Sample records for analysis fluid inclusion

  1. Fluid Inclusion Gas Analysis

    SciTech Connect (OSTI)

    Dilley, Lorie

    2013-01-01T23:59:59.000Z

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  2. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  3. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Technique Fluid Inclusion Analysis Activity Date - 1988 Usefulness not indicated DOE-funding Unknown Notes Abstract does not describe study in explicit detail, need to...

  4. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Sasada & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs Geothermal Area...

  5. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology...

    Open Energy Info (EERE)

    inclusion gas analysis of drill chip cuttings in a similar fashion as used in the petroleum industry. Thus the results of this project may lower exploration costs both in the...

  6. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Surveys Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation...

  7. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES...

    Open Energy Info (EERE)

    This is the fourth paper in a series on developing fluid inclusion stratigraphy (FIS) as a logging tool for geothermal bore holes. Here we address methods of displaying...

  8. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral...

    Open Energy Info (EERE)

    mineral surfaces by heating. The most abundant of these gases, besides H2O, are usually CO2, CH4, CO and N2. We have used a gas chromatograph to analyze these gases in fluid...

  9. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    Broader source: Energy.gov [DOE]

    The purpose of this research is to develop a method to identify fracture systems in wells using fluid inclusion gas analysis of drill chips.

  10. FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...

    Open Energy Info (EERE)

    RESERVOIR ASSESSMENT PRELIMINARY RESULTS Abstract Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids....

  11. Identifying Fracture Types and Relative Ages Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Dilley, Lorie M.; Norman, David; Owens, Lara

    2008-06-30T23:59:59.000Z

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Understanding the life cycle of a fracture in a geothermal system is fundamental to the development of techniques for creating fractures. Recognizing the stage of a fracture, whether it is currently open and transmitting fluids; if it recently has closed; or if it is an ancient fracture would assist in targeting areas for further fracture stimulation. Identifying dense fracture areas as well as large open fractures from small fracture systems will also assist in fracture stimulation selection. Geothermal systems are constantly generating fractures, and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. Our hypothesis is that fractures over their life cycle have different chemical signatures that we can see in fluid inclusion gas analysis and by using the new method of fluid inclusion stratigraphy (FIS) the different stages of fractures, along with an estimate of fracture size can be identified during the well drilling process. We have shown with this study that it is possible to identify fracture locations using FIS and that different fractures have different chemical signatures however that signature is somewhat dependent upon rock type. Open, active fractures correlate with increase concentrations of CO2, N2, Ar, and to a lesser extent H2O. These fractures would be targets for further enhancement. The usefulness of this method is that it is low cost alternative to current well logging techniques and can be done as a well is being drilled.

  12. Author's personal copy Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle

    E-Print Network [OSTI]

    Bodnar, Robert J.

    Author's personal copy Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid­Pannonian region Hungary C­O­H­S fluid inclusions Peridotite xenoliths Silicate melt inclusions Volatile (fluid)­silicate melt immiscibility Coexisting fluid inclusions and silicate melt inclusions, trapped as primary

  13. Fluid Inclusion Stratigraphy: Interpretation of New Wells in...

    Open Energy Info (EERE)

    Coso Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Fluid Inclusion Stratigraphy: Interpretation of New Wells in the...

  14. Microthermometry of Fluid Inclusions from the VC-1 Core Hole...

    Open Energy Info (EERE)

    low temperatures of final melting point of ice (about -40C), suggesting that a CaCl2 component is present. CO2 contents in fluid inclusions were estimated by the bubble...

  15. Fluid-inclusion evidence for past temperature fluctuations in...

    Open Energy Info (EERE)

    of nearby dikes and their subsequent cooling. The fluid-inclusion data indicate that past temperatures in SOH-4 well were as much as 64C hotter than present temperatures...

  16. Fluid Inclusion Stratigraphy Interpretation of New Wells in the...

    Open Energy Info (EERE)

    Field Abstract This paper is the fifth in a series about the development of the FIS method. Fluid Inclusion Stratigraphy (FIS) is a new technique being developed to map...

  17. Hydrocarbon-bearing fluid inclusions in fluorite associated with the Windy Knoll bitumen deposit, UK

    SciTech Connect (OSTI)

    Moser, M.R. (Imperial College, London (United Kingdom) University College, London (United Kingdom)); Rankin, A.H. (Imperial College, London (United Kingdom)); Milledge, H.J. (University College, London (United Kingdom))

    1992-01-01T23:59:59.000Z

    Hydrocarbon-bearing fluid inclusions in fluorite, associated with an outcropping bitumen deposit at Windy Knoll, Derbyshire, have been analyzed in situ using a combination of microthermometry, Fourier transform infrared (FTIR) microspectrometry, and ultraviolet (UV) microscopy. The inclusions in these samples can be considered as a series with two end members: aqueous inclusions containing a low-density vapor phase and inclusions containing liquid oil' with no detectable aqueous phase. The majority of the inclusions are mixed types containing both aqueous and liquid hydrocarbon phases. Although microthermometry distinguishes at least two different aqueous fluids with varying homogenization temperatures and salinities, the oil fraction is cogenetic and trapped together with just one fluid, a low-salinity, low-calcium brine with an average homogenization temperature of 134C. The majority of the liquid hydrocarbon-bearing inclusions fluoresce bright blue under UV illumination with peaks around 475 nm, characteristic of paraffinic oils. The FTIR spectra of these inclusions are dominated by peaks assigned to aliphatic C-H bonding. However, inclusions have also been found which display a fluorescence typical of the red-shift associated with less mature oils. The FTIR spectra display peaks assigned to C{double bond}O, C-O, and O-CH{sub 2} bonding. This study presents new data on the in-situ analysis of hydrocarbon-bearing fluid inclusion from this important area of natural petroleum seepage and ore mineralization. The results suggest a direct link between the fluid inclusion populations, the outcropping bitumens, and fluorite deposition.

  18. Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy

    SciTech Connect (OSTI)

    Lorie M. Dilley

    2011-03-30T23:59:59.000Z

    Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

  19. Black Warrior: Sub-soil gas and fluid inclusion exploration and...

    Broader source: Energy.gov (indexed) [DOE]

    Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well drilling John Casteel Nevada Geothermal Power Co. Validation of Innovative Exploration Technologies May...

  20. Black Warrior: Sub-soil gas and fluid inclusion exploration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hydrocarbon, and isotope data to define possible upflow areas; Calibrate the sub-soil chemistry with down-hole fluid inclusion stratigraphy and fluid analyses to define a follow-up...

  1. Effect of Fluid Flow on Inclusion Coarsening in Low-Alloy Steel Welds

    SciTech Connect (OSTI)

    Babu, S.S.; David, S.A.; DebRoy, T.; Hong, T.

    1998-02-28T23:59:59.000Z

    Oxide inclusions form in welds because of deoxidation reactions in the weld pool. These inclusions control the weld microstructure development. Thermodynamic and kinetic calculation of oxidation reaction can describe inclusion characteristics such as number density, size, and composition. Experimental work has shown that fluid-flow velocity gradients in the weld pool can accelerate inclusion growth by collision and coalescence. Moreover, fluid flow in welds can transport inclusions to different temperature regions that may lead to repeated dissolution and growth of inclusions. These phenomena are being studied with the help of computational coupled heat transfer, fluid-flow, thermodynamic, and kinetic models. The results show that the inclusion formation in steel welds can be described as a function of the welding processes, process parameters, and steel composition.

  2. A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field...

    Open Energy Info (EERE)

    observations indicate that early trapped fluids contained up to (approximate)2 mol% CO2 (now measured at <0.4 mol%). reservoir temperatures have decreased by...

  3. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION...

    Open Energy Info (EERE)

    driven. Calculations explain why benzene is a common constituent of geothermal fluids. Methane will react to form benzene at relatively high hydrogen fugacities. The...

  4. Fluid Inclusion Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergyOpen Energy

  5. Numerical model to determine the composition of H2ONaClCaCl2 fluid inclusions based on

    E-Print Network [OSTI]

    Bodnar, Robert J.

    Numerical model to determine the composition of H2O­NaCl­CaCl2 fluid inclusions based 2010 Abstract Natural fluids approximated by the H2O­NaCl­CaCl2 system are common in a wide range the compositions of fluid inclusions in the H2O­NaCl­CaCl2 sys- tem based on microthermometric and microanalytical

  6. DISPLAYING AND INTERPRETING FLUID INCLUSION STRATIGRAPHY ANALYSES ON MUDLOG

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDCDFJ MercuryGRAPHS |

  7. Fluid Gravity Engineering Rocket motor flow analysis

    E-Print Network [OSTI]

    Anand, Mahesh

    Fluid Gravity Engineering Capability · Rocket motor flow analysis -Internal (performance) -External young scientists/engineers Fluid Gravity Engineering Ltd #12;

  8. Gas Analysis Of Geothermal Fluid Inclusions- A New Technology For

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. It isGardnerGarrison,Garza

  9. Fluid Inclusion Analysis (Klein, 2007) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOEFlowood,5.53. 2(Klein,

  10. Fluid Inclusion Analysis At Chena Geothermal Area (Kolker, 2008) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOEFlowood,5.53.

