performed using a liquid scintillation detector. A 6.1 litre volume stainless steel cell was filled with an in-house made liquid scintillator loaded with Gd to enhance neutron capture. A two-pulse signature (proton recoils followed by gammas from neutron capture) was used to identify the neutron events from much larger gamma background from PMTs. Suppression of gammas from the rock was achieved by surrounding the detector with high-purity lead and copper. Calibrations of the detector were performed with various gamma and neutron sources. Special care was taken to eliminate PMT afterpulses and correlated background events from the delayed coincidences of two pulses in the Bi-Po decay chain. A four month run revealed a neutron-induced event rate of 1.84 +- 0.65 (stat.) events/day. Monte Carlo simulations based on the GEANT4 toolkit were carried out to estimate the efficiency of the detector and the energy spectra of the expected proton recoils. From comparison of the measured rate with Monte Carlo simulations the flux of fast neutrons from rock was estimated as (1.72 +- 0.61 (stat.) +- 0.38 (syst.))*10^(-6) cm^(-2) s^(-1) above 0.5 MeV.

E. Tziaferi; M. J. Carson; V. A. Kudryavtsev; R. Lerner; P. K. Lightfoot; S. M. Paling; M. Robinson; N. J. C. Spooner

2006-12-08T23:59:59.000Z

309

MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS  

Office of Legacy Management (LM)

MISCELLANEOUS PAPER S71-17 MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS Report 2 ANALYSIS OF RESPONSE O F RIFLE.GAP D A M TO PROJECT RULISON UNDERGROUND NUCLEAR DETONATION bv J. E. Ahlberg, J. Fowler, L W. Heller ........ . . . . . . . . - . . . . . . . . . . . . . . . - . . - ...... *- , .... . . . - ->-w-J- * - : - . . June 1972 s~omsored by Office, Chief of Engineers, U. S. Army Conducted by U. S. A m y Engineer Waterways Experiment Station Soils and Pavements Laboratory Vicksburg, Mississippi APPROVED FOR WBLlC RELEASE: DISTRIBUTION UNLIMITED L i s t o f Associated Reports Previous reports under Engineering Study 540 are: "A Comparative Summary o f Current Earth Dam Analysis Methods for Earthquake Response," issued by Office, Chief o f Engineers, a s Inclosure 1 to Engineer

310

Drip shield Structural Response to Rock Fall  

Science Conference Proceedings (OSTI)

The objective of this calculation is to determine areas over the drip shield (DS) top plate and side-walls where the residual stress values exceed 50% of Ti-7 yield strength. These areas will also be referred to as the damaged areas throughout this document. The scope of this document is limited to reporting the calculation results in terms of the damaged areas based on a chosen set of stress components. This calculation is intended for use in support of the preliminary design activities for the license application design of the DS. This calculation is associated with the DS design and was performed by the Waste Package and Components. AP-3.12Q, ''Design Calculations and Analyses'' is used to perform the calculation and develop the document. The DS is classified as a safety category item. Therefore, this calculation is subject to the Quality Assurance Requirements and Description. The information provided by the sketches attached to this calculation is that of the potential design of the type of DS considered in this calculation and provides the potential dimensions and materials for the DS design. The finite element (FE) calculation was performed by using the commercially available LS-DYNA Version (V)960 (Software Tracking Number [STN] 10300-960.1106-00, Ref. 7) FE code. The results of this calculation were evaluated using residual first principal stress. Subsequent analysis of areas determined by residual stresses have been reported in the results section of this document. The finite element mesh adequacy was determined based on the maximum stress intensity and maximum first principal stress. The current work processes and procedures for the control of the electronic management of data for this activity were conducted in accordance with AP-3.13Q, ''Design Control'' (Section 5.1.2).

Z. Ceylan

2004-04-01T23:59:59.000Z

311

Proceedings of the second international symposium on rock fragmentation by blasting  

SciTech Connect

This is the second international meeting of researchers in rock fragmentation by blasting. The symposium continues the information exchange initiated at the previous conference and to determine relevant directions for future research on fracture and fragmentation of rock.

Fourney, W.L.; Dick, R.D. (Maryland Univ., College Park, MD (USA))

1987-01-01T23:59:59.000Z

312

Spectral properties and reflectance curves of the revealed volcanic rocks in Syria using radiometric measurements  

Science Conference Proceedings (OSTI)

This research aimed at studying the spectral reflectance intensity of different exposed volcanic rocks in Syria, and drawing their curves by radiometer measurements. In order to reach this goal, we have studied different kinds of volcanic rocks related ...

M. Rukieh; A. M. Al-Kafri; A. W. Khalaf

2007-07-01T23:59:59.000Z

313

Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements  

E-Print Network (OSTI)

The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

Zhan, Xin, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

314

Search for underground openings for in situ test facilities in crystalline rock  

SciTech Connect

With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

1980-01-01T23:59:59.000Z

315

Modeling of thermally driven hydrological processes in partially saturated fractured rock  

E-Print Network (OSTI)

the heat source and encounters cooler rock, it condenses,fractured rock near the radioactive-decay heat source isrock, giving rise to a reflux of liquid back to the heat source.

Tsang, Yvonne

2010-01-01T23:59:59.000Z

316

Vacuum Outgassing of High Density Polyethylene  

Science Conference Proceedings (OSTI)

A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

2008-08-11T23:59:59.000Z

317

Estimation of host rock thermal conductivities using the temperature data from the drift-scale test at Yucca Mountain, Nevada  

E-Print Network (OSTI)

host rock in the immediate vicinity of the heat source. Insource of heating and condensed in the cooler parts of the rock.sources, heat transfer was still happening on account of the wet rock.

Mukhopadhyay, Sumitra; Tsang, Y.W.

2008-01-01T23:59:59.000Z

318

Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis of Short-Bunch Production with the APS Booster and a Bunch Compressor Michael Borland, AOD/OAG ∗ August 8, 2003 1 Abstract There is significant interest among x-ray scientists in short-pulse x-rays. The x-rays from the APS ring, although very bright, are produced by an electron bunch with an rms length of more than 30 ps. Typically, it is only a linear accelerator that can produce a very short bunch. An idea was brought to my attention by Glenn Decker that might allow us to produce a short bunch using the APS booster. This idea involves extracting the beam from the booster at 3 to 4 GeV, while it is still relatively short, then compressing it with a magnetic bunch compressor. In this note, we present a preliminary analysis of this idea, along with the related idea of using a nonequilibrium beam from the APS photoinjector. 2 Background We will begin with an examination of the ideal result

319

Coupled hydro-mechanical processes in crytalline rock and in induratedand plastic clays: A comparative discussion  

E-Print Network (OSTI)

at Grimsel. In Coupled Thermo-Hydro- Mechanical-ChemicalCOUPLED HYDRO-MECHANICAL PROCESSES IN CRYTALLINE ROCK AND IN

Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

2008-01-01T23:59:59.000Z

320

Evaluation of Management of Water Release for Painted Rocks Reservoir, Bitterroot River, Montana, 1984 Annual Report.  

SciTech Connect

Baseline fisheries and habitat data were gathered during 1983 and 1984 to evaluate the effectiveness of supplemental water releases from Painted Rocks Reservoir in improving the fisheries resource in the Bitterroot River. Discharge relationships among main stem gaging stations varied annually and seasonally. Flow relationships in the river were dependent upon rainfall events and the timing and duration of the irrigation season. Daily discharge monitored during the summers of 1983 and 1984 was greater than median values derived at the U.S.G.S. station near Darby. Supplemental water released from Painted Rocks Reservoir totaled 14,476 acre feet in 1983 and 13,958 acre feet in 1984. Approximately 63% of a 5.66 m{sup 3}/sec test release of supplemental water conducted during April, 1984 was lost to irrigation withdrawals and natural phenomena before passing Bell Crossing. A similar loss occurred during a 5.66 m{sup 3}/sec test release conducted in August, 1984. Daily maximum temperature monitored during 1984 in the Bitterroot River averaged 11.0, 12.5, 13.9 and 13.6 C at the Darby, Hamilton, Bell and McClay stations, respectively. Chemical parameters measured in the Bitterroot River were favorable to aquatic life. Population estimates conducted in the Fall, 1983 indicated densities of I+ and older rainbow trout (Salmo gairdneri) were significantly greater in a control section than in a dewatered section (p < 0.20). Numbers of I+ and older brown trout (Salmo trutta) were not significantly different between the control and dewatered sections (p > 0.20). Population and biomass estimates for trout in the control section were 631/km and 154.4 kg/km. In the dewatered section, population and biomass estimates for trout were 253/km and 122.8 kg/km. The growth increments of back-calculated length for rainbow trout averaged 75.6 mm in the control section and 66.9mm in the dewatered section. The growth increments of back-calculated length for brown trout averaged 79.5 mm in the control section and 82.3mm in the dewatered section. Population estimates conducted in the Spring, 1984 indicated densities of mountain whitefish (Prosopium williamsoni) greater than 254 mm in total length were not significantly different between the control and dewatered sections (p > 0.20). Young of the year rainbow trout and brown trout per 10m of river edge electrofished during 1984 were more abundant in the control section than the dewatered section and were more abundant in side channel habitat than main channel habitat. Minimum flow recommendations obtained from wetted perimeter-discharge relationships averaged 8.5m{sup 3}/sec in the control section and 10.6m{sup 3}/sec in the dewatered section of the Bitterroot River. The quantity of supplemental water from Painted Rocks Reservoir needed to maintain minimum flow recommendations is discussed in the Draft Water Management Plan for the Proposed Purchase of Supplemental Water from Painted Rocks Reservoir, Bitterroot River, Montana (Lere 1984).

Lere, Mark E. (Montana Department of Fish, Wildlife and Parks, Missoula, MT)

1984-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Plasma digital density determining device  

DOE Patents (OSTI)

The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.

