National Library of Energy BETA

Sample records for analysis rock density

  1. Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Rock Density Details Activities (2) Areas (2) Regions (0) NEPA(0) Exploration Technique...

  2. Category:Rock Density | Open Energy Information

    Open Energy Info (EERE)

    Rock Density Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Rock Density page? For detailed information on Rock Density as...

  3. Category:Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    Rock O Over Core Stress P Paleomagnetic Measurements Petrography Analysis R Rock Density Rock Lab Analysis X X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Retrieved from...

  4. Rock Density At Alum Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Alum Area (DOE GTP) Exploration Activity Details Location Alum Geothermal Area...

  5. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    interaction. Can determine detailed information about rock composition and morphology. Density of different lithologic units. Rapid and unambiguous identification of unknown...

  6. Rock Density At Silver Peak Area (DOE GTP) | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Density At Silver Peak Area (DOE GTP) Exploration Activity Details Location Silver Peak Area...

  7. Rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocks Rocks Rocks have been used by mankind throughout history. In geology, rock is a naturally occurring composite of one or more minerals or mineraloids. One of our most popular...

  8. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  9. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    Phillips, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal Area...

  10. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Area...

    Open Energy Info (EERE)

    Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References...

  11. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    WoldeGabriel & Goff, 1992) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

  12. Analysis of compressive fracture in rock using statistical techniques

    SciTech Connect (OSTI)

    Blair, S.C.

    1994-12-01

    Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.

  13. Error Analysis in Nuclear Density Functional Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory Authors: Schunck, N ; McDonnell,...

  14. Error Analysis in Nuclear Density Functional Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Error Analysis in Nuclear Density Functional Theory Citation Details In-Document Search Title: Error Analysis in Nuclear Density Functional Theory You are accessing a document...

  15. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    SciTech Connect (OSTI)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  16. Rock matrix and fracture analysis of flow in western tight gas sands: Annual report, Phase 3

    SciTech Connect (OSTI)

    Dandge, V.; Graham, M.; Gonzales, B.; Coker, D.

    1987-12-01

    Tight gas sands are a vast future source of natural gas. These sands are characterized as having very low porosity and permeability. The main resource development problem is efficiently extracting the gas from the reservoir. Future production depends on a combination of gas price and technological advances. Gas production can be enhanced by fracturing. Studies have shown that many aspects of fracture design and gas production are influenced by properties of the rock matrix. Computer models for stimulation procedures require accurate knowledge of flow properties of both the rock matrix and the fractured regions. In the proposed work, these properties will be measured along with advanced core analysis procedure aimed at understanding the relationship between pore structure and properties. The objective of this project is to develop reliable core analysis techniques for measuring the petrophysical properties of tight gas sands. Recent research has indicated that the flow conditions in the reservoir can be greatly enhanced by the presence of natural fractures, which serve as a transport path for gas from the less permeable matrix. The study is mainly concerned with the dependence of flow in tight gas matrix and healed tectonic fractures on water saturation and confining pressure. This dependency is to be related to the detailed pore structure of tight sands as typified by cores recovered in the Multi-Well experiment. 22 refs., 34 figs., 9 tabs.

  17. Thicknesses, densities, and calculated thermal resistances for loose-fill rock wool installed in two attic sections of a manufactured house

    SciTech Connect (OSTI)

    Graves, R.S.; Yarbrough, D.W.

    1986-02-01

    The effect of vibrations due to manufacturing and transport on the thickness, density, and calculated thermal resistance (R-value) of loose-fill rock wool insulation installed in two manufactured home units has been determined. Thickness and density measurements on blown attic insulation were made after installation, at the end of the manufacturing process, and after the units were towed 265 miles. These measurements were used to calculate R-values for the attic insulation. The end sections of the two units showed an overall insulation thickness decrease of about 16% and an average R-value change from 31.2 to 28.8 ft/sup 2/ x h x /sup 0/F/Btu. An estimated R-value greater than 30 ft/sup 2/ x h x /sup 0/F/Btu resulted from averaging the end and middle sections of the two units. The effect of reduced thickness along the edges of the attic space was not included in the estimate.

  18. End-to-End Models for Effects of System Noise on LIMS Analysis of Igneous Rocks

    SciTech Connect (OSTI)

    Clegg, Samuel M; Bender, Steven; Wiens, R. C.; Carmosino, Marco L; Speicher, Elly A; Dyar, M. D.

    2010-12-23

    The ChemCam instrument on the Mars Science Laboratory will be the first extraterrestial deployment of laser-induced breakdown spectroscopy (UBS) for remote geochemical analysis. LIBS instruments are also being proposed for future NASA missions. In quantitative LIBS applications using multivariate analysis techniques, it is essential to understand the effects of key instrument parameters and their variability on the elemental predictions. Baseline experiments were run on a laboratory instrument in conditions reproducing ChemCam performance on Mars. These experiments employed Nd:YAG laser producing 17 mJ/pulse on target and an with a 200 {micro}m FWHM spot size on the surface of a sample. The emission is collected by a telescope, imaged on a fiber optic and then interfaced to a demultiplexer capable of >40% transmission into each spectrometer. We report here on an integrated end-to-end system performance model that simulates the effects of output signal degradation that might result from the input signal chain and the impact on multivariate model predictions. There are two approaches to modifying signal to noise (SNR): degrade the signal and/or increase the noise. Ishibashi used a much smaller data set to show that the addition of noise had significant impact while degradation of spectral resolution had much less impact on accuracy and precision. Here, we specifically focus on aspects of remote LIBS instrument performance as they relate to various types of signal degradation. To assess the sensitivity of LIBS analysis to signal-to-noise ratio (SNR) and spectral resolution, the signal in each spectrum from a suite of 50 laboratory spectra of igneous rocks was variably degraded by increasing the peak widths (simulating misalignment) and decreasing the spectral amplitude (simulating decreases in SNR).

  19. Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) References No exploration activities found. Print...

  20. Helicon Plasma Source Configuration Analysis by Means of Density Measurements

    SciTech Connect (OSTI)

    Angrilli, F.; Barber, G.C.; Carter, M.D.; Goulding, R.H.; Maggiora, R.; Pavarin, D.; Sparks, D.O.

    1999-11-13

    Initial results have been obtained from operation of a helicon plasma source built to conduct optimization studies for space propulsion applications. The source features an easily reconfigurable antenna to test different geometries. Operating with He as the source gas, peak densities >= 1.6X10{sup 19} m{sup -3} have been achieved. Radial and axial plasma profiles have been obtained using a microwave interferometer that can be scanned axially and a Langmuir probe. The source will be used to investigate operation at high magnetic field, frequency, and input power.

  1. Rock slope stability

    SciTech Connect (OSTI)

    Kliche, C.A.

    1999-07-01

    Whether you're involved in surface mine design, surface mine production, construction, education, or regulation, this is an important new book for your library. It describes the basic rock slope failure modes and methods of analysis--both kinematic and kinetic techniques. Chapters include geotechnical and geomechanical analysis techniques, hydrology, rock slope stabilization techniques, and geotechnical instrumentation and monitoring. Numerous examples, drawings and photos enhance the text.

  2. Analysis of the hydraulic data from the MI fracture zone at the Grimsel Rock Laboratory, Switzerland

    SciTech Connect (OSTI)

    Davey, A.; Karasaki, K.; Long, J.C.S.; Landsfeld, M.; Mensch, A.; Martel, S.J.

    1989-10-01

    One of the major problems in analyzing flow and transport in fractured rock is that the flow may be largely confined to a poorly connected network of fractures. In order to overcome some of this problem, Lawrence Berkeley Laboratory (LBL) has been developing a new type of fracture hydrology model called an equivalent discontinuum model. In this model the authors represent the discontinuous nature of the problem through flow on a partially filled lattice. A key component in constructing an equivalent discontinuum model from this lattice is removing some of the conductive elements such that the system is partially connected in the same manner as the fracture network. This is done through a statistical inverse technique called simulated annealing. The fracture network model is annealed by continually modifying a base model, or template such that the modified systems behave more and more like the observed system. In order to see how the simulated annealing algorithm works, the authors have developed a series of synthetic real cases. In these cases, the real system is completely known so that the results of annealing to steady state data can be evaluated absolutely. The effect of the starting configuration has been studied by varying the percent of conducting elements in the initial configuration. Results have shown that the final configurations converge to about the same percentage of conducting elements. An example using Nagra field data from the Migration Experiment (MI) at Grimsel Rock Laboratory in Switzerland is also analyzed. 24 refs., 33 figs., 3 tabs.

  3. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analysesmore » to evaluate the effects of differential stress and rock type on fracture mode.« less

  4. Failure of cap-rock seals as determined from mechanical stratigraphy, stress history, and tensile-failure analysis of exhumed analogs

    SciTech Connect (OSTI)

    Petrie, E. S.; Evans, J. P.; Bauer, S. J.

    2014-11-01

    In this study, the sedimentologic and tectonic histories of clastic cap rocks and their inherent mechanical properties control the nature of permeable fractures within them. The migration of fluid through mm- to cm-scale fracture networks can result in focused fluid flow allowing hydrocarbon production from unconventional reservoirs or compromising the seal integrity of fluid traps. To understand the nature and distribution of subsurface fluid-flow pathways through fracture networks in cap-rock seals we examine four exhumed Paleozoic and Mesozoic seal analogs in Utah. We combine these outcrop analyses with subsidence analysis, paleoloading histories, and rock-strength testing data in modified Mohr–Coulomb–Griffith analyses to evaluate the effects of differential stress and rock type on fracture mode.

  5. Fracture analysis and rock quality designation estimation for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-02-01

    Within the Yucca Mountain Site Characterization Project, the design of drifts and ramps and evaluation of the impacts of thermomechanical loading of the host rock requires definition of the rock mass mechanical properties. Ramps and exploratory drifts will intersect both welded and nonwelded tuffs with varying abundance of fractures. The rock mass mechanical properties are dependent on the intact rock properties and the fracture joint characteristics. An understanding of the effects of fractures on the mechanical properties of the rock mass begins with a detailed description of the fracture spatial location and abundance, and includes a description of their physical characteristics. This report presents a description of the abundance, orientation, and physical characteristics of fractures and the Rock Quality Designation in the thermomechanical stratigraphic units at the Yucca Mountain site. Data was reviewed from existing sources and used to develop descriptions for each unit. The product of this report is a data set of the best available information on the fracture characteristics.

  6. Thermodynamic analysis of energy density in pressure retarded osmosis: The impact of solution volumes and costs

    SciTech Connect (OSTI)

    Reimund, Kevin K.; McCutcheon, Jeffrey R.; Wilson, Aaron D.

    2015-08-01

    A general method was developed for estimating the volumetric energy efficiency of pressure retarded osmosis via pressure-volume analysis of a membrane process. The resulting model requires only the osmotic pressure, π, and mass fraction, w, of water in the concentrated and dilute feed solutions to estimate the maximum achievable specific energy density, uu, as a function of operating pressure. The model is independent of any membrane or module properties. This method utilizes equilibrium analysis to specify the volumetric mixing fraction of concentrated and dilute solution as a function of operating pressure, and provides results for the total volumetric energy density of similar order to more complex models for the mixing of seawater and riverwater. Within the framework of this analysis, the total volumetric energy density is maximized, for an idealized case, when the operating pressure is π/(1+√w⁻¹), which is lower than the maximum power density operating pressure, Δπ/2, derived elsewhere, and is a function of the solute osmotic pressure at a given mass fraction. It was also found that a minimum 1.45 kmol of ideal solute is required to produce 1 kWh of energy while a system operating at “maximum power density operating pressure” requires at least 2.9 kmol. Utilizing this methodology, it is possible to examine the effects of volumetric solution cost, operation of a module at various pressure, and operation of a constant pressure module with various feed.

  7. Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations

    SciTech Connect (OSTI)

    Michael S. Bruno

    2005-12-31

    This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer

  8. CRC handbook of physical properties of rocks. Volume III

    SciTech Connect (OSTI)

    Carmichael, R.S.

    1984-01-01

    This book presents topics on: Density of rocks and minerals, includes histograms of density ranges; elastic constants of minerals, elastic moduli, thermal properties; inelastic properties, strength and rheology for rocks and minerals, rock mechanics and friction, and stress-strain relations; radioactivity, decay constants and heat production of isotope systems in geology; seismic attenuation, in rocks, minerals, and the earth, with application to oil exploration and terrestrial studies; and index.

  9. Neutron diffraction measurements of dislocation density in copper crystals deformed at high strain rate

    SciTech Connect (OSTI)

    Rao, Mala N.; Chaplot, S. L.; Rawat, S.

    2013-02-05

    Neutron diffraction measurements of the rocking curves were carried out for single crystals of copper subjected to dynamic compression at 10{sup 3}/s strain rate. The line broadening is expected to be produced by dislocations, and an analysis of this broadening gives the dislocation density. Dislocation density is found to increase with increase of pressure.

  10. Geophysical and transport properties of reservoir rocks. Final report for task 4: Measurements and analysis of seismic properties

    SciTech Connect (OSTI)

    Cook, N.G.W.

    1993-05-01

    The principal objective of research on the seismic properties of reservoir rocks is to develop a basic understanding of the effects of rock microstructure and its contained pore fluids on seismic velocities and attenuation. Ultimately, this knowledge would be used to extract reservoir properties information such as the porosity, permeability, clay content, fluid saturation, and fluid type from borehole, cross-borehole, and surface seismic measurements to improve the planning and control of oil and gas recovery. This thesis presents laboratory ultrasonic measurements for three granular materials and attempts to relate the microstructural properties and the properties of the pore fluids to P- and S-wave velocities and attenuation. These experimental results show that artificial porous materials with sintered grains and a sandstone with partially cemented grains exhibit complexities in P- and S-wave attenuation that cannot be adequately explained by existing micromechanical theories. It is likely that some of the complexity observed in the seismic attenuation is controlled by details of the rock microstructure, such as the grain contact area and grain shape, and by the arrangement of the grain packing. To examine these effects, a numerical method was developed for analyzing wave propagation in a grain packing. The method is based on a dynamic boundary integral equation and incorporates generalized stiffness boundary conditions between individual grains to account for viscous losses and grain contact scattering.

  11. Hunting space rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hunting space rocks Hunting space rocks Nina Lanza is studying the solar system by spending six weeks on an ice sheet in Antarctica. The 36-year-old staff scientist at the Los ...

  12. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    SciTech Connect (OSTI)

    Kato, S.; Seya, A.; Asano, A.

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  13. Thermodynamics of technetium: Reconciling theory and experiment using density functional perturbation analysis

    SciTech Connect (OSTI)

    Weck, Philippe F.; Kim, Eunja

    2015-06-11

    The structure, lattice dynamics and thermodynamic properties of bulk technetium were investigated within the framework of density functional theory. The phonon density of states spectrum computed with density functional perturbation theory closely matches inelastic coherent neutron scattering measurements. The thermal properties of technetium were derived from phonon frequencies calculated within the quasi-harmonic approximation (QHA), which introduces a volume dependence of phonon frequencies as a part of the anharmonic effect. As a result, the predicted thermal expansion and isobaric heat capacity of technetium are in excellent agreement with available experimental data for temperatures up to ~1600 K.

  14. Energy density functional analysis of shape coexistence in {sup 44}S

    SciTech Connect (OSTI)

    Li, Z. P.; Yao, J. M.; Vretenar, D.; Niksic, T.; Meng, J.

    2012-10-20

    The structure of low-energy collective states in the neutron-rich nucleus {sup 44}S is analyzed using a microscopic collective Hamiltonian model based on energy density functionals (EDFs). The calculated triaxial energy map, low-energy spectrum and corresponding probability distributions indicate a coexistence of prolate and oblate shapes in this nucleus.

  15. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D. Noh, K. A. B. M. Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  16. Three-dimensional modeling and analysis of a high energy density Kelvin-Helmholtz experiment

    SciTech Connect (OSTI)

    Raman, K. S.; Hurricane, O. A.; Park, H.-S.; Remington, B. A.; Robey, H.; Smalyuk, V. A.; Drake, R. P.; Krauland, C. M.; Kuranz, C. C.; Hansen, J. F.; Harding, E. C.

    2012-09-15

    A recent series of experiments on the OMEGA laser provided the first controlled demonstration of the Kelvin-Helmholtz (KH) instability in a high-energy-density physics context [E. C. Harding et al., Phys. Rev. Lett. 103, 045005, (2009); O. A. Hurricane et al., Phys. Plasmas 16, 056305, (2009)]. We present 3D simulations which resolve previously reported discrepancies between those experiments and the 2D simulation used to design them. Our new simulations reveal a three-dimensional mechanism behind the low density 'bubble' structures which appeared in the experimental x-ray radiographs at late times but were completely absent in the 2D simulations. We also demonstrate that the three-dimensional expansion of the walls of the target is sufficient to explain the 20% overprediction by 2D simulation of the late-time growth of the KH rollups. The implications of these results for the design of future experiments are discussed.

  17. Thermal spray and cold spray analysis of density, porosity, and tensile Specimens for use with LIGA applications

    SciTech Connect (OSTI)

    DECKER,MERLIN K.; SMITH,MARK F.

    2000-02-01

    This analysis provides a preliminary investigation into using Twin-Wire Arc Thermal Spray and Cold Spray as material deposition processes for LIGA applications. These spray material processes were studied to make an initial determination of their potential as alternatives to producing mechanical parts via the electroplating process. Three materials, UltraMachinable{reg_sign} Stainless Steel, BondArc{reg_sign}, and aluminum, were sprayed using Thermal Spray. Only aluminum was sprayed using the Cold Spray process. Following the spray procedure, the test specimens were released from a copper mold and then tested. Three tests, density, tensile strength, and porosity, were performed on the specimens to determine the spray effect on material properties. Twin-Wire Arc Thermal Spray did not demonstrate adequate deposition properties and does not appear to be a good process candidate for LIGA. However, Cold Spray yielded better density results and warrants further investigation to analyze the minimum feature size produced by the process.

  18. Fundamental Research on Percussion Drilling: Improved rock mechanics...

    Office of Scientific and Technical Information (OSTI)

    Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations Citation Details In-Document...

  19. Analysis of plasma density profiles and thermal transport in laser-irradiated spherical targets

    SciTech Connect (OSTI)

    Fechner, W.B.; Shepard, C.L.; Busch, G.E.; Schroeder, R.J.; Tarvin, J.A.

    1984-06-01

    Measurements are presented for plasma density profiles, critical surface trajectories, and mass-ablation rates, as obtained from experiments in which layered spherical targets were irradiated with 1.05-..mu..m laser light at intensities between 1 x 10/sup 14/ and 1 x 10/sup 15/ W/cm/sup 2/. The targets were designed to allow study of thermal transport in overdense plasmas. They were from 70 to 110 ..mu..m in diameter, with a variable thickness parylene ablator and an aluminum substrate. Simulated results are consistent with all three sets of data if transport of both thermal and suprathermal electrons is severely inhibited, with a flux limiter of 0.03< or =f< or =0.06 being appropriate.

  20. Use of density equalizing map projections (DEMP) in the analysis of childhood cancer in four California counties

    SciTech Connect (OSTI)

    Merrill, D.W.; Selvin, S.; Close, E.R.; Holmes, H.H.

    1995-01-01

    In studying geographic disease distributions, one normally compares rates of arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP). Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease-rates are constant. On the transformed map, the statistical analysis of the observed distribution is greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be reliably calculated. The present report describes the first successful application of the DEMP technique to a sizeable ``real-world`` data set of epidemiologic interest. An improved DEMP algorithm [GUSE93, CLOS94] was applied to a data set previously analyzed with conventional techniques [SATA90, REYN91]. The results from the DEMP analysis and a conventional analysis are compared.

  1. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    collected included: geographic coordinates, rock type, magnetic susceptibility, and density. References US Geological Survey (2012) Geophysical Studies in the Vicinity of Blue...

  2. DOE - Office of Legacy Management -- Slick Rock

    Office of Legacy Management (LM)

    Slick Rock Slick Rock Sites slick_map Slick Rock Disposal Site Slick Rock Processing Site Last Updated: 12/14

  3. Detached rock evaluation device

    DOE Patents [OSTI]

    Hanson, David R.

    1986-01-01

    A rock detachment evaluation device (10) having an energy transducer unit 1) for sensing vibrations imparted to a subject rock (172) for converting the sensed vibrations into electrical signals, a low band pass filter unit (12) for receiving the electrical signal and transmitting only a low frequency segment thereof, a high band pass filter unit (13) for receiving the electrical signals and for transmitting only a high frequency segment thereof, a comparison unit (14) for receiving the low frequency and high frequency signals and for determining the difference in power between the signals, and a display unit (16) for displaying indicia of the difference, which provides a quantitative measure of rock detachment.

  4. Uranium (VI)Bis(imido) chalcogenate complexes:synthesis and density functional theory analysis

    SciTech Connect (OSTI)

    Spencer, Liam P; Batista, Enrique R; Boncella, James M; Yang, Ping; Scott, Brian L

    2009-01-01

    Bis(imido) uranium(VI) trans- and cis-dichalcogenate complexes with the general formula U(NtBu)2(EAr)2(OPPh3)2 (EAr = O-2-tBuC6H4, SPh, SePh, TePh) and U(NtBu)2(EAr)2(R2bpy) (EAr = SPh, SePh, TePh) (R2bpy = 4,4'-disubstituted-2,2'-bipyridyl, R = Me, tBu) have been prepared. This family of complexes includes the first reported monodentate selenolate and tellurolate complexes of uranium(VI). Density functional theory calculations show that covalent interactions in the U-E bond increase in the trans-dichalcogenate series U(NtBu)2(EAr)2(OPPh3)2 as the size of the chalcogenate donor increases and that both 5f and 6d orbital participation is important in the M-E bonds of U-S, U-Se, and U-Te complexes.

  5. Many-electron hyperpolarizability density analysis: Application to the dissociation process of one-dimensional H{sub 2}

    SciTech Connect (OSTI)

    Nakano Masayoshi; Nagao Hidemi; Yamaguchi Kizashi |

    1997-02-01

    A method for density analysis of static polarizabilities ({alpha}) and second hyperpolarizabilities ({gamma}) on the basis of the finite-field (FF) many-electron wave packets (MEWP) method is developed and applied to evaluation of the longitudinal {alpha} and {gamma} in the dissociation process for a one-dimensional H{sub 2} model. Remarkable increases in {alpha} and {gamma} are observed in the intermediate dissociation region. The internuclear distance where the {gamma} is maximized is also found to be larger than that where the {alpha} is maximized. In order to elucidate the characteristics of {alpha} and {gamma} in the dissociation process, we extract their classical pictures describing displacements of two-electron configurations by using (hyper)polarizability densities on the two-electron coordinate plane. It is suggested from these classical pictures that the polarization in the ionic structure contributes primarily to the enhancement of (hyper)polarizability in the intermediate dissociation region, while the polarization in the diradical structure causes the decrease of the (hyper)polarizability at a large internuclear distance. This implies that the experimental search for species with chemical bonds in the intermediate correlation regime is important and interesting in relation to the molecular design of nonlinear optical materials. {copyright} {ital 1997} {ital The American Physical Society}

  6. Hunting space rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hunting space rocks Hunting space rocks Nina Lanza is studying the solar system by spending six weeks on an ice sheet in Antarctica. The 36-year-old staff scientist at the Los Alamos National Laboratory in New Mexico is on a treasure hunt of sorts. January 15, 2016 Nina Lanza Nina Lanza is part of a team driving across the Trans-Antarctica Mountains on snowmobiles in search of meteorites. (Courtesy of Nina Lanza) "One of the most interesting things from meteorites is every rocky body has a

  7. Engineering rock mass classifications

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1989-01-01

    This book is a reference on rock mass classification, consolidating into one handy source information widely scattered through the literature. Includes new, unpublished material and case histories. Presents the fundamental concepts of classification schemes and critically appraises their practical application in industrial projects such as tunneling and mining.

  8. Microwave assisted hard rock cutting

    DOE Patents [OSTI]

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  9. Density functional theory analysis of the impact of steric interaction on the function of switchable polarity solvents

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; Wilson, Aaron D.

    2015-05-04

    Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction withmore » the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.« less

  10. Density functional theory analysis of the impact of steric interaction on the function of switchable polarity solvents

    SciTech Connect (OSTI)

    McNally, Joshua S.; Noll, Bruce; Orme, Christopher J.; Wilson, Aaron D.

    2015-05-04

    Here, a density functional theory (DFT) analysis has been performed to explore the impact of steric interactions on the function of switchable polarity solvents (SPS) and their implications on a quantitative structure-activity relationship (QSAR) model previously proposed for SPS. An x-ray crystal structure of the N,N-dimethylcyclohexylammonium bicarbonate (Hdmcha) salt has been solved as an asymmetric unit containing two cation/anion pairs, with a hydrogen bonding interaction observed between the bicarbonate anions, as well as between the cation and anion in each pair. DFT calculations provide an optimized structure of Hdmcha that closely resembles experimental data and reproduces the cation/anion interaction with the inclusion of a dielectric field. Relaxed potential energy surface (PES) scans have been performed on Hdmcha-based computational model compounds, differing in the size of functional group bonded to the nitrogen center, to assess the steric impact of the group on the relative energy and structural properties of the compound. Results suggest that both the length and amount of branching associated with the substituent impact the energetic limitations on rotation of the group along the N-R bond and NC-R bond, and disrupt the energy minimized position of the hydrogen bonded bicarbonate group. The largest interaction resulted from functional groups that featured five bonds between the ammonium proton and a proton on a functional group with the freedom of rotation to form a pseudo-six membered ring which included both protons.

  11. Simulation of CO2 Sequestration at Rock Spring Uplift, Wyoming: Heterogeneity and Uncertainties in Storage Capacity, Injectivity and Leakage

    SciTech Connect (OSTI)

    Deng, Hailin; Dai, Zhenxue; Jiao, Zunsheng; Stauffer, Philip H.; Surdam, Ronald C.

    2011-01-01

    Many geological, geochemical, geomechanical and hydrogeological factors control CO{sub 2} storage in subsurface. Among them heterogeneity in saline aquifer can seriously influence design of injection wells, CO{sub 2} injection rate, CO{sub 2} plume migration, storage capacity, and potential leakage and risk assessment. This study applies indicator geostatistics, transition probability and Markov chain model at the Rock Springs Uplift, Wyoming generating facies-based heterogeneous fields for porosity and permeability in target saline aquifer (Pennsylvanian Weber sandstone) and surrounding rocks (Phosphoria, Madison and cap-rock Chugwater). A multiphase flow simulator FEHM is then used to model injection of CO{sub 2} into the target saline aquifer involving field-scale heterogeneity. The results reveal that (1) CO{sub 2} injection rates in different injection wells significantly change with local permeability distributions; (2) brine production rates in different pumping wells are also significantly impacted by the spatial heterogeneity in permeability; (3) liquid pressure evolution during and after CO{sub 2} injection in saline aquifer varies greatly for different realizations of random permeability fields, and this has potential important effects on hydraulic fracturing of the reservoir rock, reactivation of pre-existing faults and the integrity of the cap-rock; (4) CO{sub 2} storage capacity estimate for Rock Springs Uplift is 6614 {+-} 256 Mt at 95% confidence interval, which is about 36% of previous estimate based on homogeneous and isotropic storage formation; (5) density profiles show that the density of injected CO{sub 2} below 3 km is close to that of the ambient brine with given geothermal gradient and brine concentration, which indicates CO{sub 2} plume can sink to the deep before reaching thermal equilibrium with brine. Finally, we present uncertainty analysis of CO{sub 2} leakage into overlying formations due to heterogeneity in both the target saline

  12. Session: Hot Dry Rock

    SciTech Connect (OSTI)

    Tennyson, George P. Jr.; Duchane, David V.; Ponden, Raymond F.; Brown, Donald W.

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of four presentations: ''Hot Dry Rock - Summary'' by George P. Tennyson, Jr.; ''HDR Opportunities and Challenges Beyond the Long Term Flow Test'' by David V. Duchane; ''Start-Up Operations at the Fenton Hill HDR Pilot Plant'' by Raymond F. Ponden; and ''Update on the Long-Term Flow Testing Program'' by Donald W. Brown.

  13. motion-of-large-riprap-rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of a Computational Approach to Detect Instability and Incipient Motion of Large Riprap Rocks" Presentation at the Transportation Research Board Annual Meeting Washington DC, January 14, 2014 Paper number 14-3035 Cezary Bojanowski Transportation Research and Analysis Computing Center (TRACC), Energy Systems Division Argonne National Laboratory Steven Lottes Transportation Research and Analysis Computing Center (TRACC), Energy Systems Division Argonne National Laboratory Abstract

  14. Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laroche, D.; Huang, S. -H.; Chuang, Y.; Li, J. -Y.; Liu, C. W.; Lu, T. M.

    2016-06-06

    We report the magneto-transport, scattering mechanisms, and e ective mass analysis of an ultralow density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0:2Ge0:8 heterostructure. This fabrication technique allows hole densities as low as p 1:1 1010 cm² to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, / n , is found to be 0:29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration modelmore » is used to explain the mobility decrease at the highest achievable densities. The hole e ective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p 1:0 1011cm², the e ective mass m is 0:105 m0, which is signi cantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.« less

  15. Analysis by oxygen atom number density measurement of high-speed hydrophilic treatment of polyimide using atmospheric pressure microwave plasma

    SciTech Connect (OSTI)

    Ono, S.

    2015-03-30

    This paper describes the fundamental experimental data of the plasma surface modification of the polyimide using atmospheric pressure microwave plasma source. The experimental results were discussed from the point of view of the radicals behavior, which significantly affects the modification mechanism. The purpose of the study is to examine how the value of the oxygen atom density will affect the hydrophilic treatment in the upstream region of the plasma where gas temperature is very high. The surface modification experiments were performed by setting the polyimide film sample in the downstream region of the plasma. The degree of the modification was measured by a water contact angle measurement. The water contact angle decreased less than 30 degrees within 1 second treatment time in the upstream region. Very high speed modification was observed. The reason of this high speed modification seems that the high density radical which contributes the surface modification exist in the upstream region of the plasma. This tendency is supposed to the measured relatively high electron density (~10{sup 15}cm{sup ?3}) at the center of the plasma. We used the electric heating catalytic probe method for oxygen radical measurement. An absolute value of oxygen radical density was determined by catalytic probe measurement and the results show that ~10{sup 15}cm{sup ?3} of the oxygen radical density in the upstream region and decreases toward downstream region. The experimental results of the relation of the oxygen radical density and hydrophilic modification of polyimide was discussed.

  16. Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In...

    Open Energy Info (EERE)

    In The 1.25 Ma Lake Of Valles Caldera, New Mexico, USA Abstract Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized...

  17. Zeolitization Of Intracaldera Sediments And Rhyolitic Rocks In...

    Open Energy Info (EERE)

    In The 1.25 Ma Lake Of Valles Caldera, New Mexico, Usa Abstract Quantitative X-ray diffraction analysis of about 80 rhyolite and associated lacustrine rocks has characterized...

  18. Rock Sampling | Open Energy Information

    Open Energy Info (EERE)

    resource at depth. These hand samples can be collected using a rock hammer or sledge. Data Access and Acquisition Under a detailed investigation, a systematic sampling procedure...

  19. Workshop on hydrology of crystalline basement rocks

    SciTech Connect (OSTI)

    Davis, S.N.

    1981-08-01

    This workshop covered the following subjects: measurements in relatively shallow boreholes; measurement and interpretation of data from deep boreholes; hydrologic properties of crystalline rocks as interpreted by geophysics and field geology; rock mechanics related to hydrology of crystalline rocks; the possible contributions of modeling to the understanding of the hydrology of crystalline rocks; and geochemical interpretations of the hydrology of crystalline rocks. (MHR)

  20. Black Rock Point Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  1. Rim Rock Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rim Rock Wind Farm Jump to: navigation, search Name Rim Rock Wind Farm Facility Rim Rock Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  2. Rock of Ages | Open Energy Information

    Open Energy Info (EERE)

    of Ages Jump to: navigation, search Name Rock of Ages Facility Rock of Ages Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Rock of Ages Energy...

  3. Shotgun cartridge rock breaker

    DOE Patents [OSTI]

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  4. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Muñoz Burgos, J. M.; Barbui, T.; Schmitz, O.; Stutman, D.; Tritz, K.

    2016-07-11

    Helium line-ratios for electron temperature (Te) and density (ne) plasma diagnostic in the Scrape-Off-Layer (SOL) and Edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet 667.8 and 728.1 nm, and triplet 706.5 nm visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnosticmore » to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium, and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. Ultimately, the analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer, or by other conflicting lines from different ions.« less

  5. A Phased Array Approach to Rock Blasting

    SciTech Connect (OSTI)

    Leslie Gertsch; Jason Baird

    2006-07-01

    A series of laboratory-scale simultaneous two-hole shots was performed in a rock simulant (mortar) to record the shock wave interference patterns produced in the material. The purpose of the project as a whole was to evaluate the usefulness of phased array techniques of blast design, using new high-precision delay technology. Despite high-speed photography, however, we were unable to detect the passage of the shock waves through the samples to determine how well they matched the expected interaction geometry. The follow-up mine-scale tests were therefore not conducted. Nevertheless, pattern analysis of the vectors that would be formed by positive interference of the shockwaves from multiple charges in an ideal continuous, homogeneous, isotropic medium indicate the potential for powerful control of blast design, given precise characterization of the target rock mass.

  6. Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions...

    Open Energy Info (EERE)

    Supercritical Carbon Dioxide Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide Reservoir Rock...

  7. Hydrothermally Deposited Rock | Open Energy Information

    Open Energy Info (EERE)

    at Paleochori, Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermally deposited rock includes rocks and minerals that have precipitated from...

  8. On the properties of Au2₂P₃z (z = -1, 0, +1): analysis of geometry, interaction, and electron density

    SciTech Connect (OSTI)

    Xu, Kang-Ming; Jiang, Shuai; Zhu, Yu-Peng; Huang, Teng; Liu, Yi-Rong; Zhang, Yang; Lv, Yu-Zhou; Huang, Wei

    2015-03-02

    Au₂P₃, the only metastable binary phase of gold phosphide, has been discovered to exhibit remarkable semiconductor properties among metal phosphides. A systematic study on the geometry, the transformation of Au₂P₃ into different valence states and the different interactions among the atoms of the species is performed by using the density functional theory (DFT) method. The global minimum of Au₂P₃- is a 3D structure with Cs symmetry. This structure could be distorted from a planar configuration of Au₂P₃ which decreases the steric effect on it and leads to a new stable configuration. An analogous planar configuration, a local minimum rather than a global minimum, is also found in Au₂P₃⁺, due to the electron effect acting on the structure. Natural bond orbital (NBO) analysis reveals the re-distribution progression of the charge within the species. The central located Au atom and another no. 5 positioned P atom play significant roles on the structures. P5, as an electron adjuster, balances the electron distribution at different valence states of the structures. Deformation density analysis supplies information about charge transfer and the bonding type between two adjacent atoms as well. Looking deep into the bonding types, as electron localization function (ELF) suggests, the interaction between two adjacent P atoms (P3 and P4) of Au₂P₃ belongs to a strong covalent bond. The Au–P interactions among the configurations could be classified as weak classical covalent bonds through the atoms in molecules (AIM) dual parameter analysis. And for the first time, the weak interaction between the two adjacent Au atoms (Au1 and Au2) of the charged states of Au₂P₃ (Au₂P₃⁻ and Au₂P₃⁺), are verified and different from the neutral Au₂P₃ through the reduced density gradient (RDG) analysis.