  11. Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area

  12. Fluid Inclusion Analysis At International Geothermal Area Mexico (Norman &

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior AreaInformationOpen

  13. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal Area

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformation Geothermal(Sasada,

  14. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformation

  15. Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergy

  16. Fluid Inclusion Analysis At Yellowstone Region (Sturchio, Et Al., 1990) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergyOpen Energy

  17. Fluid Inclusion Analysis At Coso Geothermal Area (1996) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister Area (DOE

  18. Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister Area

  19. Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister AreaInformation

  20. Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWister

  1. Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal AreaWisterInformation

  2. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint GeothermalInformation (1990)

  3. Apparatus And Method For Fluid Analysis

    DOE Patents [OSTI]

    Wilson, Bary W. (Richland, WA); Peters, Timothy J. (Richland, WA); Shepard, Chester L. (West Richland, WA); Reeves, James H. (Richland, WA)

    2003-05-13T23:59:59.000Z

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  4. Quantitative analysis of inclusion distributions in hot pressed silicon carbide

    SciTech Connect (OSTI)

    Michael Paul Bakas

    2012-12-01T23:59:59.000Z

    ABSTRACT Depth of penetration measurements in hot pressed SiC have exhibited significant variability that may be influenced by microstructural defects. To obtain a better understanding regarding the role of microstructural defects under highly dynamic conditions; fragments of hot pressed SiC plates subjected to impact tests were examined. Two types of inclusion defects were identified, carbonaceous and an aluminum-iron-oxide phase. A disproportionate number of large inclusions were found on the rubble, indicating that the inclusion defects were a part of the fragmentation process. Distribution functions were plotted to compare the inclusion populations. Fragments from the superior performing sample had an inclusion population consisting of more numerous but smaller inclusions. One possible explanation for this result is that the superior sample withstood a greater stress before failure, causing a greater number of smaller inclusions to participate in fragmentation than in the weaker sample.

  5. Automated fluid analysis apparatus and techniques

    DOE Patents [OSTI]

    Szecsody, James E.

    2004-03-16T23:59:59.000Z

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  6. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area (Farrar, Et...

  7. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis of thermal fluids determined meteoric origin primarily from the Mineral Mountains with a small...

  8. Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area (Scholl, Et Al., 1993) Exploration...

  9. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal Area (1990) Exploration Activity Details Location Indian Valley Hot Springs Geothermal Area...

  10. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  11. Complex Fluid Analysis with the Advanced Distillation Curve Approach

    E-Print Network [OSTI]

    of a complex fluid is a graph of boiling temperature versus volume fraction distilled, a procedure embodied for each distillate fraction (for both qualitative and quantitative analysis); (2) temperature measurements) an assessment of the energy content of each distillate fraction; (6) trace chemical analysis of each distillate

  12. Air Ingress Benchmarking with Computational Fluid Dynamics Analysis

    E-Print Network [OSTI]

    1 Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Tieliang Zhai Professor by the US Nuclear Regulatory Commission #12;2 Air Ingress Accident Objectives and Overall Strategy: Depresurization Pure Diffusion Natural Convection Challenging: Natural convection Multi-component Diffusion (air

  13. Air Ingress Benchmarking with Computational Fluid Dynamics Analysis

    E-Print Network [OSTI]

    Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Andrew C. Kadak Department District Beijing, China September 22-24, 2004 Abstract Air ingress accident is a complicated accident scenario is compounded by multiple physical phenomena that are involved in the air ingress event

  14. The Thermal Evolution of the Ouachita Orogen, Arkansas and Oklahoma from Quartz-Calcite Thermometry and Fluid Inclusion Thermobarometry

    E-Print Network [OSTI]

    Piper, Jennifer

    2012-02-14T23:59:59.000Z

    . The lack of isotopic difference between host and vein suggests that the host oxygen determined that of the veins. This in turn suggests that the fluid in the rocks did not change regionally. The vitrinite reflectance/temperature of the host rocks increases...

  15. Inclusions fluides et isotopes du soufre du gisement CuAu de Valea Morii (monts Apuseni, Roumanie) : un

    E-Print Network [OSTI]

    Boyer, Edmond

    ore deposit (Apuseni mountains, Romania): telescoping between porphyry and low-sulfidation epithermal Morii Cu­Au ore deposit (Apuseni mountains, Romania) is characterised by a spatial association; Romania; epithermal; porphyry copper; deposit; fluids; telescoping Mots-clé: monts Apuseni; Roumanie

  16. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    permeable fluid flow pathways and the helium Isotopic composition of the surface fluids. The authors suggest that helium isotopes are the best and possibly the only...

  17. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral Exploration

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvuCommissionArea, Japan| Open

  18. Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior AreaInformation Area

  19. Fluid Inclusion Analysis At Coso Geothermal Area (2005-2006) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior AreaInformation

  20. Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior AreaInformationOpen Energy

  1. Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior

  2. Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformation Geothermal Area

  3. Fluid Inclusion Analysis At U.S. West Region (Laney, 2005) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformation Geothermal

  4. Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal

  5. Fluid Inclusion Analysis At Lightning Dock Area (Norman & Moore, 2004) |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint GeothermalInformation (1990)Open

  6. EBSD analysis of magnesium addition on inclusion formation in SS400 structural steel

    SciTech Connect (OSTI)

    Luo, Sin-Jie [Department of Materials Science and Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701, Taiwan (China); Su, Yen-Hao Frank; Lu, Muh-Jung [China Steel Corporation, Kaohsiung 81233, Taiwan (China); Kuo, Jui-Chao, E-mail: jckuo@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng-Kung University, No. 1, University Road, Tainan 701, Taiwan (China)

    2013-08-15T23:59:59.000Z

    In this study, the effect of magnesium addition on the inclusion formation in SS400 steel was investigated. The experimental specimens with and without Mg addition treatment were compared. The microstructure was observed using optical microscopy after etching with 3% nital. The morphology and chemical composition of the inclusions were analyzed via scanning electron microscopy and energy dispersive spectrometry. The lattice structure and orientation of the inclusions were identified by electron backscattering diffraction. The average size of inclusions in SS400 was between 0.67 and 0.75 ?m, and between 0.65 and 0.68 ?m in SS400 + Mg. The 2 ppm Mg addition resulted in the oxide formation change from Al{sub 2}O{sub 3} to MgOAl{sub 2}O{sub 3} and in the inclusion formation change from Al{sub 2}O{sub 3}MnS to MgOAl{sub 2}O{sub 3}MnS. Moreover, a simple-phase MnS with an average grain size of 1 ?m to 2 ?m was observed in rod-like, globular, and polyhedron forms. - Highlights: The effect of magnesium addition was investigated for SS400 steel. 2 ppm Mg addition changes the inclusion formation from Al2O3-MnS to MgOAl2O3-MnS. MnS observed in inclusions exhibits rod-like, globular, and polyhedron forms.

  7. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Jamie N. Gardner, Rosemary Vidale, Robert Charles (1985) Geochemistry and Isotopes of Fluids from Sulphur Springs, Valles Caldera, New Mexico Additional References Retrieved from...

  8. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

  9. ascitic fluid analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period...

  10. Characterization of fracture networks for fluid flow analysis

    SciTech Connect (OSTI)

    Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.

    1989-06-01T23:59:59.000Z

    The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs.

  11. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Miller, K.R.; Elders, W.A.

    1980-08-01T23:59:59.000Z

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  12. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Fluid Activity Date 1983 - 1986 Usefulness useful DOE-funding Unknown Notes Fumarolic CO2 sampled at Casa Diablo reportedly contained deltaC13 values of -5.6 to -5.7 (Taylor and...

  13. Design, measurement, and analysis of oxygenated fluid pump system

    E-Print Network [OSTI]

    Mason, Alexander M., IV (Alexander Martin)

    2012-01-01T23:59:59.000Z

    The author sought out the opportunity to design and implement a system for pumping oxygenated fluid and mixing it with saline, for the purpose of providing sufficient levels of oxygen for patients undergoing forms of ...

  14. Seismic fluid-structure interaction analysis of a large LMFBR reactor

    SciTech Connect (OSTI)

    Ma, D.C.; Gvildys, J.; Chang, Y.W.

    1984-01-01T23:59:59.000Z

    This paper describes a seismic analysis which includes fluid-structure interactions for a large LMFBR reactor with many internal components and structures. Two mathematical models were employed. An axisymmetrical model was used for the vertical excitation analysis whereas a three-dimensional model was used for the horizontal excitation analysis. In both analyses, the sodium coolant was treated by continuum fluid elements. Thus, important seismic effects such as fluid-structure interaction, free-surface sloshing, fluid coupling, etc. are included in the analysis. This study is useful to the design of future LMFBR reactors. The results of this study can be used to improve the margin of safety of LMFBR plants under seismic conditions.