Sprott, Julien C. (Madison, WI); Lovell, Thomas W. (Madison, WI); Holly, Donald J. (Madison, WI)

1976-01-01T23:59:59.000Z

322

Dispersion of elastic moduli in a porous-cracked rock: Theoretical predictions for squirt-flow  

E-Print Network (OSTI)

. Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturationDispersion of elastic moduli in a porous-cracked rock: Theoretical predictions for squirt-flow M Available online xxxx Keywords: Frequency dispersion Rock properties Bimodal porosity Effective medium

Fortin, Jérôme

323

Modeling the cracking process of rocks from continuity to discontinuity using a cellular automaton  

Science Conference Proceedings (OSTI)

A rock discontinuous cellular automaton (RDCA) was developed for modeling rock fracturing processes from continuous to discontinuous deformation under mechanical loading. RDCA is an integration of the following basic concepts: (1) representation of heterogeneity ... Keywords: Cracking process, Discontinuity, Elasto-plastic cellular automaton, Level set, Partition of unity, Rock discontinuous cellular automaton

Peng-Zhi Pan; Fei Yan; Xia-Ting Feng

2012-05-01T23:59:59.000Z

324

Building a Universal Nuclear Energy Density Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

325

Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin  

SciTech Connect

This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point that results will be exportable throughout the basin. Ten petrophysically significant facies have been described in the northern reef trend, providing significantly more resolution than the standard 4-6 that are used most often in the basin (e.g. Gill, 1977). Initial petrophysical characterization (sonic velocity analysis under confining pressures) shows a clear pattern that is dependent upon facies and resulting pore architecture. Primary facies is a key factor in the ultimate diagenetic modification of the rock and the resulting pore architecture. Facies with good porosity and permeability clearly show relatively slow velocity values as would be expected, and low porosity and permeability samples exhibit fast sonic velocity values, again as expected. What is significant is that some facies that have high porosity values, either measured directly or from wireline logs, also have very fast sonic velocity values. This is due to these facies having a pore architecture characterized by more localized pores (vugs, molds or fractures) that are not in communication.

G. Michael Grammer

2006-09-30T23:59:59.000Z

326

Olivella Grooved Rectangle Beads from a Middle Holocene Site in the Fort Rock Valley, Northern Great Basin  

E-Print Network (OSTI)

Lake Fort Rock and other local sources. The primary culturalRock Valley currently receives no water from a perennial source.

Jenkins, Dennis L; Erlandson, Jon M

1996-01-01T23:59:59.000Z

327

Microsoft Word - CX-Wautoma-Rock Creek_WEB.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Corinn Castro Project Manager - TELM-TPP-3 Proposed Action: Replace spacer dampers along the Wautoma-Rock Creek No. 1 500-kV Transmission Line. Budget Information: Work Order # 00234527 PP&A Project No.: PP&A 1507 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities...for structures, rights-of-way, infrastructures such as roads, equipment...routine maintenance activities, corrective....are required to maintain... infrastructures...in a condition suitable for a facility to be used for its designed purpose. Location: Wautoma-Rock Creek No. 1 500-kV Transmission Line. The proposed project is

328

Picture Rocks, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Picture Rocks, Arizona: Energy Resources Picture Rocks, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3459069°, -111.2462146° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.3459069,"lon":-111.2462146,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

329

MHK Projects/Race Rocks Demonstration | Open Energy Information  

Open Energy Info (EERE)

Race Rocks Demonstration Race Rocks Demonstration < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.2844,"lon":-123.531,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

330

Round Rock, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Round Rock, Texas: Energy Resources Round Rock, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5082551°, -97.678896° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.5082551,"lon":-97.678896,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

331

Rock River LLC Wind Farm | Open Energy Information  

Open Energy Info (EERE)

River LLC Wind Farm River LLC Wind Farm Jump to: navigation, search The Rock River LLC Wind Farm is in Carbon County, Wyoming. It consists of 50 turbines and has a total capacity of 50 MW. It is owned by Shell Wind Energy.[1] Based on assertions that the site is near Arlington, its approximate coordinates are 41.5946899°, -106.2083459°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.thefreelibrary.com/Shell+WindEnergy+Acquires+Second+Wind+Farm+in+the+U.S.,+in+an...-a082345438 Retrieved from "http://en.openei.org/w/index.php?title=Rock_River_LLC_Wind_Farm&oldid=132230" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

332

Big Rock, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rock, Illinois: Energy Resources Rock, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.7639181°, -88.5470219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.7639181,"lon":-88.5470219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

333

East Flat Rock, North Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Flat Rock, North Carolina: Energy Resources Flat Rock, North Carolina: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.2801166°, -82.4220631° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.2801166,"lon":-82.4220631,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

West Valley Demonstration Project 10282 Rock Springs Road  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

West Valley Demonstration Project West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 Mr. Daniel W. Coyne President & General Manager CH2M HILL B&W West Valley, LLC West Valley Demonstration Project 10282 Rock Springs Road West Valley, NY 141 71 -9799 ATTENTION: J. D. Rendall, Regulatory Strategy, AC-EA SUBJECT: Environmental Checklist WVDP-20 12-0 1, " WVDP Reservoir Interconnecting Canal Maintenance Activities" REFERENCE: Letter WD:2012:0409 (357953), D. W. Coyne to R. W. Reffner, "CONTRACT NO. DE-EM000 1529, Section 5-3, Item 105, NEPA Documentation (Transmittal of Environmental Checklist WVDP-20 12-0 1, WVDP Reservoir Interconnecting Canal Maintenance Activities), Revision 1 ," dated July 24, 20 12 Dear Mr. Coyne:

335

North Little Rock, Arkansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Little Rock, Arkansas: Energy Resources Little Rock, Arkansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.769536°, -92.2670941° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.769536,"lon":-92.2670941,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

City of North Little Rock, Arkansas (Utility Company) | Open Energy  

Open Energy Info (EERE)

North Little Rock North Little Rock Place Arkansas Utility Id 13718 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png HPS- 100 Watt Lighting HPS- 1000 Watt (Floodlights) Lighting HPS- 150 Watt Lighting HPS- 250 Watt Lighting HPS- 250 Watt (Floodlights) Lighting HPS- 400 Watt (Floodlights) Lighting LCTOU Industrial LGS Industrial LPS Industrial MH- 1000 Watt (Floodlights) Lighting

337

Window Rock, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rock, Arizona: Energy Resources Rock, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.680573°, -109.0525929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.680573,"lon":-109.0525929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

338

Ocean Bluff-Brant Rock, Massachusetts: Energy Resources | Open Energy  

Open Energy Info (EERE)

Bluff-Brant Rock, Massachusetts: Energy Resources Bluff-Brant Rock, Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1080418°, -70.6633175° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.1080418,"lon":-70.6633175,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Numerical evaluation of effective unsaturated hydraulic properties for fractured rocks  

Science Conference Proceedings (OSTI)

To represent a heterogeneous unsaturated fractured rock by its homogeneous equivalent, Monte Carlo simulations are used to obtain upscaled (effective) flow properties. In this study, we present a numerical procedure for upscaling the van Genuchten parameters of unsaturated fractured rocks by conducting Monte Carlo simulations of the unsaturated flow in a domain under gravity-dominated regime. The simulation domain can be chosen as the scale of block size in the field-scale modeling. The effective conductivity is computed from the steady-state flux at the lower boundary and plotted as a function of the averaging pressure head or saturation over the domain. The scatter plot is then fitted using van Genuchten model and three parameters, i.e., the saturated conductivity K{sub s}, the air-entry parameter {alpha}, the pore-size distribution parameter n, corresponding to this model are considered as the effective K{sub s}, effective {alpha}, and effective n, respectively.

Lu, Zhiming [Los Alamos National Laboratory; Kwicklis, Edward M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

340

Prehistoric Rock Structures of the Idaho National Laboratory  

SciTech Connect

Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

Brenda R Pace

2007-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recent developments in the hot dry rock geothermal energy program  

DOE Green Energy (OSTI)

In recent years, most of the Hot Dry Rock Programs effort has been focused on the extraction technology development effort at the Fenton Hill test site. The pair of approximately 4000 m wells for the Phase II Engineering System of the Fenton Hill Project have been completed. During the past two years, hydraulic fracture operations have been carried out to develop the geothermal reservoir. Impressive advances have been made in fracture identification techniques and instrumentation. To develop a satisfactory interwellbore flow connection the next step is to redrill the lower section of one of the wells into the fractured region. Chemically reactive tracer techniques are being developed to determine the effective size of the reservoir area. A new estimate has been made of the US hot dry rock resource, based upon the latest geothermal gradiant data. 3 figs.

Franke, P.R.; Nunz, G.J.

1985-01-01T23:59:59.000Z

342

Rock County, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rock County, Minnesota: Energy Resources Rock County, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.6927003°, -96.3226072° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6927003,"lon":-96.3226072,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

343

Microsoft Word - CX-Hat_Rock_Switch_14June2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2013 7, 2013 REPLY TO ATTN OF: KEC-4 SUBJECT: Environmental Clearance Memorandum Glenn Russell Project Manager -TPCV-TPP-4 Proposed Action: Hat Rock Switching Station Replacement Project Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6 Additions and modifications to transmission facilities Location: Umatilla County, Oregon Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to fund PacifiCorp's rebuild of BPA's Hat Rock Tap Switching Station, which is located within PacifiCorp's McNary-Wallula 230-kilovolt (kV) transmission line right-of-way (ROW). Rebuilding the switching station would include the replacement of sectionalizing switches, the grounding grid, and all signage. The approximately 0.5-acre yard would

344

McKees Rocks, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McKees Rocks, Pennsylvania: Energy Resources McKees Rocks, Pennsylvania: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.4656244°, -80.0656106° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4656244,"lon":-80.0656106,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

345

Rough Rock, Arizona: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rock, Arizona: Energy Resources Rock, Arizona: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.4072229°, -109.8728929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.4072229,"lon":-109.8728929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

LASL hot dry rock geothermal energy development project  

DOE Green Energy (OSTI)

The history of the hot-dry-rock project is traced. Efforts to establish a two-hole and connecting fracture system on the southwest flank of the Valles Caldera in north-central New Mexico are summarized. Problems encountered in drilling and hydraulic fracturing are described. Current results with the loop operation for heat extraction are encouraging, and plans for a second energy extraction hole are underway. (JBG)

Hill, J.H.

1978-01-01T23:59:59.000Z

347

Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.  

DOE Green Energy (OSTI)

Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.

Truscott, Keith B.; Fielder, Paul C. (Chelan County Public Utility District No. 1, Power Operations Department, Wenatchee, WA)

1995-10-01T23:59:59.000Z

348

Neutron Production from the Fracture of Piezoelectric Rocks  

E-Print Network (OSTI)

A theoretical explanation is provided for the experimental evidence that fracturing piezoelectric rocks produces neutrons. The elastic energy micro-crack production ultimately yields the macroscopic fracture. The mechanical energy is converted by the piezoelectric effect into electric field energy. The electric field energy decays via radio frequency (microwave) electric field oscillations. The radio frequency electric fields accelerate the condensed matter electrons which then collide with protons producing neutrons and neutrinos.

A. Widom; J. Swain; Y. N. Srivastava

2011-09-22T23:59:59.000Z

349

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

Hirasaki, George J.; Mohanty, Kishore K.

