National Library of Energy BETA

Sample records for analysis resource type

  1. Type C: Caldera Resource | Open Energy Information

    Open Energy Info (EERE)

    C: Caldera Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type C: Caldera Resource Dictionary.png Type C: Caldera Resource: No definition has been...

  2. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Analysis » Analysis Methodologies » Resource Analysis Resource Analysis Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount that can be available for hydrogen production. While often associated with renewable resources, resource analysis is also suitable for fossil resources and existing production facilities. Geographic Information Systems (GIS)

  3. NREL: Energy Analysis - Sustainable Biomass Resource Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Biomass Resource Development and Use A flowchart illustrating the process flow ... This analysis examines how we can use existing resources in a sustainable manner. It also ...

  4. NREL: Energy Analysis: Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geographic distribution, using geographic information systems (GIS) and other techniques. ... U.S. Renewable Energy Technical Potentials: A GIS-Based Analysis. (2012). Milbrandt, A. ...

  5. Type D: Sedimentary-hosted, Volcanic-related Resource | Open...

    Open Energy Info (EERE)

    F 1,035.27 R References Colin F. Williams, Marshall J. Reed and Arlene F. Anderson. 2011. Updating the Classification of Geothermal Resources - Presentation. In:...

  6. Type F: Oceanic-ridge, Basaltic Resource | Open Energy Information

    Open Energy Info (EERE)

    464 F 923.67 R References Colin F. Williams, Marshall J. Reed and Arlene F. Anderson. 2011. Updating the Classification of Geothermal Resources - Presentation. In:...

  7. NREL: Energy Analysis - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources The following data and resources include procedures, databases, maps, and tools produced by NREL. These resources are available to assess, analyze, and optimize renewable energy and energy efficiency technologies for your project. Annual Technology Baseline and Standard Scenarios This study provides an annual process designed to ensure consistent application of a realistic and timely set of input assumptions and consider a diverse set of potential futures. Building Energy Data

  8. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  9. Analysis of Low-Temperature Utilization of Geothermal Resources (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Analysis of Low-Temperature Utilization of Geothermal Resources Citation Details In-Document Search Title: Analysis of Low-Temperature Utilization of Geothermal Resources Full realization of the potential of what might be considered "low-grade" geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we

  10. Associate Director for Strategic Resources Analysis

    Broader source: Energy.gov [DOE]

    This position is located in the Department of Energys Office of Budget, Office of the Chief Financial Officer. The Office of Budget is responsible for directing the formulation, execution, analysis...

  11. Hydrogen Demand and Resource Analysis (HyDRA) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demand and Resource Analysis (HyDRA) Model (National Renewable Energy Laboratory) Objectives To allow analysts, decision makers, and general users to view, download, and analyze hydrogen demand, resource, and infrastructure data spatially and dynamically. Key Attributes & Strengths HyDRA is an application that has the look, feel, and functionality of a traditional client-based GIS application. Users are able to create their own spatial datasets and upload them into the HyDRA application to

  12. Analysis of Low-Temperature Utilization of Geothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Low-Temperature Utilization of Geothermal Resources Brian J. Anderson, PI West Virginia University Analysis: Techno Economical Practices Track 3 - 11:15 a.m. Project Officer: Jay Nathwani Total Project Funding: $1,206,330 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Program eere.energy.gov Relevance/Impact of Research Project Objectives 1. Techno-economic analysis of the potential of low-

  13. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download ...

  14. Thermal Analysis of Ball Type Fuel Element for PBR. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Thermal Analysis of Ball Type Fuel Element for PBR. Citation Details In-Document Search Title: Thermal Analysis of Ball Type Fuel Element for PBR. Authors: ...

  15. Analysis of Low-Temperature Utilization of Geothermal Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Techno-economic analysis of the potential of low-temperature (90-150°C) geothermal sources. Perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. Develop a regionalized model of the utilization of low-temperature geothermal resources.

  16. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  17. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  18. Using Geothermal Play Types as an Analogue for Estimating Potential Resource Size

    SciTech Connect (OSTI)

    Terry, Rachel; Young, Katherine

    2015-09-02

    Blind geothermal systems are becoming increasingly common as more geothermal fields are developed. Geothermal development is known to have high risk in the early stages of a project development because reservoir characteristics are relatively unknown until wells are drilled. Play types (or occurrence models) categorize potential geothermal fields into groups based on geologic characteristics. To aid in lowering exploration risk, these groups' reservoir characteristics can be used as analogues in new site exploration. The play type schemes used in this paper were Moeck and Beardsmore play types (Moeck et al. 2014) and Brophy occurrence models (Brophy et al. 2011). Operating geothermal fields throughout the world were classified based on their associated play type, and then reservoir characteristics data were catalogued. The distributions of these characteristics were plotted in histograms to develop probability density functions for each individual characteristic. The probability density functions can be used as input analogues in Monte Carlo estimations of resource potential for similar play types in early exploration phases. A spreadsheet model was created to estimate resource potential in undeveloped fields. The user can choose to input their own values for each reservoir characteristic or choose to use the probability distribution functions provided from the selected play type. This paper also addresses the United States Geological Survey's 1978 and 2008 assessment of geothermal resources by comparing their estimated values to reported values from post-site development. Information from the collected data was used in the comparison for thirty developed sites in the United States. No significant trends or suggestions for methodologies could be made by the comparison.

  19. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information askUS - Operations Unified Services Portal IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature

  20. Analysis of Low-Temperature Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  1. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). ItÆs made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  2. Hydrogen Data Book from the Hydrogen Analysis Resource Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Hydrogen Data Book contains a wide range of factual information on hydrogen and fuel cells (e.g., hydrogen properties, hydrogen production and delivery data, and information on fuel cells and fuel cell vehicles), and it also provides other data that might be useful in analyses of hydrogen infrastructure in the United States (e.g., demographic data and data on energy supply and/or infrastructure). Its made available from the Hydrogen Analysis Resource Center along with a wealth of related information. The related information includes guidelines for DOE Hydrogen Program Analysis, various calculator tools, a hydrogen glossary, related websites, and analysis tools relevant to hydrogen and fuel cells. [From http://hydrogen.pnl.gov/cocoon/morf/hydrogen

  3. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  4. Analysis of stream sediment reconnaissance data for mineral resources from the Montrose NTMS Quadrangle, Colorado

    SciTech Connect (OSTI)

    Beyth, M.; Broxton, D.; McInteer, C.; Averett, W.R.; Stablein, N.K.

    1980-06-01

    Multivariate statistical analysis to support the National Uranium Resource Evaluation and to evaluate strategic and other commercially important mineral resources was carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Montrose quadrangle, Colorado. The analysis suggests that: (1) the southern Colorado Mineral Belt is an area favorable for uranium mineral occurrences; (2) carnotite-type occurrences are likely in the nose of the Gunnison Uplift; (3) uranium mineral occurrences may be present along the western and northern margins of the West Elk crater; (4) a base-metal mineralized area is associated with the Uncompahgre Uplift; and (5) uranium and base metals are associated in some areas, and both are often controlled by faults trending west-northwest and north.

  5. Analysis Of Geothermal Resources In Northern Switzerland | Open...

    Open Energy Info (EERE)

    resources in Northern Switzerland. In order to elaborate a Swiss geothermal resource atlas, a procedure has been elaborated that accounts for geological structures, temperature...

  6. US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool HYDRA Program hydra_joseck.pdf (4.99 MB) More Documents & Publications Pathway and Resource Overview Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Delivering Renewable Hydrogen: A Focus on Near-Term Applications

  7. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar Slides (2.59 MB) More Documents &

  8. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis U.S. Department of Energy Fuel Cell Technologies Office February 25, 2016 Presenter: Brian James - Strategic Analysis, Inc. DOE Host: Grace Ordaz- Technology Manager, Hydrogen Storage Program 2 | Fuel Cell Technologies Office eere.energy.gov Question and Answer * Please type your questions into the question box 2 Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Funded by the U.S. Department of Energy's Fuel Cell

  9. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Onboard Type IV Compressed Hydrogen Storage System Cost Analysis U.S. Department of Energy Fuel Cell Technologies Office February 25, 2016 Presenter: Brian James - Strategic ...

  10. Nepal-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    Area Renewable Energy Topics Background analysis, Resource assessment Resource Type Softwaremodeling tools, Dataset, Maps Website http:www.dlr.dettdesktopde Program Start...

  11. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  12. Type A: Magma-heated, Dry Steam Resource | Open Energy Information

    Open Energy Info (EERE)

    518 F 977.67 R References Colin F. Williams, Marshall J. Reed and Arlene F. Anderson. 2011. Updating the Classification of Geothermal Resources - Presentation. In:...

  13. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi

  14. Category:NEPA Environmental Analysis Types | Open Energy Information

    Open Energy Info (EERE)

    Analysis Types" The following 5 pages are in this category, out of 5 total. C CU CX D DNA E EA EIS Retrieved from "http:en.openei.orgwindex.php?titleCategory:NEPAEnvironme...

  15. Modeling, Analysis, and Control of Demand Response Resources

    SciTech Connect (OSTI)

    Mathieu, Johanna L.