  15. Coupling of a multizone airflow simulation program with computational fluid dynamics for indoor environmental analysis

    E-Print Network [OSTI]

    Gao, Yang, 1974-

    2002-01-01T23:59:59.000Z

    Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...

  16. IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF...

    Open Energy Info (EERE)

    FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: IN SITU STRESS,...

  17. IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...

    Open Energy Info (EERE)

    FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  18. In situ stress, fracture, and fluid flow analysis in Well 38C...

    Open Energy Info (EERE)

    situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to...

  19. The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid

    E-Print Network [OSTI]

    Rohs, Remo

    32 The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life sciences (biology, physiology, biochemistry) to define and solve problems in biology and medicine. Students choose this growing branch of engineering

  20. Experimental Analysis of Water Based Drilling Fluid Aging Processes at High Temperature and High Pressure Conditions

    E-Print Network [OSTI]

    Zigmond, Brandon

    2012-10-19T23:59:59.000Z

    ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted to the Office of Graduate Studies of Texas A&M University... Temperature and High Pressure Conditions Copyright 2012 Brandon Scott Zigmond ! ! EXPERIMENTAL ANALYSIS OF WATER BASED DRILLING FLUID AGING PROCESSES AT HIGH TEMPERATURE AND HIGH PRESSURE CONDITIONS A Thesis by BRANDON SCOTT ZIGMOND Submitted...

  1. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07T23:59:59.000Z

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcys law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Greens function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  2. Isotopic Analysis Fluid At Coso Geothermal Area (1997) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen Energy InformationInformationInformation Fluid

  3. The determination of phase relations in the CH?-H?O-NaCl system at 2 and 5 kbars, 300 to 600 C using synthetic fluid inclusions

    E-Print Network [OSTI]

    McShane, Christopher Joseph

    1999-01-01T23:59:59.000Z

    the fluid. The fractured prisms were dried overnight at approximately 130'C and placed into an annealed Au capsule (4. 75 mm x 4. 50 mm x 76 mm). Known amounts of HtO + NaCl solutions of various molalities were placed in the capsule along with the prism...

  4. Category:Isotopic Analysis- Fluid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,AreasFluid Jump to: navigation,

  5. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...

    Open Energy Info (EERE)

    TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  6. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    estimated visually. Waters sampled for chemical analysis were stored in brimful polyethylene bottles with Polyseal caps following filtration from a large syringe attached to a...

  7. Isotopic Analysis-Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    1971) prior to analysis by mass spectrometry. Water samples were analyzed for their oxygen isotope ratios using the carbon dioxide-equilibration method. Waters analyzed from the...

  8. Diversity, Inclusion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirectionsWorkplace » Diversity, Inclusion

  9. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect (OSTI)

    Beach, R.; Prahl, D.; Lange, R.

    2013-12-01T23:59:59.000Z

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  10. Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research opportunities

    E-Print Network [OSTI]

    Attinger, Daniel

    Review Fluid dynamics topics in bloodstain pattern analysis: Comparative review and research a Department of Mechanical Engineering, Iowa State University of Science and Technology, Ames, IA 50011, USA b Engineering & Applied Science, Dalhousie University, Halifax, NS B3H 4R2, Canada d Department of Mechanical

  11. Fusion Engineering and Design 82 (2007) 22172225 Integrated thermo-fluid analysis towards helium flow

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Engineering and Design 82 (2007) 2217­2225 Integrated thermo-fluid analysis towards helium. Andob, I. Komadab a Fusion Engineering Sciences, Mechanical and Aerospace Eng. Department, University the ITER test blanket module (TBM) warrants the need of extensive computer aided engineering (CAE

  12. Cold Plasma Wave Analysis in Magneto-Rotational Fluids

    E-Print Network [OSTI]

    M. Sharif; Umber Sheikh

    2010-05-25T23:59:59.000Z

    This paper is devoted to investigate the cold plasma wave properties. The analysis has been restricted to the neighborhood of the pair production region of the Kerr magnetosphere. The Fourier analyzed general relativistic magnetohydrodynamical equations are dealt under special circumstances and dispersion relations are obtained. We find the $x$-component of the complex wave vector numerically. The corresponding components of the propagation vector, attenuation vector, phase and group velocities are shown in graphs. The direction and dispersion of waves are investigated.

  13. Cannulation of the equine oviduct and chemical analysis of oviduct fluid

    E-Print Network [OSTI]

    Campbell, Donald Lee

    1972-01-01T23:59:59.000Z

    in this experiment as it 9, 21 has been in previous work ' . The presence of the organisms di. d not seem to affect the chemical composition of the fluids ~ Close observation of mares wi. th more than 1 cycle showed no consistent 31 change, either increase... of Department Member Member Member Member Member December 1972 4. "-I 8. :: 0-": ABSTRACT Cannulation of the Equine Oviduct and Chemical Analysis of Oviduct Fluid. (December 1972) Donald Lee Campbell, D. V. M. , University of Georgia Directed by: Dr...

  14. Volatiles in hydrothermal fluids- A mass spectrometric study...

    Open Energy Info (EERE)

    Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  15. PDM performance Test Results and Preliminary Analysis: Incompressible and Compressible Fluids

    SciTech Connect (OSTI)

    Dreesen, D.S.; Gruenhagan, E.; Cohen, J.C.; Moran, D.W.

    1999-02-01T23:59:59.000Z

    Three, small diameter, Moineau, positive displacement (drilling) motors (PDMs) were dynamometer tested using water, air-water mist, air-water foam, and aerated water. The motors included (1) a 1.5-inch OD, single-lobe mud motor; (2) a 1.69-inch OD, 5:6 multi-lobe mud motor; and (3) a 1.75-inch OD, 5:6 multi-lobe air motor. This paper describes the test apparatus, procedures, data analysis, and results. Incompressible and compressible fluid performance are compared; linear performance, predicted by a positive displacement motor model, is identified where it occurs. Preliminary results and conclusions are (1) the performance of all three motors is accurately modeled using a two-variable, linear model for incompressible fluid and (2) the model was not successfully adapted to model compressible fluid performance.

  16. Toward compressed DMD: spectral analysis of fluid flows using sub-Nyquist-rate PIV data

    E-Print Network [OSTI]

    Tu, Jonathan H; Kutz, J Nathan; Shang, Jessica K

    2014-01-01T23:59:59.000Z

    Dynamic mode decomposition (DMD) is a powerful and increasingly popular tool for performing spectral analysis of fluid flows. However, it requires data that satisfy the Nyquist-Shannon sampling criterion. In many fluid flow experiments, such data are impossible to capture. We propose a new approach that combines ideas from DMD and compressed sensing. Given a vector-valued signal, we take measurements randomly in time (at a sub-Nyquist rate) and project the data onto a low-dimensional subspace. We then use compressed sensing to identify the dominant frequencies in the signal and their corresponding modes. We demonstrate this method using two examples, analyzing both an artificially constructed test dataset and particle image velocimetry data collected from the flow past a cylinder. In each case, our method correctly identifies the characteristic frequencies and oscillatory modes dominating the signal, proving the proposed method to be a capable tool for spectral analysis using sub-Nyquist-rate sampling.

  17. The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life

    E-Print Network [OSTI]

    Rohs, Remo

    34 The interdisciplinary field of Biomedical Engineering combines elements of engineering (electronics, systems analysis, fluid mechanics) with the life sciences (biology, physiology, biochemistry) to define and solve problems in biology and medicine. Students choose this growing branch of engineering

  18. Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media

    SciTech Connect (OSTI)

    Obied Allah, M. H. [Department of Mathematics, Faculty of Science, Assiut University, Assiut (Egypt)

    2013-04-15T23:59:59.000Z

    In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

  19. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz

    2009-07-01T23:59:59.000Z

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

  20. IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIIIDrive Ltd Jump

  1. Inclusive and Exclusive |Vub|

    SciTech Connect (OSTI)

    Petrella, Antonio; /Ferrara U. /INFN, Ferrara

    2011-11-17T23:59:59.000Z

    The current status of the determinations of CKM matrix element |V{sub ub}| via exclusive and inclusive charmless semileptonic B decays is reviewed. The large datasets collected at the B-Factories, and the increased precision of theoretical calculations have allowed an improvement in the determination of |V{sub ub}|. However, there are still significant uncertainties. In the exclusive approach, the most precise measurement of the pion channel branching ratio is obtained by an untagged analysis. This very good precision can be reached by tagged analyses with more data. The problem with exclusive decays is that the strong hadron dynamics can not be calculated from first principles and the determination of the form factor has to rely on light-cone sum rules or lattice QCD calculations. The current data samples allow a comparison of different FF models with data distributions. With further developments on lattice calculations, the theoretical error should shrink to reach the experimental one. The inclusive approach still provides the most precise |V{sub ub}| determinations. With new theoretical calculations, the mild (2.5{sigma}) discrepancy with respect to the |V{sub ub}| value determined from the global UT fit has been reduced. As in the exclusive approach, theoretical uncertainties represent the limiting factor to the precision of the measurement. Reducing the theoretical uncertainties to a level comparable with the statistical error is challenging. New measurements in semileptonic decays of charm mesons could increase the confidence in theoretical calculations and related uncertainties.