2003-02-10T23:59:59.000Z

350

Neutron Production from the Fracture of Piezoelectric Rocks  

E-Print Network (OSTI)

A theoretical explanation is provided for the experimental evidence that fracturing piezoelectric rocks produces neutrons. The elastic energy micro-crack production ultimately yields the macroscopic fracture. The mechanical energy is converted by the piezoelectric effect into electric field energy. The electric field energy decays via radio frequency (microwave) electric field oscillations. The radio frequency electric fields accelerate the condensed matter electrons which then collide with protons producing neutrons and neutrinos.

Widom, A; Srivastava, Y N

2011-01-01T23:59:59.000Z

351

Engineering Characterization of Strong Ground Motion Recorded at Rock Sites  

Science Conference Proceedings (OSTI)

The objective of this project is to define the engineering characteristics of strong ground motion recorded at rock sites. Particular emphasis is placed upon resolving the factors that control the shape of response spectra in both WNA (western North America) and ENA (central and eastern North America) tectonic environments. To accomplish this objective, a simple band-limited white noise (BLWN) ground motion model employing a constant-stress-drop, single-corner-frequency, omega-square source combined with...

1995-08-17T23:59:59.000Z

352

RockPort Capital Partners (California) | Open Energy Information  

Open Energy Info (EERE)

RockPort Capital Partners (California) RockPort Capital Partners (California) Name RockPort Capital Partners (California) Address 3000 Sand Hill Road, Building 2, Suite 110 Place Menlo Park, California Zip 94025 Region Bay Area Product Venture capital firm that partners with cleantech entrepreneurs around the world Phone number (650) 854-9300 Website http://www.rockportcap.com/ Coordinates 37.4244767°, -122.1942422° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.4244767,"lon":-122.1942422,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

RockPort Capital Partners (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

RockPort Capital Partners (Massachusetts) RockPort Capital Partners (Massachusetts) Name RockPort Capital Partners (Massachusetts) Address 160 Federal Street, 18th Floor Place Boston, Massachusetts Zip 02110 Region Greater Boston Area Product Venture capital firm that partners with cleantech entrepreneurs around the world Phone number (617) 912-1420 Website http://www.rockportcap.com/ Coordinates 42.3537726°, -71.0562094° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3537726,"lon":-71.0562094,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

354

Black Rock Point Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Black Rock Point Geothermal Area Black Rock Point Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Black Rock Point Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9553,"lon":-119.1141,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

355

Simulation of rock blasting with the SHALE code  

SciTech Connect

The SHALE code and its special features for simulating rock blasting are described. SHALE first simulates the detonation of the explosive and then follows the effect of the resulting shocks and stress waves on the surrounding rock. A general description is given for SHALE as a finite-difference stress-wave-propagation code, followed by a brief discussion of numerical methods, and a section on the treatment of the explosive. The constitutive model in SHALE is the BCM (Bedded Crack Model), which describes the response of the rock, including fracture. The use of SHALE is illustrated in a discussion of the basic phenomenology of crater blasting, as seen in simulations of field experiments in oil shale. Predicted peak surface velocities are found to agree with field measurements. Comparisons between predicted fracture and observed craters give insight into the relative roles played by shock waves and the high-pressure-explosive product gases. The two-dimensional version of SHALE is being documented and will be available for use by other investigators. A three-dimensional version is planned.

Adams, T.F.; Demuth, R.B.; Margolin, L.G.; Nichols, B.D.

1983-01-01T23:59:59.000Z

356

Progress of the US Hot-Dry-Rock Program  

DOE Green Energy (OSTI)

While other geologic environments and possible heat-extraction methods are recognized, the US Hot Dry Rock (HDR) Program has so far concentrated on the use of hydraulic fracturing to create flow passages and heat-transfer surface between two wells drilled into hot crystalline rock of low initial permeability. A recirculating pressurized-water loop has been used at Fenton Hill, New Mexico, to extract heat at rates up to 5MW(t) from a system of this type in granitic rock at a depth of 2600 m. The two wells for a larger, deeper, hotter system have now been drilled at the same location. They will be connected during 1982 by a set of hydraulic fractures, and the resulting heat-extraction loop is expected to yield the engineering experience and performance data required to demonstrate the commercial usefulness of such systems. Meanwhile, an evaluation of the HDR resource base of the United States is continuing, together with detailed investigation of local areas that appear especially promisng either for future heat-extraction experiments or for eventual commercial development.

Smith, M.C.

1982-01-01T23:59:59.000Z

357

Flow dynamics and solute transport in unsaturated rock fractures  

DOE Green Energy (OSTI)

Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

Su, G. W.

1999-10-01T23:59:59.000Z

358

High temperature water adsorption on The Geysers rocks  

DOE Green Energy (OSTI)

In order to measure water retention by geothermal reservoir rocks at the actual reservoir temperature, the ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quality of water retained by rock samples taken from three different wells of The Geysers geothermal reservoir was measured at 150{sup degree}C, 200{sup degree}C, and 250{sup degree}C as a function of pressure in the range 0.00 {<=}p/p{sub degree} {<=} 0.98, where p{sub degree} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A correlation is sought between water adsorption, the surface properties, and the mineralogical and petrological characteristics of the solids.

Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

1997-08-01T23:59:59.000Z

359

Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling  

Science Conference Proceedings (OSTI)

Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

Robert Lee Cardenas

2000-10-31T23:59:59.000Z

360

Direct laboratory tensile testing of select yielding rock bolt systems  

SciTech Connect

Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

VandeKraats, J.D.; Watson, S.O.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Using Density Equalizing Map Projection (DEMP) in Epidemiologic  

NLE Websites -- All DOE Office Websites (Extended Search)

Using Density Equalizing Map Projection (DEMP) in Epidemiologic Using Density Equalizing Map Projection (DEMP) in Epidemiologic Surveillance: An Analysis of Female Breast Cancer Incidence in the San Francisco Bay Area Speaker(s): Christine Erdman Date: April 5, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: David Faulkner This study examined the spatial distribution of female breast cancer incidence in the San Francisco Bay Area (California, U.S.A.) in relation to various demographic variables using cartograms for control of population density. Using a cartogram technique known as density equalized map projection (DEMP), census tract boundaries of geopolitical maps are transformed such that the resultant census tract areas are proportional to their population at risk. With spatial confounding removed, the maps become

362

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

1993-06-01T23:59:59.000Z

363

Pore Connectivity Effects on Solute Transport in Rocks  

SciTech Connect

Retardation of nuclear contaminants in rock matrices can lead to long retention times, allowing substantial radionuclide decay prior to eventual release. Imbibition and diffusion into the rock matrix can move contaminants away from an active fracture, thereby contributing to their retardation. However, diffusive transport in some rocks may behave anomalously because of their sparsely connected porespace, in contrast to diffusion in rocks with denser pore connections. We examined imbibition of weakly sorbing tracers into welded tuff and Indiana sandstone, and water imbibition into metagraywacke and Berea sandstone. Tuff samples were initially equilibrated to 12% and 76% water (v/v) within controlled humidity chambers, while the other rocks were air-dried. For imbibition, one face was exposed to water, with or without tracer, and uptake was measured over time. Following imbibition, tracer concentration measurements were made at fine (1 mm) increments. Three anomalous results were observed: (1) Indiana sandstone and metagraywacke showed mass of imbibed water scaling as time{sup 0.26}, while tuff and Berea sandstone showed the more classical scaling with time{sup 0.05}; (2) tracer movement into dry (2% initial saturation) Indiana sandstone showed a dispersion pattern similar to that expected during tracer movement into moist (76% initial saturation) tuft and (3) tracer concentrations at the inlet face of the tuff sample were approximately twice those deeper inside the sample. The experiment was then modeled using random walk methods on a 3-D lattice with different values of pore coordination. Network model simulations that used a pore coordination of 1.49 for Indiana sandstone and 1.56 for metagraywacke showed similar temporal scaling, a result of their porespace being close to the percolation threshold. Tracer concentration profiles in Indiana sandstone and tuff were closely matched by simulations that used pore coordinations of 1.49 and 1.68, respectively, because of how low connectivity alters the accessible porosity in the vicinity of the inlet face. The study supports pore connectivity as a coherent explanation for the observed anomalies and demonstrates the utility of pore-scale modeling in elucidating mechanisms critical to radionuclide retardation in geological repositories.

Oinhong Hu

2001-12-05T23:59:59.000Z

364

Probability Densities in Strong Turbulence  

E-Print Network (OSTI)

According to modern developments in turbulence theory, the "dissipation" scales (u.v. cut-offs) $\\eta$ form a random field related to velocity increments $\\delta_{\\eta}u$. In this work we, using Mellin's transform combined with the Gaussain large -scale boundary condition, calculate probability densities (PDFs) of velocity increments $P(\\delta_{r}u,r)$ and the PDF of the dissipation scales $Q(\\eta, Re)$, where $Re$ is the large-scale Reynolds number. The resulting expressions strongly deviate from the Log-normal PDF $P_{L}(\\delta_{r}u,r)$ often quoted in the literature. It is shown that the probability density of the small-scale velocity fluctuations includes information about the large (integral) scale dynamics which is responsible for deviation of $P(\\delta_{r}u,r)$ from $P_{L}(\\delta_{r}u,r)$. A framework for evaluation of the PDFs of various turbulence characteristics involving spatial derivatives is developed. The exact relation, free of spurious Logarithms recently discussed in Frisch et al (J. Fluid Mech. {\\bf 542}, 97 (2005)), for the multifractal probability density of velocity increments, not based on the steepest descent evaluation of the integrals is obtained and the calculated function $D(h)$ is close to experimental data. A novel derivation (Polyakov, 2005), of a well-known result of the multi-fractal theory [Frisch, "Turbulence. {\\it Legacy of A.N.Kolmogorov}", Cambridge University Press, 1995)), based on the concepts described in this paper, is also presented.

Victor Yakhot

2005-12-12T23:59:59.000Z

365

Density estimation for data with rounding errors  

Science Conference Proceedings (OSTI)

Rounding of data is common in practice. The problem of estimating the underlying density function based on data with rounding errors is addressed. A parametric maximum likelihood estimator and a nonparametric bootstrap kernel density estimator are proposed. ... Keywords: Bootstrapping, Deconvolution density estimation, Fast Fourier transformation, Kernel density estimation, Measurement error

B. Wang, W. Wertelecki

2013-09-01T23:59:59.000Z

366

DOE - Office of Legacy Management -- Slick Rock Mill Site - CO 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Slick Rock Mill Site - CO 08 Slick Rock Mill Site - CO 08 FUSRAP Considered Sites Site: Slick Rock Mill Site (CO.08) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Slick Rock, Colorado, Processing Site Documents Related to Slick Rock Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Slick Rock, Colorado, Disposal Site. LMS/S09461. February 2013 Verification Monitoring Report for the Slick Rock, Colorado, Processing Sites, 2007 Update June 2008 Office of Legacy Management DOE M/1577 2008 - -L Work Performed Under DOE Contract No. for the U.S.