    2012-05-01

    variability in response. We find that, in general, baseline model error is large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation. These results have implications for DR program design and deployment. Emerging DR paradigms focus on faster timescale DR. Here, we investigate methods to coordinate aggregations of residential thermostatically controlled loads (TCLs), including air conditioners and refrigerators, to manage frequency and energy imbalances in power systems. We focus on opportunities to centrally control loads with high accuracy but low requirements for sensing and communications infrastructure. Specifically, we compare cases when measured load state information (e.g., power consumption and temperature) is 1) available in real time; 2) available, but not in real time; and 3) not available. We develop Markov Chain models to describe the temperature state evolution of heterogeneous populations of TCLs, and use Kalman filtering for both state and joint parameter/state estimation. We present a look-ahead proportional controller to broadcast control signals to all TCLs, which always remain in their temperature dead-band. Simulations indicate that it is possible to achieve power tracking RMS errors in the range of 0.26–9.3% of steady state aggregated power consumption. Results depend upon the information available for system identification, state estimation, and control. We find that, depending upon the performance required, TCLs may not need to provide state information to the central controller in real time or at all. We also estimate the size of the TCL potential resource; potential revenue from participation in markets; and break-even costs associated with deploying DR-enabling technologies. We find that current TCL energy storage capacity in California is 8–11

  16. Geothermal Resource Analysis and Structure of Basin and Range...

    Open Energy Info (EERE)

    Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  17. Analysis of Low-Temperature Utilization of Geothermal Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project objectives: Techno-economic analysis of the potential of low-temperature (90-150C) geothermal sources. Perform process optimizations and economic analyses of processes ...

  18. Hawaii demand-side management resource assessment. Final report, Reference Volume 1: Building prototype analysis

    SciTech Connect (OSTI)

    1995-04-01

    This report provides a detailed description of, and the baseline assumptions and simulation results for, the building prototype simulations conducted for the building types designated in the Work Plan for Demand-side Management Assessment of Hawaii`s Demand-Side Resources (HES-4, Phase 2). This report represents the second revision to the initial building prototype description report provided to DBEDT early in the project. Modifications and revisions to the prototypes, based on further calibration efforts and on comments received from DBEDT Staff have been incorporated into this final version. These baseline prototypes form the basis upon which the DSM measure impact estimates and the DSM measure data base were developed for this project. This report presents detailed information for each of the 17 different building prototypes developed for use with the DOE-21E program (23 buildings in total, including resorts and hotels defined separately for each island) to estimate the impact of the building technologies and measures included in this project. The remainder of this section presents some nomenclature and terminology utilized in the reports, tables, and data bases developed from this project to denote building type and vintage. Section 2 contains a more detailed discussion of the data sources, the definition of the residential sector building prototypes, and results of the DOE-2 analysis. Section 3 provides a similar discussion for the commercial sector. The prototype and baseline simulation results are presented in a separate section for each building type. Where possible, comparison of the baseline simulation results with benchmark data from the ENERGY 2020 model or other demand forecasting models specific to Hawaii is included for each building. Appendix A contains a detailed listing of the commercial sector baseline indoor lighting technologies included in the existing and new prototypes by building type.

  19. Industry sector analysis: The market for renewable energy resources (the Philippines). Export trade information

    SciTech Connect (OSTI)

    Cannon, E.; Miranda, A.L.

    1990-08-01

    The market survey covers the renewable energy resources market in the Philippines. Sub-sectors covered include biomass, solar energy, photovoltaic cells, windmills, and mini-hydro systems. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Philippine consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information.

  20. Multivariate statistical analysis of stream sediments for mineral resources from the Craig NTMS Quadrangle, Colorado

    SciTech Connect (OSTI)

    Beyth, M.; McInteer, C.; Broxton, D.E.; Bolivar, S.L.; Luke, M.E.

    1980-06-01

    Multivariate statistical analyses were carried out on Hydrogeochemical and Stream Sediment Reconnaissance data from the Craig quadrangle, Colorado, to support the National Uranium Resource Evaluation and to evaluate strategic or other important commercial mineral resources. A few areas for favorable uranium mineralization are suggested for parts of the Wyoming Basin, Park Range, and Gore Range. Six potential source rocks for uranium are postulated based on factor score mapping. Vanadium in stream sediments is suggested as a pathfinder for carnotite-type mineralization. A probable northwest trend of lead-zinc-copper mineralization associated with Tertiary intrusions is suggested. A few locations are mapped where copper is associated with cobalt. Concentrations of placer sands containing rare earth elements, probably of commercial value, are indicated for parts of the Sand Wash Basin.

  1. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Crow, John [National Center for Genome Resources

    2013-01-25

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  2. Intelligent Transportation Systems Deployment Analysis System...

    Open Energy Info (EERE)

    Transportation Systems Deployment Analysis System AgencyCompany Organization: Cambridge Systematics Sector: Energy Focus Area: Transportation Resource Type: Software...

  3. Property:EnvironmentalAnalysisType | Open Energy Information

    Open Energy Info (EERE)

    NEPA requirements (eg Categorical Exclusion, Environmental Assessment) Allows Values CU;DNA;CX;EA;EIS This is a property of type Page. Pages using the property...

  4. The Integrated Microbial Genomes (IMG) System: An Expanding Comparative Analysis Resource

    SciTech Connect (OSTI)

    Markowitz, Victor M.; Chen, I-Min A.; Palaniappan, Krishna; Chu, Ken; Szeto, Ernest; Grechkin, Yuri; Ratner, Anna; Anderson, Iain; Lykidis, Athanasios; Mavromatis, Konstantinos; Ivanova, Natalia N.; Kyrpides, Nikos C.

    2009-09-13

    The integrated microbial genomes (IMG) system serves as a community resource for comparative analysis of publicly available genomes in a comprehensive integrated context. IMG contains both draft and complete microbial genomes integrated with other publicly available genomes from all three domains of life, together with a large number of plasmids and viruses. IMG provides tools and viewers for analyzing and reviewing the annotations of genes and genomes in a comparative context. Since its first release in 2005, IMG's data content and analytical capabilities have been constantly expanded through regular releases. Several companion IMG systems have been set up in order to serve domain specific needs, such as expert review of genome annotations. IMG is available at .

  5. Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Filter by Audience Filter by Resource Type description partneragency resourcetype stakeholdergroup publicationdate nodeurl link Careers & Internships EERE Home Contact EERE ...

  6. Bottom-Up Energy Analysis System (BUENAS) | Open Energy Information

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings, Energy Efficiency Topics: Baseline projection, - Macroeconomic, Pathways analysis Resource Type:...

  7. Toward the Routine Analysis of Diverse Data Types

    SciTech Connect (OSTI)

    Whitney, Paul D.; Cox, Dennis; Daly, Don S.; Foote, Harlan P.; McQuerry, Dennis L.; Sloughter, James M.

    2003-12-01

    It is a great time to be a data analyst. The variety and quantity of data, in digitized forms, are increasing. The growth of computer networking and the corresponding use of the network via the World Wide Web have provided, in the form of text, a large dynamic information store. There is wide access to more financial data than can typically be understood. Digital imagery is on the rise; an explosion in the amount of digital video is forthcoming. And, information from scientific instruments is provided across a network with increasing frequency. However, data analysis tools and the corresponding theory are not keeping pace with this scale and diversity of data.

  8. Low-Temperature Hydrothermal Resource Potential Estimate

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  9. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....

  10. Preparation of waste analysis plans under the Resource Conservation and Recovery Act (Interim guidance)

    SciTech Connect (OSTI)

    Not Available

    1993-03-01

    This document is organized to coincide with the suggested structure of the actual Waste Analysis Plans (WAP) discussed in the previous section. The contents of the remaining eleven chapters and appendices that comprise this document are described below: Chapter 2 addresses waste streams, test parameters, and rationale for sampling and analytical method selection; test methods for analyzing parameters; proceduresfor collecting representative samples; and frequency of sample collection and analyses. These are the core WAP requirements. Chapter 3 addresses analysis requirements for waste received from off site. Chapter 4addresses additional requirements for ignitable, reactive, or incompatible wastes. Chapter 5 addresses unit-specific requirements. Chapter 6 addresses special procedures for radioactive mixed waste. Chapter 7 addresses wastes subject to the land disposal restrictions. Chapter 8 addresses QA/QC procedures. Chapter 9 compares the waste analysis requirements of an interim status facility with those of a permitted facility. Chapter 10 describes the petition process required for sampling and analytical procedures to deviate from accepted methods, such as those identified in promulgated regulations. Chapter 11 reviews the process for modification of WAPs as waste type or handling practices change at a RCRA permitted TSDF. Chapter 12 is the list of references that were used in the preparation of this guidance. Appendix A is a sample WAP addressing physical/chemical treatment and container storage. Appendix B is a sample WAP addressing an incinerator and tank systems. Appendix C discusses the relationship of the WAP to other permitting requirements and includes specific examples of how waste analysis is used to comply with certain parts of a RCRA permit. Appendix D contains the exact wording for the notification/certification requirements under theland disposal restrictions.

  11. BPA Resource Program Announcement Letter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    types available to fill any projected deficits. The Resource Program will analyze the costs, risks and environmental characteristics of resource portfolios BPA could pursue and...

  12. NREL: Renewable Resource Data Center - Solar Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site. Printable Version RReDC Home Biomass Resource Information Geothermal ...

  13. Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis

    Broader source: Energy.gov [DOE]

    Recovery Act:Direct Confirmation of Commercial Geothermal Resources in Colorado Using Remoter Sensing and On-Site Exploration, Testing and Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  14. An energy/emissions/economic analysis resource for north Moravia, upper Silesia, and Kisuca

    SciTech Connect (OSTI)

    Walder, V.

    1995-12-31

    The United States Agency for International Development (USAID) is sponsoring the Technology Transfer Network (TTN) which is centered in Ostrava, Czech Republic. The primary objective of the TTN is to provide a resource for municipalities, industries, and companies interested in reducing air pollution, improving energy efficiency, and implementing projects in North Moravia, Upper Silesia, and Kisuca. The TTN is providing a communications network (newsletters, mailings, and other media), seminars, workshops, software, access to past and ongoing studies, and a database of U.S. vendors supporting the region. Seminars and major communication material of the TTN will be provided in Czech/Slovak, Polish, and English as appropriate.

  15. Mass spectrometric helium analysis of solid and gas samples from cold-fusion type experiments

    SciTech Connect (OSTI)

    Oliver, B.M.