  9. Density Functional Theory Calculations and Analysis of Reaction Pathways for Reduction of Nitric Oxide by Hydrogen on Pt(111)

    SciTech Connect (OSTI)

    Farberow, Carrie A.; Dumesic, James A.; Mavrikakis, Manos

    2014-10-03

    Reaction pathways are explored for low temperature (e.g., 400 K) reduction of nitric oxide by hydrogen on Pt(111). First-principles electronic structure calculations based on periodic, self-consistent density functional theory(DFT-GGA, PW91) are employed to obtain thermodynamic and kinetic parameters for proposed reaction schemes on Pt(111). The surface of Pt(111) during NO reduction by H? at low temperatures is predicted to operate at a high NO coverage, and this environment is explicitly taken into account in the DFT calculations. Maximum rate analyses are performed to assess the most likely reaction mechanisms leading to formation of N?O, the major product observed experimentally at low temperatures. The results of these analyses suggest that the reaction most likely proceeds via the addition of at least two H atoms to adsorbed NO, followed by cleavage of the N-O bond.

  10. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    SciTech Connect (OSTI)

    Lindskog, M. Wacker, A.; Wolf, J. M.; Liverini, V.; Faist, J.; Trinite, V.; Maisons, G.; Carras, M.; Aidam, R.; Ostendorf, R.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents, agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.

  11. Ellipsometric characterization and density-functional theory analysis of anisotropic optical properties of single-crystal ?-SnS

    SciTech Connect (OSTI)

    Banai, R. E.; Brownson, J. R. S.; Burton, L. A.; Walsh, A.; Choi, S. G. To, B.; Hofherr, F.; Sorgenfrei, T.; Crll, A.

    2014-07-07

    We report on the anisotropic optical properties of single-crystal tin monosulfide (SnS). The components ?{sub a}, ?{sub b}, and ?{sub c} of the pseudodielectric-function tensor (?)=(??)+i(??) spectra are taken from 0.73 to 6.45 eV by spectroscopic ellipsometry. The measured (?) spectra are in a good agreement with the results of the calculated dielectric response from hybrid density functional theory. The (?) spectra show the direct band-gap onset and a total of eight above-band-gap optical structures that are associated with the interband-transition critical points (CPs). We obtain accurate CP energies by fitting analytic CP expressions to second-energy-derivatives of the (?) data. Their probable electronic origins and implications for photovoltaic applications are discussed.

  12. Micromagnetic analysis of dynamical bubble-like solitons based on the time domain evolution of the topological density

    SciTech Connect (OSTI)

    Puliafito, Vito Azzerboni, Bruno; Finocchio, Giovanni; Torres, Luis; Ozatay, Ozhan

    2014-05-07

    Dynamical bubble-like solitons have been recently investigated in nanocontact-based spin-torque oscillators with a perpendicular free layer. Those magnetic configurations can be excited also in different geometries as long as they consist of perpendicular materials. Thus, in this paper, a systematic study of the influence of both external field and high current on that kind of dynamics is performed for a spin-valve point-contact geometry where both free and fixed layers present strong perpendicular anisotropy. The usage of the topological density tool highlights the excitation of complex bubble/antibubble configurations. In particular, at high currents, a deformation of the soliton and its simultaneous shift from the contact area are observed and can be ascribable to the Oersted field. Results provide further detailed information on the excitation of solitons in perpendicular materials for application in spintronics, magnonics, and domain wall logic.

  13. Analysis of the spin Hall effect in CuIr alloys: Combined approach of density functional theory and Hartree-Fock approximation

    SciTech Connect (OSTI)

    Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy

    2015-05-07

    We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFT + HF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.

  14. Rock physics at Los Alamos Scientific Laboratory

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Rock physics refers to the study of static and dynamic chemical and physical properties of rocks and to phenomenological investigations of rocks reacting to man-made forces such as stress waves and fluid injection. A bibliography of rock physics references written by LASL staff members is given. Listing is by surname of first author. (RWR)

  15. Explosive shaped charge penetration into tuff rock

    SciTech Connect (OSTI)

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  16. Rock Energy Cooperative | Open Energy Information

    Open Energy Info (EERE)

    Wisconsin Phone Number: (608) 752-4550 or (866) 752-4550 Website: www.rock.coop Outage Hotline: (866) 752-4550 Outage Map: www.rock.coopcontentcurrent- References: EIA...

  17. ArchRock Corporation | Open Energy Information

    Open Energy Info (EERE)

    Arch Rock is a systems and software company that builds products and technology for wireless sensor networks. References: ArchRock Corporation1 This article is a stub. You can...

  18. Isotopic Analysis- Rock | Open Energy Information

    Open Energy Info (EERE)

    and Acquisition Photo of the plasma sampler from an ICP-MS system used by the Atomic Energy and Alternative Energies Commission (CEA), France. Photo from the CEA Website, last...

  19. RockPort Capital Partners (California) | Open Energy Information

    Open Energy Info (EERE)

    RockPort Capital Partners (California) Jump to: navigation, search Logo: RockPort Capital Partners (California) Name: RockPort Capital Partners (California) Address: 3000 Sand Hill...

  20. Mars Rover finds changing rocks, surprising scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars Rover finds changing rocks, surprising scientists Mars Rover finds changing rocks, surprising scientists As NASA's Curiosity rover treks up a three-mile-high mountain on Mars, the rocks are changing. Back on Earth, scientists analyzing the data realized this was something different: It turned out to be the first of the high-silica rocks. December 24, 2015 Mars landscape This color-adjusted composite of images taken by NASA's Curiosity rover in September shows the lower portion of Mount

  1. Viscuous Mech Behavior of Rock Mass Under Therm Stress

    Energy Science and Technology Software Center (OSTI)

    1998-10-14

    VISCOT is a nonlinear, transient , thermal-stress, finite-element program designed to determine the viscoelastic, viscoplastic, or elastoplastic deformation of a rock mass due to mechanical and thermal loading. A major application of VISCOT in conjunction with a SCEPTER heat transfer code, e.g. DOT-BPMD, is the thermomechanical analysis of a rock mass such as salt in which significant time-dependent, nonlinear deformations are expected to occur. Such problems include room and canister scale studies during the excavation,more » operation, and long term, post closure stages in a salt repository.« less

  2. SHIF'ROCK, NEW MEXICO

    Office of Legacy Management (LM)

    SHIF'ROCK, NEW MEXICO Sampled February 2001 DATA PACKAGE CONTENTS This data package includes the following information: Item No. Description of Contents 1. Site Hydrologist S u i ~ ~ n ~ a r y 2. Dafa Package Assessment, which includes the following: a. Field procedures verification checklist b. Confirmation that chain-of-custody was maintained. c. Confirmation that holding time requirements were met. d. Evaluation of the adequacy of the QC sample results. Data Assessn~ent Summary, which

  3. EA-225 Split Rock Energy LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Split Rock Energy LLC EA-225 Split Rock Energy LLC Order authorizing Split Rock Energy LLC to export electric energy to Canada. EA-225 Split Rock Energy LLC (34.81

  4. Used Fuel Disposal in Crystalline Rocks. FY15 Progress Report

    SciTech Connect (OSTI)

    Wang, Yifeng

    2015-08-20

    The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. Chapter headings are as follows: Fuel matrix degradation model and its integration with performance assessments, Investigation of thermal effects on the chemical behavior of clays, Investigation of uranium diffusion and retardation in bentonite, Long-term diffusion of U(VI) in bentonite: dependence on density, Sorption and desorption of plutonium by bentonite, Dissolution of plutonium intrinsic colloids in the presence of clay and as a function of temperature, Laboratory investigation of colloid-facilitated transport of cesium by bentonite colloids in a crystalline rock system, Development and demonstration of discrete fracture network model, Fracture continuum model and its comparison with discrete fracture network model.

  5. Elemental composition of two cumulate rocks

    SciTech Connect (OSTI)

    Naeem, A.; Almohandis, A.A.

    1983-04-01

    Two cumulate rock samples K-185, K-250 from the Kapalagulu intrusion, W. Tanzania, were analyzed using X-ray fluorescence (XRF), wet chemical and neutron activation analysis (NAA) techniques. Major element oxides were determined by XRF and wet chemical methods, while the concentration of trace elements were measured by NAA, using high resolution Ge(Li) detector, minicomputer-based data acquisition system and off-line computer. The percentage of major oxides and sixteen trace elements have been reported. It has been found that Cr, Ni, and Co are highly concentrated in K-250 while Sc, and most of the major elements are more concentrated in K-185. The variation of major and trace elements in these two samples have been discussed.

  6. Hot Dry Rock; Geothermal Energy

    SciTech Connect (OSTI)

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  7. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  8. Big Bang Day : Physics Rocks

    SciTech Connect (OSTI)

    2009-10-07

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  9. Geophysical and transport properties of reservoir rocks. Summary annual report

    SciTech Connect (OSTI)

    Cook, N.G.W.

    1990-04-29

    Definition of petrophysical properties, such as porosity, permeability and fluid saturation, on the scale of meters, is the key to planning and control of successful Enhanced Oil Recovery techniques for domestic reservoirs. Macroscopic transport properties in reservoir rocks depend critically upon processes at the pore level involving interactions between the pore topology and the physical and chemical properties of the rock minerals and interstitial fluids. Similar interactions at the pore level determine also the macroscopic electrical and seismic properties of reservoir rocks. The objective of this research is to understand, using analysis and experiment, how fluids in pores affect the geophysical and sport properties of reservoir rocks. The goal is to develop equations-relating seismic and electrical properties of rock to the porosity, permeability and fluid saturations so as to invert geophysical images for improved reservoir management. Results from seismic measurements performed so far in this study suggest that even subtle changes in fluid contacts and the in-situ state of effective stress can be detected using geophysical imaging techniques. The experiments using Wood`s metal and wax are revealing the topology and sport properties of the pore space in clastic sedimentary rocks. A deeper understanding of these properties is considered-to be the key to the recovery of much of the mobile oil left in domestic reservoirs and to the effective management of enhanced oil recovery techniques. The results of Wood`s metal percolation tests indicate that most of the permeability of Berea sandstone resides in the critical percolating paths and these paths occupy only a small fraction of the total porosity. This result may have important implications for flooding in terms of override and efficiency as a function of saturation.

  10. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect (OSTI)

    Lin, Wei-Ting; Cheng, An; Huang, Ran; Zou, Si-Yu

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: We report the microstructural characterization of cement-based composites. Different mixes produced with various rock wool particles have been tested. The influence of different mixes on macro and micro properties has been discussed. The macro properties are included compressive strength and permeability. XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  11. Impact of Rock Bolts on Seepage

    SciTech Connect (OSTI)

    F. C. Ahlers

    2001-06-01

    Characterization of seepage into drifts in unsaturated fractured tuff is a key factor for assessing the long-term viability of the proposed high level nuclear waste repository at Yucca Mountain. Rock bolts are among the methods proposed for ground control in the emplacement drifts. They may provide a conduit whereby percolating water that would otherwise bypass the drift will seep into the drift. The objective of this study is to assess the impact that the use of rock bolts may have on seepage. The impact of rock bolts on seepage is studied using a numerical model that is finely discretized around the rock bolt. There are several sources of uncertainty and variability with respect to the flow system around the drift and rock bolt. There is uncertainty about the capillary strength of the fractures around the drift. There is also uncertainty about how the permeability and capillary strength of the grout used to cement the steel rock bolts into the bolt holes will change over time. There is variability expected in the percolation rates incident upon the drifts depending on location. The uncertainty and variability of these parameters are approached by evaluating the rock bolt impact over a range of values for several model parameters. It is also important to consider where the last fracture capable of carrying flow away from the rock bolt intersects the rock bolt. Three models are used where the last fracture is 0, 10 and 50 cm above the drift.

  12. Winner: Hot Rocks | Department of Energy

    Office of Environmental Management (EM)

    Winner: Hot Rocks Winner: Hot Rocks December 31, 2008 - 2:07pm Addthis Four kilometers down below the orange earth of Australia's Cooper Basin lies some of the hottest nonvolcanic rock in the world-rock that the geothermal industry had never seriously considered using to make electricity. But next month Geodynamics, an eight-year-old company based in Milton, Queensland, will prove otherwise when it turns on its 1-megawatt pilot plant here. The company has done more to harness this unconventional

  13. Hydrothermally Altered Rock | Open Energy Information

    Open Energy Info (EERE)

    Paleochori cliffs Milos, Greece. http:www.photovolcanica.comVolcanoInfoMilosMilos.html Hydrothermal alteration refers to rocks that have been altered from their original...

  14. Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field...

    Open Energy Info (EERE)

    Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. Manufactured caverns in carbonate rock

    DOE Patents [OSTI]

    Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.

    2007-01-02

    Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.

  16. Measurements of water vapor adsorption on the Geysers rocks

    SciTech Connect (OSTI)

    Gruszkiewicz, Miroslaw S.; Horita, Juske; Simonson, John M.; Mesmer, Robert E.

    1996-01-24

    The ORNL high temperature isopiestic apparatus was adapted for adsorption measurements. The quantity of water retained by rock samples taken from three different wells of The Geysers was measured at 150 °C and at 200 °C as a function of pressure in the range 0.00 ≤ p/p0 ≤ 0.98, where p0 is the saturated water vapor pressure. The rocks were crushed and sieved into three fractions of different grain sizes (with different specific surface areas). Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and extent of the hysteresis. Additionally, BET surface area analyses were performed by Porous Materials Inc. on the same rock samples using nitrogen or krypton adsorption measurements at 77 K. Specific surface areas and pore volumes were determined. These parameters are important in estimating water retention capability of a porous material. The same laboratory also determined the densities of the samples by helium pycnometry. Their results were then compared with our own density values obtained by measuring the effect of buoyancy in compressed argon. One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously (Shang et al., 1994a, 1994b, 1995) between 90 and 130°C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang et al. (1994a, 1994b, 1995), some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms (with closing points at p/p0 ≈ 0.6) were obtained in this study. In these cases the effects of activated

  17. Standing Rock Sioux Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe (SRST) will perform a feasibility study and associated tasks over the course of two years on sites within the exterior boundaries of the Standing Rock Sioux Reservation to support the future development ranging from 50 to 150 megawatts (MW) of wind power.

  18. 2008 Rock Deformation GRC - Conference August 3-8, 2008

    SciTech Connect (OSTI)

    James G. Hirth

    2009-09-21

    The GRC on Rock Deformation highlights the latest research in brittle and ductile rock mechanics from experimental, field and theoretical perspectives. The conference promotes a multi-disciplinary forum for assessing our understanding of rock strength and related physical properties in the Earth. The theme for the 2008 conference is 'Real-time Rheology'. Using ever-improving geophysical techniques, our ability to constrain the rheological behavior during earthquakes and post-seismic creep has improved significantly. Such data are used to investigate the frictional behavior of faults, processes responsible for strain localization, the viscosity of the lower crust, and viscous coupling between the crust and mantle. Seismological data also provide information on the rheology of the lower crust and mantle through analysis of seismic attenuation and anisotropy. Geologists are improving our understanding of rheology by combining novel analyses of microstructures in naturally deformed rocks with petrologic data. This conference will bring together experts and students in these research areas with experimentalists and theoreticians studying the same processes. We will discuss and assess where agreement exists on rheological constraints derived at different length/time scales using different techniques - and where new insight is required. To encompass the elements of these topics, speakers and discussion leaders with backgrounds in geodesy, experimental rock deformation, structural geology, earthquake seismology, geodynamics, glaciology, materials science, and mineral physics will be invited to the conference. Thematic sessions will be organized on the dynamics of earthquake rupture, the rheology of the lower crust and coupling with the upper mantle, the measurement and interpretation of seismic attenuation and anisotropy, the dynamics of ice sheets and the coupling of reactive porous flow and brittle deformation for understanding geothermal and chemical properties of the

  19. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect (OSTI)

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  20. Multi-Attribute Seismic/Rock Physics Approach to Characterizing Fractured Reservoirs

    SciTech Connect (OSTI)

    Gary Mavko

    2004-11-30

    Most current seismic methods to seismically characterize fractures in tight reservoirs depend on a few anisotropic wave propagation signatures that can arise from aligned fractures. While seismic anisotropy can be a powerful fracture diagnostic, a number of situations can lessen its usefulness or introduce interpretation ambiguities. Fortunately, laboratory and theoretical work in rock physics indicates that a much broader spectrum of fracture seismic signatures can occur, including a decrease in P- and S-wave velocities, a change in Poisson's ratio, an increase in velocity dispersion and wave attenuation, as well as well as indirect images of structural features that can control fracture occurrence. The goal of this project was to demonstrate a practical interpretation and integration strategy for detecting and characterizing natural fractures in rocks. The approach was to exploit as many sources of information as possible, and to use the principles of rock physics as the link among seismic, geologic, and log data. Since no single seismic attribute is a reliable fracture indicator in all situations, the focus was to develop a quantitative scheme for integrating the diverse sources of information. The integrated study incorporated three key elements: The first element was establishing prior constraints on fracture occurrence, based on laboratory data, previous field observations, and geologic patterns of fracturing. The geologic aspects include analysis of the stratigraphic, structural, and tectonic environments of the field sites. Field observations and geomechanical analysis indicates that fractures tend to occur in the more brittle facies, for example, in tight sands and carbonates. In contrast, strain in shale is more likely to be accommodated by ductile flow. Hence, prior knowledge of bed thickness and facies architecture, calibrated to outcrops, are powerful constraints on the interpreted fracture distribution. Another important constraint is that fracturing

  1. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  2. Stress-dependent permeability of fractured rock masses: A numerical...

    Office of Scientific and Technical Information (OSTI)

    permeability of fractured rock masses: A numerical study Citation Details In-Document Search Title: Stress-dependent permeability of fractured rock masses: A numerical study We ...

  3. Coupled hydro-mechanical processes in crytalline rock and inindurateda...

    Office of Scientific and Technical Information (OSTI)

    rock and ininduratedand plastic clays: A comparative discussion Citation Details In-Document Search Title: Coupled hydro-mechanical processes in crytalline rock and ...

  4. Fundamental Research on Percussion Drilling: Improved rock mechanics

    Office of Scientific and Technical Information (OSTI)

    full-scale laboratory investigations Michael S. Bruno 58 GEOSCIENCES; 02 PETROLEUM; 03 NATURAL GAS; ROCK DRILLING; PRESSURE DEPENDENCE; ROCK MECHANICS; ROTARY DRILLING; WELL...

  5. Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979...

    Open Energy Info (EERE)

    Rock Sampling At Jemez Mountain Area (Eichelberger & Koch, 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Jemez Mountain...

  6. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Case study ...

  7. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report ...

  8. RockPort Capital Partners (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    RockPort Capital Partners (Massachusetts) Name: RockPort Capital Partners (Massachusetts) Address: 160 Federal Street, 18th Floor Place: Boston, Massachusetts Zip: 02110 Region:...

  9. Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004)...

    Open Energy Info (EERE)

    Rock Sampling At Yellowstone Region (Hellman & Ramsey, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Yellowstone Region...

  10. EGS rock reactions with Supercritical CO2 saturated with water...

    Office of Scientific and Technical Information (OSTI)

    Conference: EGS rock reactions with Supercritical CO2 saturated with water and water saturated with Supercritical CO2 Citation Details In-Document Search Title: EGS rock reactions ...

  11. Rock County, Wisconsin: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Rock County, Wisconsin CDH Energy EcoEnergy Places in Rock County, Wisconsin Avon, Wisconsin Beloit, Wisconsin Bradford, Wisconsin Brodhead, Wisconsin Center, Wisconsin...

  12. Standing Rock Sioux Tribe- 1995 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary objective of this study is to provide the Standing Rock Sioux Nation with a strategic overview of the electric energy issues and opportunities they will be facing beginning in the year 2001.

  13. Rock mechanics design in mining and tunneling

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1984-01-01

    This book introduces the design process as applied to rock mechanics aspects of underground mining and tunneling. Topics covered include a historical perspective, the design process in engineering, empirical methods of design, observational methods of design, and guided design.

  14. Mars Rover finds changing rocks, surprising scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It turned out to be the first of the high-silica rocks. December 24, 2015 Mars landscape This color-adjusted composite of images taken by NASA's Curiosity rover in September...

  15. Standing Rock Sioux Tribe- 2011 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe's (SRST) cultural identity demands that tribal development occur in a sustainable manner and in a manner protective of the tribe's natural resources to preserve them for following generations.

  16. First Rocks from Outside the Solar System

    SciTech Connect (OSTI)

    Westphal, Andrew

    2014-10-17

    Andrew Westphal presents his findings in examining the first rocks from outside the solar system at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  17. Stress-induced transverse isotropy in rocks

    SciTech Connect (OSTI)

    Schwartz, L.M.; Murphy, W.F. III; Berryman, J.G.

    1994-03-28

    The application of uniaxial pressure can induce elastic anisotropy in otherwise isotropic rock. We consider models based on two very different rock classes, granites and weakly consolidated granular systems. We show that these models share common underlying assumptions, that they lead to similar qualitative behavior, and that both provide a microscopic basis for elliptical anisotropy. In the granular case, we make experimentally verifiable predictions regarding the horizontally propagating modes based on the measured behavior of the vertical modes.

  18. Stressed state and stress relaxation in rocks

    SciTech Connect (OSTI)

    Lodus, E.V.

    1987-01-01

    This paper continues an experimental investigation of stress relaxation in rocks under various types of stressed states at different deformation phases, including the transcriptional region. The tests were done in the conditions of uniaxial compression, compression under hydrostatic pressures varying up to values at which the rock strength characteristics attained a plateau, and a for bending. All testes with stress relaxation were done in the laboratory on rock samples. The procedures are described. When characterized by the drop of stresses close to the ultimate strengths during the time equal to the first 3 minutes of relaxation, the rocks in tests with uniaxial compression formed the following series according to decreasing relaxation activity: bauxite 57%, brown coal 50%, potassium and rock salt 35%, schist 15% marble 13%, burst-safe sandstone 5%, and apatite 4%. The test data on stress relaxation in rocks make it possible in any mining situation to evaluate the reduction of the released elastic energy due to stress relaxation and, on this basis, determine the potential efficiency of controlling the bed destruction pattern.

  19. Method and apparatus for measuring surface density of explosive and inert dust in stratified layers

    DOE Patents [OSTI]

    Sapko, Michael J.; Perlee, Henry E.

    1988-01-01

    A method for determining the surface density of coal dust on top of rock dust or rock dust on top of coal dust is disclosed which comprises directing a light source at either a coal or rock dust layer overlaying a substratum of the other, detecting the amount of light reflected from the deposit, generating a signal from the reflected light which is converted into a normalized output (V), and calculating the surface density from the normalized output. The surface density S.sub.c of coal dust on top of rock dust is calculated according to the equation: S.sub.c =1/-a.sub.c ln(V) wherein a.sub.c is a constant for the coal dust particles, and the surface density S.sub.r of rock dust on top of coal dust is determined by the equation: ##EQU1## wherein a.sub.r is a constant based on the properties of the rock dust particles. An apparatus is also disclosed for carrying out the method of the present invention.

  20. Visualization of electronic density

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atom’s volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  1. Visualization of electronic density

    SciTech Connect (OSTI)

    Grosso, Bastien; Cooper, Valentino R.; Pine, Polina; Hashibon, Adham; Yaish, Yuval; Adler, Joan

    2015-04-22

    An atoms volume depends on its electronic density. Although this density can only be evaluated exactly for hydrogen-like atoms, there are many excellent numerical algorithms and packages to calculate it for other materials. 3D visualization of charge density is challenging, especially when several molecular/atomic levels are intertwined in space. We explore several approaches to 3D charge density visualization, including the extension of an anaglyphic stereo visualization application based on the AViz package to larger structures such as nanotubes. We will describe motivations and potential applications of these tools for answering interesting questions about nanotube properties.

  2. Underground Research Laboratories for Crystalline Rock and Sedimentary Rock in Japan

    SciTech Connect (OSTI)

    Shigeta, N.; Takeda, S.; Matsui, H.; Yamasaki, S.

    2003-02-27

    The Japan Nuclear Cycle Development Institute (JNC) has started two off-site (generic) underground research laboratory (URL) projects, one for crystalline rock as a fractured media and the other for sedimentary rock as a porous media. This paper introduces an overview and current status of these projects.

  3. Density-dependent covariant energy density functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.

    2012-10-20

    Relativistic nuclear energy density functionals are applied to the description of a variety of nuclear structure phenomena at and away fromstability line. Isoscalar monopole, isovector dipole and isoscalar quadrupole giant resonances are calculated using fully self-consistent relativistic quasiparticle randomphase approximation, based on the relativistic Hartree-Bogoliubovmodel. The impact of pairing correlations on the fission barriers in heavy and superheavy nuclei is examined. The role of pion in constructing desnity functionals is also investigated.

  4. Predicting stress-induced velocity anisotropy in rocks

    SciTech Connect (OSTI)

    Mavko, G.; Mukerji, T.; Godfrey, N.

    1995-07-01

    A simple transformation, using measured isotropic V{sub P} and V{sub S} versus hydrostatic pressure, is presented for predicting stress-induced seismic velocity anisotropy in rocks. The compliant, crack-like portions of the pore space are characterized by generalized compressional and shear compliances that are estimated form the isotropic V{sub P} and V{sub S}. The physical assumption that the compliant porosity is crack-like means that the pressure dependence of the generalized compliances is governed primarily by normal tractions resolved across cracks and defects. This allows the measured pressure dependence to be mapped form the hydrostatic stress state to any applied nonhydrostatic stress. Predicted P- and S-wave velocities agree reasonably well with uniaxial stress data for Barre Granite and Massillon Sandstone. While it is mechanically similar to methods based on idealized ellipsoidal cracks, the approach is relatively independent of any assumed crack geometry and is not limited to small crack densities.

  5. Rock-brine chemical interactions. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-02-01

    The results of experimental interaction of powdered volcanic rock with aqueous solutions are presented at temperatures from 200 to 400/sup 0/C, 500 to 1000 bars fluid pressure, with reaction durations of approximately 30 days under controlled laboratory conditions. The aim of this research is to develop data on the kinetics and equilibria of rock solution interactions that will provide insight into the complex geochemical processes attending geothermal reservoir development, stimulation, and reinjection. The research was done in the Stanford Hydrothermal Lab using gold cell equipment of the Dickson design. This equipment inverts the solution rock mixture several times a minute to ensure thorough mixing. Solution samples were periodically withdrawn without interruption of the experimental conditions. The data from these experiments suggests a path dependent series of reactions by which geothermal fluids might evolve from meteoric or magmatic sources.

  6. Major marine source rocks and stratigraphic cycles

    SciTech Connect (OSTI)

    Duval, B.C.

    1995-11-01

    The identification of continental encroachment cycles and subcycles by using sequence stratigraphy can assist explorationists in locating source rocks. The continental encroachment cycles are associated with the breakup of the supercontinents and fit a smooth long-term eustatic curve. They are first order, with a duration greater than 50 m.y., and are composed of transgressive and regressive phases inducing major changes in shoreline. The limit between the transgressive and regressive phases corresponds to a major downlap surface, and major marine source rocks are often found in association with this surface, particularly in the northern hemisphere. Potential {open_quotes}secondary{close_quotes} source rock intervals can also be sought by sequence stratigraphy because each continental encroachment cycle is composed of several subcycles, and the same configuration of a regressive forestepping phase overlying a transgressive backstepping phase also creates a downlap surface that may correspond with organic-rich intervals. The stratigraphic distribution of source rocks and related reserves fits reasonably well with continental encroachment cycles and subcycles. For instance, source rocks of Silurian, Upper Jurassic, and Middle-Upper Cretaceous are associated with eustatic highs and bear witness to this relationship. The recognition and mapping of such downlap surfaces is therefore a useful step to help map source rocks. The interpretation of sequence stratigraphy from regional seismic lines, properly calibrated with geochernical data whenever possible, can be of considerable help in the process. Several examples from around the world illustrate the power of the method: off-shore of eastern Venezuela, coastal basin of Angola, western Africa, the North Sea, south Algeria, and the North Caucasian trough.

  7. Rock melting tool with annealer section

    DOE Patents [OSTI]

    Bussod, Gilles Y.; Dick, Aaron J.; Cort, George E.

    1998-01-01

    A rock melting penetrator is provided with an afterbody that rapidly cools a molten geological structure formed around the melting tip of the penetrator to the glass transition temperature for the surrounding molten glass-like material. An annealing afterbody then cools the glass slowly from the glass transition temperature through the annealing temperature range to form a solid self-supporting glass casing. This allows thermally induced strains to relax by viscous deformations as the molten glass cools and prevents fracturing of the resulting glass liner. The quality of the glass lining is improved, along with its ability to provide a rigid impermeable casing in unstable rock formations.

  8. Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States

    SciTech Connect (OSTI)

    Krystinik, K.B.; Charpentier, R.R.

    1987-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

  9. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  10. DOE - NNSA/NFO -- News & Views Camp Desert Rock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Camp Desert Rock Photo - Camp Desert Rock Camp Desert Rock, also known as Desert Atom Camp, Nevada, was home to the U.S. Army's Atomic Maneuver Battalion in the 1950s. More than 2,300 soldiers were trained here in 1955. The 100 semi-permanent buildings and more than 500 tents often were filled to the 6,000 personnel capacity. Desert Rock Airport, with its 7,500 foot runway, was built on the former Camp Desert Rock. At peak operation Camp Desert Rock comprised of 100 semi-permanent buildings,

  11. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp → Φp

    SciTech Connect (OSTI)

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lenisa, P.; Livingston, K.; Lu, H.; MacGregor, I. J.D.; Markov, N.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, E. S.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tang, W.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2014-05-27

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γ p → Φp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the Φ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the Φ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (Φ → K⁺K⁻) and neutral- (Φ → K0SK0L) KK̄ decay modes of the Φ. Further, for the charged mode, we differentiate between the cases where the final K⁻ track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed Φ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-mode, respectively. Possible effects from K⁺Λ* channels with pKK̄ final-states are discussed. These present results constitute the most precise and extensive Φ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.

  12. Data analysis techniques, differential cross sections, and spin density matrix elements for the reaction γp → Φp

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dey, B.; Meyer, C. A.; Bellis, M.; Williams, M.; Adhikari, K. P.; Adikaram, D.; Aghasyan, M.; Amaryan, M. J.; Anderson, M. D.; Anefalos Pereira, S.; et al

    2014-05-27

    High-statistics measurements of differential cross sections and spin density matrix elements for the reaction γ p → Φp have been made using the CLAS detector at Jefferson Lab. We cover center-of-mass energies (√s) from 1.97 to 2.84 GeV, with an extensive coverage in the Φ production angle. The high statistics of the data sample made it necessary to carefully account for the interplay between the Φ natural lineshape and effects of the detector resolution, that are found to be comparable in magnitude. We study both the charged- (Φ → K⁺K⁻) and neutral- (Φ → K0SK0L) KK̄ decay modes of themore » Φ. Further, for the charged mode, we differentiate between the cases where the final K⁻ track is directly detected or its momentum reconstructed as the total missing momentum in the event. The two charged-mode topologies and the neutral-mode have different resolutions and are calibrated against each other. Extensive usage is made of kinematic fitting to improve the reconstructed Φ mass resolution. Our final results are reported in 10- and mostly 30-MeV-wide √s bins for the charged- and the neutral-mode, respectively. Possible effects from K⁺Λ* channels with pKK̄ final-states are discussed. These present results constitute the most precise and extensive Φ photoproduction measurements to date and in conjunction with the ω photoproduction results recently published by CLAS, will greatly improve our understanding of low energy vector meson photoproduction.« less

  13. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, Donald W.

    1997-01-01

    A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

  14. Storage capacity in hot dry rock reservoirs

    DOE Patents [OSTI]

    Brown, D.W.

    1997-11-11

    A method is described for extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid inventory of the reservoir. 4 figs.

  15. Hot-dry-rock geothermal resource 1980

    SciTech Connect (OSTI)

    Heiken, G.; Goff, F.; Cremer, G.

    1982-04-01

    The work performed on hot dry rock (HDR) geothermal resource evaluation, site characterization, and geophysical exploration techniques is summarized. The work was done by region (Far West, Pacific Northwest, Southwest, Rocky Mountain States, Midcontinent, and Eastern) and limited to the conterminous US.

  16. Transient Non Lin Deformation in Fractured Rock

    SciTech Connect (OSTI)

    Sartori, Enrico

    1998-10-14

    MATLOC is a nonlinear, transient, two-dimensional (planer and axisymmetric), thermal stress, finite-element code designed to determine the deformation within a fractured rock mass. The mass is modeled as a nonlinear anistropic elastic material which can exhibit stress-dependent bi-linear locking behavior.

  17. The oil and gas potential of southern Bolivia: Contributions from a dual source rock system

    SciTech Connect (OSTI)

    Hartshorn, K.G.

    1996-08-01

    The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

  18. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples You are accessing a document from ...

  19. Summary of Test Results for Daya Bay Rock Samples (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Summary of Test Results for Daya Bay Rock Samples Citation Details In-Document Search Title: Summary of Test Results for Daya Bay Rock Samples A series of ...

  20. DOE - Fossil Energy: Squeezing Oil Out of Rock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-Squeezing Out Oil An Energy Lesson Looking Down an Oil Well Looking Down an Oil Well Squeezing Oil out of Rocks Imagine trying to force oil through a rock. Can't be done, you ...

  1. Category:Little Rock, AR | Open Energy Information

    Open Energy Info (EERE)

    71 KB SVMediumOffice Little Rock AR Entergy Arkansas Inc.png SVMediumOffice Little ... 68 KB SVMidriseApartment Little Rock AR Entergy Arkansas Inc.png SVMidriseApartment Lit......

  2. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville...

    Office of Environmental Management (EM)

    1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page ...

  3. Project Reports for Standing Rock Sioux Tribe- 2012 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe (SRST) will perform a feasibility study and associated tasks over the course of two years on sites within the exterior boundaries of the Standing Rock Sioux...

  4. Hot Dry Rock Geothermal Energy- Important Lessons From Fenton...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hot Dry Rock Geothermal Energy- Important Lessons From Fenton Hill Abstract The concept of Hot Dry Rock...