367

Definition: Core Analysis | Open Energy Information  

Open Energy Info (EERE)

Core Analysis Core Analysis Jump to: navigation, search Dictionary.png Core Analysis Core samples are obtained from drilling a well, typically using a synthetic diamond coated bit that has a hollow center so cylindrical rock samples ("core") can be extracted. Core samples successfully recovered are visually inspected to determine rock type, mineralization, and fracture networks, then certain laboratory analyses may ensue to acquire detailed rock properties. View on Wikipedia Wikipedia Definition A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is

368

Density Changes in the Optimized CSSX Solvent System  

Science Conference Proceedings (OSTI)

Density increases in caustic-side solvent extraction (CSSX) solvent have been observed in separate experimental programs performed by different groups of researchers. Such changes indicate a change in chemical composition. Increased density adversely affects separation of solvent from denser aqueous solutions present in the CSSX process. Identification and control of factors affecting solvent density are essential for design and operation of the centrifugal contactors. The goals of this research were to identify the factors affecting solvent density (composition) and to develop correlations between easily measured solvent properties (density and viscosity) and the chemical composition of the solvent, which will permit real-time determination and adjustment of the solvent composition. In evaporation experiments, virgin solvent was subjected to evaporation under quiescent conditions at 25, 35, and 45 C with continuously flowing dry air passing over the surface of the solvent. Density and viscosity were measured periodically, and chemical analysis was performed on the solvent samples. Chemical interaction tests were completed to determine if any chemical reaction takes place over extended contact time that changes the composition and/or physical properties. Solvent and simulant, solvent and strip solution, and solvent and wash solution were contacted continuously in agitated flasks. They were periodically sampled and the density measured (viscosity was also measured on some samples) and then submitted to the Chemical Sciences Division of Oak Ridge National Laboratory for analysis by nuclear magnetic resonance (NMR) spectrometry and high-performance liquid chromatography (HPLC) using the virgin solvent as the baseline. Chemical interaction tests showed that solvent densities and viscosities did not change appreciably during contact with simulant, strip, or wash solution. No effects on density and viscosity and no chemical changes in the solvent were noted within experimental limits. Evaporation test results showed that all solvents were evaporated to densities of greater than 0.90 g/cm{sup 3}. Viscosities increased from 3.5 to >6.5 cP as the densities increased. NMR and HPLC data indicate that diluent loss is the primary reason for density increase and that the ratio of BOBCalixC6 (referred to as calix) to Cs-7SB remained almost constant. Density and viscosity vary linearly with the loss of diluent and the increase in Cs-7SB concentration. Solvent viscosity and density are both sensitive indicators of the loss of diluent, especially when such loss is greater than 10%. However, density is more reliable at low values for diluent loss. The ratio of Cs-7SB to calix appears relatively constant during evaporation to losses of more than 50% of the diluent. A simple density model accurately predicts the composition of the solvent when density is known. Density and viscosity increases can affect the throughput in the centrifugal contactors and, at the extreme, can cause complete loss of flow. The distribution coefficient can also increase, especially in the strip stage, causing the loss of the ability to strip extracted cesium from the solvent. These effects can be addressed by internal changes to the contactor and by adding additional stripping stages in processing. However, these changes are extremely difficult under remote operation and maintenance restrictions.

Lee, D.D.

2002-11-25T23:59:59.000Z

369

Effects of CO/sub 2/ flooding on wave velocities in rocks with hydrocarbons  

SciTech Connect

Compressional and shear-wave velocities were measured in the laboratory in seven sandstones (porosities ranging from 6 to 29%) and one unconsolidated sand (37% porosity) saturated with n-hexadecane (C/sub 16/H/sub 34/) both before and after CO/sub 2/ flooding. CO/sub 2/ flooding decreased compressional-wave velocities significantly, while shear-wave velocities were less affected. The magnitude of these effects was found to depend on confining and pore pressures, temperature, and porosities of the rocks. The experimental results and theoretical analysis show that the decreases in compressional-wave velocities caused by CO/sub 2/ flooding may be seismically resolvable in situ. Therefore, seismic--especially high-frequency, high-resolution seismic--methods may be useful in mapping and locating CO/sub 2/ zones, tracking movements of CO/sub 2/ fronts, and monitoring flooding processes in reservoirs undergoing CO/sub 2/ flooding.

Wang, Z. (Core Labs., Calgary (CA)); Nur, A.M. (Stanford Univ., Geophysics Dept., CA (US))

1989-11-01T23:59:59.000Z

370

Hot Dry Rock Geothermal Energy Development Program: Annual report, fiscal year 1985  

DOE Green Energy (OSTI)

The primary objective for the Hot Dry Rock Program at the Los Alamos National Laboratory during fiscal year 1985 was to complete the Phase 2 reservoir connection and to begin flow testing the resulting reservoir. The connection was achieved through redrilling one well and additional fracturing operations, and progress was made toward developing a detailed understanding of the fractured region through a variety of reservoir interrogation methods. Other accomplishments during the fiscal year included improvement of the high-temperature, inflatable, open-hole packer used to isolate sections of the uncased wellbore in collaboration with the Baker Corporation and the design and fabrication of a high-temperature borehole acoustic televiewer in a cooperative program with a research institute in West Germany. Progress was also made in techniques for the collection and analysis of microseismic data. Reservoir-engineering activities and geochemical studies, as well as the more routine support activities, continued in FY85. 18 refs., 15 figs.

Brown, D.W.; Franke, P.R.; Smith, M.C.; Wilson, M.G.

1987-01-01T23:59:59.000Z

371

Core Analysis | Open Energy Information  

Open Energy Info (EERE)

Core Analysis Core Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Core Analysis Details Activities (41) Areas (28) Regions (2) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Core analysis is done to define lithology. Stratigraphic/Structural: Core analysis can locate faults or fracture networks. Oriented core can give additional important information on anisotropy. Hydrological: Thermal: Thermal conductivity can be measured from core samples. Cost Information Low-End Estimate (USD): 2,000.00200,000 centUSD 2 kUSD 0.002 MUSD 2.0e-6 TUSD / 30 foot core Median Estimate (USD): 10,000.001,000,000 centUSD

372

DENSITY CONTROL IN A REACTOR  

DOE Patents (OSTI)

A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)

Marshall, J. Jr.

1961-10-24T23:59:59.000Z

373

Definition: Power density | Open Energy Information  

Open Energy Info (EERE)

density density Jump to: navigation, search Dictionary.png Power density The rate of energy flow (power) per unit volume, area or mass. Common metrics include: horsepower per cubic inch, watts per square meter and watts per kilogram.[1][2] View on Wikipedia Wikipedia Definition Power density (or volume power density or volume specific power) is the amount of power (time rate of energy transfer) per unit volume. In energy transformers like batteries, fuel cells, motors, etc. but also power supply units or similar, power density refers to a volume. It is then also called volume power density which is expressed as W/m. Volume power density is sometimes an important consideration where space is constrained. In reciprocated internal combustion engines, power density- power per swept

374

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-09-01T23:59:59.000Z

375

Industrial applications of hot dry rock geothermal energy  

DOE Green Energy (OSTI)

Geothermal resources in the form of naturally occurring hot water or steam have been utilized for many years. While these hydrothermal resources are found in many places, the general case is that the rock at depth is hot, but does not contain significant amounts of mobile fluid. An extremely large amount of geothermal energy is found around the world in this hot dry rock (HDR). Technology has been under development for more than twenty years at the Los Alamos National Laboratory in the United States and elsewhere to develop the technology to extract the geothermal energy from HDR in a form useful for electricity generation, space heating, or industrial processing. HDR technology is especially attractive for industrial applications because of the ubiquitous distribution of the HDR resource and the unique aspects of the process developed to recover it. In the HDR process, as developed at Los Alamos, water is pumped down a well under high pressure to open up natural joints in hot rock and create an artificial geothermal reservoir. Energy is extracted by circulating water through the reservoir. Pressurized hot water is returned to the surface through the production well, and its thermal energy is extracted for practical use. The same water is then recirculated through the system to mine more geothermal heat. Construction of a pilot HDR facility at Fenton Hill, NM, USA, has recently been completed by the Los Alamos National Laboratory. It consists of a large underground reservoir, a surface plant, and the connecting wellbores. This paper describes HDR technology and the current status of the development program. Novel industrial applications of geothermal energy based on the unique characteristics of the HDR energy extraction process are discussed.

Duchane, D.V.

1992-01-01T23:59:59.000Z

376

Colloid-facilitated radionuclide transport in fractured porous rock  

E-Print Network (OSTI)

Numerical methods have been applied for the prediction of colloid-facilitated radionuclide transport through water-saturated fractured porous rock. The presence of colloids may enhance the transport of radionuclides in groundwater by reducing retardation effects. The colloids existing in the groundwater act as carriers, adsorbing radionuclides on their large surface area and moving faster than the average water velocity. With colloids present, the system consists of three phases, i. e., an aqueous phase, a carrier phase, and a stationary solid phase. In the basic model, one-dimensional advection in a single planar fracture of infinite extent is coupled with diffusion in the rock matrix perpendicular to the fracture. In this study, a full-equilibrium model was developed to describe the transport and fate of the radionuclides in the fracture. Sorption onto rock matrix, fracture surface and sorption into mobile and immobile colloids are included. The effect of colloidal particle size was also considered. Mass partition mechanisms between the colloids and solid matrix and between colloid and contaminant are represented by local equilibrium. In the three-phase i.e., retardation coefficient, hydrodynamic dispersion system, the coefficient, and fracture width are modified to include the equilibrium distribution coefficient of contaminant with a carrier. In the three phase model, much smaller retardation and hydrodynamic dispersion coefficients are obtained and the effect of fracture width is larger. With the additional consideration of colloidal particle sizes, these effects become ever larger. Numerical solutions for the model were obtained using a fully implicit finite difference scheme. A significant sensitivity to model parameters was discovered, and in particular, the equilibrium distribution coefficients between a contaminant and the carrier were found to be the most important factors.