    1995-12-01

    A custom mass spectrometer system, operating in static mode, has been used to measure helium in both solid and gas samples front cold-fusion type experiments. The mass spectrometer is a 2-in. Radius, 60{degrees}, permanent angle magnet instrument with a single electron-multiplier collecting. Depending on the absolute levels of helium expected, the analysis are conducted by isotope dilution or by measuring absolute collector values. Solid samples are vaporized to ensure complete helium release. Prior to analysis, the fraction of sample gas to be analyzed is exposed to a series of physical and chemical getters, including room temperature Zr-Al alloy (SAES type 101) and liquid-nitrogen cooled activated charcoal. This is done to remove active gases and hydrogen isotopes which could interfere with the helium determinations. Generally, the analysis protocol is to analyze an equal or greater number of {open_quotes}controls{close_quotes} along with the samples to accurately characterize system background and reproducibility. Absolute sensitivity for the system is approximately 1 x 10{sup 9} atoms. Absolute accuracy is 1% or better for helium levels > 10{sup 11} atoms. With few exceptions, helium analysis of solid samples front cold fusion type experiments have yielded no excess helium above usual system background. A few samples have shown helium levels in the low 10{sup 9} atom range, and some gas samples have shown {sup 4}He levels up to several hundred ppm.

  16. Uncertainty analysis in geospatial merit matrix–based hydropower resource assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pasha, M. Fayzul K.; Yeasmin, Dilruba; Saetern, Sen; Yang, Majntxov; Kao, Shih -Chieh; Smith, Brennan T.

    2016-03-30

    Hydraulic head and mean annual streamflow, two main input parameters in hydropower resource assessment, are not measured at every point along the stream. Translation and interpolation are used to derive these parameters, resulting in uncertainties. This study estimates the uncertainties and their effects on model output parameters: the total potential power and the number of potential locations (stream-reach). These parameters are quantified through Monte Carlo Simulation (MCS) linking with a geospatial merit matrix based hydropower resource assessment (GMM-HRA) Model. The methodology is applied to flat, mild, and steep terrains. Results show that the uncertainty associated with the hydraulic head ismore » within 20% for mild and steep terrains, and the uncertainty associated with streamflow is around 16% for all three terrains. Output uncertainty increases as input uncertainty increases. However, output uncertainty is around 10% to 20% of the input uncertainty, demonstrating the robustness of the GMM-HRA model. Hydraulic head is more sensitive to output parameters in steep terrain than in flat and mild terrains. Furthermore, mean annual streamflow is more sensitive to output parameters in flat terrain.« less

  17. Systems analysis for the development of small resource recovery systems: system performance data. Final report

    SciTech Connect (OSTI)

    Crnkovich, P G; Helmstetter, A J

    1980-10-01

    The technologies that should be developed to make small-scale solid waste processing facilities attractive and viable for small municipalities with solid waste between 50 and 250 tons per day are identified. The resource recovery systems investigated were divided into three categories: thermal processng, mechanical separation, and biological processing. Thermal processing systems investigated are: excess-air incineration; starved-air incineration/gasification; and pyrolysis (indirect heating). Mechanical processing systems investigated are: coarse refuse derived fuel; materials separation; dust refuse derived fuel; densified refuse derived fuel; and fine refuse derived fuel. Mechanical processing components investigated include: receiving module; primary size reduction module; combustible separation module; refuse derived fuel preparation module; fuel densification; fuel storage module; ferrous separation; and building and facilities. Pretreatment processes and principle methods of bioconversion of MSW dealing with biological processing are investigated. (MCW)

  18. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    SciTech Connect (OSTI)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  19. Multi-resolution integrated modeling for basin-scale water resources management and policy analysis

    SciTech Connect (OSTI)

    Gupta, Hoshin V. (Hoshin Vijai),; Brookshire, David S.; Springer, E. P.; Wagener, Thorsten

    2004-01-01

    Approximately one-third of the land surface of the Earth is considered to be arid or semi-arid with an annual average of less than 12-14 inches of rainfall. The availability of water in such regions is of course, particularly sensitive to climate variability while the demand for water is experiencing explosive population growth. The competition for available water is exerting considerable pressure on the water resources management. Policy and decision makers in the southwestern U.S. increasingly have to cope with over-stressed rivers and aquifers as population and water demands grow. Other factors such as endangered species and Native American water rights further complicate the management problems. Further, as groundwater tables are drawn down due to pumping in excess of natural recharge, considerable (potentially irreversible) environmental impacts begin to be felt as, for example, rivers run dry for significant portions of the year, riparian habitats disappear (with consequent effects on the bio-diversity of the region), aquifers compact resulting in large scale subsidence, and water quality begins to suffer. The current drought (1999-2002) in the southwestern U.S. is raising new concerns about how to sustain the combination of agricultural, urban and in-stream uses of water that underlie the socio-economic and ecological structure in the region. The water stressed nature of arid and semi-arid environments means that competing water uses of various kinds vie for access to a highly limited resource. If basin-scale water sustainability is to be achieved, managers must somehow achieve a balance between supply and demand throughout the basin, not just for the surface water or stream. The need to move water around a basin such as the Rio Grande or Colorado River to achieve this balance has created the stimulus for water transfers and water markets, and for accurate hydrologic information to sustain such institutions [Matthews et al. 2002; Brookshire et al 2003

  20. Sensitivity Analysis of Parameters Affecting Protection of Water Resources at Hanford WA

    SciTech Connect (OSTI)

    DAVIS, J.D.

    2002-02-08

    The scope of this analysis was to assess the sensitivity of contaminant fluxes from the vadose zone to the water table, to several parameters, some of which can be controlled by operational considerations.

  1. RVA. 3-D Visualization and Analysis Software to Support Management of Oil and Gas Resources

    SciTech Connect (OSTI)

    Keefer, Donald A.; Shaffer, Eric G.; Storsved, Brynne; Vanmoer, Mark; Angrave, Lawrence; Damico, James R.; Grigsby, Nathan

    2015-12-01

    A free software application, RVA, has been developed as a plugin to the US DOE-funded ParaView visualization package, to provide support in the visualization and analysis of complex reservoirs being managed using multi-fluid EOR techniques. RVA, for Reservoir Visualization and Analysis, was developed as an open-source plugin to the 64 bit Windows version of ParaView 3.14. RVA was developed at the University of Illinois at Urbana-Champaign, with contributions from the Illinois State Geological Survey, Department of Computer Science and National Center for Supercomputing Applications. RVA was designed to utilize and enhance the state-of-the-art visualization capabilities within ParaView, readily allowing joint visualization of geologic framework and reservoir fluid simulation model results. Particular emphasis was placed on enabling visualization and analysis of simulation results highlighting multiple fluid phases, multiple properties for each fluid phase (including flow lines), multiple geologic models and multiple time steps. Additional advanced functionality was provided through the development of custom code to implement data mining capabilities. The built-in functionality of ParaView provides the capacity to process and visualize data sets ranging from small models on local desktop systems to extremely large models created and stored on remote supercomputers. The RVA plugin that we developed and the associated User Manual provide improved functionality through new software tools, and instruction in the use of ParaView-RVA, targeted to petroleum engineers and geologists in industry and research. The RVA web site (http://rva.cs.illinois.edu) provides an overview of functions, and the development web site (https://github.com/shaffer1/RVA) provides ready access to the source code, compiled binaries, user manual, and a suite of demonstration data sets. Key functionality has been included to support a range of reservoirs visualization and analysis needs, including

  2. Distributed energy resources in practice: A case study analysis and validation of LBNL's customer adoption model

    SciTech Connect (OSTI)

    Bailey, Owen; Creighton, Charles; Firestone, Ryan; Marnay, Chris; Stadler, Michael

    2003-02-01

    This report describes a Berkeley Lab effort to model the economics and operation of small-scale (<500 kW) on-site electricity generators based on real-world installations at several example customer sites. This work builds upon the previous development of the Distributed Energy Resource Customer Adoption Model (DER-CAM), a tool designed to find the optimal combination of installed equipment, and idealized operating schedule, that would minimize the site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a historic test period, usually a recent year. This study offered the first opportunity to apply DER-CAM in a real-world setting and evaluate its modeling results. DER-CAM has three possible applications: first, it can be used to guide choices of equipment at specific sites, or provide general solutions for example sites and propose good choices for sites with similar circumstances; second, it can additionally provide the basis for the operations of installed on-site generation; and third, it can be used to assess the market potential of technologies by anticipating which kinds of customers might find various technologies attractive. A list of approximately 90 DER candidate sites was compiled and each site's DER characteristics and their willingness to volunteer information was assessed, producing detailed information on about 15 sites of which five sites were analyzed in depth. The five sites were not intended to provide a random sample, rather they were chosen to provide some diversity of business activity, geography, and technology. More importantly, they were chosen in the hope of finding examples of true business decisions made based on somewhat sophisticated analyses, and pilot or demonstration projects were avoided. Information on the benefits and pitfalls of implementing a DER system was also presented from an additional ten sites including agriculture, education, health

  3. Additional Resources for Tribes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Additional Resources for Tribes Additional Resources for Tribes The following tribal and federal organizations, education and training opportunities, and tribal directories provide helpful information for Indian tribes and Alaska Natives. For resources specifically related to developing and financing energy projects on tribal lands, visit the Energy Resource Library. Resource Type Additional Resources for Tribes

  4. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  5. Southeast Resource Recovery Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Resource Recovery Biomass Facility Jump to: navigation, search Name Southeast Resource Recovery Biomass Facility Facility Southeast Resource Recovery Sector Biomass Facility Type...