  2. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29T23:59:59.000Z

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  3. Fluid dynamics of dilatant fluid

    E-Print Network [OSTI]

    Hiizu Nakanishi; Shin-ichiro Nagahiro; Namiko Mitarai

    2011-12-20T23:59:59.000Z

    Dense mixture of granules and liquid often shows a sever shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, instantaneous hardening upon external impact. Analysis of the model reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits {\\it the shear thickening oscillation}, i.e. the oscillatory shear flow alternating between the thickened and the relaxed states. Results of numerical simulations are presented for one and two-dimensional systems.

  4. Natural Circulation and Linear Stability Analysis for Liquid-Metal Reactors with the Effect of Fluid Axial Conduction

    SciTech Connect (OSTI)

    Piyush Sabharwall; Qiao Wu; James J. Sienicki

    2012-06-01T23:59:59.000Z

    The effect of fluid axial thermal conduction on one-dimensional liquid metal natural circulation and its linear stability was performed through nondimensional analysis, steady-state assessment, and linear perturbation evaluation. The Nyquist criterion and a root-search method were employed to find the linear stability boundary of both forward and backward circulations. The study provided a relatively complete analysis method for one-dimensional natural circulation problems with the consideration of fluid axial heat conduction. The results suggest that fluid axial heat conduction in a natural circulation loop should be considered only when the modified Peclet number is {approx}1 or less, which is significantly smaller than the practical value of a lead liquid metal-cooled reactor.

  5. Diversity and Inclusion Guidance

    Broader source: Energy.gov [DOE]

    All DOE diversity and inclusion policies, practices and programs must comply with Federal Equal Employment Opportunity laws, Merit Systems Principles, the foundation of the Civil Service, and not...

  6. Computational Fluid Dynamics Analysis of Very High Temperature Gas-Cooled Reactor Cavity Cooling System

    SciTech Connect (OSTI)

    Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz

    2010-11-02T23:59:59.000Z

    The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.

  7. Three region analysis of a bounded plasma using particle in cell and fluid techniques. Doctoral thesis

    SciTech Connect (OSTI)

    Nichols, D.F.

    1994-09-01T23:59:59.000Z

    A detailed collisionless sheath theory and a three-region collisional model of a bounded plasma are presented, and the suitability of the collisional model for analysis of ignited mode thermionic converters is investigated. The sheath theory extends previous analyses to regimes in which the sheath potential and electron temperatures are comparable in magnitude. In all operating regimes typical of a ignited mode thermionic converter, the predicted sheaths extend several mean-free paths. The apparent collisionality of the sheaths prompted development of a collisional, three-region model of the converter plasma. By interfacing Particle-in-Cell regions (for the sheaths) and fluid regions (for the bulk of the plasma), a time-dependent, wall-to-wall model of the plasma in the inter-electrode space is created. The components of the model are tested and validated against analytic solutions and against one another, then applied to the analysis of an ignited mode thermionic converter. Under ignited mode operating conditions, the electron velocity distribution at the plasma/sheath boundary is found to be inconsistent with that assumed in the model development, and the calculation diverges. The observed distribution is analyzed and a new basis set of distribution functions is suggested that should permit application of the hybrid model to ignited mode thermionic converters.

  8. ON THE MATHEMATICAL ANALYSIS OF THICK FLUIDS JOSE-FRANCISCO RODRIGUES

    E-Print Network [OSTI]

    Lisbon, University of

    , in particular, as the power limit of Ostwald-de Waele fluids, and may be formulated as a new class of evolution

  9. Fluid--Structure Interaction : : Physiologic Simulation of Pulsatile Ventricular Assist Devices using Isogeometric Analysis

    E-Print Network [OSTI]

    Long, Christopher Curtis

    2013-01-01T23:59:59.000Z

    for prebending of wind turbine blades. 89:323336, 2012. [wind turbine rotors at full scale. Part II: Fluid structure interaction modeling with composite blades.

  10. E-Print Network 3.0 - analysis interaction fluide Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basin, and propose that hydrocarbons play a critical role in fluid-rock interactions... uranium showings in the Kombolgie Basin of Australia reveal the complexities of ......

  11. One-dimensional fluid diffusion induced by constant-rate flow injection: Theoretical analysis and application

    E-Print Network [OSTI]

    is essential in the exploitation of natural fluid resources, such as water, steam, petroleum, and natural gas advantages of our method are the reliability of the testing method, its economy of time, and the flexibility wastes. [3] In general, the nature of fluids in reservoir rocks can be characterized in terms of quantity

  12. H2O CO2 CH4-BEARING FLUID INCLUSIONS IN QUARTZ: INSIGHTS INTO THE ORIGIN AND EVOLUTION OF TWO DIFFERENT HYDROTHERMAL AU DEPOSITS FROM THE EGYPTIAN EASTERN DESERT

    E-Print Network [OSTI]

    El-Shazly, Aley

    DIFFERENT HYDROTHERMAL AU DEPOSITS FROM THE EGYPTIAN EASTERN DESERT ZOHEIR, B.A.1, EL-SHAZLY, Aley K.2 and laser micro-Raman spectroscopy: (i) three phase aqueous - carbonic (H2O-CO2±CH4), (ii) two-phase carbonic (CO2±CH4±N2), and (iii) two phase, CO2-bearing, aqueous inclusions. Homogenization temperatures

  13. Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC

    E-Print Network [OSTI]

    Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

    2008-01-01T23:59:59.000Z

    IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

  14. Analysis of multiphase fluid flows via high speed and synthetic aperture three dimensional imaging

    E-Print Network [OSTI]

    Scharfman, Barry Ethan

    2012-01-01T23:59:59.000Z

    Spray flows are a difficult problem within the realm of fluid mechanics because of the complicated interfacial physics involved. Complete models of sprays having even the simplest geometries continue to elude researchers ...

  15. Design and analysis of active fluid-and-cellular solid composites for controllable stiffness robotic elements

    E-Print Network [OSTI]

    Cheng, Nadia G. (Nadia Gen San)

    2009-01-01T23:59:59.000Z

    The purpose of this thesis is to investigate the use of a new class of materials for realizing soft robots. Specifically, meso-scale composites--composed of cellular solids impregnated with active fluids-were be designed ...

  16. Analysis of drilling fluid rheology and tool joint effect to reduce errors in hydraulics calculations

    E-Print Network [OSTI]

    Viloria Ochoa, Marilyn

    2006-10-30T23:59:59.000Z

    This study presents a simplified and accurate procedure for selecting the rheological model which best fits the rheological properties of a given non- Newtonian fluid and introduces five new approaches to correct for tool joint losses from expansion...

  17. The analysis of water use and water status of plants in a fluid-roof solar greenhouse

    E-Print Network [OSTI]

    Heathman, Gary Claude

    1981-01-01T23:59:59.000Z

    of MASTER OF SCIENCE May 1981 Major Subject: Soil Science THE ANALYSIS OF WATER USE AND WATER STATUS OF PLANTS IN A FLL'ID-ROOF SOLAR GREENHOUSE A Thesis by GARY CLAUDE HEATHMAN Approved as to style and content by: arrman o ommrttee ea o epart nt... em er Mem r May, 1981 ABSTRACT The Analysis of Water Use And Water Status of Plants in a Fluid-roof Solar Greenhouse. (May 1981) Gary Claude Heathman, B. S. , Texas A8;M University Chairman of Advisory Committee: Dr. C. H. M. van Bavel...

  18. 6. Fluid mechanics: fluid statics; fluid dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    1/96 6. Fluid mechanics: fluid statics; fluid dynamics (internal flows, external flows) Ron and Flow Engineering | 20500 Turku | Finland 2/96 6.1 Fluid statics ?bo Akademi University | Thermal and Flow Engineering | 20500 Turku | Finland #12;3/96 Fluid statics, static pressure /1 Two types

  19. Numerical analysis of laminar fluid flow and heat transfer in a parallel plate channel with normally in-line positioned plates

    E-Print Network [OSTI]

    McMath, John Grady

    2012-06-07T23:59:59.000Z

    NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEL WITH NORMALLY IN-LINE POSITIONED PLATES A Thesis by JOHN GRADY iVICMATH Submitted to the Office of Graduate Studies of Texas AkM University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1991 Major Subject: Mechanical Engineering NUMERICAL ANALYSIS OF LAMINAR FLUID FLOW AND HEAT TRANSFER IN A PARALLEL PLATE CHANNEI WITH NORMALLY IN-LINE POSITIONED PLATES A...