Baek, Inseok

1994-01-01T23:59:59.000Z

377

Anisotropic yielding of rocks at high temperatures and pressures  

DOE Green Energy (OSTI)

Results to date are: All of the starting materials for the three year project have been collected. Included in our collection are relatively fine-grained, fresh, oriented blocks of schist, gneiss, and micaceous quartzite with well-defined foliations and lineations as well as granite blocks oriented with respect to the principal quarrying orientations, the rift, grain, and hardway. A suite of samples has also been collected from an exposed granite stock and surrounding country rocks in order to evaluate the strengths and distribution of fabrics which may be encountered while drilling. These fabrics appear to be directly related to the forceful emplacement of the pluton. The literature on the mechanics of intrusion has been reviewed with regard to strain gradients and foliation development associated with diapiric flow. This information will be used to evaluate flow of varying fabrics on yield criteria within and surrounding magma chambers. Twenty-three successful experiments have been performed on samples of gneiss cored along six different orientations at temperatures ranging from 25{degrees} to 700{degrees}C. These experiments include extension tests, unconfined compression tests, and compression tests performed at P{sub c} = 100 MPa. Theoretical yield conditions for anisotropic materials have been reviewed and the assumptions upon which they are based probed. These yield conditions will ultimately be used to fit our data on gneiss, and the other foliated rocks under investigation. Two abstracts have been published and oral presentations made at the 1987 Fall Meeting of the American Geophysical Union, based upon our previous DOE-sponsored work on tensile fracturing of quartzite and related work on semi-brittle deformation of granitic rocks. 21 refs., 12 figs., 2 tabs.

Kronenberg, A.K.; Russell, J.E.; Handin, J.; Gottschalk, R.R.; Shea, W.T.

1987-12-01T23:59:59.000Z

378

The low-energy nuclear density of states and the saddle point approximation  

E-Print Network (OSTI)

The nuclear density of states plays an important role in nuclear reactions. At high energies, above a few MeV, the nuclear density of states is well described by a formula that depends on the smooth single particle density of states at the Fermi surface, the nuclear shell correction and the pairing energy. In this paper we present an analysis of the low energy behaviour of the nuclear density of states using the saddle point approximation and extensions to it. Furthermore, we prescribe a simple parabolic form for excitation energy, in the low energy limit, which may facilitate an easy computation of level densities.

Sanjay K. Ghosh; Byron K. Jennings

2001-07-30T23:59:59.000Z

379

Federal hot dry rock geothermal energy development program: an overview  

DOE Green Energy (OSTI)

The formulation and evolution of the Federal Hot Dry Rock Geothermal Energy Development Program at the Los Alamos Scientific Laboratory are traced. Program motivation is derived from the enormous potential of the resource. Accomplishments to date, including the establishment and evaluation of the 5-MW/sub t/ Phase 1 reservoir at Fenton Hill, NM and various instrument and equipment developments, are discussed. Future plans presented include (1) establishment of a 20- to 50-MW/sub t/ Phase 2 reservoir at Fenton Hill that will be used to demonstrate longevity and, eventually, electric power production and (2) the selection of a second site at which a direct thermal application will be demonstrated.

Nunz, G.J.

1979-01-01T23:59:59.000Z

380

Reservoir modeling of the Phase II Hot Dry Rock System  

DOE Green Energy (OSTI)

The Phase II system has been created with a series of hydraulic fracturing experiments at the Fenton Hill Hot Dry Rock site. Experiment 2032, the largest of the fracturing operations, involved injecting 5.6 million gallons (21,200m/sup 3/) of water into wellbore EE-2 over the period December 6-9, 1983. The experiment has been modeled using geothermal simulator FEHM developed at Los Alamos National Laboratory. The modeling effort has produced strong evidence of a large highly fractured reservoir. Two long term heat extraction schemes for the reservoir are studied with the model.

Zyvoloski, G.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Future of hot dry rock geothermal energy systems  

DOE Green Energy (OSTI)

Where natural groundwater circulation does not exist, the obvious method of extracting heat from the earth's crust is to imitate nature by creating it. A means of doing so by hydraulic fracturing has been demonstrated. Alternatively, explosives or mechanical or chemical methods might be used to open circulation paths. However, where permeabilities are sufficient so that fluid loss is excessive, other approaches are also possible. The magnitude and distribution of hot dry rock and the variety of possible heat-extraction techniques make it appear inevitable that this energy supply will eventually be used on a large scale.

Smith, M.C.

1979-01-01T23:59:59.000Z

382

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

SciTech Connect

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

Gary Mavko

2002-05-01T23:59:59.000Z

383

Hot Dry Rock resources of the Clear Lake area, California  

DOE Green Energy (OSTI)

The Hot Dry Rock resources of the Clear Lake area of northern California are hot, large and areally uniform. The geological situation is special, probably overlying a slabless window caused by interaction between tectonic plates. Consequent magmatic processes have created a high-grade resource, in which the 300{degree}C isotherm is continuous, subhorizontal, and available at the shallow depth of 2.4 to 4.7 km over an area of 800 km{sup 2}. The region is very favorable for HDR development.

Burns, K.L.; Potter, R.M. [Los Alamos National Lab., NM (United States); Peake, R.A. [California Energy Commission, CA (United States)

1995-01-01T23:59:59.000Z

384

Energy Efficiency Upgrades for Little Rock Air Force Base  

DOE Green Energy (OSTI)

Little Rock Air Force Base (LRAFB), in partnership with the local utility, Entergy Services, Inc., has reduced energy costs and used savings from investments in high-efficiency equipment to maintain and improve the condition of base housing and other facilities. Three projects were completed, with over $10 million invested. Major accomplishments include replacing air-to-air heat pumps with high-efficiency ground-source heat pumps (GSHPs) in more than 1,500 base housing units, lighting modifications to 10 buildings, upgrade of HVAC equipment in the base's enlisted club, and energy-efficient lighting retrofits for LRAFB's flight simulator.

Goldman, C.; Dunlap, M.A.

2000-11-13T23:59:59.000Z

385

Simulation of water transport in heated rock salt  

Science Conference Proceedings (OSTI)

This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

Schlich, M.; Jockwer, N.

1986-01-01T23:59:59.000Z

386

Preliminary measurements of the thermal conductivity of rocks from LASL geothermal test holes GT-1 and GT-2  

DOE Green Energy (OSTI)

The conductivities on a number of dry rocks have been measured in an air environment. These experimental values are probably about 10 percent lower than the in situ values. Initial attempts to prepare ''wet'' rock samples (rocks saturated with water) have so far resulted in only ''damp'' rocks. Considerable effort will be required to characterize the crack system in ''solid'' rocks and to predict the probable conductivity values for in situ conditions.

Sibbitt, W.L.

1975-12-01T23:59:59.000Z

387

Phase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices  

E-Print Network (OSTI)

for the understanding of the transformation between the different amorphous ices and the two hypothesized phasesPhase diagram of amorphous solid water: Low-density, high-density, and very-high-density amorphous ices Nicolas Giovambattista,1,2 H. Eugene Stanley,2 and Francesco Sciortino3 1 Department of Chemical

Sciortino, Francesco

388

Black Rock I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Rock I Geothermal Project Rock I Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3705792,"lon":-115.77401,"alt":0,"address":"33\u00b019'59\" N, 115\u00b050'3 W","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Black Rock II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Black Rock II Geothermal Project Black Rock II Geothermal Project Project Location Information Coordinates The following coordinate was not recognized: 33°19'59" N, 115°50'3 W.The following coordinate was not recognized: 33°19'59" N, 115°50'3 W. Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3705792,"lon":-115.77401,"alt":0,"address":"33\u00b019'59\" N, 115\u00b050'3 W","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

George J. Hirasaki; Kishore K. Mohanty

2005-09-05T23:59:59.000Z

391

Hot dry rock: A climate change action opportunity for industry  

DOE Green Energy (OSTI)

Geothermal resources in the form of heat found in rock that is hot but is not in contact with sufficient mobile fluid to transport that heat to the surface are a large, as yet virtually unexploited, source of clean energy. The technology to extract useful amounts of energy from this ubiquitous hot dry rock (HDR) geothermal resource has been under development for more than twenty years. During the last two years, flow testing at the Fenton Hill HDR pilot facility in New Mexico has answered many of the questions about the viability of HDR heat mining. While the most important issue of thermal longevity of the artificial geothermal reservoir that is the heart of an HDR energy system was not fully resolved, the test results provided good reasons to be optimistic that such reservoirs can have long lifetimes. No decline was observed in the temperature of the fluid produced during the relatively short test period and tracer testing indicated that the reservoir may be thermally self sustaining. In addition, water consumption during the circulation test was reduced to very low levels, the production of significant excess energy over that required simply to operate the system was verified, and routine energy production with virtually no emissions to the environment, except waste heat, was demonstrated.

Duchane, D.V.

1994-07-01T23:59:59.000Z

392

Fluid-Rock Characterization and Interactions in NMR Well Logging  

DOE Green Energy (OSTI)

The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

Hirasaki, George J.; Mohanty, Kishore, K.

2001-07-13T23:59:59.000Z

393

Characterization of hot dry rock geothermal energy extraction systems  

DOE Green Energy (OSTI)

The engineering of heat exchange systems by which geothermal heat can be efficiently extracted from hot impermeable rocks is studied. The system currently under investigation at Fenton Hill, New Mexico consists of a network of large fractures created through the hydraulic pressurization of a well penetrating hot basement rocks and subsequently intersected by a second well drilled to form a flow-thru system. Cool water pumped into the fractures through one well, once heated in the reservoir, returns to the surface through the second well, is cooled, and then recirculated. While much is known about the performance parameters of the fracture network from short-term flow tests, little is understood concerning the spatial dimensions and geometrical relationship of individual fractures comprising the network. Ultimately, the success one has in estimating the long-term performance of such a system where commercialization is an issue, and in engineering future systems with optimal performance, depends on the success in characterizing the flow-thru fracture networks. To date only nonconventional application of oil field logging techniques and acoustic emissions studies have been used in the characterization of the fracture network.

Albright, J.N.; Newton, C.A.

1981-01-01T23:59:59.000Z

394

Source Parameter Investigation of the 1993 Rock Valley Earthquake Sequence  

E-Print Network (OSTI)

Close portable recordings of the RockValley earthquake sequence con#rm the unusually shallow 2 km average hypocentral depths, and provide data for an investigation of the source parameters. Stress drops are estimated using both a spectral #tting technique that #rst corrects for attenuation, and a deconvolution technique that inherently accounts for attenuation. The shallow depths suggest a relatively low level of shear stress acting on the RockValley fault, and allow an estimation of seismic e#ciencies. The data allow the possibility of large stress drops, on the order of 100 bars, implying seismic e#ciencies much greater than 0.1. This has important implications for the unresolved issue of the strength of faults in general. A dependence of stress drop with seismic moment remains unresolvable with this data. However, the possibility of partial stress drops and non-linear responses does exist. A seismic survey designed speci#cally for the purpose of measuring attenuation could resolve t...