  6. Characterizing Provenance in Visualization and Data Analysis: An Organizational Framework of Provenance Types and Purposes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ragan, Eric; Alex, Endert; Sanyal, Jibonananda; Chen, Jian

    2016-01-01

    While the primary goal of visual analytics research is to improve the quality of insights and findings, a substantial amount of research in provenance has focused on the history of changes and advances throughout the analysis process. The term, provenance, has been used in a variety of ways to describe different types of records and histories related to visualization. The existing body of provenance research has grown to a point where the consolidation of design knowledge requires cross-referencing a variety of projects and studies spanning multiple domain areas. We present an organizational framework of the different types of provenance informationmore » and purposes for why they are desired in the field of visual analytics. Our organization is intended to serve as a framework to help researchers specify types of provenance and coordinate design knowledge across projects. We also discuss the relationships between these factors and the methods used to capture provenance information. In addition, our organization can be used to guide the selection of evaluation methodology and the comparison of study outcomes in provenance research« less

  7. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  8. Human Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources

  9. Trace element analysis of soil type collected from the Manjung and central Perak

    SciTech Connect (OSTI)

    Azman, Muhammad Azfar Hamzah, Suhaimi; Rahman, Shamsiah Abdul; Elias, Md Suhaimi; Abdullah, Nazaratul Ashifa; Hashim, Azian; Shukor, Shakirah Abd; Kamaruddin, Ahmad Hasnulhadi Che

    2015-04-29

    Trace elements in soils primarily originated from their parent materials. Parents’ material is the underlying geological material that has been undergone different types of chemical weathering and leaching processes. Soil trace elements concentrations may be increases as a result of continuous input from various human activities, including power generation, agriculture, mining and manufacturing. This paper describes the Neutron Activation Analysis (NAA) method used for the determination of trace elements concentrations in part per million (ppm) present in the terrestrial environment soil in Perak. The data may indicate any contamination of trace elements contributed from human activities in the area. The enrichment factors were used to check if there any contamination due to the human activities (power plants, agricultural, mining, etc.) otherwise the values would serve as a baseline data for future study. The samples were collected from 27 locations of different soil series in the area at two different depths: the top soil (0-15cm) and the sub soil (15-30cm). The collected soil samples were air dried at 60°C and passed through 2 µm sieve. Instrumental Neutron Activation Analysis (NAA) has been used for the determination of trace elements. Samples were activated in the Nuclear Malaysia TRIGA Mark II reactor followed by gamma spectrometric analysis. By activating the stable elements in the samples, the elements can be determined from the intensities of gamma energies emitted by the respected radionuclides.

  10. Normal conditions of transport thermal analysis and testing of a Type B drum package

    SciTech Connect (OSTI)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-11-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed.

  11. Development of flow network analysis code for block type VHTR core by linear theory method

    SciTech Connect (OSTI)

    Lee, J. H.; Yoon, S. J.; Park, J. W.; Park, G. C.

    2012-07-01

    VHTR (Very High Temperature Reactor) is high-efficiency nuclear reactor which is capable of generating hydrogen with high temperature of coolant. PMR (Prismatic Modular Reactor) type reactor consists of hexagonal prismatic fuel blocks and reflector blocks. The flow paths in the prismatic VHTR core consist of coolant holes, bypass gaps and cross gaps. Complicated flow paths are formed in the core since the coolant holes and bypass gap are connected by the cross gap. Distributed coolant was mixed in the core through the cross gap so that the flow characteristics could not be modeled as a simple parallel pipe system. It requires lot of effort and takes very long time to analyze the core flow with CFD analysis. Hence, it is important to develop the code for VHTR core flow which can predict the core flow distribution fast and accurate. In this study, steady state flow network analysis code is developed using flow network algorithm. Developed flow network analysis code was named as FLASH code and it was validated with the experimental data and CFD simulation results. (authors)

  12. Orchestrating Distributed Resource Ensembles for Petascale Science

    SciTech Connect (OSTI)

    Baldin, Ilya; Mandal, Anirban; Ruth, Paul; Yufeng, Xin

    2014-04-24

    Distributed, data-intensive computational science applications of interest to DOE scientific com- munities move large amounts of data for experiment data management, distributed analysis steps, remote visualization, and accessing scientific instruments. These applications need to orchestrate ensembles of resources from multiple resource pools and interconnect them with high-capacity multi- layered networks across multiple domains. It is highly desirable that mechanisms are designed that provide this type of resource provisioning capability to a broad class of applications. It is also important to have coherent monitoring capabilities for such complex distributed environments. In this project, we addressed these problems by designing an abstract API, enabled by novel semantic resource descriptions, for provisioning complex and heterogeneous resources from multiple providers using their native provisioning mechanisms and control planes: computational, storage, and multi-layered high-speed network domains. We used an extensible resource representation based on semantic web technologies to afford maximum flexibility to applications in specifying their needs. We evaluated the effectiveness of provisioning using representative data-intensive ap- plications. We also developed mechanisms for providing feedback about resource performance to the application, to enable closed-loop feedback control and dynamic adjustments to resource allo- cations (elasticity). This was enabled through development of a novel persistent query framework that consumes disparate sources of monitoring data, including perfSONAR, and provides scalable distribution of asynchronous notifications.

  13. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    and is much warmer than normal groundwater sources, for their cooling water needs; thus, while there is considerable geofluid loss at 2.7 gal/kWh, fresh water consumption during operations is similar to that of aircooled binary systems. Chapter 5 presents the assessment of water demand for future growth in deployment of utility-scale geothermal power generation. The approach combines the life cycle analysis of geothermal water consumption with a geothermal supply curve according to resource type, levelized cost of electricity (LCOE), and potential growth scenarios. A total of 17 growth scenarios were evaluated. In general, the scenarios that assumed lower costs for EGSs as a result of learning and technological improvements resulted in greater geothermal potential, but also significantly greater water demand due to the higher water consumption by EGSs. It was shown, however, that this effect could be largely mitigated if nonpotable water sources were used for belowground operational water demands. The geographical areas that showed the highest water demand for most growth scenarios were southern and northern California, as well as most of Nevada. In addition to water demand by geothermal power production, Chapter 5 includes data on water availability for geothermal development areas. A qualitative analysis is included that identifies some of the basins where the limited availability of water is most likely to affect the development of geothermal resources. The data indicate that water availability is fairly limited, especially under drought conditions, in most of the areas with significant near- and medium-term geothermal potential. Southern California was found to have the greatest potential for water-related challenges with its combination of high geothermal potential and limited water availability. The results of this work are summarized in Chapter 6. Overall, this work highlights the importance of utilizing dry cooling systems for binary and EGS systems and

  14. Development of HELIOS/CAPP code system for the analysis of block type VHTR cores

    SciTech Connect (OSTI)

    Lee, H. C.; Han, T. Y.; Jo, C. K.; Noh, J. M.

    2012-07-01

    In this paper, the HELIOS/CAPP code system developed for the analysis of block type VHTR cores is presented and verified against several VHTR core configurations. Verification results shows that HELIOS code predicts less negative MTC and RTC than McCARD code does and thus HELIOS code overestimates the multiplication factors at the states with high moderator and reflector temperature especially when the B{sub 4}C BP is loaded. In the depletion calculation for the VHTR single cell fuel element, the error of HELIOS code increases as burnup does. It is ascribed to the fact that HELIOS code treats some fission product nuclides with large resonances as non-resonant nuclides. In the 2-D core depletion calculation, a relatively large reactivity error is observed in the case with BP loading while the reactivity error in the case without BP loading is less than 300 pcm. (authors)

  15. Impact Analysis of a Dipper-Type and Multi Spring-Type Fuel Rod Support Grid Assemblies in PWR

    SciTech Connect (OSTI)

    Song, K.N.; Yoon, K.H.; Park, K.J.; Park, G.J.; Kang, B.S.

    2002-07-01

    A spacer grid is one of the main structural components in a fuel assembly of a Pressurized light Water Reactor (PWR). It supports fuel rods, guides cooling water, and maintains geometry from external impact loads. A simulation is performed for the strength of a spacer grid under impact load. The critical impact load that leads to plastic deformation is identified by a free-fall test. A finite element model is established for the nonlinear simulation of the test. The simulation model is tuned based on the free-fall test. The model considers the aspects of welding and the contacts between components. Nonlinear finite element analysis is carried out by a software system called LS/DYNA3D. The results are discussed from a design viewpoint. (authors)

  16. Experimental and vector analysis on gamma type Stirling engine with hot power cylinder

    SciTech Connect (OSTI)

    Isshiki, Naotsugu; Tsukahara, Shigeji; Ohtomo, Michihiro

    1995-12-31

    In 1993, the superiority of hot end connected power cylinder gamma type Stirling engine (HEC) compared to the conventional cold end connected power cylinder engine (CEC) was reported by Prof. J.Kentfield of the University of Calgary. It is a great thing that he introduced the HEC engine, and it reminded the authors that in 1980, they built and experimented with a three cylinder 3kW Stirling engine SRI-1, in which two cylinders are positively heated by gas, that is called HCH (Hot, Cold and Hot) engine as shown in a figure, and having similarity to the above HEC. The authors have developed a quite simple and understandable approximate harmonic vector analysis method for Stirling machines. By this, Kentfield`s HEC engine and their HCH engine are expressed by the same figure as shown in the paper. The similarity and superiority of HEC and HCH compared to CEC and CHC are easily shown by the vector analysis method with physical reason.

  17. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  18. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL evaluates the biomass resources statistically and spatially using geographic information systems (GIS) and other techniques. This analysis examines the amount of resources ...

  19. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teacher Resources Teacher Resources The Bradbury Science Museum offers teacher resources for your visit. Scavenger Hunts Scavenger Hunt (pdf) Scavenger Hunt Key (pdf) Bradbury Science Museum newsletter The current issue can be found at the Newsletter page. Los Alamos Teachers' Resource Book Informal educators throughout the Los Alamos School District gather periodically to share ideas and collaborate. We have assembled a collection of flyers about our programs that serve classroom teachers into

  20. Resources - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  1. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR

  2. Spain: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Spain: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":"ROADMAP","SATELLITE","HYBRID"...

  3. Colorado: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Colorado: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBR...

  4. Wyoming: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Wyoming: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":"ROADMAP","SATELLITE","HYBRI...

  5. El Salvador: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    El Salvador: Energy Resources Jump to: navigation, search Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":"ROADMAP","SATELLITE","H...