  20. A parameter sensitivity analysis using an EOS for optimal characterization of Cupiagua reservoir fluids

    E-Print Network [OSTI]

    Florez, Alberto

    1998-01-01T23:59:59.000Z

    PARAMETER FOR HYDROCARBONS . . . . Page 3. 1- PVT SUMMARY. . . . . . 46 3. 2- 3. 3- RECOMBINED FLUID COMPOSITION- CUPIAGUA A1 CCE AT 242eF AND 244eF ? CUPIAGUA Al . . . . . . . . . , 49 . . . . . . . 50 3. 4- CVD AT 242eF ? CUPIAGUA Al (UPPER.... 10- CCE AT 1500F, 240eF AND 247eF ? CUPIAGUA C3 . . . . . CVD AT 247eF - CUPIAGUA C3. MULTISTAGE SEPARATOR SUMMARY- CUPIAGUA C3. . . . . 54 . . . . 55 . . . . 55 3. 11- FLUID VISCOSITY AT 247 F ? CUPIAGUA C3 . . . . . . . . . 55 3. 12...

  1. Computational Fluid Dynamics Best Practice Guidelines in the Analysis of Storage Dry Cask

    SciTech Connect (OSTI)

    Zigh, A.; Solis, J. [US Nuclear Regulatory Commission, Rockville, MD MS (United States)

    2008-07-01T23:59:59.000Z

    Computational fluid dynamics (CFD) methods are used to evaluate the thermal performance of a dry cask under long term storage conditions in accordance with NUREG-1536 [NUREG-1536, 1997]. A three-dimensional CFD model was developed and validated using data for a ventilated storage cask (VSC-17) collected by Idaho National Laboratory (INL). The developed Fluent CFD model was validated to minimize the modeling and application uncertainties. To address modeling uncertainties, the paper focused on turbulence modeling of buoyancy driven air flow. Similarly, in the application uncertainties, the pressure boundary conditions used to model the air inlet and outlet vents were investigated and validated. Different turbulence models were used to reduce the modeling uncertainty in the CFD simulation of the air flow through the annular gap between the overpack and the multi-assembly sealed basket (MSB). Among the chosen turbulence models, the validation showed that the low Reynolds k-{epsilon} and the transitional k-{omega} turbulence models predicted the measured temperatures closely. To assess the impact of pressure boundary conditions used at the air inlet and outlet channels on the application uncertainties, a sensitivity analysis of operating density was undertaken. For convergence purposes, all available commercial CFD codes include the operating density in the pressure gradient term of the momentum equation. The validation showed that the correct operating density corresponds to the density evaluated at the air inlet condition of pressure and temperature. Next, the validated CFD method was used to predict the thermal performance of an existing dry cask storage system. The evaluation uses two distinct models: a three-dimensional and an axisymmetrical representation of the cask. In the 3-D model, porous media was used to model only the volume occupied by the rodded region that is surrounded by the BWR channel box. In the axisymmetric model, porous media was used to model the entire region that encompasses the fuel assemblies as well as the gaps in between. Consequently, a larger volume is represented by porous media in the second model; hence, a higher frictional flow resistance is introduced in the momentum equations. The conservatism and the safety margins of these models were compared to assess the applicability and the realism of these two models. The three-dimensional model included fewer geometry simplifications and is recommended as it predicted less conservative fuel cladding temperature values, while still assuring the existence of adequate safety margins. (authors)

  2. Submitted to Physics of Fluids, 2013 Scaling and dimensional analysis of acoustic streaming jets.

    E-Print Network [OSTI]

    Boyer, Edmond

    'Instrumentation et d'Expérimentationen Mécanique des Fluides et Thermohydraulique, DEN/DANS/DM2S/STMF/LIEFT, CEA ultrasounds are used to measure velocities in a liquid. This technique has been widely used since the late, 2013 2 generate significant acoustic streaming flows so that a bias is observed in the measurement

  3. Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.

    SciTech Connect (OSTI)

    El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.

    2010-12-01T23:59:59.000Z

    The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.

  4. Analysis, scientific computing and fundamental studies in fluid mechanics. Final report Number 21, May 1, 1997--September 30, 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-31T23:59:59.000Z

    This report is a summary of work in progress and completed. Subject areas covered are: effective numerical methods for interfacial flows; multiscale finite element methods: analysis and applications; an efficient boundary integral method for the Mullins-Sekera problem; numerical simulation of three-dimensional water waves using a fast summation method; numerical solutions of steady-state rising bubbles; solidification coupled to fluid convection; turbulence models; exact solution of very viscous and Hele-Shaw flow; fundamental vortex dynamics; functional methods for turbulence; structure functions for isotropic turbulence; and water waves.

  5. R fluids

    E-Print Network [OSTI]

    R. Caimmi

    2007-10-20T23:59:59.000Z

    A theory of collisionless fluids is developed in a unified picture, where nonrotating figures with anisotropic random velocity component distributions and rotating figures with isotropic random velocity component distributions, make adjoints configurations to the same system. R fluids are defined and mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The definition of figure rotation is extended to R fluids. The generalized tensor virial equations are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002). The application of the reversion process to tangential velocity components, implies the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components, implies the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic (imaginary) motion rotation kinetic energy. A procedure is sketched for deriving the spin parameter distribution (including imaginary rotation) from a sample of observed or simulated large-scale collisionless fluids i.e. galaxies and galaxy clusters.

  6. Fluid varieties

    E-Print Network [OSTI]

    Ewa Graczynska; Dietmar Schweigert

    2005-07-01T23:59:59.000Z

    We invent the notion of a derived and fluid variety. Fluid variety has no proper derived variety as its subvariety. We examine some properties of fluid and derived varieties. Examples of such varieties of bands are presented.

  7. Williston Basin: An analysis of salt drilling techniques for brine-based drilling-fluid systems

    SciTech Connect (OSTI)

    Stash, S.M.; Jones, M.E.

    1988-03-01T23:59:59.000Z

    Williston Basin salt intervals, ranging in depth from 5,000 to 12,500 ft (1525 to 3810 m), have been responsible for widespread casing collapse because of the plastic movement of evaporites and the subsequent point loading of casing. This phenomenon is attributable to poor cement jobs across excessively eroded salt sections. A 2-year study led to the realization that this erosion is a function of not only salt dissolution but also the mechanical action of turbulent flow in the wellbore. A laminar flow regime can be realized and salt enlargement limited by careful control of annular flow rate, jet velocity, and drilling-fluid rheology.

  8. Thermal Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

  9. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect (OSTI)

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14T23:59:59.000Z

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  10. Analysis Methods and Desired Outcomes of System Interface Heat Transfer Fluid Requirements and Characteristics Analyses

    SciTech Connect (OSTI)

    Cliff B. Davis

    2005-04-01T23:59:59.000Z

    The interface between the Next Generation Nuclear Plant (NGNP) and the hydrogen-generating process plant will contain an intermediate loop that will transport heat from the NGNP to the process plant. Seven possible configurations for the NGNP primary coolant system and the intermediate heat transport loop were identified. Both helium and liquid salts are being considered as the working fluid in the intermediate heat transport loop. A method was developed to perform thermal-hydraulic evaluations of the different configurations and coolants. The evaluations will determine which configurations and coolants are the most promising from a thermal-hydraulic point of view and which, if any, do not appear to be feasible at the current time. Results of the evaluations will be presented in a subsequent report.

  11. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, Douglas D. (Knoxville, TN); Hiller, John M. (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  12. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, D.D.; Hiller, J.M.

    1998-02-24T23:59:59.000Z

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  13. Fluid-Rock Characterization for NMR Well Logging and Special Core Analysis

    SciTech Connect (OSTI)

    George Hirasaki; Kishore Mohanty

    2007-12-31T23:59:59.000Z

    The overall objective of this effort is to develop, build and test a high-speed drilling motor that can meet the performance guidelines of the announcement, namely: 'The motors are expected to rotate at a minimum of 10,000 rpm, have an OD no larger than 7 inches and work downhole continuously for at least 100 hours. The motor must have common oilfield thread connections capable of making up to a drill bit and bottomhole assembly. The motor must be capable of transmitting drilling fluid through the motor'. To these goals, APS would add that the motor must be economically viable, in terms of both its manufacturing and maintenance costs, and be applicable to as broad a range of markets as possible. APS has taken the approach of using a system using planetary gears to increase the speed of a conventional mud motor to 10,000 rpm. The mud flow is directed around the outside of the gear train, and a unique flow diversion system has been employed. A prototype of the motor was built and tested in APS's high-pressure flow loop. The motor operated per the model up to {approx}4200 rpm. At that point a bearing seized and the performance was severely degraded. The motor is being rebuilt and will be retested outside of this program.