  5. Slick Rock, Colorado, Processing Sites and Disposal Sites Fact Sheet

    Office of Legacy Management (LM)

    Slick Rock, Colorado, Processing Sites and Disposal Sites This fact sheet provides information about the Uranium Mill Tailings Radiation Control Act of 1978 Title I processing sites and disposal site at Slick Rock, Colorado. These sites are managed by the U.S. Department of Energy Office of Legacy Management. Locations of the Slick Rock, Colorado, Processing and Disposal Sites Site Descriptions and History The Slick Rock processing sites consist of two former uranium- and vanadium-ore processing

  6. Rock Physics of Geologic Carbon Sequestration/Storage (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Rock Physics of Geologic Carbon Sequestration/Storage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon Sequestration/Storage This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties

  7. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock

  8. Density Equalizing Map Projections

    Energy Science and Technology Software Center (OSTI)

    1995-07-01

    A geographic map is mathematically transformed so that the subareas of the map are proportional to a given quantity such as population. In other words, population density is equalized over the entire map. The transformed map can be used as a display tool, or it can be statistically analyzed. For example, cases of disease plotted on the transformed map should be uniformly distributed at random, if disease rates are everywhere equal. Geographic clusters of diseasemore » can be readily identified, and their statistical significance determined, on a density equalized map.« less

  9. Characteristics of neutrons produced by muons in a standard rock

    SciTech Connect (OSTI)

    Malgin, A. S.

    2015-10-15

    Characteristics of cosmogenic neutrons, such as the yield, production rate, and flux, were determined for a standard rock. The dependences of these quantities on the standard-rock depth and on the average muon energy were obtained. These properties and dependences make it possible to estimate easy the muon-induced neutron background in underground laboratories for various chemical compositions of rock.

  10. The Effect of Scale on the Mechanical Properties of Jointed Rock Masses

    SciTech Connect (OSTI)

    Heuze, F E

    2004-05-24

    These notes were prepared for presentation at the Defense Threat Reduction Agency's (DTRA) Hard Target Research and Analysis Center (HTRAC), at the occasion of a short course held on June 14-15, 2004. The material is intended for analysts who must evaluate the geo-mechanical characteristics of sites of interest, in order to provide appropriate input to calculations of ground shock effects on underground facilities in rock masses. These analysts are associated with the Interagency Geotechnical Assessment Team (IGAT). Because geological discontinuities introduce scale effects on the mechanical properties of rock formations, these large-scale properties cannot be estimated on the basis of tests on small cores.

  11. MODELING UNDERGROUND STRUCTURE VULNERABILITY IN JOINTED ROCK

    SciTech Connect (OSTI)

    R. SWIFT; D. STEEDMAN

    2001-02-01

    The vulnerability of underground structures and openings in deep jointed rock to ground shock attack is of chief concern to military planning and security. Damage and/or loss of stability to a structure in jointed rock, often manifested as brittle failure and accompanied with block movement, can depend significantly on jointed properties, such as spacing, orientation, strength, and block character. We apply a hybrid Discrete Element Method combined with the Smooth Particle Hydrodynamics approach to simulate the MIGHTY NORTH event, a definitive high-explosive test performed on an aluminum lined cylindrical opening in jointed Salem limestone. Representing limestone with discrete elements having elastic-equivalence and explicit brittle tensile behavior and the liner as an elastic-plastic continuum provides good agreement with the experiment and damage obtained with finite-element simulations. Extending the approach to parameter variations shows damage is substantially altered by differences in joint geometry and liner properties.

  12. Scientific Visit on Crystalline Rock Repository Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visit on Crystalline Rock Repository Development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  13. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, Terry W.

    1994-01-01

    A multiple density layered insulator for use with a laser is disclosed wh provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation.

  14. Energy in density gradient

    SciTech Connect (OSTI)

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  15. Multiple density layered insulator

    DOE Patents [OSTI]

    Alger, T.W.

    1994-09-06

    A multiple density layered insulator for use with a laser is disclosed which provides at least two different insulation materials for a laser discharge tube, where the two insulation materials have different thermoconductivities. The multiple layer insulation materials provide for improved thermoconductivity capability for improved laser operation. 4 figs.

  16. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, D.J.; McNamee, M.J.

    1985-07-18

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer (LVDT), a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  17. Gage for measuring displacements in rock samples

    DOE Patents [OSTI]

    Holcomb, David J.; McNamee, Michael J.

    1986-01-01

    A gage for measuring diametral displacement within a rock sample for use in a rock mechanics laboratory and in the field, comprises a support ring housing a linear variable differential transformer, a mounting screw, and a leaf spring. The mounting screw is adjustable and defines a first point of contact with the rock sample. The leaf spring has opposite ends fixed to the inner periphery of the mounting ring. An intermediate portion of the leaf spring projecting radially inward from the ring is formed with a dimple defining a second point of contact with the sample. The first and second points of contact are diametrically opposed to each other. The LVDT is mounted in the ring with its axis parallel to the line of measurement and its core rod received in the dimple of the leaf spring. Any change in the length of the line between the first and second support points is directly communicated to the LVDT. The leaf spring is rigid to completely support lateral forces so that the LVDT is free of all load for improved precision.

  18. Mafic and ultramafic rocks of the northwestern Brooks Range of Alaska produce nearly symmetric gravity anomalies

    SciTech Connect (OSTI)

    Morin, R.L. )

    1993-04-01

    An arc of mafic and ultramafic rocks is mapped from Asik Mountain to Siniktanneyak Mountain in the northwestern Brooks Range of Alaska. Gravity data, although not very detailed, have been collected over the region and show some very conspicuous circular or oval gravity highs over portions of the mapped mafic-ultramafic bodies. Bodies which have large associated gravity anomalies are Asik Mountain (80 mGal), Avon Hills (20 mGal), Misheguk Mountain (30 mGal), and Siniktanneyak Mountain (20 mGal). Gabbros of the Siniktanneyak Mountain complex, where the gravity coverage is best, have densities of about 3.0 g/cm[sup 3] while the densities of the surrounding sedimentary rocks are about 2.6 g/cm[sup 3]. Volcanic rocks in the area have average densities of about 2.7 g/cm[sup 3]. Three-dimensional modeling indicates that the largest anomaly, on the southwestern part of the complex, could be caused by a polygonal prism of gabbro with vertical sides, about 6 km across and about 4.5 km deep. A smaller lobe of the anomaly on the northeast of the complex could be caused by another oblong polygonal prism about 4 km long and 2 km wide trending northeast and about 1.5 km deep. Modeling this anomaly with densities lower than gabbro would require greater thicknesses to produce the same anomaly. Modeling each anomaly along this arc in 2 1/2-dimensions shows many possible solutions using different body shapes and different density contrasts. There are several other gravity anomalies in this vicinity which could represent unexposed high density rocks. One such anomaly is in the Maiyumerak Mountains northeast of Asik Mountain (30 mGal). Another anomaly is to the northwest of Asik Mountain (20 mGal). There is also an anomaly at Uchugrak (20 mGal) east of Avan Hills. Although many of the anomalies in this region are poorly controlled, an attempt has been made to interpret the data to show possible solutions.

  19. Density Log | Open Energy Information

    Open Energy Info (EERE)

    Density Log Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Density Log Details Activities (7) Areas (6) Regions (0) NEPA(0) Exploration...

  20. Mechanical and acoustic properties of weakly cemented granular rocks

    SciTech Connect (OSTI)

    Nakagawa, S.; Myer, L.R.

    2001-05-09

    This paper presents the results of laboratory measurements on the mechanical and acoustic properties of weakly cemented granular rock. Artificial rock samples were fabricated by cementing sand and glass beads with sodium silicate binder. During uniaxial compression tests, the rock samples showed stress-strain behavior which was more similar to that of soils than competent rocks, exhibiting large permanent deformations with frictional slip. The mechanical behavior of the samples approached that of competent rocks as the amount of binder was increased. For very weak samples, acoustic waves propagating in these rocks showed very low velocities of less than 1000 m/sec for compressional waves. A borehole made within this weakly cemented rock exhibited a unique mode of failure that is called ''anti-KI mode fracture'' in this paper. The effect of cementation, grain type, and boundary conditions on this mode of failure was also examined experimentally.

  1. DOE - Office of Legacy Management -- Slick Rock Mill Site - CO 08

    Office of Legacy Management (LM)

    Slick Rock Mill Site - CO 08 Site ID (CSD Index Number): CO.08 Site Name: Slick Rock Mill Site Site Summary: Site Link: Slick Rock, Colorado, Processing Site External Site Link: Alternate Name(s): Slick Rock Mill Site Slick Rock (North Continent) Mill 1 Slick Rock (Union Carbide) Mill 2 Uranium Mill No. 1 in Slick Rock (East) Uranium Mill No. 2 in Slick Rock (West) Alternate Name Documents: Location: San Miguel County, Colorado Location Documents: Historical Operations (describe contaminants):

  2. Predicting the transport properties of sedimentary rocks from microgeometry

    SciTech Connect (OSTI)

    Schlueter, E.M.

    1995-02-01

    The author investigates through analysis and experiment how pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media. The approach is to measure fluid permeability and electrical conductivity of rock samples using single and multiple fluid phases that can be frozen in place (wetting and nonwetting) over a range of pore pressures. These experiments are analyzed in terms of the microphysics and microchemistry of the processes involved to provide a theoretical basis for the macroscopic constitutive relationships between fluid-flow and geophysical properties that the authors develop. The purpose of these experiments and their analyses is to advance the understanding of the mechanisms and factors that control fluid transport in porous media. This understanding is important in characterizing porous media properties and heterogeneities before simulating and monitoring the progress of complex flow processes at the field scale in permeable media.

  3. Gedanken densities and exact constraints in density functional theory

    SciTech Connect (OSTI)

    Perdew, John P.; Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122 ; Ruzsinszky, Adrienn; Sun, Jianwei; Burke, Kieron

    2014-05-14

    Approximations to the exact density functional for the exchange-correlation energy of a many-electron ground state can be constructed by satisfying constraints that are universal, i.e., valid for all electron densities. Gedanken densities are designed for the purpose of this construction, but need not be realistic. The uniform electron gas is an old gedanken density. Here, we propose a spherical two-electron gedanken density in which the dimensionless density gradient can be an arbitrary positive constant wherever the density is non-zero. The Lieb-Oxford lower bound on the exchange energy can be satisfied within a generalized gradient approximation (GGA) by bounding its enhancement factor or simplest GGA exchange-energy density. This enhancement-factor bound is well known to be sufficient, but our gedanken density shows that it is also necessary. The conventional exact exchange-energy density satisfies no such local bound, but energy densities are not unique, and the simplest GGA exchange-energy density is not an approximation to it. We further derive a strongly and optimally tightened bound on the exchange enhancement factor of a two-electron density, which is satisfied by the local density approximation but is violated by all published GGA's or meta-GGA’s. Finally, some consequences of the non-uniform density-scaling behavior for the asymptotics of the exchange enhancement factor of a GGA or meta-GGA are given.

  4. Hot dry rock venture risks investigation:

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This study assesses a promising resource in central Utah as the potential site of a future commerical hot dry rock (HDR) facility for generating electricity. The results indicate that, if the HDR reservoir productivity equals expectations based on preliminary results from research projects to date, a 50 MWe HDR power facility at Roosevelt Hot Springs could generate power at cost competitive with coal-fired plants. However, it is imperative that the assumed productivity be demonstrated before funds are committed for a commercial facility. 72 refs., 39 figs., 38 tabs.

  5. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety...

  6. Petrography Analysis At Fenton Hill HDR Geothermal Area (Laughlin...

    Open Energy Info (EERE)

    from about 500 to several thousand, depending upon the grain size of the rock. Whole-rock chemical analysis was performed by John Husler, University of New Mexico, using a variety...

  7. High Energy Density Capacitors

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of todays best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  8. MULTI-ATTRIBUTE SEISMIC/ROCK PHYSICS APPROACH TO CHARACTERIZING FRACTURED RESERVOIRS

    SciTech Connect (OSTI)

    Gary Mavko

    2000-10-01

    This project consists of three key interrelated Phases, each focusing on the central issue of imaging and quantifying fractured reservoirs, through improved integration of the principles of rock physics, geology, and seismic wave propagation. This report summarizes the results of Phase I of the project. The key to successful development of low permeability reservoirs lies in reliably characterizing fractures. Fractures play a crucial role in controlling almost all of the fluid transport in tight reservoirs. Current seismic methods to characterize fractures depend on various anisotropic wave propagation signatures that can arise from aligned fractures. We are pursuing an integrated study that relates to high-resolution seismic images of natural fractures to the rock parameters that control the storage and mobility of fluids. Our goal is to go beyond the current state-of-the art to develop and demonstrate next generation methodologies for detecting and quantitatively characterizing fracture zones using seismic measurements. Our study incorporates 3 key elements: (1) Theoretical rock physics studies of the anisotropic viscoelastic signatures of fractured rocks, including up scaling analysis and rock-fluid interactions to define the factors relating fractures in the lab and in the field. (2) Modeling of optimal seismic attributes, including offset and azimuth dependence of travel time, amplitude, impedance and spectral signatures of anisotropic fractured rocks. We will quantify the information content of combinations of seismic attributes, and the impact of multi-attribute analyses in reducing uncertainty in fracture interpretations. (3) Integration and interpretation of seismic, well log, and laboratory data, incorporating field geologic fracture characterization and the theoretical results of items 1 and 2 above. The focal point for this project is the demonstration of these methodologies in the Marathon Oil Company Yates Field in West Texas.

  9. An asixymmetric diffusion experiment for the determination of diffusion and sorption coefficients of rock samples

    SciTech Connect (OSTI)

    Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.

    2011-02-01

    Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an

  10. Rock mechanics contributions from defense programs

    SciTech Connect (OSTI)

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth`s interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges.

  11. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  12. Regional Geology: GIS Database for Alternative Host Rocks and Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Siting Guidelines | Department of Energy Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used for siting guidelines, both in the US and other countries. The Used Fuel Disposition Campaign

  13. Disposal in Crystalline Rocks: FY'15 Progress Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Disposal in Crystalline Rocks: FY'15 Progress Report Disposal in Crystalline Rocks: FY'15 Progress Report The objective of the Crystalline Disposal R&D Work Package is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. The major accomplishments are summarized in the report: 1) Development of Fuel Matrix Degradation Model

  14. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Lab | Department of Energy Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Case study describes Pacific Northwest National Laboratory's (PNNL) three-month Rock the Watt campaign to reduce energy use at its main campus in Richland, Washington. The campaign objectives were to educate PNNL employees about energy conservation opportunities in their workplace and to motivate

  15. Picture of the Week: Bismuth and tin on the rocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory are using state-of-the-art experimental techniques to see and understand how microstructures evolve during materials processing. February 15, 2016 Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory are using state-of-the-art experimental techniques to see and understand how microstructures evolve during materials processing. Bismuth and tin on the rocks Scientists at Los Alamos National Laboratory

  16. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    Split Rock Site - 043 FUSRAP Considered Sites Site: WNI Split Rock Site (043) Active UMTRCA Title II site; when complete, site will be managed by LM Designated Name: Not Designated under FUSRAP Alternate Name: Split Rock, WY, Disposal Site Location: Fremont County, Wyoming Evaluation Year: Not considered for FUSRAP - in another program Site Operations: Disposal site Site Disposition: Remediation under UMTRCA Title II - site not ready to transition Radioactive Materials Handled: Yes Primary

  17. Fractured rock stress-permeability relationships from in situ...

    Office of Scientific and Technical Information (OSTI)

    Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings Citation Details In-Document Search Title: Fractured...

  18. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  19. Evaluation Of Used Fuel Disposition In Clay-Bearing Rock

    Office of Energy Efficiency and Renewable Energy (EERE)

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties, e.g., low permeability, potential geochemically reduced conditions...

  20. Rock Sampling At Socorro Mountain Area (Armstrong, Et Al., 1995...

    Open Energy Info (EERE)

    SEM studies, and John Repetski (USGS, Reston, Virgina) conodont stratigraphy and color and textural alteration as guides to the carbonate rocks' thermal history. The...

  1. Glen Rock, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district.12 Registered Energy Companies in Glen Rock, New Jersey BGA Engineering LLC References US Census Bureau Incorporated place and minor civil...

  2. AltaRock Energy Announces Successful Multiple-Zone Stimulation...

    Energy Savers [EERE]

    Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration January 22, 2013 - ...

  3. DOE - Office of Legacy Management -- WNI Split Rock Site - 043

    Office of Legacy Management (LM)

    Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Western Nuclear, Inc. (WNI) Split Rock site is a Uranium Mill ...

  4. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  5. Rock Sampling At San Francisco Volcanic Field Area (Warpinski...

    Open Energy Info (EERE)

    Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic...

  6. Rock Island County, Illinois: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Illinois Hillsdale, Illinois Milan, Illinois Moline, Illinois Oak Grove, Illinois Port Byron, Illinois Rapids City, Illinois Reynolds, Illinois Rock Island Arsenal, Illinois...

  7. City of Rock Hill, South Carolina (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Hill, South Carolina (Utility Company) Jump to: navigation, search Name: City of Rock Hill Place: South Carolina Phone Number: 803-325-2500 Website: www.cityofrockhill.comdepartm...

  8. Rock Sampling At Long Valley Caldera Geothermal Area (Goff, Et...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Goff, Et Al., 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Long Valley Caldera...

  9. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, J.D.

    1991-11-19

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 [mu]m is produced. Also disclosed are the foams produced by the process. 8 figures.

  10. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D.

    1992-01-01

    Disclosed is a process of producing microcellular from which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  11. Low density microcellular foams

    DOE Patents [OSTI]

    LeMay, James D.

    1991-01-01

    Disclosed is a process of producing microcellular foam which comprises the steps of: (a) selecting a multifunctional epoxy oligomer resin; (b) mixing said epoxy resin with a non-reactive diluent to form a resin-diluent mixture; (c) forming a diluent containing cross-linked epoxy gel from said resin-diluent mixture; (d) replacing said diluent with a solvent therefore; (e) replacing said solvent with liquid carbon dioxide; and (f) vaporizing off said liquid carbon dioxide under supercritical conditions, whereby a foam having a density in the range of 35-150 mg/cc and cell diameters less than about 1 .mu.m is produced. Also disclosed are the foams produced by the process.

  12. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, James H.; Clough, Roger L.; Curro, John G.; Quintana, Carlos A.; Russick, Edward M.; Shaw, Montgomery T.

    1987-01-01

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the resultant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Means for subjecting such a solvent to one-dimensional cooling are also provided. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 .mu.m and a volume such that the foams have a length greater than 1 cm are provided.

  13. Low density microcellular foams

    DOE Patents [OSTI]

    Aubert, J.H.; Clough, R.L.; Curro, J.G.; Quintana, C.A.; Russick, E.M.; Shaw, M.T.

    1985-10-02

    Low density, microporous polymer foams are provided by a process which comprises forming a solution of polymer and a suitable solvent followed by rapid cooling of the solution to form a phase-separated system and freeze the phase-separated system. The phase-separated system comprises a polymer phase and a solvent phase, each of which is substantially continuous within the other. The morphology of the polymer phase prior to and subsequent to freezing determine the morphology of the resultant foam. Both isotropic and anisotropic foams can be produced. If isotropic foams are produced, the polymer and solvent are tailored such that the solution spontaneously phase-separates prior to the point at which any component freezes. The morphology of the resultant polymer phase determines the morphology of the reusltant foam and the morphology of the polymer phase is retained by cooling the system at a rate sufficient to freeze one or both components of the system before a change in morphology can occur. Anisotropic foams are produced by forming a solution of polymer and solvent that will not phase separate prior to freezing of one or both components of the solution. In such a process, the solvent typically freezes before phase separation occurs. The morphology of the resultant frozen two-phase system determines the morphology of the resultant foam. The process involves subjecting the solution to essentially one-dimensional cooling. Foams having a density of less than 0.1 g/cc and a uniform cell size of less than 10 ..mu..m and a volume such that the foams have a length greater than 1 cm are provided.

  14. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2002-11-18

    During the seven quarter of the project the research team analyzed some of the acoustic velocity data and rock deformation data. The goal is to create a series of ''deformation-velocity maps'' which can outline the types of rock deformational mechanisms which can occur at high pressures and then associate those with specific compressional or shear wave velocity signatures. During this quarter, we began to analyze both the acoustical and deformational properties of the various rock types. Some of the preliminary velocity data from the Danian chalk will be presented in this report. This rock type was selected for the initial efforts as it will be used in the tomographic imaging study outlined in Task 10. This is one of the more important rock types in the study as the Danian chalk is thought to represent an excellent analog to the Ekofisk chalk that has caused so many problems in the North Sea. Some of the preliminary acoustic velocity data obtained during this phase of the project indicates that during pore collapse and compaction of this chalk, the acoustic velocities can change by as much as 200 m/s. Theoretically, this significant velocity change should be detectable during repeated successive 3-D seismic images. In addition, research continues with an analysis of the unconsolidated sand samples at high confining pressures obtained in Task 9. The analysis of the results indicate that sands with 10% volume of fines can undergo liquefaction at lower stress conditions than sand samples which do not have fines added. This liquefaction and/or sand flow is similar to ''shallow water'' flows observed during drilling in the offshore Gulf of Mexico.

  15. Isotopic Analysis- Rock At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    atomic flame emission spectrophotometry. Argon was released by using radio frequency induction heating then measured by mass spectrometry. Fourteen samples throughout the core...

  16. Isotopic Analysis- Rock At Coso Geothermal Area (1997) | Open...

    Open Energy Info (EERE)

    with the northeastern boundary of recent seismic activity. References Glazner, A.F.; Miller, J.S. (1 January 1997) A major lithospheric boundary in eastern California defined by...

  17. Isotopic Analysis- Rock At Valles Caldera - Sulphur Springs Geothermal...

    Open Energy Info (EERE)

    into younger strata. References Hisatoshi Ito, Kazuhiro Tanaka (1995) Insights On The Thermal History Of The Valles Caldera, New Mexico- Evidence From Zircon Fission-Track...

  18. An experimental comparison of laboratory techniques in determining bulk properties of tuffaceous rocks; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Boyd, P.J.; Martin, R.J. III; Price, R.H.

    1994-04-01

    Samples of tuffaceous rock were studied as part of the site characterization for a potential nuclear waste repository at Yucca Mountain in southern Nevada. These efforts were scoping in nature, and their results, along with those of other investigations, are being used to develop suitable procedures for determining bulk properties of tuffaceous rock in support of thermal and mechanical properties evaluations. Comparisons were made between various sample preparation, handling, and measurement techniques for both zeolitized and nonzeolitized tuff in order to assess their effects on bulk property determinations. Laboratory tests included extensive drying regimes to evaluate dehydration behavior, the acquisition of data derived from both gas and water pycnometers to compare their suitability in determining grain densities, a comparison of particle size effects, and a set of experiments to evaluate whole core saturation methods. The results affirm the added complexity of these types of measurements where there is a zeolite component in the sample mineralogy. Absolute values for the bulk properties of zeolitized tuff are immeasurable due to the complex nature of their dehydration behavior. However, the results of the techniques that were investigated provide a basis for the development of preferred, consistent methods for determining the grain density, dry and saturated bulk densities, and porosity of tuffaceous rock, including zeolitic tuff in support of thermal and mechanical properties evaluations.

  19. High Energy Density Microwaves

    SciTech Connect (OSTI)

    Phillips, R.M. [Stanford Linear Accelerator Center, Stanford, CA 94309 (United States)

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  20. High temperature thermoelectric properties of rock-salt structure PbS

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parker, David S.; Singh, David J.

    2013-12-18

    We present an analysis of the high temperature transport properties of rock-salt structure PbS, a sister compound to the better studied lead chalcogenides PbSe and PbTe. In this study, we find thermopower magnitudes exceeding 200 V/K in a wide doping range for temperatures of 800 K and above. Based on these calculations, and an analysis of recent experimental work we find that this material has a potential for high thermoelectric performance. Also, we find favorable mechanical properties, based on an analysis of published data.

  1. Experience with in situ measurement of rock deformability

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1981-07-01

    Although in situ tests have the advantage of involving a large volume or rock tested under the same environmental conditions as are prevailing in the rock mass, such tests are expensive and time consuming. In addition, there are a number of controversial questions pertinent to in situ tests.

  2. Determining inert content in coal dust/rock dust mixture

    DOE Patents [OSTI]

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  3. The problem of the universal density functional and the density matrix functional theory

    SciTech Connect (OSTI)

    Bobrov, V. B. Trigger, S. A.

    2013-04-15

    The analysis in this paper shows that the Hohenberg-Kohn theorem is the constellation of two statements: (i) the mathematically rigorous Hohenberg-Kohn lemma, which demonstrates that the same ground-state density cannot correspond to two different potentials of an external field, and (ii) the hypothesis of the existence of the universal density functional. Based on the obtained explicit expression for the nonrel-ativistic particle energy in a local external field, we prove that the energy of the system of more than two non-interacting electrons cannot be a functional of the inhomogeneous density. This result is generalized to the system of interacting electrons. It means that the Hohenberg-Kohn lemma cannot provide justification of the universal density functional for fermions. At the same time, statements of the density functional theory remain valid when considering any number of noninteracting ground-state bosons due to the Bose condensation effect. In the framework of the density matrix functional theory, the hypothesis of the existence of the universal density matrix functional corresponds to the cases of noninteracting particles and to interaction in the Hartree-Fock approximation.

  4. Orbital-optimized density cumulant functional theory

    SciTech Connect (OSTI)

    Sokolov, Alexander Yu. Schaefer, Henry F.

    2013-11-28

    In density cumulant functional theory (DCFT) the electronic energy is evaluated from the one-particle density matrix and two-particle density cumulant, circumventing the computation of the wavefunction. To achieve this, the one-particle density matrix is decomposed exactly into the mean-field (idempotent) and correlation components. While the latter can be entirely derived from the density cumulant, the former must be obtained by choosing a specific set of orbitals. In the original DCFT formulation [W. Kutzelnigg, J. Chem. Phys. 125, 171101 (2006)] the orbitals were determined by diagonalizing the effective Fock operator, which introduces partial orbital relaxation. Here we present a new orbital-optimized formulation of DCFT where the energy is variationally minimized with respect to orbital rotations. This introduces important energy contributions and significantly improves the description of the dynamic correlation. In addition, it greatly simplifies the computation of analytic gradients, for which expressions are also presented. We offer a perturbative analysis of the new orbital stationarity conditions and benchmark their performance for a variety of chemical systems.

  5. Experimental study of thermal resistance values (R-values) of low-density mineral-fiber building insulation batts commercially available in 1977

    SciTech Connect (OSTI)

    Tye, R.P.; Desjarlais, A.O.; Yarbrough, D.W.; McElroy, D.L.

    1980-04-01

    This study was initiated in June 1977 to obtain and evaluate full-thickness thermal performance data on mineral fiber, i.e., fiberglass and rock wool, batt-type insulations. The study aimed to obtain full-thickness thermal performance data and to assess other properties of mineral fiber building insulations. The physical property measurements discussed in this report provide a measure of the range of values for density, thickness, and R-value based on a sampling of low-density mineral-fiber building insulation batts purchased in the marketplace in 1977. The experimental data were used to establish mean R-values at nominal (label) thickness of R-11 and R-19 fiberglass batts and R-11 rock wool batts. The full-thickness and sliced testing techniques provided a set of R-values on the purchased samples that were converted to R-values at label thickness by using a particular correlation of apparent thermal conductivity and density. The full thickness results indicate surprisingly large percentages below labeled R-value for these four types of mineral fiber insulation. A statistical analysis of these data based on the assumption of normally distributed properties is included. This yielded estimates of similar magnitude for the population from which the samples were purchased. An urgency for continued sampling and further testing of mineral fiber insulations by many laboratories was identified. The differences between results obtained with the sliced technique and results obtained with full-thickness testing must be thoroughly understood and documented so that adjustment factors for the thickness effect can be accurately established. (LCL)

  6. Characterization of calculation of in-situ retardation factors of contaminant transport using naturally-radionuclides and rock/water interaction occurring U-Series disequilibria timescales. 1997 annual progress report

    SciTech Connect (OSTI)

    Roback, R.; Murrel, M.; Goldstein, S.; Ku, T.L.; Luo, S.

    1997-01-01

    'The research is directed toward a quantitative assessment of contaminant transport rates in fracture-rock systems using uranium-series radionuclides. Naturally occurring uranium-and thorium-series radioactive disequilibria will provide information on the rates of adsorption-desorption and transport of radioactive contaminants as well as on fluid transport and rock dissolution in a natural setting. This study will also provide an improved characterization of preferential flow and contaminant transport at the Idaho Environmental and Engineering Lab. (INEEL) site. To a lesser extent, the study will include rocks in the unsaturated zone. The authors will produce a realistic model of radionuclide migration under unsaturated and saturated field conditions at the INEEL site, taking into account the retardation processes involved in the rock/water interaction. The major tasks are to (1) determine the natural distribution of U, Th, Pa and Ra isotopes in rock minerals. sorbed phases on the rocks, and in fluids from both saturated and unsaturated zones at the site, and (2) study rock/water interaction processes using U/Th series disequilibrium and a statistical analysis-based model for the Geologic heterogeneity plays an important role in transporting contaminants in fractured rocks. Preferential flow paths in the fractured rocks act as a major pathway for transport of radioactive contaminants in groundwaters. The weathering/dissolution of rock by groundwater also influences contaminant mobility. Thus, it is important to understand the hydrogeologic features of the site and their impact on the migration of radioactive contaminants. In this regard, quantification of the rock weathering/dissolution rate and fluid residence time from the observed decay-series disequilibria will be valuable. By mapping the spatial distribution of the residence time of groundwater in fractured rocks, the subsurface preferential flow paths (with high rock permeability and short fluid residence

  7. Self-assembly of ordered wurtzite/rock salt heterostructures—A new view on phase separation in Mg{sub x}Zn{sub 1−x}O

    SciTech Connect (OSTI)

    Gries, K. I.; Vogel, S.; Straubinger, R.; Beyer, A.; Chernikov, A.; Chatterjee, S.; Volz, K.; Wassner, T. A.; Bruckbauer, J.; Häusler, I.; Laumer, B.; Kracht, M.; Heiliger, C.; Eickhoff, M.; Janek, J.

    2015-07-28

    The self-assembled formation of ordered, vertically stacked rocksalt/wurtzite Mg{sub x}Zn{sub 1−x}O heterostructures by planar phase separation is shown. These heterostructures form quasi “natural” two-dimensional hetero-interfaces between the different phases upon annealing of MgO-oversaturated wurtzite Mg{sub x}Zn{sub 1−x}O layers grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. The optical absorption spectra show a red shift simultaneous with the appearance of a cubic phase upon annealing at temperatures between 900 °C and 1000 °C. Transmission electron microscopy reveals that these effects are caused by phase separation leading to the formation of a vertically ordered rock salt/wurtzite heterostructures. To explain these observations, we suggest a phase separation epitaxy model that considers this process being initiated by the formation of a cubic (Mg,Zn)Al{sub 2}O{sub 4} spinel layer at the interface to the sapphire substrate, acting as a planar seed for the epitaxial precipitation of rock salt Mg{sub x}Zn{sub 1−x}O. The equilibrium fraction x of magnesium in the resulting wurtzite (rock salt) layers is approximately 0.15 (0.85), independent of the MgO content of the as-grown layer and determined by the annealing temperature. This model is confirmed by photoluminescence analysis of the resulting layer systems after different annealing temperatures. In addition, we show that the thermal annealing process results in a significant reduction in the density of edge- and screw-type dislocations, providing the possibility to fabricate high quality templates for quasi-homoepitaxial growth.

  8. Mars rover's laser can now target rocks all by itself

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mars rover's laser can now target rocks all by itself Mars rover's laser can now target rocks all by itself New software is enabling ChemCam to select rock targets autonomously-the first time autonomous target selection is available for an instrument of this kind on any robotic planetary mission. July 21, 2016 NASA's Curiosity Mars rover autonomously selects some targets for the laser and telescopic camera of its ChemCam instrument. For example, on-board software analyzed the Navcam image at

  9. America's Atomic Army: The Historical Archaeology of Camp Desert Rock

    SciTech Connect (OSTI)

    Susan R. Edwards

    2007-11-02

    Established in 1951, Camp Desert Rock served as the training ground for America's 'Atomic Army'. For the next six years, U.S. ground troops traveled to the Nevada desert to participate in military maneuvers during atmospheric atomic weapons testing. Nearly 60,000 soldiers received physical and psychological training in atomic warfare. Abandoned when atmospheric testing ended, Camp Desert Rock was dismantled and its buildings moved to other locations. Today, the camp appears as a sterile expanse of desert marked by rock-lined tent platforms, concrete foundations, and trash scatters. Although visually unimposing, the site is rich with the history of America's nuclear testing program.

  10. Effect of recirculation pump trip following anticipated transients without scram at Big Rock Point

    SciTech Connect (OSTI)

    Lyon, R.E.

    1981-08-01

    As requested by the US Atomic Energy Commission (now US Nuclear Regulatory Commission) in their Technical Report on Anticipated Transients Without Scram (ATWS) for Water-Cooled Reactors (WASH-1270), Consumers Power Company has submitted analyses which describe the response of their Big Rock Point (BRP) Plant to ATWS. The original analyses were submitted on Febuary 21, 1975, and results indicated that a recirculation pump trip (RPT) was effective in limiting the consequences of an ATWS. The response of BRP to an ATWS was reanalyzed as a part of the Big Rock Point Probabilistic Risk Assessment (PRA). Results of the analysis were submitted on February 26, 1981, with the conclusion that automatic RPT provides little safety improvement at BRP. Purpose of this report is to evaluate the submitted analyses to determine the effectiveness of Recirculation Pump Trip in ATWS recovery.

  11. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  12. Mechanical Behavior of the Near-field Host Rock Surrounding Excavation...

    Office of Scientific and Technical Information (OSTI)

    Mechanical Behavior of the Near-field Host Rock Surrounding Excavations Citation Details In-Document Search Title: Mechanical Behavior of the Near-field Host Rock Surrounding ...

  13. Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress. Citation Details In-Document Search Title: Used Fuel Disposal in Crystalline Rocks: Status and ...

  14. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect (OSTI)

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  15. POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE...

    Office of Scientific and Technical Information (OSTI)

    TO GLENELG IN GALE CRATER ON MARS. Citation Details In-Document Search Title: POSSIBLE ALTERATION OF ROCKS OBSERVED BY CHEMCAM ALONG THE TRAVERSE TO GLENELG IN GALE CRATER ON ...

  16. Y-12s Moon Rocks and Jim Williams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moon Rocks and Jim Williams Often I am stopped and given suggestions about what would be good information to include in the history of Y-12 being published weekly in The Oak...

  17. Rock Physics of Geologic Carbon Sequestration/Storage Type of...

    Office of Scientific and Technical Information (OSTI)

    ... 2 into sandstones from the Otway Basin, Geophysics, 78, D293-D306. Mavko, G., Mukerji, T., and Dvorkin, J., 2009, Rock Physics Handbook, 2 nd Edition, Cambridge University Press. ...