Gordon Shields; Gordon Shields

1999-01-01T23:59:59.000Z

395

Micromachined low frequency rocking accelerometer with capacitive pickoff  

DOE Patents (OSTI)

A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

Lee, Abraham P. (Arlington, VA); Simon, Jonathon N. (San Leandro, CA); McConaghy, Charles F. (Livermore, CA)

2001-01-01T23:59:59.000Z

396

Some characteristics of the Hardhat chimney and surrounding wall rock  

SciTech Connect

The Hardhat event was a 4.9 + 1.5 kt nuclear explosion at a depth of 286.2 m in granodiorite. Data from 3 underground drill holes have been analyzed in an effort to further define chimney characteristics. The chimney radius was determined to be 20.3 m near shot point level and 17.7 m near the apical void. The earlier determined cavity radius of 19.2 m was confirmed. Total chimney volume is calculated to be 113,860 cu m consisting of 30,800 cu m of void space and 222 million kg of rock. Of the total chimney volume, 27% is void space. In the rubble column itself, exclusive of the apical void, 22% is void space. The nature of the radioactive melt and its distribution in the puddle suggest that the cavity did not collapse until H + 11 hr when an audible rumble was heard. The zone of highly crushed rock outside the chimney is calculated to have a void column of about 2,500 cu m, roughly 8% of the void volume inside the chimney.

Boardman, C.R.

1966-01-01T23:59:59.000Z

397

Quasi-equilibrium electron density along a magnetic field line  

SciTech Connect

A methodology is developed to determine the density of high-energy electrons along a magnetic field line for a low-{beta} plasma. This method avoids the expense and statistical noise of traditional particle tracking techniques commonly used for high-energy electrons in bombardment plasma generators. By preserving the magnetic mirror and assuming a mixing timescale, typically the elastic collision frequency with neutrals, a quasi-equilibrium electron distribution can be calculated. Following the transient decay, the analysis shows that both the normalized density and the reduction fraction due to collision converge to a single quasi-equilibrium solution.

Mao, Hann-Shin; Wirz, Richard [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095 (United States)

2012-11-26T23:59:59.000Z

398

Small-scale density fluctuations in the adiabatic toroidal compressor  

SciTech Connect

A new class of density fluctuations has been observed in the ATC tokamak by using spectral analysis of scattered microwaves. The observed frequency spectrum is consistent with that of drift waves with amplitudes that are maximum in the wavelength range 0.5 to 1.0 cm where finite ion Larmor radius effects are important for plasma stability. The total density fluctuation is n tilde/sub e/ greater than or equal to 5 x 10$sup -3$ anti n/sub e/. It is estimated that these fluctuations could account for a large fraction of the electron energy losses of the ATC discharge. (auth)

Mazzucato, E.

1976-02-01T23:59:59.000Z

399

Oxides having high energy densities  

DOE Patents (OSTI)

Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

Ceder, Gerbrand; Kang, Kisuk

2013-09-10T23:59:59.000Z

400

Risk Bounds for Mixture Density Estimation  

E-Print Network (OSTI)

In this paper we focus on the problem of estimating a bounded density using a finite combination of densities from a given class. We consider the Maximum Likelihood Procedure (MLE) and the greedy procedure described by ...

Rakhlin, Alexander

2004-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Site Release Reports for C-Well Pipeline, UE-25 Large Rocks Test Site, and 29 GSF Test Pits  

SciTech Connect

The U.S. Department of Energy has implemented a program to reclaim lands disturbed by site characterization at Yucca Mountain. Long term goals of the program are to re-establish processes on disturbed sites that will lead to self-sustaining plant communities. The Biological Opinion for Yucca Mountain Site Characterization Studies required that the U.S. Department of Energy develop a Reclamation Standards and Monitoring Plan to evaluate the success of reclamation efforts. According to the Reclamation Standards and Monitoring Plan, reclaimed sites will be monitored periodically, remediated if necessary, and eventually compared to an appropriate reference area to determine whether reclamation goals have been achieved and the site can be released from further monitoring. Plant cover, density, and species richness (success parameters) on reclaimed sites are compared to 60 percent of the values (success criteria) for the same parameters on the reference area. Small sites (less than 0.1 ha) are evaluated for release using qualitative methods while large sites (greater than 0.1 ha) are evaluated using quantitative methods. In the summer of 2000, 31 small sites reclaimed in 1993 and 1994 were evaluated for reclamation success and potential release from further monitoring. Plant density, cover, and species richness were estimated on the C-Well Pipeline, UE-25 Large Rocks test site, and 29 ground surface facility test pits. Evidence of erosion, reproduction and natural recruitment, exotic species abundance, and animal use (key attributes) also were recorded for each site and used in success evaluations. The C-Well Pipeline and ground surface facility test pits were located in a ''Larrea tridentata - Ephedra nevadensis'' vegetation association while the UE-25 Large Rocks test site was located in an area dominated by ''Coleogyne ramosissima and Ephedra nevadensis''. Reference areas in the same vegetation associations with similar slope and aspect were chosen for comparison to the reclaimed sites. Sixty percent of the reference area means for density, cover, and species richness were compared to the estimated means for the reclaimed sites. Plant density, cover, and species richness at the C-Well Pipeline and UE-25 Large Rocks test site were greater than the success criteria and all key attributes indicated the sites were in acceptable condition. Therefore, these two sites were recommended for release from further monitoring. Of the 29 ground surface facility test pits, 26 met the criterion for density, 21 for cover, and 23 for species richness. When key attributes and conditions of the plant community near each pit were taken into account, 27 of these pits were recommended for release. Success parameters and key attributes at ground surface facility test pits 19 and 20 were inadequate for site release. Transplants of native species were added to these two sites in 2001 to improve density, cover, and species richness.

K.E. Rasmuson

2002-04-02T23:59:59.000Z

402

Bivariate density estimation using BV regularisation  

Science Conference Proceedings (OSTI)

The problem of bivariate density estimation is studied with the aim of finding the density function with the smallest number of local extreme values which is adequate with the given data. Adequacy is defined via Kuiper metrics. The concept of the taut-string ... Keywords: Density estimation, Modality, Regularisation

Andreas Obereder; Otmar Scherzer; Arne Kovac

2007-08-01T23:59:59.000Z

403

A Coupled Model for Natural Convection and Condensation in Heated Subsurface Enclosures Embedded in Fractured Rock  

E-Print Network (OSTI)

and Mass Transfer in Yucca Mountain Drifts, Proceedings ofMD- 000001 REV 00, Yucca Mountain Project Report, Bechtelthe fractured rock at Yucca Mountain have been investigated

Halecky, N.; Birkholzer, J.T.; Webb, S.W.; Peterson, P.F.; Bodvarsson, G.S.

2006-01-01T23:59:59.000Z

404

A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...  

Open Energy Info (EERE)

Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrothermal Calcites, Long Valley Caldera, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

405

Mechanical properties of rocks at high temperatures and pressures: Final report  

DOE Green Energy (OSTI)

During the final year of the grant, we have investigated (1) why the strengths of rocks decrease with increasing temperature and in the presence of water through study of the fracture process in Westerly granite and Sioux quartzite specimens deformed in extension (some in true tension), (2) frictional strengths of rocks at high temperatures, (3) the stability of boreholes in fractured rock, and (4) slip in biotite single crystals (in that biotite is probably the weakest and most ductile of the common constituents of crystalline rocks.

Friedman, M.; Bauer, S.J.; Chester, F.M.; Handin, J.; Hopkins, T.W.; Johnson, B.; Kronenberg, A.K.; Mardon, D.; Russell, J.E.

1987-07-27T23:59:59.000Z

406

Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources  

DOE Green Energy (OSTI)

This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

Heiken, G.; Sayer, S.

1980-02-01T23:59:59.000Z

407

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

408

Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in ...  

U.S. Energy Information Administration (EIA)

Figure 2. Stratigraphic Summary of Ages, Names and Rock Types in the ANWR 1002 and Coastal Plain Area of the Alaska North Slope. Potentially Productive ...

409

Meta-tourism, sense of place and the rock art of the Little Karoo.  

E-Print Network (OSTI)

??The subject is the rock art within the region known as the Little Karoo in the Western Cape that lies between the coastal plain and (more)

Rust, Catharine

2008-01-01T23:59:59.000Z

410

On the relationship between stress and elastic strain for porous and fractured rock  

E-Print Network (OSTI)

of pressure on electrical resistivity of rocks. J Geophysproperties are electrical resistivity/conductivity dataof pressure on the electrical resistivity of water-saturated

Liu, Hui-Hai

2009-01-01T23:59:59.000Z

411

On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock  

E-Print Network (OSTI)

and Orange, A. S. , Electrical resistivity in saturated rockof pressure on electrical resistivity of rocks, J. Geophys.of pressure on the electrical resistivity of water-saturated

Berryman, Hui-Hai Liu, Jonny Rutqvist and James G.

2009-01-01T23:59:59.000Z

412

INSTRUMENTATION AND COMPUTER BASED DATA ACQUISTION FOR IN-SITU ROCK PROPERTY MEASUREMENTS  

E-Print Network (OSTI)

and R. Lingle, "Rock Instrumentation Problems Experiencedand R. Haught, "Instrumentation Evaluation, Calibration, andUniversity of California. INSTRUMENTATION AND COMPUTER BASED

Binnall, Eugene P.