  14. Inclusive Jets in PHP

    E-Print Network [OSTI]

    Roloff, Philipp

    2013-01-01T23:59:59.000Z

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  15. Inclusive Jets in PHP

    E-Print Network [OSTI]

    Philipp Roloff

    2013-10-23T23:59:59.000Z

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  16. Notes 07. Thermal analysis of finite length journal bearings including fluid inertia

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01T23:59:59.000Z

    in Refs. [12,13,18] Notes 7. THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS. Dr. Luis San Andr?s ? 2009 22 system. Table 1 details the geometry of the pressure dam bearing, as detailed in Ref. [18]. Please note that Al-Jughaiman?s publication... at the center of the control-volumes. Notes 7. THERMAL ANALYSIS OF FINITE LENGTH JOURNAL BEARINGS. Dr. Luis San Andr?s ? 2009 18 z=? L z=L Fs =0 (W=0) Midplane (symmetry line) Fw Fe Fn Fe ? Fw + Fn =0 TPTW ?x x=R? z TE Tn Tw Te Exit plane...

  17. Fluid Mechanics 25 March 2009

    E-Print Network [OSTI]

    Dabiri, John O.

    Journal of Fluid Mechanics 25 March 2009 VOLUME 623 Journal of Fluid Mechanics 25 Mar. 2009 VOLUME 623 #12;J. Fluid Mech. (2009), vol. 623, pp. 75­84. c 2009 Cambridge University Press doi:10.1017/SLCS and the capture region enable analysis of the effect of several physiological and mechanical parameters

  18. Development of On-Board Fluid Analysis for the Mining Industry - Final report

    SciTech Connect (OSTI)

    Pardini, Allan F.

    2005-08-16T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL: Operated by Battelle Memorial Institute for the Department of Energy) is working with the Department of Energy (DOE) to develop technology for the US mining industry. PNNL was awarded a three-year program to develop automated on-board/in-line or on-site oil analysis for the mining industry.

  19. Perturbation Analysis for Stochastic Fluid Queueing Systems Yong Liu and Weibo Gong

    E-Print Network [OSTI]

    Liu, Yong

    analysis (IPA) for the classical queueing systems. Although the traditional IPA algorithm does not give at the common buffer with respect to the parameters of each source. Our main result is that the IPA estimates information. We make some remarks about our result. · IPA for classical queueing systems was introduced

  20. Fluid Flow and Thermodynamic Analysis of a Wing Anti-Icing System

    E-Print Network [OSTI]

    Liu, Hugh H.T.

    is installed on most passenger airplanes. It introduces hot bleeding air from the power plant into the wing-mail: liu@utias.utoronto.ca Received 26 August 2003. 1. INTRODUCTION The thermal anti-icing system of this paper is to apply the existing CFD tools to assist the system modeling and simulation analysis

  1. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-14T23:59:59.000Z

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS'. The global model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but has more limited capabilities for fluid-structure interaction analysis. The purpose of this study is to demonstrate the capabilities and investigate the limitations of the finite element code MSC.Dytranz for performing a dynamic fluid-structure interaction analysis of the primary tank and contained waste. To this end, the Dytran solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions to similar problems, and to the results from ANSYS simulations. Both rigid tank and flexible tank configurations were analyzed with Dytran. The response parameters of interest that are evaluated in this study are the total hydrodynamic reaction forces, the impulsive and convective mode frequencies, the waste pressures, and slosh heights. To a limited extent, primary tank stresses are also reported. The capabilities and limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation and documented in a companion report (Carpenter and Abatt [2006]). The results of this study were used in conjunction with the results of the global ANSYS analysis reported in Carpenter et al. (2006) and the parallel ANSYS fluid-structure interaction analysis to help determine if a more refined sub-model of the primary tank is necessary to capture the important fluid-structure interaction effects in the tank and if so, how to best utilize a refined sub-model of the primary tank. The results of this study demonstrate that Dytran has the capability to perform fluid-structure interaction analysis of a primary tank subjected to seismic loading. With the exception of some isolated peak pressures and to a lesser extent peak stresses, the results agreed very well with theoretical solutions. The benchmarking study documented in Carpenter and Abatt (2006) showed that the ANSYS model used in that study captured much of the fluid-structure interaction (FSI) behavior, but did have limitations for predicting the convective response of the waste. While Dytran appears to have stronger capabilities for the analysis of the FSI behavior in the primary tank, it is more practical to use ANSYS for the global evaluation of the tank. Thus, Dytran served the purpose of helping to identify limitations in the ANSYS FSI analysis so that those limitations can be addressed in the structural evaluation of the primary tank.

  2. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian (Glenmont, NY); Bievenue, Thomas J. (Delmar, NY); Burdett, John H. (Charlton, NY); Gallagher, Brian W. (Guilderland, NY); Shakshober, Stuart M. (Hudson, NY); Chen, Zewu (Schenectady, NY); Moore, Michael D. (Alplaus, NY)

    2008-06-08T23:59:59.000Z

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  3. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal...

    Open Energy Info (EERE)

    and the active vapor-dominated geothermal system at The Geysers, CA are related to a composite hypabyssal granitic pluton emplaced beneath the field 1.1 to 1.2 million years ago....

  4. Methodologies for Reservoir Characterization Using Fluid Inclusion Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |CharlesDepartment ofChemistry | Department

  5. Integrated mineralogical and fluid inclusion study of the Coso...

    Open Energy Info (EERE)

    the margins of the reservoir and strongly influencing its geometry. The alteration mineralogy varies systematically with depth and temperature. Based on the clay mineralogy,...

  6. A Fluid-Inclusion Investigation Of The Tongonan Geothermal Field,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) | Openbeneath

  7. FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA - National

  8. Fluid Inclusion Gas Compositions From An Active Magmatic-Hydrothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint GeothermalInformation

  9. Fluid Inclusion Stratigraphy Interpretation of New Wells in the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint GeothermalInformationGeothermal Field

  10. Fluid Inclusion Stratigraphy: Interpretation of New Wells in the Coso

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint GeothermalInformationGeothermal

  11. Integrated mineralogical and fluid inclusion study of the Coso geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: Eden Prairie,InfieldInstalledResearch Name:systems,

  12. Multiphysics Thermal-Fluid Design Analysis of a Non-Nuclear Tester for Hot-Hydrogen Materials and Component Development

    SciTech Connect (OSTI)

    Wang, T.-S.; Foote, John; Litchford, Ron [NASA Marshall Space Flight Center, Huntsville, Alabama, 35812 (United States)

    2006-01-20T23:59:59.000Z

    The objective of this effort is to perform design analyses for a non-nuclear hot-hydrogen materials tester, as a first step towards developing efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber design and analysis. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, unstructured-grid, and pressure-based formulation. The multiphysics invoked in this study include hydrogen dissociation kinetics and thermodynamics, turbulent flow, convective, and thermal radiative heat transfers. The goals of the design analyses are to maintain maximum hot-hydrogen jet impingement energy and to minimize chamber wall heating. The results of analyses on three test fixture configurations and the rationale for final selection are presented. The interrogation of physics revealed that reactions of hydrogen dissociation and recombination are highly correlated with local temperature and are necessary for accurate prediction of the hot-hydrogen jet temperature.

  13. Expert Secondary Inclusive Classroom Management

    E-Print Network [OSTI]

    Montague, Marcia

    2011-02-22T23:59:59.000Z

    The purpose of this study was to gain an understanding of the management practices of expert secondary general education teachers in inclusive classrooms. Specifically, expert teachers of classrooms who included students with severe cognitive...

  14. Analysis of hydraulic power transduction in regenerative rotary shock absorbers as function of working fluid kinematic viscosity

    E-Print Network [OSTI]

    Avadhany, Shakeel N

    2009-01-01T23:59:59.000Z

    This investigation seeks to investigate the relationship of kinematic fluid viscosity to the effective power transduction seen by a hydraulic motor. Applications of this research specifically relate to energy recovery from ...

  15. A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation

    E-Print Network [OSTI]

    Haghshenas, Arash

    2013-04-24T23:59:59.000Z

    The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster...

  16. Stiffening solids with liquid inclusions

    E-Print Network [OSTI]

    Robert W. Style; Rostislav Boltyanskiy; Benjamin Allen; Katharine E. Jensen; Henry P. Foote; John S. Wettlaufer; Eric R. Dufresne

    2014-07-24T23:59:59.000Z

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and engineering materials. Eshelby's inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite's bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby's theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet's deformation is strongly size-dependent with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straight-forward extension of Eshelby's theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive effect of liquid-stiffening of solids is expected whenever droplet radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young's modulus of the solid matrix.

  17. Fluid inflation

    SciTech Connect (OSTI)

    Chen, X. [Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Cambridge CB3 0WA (United Kingdom); Firouzjahi, H. [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Namjoo, M.H. [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Sasaki, M., E-mail: x.chen@damtp.cam.ac.uk, E-mail: firouz@ipm.ir, E-mail: mh.namjoo@ipm.ir, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-09-01T23:59:59.000Z

    In this work we present an inflationary mechanism based on fluid dynamics. Starting with the action for a single barotropic perfect fluid, we outline the procedure to calculate the power spectrum and the bispectrum of the curvature perturbation. It is shown that a perfect barotropic fluid naturally gives rise to a non-attractor inflationary universe in which the curvature perturbation is not frozen on super-horizon scales. We show that a scale-invariant power spectrum can be obtained with the local non-Gaussianity parameter f{sub NL} = 5/2.