  18. Big Rock, Illinois: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Big Rock is a village in Kane County, Illinois.1 References US Census Bureau...

  19. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Elastic properties of clay minerals using Pulse Transmission experiments. We show measurements of elastic moduli and strain in clay minerals.

  20. Rock Mechanics Models and Measurements Challenges from Industry. Proceedings

    SciTech Connect (OSTI)

    Laubach, S.E.; Nelson, P.P.

    1994-01-01

    Increased mutual dependence of the economies of Canada, the United States and Mexico has now been recognized formally by agreements between the respective national governments. Noting the basic economic role of rock mechanics in the resource recovery and construction industries, it is appropriate that the First North American Rock Mechanics Symposium should confirm mutual interest in rock mechanics research and engineering practice in the neighboring countries. Different government and industrial emphases in the NAFTA countries lead to complementary strengths in their research and engineering programs. The First NARM Symposium is the first opportunity to explore thoroughly, within the scope of a single meeting, rock mechanics research in progress and engineering achievements in the three countries. Individual papers abstracted separately.

  1. Lithology and alteration mineralogy of reservoir rocks at Coso...

    Open Energy Info (EERE)

    using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the overlying cap that prevents a surface expression...

  2. Lithology and Alteration Mineralogy of Reservoir Rocks at Coso...

    Open Energy Info (EERE)

    using petrographic and analytical analyses of reservoir rock and vein material. The nature of the low-angle outflow zone and the overlying cap that prevents a surface expression...

  3. Rock Hill Utilities- Water Heater and Heat Pump Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the SmartChoice program, Rock Hill Utilities offers rebates for water heater and heat pump replacements. Information on financing for heat pumps can also be found on the web site listed...

  4. Reservoir Investigations on the Hot Dry Rock Geothermal System...

    Open Energy Info (EERE)

    Investigations on the Hot Dry Rock Geothermal System, Fenton Hill, New Mexico- Tracer Test Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  5. Electrical Conductivity of Soils and Rocks | Open Energy Information

    Open Energy Info (EERE)

    Reference LibraryAdd to library Report: Electrical Conductivity of Soils and Rocks Author J.D. McNeill Organization Geonics Limited Published Geonics Limited, 1980 Report Number...

  6. Rock Sampling At Coso Geothermal Area (1995) | Open Energy Information

    Open Energy Info (EERE)

    and analytical analyses of reservoir rock and vein material. References Lutz, S.J.; Moore, J.N. ; Copp, J.F. (1 June 1995) Lithology and alteration mineralogy of...

  7. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  8. Apparent Welding Textures In Altered Pumice-Rich Rocks | Open...

    Open Energy Info (EERE)

    Apparent Welding Textures In Altered Pumice-Rich Rocks Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Apparent Welding Textures In Altered...

  9. Project Reports for Standing Rock Sioux Tribe- 2011 Project

    Broader source: Energy.gov [DOE]

    The Standing Rock Sioux Tribe's (SRST) cultural identity demands that tribal development occur in a sustainable manner and in a manner protective of the tribe's natural resources to preserve them for following generations.

  10. DOE - Office of Legacy Management -- Rock Island Arsenal - IL...

    Office of Legacy Management (LM)

    to DOD Designated Name: Not Designated Alternate Name: None Location: Rock Island , Illinois IL.09-1 Evaluation Year: 1987 IL.09-2 Site Operations: Site located on a DOD ...

  11. Drilling Complete on Australian Hot Dry Rock Project

    Broader source: Energy.gov [DOE]

    The first commercial attempt to create a commercial geothermal power plant using hot dry rock technology reached a crucial milestone on January 22, when a production well successfully reached its target depth.

  12. R & D Supercritiacl CO2/ Rock Chemicals Interactions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution / precipitation with spatial and temporal flow variations in CO 2 /brine/rock systems Principal Investigator: Martin Saar Department of Earth Sciences University of Minnesota Track Name: Resource Characterization, Modeling, Supercritical CO 2 / Rock Chemical Interactions Total Project Funding: $1,937,523 ($1,550,018 from DOE-GTP) This presentation does not

  13. Density waves in the Calogero model - revisited

    SciTech Connect (OSTI)

    Bardek, V. Feinberg, J. Meljanac, S.

    2010-03-15

    The Calogero model bears, in the continuum limit, collective excitations in the form of density waves and solitary modulations of the density of particles. This sector of the spectrum of the model was investigated, mostly within the framework of collective-field theory, by several authors, over the past 15 years or so. In this work we shall concentrate on periodic solutions of the collective BPS-equation (also known as 'finite amplitude density waves'), as well as on periodic solutions of the full static variational equations which vanish periodically (also known as 'large amplitude density waves'). While these solutions are not new, we feel that our analysis and presentation add to the existing literature, as we explain in the text. In addition, we show that these solutions also occur in a certain two-family generalization of the Calogero model, at special points in parameter space. A compendium of useful identities associated with Hilbert transforms, including our own proofs of these identities, appears in Appendix A. In Appendix B we also elucidate in the present paper some fine points having to do with manipulating Hilbert-transforms, which appear ubiquitously in the collective field formalism. Finally, in order to make this paper self-contained, we briefly summarize in Appendix C basic facts about the collective field formulation of the Calogero model.

  14. Attractor comparisons based on density

    SciTech Connect (OSTI)

    Carroll, T. L.

    2015-01-15

    Recognizing a chaotic attractor can be seen as a problem in pattern recognition. Some feature vector must be extracted from the attractor and used to compare to other attractors. The field of machine learning has many methods for extracting feature vectors, including clustering methods, decision trees, support vector machines, and many others. In this work, feature vectors are created by representing the attractor as a density in phase space and creating polynomials based on this density. Density is useful in itself because it is a one dimensional function of phase space position, but representing an attractor as a density is also a way to reduce the size of a large data set before analyzing it with graph theory methods, which can be computationally intensive. The density computation in this paper is also fast to execute. In this paper, as a demonstration of the usefulness of density, the density is used directly to construct phase space polynomials for comparing attractors. Comparisons between attractors could be useful for tracking changes in an experiment when the underlying equations are too complicated for vector field modeling.

  15. Phenomenological Relativistic Energy Density Functionals

    SciTech Connect (OSTI)

    Lalazissis, G. A.; Kartzikos, S.; Niksic, T.; Paar, N.; Vretenar, D.; Ring, P.

    2009-08-26

    The framework of relativistic nuclear energy density functionals is applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of beta-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure is explored using the fully consistent quasiparticle random-phase approximation based on the relativistic Hartree-Bogoliubov model. Recent applications of energy density functionals with explicit density dependence of the meson-nucleon couplings are presented.

  16. Over Core Stress | Open Energy Information

    Open Energy Info (EERE)

    Analysis- Rock Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) References Page Area Activity Start...

  17. Measurements and modeling of surface waves in drilled shafts in rock

    SciTech Connect (OSTI)

    Kalinski, M.E.; Stokoe, K.H. II; Roesset, J.M.; Cheng, D.S.

    1999-07-01

    Seismic testing was conducted in the WIPP facility in November 1994 by personnel from the Geotechnical Engineering Center at the University of Texas at Austin. Surface wave measurements were made in horizontal drilled shafts in rock salt to characterize the stiffness of the rock around the shafts. The Spectral-Analysis-of-Surface-Waves (SASW) method was used to determine dispersion curves of surface wave velocity versus wavelength. Dispersion curves were measured for surface waves propagating axially and circumferentially in the shafts. Surface wave velocities determined from axial testing increased slightly with increasing wavelength due to the cylindrical geometry of the shafts. On the other hand, surface wave velocities determined from circumferential testing exhibited a completely different type of geometry-induced dispersion. In both instances, finite-element forward modeling of the experimental dispersion curves revealed the presence of a thin, slightly softer disturbed rock zone (DRZ) around the shafts. This phenomenon has been previously confirmed by crosshole and other seismic measurements and is generally associated with relaxation of the individual salt crystals after confirming stress is relieved by excavation.

  18. Chemical analyses of rocks, minerals, and detritus, Yucca Mountain--Preliminary report, special report No. 11

    SciTech Connect (OSTI)

    Hill, C.A.; Livingston, D.E.

    1993-09-01

    This chemical analysis study is part of the research program of the Yucca Mountain Project intended to provide the State of Nevada with a detailed assessment of the geology and geochemistry of Yucca Mountain and adjacent regions. This report is preliminary in the sense that more chemical analyses may be needed in the future and also in the sense that these chemical analyses should be considered as a small part of a much larger geological data base. The interpretations discussed herein may be modified as that larger data base is examined and established. All of the chemical analyses performed to date are shown in Table 1. There are three parts to this table: (1) trace element analyses on rocks (limestone and tuff) and minerals (calcite/opal), (2) rare earth analyses on rocks (tuff) and minerals (calcite/opal), and (3) major element analyses + CO{sub 2} on rocks (tuff) and detritus sand. In this report, for each of the three parts of the table, the data and its possible significance will be discussed first, then some overall conclusions will be made, and finally some recommendations for future work will be offered.

  19. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1993-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  20. Low density carbonized composite foams

    DOE Patents [OSTI]

    Kong, Fung-Ming

    1991-01-01

    A carbonized composite foam having a density less than about 50 mg/cm.sup.3 and individual cell sizes no greater than about 1 .mu.m in diameter is described, and the process of making it.

  1. Low density metal hydride foams

    DOE Patents [OSTI]

    Maienschein, Jon L.; Barry, Patrick E.

    1991-01-01

    Disclosed is a low density foam having a porosity of from 0 to 98% and a density less than about 0.67 gm/cc, prepared by heating a mixture of powered lithium hydride and beryllium hydride in an inert atmosphere at a temperature ranging from about 455 to about 490 K for a period of time sufficient to cause foaming of said mixture, and cooling the foam thus produced. Also disclosed is the process of making the foam.

  2. Inductor Geometry With Improved Energy Density

    SciTech Connect (OSTI)

    Cui, H; Ngo, KDT; Moss, J; Lim, MHF; Rey, E

    2014-10-01

    The "constant-flux" concept is leveraged to achieve high magnetic-energy density, leading to inductor geometries with height significantly lower than that of conventional products. Techniques to shape the core and to distribute the winding turns to shape a desirable field profile are described for the two basic classes of magnetic geometries: those with the winding enclosed by the core and those with the core enclosed by the winding. A relatively constant flux distribution is advantageous not only from the density standpoint, but also from the thermal standpoint via the reduction of hot spots, and from the reliability standpoint via the suppression of flux crowding. In this journal paper on a constant-flux inductor (CFI) with enclosed winding, the foci are operating principle, dc analysis, and basic design procedure. Prototype cores and windings were routed from powder-iron disks and copper sheets, respectively. The design of CFI was validated by the assembled inductor prototype.

  3. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  4. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this

  5. Effect of vibrations on the density of loose-fill insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Wright, J.H.

    1981-05-01

    Testing results of the three major loose-fill insulation products marketed in this country subjected to a variety of vibrations and impacts in a laboratory setting to determine the magnitude of the resultant density increases, are presented. Results show repeated drops of 19 mm (.75 inch) and 152 mm (6 inch) produced density increases of up to 75% for fiberglass, 45% for rock wool, and 27% for cellulosic materials. The three insulation products were also subjected to vibrations ranging from 0.1 mm (.004 inch) to 6.35 mm (.25 inch) to obtain ratios of final density over initial density. Under the test conditions studied it was observed that the lighter materials settled more percentagewise than the dense materials.

  6. Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses Little Rock Gains Momentum with Natural Gas Buses to someone by E-mail Share Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Facebook Tweet about Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Twitter Bookmark Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Google Bookmark Alternative Fuels Data Center: Little Rock Gains Momentum with Natural Gas Buses on Delicious Rank

  7. Proceedings of the scientific visit on crystalline rock repository development.

    SciTech Connect (OSTI)

    Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka

    2013-02-01

    A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations. Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.

  8. Reconstruction of Sedimentary Rock Based on MechanicalProperties

    SciTech Connect (OSTI)

    Jin, Guodong; Patzek, Tad W.; Silin, Dmitry B.

    2004-05-04

    We describe a general, physics-based approach to numericalreconstruction of the geometrical structure and mechanical properties ofnatural sedimentary rock in 3D. Our procedure consists of three mainsteps: sedimentation, compaction, and diagenesis, followed by theverification of rock mechanical properties. The dynamic geologicprocesses of grain sedimentation and compaction are simulated by solvinga dimensionless form of Newton's equations of motion for an ensemble ofgrains. The diagenetic rock transformation is modeled using a cementationalgorithm, which accounts for the effect of rock grain size on therelative rate of cement overgrowth. Our emphasis is on unconsolidatedsand and sandstone. The main input parameters are the grain sizedistribution, the final rock porosity, the type and amount of cement andclay minerals, and grain mechanical properties: the inter-grain frictioncoefficient, the cement strength, and the grain stiffness moduli. We usea simulated 2D Fontainebleau sandstone to obtain the grain mechanicalproperties. This Fontainebleau sandstone is also used to study theinitiation, growth, and coalescence of micro-cracks under increasingvertical stress. The box fractal dimension of the micro-crackdistribution, and its variation with the applied stress areestimated.

  9. High Density Sensor Network Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Density Sensor Network Development

  10. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect (OSTI)

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  11. Rock index properties for geoengineering in underground development

    SciTech Connect (OSTI)

    O'Rourke, J.E.

    1989-02-01

    This paper describes the use of index testing to obtain rock properties that are useful in the design and construction planning of an underground development for civil engineering or mining projects. The index properties discussed include: point load; Schmidt hammer hardness; abrasion hardness; and total hardness. The first two index properties correlate to uniaxial compressive strength (UCS) and Young's modulus. Discussions are given on empirical, normalized relationships of UCS to rock mass properties and the integrated use with semi-empirical, geotechnical design methods. The hardness property indices correlate to construction performance parameters and some relevant experience is cited. Examples of data are presented from an index testing program carried out primarily on siltstone, sandstone and limestone rock core samples retrieved from depths up to 1005 m (3300 ft) in a borehole drilled in the Paradox Basin in eastern Utah. The borehole coring was done for a nuclear waste repository site investigation.

  12. High-density fluid compositions

    SciTech Connect (OSTI)

    Sanders, D.C.

    1981-09-29

    Clear, high-density fluids suitable for use as well completion, packing, and perforation media comprise aqueous solutions of zinc bromide and calcium bromide having densities lying in the range of about 14.5 up to about 18.0 pounds per gallon and measured PH's lying in the range of about 3.5 up to about 6.0. Optionally, such fluids may also comprise calcium chloride and/or a soluble film-forming amine-based corrosion inhibitor. Such fluids under conditions of ordinary use exhibit low corrosion rates and have crystallization points lying well below the range of temperatures under which they are used.

  13. Application of water jet assisted drag bit and pick cutter for the cutting of coal measure rocks. Final technical report. [Tests of combination in different rocks

    SciTech Connect (OSTI)

    Ropchan, D.; Wang, F.D.; Wolgamott, J.

    1980-04-01

    A laboratory investigation was made of the effects of high pressure water jets on the cutting forces of drag bit cutters in sedimentary rocks. A hard and soft sandstone, shale and limestone were tested with commercially obtainable conical and plow type drag bits on the EMI linear cutting machine. About 1200 cuts were made at different bit penetration, jet orientation, and water pressure to determine the reduction of cutting forces on the bit from the use of the water jet. Both independent and interactive cutting was used. The greatest reduction in cutting forces were with both of the sandstones; the drag forces were reduced about 30 percent and the normal forces about 60 percent at 5000 psi water pressure with the nozzle behind the bit. The method was less effective in the shale, except at 10,000 psi water pressure the reduction in drag force was about 55 percent. Of the rocks tested, the limestone was least affected by the water jet. The cutting forces for the plow bit showed continuous change with wear so a machined conical bit was used for most of the testing. Tests with the plow bit did show a large reduction in cutting forces by using the water jet with worn bits. An economic analysis of equipping a drag bit tunnel boring machine indicated that the water jet system could reduce costs per foot in sandstone by up to 40 percent.

  14. Category:Lab Analysis Techniques | Open Energy Information

    Open Energy Info (EERE)

    5 total. F Fluid Lab Analysis L Lab Analysis Techniques R Rock Lab Analysis X X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) Retrieved from "http:en.openei.orgw...

  15. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-10-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

  16. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect (OSTI)

    1995-01-01

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  17. Plasma digital density determining device

    DOE Patents [OSTI]

    Sprott, Julien C.; Lovell, Thomas W.; Holly, Donald J.

    1976-01-01

    The density of a decaying plasma in an electrically conducting enclosure is determined by applying an excitation to the cavity formed by the enclosure and counting digitally the number of resonant frequencies traversed by the combination of the cavity and the decaying plasma.

  18. High energy density thermal cell

    SciTech Connect (OSTI)

    Fletcher, A.N.

    1980-04-29

    A thermal battery is described that uses a calcium anode and a catholyte consisting of a mixture of lithium, potassium, nitrate and chloride ions. The device is operable over a temperature range of about 150 to 600/sup 0/C and produces a long lasting, high energy density output.

  19. Statistical density modification using local pattern matching

    DOE Patents [OSTI]

    Terwilliger, Thomas C.

    2007-01-23

    A computer implemented method modifies an experimental electron density map. A set of selected known experimental and model electron density maps is provided and standard templates of electron density are created from the selected experimental and model electron density maps by clustering and averaging values of electron density in a spherical region about each point in a grid that defines each selected known experimental and model electron density maps. Histograms are also created from the selected experimental and model electron density maps that relate the value of electron density at the center of each of the spherical regions to a correlation coefficient of a density surrounding each corresponding grid point in each one of the standard templates. The standard templates and the histograms are applied to grid points on the experimental electron density map to form new estimates of electron density at each grid point in the experimental electron density map.

  20. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  1. Building a Universal Nuclear Energy Density Functional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Building a Universal Nuclear Energy Density Functional Building a Universal Nuclear Energy Density Functional VaryMatrix.png Collaboration with mathematicians and computational...

  2. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2004-08-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have continued our work on analyzing well logs and microstructural constraints on seismic signatures. We report results of three studies in this report. The first one deals with fractures and faults that provide the primary control on the underground fluid flow through low permeability massive carbonate rocks. Fault cores often represent lower transmissibility whereas the surrounding damaged rocks and main slip surfaces are high transmissibility elements. We determined the physical properties of fault rocks collected in and around the fault cores of large normal faults in central Italy. After studying the P- and S-wave velocity variation during cycles of confining pressure, we conclude that a rigid pore frame characterizes the fault gouge whereas the fractured limestone comprises pores with a larger aspect ratio. The second study was to characterize the seismic properties of brine as its temperature decreases from 25 C to -21 C. The purpose was to understand how the transmitted wave changes with the onset of freezing. The main practical reason for this experiment was to use partially frozen brine as an analogue for a mixture of methane hydrate and water present in the pore space of a gas hydrate reservoir. In the third study we analyzed variations in dynamic moduli in various carbonate reservoirs. The investigations include log and laboratory data from velocity, porosity, permeability, and attenuation measurements.

  3. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2003-06-30

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) Methods for detection of stress-induced velocity anisotropy in sands. (2) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  4. Rock mass response to the decline in underground coal mining

    SciTech Connect (OSTI)

    Holub, K.

    2006-01-15

    Geomechanical problems of mining in the Ostrava-Karvina Coal Basin were studied on the basis of longterm experience gained from seismological observations. They could serve as reasonable models of rock-mass response to temporary reduction and gradual decline in mining activities and mine closure.

  5. Petrology of Eocene rocks, southeastern Georgia coastal plain

    SciTech Connect (OSTI)

    Thayer, P.A.; Miller, J.A.

    1988-09-01

    Study of cores from a US Geological Survey test well in Wayne County indicates that Eocene strata represent an overall shallowing-upward, clastic-carbonate sequence. The 1397-ft (426-m) Eocene section is divided into three units: unnamed lower Eocene rocks, middle Eocene (Claibornian) Lisbon and Avon Park Formations, and upper Eocene (Jacksonian) Ocala Limestone.

  6. Process of breaking and rendering permeable a subterranean rock mass

    DOE Patents [OSTI]

    Lekas, Mitchell A.

    1980-01-01

    The process of the present invention involves the following steps: producing, as by hydrofracing, a substantially horizontal fracture in the subterranean rock mass to be processed; emplacing an explosive charge in the mass in spaced juxtaposed position to the fracture; enlarging the fracture to create a void space thereat, an initial lifting of the overburden, and to provide a free face juxtaposed to and arranged to cooperate with the emplaced explosive charge; and exploding the charge against the free face for fragmenting the rock and to distribute the space, thus providing fractured, pervious, rubble-ized rock in an enclosed subterranean chamber. Firing of the charge provides a further lifting of the overburden, an enlargement of the chamber and a larger void space to distribute throughout the rubble-ized rock within the chamber. In some forms of the invention an explosive charge is used to produce a transitory enlargement of the fracture, and the juxtaposed emplaced charge is fired during the critical period of enlargement of the fracture.

  7. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  8. Postmortem validation of breast density using dual-energy mammography

    SciTech Connect (OSTI)

    Molloi, Sabee Ducote, Justin L.; Ding, Huanjun; Feig, Stephen A.

    2014-08-15

    Purpose: Mammographic density has been shown to be an indicator of breast cancer risk and also reduces the sensitivity of screening mammography. Currently, there is no accepted standard for measuring breast density. Dual energy mammography has been proposed as a technique for accurate measurement of breast density. The purpose of this study is to validate its accuracy in postmortem breasts and compare it with other existing techniques. Methods: Forty postmortem breasts were imaged using a dual energy mammography system. Glandular and adipose equivalent phantoms of uniform thickness were used to calibrate a dual energy basis decomposition algorithm. Dual energy decomposition was applied after scatter correction to calculate breast density. Breast density was also estimated using radiologist reader assessment, standard histogram thresholding and a fuzzy C-mean algorithm. Chemical analysis was used as the reference standard to assess the accuracy of different techniques to measure breast composition. Results: Breast density measurements using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean algorithm, and dual energy were in good agreement with the measured fibroglandular volume fraction using chemical analysis. The standard error estimates using radiologist reader assessment, standard histogram thresholding, fuzzy C-mean, and dual energy were 9.9%, 8.6%, 7.2%, and 4.7%, respectively. Conclusions: The results indicate that dual energy mammography can be used to accurately measure breast density. The variability in breast density estimation using dual energy mammography was lower than reader assessment rankings, standard histogram thresholding, and fuzzy C-mean algorithm. Improved quantification of breast density is expected to further enhance its utility as a risk factor for breast cancer.

  9. Layered rocks beneath the Phanerozoic platform of the US midcontinent

    SciTech Connect (OSTI)

    Hauser, E.C. (Cornell Univ., Ithaca, NY (United States))

    1991-03-01

    A thick sequence of layered rocks lies hidden beneath the Phanerozoic cover of the central US over large regions. A thick sequence of Precambrian layered rocks in imaged on the COCORP transect across southern Illinois and Indiana. The thickness of this layered sequence varies from 1-3 times the thickness of the overlying Phanerozoic section of the Illinois basin. The layered sequence is observed for close to 200 km in an east-west direction. Similar layered reflections are seen on the COCORP data from Hardeman Co., TX, and neighboring southwest Oklahoma. Both of these known occurrences lie within the region of the middle Proterozoic Granite/Rhyolite province of the US midcontinent, an area within which scattered wells to basement commonly encounter 1.3-1.5 Ga undeformed granite and/or compositionally similar rhyolite. Therefore, these layered assemblages may comprise a thick sequence of silicic volcanic and sedimentary rocks (perhaps also injected by mafic sills) between scattered volcanic-intrusive centers, such as exposed in the St. Francois Mountains of southeast Missouri. However, in places such as Illinois and Indiana, the near absence of deep wells leaves the possibility that the upper portion of these layered rocks may locally be of late Proterozoic or earliest Paleozoic age. The reprocessing of available industry data, analyzed in conjunction with the existing COCORP data, includes extended vibroseis correlation. These industry data are invaluable in the author's effort to expand the known distribution of these layered rocks (e.g., into north-central Illinois) and to map their structures.

  10. Comparison of the effects in the rock mass of large-scale chemical...

    Office of Scientific and Technical Information (OSTI)

    Comparison of the effects in the rock mass of large-scale chemical and nuclear explosions. ... Title: Comparison of the effects in the rock mass of large-scale chemical and nuclear ...

  11. EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: Areva Eagle Rock Enrichment Facility in Bonneville County, ID EIS-0471: Areva Eagle Rock Enrichment Facility in Bonneville County, ID May 20, 2011 delete me old download page duplicate

  12. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid...

  13. Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric...

    Open Energy Info (EERE)

    Economics of a Conceptual 75 MW Hot Dry Rock Geothermal Electric Power-Station Abstract Man-made, hot dry rock (HDR) geothermal energy reservoirs have been investigated for over...

  14. Search for underground openings for in situ test facilities in crystalline rock

    SciTech Connect (OSTI)

    Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

    1980-01-01

    With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

  15. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a steer's head.'' it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  16. Density variations and anomalies in palladium compacts

    SciTech Connect (OSTI)

    Back, D.; Jones, T.; Ransick, M.; Walburg, T.; Werkmeister, D.

    1992-05-14

    Low-density compacts of palladium powder have relative densities of about 30{plus_minus}10% TD. The variations in density are of concern for operations such as chemical/hydrogen pump systems because heat, mass, and momentum transport properties can be affected. Variations in density result from the inherent nature and interacting forces of UASA compaction of powder in cylinders. In addition to these expected variations, discontinuous density anomalies, such as cracks or high density ridges, are also found. An anomaly of particular concern was found to resemble a ``steer`s head.`` it is a symmetrical region of low density located at or near the center of a compact. Typically, this region is surrounded by a band of high density, compacted palladium that sometimes exceeds the density of the surrounding compact matrix by a factor of three. This report examines these density variations and anomalies both theoretically and empirically.

  17. Density impact on performance of composite Si/graphite electrodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dufek, Eric J.; Picker, Michael; Petkovic, Lucia M.

    2016-01-27

    The ability of alkali-substituted binders for composite Si and graphite negative electrodes to minimize capacity fade for lithium ion batteries is investigated. Polymer films and electrodes are described and characterized by FTIR following immersion in electrolyte (1:2 EC:DMC) for 24 h. FTIR analysis following electrode formation displayed similar alkali-ion dependent shifts in peak location suggesting that changes in the vibrational structure of the binder are maintained after electrode formation. The Si and graphite composite electrodes prepared using the alkali-substituted polyacrylates were also exposed to electrochemical cycling and it has been found that the performance of the Na-substituted binder is superiormore » to a comparable density K-substituted system. However, in comparing performance across many different electrode densities attention needs to be placed on making comparisons at similar densities, as low density electrodes tend to exhibit lower capacity fade over cycling. This is highlighted by a 6% difference between a low density K-substituted electrode and a high density Na-substituted sample. As a result, this low variance between the two systems makes it difficult to quickly make a direct evaluation of binder performance unless electrode density is tightly controlled.« less

  18. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    SciTech Connect (OSTI)

    Herawati, Ida Winardhi, Sonny; Priyono, Awali

    2015-09-30

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.

  19. Probability distribution of the vacuum energy density

    SciTech Connect (OSTI)

    Duplancic, Goran; Stefancic, Hrvoje; Glavan, Drazen

    2010-12-15

    As the vacuum state of a quantum field is not an eigenstate of the Hamiltonian density, the vacuum energy density can be represented as a random variable. We present an analytical calculation of the probability distribution of the vacuum energy density for real and complex massless scalar fields in Minkowski space. The obtained probability distributions are broad and the vacuum expectation value of the Hamiltonian density is not fully representative of the vacuum energy density.

  20. Core Analysis At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    1 and 46 samples from Deep Blue No. 2. The diameter of the core samples are 6.4 cm. Density, porosity, and rock type information was recorded. The samples contain Jurassic and...

  1. Structural Analysis of the Mn(IV)/Fe(III) Cofactor of Chlamydia Trachomatis Ribonucleotide Reductase By Extended X-Ray Absorption Fine Structure Spectroscopy And Density Functional Theory Calculations

    SciTech Connect (OSTI)

    Younker, J.M.; Krest, C.M.; Jiang, W.; Krebs, C.; Bollinger, J.M.Jr.; Green, M.T.

    2009-05-28

    The class Ic ribonucleotide reductase from Chlamydia trachomatis (C{bar A}) uses a stable Mn(lV)/ Fe(lll) cofactor to initiate nucleotide reduction by a free-radical mechanism. Extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) calculations are used to postulate a structure for this cofactor. Fe and Mn K-edge EXAFS data yield an intermetallic distance of -2.92 {angstrom}. The Mn data also suggest the presence of a short 1.74 {angstrom} Mn-O bond. These metrics are compared to the results of DFT calculations on 12 cofactor models derived from the crystal structure of the inactive Fe2(lll/ III) form of the protein. Models are differentiated by the protonation states of their bridging and terminal OH{sub x} ligands as well as the location of the Mn(lV) ion (site 1 or 2). The models that agree best with experimental observation feature a{mu}-1, 3-carboxylate bridge (E120), terminal solvent (H{sub 2}O/OH) to site 1, one {mu}-O bridge, and one {mu}-OH bridge. The site-placement of the metal ions cannot be discerned from the available data.

  2. DENSITY CONTROL IN A REACTOR

    DOE Patents [OSTI]

    Marshall, J. Jr.

    1961-10-24

    A reactor is described in which natural-uranium bodies are located in parallel channels which extend through the graphite mass in a regular lattice. The graphite mass has additional channels that are out of the lattice and contain no uranium. These additional channels decrease in number per unit volume of graphite from the center of the reactor to the exterior and have the effect of reducing the density of the graphite more at the center than at the exterior, thereby spreading neutron activity throughout the reactor. (AEC)

  3. Panel discussion on rock mechanics issues in repository design

    SciTech Connect (OSTI)

    Bieniawski, Z.T.; Kim, K.S.; Nataraja, M.

    1996-04-01

    The panel discussion was introduced by Mr. Z.T.(Richard) Bieniawski and then continued with five additional speakers. The topics covered in the discussion included rock mechanics pertaining to the design of underground facilities for the disposal of radioactive wastes and the safety of such facilities. The speakers included: Mr. Kun-Soo Kim who is a specialist in the area of rock mechanics testing during the Basalt Waste Isolation Project; Dr. Mysore Nataraja who is the senior project manager with the NRC; Dr. Michael Voegele who is the project manager for Science Applications International Corporation (SAIC) on the Yucca Mountain Project; Dr. Edward Cording who is a member of the Nuclear Waste Technical Review Board; and Dr. Hemendra Kalia who is employed by Los Alamos National Laboratory and coordinates various activities of testing programs at the Yucca Mountain Site.

  4. Measurements of water vapor adsorption on The Geysers rocks

    SciTech Connect (OSTI)

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1996-04-01

    One of the goals of this project is to determine the dependence of the water retention capacity of the rocks as a function of temperature. The results show a significant dependence of the adsorption and desorption isotherms on the grain size of the sample. The increase in the amount of water retained with temperature observed previously between 90 and 30{degrees}C for various reservoir rocks from The Geysers may be due to the contribution of slow chemical adsorption and may be dependent on the time allowed for equilibration. In contrast with the results of Shang, some closed and nearly closed hysteresis loops on the water adsorption/desorption isotherms were obtained in this study. In these cases the effects of activated processes were not present, and no increase in water adsorption with temperature was observed.

  5. Extensile cracking in porous rock under differential compressive stress

    SciTech Connect (OSTI)

    Myer, L.R.; Kemeny, J.M.; Zheng, Z.

    1992-08-01

    Under differential compressive stress rocks exhibit nonlinear deformation that includes initial compaction, near-linear elastic behavior, and strain-hardening followed by strain-softening and dilation (or compaction in clastic rocks) and localization. This behavior derives largely from changes in the microstructure of the rocks. Much of it has been attributed to the growth of extensile microcracks. The stress-induced microstructural changes brought about by successively more complicated states of stress produced by uniaxial and triaxial compression of circular cylinders, axisymmetric stresses in hollow cylinders, and indentation by hemispheres in Indiana limestone and Berea sandstone have been preserved using Wood`s metal porosimetry. In this technique molten Wood`s metal at about 100{degrees}C is used as a pore fluid at a pressure of about 10 MPa, and the experiments are conducted using the concepts of effective stress. At the deformation state of interest, the temperature is lowered to solidify the metal, thereby preserving the microstructure as it exists under load and facilitating subsequent preparation of the specimen for microscopic study. Mode I microcrack growth is observed to occur by a variety of mechanisms such as bending, point loading and sliding cracks. The effects of this are analyzed using an elastic continuum within which Mode II displacement across microcracks and Mode I microcrack growth results from heterogeneous stress concentrations that produce local tensile stresses. While the continuum model replicates many of the observations, it fails to account for localization by en echelon arrays of extensile microcracks that precede macroscopic shear faulting. Using a {open_quotes}zero order{close_quotes} continuum approximation, the spatially stochastic distribution of grains in clastic rocks is shown to be important in the formation of the en echelon arrays of microcracks that form shear bands. 63 refs., 26 figs., 1 tab.

  6. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity.

  7. Standing Rock Sioux Tribe - Lakota/Dakota Nation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lakota/Dakota Nation  BACKGROUND INFORMATION ON STANDING ROCK RESERVATION  SITTING BULL COLLEGE WIND TURBINE  EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE  WIND ASSESSMENT STUDY  ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO)  WIND FEASIBILITY STUDY  OCETI SAKOWIN POWER PROJECT  DEMD Sand & Gravel Study  OIl & GAS PREPARATION WORK GROUP  COMMUNITY SCALE PV SYSTEM INSTALLATION  ONE OF SEVEN

  8. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore K.

    2003-02-10

    The objective of this project was to characterize the fluid properties and fluid-rock interactions which are needed for formation evaluation by NMR well logging. NMR well logging is finding wide use in formation evaluation. The formation parameters commonly estimated were porosity, permeability, and capillary bound water. Special cases include estimation of oil viscosity, residual oil saturation, location of oil/water contact, and interpretation on whether the hydrocarbon is oil or gas.

  9. Finite element model for heat conduction in jointed rock masses

    SciTech Connect (OSTI)

    Gartling, D.K.; Thomas, R.K.

    1981-01-01

    A computatonal procedure for simulating heat conduction in a fractured rock mass is proposed and illustrated in the present paper. The method makes use of a simple local model for conduction in the vicinity of a single open fracture. The distributions of fractures and fracture properties within the finite element model are based on a statistical representation of geologic field data. Fracture behavior is included in the finite element computation by locating local, discrete fractures at the element integration points.

  10. Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.

    SciTech Connect (OSTI)

    Truscott, Keith B.; Fielder, Paul C.