  6. Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac

    SciTech Connect (OSTI)

    Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-12

    The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

  7. Aerodynamic analysis of propeller-type windmills with helical trailing vortices

    SciTech Connect (OSTI)

    Shiao, T.C.

    1980-01-01

    To improve the strip theory for computing the performance of a propeller-type windmill, a more realistic analysis is formulated to include the wake effect. In this dissertation, the finite-wing theory is applied to a rotor blade to find its circulation distribution with the downwash determined from a direct integration of Biot-Savart's law based on the entire helical trailing vortex system. Since no simple analytical solutions can be found for the circulation and the interference factors along a windmill blade, an iterative procedure has been developed to determine the sectional properties at some selected stations. A computer program is constructed for the computation, in which the empirical lift and drag data of the blade airfoil section are programmed. The torque, thrust and power output of the windmill are then obtained by integrating the sectional aerodynamic properties from hub to tip along the blades. Two windmills, one with twisted and tapered blades and the other with uniform blades, are used as examples in predicting the performances. The power computed for the latter windmill agrees well with the measured data. It has been found, according to the computations for the first windmill, that the helical wake may cause a reduction up to 30% in power output of the windmill. The problems of finding the optimum pitch angle for a uniform blade and the optimum distribution of twist angle for a blade of constant chord are considered as some applications of the method derived in this dissertation.

  8. WINDExchange: Education and School Resources

    Wind Powering America (EERE)

    Education and School Resources Filter the WINDExchange database for information resources about Wind for Schools, education and training programs, news, and educational links. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 7/15/2016 DC News Schools Small Wind Penn State University Puts Collegiate Wind Competition-Winning Turbine on Display 7/5/2016 News Video

  9. Wind Energy Resource Atlas of the Philippines

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  10. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    online resources Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the

  11. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  12. Business resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business resources Business resources Setting new standards and small business initiatives within NNSA that will contribute to developing and strengthening our strategic partners for national security challenges. Contact Small Business Office (505) 667-4419 Email Broaden your market-find more resources with other labs, organizations LANL encourages business owners to fully research the Laboratory and to also market their services and products to other businesses, small business programs of other

  13. Resources for an Energy Independence Pledge | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Resource Analysis determines the quantity and location of resources needed to produce hydrogen. Additionally, resource analysis quantifies the cost of the resources, as a function of the amount that can be available for hydrogen production. While often associated with renewable resources, resource analysis is also suitable for fossil resources and existing production facilities. Geographic Information Systems (GIS) modeling is often used to portray and analyze resource data. GIS can also

  14. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  15. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  16. Hydrothermal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These geothermal systems can occur in widely diverse geologic settings, sometimes without clear surface manifestations of the underlying resource. In 2008, the U.S. Geological ...

  17. Resource Program (pbl/main)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is abbreviated and primarily provides updates to key inputs and analysis. The potential power supply obligation needs for the 2013 Resource Program are based on the Needs...

  18. Weld pool development during GTA and laser beam welding of Type 304 stainless steel; Part I - theoretical analysis

    SciTech Connect (OSTI)

    Zacharia, T.; David, S.A.; Vitek, J.M. ); Debroy, T. )

    1989-12-01

    A computational and experimental study was carried out to quantitatively understand the influence of the heat flow and the fluid flow in the transient development of the weld pool during gas tungsten arc (GTA) and laser beam welding of Type 304 stainless steel. Stationary gas tungsten arc and laser beam welds were made on two heats of Type 304 austenitic stainless steels containing 90 ppm sulfur and 240 ppm sulfur. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool. In this paper, the results of the heat flow and fluid flow analysis are presented.

  19. Experimental and theoretical analysis of the performance of Stirling engine with pendulum type displacer

    SciTech Connect (OSTI)

    Isshiki, Seita; Isshiki, Naotsugu; Takanose, Eiichiro; Igawa, Yoshiharu

    1995-12-31

    This paper describes the detailed experimental and theoretical performance of new type Stirling engine with pendulum type displacer (PDSE) which was proposed last year. This kind of engine has a pendulum type displacer suspended by the hinge shaft, and swings right and left in displacer space. The present paper mainly discusses the PDSE-3B which is an atmospheric 30[W] engine heated by fuel and cooled by water. It is clear that power required to provide a pendulum type displacer motion is expressed as a simple equation consisting of viscous flow loss term proportional to the square of rotational speed and dynamic pressure loss term proportional to the cube of rotational speed. It is also clear that theoretical engine power defined as the difference between experimental indicated power and power required to provide pendulum type displacer motion agrees well with the experimental engine power. It is also clear that measured Nusselt number of regenerator`s wire meshes agreed with the equation of previous study. In conclusion, PDSE is considered effective for measuring many aspects of performance of the Stirling engine.

  20. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  1. NREL-Biomass Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    Presentation AgencyCompany Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Biomass, Transportation Topics: Resource assessment Resource Type: Maps...

  2. Miami Dade County Resource Recovery Fac Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Fac Biomass Facility Facility Miami Dade County Resource Recovery Fac Sector Biomass Facility Type Municipal Solid Waste Location Miami-Dade County, Florida...

  3. WINDExchange: Wind Economic Development Resources and Tools

    Wind Powering America (EERE)

    Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 8/17/2016 Publication Small Wind Econ. Dev. U.S. Department of Energy 2015 Wind Technologies Market Report 8/1/2016 News Econ. Dev. Business Network for Offshore Wind

  4. Offshore Resource Assessment and Design Conditions: A Data Requirements and Gaps Analysis for Offshore Renewable Energy Systems

    SciTech Connect (OSTI)

    Elliott, Dennis; Frame, Caitlin; Gill, Carrie; Hanson, Howard; Moriarty, Patrick; Powell, Mark; Shaw, William J.; Wilczak, Jim; Wynne, Jason

    2012-03-01

    The offshore renewable energy industry requires accurate meteorological and oceanographic (“metocean”) data for evaluating the energy potential, economic viability, and engineering requirements of offshore renewable energy projects. It is generally recognized that currently available metocean data, instrumentation, and models are not adequate to meet all of the stakeholder needs on a national scale. Conducting wind and wave resource assessments and establishing load design conditions requires both interagency collaboration as well as valuable input from experts in industry and academia. Under the Department of Energy and Department of Interior Memorandum of Understanding, the Resource Assessment and Design Condition initiative supports collaborative national efforts by adding to core atmospheric and marine science knowledge relevant to offshore energy development. Such efforts include a more thorough understanding and data collection of key metocean phenomena such as wind velocity and shear; low-level jets; ocean, tidal, and current velocities; wave characteristics; geotechnical data relating to surface and subsurface characteristics; seasonal and diurnal variations; and the interaction among these conditions. Figure 1 presents a graphical representation of some metocean phenomena that can impact offshore energy systems. This document outlines the metocean observations currently available; those that are not available; and those that require additional temporal-spatial coverage, resolution, or processing for offshore energy in an effort to gather agreed-upon, needed observations.

  5. VERDE: Visualizing Energy Resources Dynamically on Earth - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search VERDE: Visualizing Energy Resources Dynamically on Earth Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryVERDE is a software application utilizing the Google Earth(c) platform to provide real time visualization of the electric power grid.DescriptionVERDE is capable of layering different types of information on

  6. Practical Thermal Evaluation Methods For HAC Fire Analysis In Type B Radiaoactive Material (RAM) Packages

    SciTech Connect (OSTI)

    Abramczyk, Glenn; Hensel, Stephen J; Gupta, Narendra K.

    2013-03-28

    Title 10 of the United States Code of Federal Regulations Part 71 for the Nuclear Regulatory Commission (10 CFR Part 71.73) requires that Type B radioactive material (RAM) packages satisfy certain Hypothetical Accident Conditions (HAC) thermal design requirements to ensure package safety during accidental fire conditions. Compliance with thermal design requirements can be met by prototype tests, analyses only or a combination of tests and analyses. Normally, it is impractical to meet all the HAC using tests only and the analytical methods are too complex due to the multi-physics non-linear nature of the fire event. Therefore, a combination of tests and thermal analyses methods using commercial heat transfer software are used to meet the necessary design requirements. The authors, along with his other colleagues at Savannah River National Laboratory in Aiken, SC, USA, have successfully used this 'tests and analyses' approach in the design and certification of several United States' DOE/NNSA certified packages, e.g. 9975, 9977, 9978, 9979, H1700, and Bulk Tritium Shipping Package (BTSP). This paper will describe these methods and it is hoped that the RAM Type B package designers and analysts can use them for their applications.

  7. Unconventional Energy Resources: 2015 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2015-12-15

    This paper includes 10 summaries for energy resource commodities including coal and unconventional resources, and an analysis of energy economics and technology prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. Such resources include coalbed methane, oil shale, U and Th deposits and associated rare earth elements of industrial interest, geothermal, gas shale and liquids, tight gas sands, gas hydrates, and bitumen and heavy oil. Current U.S. and global research and development activities are summarized for each unconventional energy resource commodity in the topical sections of this report, followed by analysis of unconventional energy economics and technology.

  8. The Resource Hierarchy Relationship

    U.S. Energy Information Administration (EIA) Indexed Site

    Resource Hierarchy Relationship Troy Cook September 27, 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES September 2015 Troy Cook | U.S. Energy Information Administration This paper is released to

  9. Flow Characteristics Analysis of Widows' Creek Type Control Valve for Steam Turbine Control

    SciTech Connect (OSTI)

    Yoo, Yong H.; Sohn, Myoung S.; Suh, Kune Y.