2013-01-01T23:59:59.000Z

413

Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

Cuttings Analysis Cuttings Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Cuttings Analysis Details Activities (36) Areas (28) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Cuttings are used to define lithology Stratigraphic/Structural: Hydrological: Thermal: Cost Information Low-End Estimate (USD): 1,000.00100,000 centUSD 1 kUSD 1.0e-3 MUSD 1.0e-6 TUSD / 100 feet cut Median Estimate (USD): 4,000.00400,000 centUSD 4 kUSD 0.004 MUSD 4.0e-6 TUSD / 100 feet cut High-End Estimate (USD): 10,000.001,000,000 centUSD 10 kUSD 0.01 MUSD 1.0e-5 TUSD / 100 feet cut Time Required

414

Transport Energy Use and Population Density  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Energy Use and Population Density Transport Energy Use and Population Density Speaker(s): Masayoshi Tanishita Date: July 1, 2004 - 10:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Jonathan Sinton After Peter Newman and Jeffrey Kenworthy published "Cities and Automobile Dependence" in 1989, population density was brought to public attention as an important factor to explain transport mobility and energy use. However, several related issues still remain open: Is an increase in population density more effective than rising gas prices in reducing transport energy use? How much does per capita transport energy use change as population density in cities changes? And what kind of factors influence changes in population density? In this presentation, using city-level data in the US, Japan and other countries, the population-density elasticity of

415

Density fluctuation measurements via beam emission spectroscopy (invited)  

SciTech Connect

Previous studies of plasma microturbulence have indicated that the fluctuation power scales with radial wave number, {ital k}{sub {perpendicular}} , like {ital k}{sub {perpendicular}}{sup {minus}2}{r arrow}{ital k}{sub {perpendicular}}{sup {minus}3.5} for {ital k}{sub {perpendicular}} {ge}2 cm{sup {minus}1}. This implies that low {ital k} fluctuations may dominate the spectrum. Beam emission spectroscopy (BES) has been developed to provide spatially localized measurements of density fluctuations in this low {ital k} region of the spectrum ({ital k}{sub {perpendicular}} {le}2 cm{sup {minus}1}). A 20-channel system has been installed on TFTR which images one of the heating neutral beams (via fiber optics) onto a set of photoconductive photodiode detectors. Fluctuations in the fluorescent {ital D}{sub {alpha}} emission from the beam can be related to the local plasma density fluctuations via a model of the atomic excitation processes. The analysis of BES data utilizes many of the standard statistical analysis techniques such as power spectra, coherency and cross phase, and correlation analysis which are also used in the analysis of, for example, Langmuir probe data. In the case of BES however, these techniques require some special modifications to account for systematic effects such as photon statistics and fluctuations in the neutral beam density induced by the strong fluctuations near the plasma edge.

Durst, R.D.; Fonck, R.J.; Cosby, G.; Evensen, H. (University of Wisconsin/Madison, Madison, Wisconsin 53706 (United States)); Paul, S.F. (Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08541 (United States))

1992-10-01T23:59:59.000Z

416

City of Rock Falls, Illinois (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Illinois (Utility Company) Illinois (Utility Company) Jump to: navigation, search Name City of Rock Falls Place Illinois Utility Id 16198 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Economic Development Rate Rider Irrigation System: Off-Peak Rider Commercial Rate C (Commercial) Commercial Rate GS: municipal and governmental entities Commercial Rate GS: other than municipal or governmental entities Commercial Rate R (Residential) Residential

417

Coupled rock motion and gas flow modeling in blasting  

SciTech Connect

The spherical element computer code DMC (Distinct Motion Code) used to model rock motion resulting from blasting has been enhanced to allow routine computer simulations of bench blasting. The enhancements required for bench blast simulation include: (1) modifying the gas flow portion of DMC, (2) adding a new explosive gas equation of state capability, (3) modifying the porosity calculation, and (4) accounting for blastwell spacing parallel to the face. A parametric study performed with DMC shows logical variation of the face velocity as burden, spacing, blastwell diameter and explosive type are varied. These additions represent a significant advance in the capability of DMC which will not only aid in understanding the physics involved in blasting but will also become a blast design tool. 8 refs., 7 figs., 1 tab.

Preece, D.S. (Sandia National Labs., Albuquerque, NM (United States)); Knudsen, S.D. (RE/SPEC, Inc., Albuquerque, NM (United States))

1991-01-01T23:59:59.000Z

418

Hot Dry Rock Geothermal Reservoir Model Development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general.

Robinson, Bruce A.; Birdsell, Stephen A.

1989-03-21T23:59:59.000Z

419

Fracture network modeling of a Hot Dry Rock geothermal reservoir  

DOE Green Energy (OSTI)

Fluid flow and tracer transport in a fractured Hot Dry Rock (HDR) geothermal reservoir are modeled using fracture network modeling techniques. The steady state pressure and flow fields are solved for a two-dimensional, interconnected network of fractures with no-flow outer boundaries and constant-pressure source and sink points to simulate wellbore-fracture intersections. The tracer response is simulated by particle tracking, which follows the progress of a representative sample of individual tracer molecules traveling through the network. Solute retardation due to matrix diffusion and sorption is handled easily with these particle tracking methods. Matrix diffusion is shown to have an important effect in many fractured geothermal reservoirs, including those in crystalline formations of relatively low matrix porosity. Pressure drop and tracer behavior are matched for a fractured HDR reservoir tested at Fenton Hill, NM.

Robinson, B.A.

1988-01-01T23:59:59.000Z

420

Hot Dry Rock geothermal reservoir model development at Los Alamos  

DOE Green Energy (OSTI)

Discrete fracture and continuum models are being developed to simulate Hot Dry Rock (HDR) geothermal reservoirs. The discrete fracture model is a two-dimensional steady state simulator of fluid flow and tracer transport in a fracture network which is generated from assumed statistical properties of the fractures. The model's strength lies in its ability to compute the steady state pressure drop and tracer response in a realistic network of interconnected fractures. The continuum approach models fracture behavior by treating permeability and porosity as functions of temperature and effective stress. With this model it is practical to model transient behavior as well as the coupled processes of fluid flow, heat transfer, and stress effects in a three-dimensional system. The model capabilities being developed will also have applications in conventional geothermal systems undergoing reinjection and in fractured geothermal reservoirs in general. 15 refs., 7 figs.

Robinson, B.A.; Birdsell, S.A.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis rock density" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Developing hot dry rock reservoirs with inflatable open hole packers  

DOE Green Energy (OSTI)

An open hole packer system was designed for high pressure injection operations in high temperature wells at the Fenton Hill, Hot Dry Rock (HDR) Geothermal Site. The packer runs were required to verify that the HDR reservoir fractures had been penetrated during the drilling of well EE-3A. They were also used to stimulate fractures connecting EE-3A to the reservoir and to conduct two massive hydraulic fracture treatments at the bottom of EE-3A. An attempt to use a modified packer design as a temporary well completion system was not successful but with modification the system may prove to be an important HDR completion technique. The eleven packer runs have demonstrated that formation testing, stimulation and HDR reservoir development can now be conducted with an open hole inflatable packer operating over large temperature ranges and high differential pressures.

Dreesen, D.S.; Miller, J.R.; Nicholson, R.W.

1987-01-01T23:59:59.000Z

422

Method and apparatus for water jet drilling of rock  

DOE Patents (OSTI)

Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.

Summers, David A. (Rolla, MO); Mazurkiewicz, Marian (Wroclaw, PL); Bushnell, Dwight J. (Corvallis, OR); Blaine, James (Rolla, MO)

1978-01-01T23:59:59.000Z

423

Comparison of two hot dry rock geothermal reservoirs  

DOE Green Energy (OSTI)

Two hot dry rock (HDR) geothermal energy reservoirs were created by hydraulic fracturing of granite at 2.7 to 3.0 km (9000 to 10,000 ft) at the Fenton Hill site, near the Valles Caldera in northern New Mexico. Both reservoirs are research reservoirs, in the sense that both are fairly small, generally yielding 5 MWt or less, and are intended to serve as the basic building blocks of commercial-sized reservoirs, consisting of 10 to 15 similar fractures that would yield approximately 35 MWt over a 10 to 20 yr period. Both research reservoirs were created in the same well-pair, with energy extraction well number 1 (EE-1) serving as the injection well, and geothermal test well number 2 (GT-2) serving as the extraction, or production, well. The first reservoir was created in the low permeability host rock by fracturing EE-1 at a depth of 2.75 km (9020 ft) where the indigenous temperature was 185/sup 0/C (364/sup 0/F). A second, larger reservoir was formed by extending a small, existing fracture at 2.93 km (9620 ft) in the injection well about 100 m deeper and 10/sup 0/C hotter than the first reservoir. The resulting large fracture propagated upward to about 2.6 km (8600 ft) and appeared to Rave an inlet-to-outlet spacing of 300m (1000 ft), more then three times that of the first fracture. Comparisons are made with the first reservoir. Evaluation of the new reservoir was accomplished in two steps: (1) with a 23-day heat extraction experiment that began October 23, 1979, and (2) a second, longer-term heat extraction experiment still in progress, which as of November 25, 1980 has been in effect for 260 days. The results of this current experiment are compared with earlier experiments.

Murphy, H.D.; Tester, J.W.; Potter, R.M.

1980-01-01T23:59:59.000Z

424

Spatial statistics for predicting flow through a rock fracture  

Science Conference Proceedings (OSTI)

Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

Coakley, K.J.

1989-03-01T23:59:59.000Z

425

The UK geothermal hot dry rock R&D programme  

Science Conference Proceedings (OSTI)

The UK hot dry rock research and development programme is funded by the Department of Energy and aims to demonstrate the feasibility of commercial exploitation of HDR in the UK. The philosophy of the UK programme has been to proceed to a full-scale prototype HDR power station via a number of stages: Phase 1--Experiments at shallow depth (300 m) to assess the feasibility of enhancing the permeability of the rock. Phase 2--Studies at intermediate depth (2500 m) to determine the feasibility of creating a viable HDR subsurface heat exchanger. Phase 3--Establishment of an HDR prototype at commercial depth. The programme has run over a 15 year period, and has been formally reviewed at stages throughout its progress. The 1987 review towards the end of Phase 2 identified a number of technical objectives for continuing research and proposed that the initial design stage of the deep HDR prototype should start. Phase 3A is now complete. It addressed: the feasibility of creating an underground HDR heat exchanger suitable for commercial operation; techniques for improving hydraulic performance and correcting short circuits in HDR systems; modeling of the performance, resource size and economic aspects of HDR systems. The work has been conducted by a number of contractors, including Cambome School of Mines, Sunderland and Sheffield City Polytechnics and RTZ Consultants Limited. This paper focuses upon the experimental work at Rosemanowes in Cornwall and the recently completed conceptual design of a prototype HDR power station. The economics of HDR-generated electricity are also discussed and the conclusions of a 1990 program review are presented. Details of the HDR program to 1994, as announced by the UK Department of Energy in February 1991, are included.

MacDonald, Paul; Stedman, Ann; Symons, Geoff

1992-01-01T23:59:59.000Z

426

Next stages in HDR technology development. [Hot Dry Rock (HDR)  

DOE Green Energy (OSTI)

Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective fuel costs'' of 2--3[cents] per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

Duchane, D.V.

1993-01-01T23:59:59.000Z

427

Hot Dry Rock energy annual report fiscal year 1992  

DOE Green Energy (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase II HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90-100 gallons per minute (gpm) with temperatures of 180[degrees]C (356[degrees]F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10-12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Duchane, D.V.; Winchester, W.W.