    1995-10-01

    Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin. The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.

  11. Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture

    SciTech Connect (OSTI)

    Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.

    2008-04-01

    Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.

  12. Computational Modeling of Fluid Flow through a Fracture in Permeable Rock

    SciTech Connect (OSTI)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H

    2010-01-01

    Laminar, single-phase, finite-volume solutions to the Navier–Stokes equations of fluid flow through a fracture within permeable media have been obtained. The fracture geometry was acquired from computed tomography scans of a fracture in Berea sandstone, capturing the small-scale roughness of these natural fluid conduits. First, the roughness of the two-dimensional fracture profiles was analyzed and shown to be similar to Brownian fractal structures. The permeability and tortuosity of each fracture profile was determined from simulations of fluid flow through these geometries with impermeable fracture walls. A surrounding permeable medium, assumed to obey Darcy’s Law with permeabilities from 0.2 to 2,000 millidarcies, was then included in the analysis. A series of simulations for flows in fractured permeable rocks was performed, and the results were used to develop a relationship between the flow rate and pressure loss for fractures in porous rocks. The resulting frictionfactor, which accounts for the fracture geometric properties, is similar to the cubic law; it has the potential to be of use in discrete fracture reservoir-scale simulations of fluid flow through highly fractured geologic formations with appreciable matrix permeability. The observed fluid flow from the surrounding permeable medium to the fracture was significant when the resistance within the fracture and the medium were of the same order. An increase in the volumetric flow rate within the fracture profile increased by more than 5% was observed for flows within high permeability-fractured porous media.

  13. Numerical simulation of gas flow through unsaturated fractured rock at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Cooper, C.A.

    1990-01-01

    Numerical analysis is used to identify the physical phenomena associated with barometrically driven gas (air and water vapor) flow through unsaturated fractured rock at Yucca Mountain, Nevada. Results from simple finite difference simulations indicate that for a fractured rock scenario, the maximum velocity of air out of an uncased 10 cm borehole is 0.002 m s{sub {minus}1}. An equivalent porous medium (EPM) model was incorporated into a multiphase, multicomponent simulator to test more complex conceptual models. Results indicate that for a typical June day, a diurnal pressure wave propagates about 160 m into the surrounding Tiva Canyon hydrogeologic unit. Dry air that enters the formation evaporates water around the borehole which reduces capillary pressure. Multiphase countercurrent flow develops in the vicinity of the hole; the gas phase flows into the formation while the liquid phase flows toward the borehole. The effect occurs within 0.5 m of the borehole. The amount of water vapor leaving the formation during 1 day is 900 cm{sup 3}. This is less than 0.1% of the total recharge into the formation, suggesting that the barometric effect may be insignificant in drying the unsaturated zone. However, gas phase velocities out of the borehole (3 m s{sup {minus}1}), indicating that observed flow rates from wells along the east flank of Yucca Mountain were able to be simulated with a barometric model.

  14. Establishing the Relationship between Fracture-Related Dolomite and Primary Rock Fabric on the Distribution of Reservoirs in the Michigan Basin

    SciTech Connect (OSTI)

    G. Michael Grammer

    2006-09-30

    This topical report covers the year 2 of the subject 3-year grant, evaluating the relationship between fracture-related dolomite and dolomite constrained by primary rock fabric in the 3 most prolific reservoir intervals in the Michigan Basin (Ordovician Trenton-Black River Formations; Silurian Niagara Group; and the Devonian Dundee Formation). The characterization of select dolomite reservoirs has been the major focus of our efforts in Phase II/Year 2. Fields have been prioritized based upon the availability of rock data for interpretation of depositional environments, fracture density and distribution as well as thin section, geochemical, and petrophysical analyses. Structural mapping and log analysis in the Dundee (Devonian) and Trenton/Black River (Ordovician) suggest a close spatial relationship among gross dolomite distribution and regional-scale, wrench fault related NW-SE and NE-SW structural trends. A high temperature origin for much of the dolomite in the 3 studied intervals (based upon initial fluid inclusion homogenization temperatures and stable isotopic analyses,) coupled with persistent association of this dolomite in reservoirs coincident with wrench fault-related features, is strong evidence for these reservoirs being influenced by hydrothermal dolomitization. For the Niagaran (Silurian), a comprehensive high resolution sequence stratigraphic framework has been developed for a pinnacle reef in the northern reef trend where we had 100% core coverage throughout the reef section. Major findings to date are that facies types, when analyzed at a detailed level, have direct links to reservoir porosity and permeability in these dolomites. This pattern is consistent with our original hypothesis of primary facies control on dolomitization and resulting reservoir quality at some level. The identification of distinct and predictable vertical stacking patterns within a hierarchical sequence and cycle framework provides a high degree of confidence at this point

  15. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect (OSTI)

    VandeKraats, J.D.; Watson, S.O.

    1996-12-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where revolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in a unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  16. Direct laboratory tensile testing of select yielding rock bolt systems

    SciTech Connect (OSTI)

    VandeKraats, J.D.; Watson, S.O.

    1996-08-01

    Yielding rock bolt support systems have been developed to accommodate ground movement in shifting ground such as in coal operations; in creeping ground such as salt, trona, and potash; and in swelling ground associated with some clays. These systems, designed to remain intact despite ground movement, should enhance mine safety and help contain costs in areas where rebolting of rigid non-yielding systems is typically required. Four such systems were tested in straight tensile pulls in the laboratory. They include the Slip Nut System from Dywidag Systems International USA, Inc., Ischebeck`s bolt mounted Titan Load Indicator, Rocky Mountain Bolt Company`s Yielding Cable Bolt, and a rock bolt installed variation of the yielding steel post developed by RE/SPEC Inc. The first two systems are currently marketed products and the latter two are prototype systems. Each system responds to load and displacement by yielding in an unique manner. All are designed to yield at predetermined loads. A description of each system and its yield function is provided. Each system was tested over its prescribed yield range in a test machine. At least five tests were performed on each system. Each system yielded and continued to provide support according to its design. Each shows promise for ground control use in shifting or creeping rock. This work helps to illustrate the comparative differences in performance between these specialized systems and the applications where they may be most useful.

  17. Chemical hydrofracturing of the Hot Dry Rock reservoir

    SciTech Connect (OSTI)

    Yakovlev, Leonid

    1996-01-24

    The experimental study of the water-rock interaction shows that the secondary mineral assemblage depends on the water composition. For example, granite-pure water interaction produces zeolites (relatively low-dense, Mg-poor minerals), whereas seawater yields chlorites (high-dense, Mg-rich minerals). The reactions have volumetric effects from several % to 20 % in magnitude. Volume deformations in the heterogeneous matrix cause uneven mechanical strains. Reactions with the effect of about 0,1 vol.% may cause strains of the order of 100-1000 bars being enough for destruction of rocks. Signs and magnitudes of local volume changes depend on the mineral composition of the secondary assemblage. Hence, one can provide either healing or cracking of primary fractures, as desired, by changing the composition of water in the water-felsic rock system where some elements (Mg, Fe) are in lack. The techniques of "chemical hydrofracturing" looks promising as applied to a granite HDR massif. One can regulate the permeability of fractured flow paths by changing in concord the composition and pressure of the injected water. This approach should promote efficient extraction of the petrothermal energy.

  18. Protected Polycrystalline Diamond Compact Bits For Hard Rock Drilling

    SciTech Connect (OSTI)

    Robert Lee Cardenas

    2000-10-31

    Two bits were designed. One bit was fabricated and tested at Terra-Tek's Drilling Research Laboratory. Fabrication of the second bit was not completed due to complications in fabrication and meeting scheduled test dates at the test facility. A conical bit was tested in a Carthage Marble (compressive strength 14,500 psi) and Sierra White Granite (compressive strength 28,200 psi). During the testing, Hydraulic Horsepower, Bit Weight, Rotation Rate, were varied for the Conical Bit, a Varel Tricone Bit and Varel PDC bit. The Conical Bi did cut rock at a reasonable rate in both rocks. Beneficial effects from the near and through cutter water nozzles were not evident in the marble due to test conditions and were not conclusive in the granite due to test conditions. At atmospheric drilling, the Conical Bit's penetration rate was as good as the standard PDC bit and better than the Tricone Bit. Torque requirements for the Conical Bit were higher than that required for the Standard Bits. Spudding the conical bit into the rock required some care to avoid overloading the nose cutters. The nose design should be evaluated to improve the bit's spudding characteristics.

  19. Fluid-rock interaction: A reactive transport approach

    SciTech Connect (OSTI)

    Steefel, C.; Maher, K.

    2009-04-01

    Fluid-rock interaction (or water-rock interaction, as it was more commonly known) is a subject that has evolved considerably in its scope over the years. Initially its focus was primarily on interactions between subsurface fluids of various temperatures and mostly crystalline rocks, but the scope has broadened now to include fluid interaction with all forms of subsurface materials, whether they are unconsolidated or crystalline ('fluid-solid interaction' is perhaps less euphonious). Disciplines that previously carried their own distinct names, for example, basin diagenesis, early diagenesis, metamorphic petrology, reactive contaminant transport, chemical weathering, are now considered to fall under the broader rubric of fluid-rock interaction, although certainly some of the key research questions differ depending on the environment considered. Beyond the broadening of the environments considered in the study of fluid-rock interaction, the discipline has evolved in perhaps an even more important way. The study of water-rock interaction began by focusing on geochemical interactions in the absence of transport processes, although a few notable exceptions exist (Thompson 1959; Weare et al. 1976). Moreover, these analyses began by adopting a primarily thermodynamic approach, with the implicit or explicit assumption of equilibrium between the fluid and rock. As a result, these early models were fundamentally static rather than dynamic in nature. This all changed with the seminal papers by Helgeson and his co-workers (Helgeson 1968; Helgeson et al. 1969) wherein the concept of an irreversible reaction path was formally introduced into the geochemical literature. In addition to treating the reaction network as a dynamically evolving system, the Helgeson studies introduced an approach that allowed for the consideration of a multicomponent geochemical system, with multiple minerals and species appearing as both reactants and products, at least one of which could be

  20. Renewing Rock-Tenn: A Biomass Fuels Assessment for Rock-Tenn's St. Paul Recycled Paper Mill.

    SciTech Connect (OSTI)

    Nelson, Carl

    2007-03-31

    In the summer of 2006 the Green Institute started the study for the RockTenn paper mill that would evaluate the economics and supply chain reliability of wood waste and other clean biomass as a fuel for the facility. The Green Institute obtained sponsorship from a broad coalition representing the community and the project team included other consultants and university researchers specializing in biomass issues. The final product from the project was a report to: 1) assess the availability of clean biomass fuel for use at the Rock-Tenn site; 2) roughly estimate costs at various annual usage quantities; and 3) develop the building blocks for a supply chain procurement plan. The initial report was completed and public presentations on the results were completed in spring of 2007.

  1. Oxides having high energy densities

    DOE Patents [OSTI]

    Ceder, Gerbrand; Kang, Kisuk

    2013-09-10

    Certain disclosed embodiments generally relate to oxide materials having relatively high energy and/or power densities. Various aspects of the embodiments are directed to oxide materials having a structure B.sub.i(M.sub.jY.sub.k)O.sub.2, for example, a structure Li.sub.j(Ni.sub.jY.sub.k)O.sub.2 such as Li(Ni.sub.0.5Mn.sub.0.5)O.sub.2. In this structure, Y represents one or more atoms, each independently selected from the group consisting of alkaline earth metals, transition metals, Group 14 elements, Group 15, or Group 16 elements. In some embodiments, such an oxide material may have an O3 crystal structure, and/or a layered structure such that the oxide comprises a plurality of first, repeating atomic planes comprising Li, and a plurality of second, repeating atomic planes comprising Ni and/or Y.

  2. Quasistatic Shock Waves: A Mechanism for Nonuniform Compaction in Porous Rock

    SciTech Connect (OSTI)

    OLSSON,WILLIAM A.

    2000-09-08

    Recent studies have observed compaction zones pass through porous rock under axisymmetric compression. An initially thin, compacted layer appears at the yield point of the stress-strain curve and then grows by thickening in the direction of maximum compression at constant stress. Strain localization theory has been applied to compaction to explain the formation of these features. This paper describes the growth of the compaction zones, that is, the propagation of their boundaries, in terms of shock wave analysis. The ratio of the applied shortening rate to the velocity of the boundary is related to the porosity change across the boundary. Certain features of the stress-strain curve are explained by the model.

  3. Extended length microchannels for high density high throughput electrophoresis systems

    DOE Patents [OSTI]

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  4. Decision Analysis for EGS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Analysis for EGS Decision Analysis for EGS Decision Analysis for EGS presentation at the April 2013 peer review meeting held in Denver, Colorado. decision_egs_einstein_peer2013.pdf (911.67 KB) More Documents & Publications Decision Analysis for EGS Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Alum Innovative Exploration

  5. Hydrologic characterization of fractured rocks: An interdisciplinary methodology

    SciTech Connect (OSTI)

    Long, J.C.S.; Majer, E.L.; Martel, S.J.; Karasaki, K.; Peterson, J.E. Jr.; Davey, A.; Hestir, K. )

    1990-11-01

    The characterization of fractured rock is a critical problem in the development of nuclear waste repositories in geologic media. A good methodology for characterizing these systems should be focused on the large important features first and concentrate on building numerical models which can reproduce the observed hydrologic behavior of the fracture system. In many rocks, fracture zones dominate the behavior. These can be described using the tools of geology and geomechanics in order to understand what kind of features might be important hydrologically and to qualitatively describe the way flow might occur in the rock. Geophysics can then be employed to locate these features between boreholes. Then well testing can be used to see if the identified features are in fact important. Given this information, a conceptual model of the system can be developed which honors the geologic description, the tomographic data and the evidence of high permeability. Such a model can then be modified through an inverse process, such as simulated annealing, until it reproduces the cross-hole well test behavior which has been observed insitu. Other possible inversion techniques might take advantage of self similar structure. Once a model is constructed, we need to see how well the model makes predictions. We can use a cross-validation technique which sequentially puts aside parts of the data and uses the model to predict that part in order to calculate the prediction error. This approach combines many types of information in a methodology which can be modified to fit a particular field site. 114 refs., 81 figs., 7 tabs.

  6. Material Science Image Analysis using Quant-CT in ImageJ

    SciTech Connect (OSTI)

    Ushizima, Daniela M.; Bianchi, Andrea G. C.; DeBianchi, Christina; Bethel, E. Wes

    2015-01-05

    We introduce a computational analysis workflow to access properties of solid objects using nondestructive imaging techniques that rely on X-ray imaging. The goal is to process and quantify structures from material science sample cross sections. The algorithms can differentiate the porous media (high density material) from the void (background, low density media) using a Boolean classifier, so that we can extract features, such as volume, surface area, granularity spectrum, porosity, among others. Our workflow, Quant-CT, leverages several algorithms from ImageJ, such as statistical region merging and 3D object counter. It also includes schemes for bilateral filtering that use a 3D kernel, for parallel processing of sub-stacks, and for handling over-segmentation using histogram similarities. The Quant-CT supports fast user interaction, providing the ability for the user to train the algorithm via subsamples to feed its core algorithms with automated parameterization. Quant-CT plugin is currently available for testing by personnel at the Advanced Light Source and Earth Sciences Divisions and Energy Frontier Research Center (EFRC), LBNL, as part of their research on porous materials. The goal is to understand the processes in fluid-rock systems for the geologic sequestration of CO2, and to develop technology for the safe storage of CO2 in deep subsurface rock formations. We describe our implementation, and demonstrate our plugin on porous material images. This paper targets end-users, with relevant information for developers to extend its current capabilities.

  7. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect (OSTI)

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1#22; m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  8. SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES

    SciTech Connect (OSTI)

    Gary Mavko

    2002-05-01

    As part of our study on ''Relationships between seismic properties and rock microstructure'', we have studied (1) How to quantify elastic properties of clay minerals using Atomic Force Acoustic Microscopy. We show how bulk modulus of clay can be measured using atomic force acoustic microscopy (AFAM) (2) We have successfully measured elastic properties of unconsolidated sediments in an effort to quantify attributes for detection of overpressures from seismic (3) We have initiated efforts for velocity upscaling to quantify long-wavelength and short-wavelength velocity behavior and the scale-dependent dispersion caused by sediment variability in different depositional environments.

  9. Simulation of water transport in heated rock salt

    SciTech Connect (OSTI)

    Schlich, M.; Jockwer, N.

    1986-01-01

    This paper summarizes computer simulation studies on water transport in German rock salt. Based on JOCKWERS experimental investigations on water content and water liberation, the object of these studies was to select a water transport model, that matches the water inflow which was measured in some heater experiments in the Asse Salt Mine. The main result is, that an evaporation front model, with Knudsen-type vapor transport combined with fluid transport by thermal expansion of the adsorbed water layers in the non evaporated zone, showed the best agreement with experimental evidence.

  10. Source rock screening studies of Ordovician Maquoketa shale in western Illinois

    SciTech Connect (OSTI)

    Autrey, A.; Crockett, J.E.; Dickerson, D.R.; Oltz, D.F.; Seyler, B.J.; Warren, R.

    1987-09-01

    Rock-Eval (pyrolysis) studies of Ordovician Maquoketa Shale samples (cuttings and cores) from the shallow subsurface (500-800 ft deep) in western Illinois indicate that facies within the Maquoketa have potential as hydrocarbon source rocks. Dark, presumably organic-rich zones within the Maquoketa Shale were selected and analyzed for total organic carbon (TOC), Rock-Eval (pyrolysis), and bulk and clay mineralogy using x-ray diffraction. Preliminary results from six samples from Schuyler, McDonough, and Fulton Counties show TOC values ranging from 4.70% to as high as 12.90%. Rock-Eval parameters, measured by heating organic matter in an inert atmosphere, indicate source rock maturity and petroleum-generative potential. Screening studies, using the Rock-Eval process, describe very good source rock potential in facies of the Maquoketa Shale. Further studies at the Illinois State Geological Survey will expand on these preliminary results. This study complements a proposed exploration model in western Illinois and further suggests the possibility of source rocks on the flanks of the Illinois basin. Long-distance migration from more deeply buried effective source rocks in southern Illinois has been the traditional mechanism proposed for petroleum in basin-flank reservoirs. Localized source rocks can be an alternative to long-distance migration, and can expand the possibilities of basin-flank reservoirs, encouraging further exploration in these areas.

  11. The Origin of Lueders's Bands in Deformed Rock

    SciTech Connect (OSTI)

    Olsson, W.A.

    1999-03-31

    Lueders' bands are shear deformation features commonly observed in rock specimens that have been deformed experimentally in the brittle-ductile transition regime. For specimens that contain both faults (shear fractures that separate the specimen) and bands, the bands form earlier in the deformation history and their orientations are often different from the fault These differences pose the question of the relationship between these two structures. Understanding the origin of these features may shed light on the genesis of apparent natural analogues, and on the general process of rock deformation and fracture in the laboratory. This paper presents a hypothesis for the formation of Lueders' bands in laboratory specimens based on deformation localization theory considered in the context of the nonuniform stress distribution of the conventional triaxial experiment Lueders' bands and faults appear to be equivalent reflections of the localization process as it is controlled by nonuniform distributions of stress and evolution of incremental constitutive parameters resulting from increasing damage. To relate conditions for localization in laboratory specimens to natural settings, it will be necessary to design new experiments that create uniform stress and deformation fields, or to extract constitutive data indirectly from standard experiments using computational means.

  12. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  13. Design methodology for rock excavations at the Yucca Mountain project

    SciTech Connect (OSTI)

    Alber, M.; Bieniawski, Z.T.

    1993-12-31

    The problems involved in the design of the proposed underground repository for high-level nuclear waste call for novel design approaches. Guidelines for the design are given by the Mission Plan Amendment in which licensing and regulatory aspects have to be satisfied. Moreover, systems engineering was proposed, advocating a top-down approach leading to the identification of discrete, implementable system elements. These objectives for the design process can be integrated in an engineering design methodology. While design methodologies for some engineering disciplines are available, they were of limited use for rock engineering because of the inherent uncertainties about the geologic media. Based on the axiomatic design approach of Suh, Bieniawski developed a methodology for design in rock. Design principles and design stages are clearly stated to assist in effective decision making. For overall performance goals, the domain of objectives is defined through components (DCs) - representing a design solution - satisfy the FRs, resulting in discrete, independent functional relations. Implementation is satisfied by evaluation and optimization of the design with respect to the constructibility of the design components.

  14. ChemCam Rock Laser for the Mars Science Laboratory

    ScienceCinema (OSTI)

    LANL

    2009-09-01

    Los Alamos has a long history of space-related instr... Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components are concurrently being assembled at Los Alamos and in Toulouse, France, and will be delivered to JPL in July. The Mars Science Laboratory is scheduled to launch in 2009. Animations courtesy of JPL/NASA.

  15. ChemCam rock laser for Mars Science Laboratory "Curiosity"

    ScienceCinema (OSTI)

    Wiens, Roger

    2014-08-12

    Los Alamos has a long history of space-related instruments, tied primarily to its role in defense-related treaty verification. Space-based detectors have helped determine the differences between signals from lightning bolts and potential nuclear explosions. LANL-developed gamma-ray detection instruments first revealed the existence of what we now know as gamma-ray bursts, an exciting area of astrophysical research. And the use of LANL instruments on varied space missions continues with such products as the ChemCam rock laser for NASA, shown here. The Engineering Model of the ChemCam Mars Science Laboratory rover instrument arrived at NASA's Jet Propulsion Laboratory on February 6, 2008. The Flight Model was shipped in August, 2010 for installation on the rover at JPL. ChemCam will use imaging and laser-induced breakdown spectroscopy (LIBS) to determine rock and soil compositions on Mars, up to 9 meters from the rover. The engineering model is being integrated into the rover test bed for the development and testing of the rover software. The actual flight model components were concurrently assembled at Los Alamos and in Toulouse, France. The Mars Science Laboratory is scheduled to launch in 2011. Animations courtesy of JPL/NASA.

  16. Source rocks of the Sub-Andean basins

    SciTech Connect (OSTI)

    Raedeke, L.D. )

    1993-02-01

    Seven source rock systems were mapped using a consistent methodology to allow basin comparison from Trinidad to southern Chile. Silurian and Devonian systems, deposited in passive margin and intracratonic settings, have fair-good original oil/gas potential from central and northern Bolivia to southern Peru. Kerogens range from mature in the foreland to overmature in the thrust belt. Permian to Carboniferous deposition in local restricted basins formed organic-rich shales and carbonates with very good original oil/gas potential, principally in northern Bolivia and southern Peru. Late Triassic to early Jurassic marine shales and limestones, deposited in deep, narrow, basins from Ecuador to north-central maturity. Locally, in the Cuyo rift basin of northern Argentina, a Triassic lacustrine unit is a very good, mature oil source. Early Cretaceous to Jurassic marine incursions into the back-arc basins of Chile-Argentina deposited shales and limestones. Although time transgressive (younging to the south), this system is the principal source in southern back-arc basins, with best potential in Neuquen, where three intervals are stacked A late Cretaceous marine transgressive shale is the most important source in northern South America. The unit includes the La Luna and equivalents extending from Trinidad through Venezuela, Colombia, Ecuador, and into northern Peru. Elsewhere in South America upper Cretaceous marine-lacustrine rocks are a possible source in the Altiplano and Northwest basins of Bolivia and Argentina. Middle Miocene to Oligocene source system includes shallow marine, deltaic, and lacustrine sediments from Trinidad to northern Peru.

  17. Fluid-Rock Characterization and Interactions in NMR Well Logging

    SciTech Connect (OSTI)

    Hirasaki, George J.; Mohanty, Kishore, K.

    2001-07-13

    The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

  18. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOE Patents [OSTI]

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  19. Method and apparatus for determining two-phase flow in rock fracture

    DOE Patents [OSTI]

    Persoff, Peter; Pruess, Karsten; Myer, Larry

    1994-01-01

    An improved method and apparatus as disclosed for measuring the permeability of multiple phases through a rock fracture. The improvement in the method comprises delivering the respective phases through manifolds to uniformly deliver and collect the respective phases to and from opposite edges of the rock fracture in a distributed manner across the edge of the fracture. The improved apparatus comprises first and second manifolds comprising bores extending within porous blocks parallel to the rock fracture for distributing and collecting the wetting phase to and from surfaces of the porous blocks, which respectively face the opposite edges of the rock fracture. The improved apparatus further comprises other manifolds in the form of plenums located adjacent the respective porous blocks for uniform delivery of the non-wetting phase to parallel grooves disposed on the respective surfaces of the porous blocks facing the opposite edges of the rock fracture and generally perpendicular to the rock fracture.

  20. Stress and fault rock controls on fault zone hydrology, Coso...

    Open Energy Info (EERE)

    fracture networks play only a minor role in fluid flow despite locally high fracture density and some fractures well-oriented for slip. At the surface, hydrothermal activity is...

  1. Geochemical character and origin of oils in Ordovician reservoir rock, Illinois and Indiana, USA

    SciTech Connect (OSTI)

    Guthrie, J.M.; Pratt, L.M.

    1995-11-01

    Twenty-three oils produced from reservoirs within the Ordovician Galena Group (Trenton equivalent) and one oil from the Mississippian Ste. Genevieve Limestone in the Illinois and Indiana portions of the Illinois basin are characterized. Two end-member oil groups (1) and (2) and one intermediate group (1A) are identified using conventional carbon isotopic analysis of whole and fractionated oils, gas chromatography (GC) of saturated hydrocarbon fractions, isotope-ratio-monitoring gas chromatography/mass spectrometry (irm-GC/MS) of n-alkanes ranging from C{sub 15} to C{sub 25}, and gas chromatography/mass spectrometry (GC/MS) of the aromatic hydrocarbon fractions. Group 1 is characterized by high odd-carbon predominance in mid-chain n-alkanes (C{sub 15}-C{sub 19}), low abundance Of C{sub 20+}, n-alkanes, and an absence of pristane and phytane. Group IA is characterized by slightly lower odd-carbon predominance of mid-chain n-alkanes, greater abundance of C{sub 20+} n-alkanes compared to group 1, and no pristane and phytane. Conventional correlations of oil to source rock based on carbon isotopic-type curves and hopane (m/z 191) and sterane (m/z 217) distributions are of limited use in distinguishing Ordovician-reservoired oil groups and determining their origin. Oil to source rock correlations using the distribution and carbon isotopic composition of n-alkanes and the m/z 133 chromatograms of n-alkylarenes show that groups 1 and 1A originated from strata of the Upper Ordovician Galena Group. Group 2 either originated solely from the Upper Ordovician Maquoketa Group or from a mixture of oils generated from the Maquoketa Group and the Galena Group. The Mississippian-reservoired oil most likely originated from the Devonian New Albany Group. The use of GC, irm-GC/MS, and GC/MS illustrates the value of integrated molecular and isotopic approaches for correlating oil groups with source rocks.

  2. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rock the Watt was a direct applica- tion of the Framework for Organiza- tional Change that included building sustainability champions, integration of a sustainability checklist, and sup- port for employees to come up with their own energy saving actions. Rock the Watt: An Energy Conservation Campaign at Pacific Northwest National Lab Pacifc Northwest National Laboratory (PNNL), one of the seventeen Department of Energy laboratories, implemented the 3-month Rock the Watt campaign in FY2015 to

  3. R & D Supercritiacl CO2/ Rock Chemicals Interactions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R & D Supercritiacl CO2/ Rock Chemicals Interactions R & D Supercritiacl CO2/ Rock Chemicals Interactions R & D Supercritiacl CO2/ Rock Chemicals Interactions presentation at the April 2013 peer review meeting held in Denver, Colorado. university_of_minnesota_peer2013.pdf (2.22 MB) More Documents & Publications An integrated experimental and numerical study: Developing a reaction transport model that couples chemical reactions of mineral dissolution/precipitation with spatial and

  4. Standing Rock Sioux Tribe - Lakota/Dakota Nation: Establishment of Renewable Energy & Energy Development Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8540 fwasinzi@standingrock.org Establishment of Renewable Energy & Energy Development Office Standing Rock Sioux Tribe - Lakota/Dakota Nation OVERVIEW: BACKGROUND INFORMATION ON STANDING ROCK RESERVATION SITTING BULL COLLEGE WIND TURBINE EECBG ENERGY EFFICIENCY & WIND TURBINE INSTALLATION AT SITTING BULL COLLEGE WIND ASSESSMENT STUDY ESTABLISHMENT OF RENEWABLE ENERGY & ENERGY DEVELOPMENT OFFICE (REEDO) STANDING ROCK ONE OF SEVEN RESERVATIONS OF THE GREAT SIOUX NATION LOCATED IN

  5. Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interfaces | Department of Energy Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces Synchrotron X-ray Studies of Super-critical Carbon Dioxide / Reservoir Rock Interfaces Project obectives: Utilize synchrotron X-ray measurements, to monitor all aspects of atomic to nanoscale structural changes resulting from chemical interactions of scCO2-H2O binary fluids with rocks under environments directly relevant to EGS. chemistry_you_synchrotron_studies.pdf (1.84

  6. AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Newberry Enhanced Geothermal Systems Demonstration | Department of Energy AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration AltaRock Energy Announces Successful Multiple-Zone Stimulation of Well at the Newberry Enhanced Geothermal Systems Demonstration January 22, 2013 - 3:41pm Addthis SEATTLE -- AltaRock Energy today announced that it has created multiple stimulated zones from a single wellbore at the

  7. Quartz resonator fluid density and viscosity monitor

    DOE Patents [OSTI]

    Martin, Stephen J.; Wiczer, James J.; Cernosek, Richard W.; Frye, Gregory C.; Gebert, Charles T.; Casaus, Leonard; Mitchell, Mary A.

    1998-01-01

    A pair of thickness-shear mode resonators, one smooth and one with a textured surface, allows fluid density and viscosity to be independently resolved. A textured surface, either randomly rough or regularly patterned, leads to trapping of liquid at the device surface. The synchronous motion of this trapped liquid with the oscillating device surface allows the device to weigh the liquid; this leads to an additional response that depends on liquid density. This additional response enables a pair of devices, one smooth and one textured, to independently resolve liquid density and viscosity; the difference in responses determines the density while the smooth device determines the density-viscosity product, and thus, the pair determines both density and viscosity.

  8. High Density Fuel Development for Research Reactors

    SciTech Connect (OSTI)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  9. The Quantum Energy Density: Improved E

    SciTech Connect (OSTI)

    Krogel, Jaron; Yu, Min; Kim, Jeongnim; Ceperley, David M.

    2013-01-01

    We establish a physically meaningful representation of a quantum energy density for use in Quantum Monte Carlo calculations. The energy density operator, dened in terms of Hamiltonian components and density operators, returns the correct Hamiltonian when integrated over a volume containing a cluster of particles. This property is demonstrated for a helium-neon \\gas," showing that atomic energies obtained from the energy density correspond to eigenvalues of isolated systems. The formation energies of defects or interfaces are typically calculated as total energy dierences. Using a model of delta-doped silicon (where dopant atoms form a thin plane) we show how interfacial energies can be calculated more eciently with the energy density, since the region of interest is small. We also demonstrate how the energy density correctly transitions to the bulk limit away from the interface where the correct energy is obtainable from a separate total energy calculation.

  10. Normal and abnormal evolution of argon metastable density in high-density plasmas

    SciTech Connect (OSTI)

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    A controversial problem on the evolution of Ar metastable density as a function of electron density (increasing trend versus decreasing trend) was resolved by discovering the anomalous evolution of the argon metastable density with increasing electron density (discharge power), including both trends of the metastable density [Daltrini et al., Appl. Phys. Lett. 92, 061504 (2008)]. Later, by virtue of an adequate physical explanation based on a simple global model, both evolutions of the metastable density were comprehensively understood as part of the abnormal evolution occurring at low- and high-density regimes, respectively, and thus the physics behind the metastable evolution has seemed to be clearly disclosed. In this study, however, a remarkable result for the metastable density behavior with increasing electron density was observed: even in the same electron density regime, there are both normal and abnormal evolutions of metastable-state density with electron density depending on the measurement position: The metastable density increases with increasing electron density at a position far from the inductively coupled plasma antenna but decreases at a position close to the antenna. The effect of electron temperature, which is spatially nonuniform in the plasma, on the electron population and depopulation processes of Argon metastable atoms with increasing electron density is a clue to understanding the results. The calculated results of the global model, including multistep ionization for the argon metastable state and measured electron temperature, are in a good agreement with the experimental results.

  11. 2010 DOE National Science Bowl® Photos - Little Rock Central...

    Office of Science (SC) Website

    Little Rock Central High School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni ...

  12. The US Hot Dry Rock Program-20 Years of Experience in Reservoir...

    Open Energy Info (EERE)

    The US Hot Dry Rock Program-20 Years of Experience in Reservoir Testing Author Donald Brown Conference World Geothermal Congress; Florence, Italy; 19950101 Published...

  13. Mechanical properties of rocks at high temperatures and pressures: Final report

    SciTech Connect (OSTI)

    Friedman, M.; Bauer, S.J.; Chester, F.M.; Handin, J.; Hopkins, T.W.; Johnson, B.; Kronenberg, A.K.; Mardon, D.; Russell, J.E.

    1987-07-27

    During the final year of the grant, we have investigated (1) why the strengths of rocks decrease with increasing temperature and in the presence of water through study of the fracture process in Westerly granite and Sioux quartzite specimens deformed in extension (some in true tension), (2) frictional strengths of rocks at high temperatures, (3) the stability of boreholes in fractured rock, and (4) slip in biotite single crystals (in that biotite is probably the weakest and most ductile of the common constituents of crystalline rocks.

  14. Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources

    SciTech Connect (OSTI)

    Heiken, G.; Sayer, S.

    1980-02-01

    This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

  15. Rock Sampling At Mt Ranier Area (Frank, 1995) | Open Energy Informatio...

    Open Energy Info (EERE)

    Exploration Activity Details Location Mt Ranier Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes This paper relies...

  16. Rock-Water Interactions in the Fenton Hill, New Mexico, Hot Dry...

    Open Energy Info (EERE)

    Rock Geothermal Systems II. Modeling Geochemical Behavior Abstract A transient mass balance model is developed to account for the dynamic behavior of an artificially stimulated...

  17. Rock Sampling At Seven Mile Hole Area (Larson, Et Al., 2009)...

    Open Energy Info (EERE)

    Seven Mile Hole Area (Larson, Et Al., 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At Seven Mile Hole Area (Larson, Et...

  18. Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986...

    Open Energy Info (EERE)

    Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area...

  19. A Sr-Isotopic Comparison Between Thermal Waters, Rocks, And Hydrotherm...

    Open Energy Info (EERE)

    through the isotopically lighter volcanic rocks of the caldera fill. Authors Fraser Goff, Harold A. Wollenberg, D. C. Brookins and Ronald W. Kistler Published Journal Journal...

  20. Method of synthesizing a low density material

    DOE Patents [OSTI]

    Lorensen, L.E.; Monaco, S.B.