  18. Noncommutative Fluids

    E-Print Network [OSTI]

    Alexios P. Polychronakos

    2007-06-27T23:59:59.000Z

    We review the connection between noncommutative gauge theory, matrix models and fluid mechanical systems. The noncommutative Chern-Simons description of the quantum Hall effect and bosonization of collective fermion states are used as specific examples.

  19. Process Dependence and the Sivers Effect in Inclusive and Semi-Inclusive Reactions

    SciTech Connect (OSTI)

    Gamberg, Leonard P. [Penn State University, University Park, PA (United States); Kang, Zhong-Bo [LANL, Los Alamos, NM (United States); Prokudin, Alexei [JLAB, Newport News, VA (United States)

    2014-01-01T23:59:59.000Z

    We perform an analysis of the the spin asymmetry for single inclusive jet production in proton-proton collisions collected by AnDY experiment and the Sivers asymmetry data from semi-inclusive deep inelastic scattering experiments. In particular, we consider the role color gauge invariance plays in determining the process-dependence of the Sivers effect. We find that after carefully taking into account the initial-state and final-state interactions between the active parton and the remnant of the polarized hadron, the calculated jet spin asymmetry based on the Sivers functions extracted from HERMES and COMPASS experiments is consistent with the AnDY experimental data. This provides a first indication for the process-dependence of the Sivers effect in different processes. We also make predictions for both direct photon and Drell-Yan spin asymmetry, to further test the process-dependence of the Sivers effect in future experiments.

  20. Primordial Compositions of Refractory Inclusions

    SciTech Connect (OSTI)

    Grossman, L; Simon, S B; Rai, V K; Thiemens, M H; Hutcheon, I D; Williams, R W; Galy, A; Ding, T; Fedkin, A V; Clayton, R N; Mayeda, T K

    2008-02-20T23:59:59.000Z

    Bulk chemical and oxygen, magnesium and silicon isotopic compositions were measured for each of 17 Types A and B refractory inclusions from CV3 chondrites. After bulk chemical compositions were corrected for non-representative sampling in the laboratory, the Mg and Si isotopic compositions of each inclusion were used to calculate its original chemical composition assuming that the heavy-isotope enrichments of these elements are due to Rayleigh fractionation that accompanied their evaporation from CMAS liquids. The resulting pre-evaporation chemical compositions are consistent with those predicted by equilibrium thermodynamic calculations for high-temperature nebular condensates but only if different inclusions condensed from nebular regions that ranged in total pressure from 10{sup -6} to 10{sup -1} bar, regardless of whether they formed in a system of solar composition or in one enriched in OC dust relative to gas by a factor of ten relative to solar composition. This is similar to the range of total pressures predicted by dynamic models of the solar nebula for regions whose temperatures are in the range of silicate condensation temperatures. Alternatively, if departure from equilibrium condensation and/or non-representative sampling of condensates in the nebula occurred, the inferred range of total pressure could be smaller. Simple kinetic modeling of evaporation successfully reproduces observed chemical compositions of most inclusions from their inferred pre-evaporation compositions, suggesting that closed-system isotopic exchange processes did not have a significant effect on their isotopic compositions. Comparison of pre-evaporation compositions with observed ones indicates that 80% of the enrichment in refractory CaO + Al{sub 2}O{sub 3} relative to more volatile MgO + SiO{sub 2} is due to initial condensation and 20% due to subsequent evaporation for both Type A and Type B inclusions.

  1. Final Report, DE-FG02-92ER14261, Pore Scale Geometric and Fluid Distribution Analysis

    SciTech Connect (OSTI)

    W. Brent Lindquist

    2005-01-21T23:59:59.000Z

    The elucidation of the relationship between pore scale structure and fluid flow in porous media is a fundamental problem of long standing interest. Incomplete characterization of medium properties continues to be a limiting factor in accurate field scale simulations. The accomplishments of this grant have kept us at the forefront in investigating the applicability of X-ray computed microtomography (XCMT) as a tool for contributing to the understanding of this relationship. Specific accomplishments have been achieved in four areas: - development of numerical algorithms (largely in the field of computational geometry) to provide automated recognition of and measurements on features of interest in the pore space. These algorithms have been embodied in a software package, 3DMA-Rock. - application of these algorithms to extensive studies of the pore space of sandstones. - application of these algorithms to studies of fluid (oil/water) partitioning in the pore space of Berea sandstone and polyethylene models. - technology transfer.

  2. Isolation and characterization of bacterial polyhydroxybutyrate inclusions

    E-Print Network [OSTI]

    Kshetry, Nina

    2006-01-01T23:59:59.000Z

    Polyhydroxybutyrate (PHB) is a carbon reserve found in some bacteria, and under nutrient limiting conditions accumulates intracellularly in the form of inclusion bodies. These inclusions contain proteins, and the PHB within ...

  3. ME 130L Experimental Fluid Mechanics ABET EC2000 syllabus

    E-Print Network [OSTI]

    Ben-Yakar, Adela

    ME 130L ­ Experimental Fluid Mechanics Page 1 ABET EC2000 syllabus ME 130L ­ Experimental Fluid, uncertainty analysis, and systems analysis as applied to thermodynamics, fluid mechanics, and heat transfer systems. Prerequisite(s): ME 330 (Fluid Mechanics) is a co-requisite. A working knowledge of math, physics

  4. TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACAOpenSummersideJumpSyria: EnergyTESTTMA Global --GAS

  5. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24T23:59:59.000Z

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  6. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

    1999-08-24T23:59:59.000Z

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  7. Government-Wide Diversity and Inclusion Strategic Plan (2011...

    Office of Environmental Management (EM)

    diversity and inclusion efforts: workforce diversity, workplace inclusion, and sustainability. The Department of Energy's Diversity and Inclusion Strategic Plan was based off...

  8. MECH 502: Fluid Mechanics Winter semester 2010

    E-Print Network [OSTI]

    MECH 502: Fluid Mechanics Winter semester 2010 Instructor: I.A. Frigaard Times: Tuesdays week of semester. Location: CHBE 103 Synopsis: This course will focus primarily on fluid mechanics will be to look at fluid mechanics fundamentals, and at the mathematical modeling & analysis of simplified flow

  9. Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.

    SciTech Connect (OSTI)

    Yildiz, B.; Smith, J.; Sofu, T.; Nuclear Engineering Division

    2008-06-25T23:59:59.000Z

    Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass flux while going to larger cells can be a compromise to overcome increasing thermal and current density gradients while increasing the cell size. This approach could be beneficial for the economics of the SOECs; (2) The presence of excess hydrogen at the SOEC inlet to avoid Ni degradation can result in a sizeable decrease in the process efficiency; (3) A parallel-flow geometry for SOEC operation (if such a thing be achieved without sealing problems) yields smaller temperature gradients and current density gradients across the cell, which is favorable for the durability of the cells; (4) Contact resistances can significantly influence the total cell resistance and cell temperatures over a large range of operating potentials. Thus it is important to identify and avoid SOEC stack conditions leading to such high resistances due to poor contacts.

  10. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

    1999-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  11. Development of one-dimensional computational fluid dynamics code 'GFLOW' for groundwater flow and contaminant transport analysis

    SciTech Connect (OSTI)

    Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)

    2012-07-01T23:59:59.000Z

    Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)

  12. The effect of inclusions in brittle material

    E-Print Network [OSTI]

    Janeiro, Raymond Pinho

    2009-01-01T23:59:59.000Z

    This thesis experimentally investigates the cracking behavior of brittle heterogeneous materials. Unconfined, uniaxial compression tests are conducted on prismatic gypsum specimens containing either one, or two, inclusions. ...

  13. Effects of pore fluids in the subsurface on ultrasonic wave propagation

    SciTech Connect (OSTI)

    Seifert, P.K.

    1998-05-01T23:59:59.000Z

    This thesis investigates ultrasonic wave propagation in unconsolidated sands in the presence of different pore fluids. Laboratory experiments have been conducted in the sub-MHz range using quartz sand fully saturated with one or two liquids. Elastic wave propagation in unconsolidated granular material is computed with different numerical models: in one-dimension a scattering model based on an analytical propagator solution, in two dimensions a numerical approach using the boundary integral equation method, in three dimensions the local flow model (LFM), the combined Biot and squirt flow theory (BISQ) and the dynamic composite elastic medium theory (DYCEM). The combination of theoretical and experimental analysis yields a better understanding of how wave propagation in unconsolidated sand is affected by (a) homogeneous phase distribution; (b) inhomogeneous phase distribution, (fingering, gas inclusions); (c) pore fluids of different viscosity; (d) wettabilities of a porous medium. The first study reveals that the main ultrasonic P-wave signatures, as a function of the fraction on nonaqueous-phase liquids in initially water-saturated sand samples, can be explained by a 1-D scattering model. The next study investigates effects of pore fluid viscosity on elastic wave propagation, in laboratory experiments conducted with sand samples saturated with fluids of different viscosities. The last study concentrates on the wettability of the grains and its effect on elastic wave propagation and electrical resistivity.