    2006-07-01

    The steam turbine converts the kinetic energy of steam to mechanical energy of rotor blades in the power conversion system of fossil and nuclear power plants. The electric output from the generator of which the rotor is coupled with that of the steam turbine depends on the rotation velocity of the steam turbine bucket. The rotation velocity is proportional to the mass flow rate of steam entering the steam turbine through valves and nozzles. Thus, it is very important to control the steam mass flow rate for the load following operation of power plants. Among various valves that control the steam turbine, the control valve is most significant. The steam flow rate is determined by the area formed by the stem disk and the seat of the control valve. While the ideal control valve linearly controls the steam mass flow rate with its stem lift, the real control valve has various flow characteristic curves pursuant to the stem lift type. Thus, flow characteristic curves are needed to precisely design the control valves manufactured for the operating conditions of nuclear power plants. OMEGA (Optimized Multidimensional Experiment Geometric Apparatus) was built to experimentally study the flow characteristics of steam flowing inside the control valve. The Widows' Creek type control valve was selected for reference. Air was selected as the working fluid in the OMEGA loop to exclude the condensation effect in this simplified approach. Flow characteristic curves were plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate of the air. The flow characteristic curves are expected to be utilized to accurately design and operate the control valve for fossil as well as nuclear plants. (authors)

  10. Patten, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9964392, -68.4461424 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  11. Argyle, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.054231, -68.6722537 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  12. Orono, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8831249, -68.671977 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  13. Medford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2853307, -68.8517011 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  14. Hermon, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.81007, -68.9133724 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Seboeis, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3631091, -68.7111424 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Drew, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6013167, -68.0942848 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  17. Milo, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2536633, -68.9858713 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  18. Prentiss, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4917309, -68.081681 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  19. Kenduskeag, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9195128, -68.9317049 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. Springfield, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3961751, -68.1355703 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  1. Kingman, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5495057, -68.1994627 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Medway, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6089427, -68.5308623 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Mattawamkeag, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5136701, -68.3544669 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Hampden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7445159, -68.836982 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  5. Stacyville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.8636618, -68.5053088 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  6. Bradford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0667301, -68.9378149 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Lee, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3600615, -68.2864076 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. Ashland, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.6311528, -68.4061523 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. Carroll, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4145098, -68.0380677 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. Lowell, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1878373, -68.4677999 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  11. Clifton, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8167372, -68.5111379 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  12. Lagrange, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1667248, -68.844479 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  13. Greenbush, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0803409, -68.6508635 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  14. Webster, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8875692, -68.6628099 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Chester, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4086674, -68.4997474 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Twombly, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2748647, -68.237681 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  17. Criehaven, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8339726, -68.889201 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  18. Winn, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.4856144, -68.372245 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  19. Brewer, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7967378, -68.7614246 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. Hudson, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0011783, -68.8805923 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  1. Edinburg, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1650821, -68.6751748 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Milford, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.946179, -68.6439202 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Millinocket, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6572723, -68.7097579 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Lakeville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2884402, -68.1090701 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Passadumkeag, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1853362, -68.6166937 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  6. Woodville, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5156583, -68.4584404 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Orrington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7311829, -68.8264258 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. Eddington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8261817, -68.6933667 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. Burlington, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.2092264, -68.4266875 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. Holden, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.7528499, -68.6789218 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  11. Lincoln, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3622785, -68.5050245 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  12. Levant, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.8692358, -68.9347611 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  13. Southeast Piscataquis, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1799355, -68.953725 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  14. Onley, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6909641, -75.7160405 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Newark, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6837226, -75.7496572 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Middletown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.449556, -75.7163207 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  17. Hockessin, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112, -75.6966001 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  18. Odessa, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334, -75.6613184 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  19. Reading, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.3356483, -75.9268747 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. Tangier, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8262373, -75.9916035 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  1. Ardentown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446, -75.4829752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Keller, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6192992, -75.7638185 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Townsend, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3951115, -75.6915973 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Greenville, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7790012, -75.5982599 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Arden, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794, -75.4865866 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  6. Parksley, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7820725, -75.6535401 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Ardencroft, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323, -75.4861752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. Elsmere, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796, -75.5979812 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. Brookside, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561, -75.7268779 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. Oakmont, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.9870562, -75.3079645 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  11. Berlin, Maryland: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 38.3226153, -75.2176892 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  12. Exton, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.0289955, -75.6207651 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  13. Ivyland, Pennsylvania: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2078863, -75.0726707 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  14. Accomac, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.7195741, -75.6654845 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Kennett Square, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8467767, -75.7116032 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Bloxom, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.8295713, -75.6232616 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  17. Bear, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788, -75.6582628 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  18. Claymont, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685, -75.4596404 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  19. Clayton, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671, -75.6343727 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. Bellefonte, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7663, -75.498313 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  1. Painter, Virginia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.585411, -75.7849299 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Attiki, Greece: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search GeoNames ID 264354 Coordinates 38, 23.73333 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":"...

  3. Resource Services Group (RSG) | Open Energy Information

    Open Energy Info (EERE)

    About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems...

  4. Hillsborough County Resource Recovery Biomass Facility | Open...

    Open Energy Info (EERE)

    Facility Hillsborough County Resource Recovery Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  5. Seismic analysis of a large pool-type LMR (liquid metal reactor)

    SciTech Connect (OSTI)

    Wang, C.Y.; Gvildys, J.

    1989-01-01

    This paper describes the seismic study of a 450-MWe liquid metal reactor (LMR) under 0.3-g SSE ground excitation. Two calculations were performed using the new design configuration. They deal with the seismic response of the reactor vessel, the guard vessel and support skirt, respectively. In both calculations, the stress and displacement fields at important locations of those components are investigated. Assessments are also made on the elastic and inelastic structural capabilities for other beyond-design basis seismic loads. Results of the reactor vessel analysis reveal that the maximum equivalent stress is only about half of the material yield stress. For the guard vessel and support skirt, the stress level is very small. Regarding the analysis if inelastic structural capability, solutions of the Newmark-Hall ductility modification method show that the reactor vessel can withstand seismics with ground ZPAs ranging from 1.015 to 1.31 g, which corresponds to 3.37 to 4.37 times the basic 0.3-g SSE. Thus, the reactor vessel and guard vessel are strong enough to resist seismic loads. 4 refs., 10 figs., 5 tabs.

  6. Response Resources Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability of Demand Response Resources Demonstration in NY Final Technical Report Award Number: DE-FC26-08NT02869 Project Type: Regional Demonstration Principal Investigator: Andre Wellington, Project Manager, Smart Grid Implementation Group Recipient: Consolidated Edison Company of New York, Inc. Team members: Innoventive Power and Verizon Communications Consolidated Edison Company of New York, Inc. Taxpayer ID Number: 13-5009340 Organizational DUNS: 00-698-2359 4 Irving Place New York,

  7. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

  8. EARLY OBSERVATIONS AND ANALYSIS OF THE TYPE Ia SN 2014J IN M82

    SciTech Connect (OSTI)

    Marion, G. H.; Vinkó, J.; Sand, D. J.; Hsiao, E. Y.; Banerjee, D. P. K.; Joshi, V.; Venkataraman, V.; Ashok, N. M.; Valenti, S.; Howell, D. A.; Stritzinger, M. D.; Amanullah, R.; Johansson, J.; Binzel, R. P.; Bochanski, J. J.; Bryngelson, G. L.; Burns, C. R.; Drozdov, D.; Fieber-Beyer, S. K.; Graham, M. L.; and others

    2015-01-01

    We present optical and near infrared (NIR) observations of the nearby Type Ia SN 2014J. Seventeen optical and 23 NIR spectra were obtained from 10 days before (–10d) to 10 days after (+10d) the time of maximum B-band brightness. The relative strengths of absorption features and their patterns of development can be compared at one day intervals throughout most of this period. Carbon is not detected in the optical spectra, but we identify C I λ1.0693 in the NIR spectra. Mg II lines with high oscillator strengths have higher initial velocities than other Mg II lines. We show that the velocity differences can be explained by differences in optical depths due to oscillator strengths. The spectra of SN 2014J show that it is a normal SN Ia, but many parameters are near the boundaries between normal and high-velocity subclasses. The velocities for O I, Mg II, Si II, S II, Ca II, and Fe II suggest that SN 2014J has a layered structure with little or no mixing. That result is consistent with the delayed detonation explosion models. We also report photometric observations, obtained from –10d to +29d, in the UBVRIJH and K{sub s} bands. The template fitting package SNooPy is used to interpret the light curves and to derive photometric parameters. Using R{sub V} = 1.46, which is consistent with previous studies, SNooPy finds that A{sub V} = 1.80 for E(B – V){sub host} = 1.23 ± 0.06 mag. The maximum B-band brightness of –19.19 ± 0.10 mag was reached on February 1.74 UT ± 0.13 days and the supernova has a decline parameter, Δm {sub 15}, of 1.12 ± 0.02 mag.

  9. All State & Local Solution Center Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All State & Local Solution Center Resources All State & Local Solution Center Resources The State and Local Solution Center provides information on tools, resources, and best practices to help state and local governments plan for and implement clean energy projects. Use the table below to view all our resources and filter by action area, tag, and resource type. To learn more about the Solution Center resources and tools, download the Resource Guide. The DOE Office of Energy Efficiency

  10. All State & Local Solution Center Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    All State & Local Solution Center Resources All State & Local Solution Center Resources The State and Local Solution Center provides information on tools, resources, and best practices to help state and local governments plan for and implement clean energy projects. Use the table below to view all our resources and filter by action area, tag, and resource type. To learn more about the Solution Center resources and tools, download the Resource Guide. The DOE Office of Energy Efficiency

  11. Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid

    SciTech Connect (OSTI)

    Barker, Alan M; Freer, Eva B; Omitaomu, Olufemi A; Fernandez, Steven J; Chinthavali, Supriya; Kodysh, Jeffrey B

    2013-01-01

    An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing was automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.

  12. Safety analysis report for packaging for the Idaho National Engineering Laboratory TRA Type 1 Shipping Container and TRA Type 2 Shipping Capsule

    SciTech Connect (OSTI)

    Havlovick, B.J.