1993-04-01T23:59:59.000Z

428

Hot Dry Rock energy annual report fiscal year 1992  

DOE Green Energy (OSTI)

Hot Dry Rock technology took a giant leap forward this year as the long-awaited long-term flow test (LTFT) of the Phase 2 HDR reservoir at Fenton Hill got underway. Energy was produced on a twenty-four hour a day basis for a continuous period of nearly four months of steady-state testing. Hot water was brought to the surface at 90--100 gallons per minute (gpm) with temperatures of 180{degrees}C (356{degrees}F) and higher. During that time, the HDR plant achieved an on-line record of 98.8%. Surface temperature measurements and temperature logging deep within the wellbore confirmed that no decline in the average temperature of fluid produced from the reservoir occurred. Tracer experiments indicated that flow paths within the reservoir were undergoing continuous change during the test. Remarkably, it appeared that longer flow paths carried a larger proportion of the flow as the test proceeded, while more direct fluid pathways disappeared or carried a significantly reduced flow. In sum, access to hot rock appeared to improve over the span of the test. Water losses during the test averaged 10--12% and showed a slow long-term decline. These results confirmed what had been previously discovered in static pressurization testing: Water consumption declines significantly during extended operation of an HDR reservoir. In combination with a recent demonstration by the Japanese that water losses can be greatly reduced by the proper placement of multiple production wells, the recent results at Fenton Hill have effectively demonstrated that excessive water consumption should not be an issue for a properly engineered HDR facility at a well chosen site.

Winchester, W.W. [ed.; Duchane, D.V.

1993-04-01T23:59:59.000Z

429

FOAM DENSITY SENSITIVITY STUDY FOR THE 9977 PACKAGE  

SciTech Connect

Two layers of insulation fill the volume of the 9977 package between the drum liner and the shell. One of these layers is composed of General Plastics FR-3716 polyurethane foam (also known as Last-A-Foam{reg_sign}), poured through fill holes in the drum bottom and foamed in place. There was concern that the density of the foam insulating layer may vary due to the manufacturing process and that variations in foam density would compromise the safety basis of the package. Thus, a structural finite element analysis was performed to investigate this concern. The investigation examined the effect of replacing the material properties for the FR-3716 polyurethane foam, which has a density equal to 16 lb{sub m}/ft{sup 3}, with material properties of similar foam with varying densities through finite element analysis of hypothetical accident conditions (HAC) pertaining to impact conditions. The results showed that the functional performance of the containment vessel (CV) was not compromised under the conditions investigated.

Gorczyca, J; Tsu-Te Wu, T

2008-05-02T23:59:59.000Z

430

Density-gradient theory: a macroscopic approach to quantum confinement and tunneling in semiconductor devices  

Science Conference Proceedings (OSTI)

Density-gradient theory provides a macroscopic approach to modeling quantum transport that is particularly well adapted to semiconductor device analysis and engineering. After some introductory observations, the basis of the theory in macroscopic and ... Keywords: Continuum, Density-gradient, Electron transport, Quantum confinement, Quantum tunneling, Semiconductor device simulation, Thermodynamics

M. G. Ancona

2011-06-01T23:59:59.000Z

431

Finescale Velocity-Density Characteristics and Richardson Number Statistics of the Eastern Equatorial Pacific  

Science Conference Proceedings (OSTI)

An analysis of finescale horizontal-velocity shear and density data collected along 110W longitude in the equatorial Pacific is presented. The measurements were made with the free-fall velocitydensity profiler, TOPS. Twenty-five deployments are ...

John M. Toole; Stanley P. Hayes

1984-04-01T23:59:59.000Z

432

Simulating Injectate/Rock Chemical Interaction In Fractured Desert Peak Quartz Monzonite  

DOE Green Energy (OSTI)

Simulations of the interactions of injected fluids with minerals within an engineered fracture in a sample of Desert Peak quartz monzonite were compared with experimental observations of fluid chemistry and fracture permeability. The observed decrease in permeability and effective hydraulic aperture was much more rapid ({approx}1.0 {micro}m/day) for a core injected with a mixed salt solution containing dissolved silica (near-saturation injectate), compared to cores injected with NaCl (far-from-saturation injectate) ({approx}0.1 {micro}m/day). Simulations were in qualitative agreement with these observations. Near-saturation injectate is predicted to result in net precipitation of secondary phases in the fracture ({approx}0.12 {micro}m/day), compared to a net dissolution of the rock for the far-from-saturation injectate ({approx}0.3 {micro}m/day). Permeability loss for the near-saturation-injectate is ascribed to precipitation in the fracture as well as potential dissolution of primary mineral asperities. Permeability loss for the far-from-saturation fluid is ascribed to dissolution of asperities and smoothing of the fracture. Post-test analysis of the fracture surface will be necessary to verify the processes occurring. The simplified geochemical models used do not account for mineral heterogeneity or for distributions of fluid residence times which could be important controls on permeability evolution. Further analysis is planned to explicitly account for these phenomena.

Viani, B; Roberts, J; Detwiler, R; Roberts, S; Carlson, S

2005-06-02T23:59:59.000Z

433

Hot Dry Rock Geothermal Energy Development in the USA David Duchane and Donald Brown  

E-Print Network (OSTI)

utility options such as pumped storage or compressed air energy storage (CAES) is that the HDR power plant1 Hot Dry Rock Geothermal Energy Development in the USA by David Duchane and Donald Brown Los energy resources lies right beneath our feet in the form of hot dry rock (HDR), the common geologic

434

Nonlinear pressure and temperature waves propagation in fluid-saturated rocks  

Science Conference Proceedings (OSTI)

A numerical study for the simulation of rock deformation due to nonlinear temperature and pressure waves in fluid saturated porous rock is presented. The problem of an homogeneous, thermoelastic, and isotropic fluid-saturated matrix, lying over an aquifer ... Keywords: Fluid dynamics, Geothermics, Nonlinear model, Quasi-Newton solver

M. De' Michieli Vitturi; F. Beux

2005-10-01T23:59:59.000Z

435

Location-based services to control roller compaction quality for rock-fill dams  

Science Conference Proceedings (OSTI)

It is very important for rock-fill dams to carry out more accurately monitoring and remotely quality controlling in real time. Based on location based services, an integration platform, with the name of CRCQ-DAM, is proposed to control roller compaction ... Keywords: RTK, WebGIS, location-based services, rock-fill dams, roller compaction quality

Hao Wu; Qiankun Wang; Jiru Zhang; Qin Chen; Xupeng Wang

2009-09-01T23:59:59.000Z

436

Limits to the power density of very large wind farms  

E-Print Network (OSTI)

A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

Nishino, Takafumi

2013-01-01T23:59:59.000Z

437

Form-stable crystalline polymer pellets for thermal energy storage: high density polyethylene intermediate products. Final report, October 1, 1977--January 31, 1978  

DOE Green Energy (OSTI)

The primary objectives of this program were to demonstrate: (1) that form-stable high density polyethylene (HDPE), which has been shown to have desirable properties as a phase-change type of thermal energy storage material, could be produced by processing in a polyethylene plant for a projected price near 26 cents/lb; and (2) that the raw material, ethylene, will be available in the very long-term from alternate sources (other than petroleum and natural gas). These objectives were accomplished. Production of useful, form-stable HDPE pellets by radiation cross-linking was demonstrated. Such pellets are estimated to be obtainable at 26 cents/lb, using large-volume (> or equal to 10,000,000 lb/yr) in-plant processing. Well-developed technologies exist for obtaining ethylene from coal and plant (or biomass) sources, thus assuring its long-term availability and therefore that of polyethylene. A cost-benefit analysis of the HDPE thermal energy storage system was conducted over its 120 to 140/sup 0/C optimum operating range which is most suited for absorption air conditioning. The HDPE is more cost effective than either rocks, ethylene glycol, or pressurized water and is even competitive with a hypothetical 5 cents/lb salt-hydrate melting in this temperature range. These results applied, as appropriate, to both air and liquid transfer systems.

Botham, R.A.; Ball, G.L. III; Jenkins, G.H.; Salyer, I.O.

1978-01-01T23:59:59.000Z

438

Hot dry rock geothermal energy: status of exploration and assessment. Report No. 1 of the hot dry rock assessment panel  

DOE Green Energy (OSTI)

The status of knowledge of attempts to utilize hot dry rock (HDR) geothermal energy is summarized. It contains (1) descriptions or case histories of the ERDA-funded projects at Marysville, MT, Fenton Hill, NM, and Coso Hot Springs, CA; (2) a review of the status of existing techniques available for exploration and delineation of HDR; (3) descriptions of other potential HDR sites; (4) definitions of the probable types of HDR resource localities; and (5) an estimate of the magnitude of the HDR resource base in the conterminous United States. The scope is limited to that part of HDR resource assessment related to the determination of the extent and character of HDR, with emphasis on the igneous-related type. It is estimated that approximately 74 Q (1 Q = 1,000 Quads) of heat is stored in these sites within the conterminous U.S. at depths less than 10 km and temperatures above 150/sup 0/C, the minimum for power generation. (Q = 10/sup 18/ BTU = 10/sup 21/J; the total U.S. consumption for 1972 was approximately 0.07 Q). Approximately 6300 Q are stored in the conduction-dominated parts of the crust in the western U.S. (23% of the total surface area), again at depths less than 10 km and temperatures above 150/sup 0/C. Nearly 10,000 Q are believed to be contained in crustal rocks underlying the entire conterminous U.S., at temperatures above 150/sup 0/C. The resource base is significantly larger for lower grade heat. (JGB)

Not Available

1977-06-01T23:59:59.000Z

439

2010 DOE National Science Bowl® Photos - Little Rock Central High School  

Office of Science (SC) Website

Little Rock Central High School Little Rock Central High School National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov 2010 National Science Bowl Photos 2010 DOE National Science Bowl® Photos - Little Rock Central High School Print Text Size: A A A RSS Feeds FeedbackShare Page Little Rock Central High School students from Little Rock, AR tour the

440

Candidate Sites For Future Hot Dry Rock Development In The United States |  

Open Energy Info (EERE)

Candidate Sites For Future Hot Dry Rock Development In The United States Candidate Sites For Future Hot Dry Rock Development In The United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Candidate Sites For Future Hot Dry Rock Development In The United States Details Activities (8) Areas (4) Regions (0) Abstract: Generalized geologic and other data are tabulated for 24 potential hot dry rock (HDR) sites in the contiguous United States. The data show that HDR resources occur in many geologic and tectonic settings. Potential reservoir rocks at each prospect are described and each system is categorized according to inferred heat sources. The Fenton Hill area in New Mexico is discussed in detail because this region may be considered ideal for HDR development. Three other prospectively valuable localities are