    1987-02-27

    A novel method of synthesizing a polymeric material of low density of the order of 50mg/cc or less. Such a low density material has applications in many areas including laser target fabrication. The method comprises preparing a polymer blend of two incompatible polymers as a major and a minor phase by mixing them and extruding the mixture, and then selectively extracting the major component, to yield a fine, low density structure.

  1. GEOCHEMISTRY OF ROCK UNITS AT THE POTENTIAL REPOSITORY LEVEL, YUCCA MOUNTAIN, NEVADA

    SciTech Connect (OSTI)

    Z.E. Peterman; P.L. Cloke

    2000-12-13

    The compositional variability of the phenocryst-poor member of the 12.8-million-year Topopah Spring Tuff at the potential repository level was assessed by duplicate analysis of 20 core samples from the cross drift at Yucca Mountain, Nevada. Previous analyses of outcrop and core samples of the Topopah Spring Tuff showed that the phenocryst-poor rhyolite, which includes both lithophysal and nonlithophysal zones, is relatively uniform in composition. Analyses of rock samples from the cross drift, the first from the actual potential repository block, also indicate the chemical homogeneity of this unit excluding localized deposits of vapor-phase minerals and low-temperature calcite and opal in fractures, cavities, and faults, The possible influence of vapor-phase minerals and calcite and opal coatings on rock composition at a scale sufficiently large to incorporate these heterogeneously distributed deposits was evaluated and is considered to be relatively minor. Therefore, the composition of the phenocryst-poor member of the Topopah Spring Tuff is considered to be adequately represented by the analyses of samples from the cross drift. The mean composition as represented by the 10 most abundant oxides in weight percent or grams per hundred grams is: SiO{sub 2}, 76.29; Al{sub 2}O{sub 3}, 12.55; FeO, 0.14; Fe{sub 2}O{sub 3}, 0.97; MgO, 0.13; CaO, 0.50; Na{sub 2}O, 3.52; K{sub 2}O, 4.83; TiO{sub 2}, 0.11; and MnO, 0.07.

  2. Building a Universal Nuclear Energy Density Functional

    SciTech Connect (OSTI)

    Bertulani, Carlos A.

    2014-09-10

    This grant had two components: Density functional theory and pairing and Nuclear reactions. This final report summarizes the activities for this SciDAC-2 project.

  3. 3-D capacitance density imaging system

    DOE Patents [OSTI]

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  4. Calculating Atomic Number Densities for Uranium

    Energy Science and Technology Software Center (OSTI)

    1993-01-01

    Provides method to calculate atomic number densities of selected uranium compounds and hydrogenous moderators for use in nuclear criticality safety analyses at gaseous diffusion uranium enrichment facilities.

  5. Screening potential in high density plasmas

    SciTech Connect (OSTI)

    Amari, M.; Arranz, J. P.; Butaux, J.; Nguyen, H.

    1997-01-05

    On the basis of a two-ion center model, an accurate closed form of the screening potential is suggested for intermediate and high density plasmas.

  6. Universal Nuclear Energy Density Functional (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear structure; nuclear energy density functional Word Cloud ...

  7. Mini-review of Electron Density Visualization

    SciTech Connect (OSTI)

    Adler, Joan; Adler, Omri; Kreif, Meytal; Cohen, Or; Grosso, Bastien; Hashibon, Adham; Cooper, Valentino R

    2015-01-01

    We describe both educational and research oriented examples of electronic density visualization with AViz. Several detailed cases are presented and the procedures for their preparation are described.

  8. Uncertainty Quantification for Nuclear Density Functional Theory...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements Citation Details In-Document Search This content will become publicly...

  9. Chiral dynamics and peripheral transverse densities Granados...

    Office of Scientific and Technical Information (OSTI)

    dynamics and peripheral transverse densities Granados, Carlos G. Uppsala University (Sweden); Weiss, Christian JLAB, Newport News, VA (United States) 72 PHYSICS OF ELEMENTARY...

  10. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es038smith2011p.pdf (1.95 MB) More Documents & Publications High Energy Density Ultracapacitors ...

  11. Cell Analysis … High-Energy Density Cathodes and Anodes

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  12. Rock mass mechanical property estimations for the Yucca Mountain Site Characterization Project; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-06-01

    Rock mass mechanical properties are important in the design of drifts and ramps. These properties are used in evaluations of the impacts of thermomechanical loading of potential host rock within the Yucca Mountain Site Characterization Project. Representative intact rock and joint mechanical properties were selected for welded and nonwelded tuffs from the currently available data sources. Rock mass qualities were then estimated using both the Norwegian Geotechnical Institute (Q) and Geomechanics Rating (RMR) systems. Rock mass mechanical properties were developed based on estimates of rock mass quality, the current knowledge of intact properties, and fracture/joint characteristics. Empirical relationships developed to correlate the rock mass quality indices and the rock mass mechanical properties were then used to estimate the range of rock mass mechanical properties.

  13. Saturated Zone Plumes in Volcanic Rock: Implications for Yucca Mountain

    SciTech Connect (OSTI)

    S. Kelkar; R. Roback; B. Robinson; G. Srinivasan; C. Jones; P. Reimus

    2006-02-14

    This paper presents a literature survey of the occurrences of radionuclide plumes in saturated, fractured rocks. Three sites, Idaho National laboratory, Hanford, and Oak Ridge are discussed in detail. Results of a modeling study are also presented showing that the length to width ratio of a plume starting within the repository footprint at the Yucca Mountain Project site, decreases from about 20:1 for the base case to about 4:1 for a higher value of transverse dispersivity, indicating enhanced lateral spreading of the plume. Due to the definition of regulatory requirements, this lateral spreading does not directly impact breakthrough curves at the 18 km compliance boundary, however it increases the potential that a plume will encounter reducing conditions, thus significantly retarding the transport of sorbing radionuclides.

  14. Method and apparatus for water jet drilling of rock

    DOE Patents [OSTI]

    Summers, David A.; Mazurkiewicz, Marian; Bushnell, Dwight J.; Blaine, James

    1978-01-01

    Rock drilling method and apparatus utilizing high pressure water jets for drilling holes of relatively small diameter at speeds significantly greater than that attainable with existing drilling tools. Greatly increased drilling rates are attained due to jet nozzle geometry and speed of rotation. The jet nozzle design has two orifices, one pointing axially ahead in the direction of travel and the second inclined at an angle of approximately 30.degree. from the axis. The two orifices have diameters in the ratio of approximately 1:2. Liquid jet velocities in excess of 1,000 ft/sec are used, and the nozzle is rotated at speeds up to 1,000 rpm and higher.

  15. Acoustic and electrical properties of Mexican geothermal rock samples

    SciTech Connect (OSTI)

    Contreras, E.A.; King, M.S.

    1984-12-01

    Acoustic compressional and shear-wave velocities have been measured on a suite of ten sandstone samples obtained from wells in the Cerro Prieto geothermal field and on two rock samples from other Mexican geothermal fields. The samples were tested in both their dry and fully brine-saturated states at uniaxial stresses to 15 MPa. Electrical resistivities and associated phase angles have been measured on the same core samples as a function of frequency in the range 10 Hz to 10/sup 5/ Hz under drained conditions at hydrostatic confining stresses to 10 MPa. The electrical properties were measured on samples tested in their fully saturated state, using brines of two different concentrations.

  16. Hydrologic test system for fracture flow studies in crystalline rock

    SciTech Connect (OSTI)

    Raber, E; Lord, D.; Burklund, P.

    1982-05-05

    A hydrologic test system has been designed to measure the intrinsic permeabilities of individual fractures in crystalline rock. This system is used to conduct constant pressure-declining flow rate and pressure pulse hydraulic tests. The system is composed of four distinct units: (1) the Packer System, (2) Injection system, (3) Collection System, and (4) Electronic Data Acquisition System. The apparatus is built in modules so it can be easily transported and re-assembled. It is also designed to operate over a wide range of pressures (0 to 300 psig) and flow rates (0.2 to 1.0 gal/min). This system has proved extremely effective and versatile in its use at the Climax Facility, Nevada Test Site.

  17. Uranium and thorium decay series disequilibria in young volcanic rocks

    SciTech Connect (OSTI)

    Williams, R.W.

    1988-01-01

    Two of the central questions in igneous geochemistry that study of radioactive disequilibria can help to answer are: what are the rates of magma genesis; and what are the timescales of magma separation and transport. In addition to the temporal information that may be extracted from disequilibria data, the {sup 230}Th/{sup 232}Th of a young rock may be used as a tracer of the Th/U ratio of its source region. Measurements were made by isotope dilution alpha-spectrometry of {sup 238}U, {sup 234}U, {sup 230}Th, and {sup 232}Th in 20 subduction related, 3 oceanic intraplate, and 10 continental intraplate volcanics. {sup 210}Pb was measured in all, {sup 226}Ra was measured in about half, and {sup 228}Th was measured in 10 of the most recent samples. Disequilibrium between {sup 228}Th and {sup 232}Th was found only in the Nacarbonatite samples from Oldoinyo Lengai volcano in Tanzania, which is attributable to {sup 228}Ra/{sup 232}Th {approximately} 27 at the time of eruption. These rocks also have {sup 226}Ra/{sup 230}Th > 60. Three Ra-enrichment models are developed which constrain carbonatite magma formation at less than 20 years before eruption. The effects of different partial melting processes on the {sup 238}U decay series are investigated. If mid-ocean ridge basalts are formed by a dynamic melting process, the {sup 230}Th/{sup 232}Th of the basalts provides a minimum estimate of the Th/U ratio of the source region. The {sup 238}U enrichment in arc volcanics is probably the results of metasomatism of the source by fluids derived from the subducting slab, and the {sup 230}Th enrichment observed for other volcanics is probably due to the partial melting process in the absence of U-bearing fluids.

  18. Spatial statistics for predicting flow through a rock fracture

    SciTech Connect (OSTI)

    Coakley, K.J.

    1989-03-01

    Fluid flow through a single rock fracture depends on the shape of the space between the upper and lower pieces of rock which define the fracture. In this thesis, the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. open spaces, and contact areas within the fracture. Patterns of voids and contact areas, with complexity typical of experimental data, are simulated by clipping a correlated Gaussian process defined on a N by N pixel square region. The voids have constant aperture; the distance between the upper and lower surfaces which define the fracture is either zero or a constant. Local flow is assumed to be proportional to local aperture cubed times local pressure gradient. The flow through a pattern of voids and contact areas is solved using a finite-difference method. After solving for the flow through simulated 10 by 10 by 30 pixel patterns of voids and contact areas, a model to predict equivalent permeability is developed. The first model is for patterns with 80% voids where all voids have the same aperture. The equivalent permeability of a pattern is predicted in terms of spatial statistics computed from the arrangement of voids and contact areas within the pattern. Four spatial statistics are examined. The change point statistic measures how often adjacent pixel alternate from void to contact area (or vice versa ) in the rows of the patterns which are parallel to the overall flow direction. 37 refs., 66 figs., 41 tabs.

  19. High bandwidth vapor density diagnostic system

    DOE Patents [OSTI]

    Globig, Michael A.; Story, Thomas W.

    1992-01-01

    A high bandwidth vapor density diagnostic system for measuring the density of an atomic vapor during one or more photoionization events. The system translates the measurements from a low frequency region to a high frequency, relatively noise-free region in the spectrum to provide improved signal to noise ratio.

  20. High density laser-driven target

    DOE Patents [OSTI]

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  1. Enhancing critical current density of cuprate superconductors

    DOE Patents [OSTI]

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  2. The effects of low environmental cadmium exposure on bone density

    SciTech Connect (OSTI)

    Trzcinka-Ochocka, M.; Jakubowski, M.; Szymczak, W.; Janasik, B.; Brodzka, R.

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone

  3. Density functional theory for carbon dioxide crystal

    SciTech Connect (OSTI)

    Chang, Yiwen; Mi, Jianguo Zhong, Chongli

    2014-05-28

    We present a density functional approach to describe the solid?liquid phase transition, interfacial and crystal structure, and properties of polyatomic CO{sub 2}. Unlike previous phase field crystal model or density functional theory, which are derived from the second order direct correlation function, the present density functional approach is based on the fundamental measure theory for hard-sphere repulsion in solid. More importantly, the contributions of enthalpic interactions due to the dispersive attractions and of entropic interactions arising from the molecular architecture are integrated in the density functional model. Using the theoretical model, the predicted liquid and solid densities of CO{sub 2} at equilibrium triple point are in good agreement with the experimental values. Based on the structure of crystal-liquid interfaces in different planes, the corresponding interfacial tensions are predicted. Their respective accuracies need to be tested.

  4. Neutral depletion and the helicon density limit

    SciTech Connect (OSTI)

    Magee, R. M.; Galante, M. E.; Carr, J. Jr.; Lusk, G.; McCarren, D. W.; Scime, E. E.

    2013-12-15

    It is straightforward to create fully ionized plasmas with modest rf power in a helicon. It is difficult, however, to create plasmas with density >10{sup 20} m{sup ?3}, because neutral depletion leads to a lack of fuel. In order to address this density limit, we present fast (1 MHz), time-resolved measurements of the neutral density at and downstream from the rf antenna in krypton helicon plasmas. At the start of the discharge, the neutral density underneath the antenna is reduced to 1% of its initial value in 15 ?s. The ionization rate inferred from these data implies that the electron temperature near the antenna is much higher than the electron temperature measured downstream. Neutral density measurements made downstream from the antenna show much slower depletion, requiring 14 ms to decrease by a factor of 1/e. Furthermore, the downstream depletion appears to be due to neutral pumping rather than ionization.

  5. Core density turbulence in the HSX Stellarator

    SciTech Connect (OSTI)

    Deng, C. B.; Brower, D. L.; Anderson, D. T.; Anderson, F. S. B.; Briesemeister, Alexis R.; Likin, K. M.

    2015-10-23

    Broadband turbulent density fluctuations are explored in the helically symmetric stellarator experiment (HSX) by investigating changes related to plasma heating power and location. No fluctuation response is observed to occur with large changes in electron temperature and its gradient, thereby eliminating temperature gradient as a driving mechanism. Instead, measurements reveal that density turbulence varies inversely with electron density scale length. This response is consistent with density gradient drive as one might expect for trapped electron mode (TEM) turbulence. In general, the plasma stored energy and particle confinement are higher for discharges with reduced fluctuations in the plasma core. When the density fluctuation amplitude is reduced, increased plasma rotation is also evident suggesting a role is being played by intrinsic plasma flow.

  6. Nondestructive and automated testing for soil and rock properties. ASTM special technical publication 1350

    SciTech Connect (OSTI)

    Marr, W.A.; Fairhurst, C.E.

    1999-07-01

    The purpose of the symposium was to highlight recent developments in nondestructive and automated testing for soil and rock properties. Speakers present results of recent research in these areas that have practical application for the rapid and economical testing of soil and rock. Authors were encouraged to identify which testing equipment and methods have sufficient practical application to warrant standards development.

  7. Final Report. Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect (OSTI)

    Normann, Randy A

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  8. Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress

    SciTech Connect (OSTI)

    Normann, Randy A.

    2014-12-01

    This paper outlines the technology need for a rock formation stress measurement in future EGS wells. This paper reports on the results of work undertaken under a Phase I, DOE/SBIR on the feasibility to build an acoustic well logging tool for measuring rock formation stress.

  9. Fractured rock aquifer tests in the Western Siberian Basin, Ozyorsk, Russia

    SciTech Connect (OSTI)

    Nichols, R.L.; Looney, B.B.; Eddy-Dilek, C.A.

    1997-10-01

    A series of multi-zone pumping tests was conducted in a contaminated fractured rock aquifer in the Western Siberian Basin, Ozyorsk, Russia. The tests were conducted adjacent to the Mishelyak River floodplain in fractured Paleozoic porphyrites, tufts, tuff breccia, and lava typical of the Ural mountain complex. Geophysical logs, borehole photography, core samples, and results from previous borehole contamination studies were used to identify the zones to be tested. A network of three uncased wells was tested using a system of inflatable packers, pressure transducers and data loggers. Seven zones were isolated and monitored in two of the uncased wells. A straddle packer assembly was used to isolate individual zones within the pumping well. Eight constant rate pumping tests were conducted. Results of the testing indicate that shallow groundwater migrates primarily in two intervals that are separated by an interval with low lateral conductivity. The water bearing intervals have moderate to high specific capacities (1.3 and 30 L/min/m). Several processes are responsible for fracturing present in the lower interval. The network of compound fractures produced a complex array of fracture intersections yielding a fractured media with hydraulic behavior similar to porous media. Models used for the analysis of pumping tests in porous media provide a good estimation of the hydraulic response of the lower interval to pumping. Future work will include more complex analysis of the data to determine hydraulic conductivity ellipses.

  10. Ions in solution: Density corrected density functional theory (DC-DFT)

    SciTech Connect (OSTI)

    Kim, Min-Cheol; Sim, Eunji; Burke, Kieron

    2014-05-14

    Standard density functional approximations often give questionable results for odd-electron radical complexes, with the error typically attributed to self-interaction. In density corrected density functional theory (DC-DFT), certain classes of density functional theory calculations are significantly improved by using densities more accurate than the self-consistent densities. We discuss how to identify such cases, and how DC-DFT applies more generally. To illustrate, we calculate potential energy surfaces of HO·Cl{sup −} and HO·H{sub 2}O complexes using various common approximate functionals, with and without this density correction. Commonly used approximations yield wrongly shaped surfaces and/or incorrect minima when calculated self consistently, while yielding almost identical shapes and minima when density corrected. This improvement is retained even in the presence of implicit solvent.

  11. Biogenicity and Syngeneity of Organic Matter in Ancient Sedimentary Rocks: Recent Advances in the Search for Evidence of Past Life

    SciTech Connect (OSTI)

    Oehler, Dorothy Z.; Cady, Sherry L.

    2014-12-01

    he past decade has seen an explosion of new technologies for assessment of biogenicity and syngeneity of carbonaceous material within sedimentary rocks. Advances have been made in techniques for analysis of in situ organic matter as well as for extracted bulk samples of soluble and insoluble (kerogen) organic fractions. The in situ techniques allow analysis of micrometer-to-sub-micrometer-scale organic residues within their host rocks and include Raman and fluorescence spectroscopy/imagery, confocal laser scanning microscopy, and forms of secondary ion/laser-based mass spectrometry, analytical transmission electron microscopy, and X-ray absorption microscopy/spectroscopy. Analyses can be made for chemical, molecular, and isotopic composition coupled with assessment of spatial relationships to surrounding minerals, veins, and fractures. The bulk analyses include improved methods for minimizing contamination and recognizing syngenetic constituents of soluble organic fractions as well as enhanced spectroscopic and pyrolytic techniques for unlocking syngenetic molecular signatures in kerogen. Together, these technologies provide vital tools for the study of some of the oldest and problematic carbonaceous residues and for advancing our understanding of the earliest stages of biological evolution on Earth and the search for evidence of life beyond Earth. We discuss each of these new technologies, emphasizing their advantages and disadvantages, applications, and likely future directions.

  12. Numerical simulation of fracture rocks and wave propagation by means of fractal theory

    SciTech Connect (OSTI)

    Valle G., R. del

    1994-12-31

    A numerical approach was developed for the dynamic simulation of fracture rocks and wave propagation. Based on some ideas of percolation theory and fractal growth, a network of particles and strings represent the rock model. To simulate an inhomogeneous medium, the particles and springs have random distributed elastic parameters and are implemented in the dynamic Navier equation. Some of the springs snap with criteria based on the confined stress applied, therefore creating a fractured rock consistent with the physical environment. The basic purpose of this research was to provide a method to construct a fractured rock with confined stress conditions as well as the wave propagation imposed in the model. Such models provide a better understanding of the behavior of wave propagation in fractured media. The synthetic seismic data obtained henceforth, can be used as a tool to develop methods for characterizing fractured rocks by means of geophysical inference.

  13. Periodic subsystem density-functional theory

    SciTech Connect (OSTI)

    Genova, Alessandro; Pavanello, Michele; Ceresoli, Davide

    2014-11-07

    By partitioning the electron density into subsystem contributions, the Frozen Density Embedding (FDE) formulation of subsystem Density Functional Theory (DFT) has recently emerged as a powerful tool for reducing the computational scaling of Kohn–Sham DFT. To date, however, FDE has been employed to molecular systems only. Periodic systems, such as metals, semiconductors, and other crystalline solids have been outside the applicability of FDE, mostly because of the lack of a periodic FDE implementation. To fill this gap, in this work we aim at extending FDE to treat subsystems of molecular and periodic character. This goal is achieved by a dual approach. On one side, the development of a theoretical framework for periodic subsystem DFT. On the other, the realization of the method into a parallel computer code. We find that periodic FDE is capable of reproducing total electron densities and (to a lesser extent) also interaction energies of molecular systems weakly interacting with metallic surfaces. In the pilot calculations considered, we find that FDE fails in those cases where there is appreciable density overlap between the subsystems. Conversely, we find FDE to be in semiquantitative agreement with Kohn–Sham DFT when the inter-subsystem density overlap is low. We also conclude that to make FDE a suitable method for describing molecular adsorption at surfaces, kinetic energy density functionals that go beyond the GGA level must be employed.

  14. Chiral dynamics and peripheral transverse densities

    SciTech Connect (OSTI)

    Granados, Carlos G.; Weiss, Christian

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  15. Alteration of immature sedimentary rocks on Earth and Mars. Recording Aqueous and Surface-atmosphere Processes

    SciTech Connect (OSTI)

    Cannon, Kenneth M.; Mustard, John F.; Salvatore, Mark R.

    2015-03-05

    The rock alteration and rind formation in analog environments like Antarctica may provide clues to rock alteration and therefore paleoclimates on Mars. Clastic sedimentary rocks derived from basaltic sources have been studied in situ by martian rovers and are likely abundant on the surface of Mars. Moreover, how such rock types undergo alteration when exposed to different environmental conditions is poorly understood compared with alteration of intact basaltic flows. Here we characterize alteration in the chemically immature Carapace Sandstone from Antarctica, a terrestrial analog for martian sedimentary rocks. We employ a variety of measurements similar to those used on previous and current Mars missions. Laboratory techniques included bulk chemistry, powder X-ray diffraction (XRD), hyperspectral imaging and X-ray absorption spectroscopy. Through these methods we find that primary basaltic material in the Carapace Sandstone is pervasively altered to hydrated clay minerals and palagonite as a result of water–rock interaction. A thick orange rind is forming in current Antarctic conditions, superimposing this previous aqueous alteration signature. The rind exhibits a higher reflectance at visible-near infrared wavelengths than the rock interior, with an enhanced ferric absorption edge likely due to an increase in Fe3+ of existing phases or the formation of minor iron (oxy)hydroxides. This alteration sequence in the Carapace Sandstone results from decreased water–rock interaction over time, and weathering in a cold, dry environment, mimicking a similar transition early in martian history. This transition may be recorded in sedimentary rocks on Mars through a similar superimposition mechanism, capturing past climate changes at the hand sample scale. These results also suggest that basalt-derived sediments could have sourced significant volumes of hydrated minerals on early Mars due to their greater permeability compared with intact igneous rocks.

  16. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, Richard W.

    1991-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "Clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density.ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100.circle.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  17. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, Richard W.

    1989-01-01

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer "clusters". The covalent crosslinking of these "clusters" produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density .ltoreq.100 mg/cc; cell size .ltoreq.0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 .ANG.. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  18. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, R.W.

    1989-10-10

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer clusters. The covalent crosslinking of these clusters produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density [<=]100 mg/cc; cell size [<=]0.1 microns). The aerogels are transparent, dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 [angstrom]. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron.

  19. Low density, resorcinol-formaldehyde aerogels

    DOE Patents [OSTI]

    Pekala, R.W.

    1988-05-26

    The polycondensation of resorcinol with formaldehyde under alkaline conditions results in the formation of surface functionalized polymer ''clusters''. The covalent crosslinking of these ''clusters'' produces gels which when processed under supercritical conditions, produce low density, organic aerogels (density less than or equal to100 mg/cc; cell size less than or equal to0.1 microns). The aerogels are transparent,dark red in color and consist of interconnected colloidal-like particles with diameters of about 100 A/degree/. These aerogels may be further carbonized to form low density carbon foams with cell size of about 0.1 micron. 1 fig., 1 tab.

  20. Hot dry rock geothermal energy. Draft final report

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This second EPRI workshop on hot dry rock (HDR) geothermal energy, held in May 1994, focused on the status of worldwide HDR research and development and used that status review as the starting point for discussions of what could and should be done next: by U.S. federal government, by U.S. industry, by U.S. state governments, and by international organizations or through international agreements. The papers presented and the discussion that took place indicate that there is a community of researchers and industrial partners that could join forces, with government support, to begin a new effort on hot dry rock geothermal development. This new heat mining effort would start with site selection and confirmatory studies, done concurrently. The confirmatory studies would test past evaluations against the most current results (from the U.S. site at Fenton Hill, New Mexico, and from the two sites in Japan, the one in Russia, and the two in western Europe) and the best models of relevant physical and economic aspects. Site selection would be done in the light of the confirmatory studies and would be influenced by the need to find a site where success is probable and which is representative enough of other sites so that its success would imply good prospects for success at numerous other sites. The test of success would be circulation between a pair of wells, or more wells, in a way that confirmed, with the help of flow modeling, that a multi-well system would yield temperatures, flows and lifetimes that support economically feasible power generation. The flow modeling would have to have previously achieved its own confirmation from relevant data taken from both heat mining and conventional hydrothermal geothermal experience. There may be very relevant experience from the enhancement of ''hot wet rock'' sites, i.e., sites where hydrothermal reservoirs lack, or have come to lack, enough natural water or steam and are helped by water injected cold and produced hot. The new

  1. Evaluation of Used Fuel Disposition in Clay-Bearing Rock

    SciTech Connect (OSTI)

    Jové Colón, Carlos F.; Weck, Philippe F.; Sassani, David H.; Zheng, Liange; Rutqvist, Jonny; Steefel, Carl I.; Kim, Kunhwi; Nakagawa, Seiji; Houseworth, James; Birkholzer, Jens; Caporuscio, Florie A.; Cheshire, Michael; Rearick, Michael S.; McCarney, Mary K.; Zavarin, Mavrik; Benedicto, Ana; Kersting, Annie B.; Sutton, Mark; Jerden, James; Frey, Kurt E.; Copple, Jacqueline M.; Ebert, William

    2014-08-01

    Radioactive waste disposal in shale/argillite rock formations has been widely considered given its desirable isolation properties (low permeability), geochemically reduced conditions, anomalous groundwater pressures, and widespread geologic occurrence. Clay/shale rock formations are characterized by their high content of clay minerals such as smectites and illites where diffusive transport and chemisorption phenomena predominate. These, in addition to low permeability, are key attributes of shale to impede radionuclide mobility. Shale host-media has been comprehensively studied in international nuclear waste repository programs as part of underground research laboratories (URLs) programs in Switzerland, France, Belgium, and Japan. These investigations, in some cases a decade or more long, have produced a large but fundamental body of information spanning from site characterization data (geological, hydrogeological, geochemical, geomechanical) to controlled experiments on the engineered barrier system (EBS) (barrier clay and seals materials). Evaluation of nuclear waste disposal in shale formations in the USA was conducted in the late 70’s and mid 80’s. Most of these studies evaluated the potential for shale to host a nuclear waste repository but not at the programmatic level of URLs in international repository programs. This report covers various R&D work and capabilities relevant to disposal of heat-generating nuclear waste in shale/argillite media. Integration and cross-fertilization of these capabilities will be utilized in the development and implementation of the shale/argillite reference case planned for FY15. Disposal R&D activities under the UFDC in the past few years have produced state-of-the-art modeling capabilities for coupled Thermal-Hydrological-Mechanical-Chemical (THMC), used fuel degradation (source term), and thermodynamic modeling and database development to evaluate generic disposal concepts. The THMC models have been developed for shale

  2. Density controlled carbon nanotube array electrodes

    DOE Patents [OSTI]

    Ren, Zhifeng F.; Tu, Yi

    2008-12-16

    CNT materials comprising aligned carbon nanotubes (CNTs) with pre-determined site densities, catalyst substrate materials for obtaining them and methods for forming aligned CNTs with controllable densities on such catalyst substrate materials are described. The fabrication of films comprising site-density controlled vertically aligned CNT arrays of the invention with variable field emission characteristics, whereby the field emission properties of the films are controlled by independently varying the length of CNTs in the aligned array within the film or by independently varying inter-tubule spacing of the CNTs within the array (site density) are disclosed. The fabrication of microelectrode arrays (MEAs) formed utilizing the carbon nanotube material of the invention is also described.

  3. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2012-02-07

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  4. Separation of carbon nanotubes in density gradients

    DOE Patents [OSTI]

    Hersam, Mark C.; Stupp, Samuel I.; Arnold, Michael S.

    2010-02-16

    The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

  5. High density load bearing insulation peg

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  6. High density load bearing insulation peg

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  7. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect (OSTI)

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  8. Chiral dynamics and peripheral transverse densities (Journal...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Chiral dynamics and peripheral transverse densities Citation Details ... Report Number(s): JLAB-THY--13-1763; DOEOR--23177-2641 Journal ID: ISSN 1029-8479; TRN: ...

  9. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  10. Communication: Embedded fragment stochastic density functional theory

    SciTech Connect (OSTI)

    Neuhauser, Daniel; Baer, Roi; Rabani, Eran

    2014-07-28

    We develop a method in which the electronic densities of small fragments determined by Kohn-Sham density functional theory (DFT) are embedded using stochastic DFT to form the exact density of the full system. The new method preserves the scaling and the simplicity of the stochastic DFT but cures the slow convergence that occurs when weakly coupled subsystems are treated. It overcomes the spurious charge fluctuations that impair the applications of the original stochastic DFT approach. We demonstrate the new approach on a fullerene dimer and on clusters of water molecules and show that the density of states and the total energy can be accurately described with a relatively small number of stochastic orbitals.

  11. Breast Density and Cancer | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Breast Cancer Awareness Series: Understanding Breast Density Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in ...

  12. High Energy Density Ultracapacitors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. esp22smith.pdf (1.09 MB) More Documents & Publications High Energy Density Ultracapacitors High ...

  13. High-Energy-Density Plasmas, Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High-Energy-Density Plasmas, Fluids High-Energy-Density Plasmas, Fluids National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. TRIDENT target chamber Sasi Palaniyappan, right, and Rahul Shah left inside a target chamber where the TRIDENT short pulse laser is aimed at a very thin diamond- foil target, a fraction of a micrometer thick. The

  14. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance

    SciTech Connect (OSTI)

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-09-29

    In this study, batch adsorption and breakthrough column experiments were conducted to evaluate uranium transport through altered material that fills fractures in a granite rock system at the Grimsel Test Site in Switzerland at pH 6.9 and 7.9. The role of adsorption and desorption kinetics was evaluated with reactive transport modeling by comparing one-, two-, and three-site models. Emphasis was placed on describing long desorption tails that are important for upscaling in time and distance. The effect of increasing pH in injection solutions was also evaluated. For pH 6.9, a three-site model with forward rate constants between 0.07 and 0.8 ml g–1 h–1, reverse rate constants between 0.001 and 0.06 h–1, and site densities of 1.3, 0.104, and 0.026 μmol g–1 for ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. For pH 7.9, a three-site model with forward rate constants between 0.05 and 0.8 mL g–1 h–1, reverse rate constants between 0.001 and 0.6 h–1, and site densities of 1.3, 0.039, and 0.013 μmol g–1 for a ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. Column retardation coefficients (Rd) were 80 for pH 6.9 and 10.3 for pH 7.9. Model parameters determined from the batch and column experiments were used in 50 year large-scale simulations for continuous and pulse injections and indicated that a three-site model is necessary at pH 6.9, although a Kd-type equilibrium partition model with one-site was adequate for large scale predictions at pH 7.9. Batch experiments were useful for predicting early breakthrough times in the columns while column experiments helped differentiate the relative importance of sorption sites and desorption rate constants on transport.

  15. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-09-29

    In this study, batch adsorption and breakthrough column experiments were conducted to evaluate uranium transport through altered material that fills fractures in a granite rock system at the Grimsel Test Site in Switzerland at pH 6.9 and 7.9. The role of adsorption and desorption kinetics was evaluated with reactive transport modeling by comparing one-, two-, and three-site models. Emphasis was placed on describing long desorption tails that are important for upscaling in time and distance. The effect of increasing pH in injection solutions was also evaluated. For pH 6.9, a three-site model with forward rate constants between 0.07 and 0.8more » ml g–1 h–1, reverse rate constants between 0.001 and 0.06 h–1, and site densities of 1.3, 0.104, and 0.026 μmol g–1 for ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. For pH 7.9, a three-site model with forward rate constants between 0.05 and 0.8 mL g–1 h–1, reverse rate constants between 0.001 and 0.6 h–1, and site densities of 1.3, 0.039, and 0.013 μmol g–1 for a ‘weak/fast’, ‘strong/slow’, and ‘very strong/very slow’ sites provided the best fits. Column retardation coefficients (Rd) were 80 for pH 6.9 and 10.3 for pH 7.9. Model parameters determined from the batch and column experiments were used in 50 year large-scale simulations for continuous and pulse injections and indicated that a three-site model is necessary at pH 6.9, although a Kd-type equilibrium partition model with one-site was adequate for large scale predictions at pH 7.9. Batch experiments were useful for predicting early breakthrough times in the columns while column experiments helped differentiate the relative importance of sorption sites and desorption rate constants on transport.« less

  16. A novel electron density reconstruction method for asymmetrical toroidal plasmas

    SciTech Connect (OSTI)

    Shi, N.; Ohshima, S.; Minami, T.; Nagasaki, K.; Yamamoto, S.; Mizuuchi, T.; Okada, H.; Kado, S.; Kobayashi, S.; Konoshima, S.; Sano, F.; Tanaka, K.; Ohtani, Y.; Zang, L.; Kenmochi, N.

    2014-05-15

    A novel reconstruction method is developed for acquiring the electron density profile from multi-channel interferometric measurements of strongly asymmetrical toroidal plasmas. It is based on a regularization technique, and a generalized cross-validation function is used to optimize the regularization parameter with the aid of singular value decomposition. The feasibility of method could be testified by simulated measurements based on a magnetic configuration of the flexible helical-axis heliotron device, Heliotron J, which has an asymmetrical poloidal cross section. And the successful reconstruction makes possible to construct a multi-channel Far-infrared laser interferometry on this device. The advantages of this method are demonstrated by comparison with a conventional method. The factors which may affect the accuracy of the results are investigated, and an error analysis is carried out. Based on the obtained results, the proposed method is highly promising for accurately reconstructing the electron density in the asymmetrical toroidal plasma.

  17. Rock drilling bit and a method of producing the same

    SciTech Connect (OSTI)

    Kane, R.F.; Portugal, J.J.; Kuzniar, P.S.