    1992-07-27

    The TRA Type I Shipping Container and TRA Type II Shipping Capsule were designed and fabricated at the Idaho National Engineering Laboratory as special form containers for the transport of non-fissile radioisotopes and fissile radioisotopes in exempt quantities. The Type I container measures 0.75 in. outside diameter and 3.000 in long. The Type II capsule is 0.495 in. outside diameter 2.000 in. long. The container and capsule were tested and evaluated to determine their compliance with Title 49 Code of Federal Regulations 173, which governs packages for special form radioactive material. This report is based upon those tests and evaluations. The results of those tests and evaluations demonstrate the container and capsule are in full compliance with the special form shipping container regulations of 49 CFR 173.

  13. Statistical analysis of the dynamics of secondary electrons in the flare of a high-voltage beam-type discharge

    SciTech Connect (OSTI)

    Demkin, V. P.; Mel'nichuk, S. V.

    2014-09-15

    In the present work, results of investigations into the dynamics of secondary electrons with helium atoms in the presence of the reverse electric field arising in the flare of a high-voltage pulsed beam-type discharge and leading to degradation of the primary electron beam are presented. The electric field in the discharge of this type at moderate pressures can reach several hundred V/cm and leads to considerable changes in the kinetics of secondary electrons created in the process of propagation of the electron beam generated in the accelerating gap with a grid anode. Moving in the accelerating electric field toward the anode, secondary electrons create the so-called compensating current to the anode. The character of electron motion and the compensating current itself are determined by the ratio of the field strength to the concentration of atoms (E/n). The energy and angular spectra of secondary electrons are calculated by the Monte Carlo method for different ratios E/n of the electric field strength to the helium atom concentration. The motion of secondary electrons with threshold energy is studied for inelastic collisions of helium atoms and differential analysis is carried out of the collisional processes causing energy losses of electrons in helium for different E/n values. The mechanism of creation and accumulation of slow electrons as a result of inelastic collisions of secondary electrons with helium atoms and selective population of metastable states of helium atoms is considered. It is demonstrated that in a wide range of E/n values the motion of secondary electrons in the beam-type discharge flare has the character of drift. At E/n values characteristic for the discharge of the given type, the drift velocity of these electrons is calculated and compared with the available experimental data.

  14. Energy Efficiency in Western Utility Resource Plans Implications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project scope: Comparative analysis of recent resource plans filed by 14 utilities in the Western U.S. and Canada. Analyze treatment of conventional & emerging resource ...

  15. Ethiopia-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    to 2004 the German Aerospace Center (DLR) worked with Ethiopia on solar resource and GIS analysis as part of UNEP's Solar and Wind Energy Resource Assessment (SWERA) Programme....

  16. Bangladesh-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    to 2004 the German Aerospace Center (DLR) worked with Bangladesh on solar resource and GIS analysis as part of UNEP's Solar and Wind Energy Resource Assessment (SWERA) Programme....

  17. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

  18. National conference on integrated resource planning: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers` short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners` (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  19. National conference on integrated resource planning: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Until recently, state regulators have focused most of their attention on the development of least-cost or integrated resource planning (IRP) processes for electric utilities. A number of commissions are beginning to scrutinize the planning processes of local gas distribution companies (LDCs) because of the increased control that LDCs have over their purchased gas costs (as well as the associated risks) and because of questions surrounding the role and potential of gas end-use efficiency options. Traditionally, resource planning (LDCs) has concentrated on options for purchasing and storing gas. Integrated resource planning involves the creation of a process in which supply-side and demand-side options are integrated to create a resource mix that reliably satisfies customers' short-term and long-term energy service needs at the lowest cost. As applied to gas utilities, an integrated resource plan seeks to balance cost and reliability, and should not be interpreted simply as the search for lowest commodity costs. The National Association of Regulatory Utility Commissioners' (NARUC) Energy Conservation committee asked Lawrence Berkeley Laboratory (LBL) to survey state PUCs to determine the extent to which they have undertaken least cost planning for gas utilities. The survey included the following topics: status of state PUC least-cost planning regulations and practices for gas utilities; type and scope of natural gas DSM programs in effect, including fuel substitution; economic tests and analysis methods used to evaluate DSM programs; relationship between prudency reviews of gas utility purchasing practices and integrated resource planning; key regulatory issued facing gas utilities during the next five years.

  20. Unconventional Energy Resources: 2013 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  1. Lessons learned during Type A Packaging testing

    SciTech Connect (OSTI)

    O`Brien, J.H.; Kelly, D.L.

    1995-11-01

    For the past 6 years, the US Department of Energy (DOE) Office of Facility Safety Analysis (EH-32) has contracted Westinghouse Hanford Company (WHC) to conduct compliance testing on DOE Type A packagings. The packagings are tested for compliance with the U.S. Department of Transportation (DOT) Specification 7A, general packaging, Type A requirements. The DOE has shared the Type A packaging information throughout the nuclear materials transportation community. During testing, there have been recurring areas of packaging design that resulted in testing delays and/or initial failure. The lessons learned during the testing are considered a valuable resource. DOE requested that WHC share this resource. By sharing what is and can be encountered during packaging testing, individuals will hopefully avoid past mistakes.

  2. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs,...

  3. ORISE Resources: Consumer Health Resource Information Service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  4. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  6. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  7. Performance-based ratemaking for electric utilities: Review of plans and analysis of economic and resource-planning issues. Volume 1

    SciTech Connect (OSTI)

    Comnes, G.A.; Stoft, S.; Greene, N.; Hill, L.J. |

    1995-11-01

    Performance-Based Ratemaking (PBR) is a form of utility regulation that strengthens the financial incentives to lower rates, lower costs, or improve nonprice performance relative traditional regulation, which the authors call cost-of-service, rate-of-return (COS/ROR) regulation. Although the electric utility industry has considerable experience with incentive mechanisms that target specific areas of performance, implementation of mechanisms that cover a comprehensive set of utility costs or services is relatively rare. In recent years, interest in PBR has increased as a result of growing dissatisfaction with COS/ROR and as a result of economic and technological trends that are leading to more competition in certain segments of the electricity industry. In addition, incentive regulation has been used with some success in other public utility industries, most notably telecommunications in the US and telecommunications, energy, and water in the United Kingdom. In this report, the authors analyze comprehensive PBR mechanisms for electric utilities in four ways: (1) they describe different types of PBR mechanisms, (2) they review a sample of actual PBR plans, (3) they consider the interaction of PBR and utility-funded energy efficiency programs, and (4) they examine how PBR interacts with electric utility resource planning and industry restructuring. The report should be of interest to technical staff of utilities and regulatory commissions that are actively considering or designing PBR mechanisms. 16 figs., 17 tabs.

  8. Route Type Determination Analysis

    SciTech Connect (OSTI)

    Brett Stone

    2011-09-01

    According to the 2009 National Household Travel Survey 44.4 percent of all miles travelled by Americans in 2009 (including airplanes, trains, boats, golf carts, subways, bikes, etc.) were travelled in cars. If vans, SUV's and pickup trucks are included, that level increases to 86 percent. We do a lot of travelling on the road in personal vehicles - it's important to be able to understand how we get there and how to rate the fuel economy of our trips. An essential part of this is knowing how to decide if a trip is a city or highway trip.

  9. WINDExchange: Resources and Tools for Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Resources for Siting Wind Turbines This page lists information resources such as publications, websites, and news for siting wind turbines. Search the WINDExchange Database Choose a Type of Information All News Publications Web Resource Videos Start Search Clear Search Date State Type of Information Program Area Title 7/19/2016 News Siting Global Partners Launch

  10. Mobile Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency & Renewable Energy Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the

  11. Bechtel Jacobs Company LLC Sampling and Analysis Plan for the Water Resources Restoration Program for Fiscal Year 2009, Oak Ridge Reservation, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Ketelle R.H.

    2008-09-25

    The Oak Ridge Reservation (ORR) Water Resources Restoration Program (WRRP) was established by the U. S. Department of Energy (DOE) in 1996 to implement a consistent approach to long-term environmental monitoring across the ORR. The WRRP has four principal objectives: (1) to provide the data and technical analysis necessary to assess the performance of completed Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) actions on the ORR; (2) to perform monitoring to establish a baseline against which the performance of future actions will be gauged and to support watershed management decisions; (3) to perform interim-status and post-closure permit monitoring and reporting to comply with Resource Conservation and Recovery Act of 1976 (RCRA) requirements; and (4) to support ongoing waste management activities associated with WRRP activities. Water quality projects were established for each of the major facilities on the ORR: East Tennessee Technology Park (ETTP); Oak Ridge National Laboratory (ORNL), including Bethel Valley and Melton Valley; and the Y-12 National Security Complex (Y-12 Complex or Y-12), including Bear Creek Valley (BCV), Upper East Fork Poplar Creek (UEFPC), and Chestnut Ridge. Off-site (i.e., located beyond the ORR boundary) sampling requirements are also managed as part of the Y-12 Water Quality Project (YWQP). Offsite locations include those at Lower East Fork Poplar Creek (LEFPC), the Clinch River/Poplar Creek (CR/PC), and Lower Watts Bar Reservoir (LWBR). The Oak Ridge Associated Universities (ORAU) South Campus Facility (SCF) is also included as an 'off-site' location, although it is actually situated on property owned by DOE. The administrative watersheds are shown in Fig. A.l (Appendix A). The WRRP provides a central administrative and reporting function that integrates and coordinates the activities of the water quality projects, including preparation and administration of the WRRP Sampling and Analysis Plan

  12. Solar and Wind Energy Resource Assessment (SWERA)

    Open Energy Info (EERE)

    Wiki Page Solar and Wind Energy Resource Assessment A United Nations Environment Programme facilitated effort. Getting Started Data Sets Analysis Tools About SWERA Loading.....