    1989-09-19

    This patent describes a method for forming a drill bit of the type used for drilling rock and including a drill bit body defining a cutting face having a plurality of hard material cutting inserts mounted in openings formed in the cutting face. The method comprising the steps of: providing a drill bit body formed from a steel capable of being carburized, the body having a cutting face surface; identifying on the cutting face surface those locations wherein insert mounting openings are needed; covering each location with a material capable of preventing penetration of carbon into the bit body in the area of the location during carburizing, the area covered at each such location being at least slightly greater that the size of the insert mounting opening needed; with the insert mounting locations covered, carburizing and heat treating the bit body to case harden the cutting face to a hardness above 50 on the Rockwell C scale; and thereafter, drilling an insert receiving opening at each location and press-fitting hard material cutting inserts into each such opening.

  18. Hot-dry-rock energy: review of environmental aspects

    SciTech Connect (OSTI)

    O'Banion, K.

    1981-10-13

    The potential environmental and socioeconomic impacts of the production of energy contained in hot dry rock (HDR) is surveyed here. In general, careful siting and timing and routine control measures should be adequate to prevent significant environmental harm; sites of particular ecological or visual and recreational value, however, may require more extensive (and more expensive) precautions such as using multiwell pads to reduce land disturbance and dry or wet and dry cooling towers to reduce or eliminate the consumptive use of water. The most important uncertainty among the environmental concerns is the seismic response of HDR formations to short-duration fluid injections at pressures above fracture thresholds; continued monitoring at HDR development sites is necessary. The direct socioeconomic impacts of HDR development should be relatively minor, owing to its capital-intensive nature. Of greater potential importance are the indirect jobs resulting from such development, which could cause significant demographic (and thus fiscal and social) impacts in sparsely populated regions. However, such indirect growth is not expected to begin until a large, stable HDR industry is established in a region, and thus its impacts are expected to be permanent rather than transient.

  19. Assessment of industrial minerals and rocks in the controlled area

    SciTech Connect (OSTI)

    Castor, S.B.; Lock, D.E.

    1996-08-01

    Yucca Mountain in Nye County, Nevada, is a potential site for a permanent repository for high-level nuclear waste in Miocene ash flow tuff. The Yucca Mountain controlled area occupies approximately 98 km{sup 2} that includes the potential repository site. The Yucca Mountain controlled area is located within the southwestern Nevada volcanic field, a large area of Miocene volcanism that includes at least four major calderas or cauldrons. It is sited on a remnant of a Neogene volcanic plateau that was centered around the Timber Mountain caldera complex. The Yucca Mountain region contains many occurrences of valuable or potentially valuable industrial minerals, including deposits with past or current production of construction aggregate, borate minerals, clay, building stone, fluorspar, silicate, and zeolites. The existence of these deposits in the region and the occurrence of certain mineral materials at Yucca Mountain, indicate that the controlled area may have potential for industrial mineral and rock deposits. Consideration of the industrial mineral potential within the Yucca Mountain controlled area is mainly based on petrographic and lithologic studies of samples from drill holes in Yucca Mountain. Clay minerals, zeolites, fluorite, and barite, as minerals that are produced economically in Nevada, have been identified in samples from drill holes in Yucca Mountain.

  20. On the Relationship between Stress and Elastic Strain for Porous and Fractured Rock

    SciTech Connect (OSTI)

    Liu, Hui-Hai; Rutqvist, Jonny; Berryman, James G.

    2008-02-25

    Modeling the mechanical deformations of porous and fractured rocks requires a stress-strain relationship. Experience with inherently heterogeneous earth materials suggests that different varieties of Hook's law should be applied within regions of the rock having significantly different stress-strain behavior, e.g., such as solid phase and various void geometries. We apply this idea by dividing a rock body conceptually into two distinct parts. The natural strain (volume change divided by rock volume at the current stress state), rather than the engineering strain (volume change divided by the unstressed rock volume), should be used in Hooke's law for accurate modeling of the elastic deformation of that part of the pore volume subject to a relatively large degree of relative deformation (i.e., cracks or fractures). This approach permits the derivation of constitutive relations between stress and a variety of mechanical and/or hydraulic rock properties. We show that the theoretical predictions of this method are generally consistent with empirical expressions (from field data) and also laboratory rock experimental data.

  1. Stratified precambrian rocks (sedimentary?) beneath the midcontinent region of the US. Final technical report

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan?) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  2. Stratified precambrian rocks (sedimentary ) beneath the midcontinent region of the US

    SciTech Connect (OSTI)

    Hauser, E.C.

    1993-02-01

    A thick sequence of layered rocks occurs beneath the Phanerozoic platform strata which blanket the US midcontinent. Observed on COCORP deep reflection data in southern Illinois and Indiana and in SW Oklahoma and adjacent Texas, this sequence is locally 1--3 times as thick as the overlying Paleozoic cover, but the origin of this sequence and its ultimate lateral extent are unknown. However, the occurrences of Precambrian layered rocks on both the COCORP profiles and reprocessed industry seismic reflection data from the region lie within regions of generally low amplitude and low frequency aeromagnetic anomaly, suggesting an even greater distribution. Unmetamorphosed Precambrian sedimentary rocks have been recovered from drill holes in southwest Ohio and adjacent northern Kentucky and southwesternmost Indiana. These Precambrian sedimentary rocks lie above and may be part of an underlying package of strongly layered rocks imaged on a short and shallow seismic profile in southwest Ohio. These Precambrian sedimentary rocks were originally viewed as part of a late Precambrian (Keweenawan ) rift; however, in light of Grenville foreland structures seen on the COCORP profile to the north in west central Ohio, these Precambrian strata may (1) be part of a heretofore unrecognized Grenville foreland basin, or (2) indicate that unmetamorphosed Precambrian sedimentary material may be an important constituent of the layered rocks observed on COCORP beneath southern Illinois and Indiana.

  3. The thermal conductivity of rock under hydrothermal conditions: measurements and applications

    SciTech Connect (OSTI)

    Williams, Colin F.; Sass, John H.

    1996-01-24

    The thermal conductivities of most major rock-forming minerals vary with both temperature and confining pressure, leading to substantial changes in the thermal properties of some rocks at the high temperatures characteristic of geothermal systems. In areas with large geothermal gradients, the successful use of near-surface heat flow measurements to predict temperatures at depth depends upon accurate corrections for varying thermal conductivity. Previous measurements of the thermal conductivity of dry rock samples as a function of temperature were inadequate for porous rocks and susceptible to thermal cracking effects in nonporous rocks. We have developed an instrument for measuring the thermal conductivity of water-saturated rocks at temperatures from 20 to 350 °C and confining pressures up to 100 MPa. A transient line-source of heat is applied through a needle probe centered within the rock sample, which in turn is enclosed within a heated pressure vessel with independent controls on pore and confining pressure. Application of this technique to samples of Franciscan graywacke from The Geysers reveals a significant change in thermal conductivity with temperature. At reservoir-equivalent temperatures of 250 °C, the conductivity of the graywacke decreases by approximately 25% relative to the room temperature value. Where heat flow is constant with depth within the caprock overlying the reservoir, this reduction in conductivity with temperature leads to a corresponding increase in the geothermal gradient. Consequently, reservoir temperature are encountered at depths significantly shallower than those predicted by assuming a constant temperature gradient with depth. We have derived general equations for estimating the thermal conductivity of most metamorphic and igneous rocks and some sedimentary rocks at elevated temperature from knowledge of the room temperature thermal conductivity. Application of these equations to geothermal exploration should improve estimates

  4. How a weird Mars rock may be solid proof of an ancient oxygen atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weird Mars rock may be solid proof of ancient oxygen atmosphere How a weird Mars rock may be solid proof of an ancient oxygen atmosphere When researchers found a compound that shouldn't have been there, it revealed a missing piece of Mars' history. August 1, 2016 How a weird Mars rock may be solid proof of an ancient oxygen atmosphere The Gale Crater captured by the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter. CREDIT: NASA/JPL-Caltech/Arizona State University How a

  5. Strontium-85 and plutonium-239 sorption in rock samples from the Semipalatinsk Test Site, Kazakhstan

    SciTech Connect (OSTI)

    Mason, C.F.V.; Lu, N.; Marusak, N.L.; Scheber, B.; Chipera, S.; Daukeyev, D.; Khromushin, I.

    1999-03-01

    The adsorption and desorption of strontium and plutonium were studied as a function of rock type and simulated ground waters from the Semipalatinsk Test Site (STS). Seven different rock types were obtained from the Balapan Region of the STS and were subjected to x-ray diffraction analyses. Two different ground waters were simulated using data supplied by the National Nuclear Center. The results indicate the sorption of strontium is strongly dependent on the minerals present in the rock species and on the total ionic strength of the ground water whereas, in all cases, plutonium was strongly irreversibly sorbed.

  6. Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Disposal in Crystalline Rocks: Status and FY14 Progress Used Fuel Disposal in Crystalline Rocks: Status and FY14 Progress The objective of the Crystalline Disposal R&D work is to advance our understanding of long-term disposal of used fuel in crystalline rocks and to develop necessary experimental and computational capabilities to evaluate various disposal concepts in such media. The major accomplishments during the year include: 1) R&D plan was developed for

  7. Measuring and Modeling Fault Density for Plume-Fault Encounter Probability Estimation

    SciTech Connect (OSTI)

    Jordan, P.D.; Oldenburg, C.M.; Nicot, J.-P.

    2011-05-15

    Emission of carbon dioxide from fossil-fueled power generation stations contributes to global climate change. Storage of this carbon dioxide within the pores of geologic strata (geologic carbon storage) is one approach to mitigating the climate change that would otherwise occur. The large storage volume needed for this mitigation requires injection into brine-filled pore space in reservoir strata overlain by cap rocks. One of the main concerns of storage in such rocks is leakage via faults. In the early stages of site selection, site-specific fault coverages are often not available. This necessitates a method for using available fault data to develop an estimate of the likelihood of injected carbon dioxide encountering and migrating up a fault, primarily due to buoyancy. Fault population statistics provide one of the main inputs to calculate the encounter probability. Previous fault population statistics work is shown to be applicable to areal fault density statistics. This result is applied to a case study in the southern portion of the San Joaquin Basin with the result that the probability of a carbon dioxide plume from a previously planned injection had a 3% chance of encountering a fully seal offsetting fault.

  8. Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling

    SciTech Connect (OSTI)

    TerraTek, A Schlumberger Company

    2008-12-31

    The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data

  9. Gap solitons in rocking optical lattices and waveguides with undulating gratings

    SciTech Connect (OSTI)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2009-07-15

    We report results of a systematic analysis of the stability of one-dimensional solitons in a model including the self-repulsive or attractive cubic nonlinearity and a linear potential represented by a periodically shaking lattice, which was recently implemented in experiments with Bose-Einstein condensates. In optics, the same model applies to undulated waveguiding arrays, which are also available to the experiment. In the case of the repulsive nonlinearity, stability regions are presented, in relevant parameter planes, for fundamental gap solitons and their two-peak and three-peak bound complexes, in the first and second finite band gaps. In the model with the attractive nonlinearity, stability regions are produced for fundamental solitons and their bound states populating the semi-infinite gap. In the first finite and semi-infinite gaps, unstable solitons gradually decay into radiation, while, in the second finite band gap, they are transformed into more complex states, which may represent new species of solitons. For a large amplitude of the rocking-lattice drive, the model is tantamount to that with a 'flashing' lattice potential, which is controlled by periodic sequences of instantaneous kicks. Using this correspondence, we explain generic features of the stability diagrams for the solitons. We also derive a limit case of the latter system, in the form of coupled-mode equations with a 'flashing' linear coupling.

  10. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).

  11. Density equalizing map projections (cartograms) in public health applications

    SciTech Connect (OSTI)

    Merrill, D.W.

    1998-05-01

    In studying geographic disease distributions, one normally compares rates among arbitrarily defined geographic subareas (e.g. census tracts), thereby sacrificing some of the geographic detail of the original data. The sparser the data, the larger the subareas must be in order to calculate stable rates. This dilemma is avoided with the technique of Density Equalizing Map Projections (DEMP){copyright}. Boundaries of geographic subregions are adjusted to equalize population density over the entire study area. Case locations plotted on the transformed map should have a uniform distribution if the underlying disease risk is constant. On the transformed map, the statistical analysis of the observed distribution is greatly simplified. Even for sparse distributions, the statistical significance of a supposed disease cluster can be calculated with validity. The DEMP algorithm was applied to a data set previously analyzed with conventional techniques; namely, 401 childhood cancer cases in four counties of California. The distribution of cases on the transformed map was analyzed visually and statistically. To check the validity of the method, the identical analysis was performed on 401 artificial cases randomly generated under the assumption of uniform risk. No statistically significant evidence for geographic non-uniformity of rates was found, in agreement with the original analysis performed by the California Department of Health Services.

  12. Uranium mineralization in fluorine-enriched volcanic rocks

    SciTech Connect (OSTI)

    Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

    1980-09-01

    Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

  13. Rapid imbibition of water in fractures within unsaturated sedimentary rock

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Chu-Lin; Perfect, Edmund; Donnelly, B.; Bilheux, Hassina Z.; Tremsin, Anton S.; McKay, L. D.; Distefano, Victoria H.; Cai, J. C.; Santodonato, Louis J.

    2015-01-27

    The spontaneous imbibition of water and other liquids into gas-filled fractures in variably-saturated porous media is important in a variety of engineering and geological contexts. However, surprisingly few studies have investigated this phenomenon. In this paper, we present a theoretical framework for predicting the 1-dimensional movement of water into air-filled fractures within a porous medium based on early-time capillary dynamics and spreading over the rough surfaces of fracture faces. The theory permits estimation of sorptivity values for the matrix and fracture zone, as well as a dispersion parameter which quantifies the extent of spreading of the wetting front. Quantitative datamore » on spontaneous imbibition of water in unsaturated Berea sandstone cores were acquired to evaluate the proposed model. The cores with different permeability classes ranging from 50 to 500 mD and were fractured using the Brazilian method. Spontaneous imbibition in the fractured cores was measured by dynamic neutron radiography at the Neutron Imaging Prototype Facility (beam line CG-1D, HFIR), Oak Ridge National Laboratory. Water uptake into both the matrix and the fracture zone exhibited square-root-of-time behavior. The matrix sorptivities ranged from 2.9 to 4.6 mm s-0.5, and increased linearly as the permeability class increased. The sorptivities of the fracture zones ranged from 17.9 to 27.1 mm s-0.5, and increased linearly with increasing fracture aperture width. The dispersion coefficients ranged from 23.7 to 66.7 mm2 s-1 and increased linearly with increasing fracture aperture width and damage zone width. Both theory and observations indicate that fractures can significantly increase spontaneous imbibition in unsaturated sedimentary rock by capillary action and surface spreading on rough fracture faces. Fractures also increase the dispersion of the wetting front. In conclusion, further research is needed to investigate this phenomenon in other natural and engineered

  14. Rock Sampling At Florida Mountains Area (Brookins, 1982) | Open...

    Open Energy Info (EERE)

    analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

  15. Rock Sampling At Zuni Mountains Nm Area (Brookins, 1982) | Open...

    Open Energy Info (EERE)

    analysis from U,Th,K concentrations. References D. G. Brookins (1982) Potassium, Uranium, Thorium Radiogenic Heat Contribution To Heat Flow In The Precambrian And Younger...

  16. Rock Sampling At Chena Geothermal Area (Kolker, 2008) | Open...

    Open Energy Info (EERE)

    Date 1973 - 1974 Usefulness useful DOE-funding Unknown Exploration Basis Masters thesis Norma Biggar, Geophysical Institute University of Alaska Notes Petrographic analysis...

  17. Statistical approach to nuclear level density

    SciTech Connect (OSTI)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2014-10-15

    We discuss the level density in a finite many-body system with strong interaction between the constituents. Our primary object of applications is the atomic nucleus but the same techniques can be applied to other mesoscopic systems. We calculate and compare nuclear level densities for given quantum numbers obtained by different methods, such as nuclear shell model (the most successful microscopic approach), our main instrument - moments method (statistical approach), and Fermi-gas model; the calculation with the moments method can use any shell-model Hamiltonian excluding the spurious states of the center-of-mass motion. Our goal is to investigate statistical properties of nuclear level density, define its phenomenological parameters, and offer an affordable and reliable way of calculation.

  18. High power density solid oxide fuel cells

    DOE Patents [OSTI]

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  19. Fabrication of low density ceramic material

    DOE Patents [OSTI]

    Meek, T.T.; Blake, R.D.; Sheinberg, H.

    1985-01-01

    A precursor mixture and a method of making a low-density ceramic structural material are disclosed. The precursor mixture includes hollow microballoons, typically made of glass, together with a cementing agent capable of being cured by microwave irradiation. A preferred cementing agent is liquid hydrated potassium silicate, which is mixed with the glass microballoons to form a slurry. Upon irradiation the potassium silicate is dehydrated to form a solid porous matrix in which the microballoons are evenly distributed. Ground glass or other filling agents may be included in the slurry to enhance the properties of the final product. Low-density structural ceramics having densities on the order of 0.1 to 0.3 are obtained.

  20. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    SciTech Connect (OSTI)

    Yusof, Mohd Fahmi Mohd Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz; Bauk, Sabar; Hashim, Rokiah

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  1. EA-1987: Parker-Headgate Rock and Parker-Bouse Rebuild Project...

    Broader source: Energy.gov (indexed) [DOE]

    a proposal to rebuild the existing Parker Dam-Headgate Rock and Parker Dam-Bouse 161-kilovolt transmission lines along the Colorado River in western Arizona and eastern California. ...

  2. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform tomore » illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.« less

  3. Multiporosity flow in fractured low-permeability rocks: Extension to shale hydrocarbon reservoirs

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya; Heath, Jason E.

    2015-02-05

    We presented a multiporosity extension of classical double and triple-porosity fractured rock flow models for slightly compressible fluids. The multiporosity model is an adaptation of the multirate solute transport model of Haggerty and Gorelick (1995) to viscous flow in fractured rock reservoirs. It is a generalization of both pseudo steady state and transient interporosity flow double-porosity models. The model includes a fracture continuum and an overlapping distribution of multiple rock matrix continua, whose fracture-matrix exchange coefficients are specified through a discrete probability mass function. Semianalytical cylindrically symmetric solutions to the multiporosity mathematical model are developed using the Laplace transform to illustrate its behavior. Furthermore, the multiporosity model presented here is conceptually simple, yet flexible enough to simulate common conceptualizations of double and triple-porosity flow. This combination of generality and simplicity makes the multiporosity model a good choice for flow modelling in low-permeability fractured rocks.

  4. Solar Cells Light Up Prison Cells on 'The Rock' - News Feature...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Cells Light Up Prison Cells on 'The Rock' July 23, 2012 This photo shows an island ... The 1,300 solar panels on the Cellhouse building are a dark blue. Enlarge image Alcatraz ...

  5. Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Abstract Large, young calderas...

  6. NEUTRON DENSITY CONTROL IN A NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Young, G.J.

    1959-06-30

    The method and means for controlling the neutron density in a nuclear reactor is described. It describes the method and means for flattening the neutron density distribution curve across the reactor by spacing the absorbing control members to varying depths in the central region closer to the center than to the periphery of the active portion of the reactor to provide a smaller neutron reproduction ratio in the region wherein the members are inserted, than in the remainder of the reactor thereby increasing the over-all potential power output.

  7. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, Ainslie T.; Marsters, Robert G.; Moreno, Dawn K.

    1984-01-01

    A microcellular low density foam of poly(4-methyl-1-pentene) which is particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 .mu.m). Methods for forming the foam and articles are given; and the yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  8. Low density, microcellular foams, preparation, and articles

    DOE Patents [OSTI]

    Young, A.T.

    1982-03-03

    A microcellular low-density foam of poly(4-methyl-1-pentene) particularly useful for forming targets for inertial confinement fusion has been developed. Articles made from the foam have been machined to tolerances of 0.0001 inch, although the densities of the fragile foam are low (about 10 to about 100 mg/cc) and the cell sizes are small (about 10 to about 30 ..mu..m). Methods for forming the foam and articles are given. The yield strength of the foam of the invention is higher than was obtained in other structures of this same material.

  9. Precise orientation of single crystals by a simple x-ray diffraction rocking curve method

    SciTech Connect (OSTI)

    Doucette, L.D.; Pereira da Cunha, M.; Lad, R.J.

    2005-03-01

    A simple method has been developed for accurately measuring the crystallographic orientation of a single crystal boule, employing a conventional four-circle x-ray diffraction arrangement in the rocking curve mode which relaxes the need for precise instrument and/or reference alignment. By acquiring a total of eight rocking curve measurements at specific orientations about the specimen azimuth, the absolute miscut angle between a crystal surface and the desired crystallographic plane can be resolved to within {+-}0.01 deg.

  10. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr.; Younane Abousleiman

    2004-04-01

    The research during this project has concentrated on developing a correlation between rock deformation mechanisms and their acoustic velocity signature. This has included investigating: (1) the acoustic signature of drained and undrained unconsolidated sands, (2) the acoustic emission signature of deforming high porosity rocks (in comparison to their low porosity high strength counterparts), (3) the effects of deformation on anisotropic elastic and poroelastic moduli, and (4) the acoustic tomographic imaging of damage development in rocks. Each of these four areas involve triaxial experimental testing of weak porous rocks or unconsolidated sand and involves measuring acoustic properties. The research is directed at determining the seismic velocity signature of damaged rocks so that 3-D or 4-D seismic imaging can be utilized to image rock damage. These four areas of study are described in the report: (1) Triaxial compression experiments have been conducted on unconsolidated Oil Creek sand at high confining pressures. (2) Initial experiments on measuring the acoustic emission activity from deforming high porosity Danian chalk were accomplished and these indicate that the AE activity was of a very low amplitude. (3) A series of triaxial compression experiments were conducted to investigate the effects of induced stress on the anisotropy developed in dynamic elastic and poroelastic parameters in rocks. (4) Tomographic acoustic imaging was utilized to image the internal damage in a deforming porous limestone sample. Results indicate that the deformation damage in rocks induced during laboratory experimentation can be imaged tomographically in the laboratory. By extension the results also indicate that 4-D seismic imaging of a reservoir may become a powerful tool for imaging reservoir deformation (including imaging compaction and subsidence) and for imaging zones where drilling operation may encounter hazardous shallow water flows.

  11. Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances

    SciTech Connect (OSTI)

    Faybishenko, B.

    1999-02-01

    This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

  12. Proceedings of the international symposium on engineering in complex rock formations

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This book contains over 100 papers. Some of the titles are: Rheology of rock-salt and its application for radioactive waste disposal purposes; A scale model study on the deformation around the drift in Korean inclined coal seam; Stabilization of a landslide in fractured marls and limestone; Dead Sea underground hydroelectric power station; and Rock mechanics in design of underground power house of lubuge hydropower project.

  13. Power balance in a high-density field reversed configuration plasma

    SciTech Connect (OSTI)

    Renneke, R. M.; Intrator, T. P.; Hsu, S. C.; Wurden, G. A.; Waganaar, W. J.; Ruden, E. L.; Grabowski, T. C.

    2008-06-15

    A global power balance analysis has been performed for the Field Reversed Experiment with Liner high density (>5x10{sup 22} m{sup -3}) field reversed configuration (FRC) plasma. The analysis was based on a zero-dimensional power balance model [D. J. Rey and M. Tuszewski, Phys. Fluids 27, 1514 (1984)]. The key findings are as follows. First, the percentage of radiative losses relative to total loss is an order of magnitude lower than previous lower density FRC experiments. Second, Ohmic heating was found to correlate with the poloidal flux trapping at FRC formation, suggesting that poloidal flux dissipation is primarily responsible for plasma heating. Third, high density FRCs analyzed in this work reinforce the low-density adiabatic scaling, which shows that particle confinement time and flux confinement time are approximately equal.

  14. ACOUSTICAL IMAGING AND MECHANICAL PROPERTIES OF SOFT ROCK AND MARINE SEDIMENTS

    SciTech Connect (OSTI)

    Thurman E. Scott, Jr., Ph.D.; Younane Abousleiman, Ph.D.; Musharraf Zaman, Ph.D., P.E.

    2001-01-31

    During this phase of the project the research team concentrated on acquisition of acoustic emission data from the high porosity rock samples. The initial experiments indicated that the acoustic emission activity from high porosity Danian chalk were of a very low amplitude. Even though the sample underwent yielding and significant plastic deformation the sample did not generate significant AE activity. This was somewhat surprising. These initial results call into question the validity of attempting to locate AE activity in this weak rock type. As a result the testing program was slightly altered to include measuring the acoustic emission activity from many of the rock types listed in the research program. The preliminary experimental results indicate that AE activity in the sandstones is much higher than in the carbonate rocks (i.e., the chalks and limestones). This observation may be particularly important for planning microseismic imaging of reservoir rocks in the field environment. The preliminary results suggest that microseismic imaging of reservoir rock from acoustic emission activity generated from matrix deformation (during compaction and subsidence) would be extremely difficult to accomplish.

  15. Durable high-density data storage

    SciTech Connect (OSTI)

    Stutz, R.A.; Lamartine, B.C.

    1996-09-01

    This paper will discuss the Focus Ion Beam (FIB) milling process, media life considerations, and methods of reading the micromilled data. The FIB process for data storage provides a new non-magnetic storage method for archiving large amounts of data. The process stores data on robust materials such as steel, silicon, and gold coated silicon. The storage process was developed to provide a method to insure the long term storage life of data. We estimate the useful life of data written on silicon or gold coated silicon to be a few thousand years. The process uses an ion beam to carve material from the surface much like stone cutting. The deeper information is carved into the media the longer the expected life of the information. The process can read information in three formats: (1) binary at densities of 3.5 Gbits/cm{sup 2}, (2) alphanumeric at optical or non-optical density, and (3) graphical at optical and non-optical density. The formats can be mixed on the same media; and thus it is possible to record, in a human readable format, instructions that can be read using an optical microscope. These instructions provide guidance on reading the higher density information.

  16. Interferometer for the measurement of plasma density

    DOE Patents [OSTI]

    Jacobson, Abram R.

    1980-01-01

    An interferometer which combines the advantages of a coupled cavity interferometer requiring alignment of only one light beam, and a quadrature interferometer which has the ability to track multi-fringe phase excursions unambiguously. The device utilizes a Bragg cell for generating a signal which is electronically analyzed to unambiguously determine phase modulation which is proportional to the path integral of the plasma density.

  17. Quantum crystallographic charge density of urea

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wall, Michael E.

    2016-07-01

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  18. NREL: Energy Analysis - Anna Wall

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anna Wall Photo of Anna Wall Anna Wall is a member of the Technology Systems and Sustainability Analysis Group in the Strategic Energy Analysis Center. Energy Technologies Analyst On staff since April 2014 Phone number: 303-384-6887 E-mail: anna.wall@nrel.gov Areas of expertise Geochemistry (aqueous and hard rock), with applications to geothermal resource characterization and mineral carbon sequestration Ratings methodologies and energy resource reporting standards Sustainable equity finance:

  19. Evolution of density perturbations in decaying vacuum cosmology

    SciTech Connect (OSTI)

    Borges, H. A.; Pigozzo, C.; Carneiro, S.; Fabris, J. C.

    2008-02-15

    We study cosmological perturbations in the context of an interacting dark energy model, in which the cosmological term decays linearly with the Hubble parameter, with concomitant matter production. A previous joint analysis of the redshift-distance relation for type Ia supernovas, barionic acoustic oscillations, and the position of the first peak in the anisotropy spectrum of the cosmic microwave background has led to acceptable values for the cosmological parameters. Here we present our analysis of small perturbations, under the assumption that the cosmological term, and therefore the matter production, are strictly homogeneous. Such a homogeneous production tends to dilute the matter contrast, leading to a late-time suppression in the power spectrum. Nevertheless, an excellent agreement with the observational data can be achieved by using a higher matter density as compared to the concordance value previously obtained. This may indicate that our hypothesis of homogeneous matter production must be relaxed by allowing perturbations in the interacting cosmological term.

  20. Effects of prior deformation and annealing process on microstructure and annealing twin density in a nickel based alloy

    SciTech Connect (OSTI)

    Li, Zhigang; Zhang, Lanting; Sun, Nairong; Sun, Yanle; Shan, Aidang

    2014-09-15

    The nickel based alloys with different Σ3 boundary density were achieved by cold-rolling and subsequent annealing treatment. Electron backscattered diffraction analysis showed that the grain size distribution changed with the processing parameters, and the discontinuous Σ3 boundary became continuous with the increase of prior deformation level. Furthermore, the Σ3 boundary density was found to be manipulated by both grain size distribution and Σ3 boundary density per grain which showed an increasing trend with prior deformation level and annealing temperature. - Highlights: • The prior deformation amount influenced the morphology of Σ3 boundary. • The grain size was not the only factor influencing Σ3 boundary density. • The fact that grain size distribution had an important effect on Σ3 boundary density was confirmed. • The nature of grain size distribution on Σ3 boundary density was revealed. • There was a great deviation in Σ3 boundary density between experimental results and predictions.

  1. ?Linear Gas Jet with Tailored Density Profile"

    SciTech Connect (OSTI)

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  2. Influence of rock discontinuities on coal mine subsidence. Open file report 29 Sep 80-10 Sep 83

    SciTech Connect (OSTI)

    O'Connor, K.M.; O'Rourke, J.E.; Carr, J.

    1983-09-10

    This report documents the process of literature review, site selection, instrument installation, data acquisition, and preliminary data reduction performed to evaluate the influence of rock mass discontinuities on coal mine subsidence. A system of surface, subsurface, and mine level instrumentation was installed at the Armco No. 7 Mine in Montcoal, WV, where the overburden ranged from 630 to 1,040 ft thick. Survey monuments, borehole pressure cells, full profile borehole inclinometer-extensometers, mine level extensometers, stressmeters, and tape extensometer convergence stations were installed to monitor displacements and stress changes. Final design of the instrumentation system was based on (1) review of available information, (2) field mapping and analysis of areal photography, (3) drilling, and (4) borehole geophysics. The report contains the complete graphed data of stress and displacements accompanying the longwall mining of a 4,800-ft-long by 480-ft-wide coal panel.

  3. Probability density function method for variable-density pressure-gradient-driven turbulence and mixing

    SciTech Connect (OSTI)

    Bakosi, Jozsef; Ristorcelli, Raymond J

    2010-01-01

    Probability density function (PDF) methods are extended to variable-density pressure-gradient-driven turbulence. We apply the new method to compute the joint PDF of density and velocity in a non-premixed binary mixture of different-density molecularly mixing fluids under gravity. The full time-evolution of the joint PDF is captured in the highly non-equilibrium flow: starting from a quiescent state, transitioning to fully developed turbulence and finally dissipated by molecular diffusion. High-Atwood-number effects (as distinguished from the Boussinesq case) are accounted for: both hydrodynamic turbulence and material mixing are treated at arbitrary density ratios, with the specific volume, mass flux and all their correlations in closed form. An extension of the generalized Langevin model, originally developed for the Lagrangian fluid particle velocity in constant-density shear-driven turbulence, is constructed for variable-density pressure-gradient-driven flows. The persistent small-scale anisotropy, a fundamentally 'non-Kolmogorovian' feature of flows under external acceleration forces, is captured by a tensorial diffusion term based on the external body force. The material mixing model for the fluid density, an active scalar, is developed based on the beta distribution. The beta-PDF is shown to be capable of capturing the mixing asymmetry and that it can accurately represent the density through transition, in fully developed turbulence and in the decay process. The joint model for hydrodynamics and active material mixing yields a time-accurate evolution of the turbulent kinetic energy and Reynolds stress anisotropy without resorting to gradient diffusion hypotheses, and represents the mixing state by the density PDF itself, eliminating the need for dubious mixing measures. Direct numerical simulations of the homogeneous Rayleigh-Taylor instability are used for model validation.

  4. Differentiable but exact formulation of density-functional theory

    SciTech Connect (OSTI)

    Kvaal, Simen Ekström, Ulf; Helgaker, Trygve; Teale, Andrew M.; School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD

    2014-05-14

    The universal density functional F of density-functional theory is a complicated and ill-behaved function of the density—in particular, F is not differentiable, making many formal manipulations more complicated. While F has been well characterized in terms of convex analysis as forming a conjugate pair (E, F) with the ground-state energy E via the Hohenberg–Kohn and Lieb variation principles, F is nondifferentiable and subdifferentiable only on a small (but dense) subset of its domain. In this article, we apply a tool from convex analysis, Moreau–Yosida regularization, to construct, for any ε > 0, pairs of conjugate functionals ({sup ε}E, {sup ε}F) that converge to (E, F) pointwise everywhere as ε → 0{sup +}, and such that {sup ε}F is (Fréchet) differentiable. For technical reasons, we limit our attention to molecular electronic systems in a finite but large box. It is noteworthy that no information is lost in the Moreau–Yosida regularization: the physical ground-state energy E(v) is exactly recoverable from the regularized ground-state energy {sup ε}E(v) in a simple way. All concepts and results pertaining to the original (E, F) pair have direct counterparts in results for ({sup ε}E, {sup ε}F). The Moreau–Yosida regularization therefore allows for an exact, differentiable formulation of density-functional theory. In particular, taking advantage of the differentiability of {sup ε}F, a rigorous formulation of Kohn–Sham theory is presented that does not suffer from the noninteracting representability problem in standard Kohn–Sham theory.

  5. ON THE SIZE, SHAPE, AND DENSITY OF DWARF PLANET MAKEMAKE

    SciTech Connect (OSTI)

    Brown, M. E.

    2013-04-10

    A recent stellar occultation by the dwarf planet Makemake provided an excellent opportunity to measure the size and shape of one of the largest objects in the Kuiper belt. The analysis of these results provided what were reported to be precise measurements of the lengths of the projected axes, the albedo, and even the density of Makemake, but these results were, in part, derived from qualitative arguments. We reanalyzed the occultation timing data using a quantitative statistical description, and, in general, found the previously reported results on the shape of Makemake to be unjustified. In our solution, in which we use our inference from photometric data that Makemake is being viewed nearly pole-on, we find a 1{sigma} upper limit to the projected elongation of Makemake of 1.02, with measured equatorial diameter of 1434 {+-} 14 km and a projected polar diameter of 1422 {+-} 14 km, yielding an albedo of 0.81{sup +0.01}{sub -0.02}. If we remove the external constraint on the pole position of Makemake, we find instead a 1{sigma} upper limit to the elongation of 1.06, with a measured equatorial diameter of 1434{sup +48}{sub -18} km and a projected polar diameter of 1420{sup +18}{sub -24} km, yielding an albedo of 0.81{sup +0.03}{sub -0.05}. Critically, we find that the reported measurement of the density of Makemake was based on the misapplication of the volatile retention models. A corrected analysis shows that the occultation measurements provide no meaningful constraint on the density of Makemake.

  6. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  7. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral...