  13. Solar resources

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1989-01-01

    Following the 1973 oil embargo, the US government initiated a program to develop and use solar energy. This led to individual programs devoted to developing various solar radiation energy conversion technologies: photovoltaic and solar-thermal conversion devices. Nearly concurrently, it was recognized that understanding the available insolation resources was required to develop and deploy solar energy devices and systems. It was also recognized that the insolation information available at that time (1973) was not adequate to meet the specific needs of the solar energy community. Federal efforts were initiated and conducted to produce new and more extensive information and data. The primary federal agencies that undertook such efforts were the Department of Energy (DOE) and the National Oceanic and Atmospheric Administration (NOAA). NOAA's efforts included activities performed by the National Weather Service (NWS) and the National Climatic Data Center (NCDC). This book has two man objectives: to report some of the insolation energy data, information, and products produced by the federal efforts and to describe how they were produced. Products include data bases, models and algorithms, monitoring networks, instrumentation, and scientific techniques. The scope of products and results does not include all those produced by past federal efforts. The book's scope and subject matter are oriented to support the intent and purpose of the other volumes in this series. In some cases, other pertinent material is presented to provide a more complete coverage of a given subject. 385 refs., 149 figs., 50 tabs.

  14. Survey and Analysis of Multiresolution Methods for Turbulence...

    Office of Scientific and Technical Information (OSTI)

    Survey and Analysis of Multiresolution Methods for Turbulence Data Citation Details In-Document ... DOE Contract Number: AC52-06NA25396 Resource Type: Technical Report Research Org: ...

  15. National Geothermal Resource Assessment and Classification

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Resource Assessment and Classification Colin F. Williams US Geological Survey Data Systems and Analysis (Resource Assessment) April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research * Overall Summary - Major Project Goals * Develop new Geothermal Resource Classification standards * Expand Resource Assessment scope across all 50 states

  16. Valuation of ecological resources

    SciTech Connect (OSTI)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  17. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  18. Pathway and Resource Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Resource Overview Pathway and Resource Overview Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA renewable_hydrogen_workshop_nov16_ruth.pdf (684.83 KB) More Documents & Publications US DOE Hydrgoen Program- HyDRA (Hydrogen Demand and Resource Analysis Tool Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios Analysis Models and Tools: Systems

  19. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  20. Natural Gas Resources of the Greater Green River and Wind River...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Natural Gas Resources of the Greater Green River and Wind River Basins ... Resource Type: Technical Report Research Org: National Energy Technology Laboratory, ...

  1. Carbon-Type Analysis and Comparison of Original and Reblended FACE Diesel Fuels (FACE 2, FACE 4, and FACE 7)

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.; O'Hagan, Molly J.

    2012-10-01

    This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of Fuels for Advanced Combustion Engines (FACE) diesel blends, FD-2B, FD 4B, and FD-7B, and makes comparison of the new blends with the original FACE diesel blends, FD 2A, FD 4A, and FD-7A, respectively. Generally, FD-2A and FD-2B are more similar than the A and B blends of FD-4 and FD-7. The aromatic carbon content is roughly equivalent, although the new FACE blends have decreased monoaromatic content and increased di- and tri-cycloaromatic content, as well as a higher overall aromatic content, than the original FACE blends. The aromatic components of the new FACE blends generally have a higher alkyl substitution with longer alkyl substituents. The naphthenic and paraffinic contents remained relatively consistent. Based on aliphatic methyl and methylene carbon ratios, cetane numbers for FD-2A and -2B, and FD-7A and -7B are predicted to be consistent, while the cetane number for FD-4B is predicted to be higher than FD-4A. Overall, the new FACE fuel blends are fairly consistent with the original FACE fuel blends, but there are observable differences. In addition to providing important comparative compositional information on reformulated FACE diesel blends, this report also provides important information about the capabilities of the team at Pacific Northwest National Laboratory in the use of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  2. Systematic uncertainties associated with the cosmological analysis of the first Pan-STARRS1 type Ia supernova sample

    SciTech Connect (OSTI)

    Scolnic, D.; Riess, A.; Brout, D.; Rodney, S. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Rest, A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Huber, M. E.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Foley, R. J.; Chornock, R.; Berger, E.; Soderberg, A. M.; Stubbs, C. W.; Kirshner, R. P.; Challis, P.; Czekala, I.; Drout, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Narayan, G. [Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138 (United States); Smartt, S. J.; Botticella, M. T. [Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Schlafly, E. [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); and others

    2014-11-01

    We probe the systematic uncertainties from the 113 Type Ia supernovae (SN Ia) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ?0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037 0.031 mag for host galaxies with high and low masses. Assuming flatness and including systematic uncertainties in our analysis of only SNe measurements, we find w =?1.120{sub ?0.206}{sup +0.360}(Stat){sub ?0.291}{sup +0.269}(Sys). With additional constraints from Baryon acoustic oscillation, cosmic microwave background (CMB) (Planck) and H {sub 0} measurements, we find w=?1.166{sub ?0.069}{sup +0.072} and ?{sub m}=0.280{sub ?0.012}{sup +0.013} (statistical and systematic errors added in quadrature). The significance of the inconsistency with w = 1 depends on whether we use Planck or Wilkinson Microwave Anisotropy Probe measurements of the CMB: w{sub BAO+H0+SN+WMAP}=?1.124{sub ?0.065}{sup +0.083}.

  3. Sandia Energy - Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  4. Technical Assistance: Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Technical Assistance: Resources The State and Local Solution Center helps states, local governments, and K-12 schools take clean energy to scale in their communities using a searchable database based on four key action areas or by topic and/or resource type. Action areas include in depth information on how to develop a clean energy strategy, design and implement clean energy programs, pay for clean energy, and access and use energy data. The State & Local Energy Efficiency Action

  5. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  6. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows...

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources The Human Resources team is fully integrated with Jefferson Lab's mission, committed to providing quality customer service based on expertise, innovation and ...

  8. Griffiss AFB integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  9. NREL: Renewable Resource Data Center - Biomass Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  10. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  11. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  12. 1993 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1993-12-01

    The Loads and Resources Study is presented in three documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; (2) a technical appendix detailing forecasted Pacific Northwest economic trends and loads, and (3) a technical appendix detailing the loads and resources for each major Pacific Northwest generating utility. In this loads and resources study, resource availability is compared with a range of forecasted electricity consumption. The forecasted future electricity demands -- firm loads -- are subtracted from the projected capability of existing and {open_quotes}contracted for{close_quotes} resources to determine whether Bonneville Power Administration (BPA) and the region will be surplus or deficit. If resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA can sell to increase revenues. Conversely, if firm loads exceed available resources, there is a deficit of energy and/or capacity, and additional conservation, contract purchases, or generating resources will be needed to meet load growth. The Pacific Northwest Loads and Resources Study analyzes the Pacific Northwest`s projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resource in addition to the Federal system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. This study presents the Federal system and regional analyses for five load forecasts: high, medium-high, medium, medium-low, and low. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 1994--95 through 2003--04.

  13. Natural resources law handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers legal topics ranging from ownership-related issues (including disposition, use and management of privately and publicly-owned lands, resources, minerals and waters) to the protection and maintenance of our nation's natural resources. It contains chapters on oil and gas resources, coal resources, and minerals and mining.

  14. Energy Efficiency Resource Standards Resources | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find EERS resources below. Coordination of Energy Efficiency and Demand Response ACEEE Database of State EERS Center for Climate and Energy Solutions: Energy Efficiency Standards ...

  15. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education & Training » Energy Resource Library Energy Resource Library The U.S. Department of Energy (DOE) Office of Indian Energy resource library provides links to helpful resources for tribes on energy project development and financing on tribal lands. The library includes links to topically relevant publications, websites, videos, and more produced by the Office of Indian Energy and external organizations. The resources are specifically focused on energy topics that help promote tribal

  16. Geothermal Resources Assessment in Hawaii

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-10-01

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program. The island of Kauai was not studied during the current phase of investigation. Geothermal field studies were not considered to be warranted due to the absence of significant geochemical or geophysical indications of a geothermal resource. The great age of volcanism on this island would further suggest that should a thermal resource be present, it would be of low temperature. The geothermal field studies conducted on Oahu focused on the caldera complexes of the two volcanic systems which form the island: Waianae volcano and Koolau volcano. The results of these studies and the interpreted probability for a resource are presented.

  17. NREL: Energy Analysis - Sustainability Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Life Cycle Assessment Harmonization Sustainable Biomass Resource Development and Use Renewable Energy on Contaminated Lands Technology Systems Analysis Geospatial Analysis Key ...

  18. Resource assessment for geothermal direct use applications

    SciTech Connect (OSTI)

    Beer, C.; Hederman, W.F. Jr.; Dolenc, M.R.; Allman, D.W.

    1984-04-01

    This report discusses the topic geothermal resource assessment and its importance to laymen and investors for finding geothermal resources for direct-use applications. These are applications where the heat from lower-temperature geothermal fluids, 120 to 200/sup 0/F, are used directly rather than for generating electricity. The temperatures required for various applications are listed and the various types of geothermal resources are described. Sources of existing resource data are indicated, and the types and suitability of tests to develop more data are described. Potential development problems are indicated and guidance is given on how to decrease technical and financial risk and how to use technical consultants effectively. The objectives of this report are to provide: (1) an introduction low-temperature geothermal resource assessment; (2) experience from a series of recent direct-use projects; and (3) references to additional information.

  19. North Penobscot, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.521742, -68.6614158 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. East Central Penobscot, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1155166, -68.4228803 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  1. East Millinocket, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.6275527, -68.5744751 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Old Town, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9342349, -68.6453092 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Mount Chase, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 46.0777595, -68.4894535 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. North Haven, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1281362, -68.8741989 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Matinicus Isle, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8650834, -68.8869788 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  6. Penobscot Indian Island, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.1218285, -68.6290394 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Lake View, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.3233851, -68.9258708 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. Isle au Haut, Maine: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.0753601, -68.6333583 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. Hermon, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.467283, -75.2304859 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. Delaware City, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901, -75.588815 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...