    Open Energy Info (EERE)

    to analyze these gases in fluid inclusions in jasperoid around the Pueblo Viejo gold-silver deposit, in vein minerals from the Creede silver-lead-zinc deposit, and from...

  8. Distribution of Radiation Density in a Homogeneous Cloudy Laye

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Radiation Density in a Homogeneous Cloudy Layer S. V. Dvoryashin, K. A. Shukorov, A. H. ... method) allowing calculating radiation density in homogeneous and non-uniform ...

  9. Real-Time Simultaneous Measurements of Size, Density, and Composition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simultaneous Measurements of Size, Density, and Composition of Single Ultrafine Diesel Tailpipe Particles Real-Time Simultaneous Measurements of Size, Density, and Composition of ...

  10. Density Functional Theory Approach to Nuclear Fission (Conference...

    Office of Scientific and Technical Information (OSTI)

    Density Functional Theory Approach to Nuclear Fission Citation Details In-Document Search Title: Density Functional Theory Approach to Nuclear Fission You are accessing a document ...

  11. Density Functional Theory Study of Surface Carbonate Formation...

    Office of Scientific and Technical Information (OSTI)

    Density Functional Theory Study of Surface Carbonate Formation on BaO(001) Citation Details In-Document Search Title: Density Functional Theory Study of Surface Carbonate Formation ...

  12. Ultra Low Density Amorphous Shape Memory polymer Foams. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Ultra Low Density Amorphous Shape Memory polymer Foams. Citation Details In-Document Search Title: Ultra Low Density Amorphous Shape Memory polymer Foams. You are accessing a ...

  13. Time Adaptive Conditional Kernel Density Estimation for Wind...

    Office of Scientific and Technical Information (OSTI)

    Time Adaptive Conditional Kernel Density Estimation for Wind Power Forecasting Citation Details In-Document Search Title: Time Adaptive Conditional Kernel Density Estimation for ...

  14. Combinatorial nuclear level-density model (Journal Article) ...

    Office of Scientific and Technical Information (OSTI)

    Combinatorial nuclear level-density model Citation Details In-Document Search Title: Combinatorial nuclear level-density model You are accessing a document from the Department ...

  15. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...

  16. XUV Absorption by Solid Density Aluminum (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    XUV Absorption by Solid Density Aluminum Citation Details In-Document Search Title: XUV Absorption by Solid Density Aluminum An inverse bremsstrahlung model for plasmas and simple ...

  17. Mitigating Breakdown in High Energy Density Perovskite Polymer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors Mitigating Breakdown in High Energy Density Perovskite Polymer Nanocomposite Capacitors 2012 ...

  18. Controlling the Actuation Rate of Low Density Shape Memory Polymer...

    Office of Scientific and Technical Information (OSTI)

    Density Shape Memory Polymer Foams in Water Citation Details In-Document Search Title: Controlling the Actuation Rate of Low Density Shape Memory Polymer Foams in Water Authors: ...

  19. Using Radio Waves to Control Fusion Plasma Density

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Radio Waves to Control Fusion Plasma Density Using Radio Waves to Control Fusion Plasma Density Simulations Run at NERSC Support Fusion Experiments at MIT, General Atomics ...

  20. Pairing Nambu-Goldstone Modes within Nuclear Density Functional...

    Office of Scientific and Technical Information (OSTI)

    Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Citation Details ... Title: Pairing Nambu-Goldstone Modes within Nuclear Density Functional Theory Authors: ...

  1. Accuracy of density functionals for molecular electronics: The...

    Office of Scientific and Technical Information (OSTI)

    Accuracy of density functionals for molecular electronics: The Anderson junction Title: Accuracy of density functionals for molecular electronics: The Anderson junction Authors: ...

  2. Molecular adsorption on metal surfaces with van der Waals density...

    Office of Scientific and Technical Information (OSTI)

    Molecular adsorption on metal surfaces with van der Waals density functionals Title: Molecular adsorption on metal surfaces with van der Waals density functionals Authors: Li, Guo ...

  3. Low density biodegradable shape memory polyurethane foams for...

    Office of Scientific and Technical Information (OSTI)

    Low density biodegradable shape memory polyurethane foams for embolic biomedical applications Citation Details In-Document Search Title: Low density biodegradable shape memory...

  4. Basic Research Needs for High Energy Density Laboratory Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory. Basic Research Needs for High Energy Density Laboratory Physics Report of the Workshop on High Energy Density Laboratory Physics Research Needs November ...

  5. High Energy Density Laboratory Plasmas Program | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program NNSA invests in next ...

  6. Probability Density Function Method for Langevin Equations with...

    Office of Scientific and Technical Information (OSTI)

    Probability Density Function Method for Langevin Equations with Colored Noise Citation Details In-Document Search Title: Probability Density Function Method for Langevin Equations ...

  7. Stabilizing laser energy density on a target during pulsed laser...

    Office of Scientific and Technical Information (OSTI)

    Patent: Stabilizing laser energy density on a target during pulsed laser deposition of thin films Citation Details In-Document Search Title: Stabilizing laser energy density on a ...

  8. Research on Factors Relating to Density and Climate Change |...

    Open Energy Info (EERE)

    on Factors Relating to Density and Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Research on Factors Relating to Density and Climate Change Agency...

  9. A New Mechanism of Charge Density Wave Discovered in Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 A New Mechanism of Charge Density Wave Discovered in Transition Metal Dichalcogenides Charge density waves (CDW) are a type of coupled electronic-lattice instability found in...

  10. Integrating rock mechanics issues with repository design through design process principles and methodology

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1996-04-01

    A good designer needs not only knowledge for designing (technical know-how that is used to generate alternative design solutions) but also must have knowledge about designing (appropriate principles and systematic methodology to follow). Concepts such as {open_quotes}design for manufacture{close_quotes} or {open_quotes}concurrent engineering{close_quotes} are widely used in the industry. In the field of rock engineering, only limited attention has been paid to the design process because design of structures in rock masses presents unique challenges to the designers as a result of the uncertainties inherent in characterization of geologic media. However, a stage has now been reached where we are be able to sufficiently characterize rock masses for engineering purposes and identify the rock mechanics issues involved but are still lacking engineering design principles and methodology to maximize our design performance. This paper discusses the principles and methodology of the engineering design process directed to integrating site characterization activities with design, construction and performance of an underground repository. Using the latest information from the Yucca Mountain Project on geology, rock mechanics and starter tunnel design, the current lack of integration is pointed out and it is shown how rock mechanics issues can be effectively interwoven with repository design through a systematic design process methodology leading to improved repository performance. In essence, the design process is seen as the use of design principles within an integrating design methodology, leading to innovative problem solving. In particular, a new concept of {open_quotes}Design for Constructibility and Performance{close_quotes} is introduced. This is discussed with respect to ten rock mechanics issues identified for repository design and performance.

  11. MicroRNA-340 suppresses osteosarcoma tumor growth and metastasis by directly targeting ROCK1

    SciTech Connect (OSTI)

    Zhou, Xin; Wei, Min; Wang, Wei

    2013-08-09

    Highlights: •miR-340 is downregulated in OS cell lines and tissues. •miR-340 suppresses OS cell proliferation, migration and invasion. •miR-340 suppresses tumor growth and metastasis of OS cells in nude mice. •ROCK1 is a target gene of miR-340. •ROCK1 is involved in miR-340-induced suppression of OS cell proliferation, migration and invasion. -- Abstract: MicroRNAs (miRNAs) play key roles in cancer development and progression. In the present study, we investigated the role of miR-340 in the progression and metastasis of osteosarcoma (OS). Our results showed that miR-340 was frequently downregulated in OS tumors and cell lines. Overexpression of miR-340 in OS cell lines significantly inhibited cell proliferation, migration, and invasion in vitro, and tumor growth and metastasis in a xenograft mouse model. ROCK1 was identified as a target of miR-340, and ectopic expression of miR-340 downregulated ROCK1 by direct binding to its 3′ untranslated region. siRNA-mediated silencing of ROCK1 phenocopied the effects of miR-340 overexpression, whereas restoration of ROCK1 in miR-340-overexpressing OS cells reversed the suppressive effects of miR-340. Together, these findings indicate that miR-340 acts as a tumor suppressor and its downregulation in tumor tissues may contribute to the progression and metastasis of OS through a mechanism involving ROCK1, suggesting miR-340 as a potential new diagnostic and therapeutic target for the treatment of OS.

  12. Ultra-high density diffraction grating

    DOE Patents [OSTI]

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  13. Global coherence of dust density waves

    SciTech Connect (OSTI)

    Killer, Carsten; Melzer, Andr

    2014-06-15

    The coherence of self-excited three-dimensional dust density waves has been experimentally investigated by comparing global and local wave properties. For that purpose, three-dimensional dust clouds have been confined in a radio frequency plasma with thermophoretic levitation. Global wave properties have been measured from the line-of-sight integrated dust density obtained from homogenous light extinction measurements. Local wave properties have been obtained from thin, two-dimensional illuminated laser slices of the cloud. By correlating the simultaneous global and local wave properties, the spatial coherence of the waves has been determined. We find that linear waves with small amplitudes tend to be fragmented, featuring an incoherent wave field. Strongly non-linear waves with large amplitudes, however, feature a strong spatial coherence throughout the dust cloud, indicating a high level of synchronization.

  14. Current density fluctuations and ambipolarity of transport

    SciTech Connect (OSTI)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center_dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  15. Current density fluctuations and ambipolarity of transport

    SciTech Connect (OSTI)

    Shen, W.; Dexter, R.N.; Prager, S.C.

    1991-10-01

    The fluctuation in the plasma current density is measured in the MIST reversed field pinch experiment. Such fluctuations, and the measured radial profile of the k spectrum of magnetic fluctuations, supports the view and that low frequency fluctuations (f < 30 kHz) are tearing modes and high frequency fluctuations (30 kHz < f < 250 kHz) are localized turbulence in resonance with the local equilibrium magnetic field (i.e., k {center dot} B = 0). Correlation of current density and magnetic fluctuations (< {tilde j}{parallel}{tilde B}{sub r} >) demonstrates that radial particle transport from particle motion parallel to a fluctuating magnetic field is ambipolar over the full frequency range.

  16. Vision 20/20: Mammographic breast density and its clinical applications

    SciTech Connect (OSTI)

    Ng, Kwan-Hoong Lau, Susie

    2015-12-15

    Breast density is a strong predictor of the failure of mammography screening to detect breast cancer and is a strong predictor of the risk of developing breast cancer. The many imaging options that are now available for imaging dense breasts show great promise, but there is still the question of determining which women are “dense” and what imaging modality is suitable for individual women. To date, mammographic breast density has been classified according to the Breast Imaging-Reporting and Data System (BI-RADS) categories from visual assessment, but this is known to be very subjective. Despite many research reports, the authors believe there has been a lack of physics-led and evidence-based arguments about what breast density actually is, how it should be measured, and how it should be used. In this paper, the authors attempt to start correcting this situation by reviewing the history of breast density research and the debates generated by the advocacy movement. The authors review the development of breast density estimation from pattern analysis to area-based analysis, and the current automated volumetric breast density (VBD) analysis. This is followed by a discussion on seeking the ground truth of VBD and mapping volumetric methods to BI-RADS density categories. The authors expect great improvement in VBD measurements that will satisfy the needs of radiologists, epidemiologists, surgeons, and physicists. The authors believe that they are now witnessing a paradigm shift toward personalized breast screening, which is going to see many more cancers being detected early, with the use of automated density measurement tools as an important component.

  17. Energy flux density in a thermoacoustic couple

    SciTech Connect (OSTI)

    Cao, N.; Chen, S. |; Olson, R.; Swift, G.W.

    1996-06-01

    The hydro- and thermodynamical processes near and within a thermoacoustic couple are simulated and analyzed by numerical solution of the compressible Navier-Stokes, continuity, and energy equations for an ideal gas, concentrating on the time-averaged energy flux density in the gas. The numerical results show details of the heat sink at one end of the plates in the thermoacoustic couple. 15 refs., 10 figs., 1 tab.

  18. Density fluctuations of polymers in disordered media

    SciTech Connect (OSTI)

    Deutsch, Joshua M.; Olvera de la Cruz, Monica

    2011-03-02

    We study self-avoiding random walks in an environment where sites are excluded randomly, in two and three dimensions. For a single polymer chain, we study the statistics of the time averaged monomer density and show that these are well described by multifractal statistics. This is true even far from the percolation transition of the disordered medium. We investigate solutions of chains in a disordered environment and show that the statistics cease to be multifractal beyond the screening length of the solution.

  19. Hot Dry Rock Geothermal Energy Development Program. Annual report, fiscal year 1983

    SciTech Connect (OSTI)

    Smith, M.C.; Nunz, G.J.; Wilson, M.G.

    1985-02-01

    Emphasis was on hydraulic-fracturing experiments at depths around 3.5 km (11,473 ft) in the two inclined wells of the Phase II system at Fenton Hill, New Mexico; on improved facilities and techniques for mapping the source locations of acoustic signals generated by the fracturing events; on mathematical modeling of the fracture systems produced in these and earlier experiments; and on development of a family of slimline high-temperature downhole instruments that can be used within or through relatively small-diameter pressure tubing. Hydraulic fracturing at a vertical depth of approximately 3500 m (11,500 ft) in well EE-2, the deeper well, produced fractures that, in acoustic maps, appear to occupy a large, roughly ellipsoidal volume whose major axis is directed to the north of the other well, EE-3. Hydraulic fracturing from EE-3 at a similar depth produced another set of fractures that appear to be approximately parallel to and centered about 180 m (600 ft) east of the earlier set. Subsequent fluid injections reduced the distance between the two sets, but no hydraulic connection between them was established. Modeling the silica concentrations of fluid circulated through the earlier Phase I system indicates that this type of permeation also contributes significantly to heat extraction during system operation. The precision and accuracy of locating the sources of acoustic signals detected during hydraulic-fracturing operations have been increased by improvements in equipment, drilling of another deep hole for geophone emplacement, and additional station calibrations. Analysis of the signals has also been improved and broadened. Development of slimline downhole instruments has included a detonator tool, a geophone package, and final design of a high-temperature borehole acoustic televiewer. A crosswell acoustic transceiver has also been developed for investigating rock type and structure between wellbores. 32 refs., 35 figs.

  20. Porosity and surface area evolution during weathering of two igneous rocks

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis; Cole, David; Rother, Gernot; Jin, Lixin; Buss, Heather; Brantley, S. L.

    2013-01-01

    During weathering, rocks release nutrients and storewater vital for growth ofmicrobial and plant life. Thus, the growth of porosity as weathering advances into bedrock is a life-sustaining process for terrestrial ecosystems. Here, we use small-angle and ultra small-angle neutron scattering to show how porosity develops during initial weathering under tropical conditions of two igneous rock compositions, basaltic andesite and quartz diorite. The quartz diorite weathers spheroidally while the basaltic andesite does not. The weathering advance rates of the two systems also differ, perhaps due to this difference in mechanism, from 0.24 to 100 mm kyr1, respectively. The scattering data document how surfaces inside the feldspar-dominated rocks change as weathering advances into the protolith. In the unaltered rocks, neutrons scatter fromtwo types of featureswhose dimensions vary from6 nmto 40 lm: pores and bumps on pore grain surfaces. These features result in scattering data for both unaltered rocks that document multi-fractal behavior: scattering is best described by amass fractal dimension (Dm) and a surface fractal dimension (Ds) for features of length scales greater than and less than 1 lm, respectively. In the basaltic andesite, Dm is approximately 2.9 and Ds is approximately 2.7. The mechanism of solute transport during weathering of this rock is diffusion. Porosity and surface area increase from 1.5%to 8.5%and 3 to 23 m2 g1 respectively in a relatively consistent trend across themm-thick plagioclase reaction front. Across this front, both fractal dimensions decrease, consistentwith development of amoremonodisperse pore networkwith smoother pore surfaces. Both changes are consistent largely with increasing connectivity of pores without significant surface roughening, as expected for transport-limited weathering. In contrast, porosity and surface area increase from 1.3% to 9.5% and 1.5 to 13 m2 g1 respectively across a many cm-thick reaction front in the

  1. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect (OSTI)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  2. Effects of argon gas pressure on its metastable-state density in high-density plasmas

    SciTech Connect (OSTI)

    Seo, B. H.; Kim, J. H.; You, S. J.

    2015-05-15

    The effect of argon gas pressure on its metastable density in inductively coupled plasmas (ICPs) is investigated by using the laser-induced fluorescence method. Our results show that the metastable-state density of argon varies with the gas pressure depending on the measurement position; the density decreases with the pressure at a position far from the ICP antenna, whereas it increases with the pressure at a position near the antenna. This contrast in the metastable-state density trend with the pressure is explained by considering the electron temperature variations at the two measurement positions. The theoretical interpretation and calculation using a global model are also addressed in detail in this paper.

  3. Extent of water-rock interactions in Lower Permian Wolfcamp carbonates, Palo Duro Basin, Texas

    SciTech Connect (OSTI)

    Fisher, R.S.; Posey, H.H.

    1985-01-01

    A laterally-extensive permeable zone in upper Wolfcampian carbonate strata constitutes the first important transmissive unit below a thick evaporite sequence that is being considered for nuclear waste isolation. The extent of water-rock interaction was evaluated by comparing the chemical and isotopic composition of formation water and core collected at four DOE test wells. Wolfcamp mineralogy is dominantly calcite and dolomite with minor anhydrite at each of the four sites despite minor variations in depositional environment, diagenetic alteration, and abundance of clastic material. Isotopic compositions of calcite and dolomite and of anhydrite are within the ranges expected for Permian marine sediments altered by early diagenesis. Wolfcamp formation water compositions are more variable than host rock compositions, and are not completely controlled by local water-rock equilibria. Wolfcamp brines from two wells in the western part of the basin have depleted isotopic compositions relative to the two eastern wells and have not equilibrated with Wolfcamp carbonates, whereas the eastern fluids have. Strontium in the western samples is more radiogenic than that of the eastern samples, indicating a greater influence of clays or feldspars on the western fluids. Comparison of water and rock compositions suggests: (1) the western brines have interacted less with the carbonate host than the eastern brines due to shorter residence times or greater water: rock ratios, and (2) the minerals encountered along flow paths prior to entering the Wolfcamp are different for the western and eastern Wolfcamp brines.

  4. Drilling fluids and lost circulation in hot dry rock geothermal wells at Fenton Hill

    SciTech Connect (OSTI)

    Nuckols, E.B.; Miles, D.; Laney, R.; Polk, G.; Friddle, H.; Simpson, G.; Baroid, N.L.

    1981-01-01

    Geothermal hot dry rock drilling activities at Fenton Hill in the Jemez Mountains of northern New Mexico encountered problems in designing drilling fluids that will reduce catastrophic lost circulation. Four wells (GT-2, EE-1, EE-2, and EE-3) penetrated 733 m (2405 ft) of Cenozoic and Paleozoic sediments and Precambrian crystalline rock units to +4572 m (+15,000 ft). The Cenozoic rocks consist of volcanics (rhyolite, tuff, and pumice) and volcaniclastic sediments. Paleozoic strata include Permian red beds (Abo Formation) and the Pennsylvanian Madera and Sandia Formations, which consist of massive limestones and shales. Beneath the Sandia Formation are igneous and metamorphic rocks of Precambrian age. The drilling fluid used for the upper sedimentary formations was a polymeric flocculated bentonite drilling fluid. Severe loss of circulation occurred in the cavernous portions of the Sandia limestones. The resultant loss of hydrostatic head caused sloughing of the Abo and of some beds within the Madera Formation. Stuck pipe, repetitive reaming, poor casing cement jobs and costly damage to the intermediate casing resulted. The Precambrian crystalline portion of the EE-2 and EE-3 wells were directionally drilled at a high angle, and drilled with water as the primary circulating fluid. Due to high temperatures (approximately 320/sup 0/C (608/sup 0/F) BHT) and extreme abrasiveness of the deeper part of the Precambrian crystalline rocks, special problems of corrosion inhibition and of torque friction were incurred.

  5. Vacancy structures and melting behavior in rock-salt GeSbTe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju; Li, Xian -Bin; Wang, Chuan -Shou; Chen, Yong -Jin; Li, Ji -Xue; Zhang, Jin -Xing; Zhang, Ze; Zhang, Sheng -Bai; et al

    2016-05-03

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less

  6. X-ray Photoelectron Spectroscopic Analyses of Corrosion Products Formed on Rock Bolt Carbon Steel in Chloride Media with Bicarbonate and Silicate Ions

    SciTech Connect (OSTI)

    Deodeshmukh, Vinay; Venugopal, A; Chandra, Dhanesh; Yilmaz, Ahmet; Daemen, Jack; Jones, D A.; Lea, Alan S.; Engelhard, Mark H.

    2004-11-01

    The passivation behavior of Yucca Mountain Repository rock bolt carbon steel in deaerated 3.5% NaCl solution containing SiO{sub 3}{sup 2} and HCO{sub 3} ions was investigated by potentiodynamic polarization, electrochemical impedance spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopic methods. Polarization results indicate that combinations of silicate and bicarbonate anions decrease the passive current density and raise the pitting potential. XPS results indicate the enrichment of silica at passive potentials and the formation of mixed FeCO{sub 3} and silica film at lower potentials. This change in film composition was responsible for the changes in corrosion rate at lower and higher potentials. XPS results also support the thermodynamic data with regard to the occurrence of second oxidation peak observed in the polarization curves to be due to the oxidation of FeCO{sub 3} to Fe{sub 2}O{sub 3}.

  7. Seismic waves in rocks with fluids and fractures

    SciTech Connect (OSTI)

    Berryman, J.G.

    2007-05-14

    Seismic wave propagation through the earth is often stronglyaffected by the presence of fractures. When these fractures are filledwith fluids (oil, gas, water, CO2, etc.), the type and state of the fluid(liquid or gas) can make a large difference in the response of theseismic waves. This paper summarizes recent work on methods ofdeconstructing the effects of fractures, and any fluids within thesefractures, on seismic wave propagation as observed in reflection seismicdata. One method explored here is Thomsen's weak anisotropy approximationfor wave moveout (since fractures often induce elastic anisotropy due tononuniform crack-orientation statistics). Another method makes use ofsome very convenient fracture parameters introduced previously thatpermit a relatively simple deconstruction of the elastic and wavepropagation behavior in terms of a small number of fracture parameters(whenever this is appropriate, as is certainly the case for small crackdensities). Then, the quantitative effects of fluids on thesecrack-influence parameters are shown to be directly related to Skempton scoefficient B of undrained poroelasticity (where B typically ranges from0 to 1). In particular, the rigorous result obtained for the low crackdensity limit is that the crack-influence parameters are multiplied by afactor (1 ? B) for undrained systems. It is also shown how fractureanisotropy affects Rayleigh wave speed, and how measured Rayleigh wavespeeds can be used to infer shear wave speed of the fractured medium.Higher crack density results are also presented by incorporating recentsimulation data on such cracked systems.

  8. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  9. Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hubertus J. J. van Dam

    2016-05-23

    Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less

  10. Poroelastic fluid effects on shear for rocks with soft anisotropy

    SciTech Connect (OSTI)

    Berryman, J G

    2004-04-13

    A general analysis of poroelasticity for vertical transverse isotropy (VTI) shows that four eigenvectors are pure shear modes with no coupling to the pore-fluid mechanics. The remaining two eigenvectors are linear combinations of pure compression and uniaxial shear, both of which are coupled to the fluid mechanics. After reducing the problem to a 2 x 2 system, the analysis shows in a relatively elementary fashion how a poroelastic system with isotropic solid elastic frame, but with anisotropy introduced through the poroelastic coefficients, interacts with the mechanics of the pore fluid and produces shear dependence on fluid properties in the overall poroelastic system. The analysis shows for example that this effect is always present (though sometimes small in magnitude) in the systems studied, and can be quite large (on the order of 10 to 20%) for wave propagation studies in some real granites and sandstones, including Spirit River sandstone and Schuler-Cotton Valley sandstone. Some of the results quoted here are obtained by using a new product formula relating local bulk and uniaxial shear energy to the product of the two eigenvalues that are coupled to the fluid mechanics. This product formula was first derived in prior work, but is given a more intuitive derivation here. The results obtained here are observed to be useful both for explaining difficult to reconcile experimental data, and for benchmarking of poroelastic codes.

  11. Organic geochemistry and correlation of Paleozoic source rocks and Trenton crude oils, Indiana

    SciTech Connect (OSTI)

    Guthrie, J. )

    1989-08-01

    Shale samples from four cores of the New Albany and Antrim Shales (Devonian) and from six cores of the Maquoketa Group (Ordovician), representing a broad geographic area of Indiana, have been analyzed for total organic carbon, total sulfur, pyrolysis yield (Rock-Eval), bitumen content, and illite crystallinity data. These data indicate that the New Albany, Antrim, and Maquoketa shales contain a sufficient quantity and quality of organic matter to be good petroleum source rocks. Bitumen ratios, Rock-Eval yields, gas chromatography of saturated hydrocarbons, and illite crystallinity data show that the Maquoketa shales have reached a higher level of thermal maturity than the New Albany and Antrim shales. The level of thermal maturity of the Maquoketa shales suggested a maximum burial depth considerably greater than the present depth.

  12. Effects of heterogeneity and friction on the deformation and strength of rock

    SciTech Connect (OSTI)

    Nihei, K.T.; Myer, L.R.; Liu, Z.; Cook, N.G.W.; Kemeny, J.M.

    1994-03-01

    Experimental observations of the evolution of damage in rocks during compressive loading indicate that macroscopic failure occurs predominantly by extensile crack growth parallel or subparallel to the maximum principal stress. Extensile microcracks initiate at grain boundaries and open pores by a variety of micromechanical processes which may include grain bending, Brazilian type fracture and grain boundary sliding. Microstructural heterogeneity in grain size, strength and shape determines the magnitude of the local tensile stresses which produce extensile microcracking and the stability with which these microcracks coalesce to form macrocracks. Friction at grain boundaries and between the surfaces of microcracks reduces the strain energy available for extensile crack growth and increases the stability of microcrack growth. In clastic rocks, frictional forces may improve the conditions for extensile microcrack growth by constraining the amount of sliding and rotation of individual grains. Micromechanical models are used to investigate the effects of heterogeneity and friction on the deformation and strength of crystalline and clastic rocks.

  13. Hydraulic-fracture propagation in layered rock: experimental studies of fracture containment

    SciTech Connect (OSTI)

    Teufel, L. W.; Clark, J. A.

    1981-01-01

    Fracture geometry is an important concern in the design of a massive hydraulic fracture treatment for improved natural gas recovery from tight gas sands. Possible prediction of vertical fracture growth and containment in layered rock requires an improved understanding of the parameters which may control fracture growth across layer interfaces. We have conducted laboratory hydraulic fracture experiments and elastic finite element studies which show that at least two distinct geologic conditions may inhibit or contain the vertical growth of hydraulic fractures in layered rock; (1) a weak interfacial shear strength of the layers and (2) a compressional increase in the minimum horizontal stress in the bounding layer. The second condition is more important and more likely to occur at depth. Variations in the horizontal stress can result from differences in elastic properties of individual layers in a layered rock sequence. A compressional increase in the minimum horizontal stress can occur in going from high shear modulus into low shear modulus layers.

  14. Integrated system for investigating sub-surface features of a rock formation

    SciTech Connect (OSTI)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A system for investigating non-linear properties of a rock formation around a borehole is provided. The system includes a first sub-system configured to perform data acquisition, control and recording of data; a second subsystem in communication with the first sub-system and configured to perform non-linearity and velocity preliminary imaging; a third subsystem in communication with the first subsystem and configured to emit controlled acoustic broadcasts and receive acoustic energy; a fourth subsystem in communication with the first subsystem and the third subsystem and configured to generate a source signal directed towards the rock formation; and a fifth subsystem in communication with the third subsystem and the fourth subsystem and configured to perform detection of signals representative of the non-linear properties of the rock formation.

  15. Revegetation/rock cover for stabilization of inactive uranium mill tailings disposal sites

    SciTech Connect (OSTI)

    Beedlow, P.A.; McShane, M.C.; Cadwell, L.L.

    1982-07-01

    Pacific Northwest Laboratory is developing design and performance guidelines for surface stabilization of inactive uranium mill tailings. In this work, vegetation and rock covers are being evaluated for maintaining long-term integrity of impoundment systems. Methods are being developed to estimate erosion rates associated with rock and/or vegetation covers, and to determine the effects of surface treatments on soil moisture. Interactions between surface treatments and barriers (radon and biological) are being studied as well. The product will be a set of guidelines to aid in designing surface covers. This report presents the status of this program and a discussion of considerations pertinent to the application of surface covers to tailings. Test plots located in Grand Junction, Colorado and Waterflow, New Mexico are being used to study: (1) the interactions between vegetation and radon and biological barriers, (2) the effects of surface covers on soil moisture, and (3) the effects of rock covers on vegetation.

  16. Radiography to measure the longitudinal density gradients of Pd compacts

    SciTech Connect (OSTI)

    Back, D.D.

    1992-05-14

    This study used radiography to detect and quantify density gradients in green compacts of Palladium powder. Ultrasonic velocity measurements had been tried previously, but they were affected by material properties, in addition to the density, so that an alternative was sought. The alternative technique used radiographic exposures of a series of standard compacts whose density is known and correlated with the radiographic film density. These correlations are used to predict the density in subsequent compacts.

  17. Paint Rock and southwest Paint Rock fields, Concho County, Texas: Strawn analogs of modern island carbonate facies of Ambergris Cay, Belize

    SciTech Connect (OSTI)

    Reid, A.M.; Mazzullo, S.J.

    1987-02-01

    Lower Strawn (Desmoinesian Goen Limestone) reservoirs at Paint Rock and Southwest Paint Rock fields are a complex of carbonate and associated facies interpreted as having been deposited in various environments on and around large, emergent islands on shallow carbonate shelves. The origin and geometries of the component lithofacies in these fields, and their reservoir diagenetic histories, are similar to those presently accumulating on Ambergris Cay, a linear island complex on the northern shelf of Belize. Paint Rock field originated as a narrow, elongate Chaetetes reef trend that formed the foundation on which the overlying island facies were deposited. As on Ambergris Cay, these reef limestones developed extensive porosity during postdepositional subaerial exposure due to meteoric leaching. In contrast, Southwest Paint Rock field is cored by older island deposits rather than reef limestones. With ensuing stillstand or subsequent sea level rise, beach grainstones were deposited along the windward and leeward margins of the foundation highs in these fields. Tight lagoonal micrites and coals (peat-swamp facies) comprise the inner island facies, and are locally associated with porous supratidal dolomites. These island complexes are transected locally by tidal channels that are filled with nonporous micrites. Repeated sea level fluctuations during the history of these fields resulted in a characteristic cyclic stratigraphy of stacked island facies and reservoirs. The reservoirs in the field are developed in the bedrock or older island cores, as well as in the overlying beach facies and supratidal dolomites. These fields are mappable as linear stratigraphic traps with low-relief closure, and are readily identified by subsurface geologic and facies analyses. Similar shelf island-type fields analogous to these strawn and Holocene Belizean examples are found throughout the Midland basin and Eastern shelf.

  18. Wave-function functionals for the density

    SciTech Connect (OSTI)

    Slamet, Marlina; Pan Xiaoyin; Sahni, Viraht

    2011-11-15

    We extend the idea of the constrained-search variational method for the construction of wave-function functionals {psi}[{chi}] of functions {chi}. The search is constrained to those functions {chi} such that {psi}[{chi}] reproduces the density {rho}(r) while simultaneously leading to an upper bound to the energy. The functionals are thereby normalized and automatically satisfy the electron-nucleus coalescence condition. The functionals {psi}[{chi}] are also constructed to satisfy the electron-electron coalescence condition. The method is applied to the ground state of the helium atom to construct functionals {psi}[{chi}] that reproduce the density as given by the Kinoshita correlated wave function. The expectation of single-particle operators W={Sigma}{sub i}r{sub i}{sup n}, n=-2,-1,1,2, W={Sigma}{sub i}{delta}(r{sub i}) are exact, as must be the case. The expectations of the kinetic energy operator W=-(1/2){Sigma}{sub i}{nabla}{sub i}{sup 2}, the two-particle operators W={Sigma}{sub n}u{sup n}, n=-2,-1,1,2, where u=|r{sub i}-r{sub j}|, and the energy are accurate. We note that the construction of such functionals {psi}[{chi}] is an application of the Levy-Lieb constrained-search definition of density functional theory. It is thereby possible to rigorously determine which functional {psi}[{chi}] is closer to the true wave function.

  19. Petroleum potential of lower and middle Paleozoic rocks in Nebraska portion of Mid-Continent

    SciTech Connect (OSTI)

    Carlson, M.P. )

    1989-08-01

    Central North America during the Paleozoic was characterized by northern (Williston) and southern (Anadarko) depositional regimes separated by a stable Transcontinental arch. Nebraska lies on the southern flank of this arch and contains the northern zero edges of the lower and middle Paleozoic rocks of the southern regime. Most of these rocks are secondary dolomites with zones of excellent intercrystalline porosity. The Reagan-LaMotte Sandstones and the overlying Arbuckle dolomites are overlapped by Middle Ordovician rocks toward the Transcontinental arch. Rocks equivalent to the Simpson consist of a basal sand (St. Peter) and overlying interbedded gray-green shales and dolomitic limestones. An uppermost shale facies is present in the Upper Ordovician (Viola-Maquoketa) eastward and southward across Nebraska. The dolomite facies extends northward into the Williston basin. The Silurian dolomites, originally more widely deposited, are overlapped by Devonian dolomites in southeastern Nebraska. Upper Devonian rocks exhibit a regional facies change from carbonate to green-gray shale to black shale southeastward across the Mid-Continent. Mississippian carbonates overlap the Devonian westward and northward across the Transcontinental arch. Pennsylvanian uplift and erosion were widespread, producing numerous stratigraphic traps. Sands related to the basal Pennsylvanian unconformity produce along the Cambridge arch. Arbuckle, Simpson, Viola, and Hunton production is present in the Forest City basin and along the Central Kansas uplift. Although source rocks are scarce and the maturation is marginal, current theories of long-distance oil migration encourage exploration in the extensive lower and middle Paleozoic reservoirs in this portion of the Mid-Continent.

  20. Identification of cell density signal molecule

    DOE Patents [OSTI]

    Schwarz, Richard I.

    1998-01-01

    Disclosed herein is a novel proteinaceous cell density signal molecule (CDS) between 25 and 35 kD, which is secreted by fibroblastic primary avian tendon cells in culture, and causes the cells to self-regulate their proliferation and the expression of differentiated function. It effects an increase of procollagen production in avian tendon cell cultures of ten fold while proliferation rates are decreased. CDS, and the antibodies which recognize them, are important for the development of diagnostics and treatments for injuries and diseases involving connective tissues, particularly tendon. Also disclosed are methods of production and use.