  14. Inclusive Aand Semi-Inclusive Deep Inelastic Scattering at Cebaf at Higher Energies

    E-Print Network [OSTI]

    B. Frois; P. J. Mulders

    1994-08-04T23:59:59.000Z

    We summarize the discussion on the possibilities of doing inclusive and semi-inclusive deep inelastic scattering experiments at CEBAF with beam energy of the order of 10 GeV.

  15. Analysis of the Reactor Cavity Cooling System for Very High Temperature Gas-cooled Reactors Using Computational Fluid Dynamics Tools

    E-Print Network [OSTI]

    Frisani, Angelo

    2011-08-08T23:59:59.000Z

    the VHTR performance and safety analysis, one-dimensional (1-D) system type codes, like RELAP5 or MELCOR, and multi-dimensional CFD codes can be used. The choice of 1-D over multi-dimensional codes first involves identifying the main phenomena, and from...

  16. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect (OSTI)

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14T23:59:59.000Z

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  17. Nonlinear Fluid Dynamics from Gravity

    E-Print Network [OSTI]

    Sayantani Bhattacharyya; Veronika E Hubeny; Shiraz Minwalla; Mukund Rangamani

    2008-04-02T23:59:59.000Z

    Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einstein's equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.

  18. Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices.

    E-Print Network [OSTI]

    Serrano, Gerardo Enrique

    2012-01-01T23:59:59.000Z

    ??Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper (more)

  19. Downhole Fluid Analyzer Development

    SciTech Connect (OSTI)

    Bill Turner

    2006-11-28T23:59:59.000Z

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  20. SPECTRAL INCLUSION AND ANALYTIC CONTINUATION

    E-Print Network [OSTI]

    A. ATZMON, A. EREMENKO and M. SODIN

    A. Markushevich, Moscow, 1961) 113131 (Russian). 5. P. Henrici, Applied and computational complex analysis, Vol. III (Wiley, 1993). 6. T. Ransford, Potential...

  1. Chemically Reactive Working Fluids

    Broader source: Energy.gov (indexed) [DOE]

    commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

  2. Simulating Fluids Exhibiting Microstructure

    E-Print Network [OSTI]

    ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial macroscopic behavior due to interactions occurring on micro/mesoscopic scales.

  3. Fluid control structures in microfluidic devices

    DOE Patents [OSTI]

    Mathies, Richard A. (Moraga, CA); Grover, William H. (Berkeley, CA); Skelley, Alison (Berkeley, CA); Lagally, Eric (Oakland, CA); Liu, Chung N. (Albany, CA)

    2008-11-04T23:59:59.000Z

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  4. Magnetic fluid flow phenomena in DC and rotating magnetic fields

    E-Print Network [OSTI]

    Rhodes, Scott E. (Scott Edward), 1981-

    2004-01-01T23:59:59.000Z

    An investigation of magnetic fluid experiments and analysis is presented in three parts: a study of magnetic field induced torques in magnetorheological fluids, a characterization and quantitative measurement of properties ...

  5. Verification of the coupled fluid/solid transfer in a CASL grid-to-rod-fretting simulation : a technical brief on the analysis of convergence behavior and demonstration of software tools for verification.

    SciTech Connect (OSTI)

    Copps, Kevin D.

    2011-12-01T23:59:59.000Z

    For a CASL grid-to-rod fretting problem, Sandia's Percept software was used in conjunction with the Sierra Mechanics suite to analyze the convergence behavior of the data transfer from a fluid simulation to a solid mechanics simulation. An analytic function, with properties relatively close to numerically computed fluid approximations, was chosen to represent the pressure solution in the fluid domain. The analytic pressure was interpolated on a sequence of grids on the fluid domain, and transferred onto a separate sequence of grids in the solid domain. The error in the resulting pressure in the solid domain was measured with respect to the analytic pressure. The error in pressure approached zero as both the fluid and solids meshes were refined. The convergence of the transfer algorithm was limited by whether the source grid resolution was the same or finer than the target grid resolution. In addition, using a feature coverage analysis, we found gaps in the solid mechanics code verification test suite directly relevant to the prototype CASL GTRF simulations.

  6. Results from One- and Two- Phase Fluid Flow Calculations within the Preliminary Safety Analysis of the Gorleben Site - 13310

    SciTech Connect (OSTI)

    Kock, Ingo; Larue, Juergen; Fischer, Heidi; Frieling, Gerd; Navarro, Martin; Seher, Holger [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)] [Department of Final Disposal, GRS mbH, Schwertnergasse 1, 50667 Cologne (Germany)

    2013-07-01T23:59:59.000Z

    Rock salt is one of the possible host rock formations for the disposal of high-level radioactive wastes in Germany. The Preliminary Safety Analysis of the Gorleben Site (Vorlaeufige Sicherheitsanalyse Gorleben, VSG) evaluates the long-term safety of a hypothetical repository in the salt dome of Gorleben, Germany. A mature repository concept and detailed knowledge of the site allowed a detailed process analysis within the project by numerical modeling of single-phase and two-phase flow. The possibility of liquid transport from the shafts to the emplacement drifts is one objective of the present study. Also, the implications of brine inflow on radionuclide transport and gas generation are investigated. Pressure build-up due to rock convergence and gas generation, release of volatile radionuclides from the waste and pressure-driven contaminant transport were considered, too. The study confirms that the compaction behavior of salt grit backfill is one of the most relevant factors for the hydrodynamic evolution of the repository and the transport of contaminants. Due to the interaction between compaction, saturation and pore pressure, complex flow patterns evolve. Emplacement drifts serve as gas sinks or sources at different times. In most calculation cases, the backfill reaches its final porosity after a few hundred years. The repository is then sealed and radionuclides can only be transported by diffusion in the liquid phase. Estimates for the final porosity of compacted backfill range between 0 % and 2 %. The exact properties of the backfill regarding single- and two-phase flow are not well known for this porosity range. The study highlights that this uncertainty has a profound impact on flow and transport processes over long time-scales. Therefore, more research is needed to characterize the properties of crushed salt grit at low porosities or to reduce the adverse effects of possible higher porosities by repository optimization. (authors)

  7. U.S. Virgin Islands Leadership Embraces Inclusiveness to Ensure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leadership Embraces Inclusiveness to Ensure Community Ownership of Clean Energy Vision U.S. Virgin Islands Leadership Embraces Inclusiveness to Ensure Community Ownership of Clean...

  8. Lattice Boltzmann for Binary Fluids with Suspended Colloids

    E-Print Network [OSTI]

    K. Stratford; R. Adhikari; I. Pagonabarraga; J. -C. Desplat

    2005-06-01T23:59:59.000Z

    A new description of the binary fluid problem via the lattice Boltzmann method is presented which highlights the use of the moments in constructing two equilibrium distribution functions. This offers a number of benefits, including better isotropy, and a more natural route to the inclusion of multiple relaxation times for the binary fluid problem. In addition, the implementation of solid colloidal particles suspended in the binary mixture is addressed, which extends the solid-fluid boundary conditions for mass and momentum to include a single conserved compositional order parameter. A number of simple benchmark problems involving a single particle at or near a fluid-fluid interface are undertaken and show good agreement with available theoretical or numerical results.

  9. Simulation and performance analysis of basic GAX and advanced GAX cycles with ammonia/water and ammonia/water/LiBr absorption fluids

    SciTech Connect (OSTI)

    Zaltash, A.; Grossman, G.

    1996-03-01T23:59:59.000Z

    The generator-absorber heat exchange (GAX) and branched GAX cycles are generally considered with NH{sub 3}/H{sub 2}O as their working fluid. The potential consequences of using a ternary mixture of NH{sub 3}/H{sub 2}O/LiBr (advanced fluids) in the GAX and Branched GAX (advanced cycles) are discussed in this study. A modular steady state absorption simulation model(ABSIM) was used to investigate the potential of combining the above advanced cycles with the advanced fluids. ABSIM is capable of modeling varying cycle configurations with different working fluids. Performance parameters of the cycles, including coefficient of performance (COP) and heat duties, were investigated as functions of different operating parameters in the cooling mode for both the NH {sub 3}/H{sub 2}O binary and the NH{sub 3}/H{sub 2}O/LiBr ternary mixtures. High performance potential of GAX and branched GAX cycles using the NH{sub 3}/H{sub 2}O/LiBr ternary fluid mixture was achieved especially at the high range of firing temperatures exceeding 400{degrees}F. The cooling COP`s have been improved by approximately 21% over the COP achieved with the NH{sub 3}/H{sub 2}O binary mixtures. These results show the potential of using advanced cycles with advanced fluid mixtures (ternary or quaternary fluid mixtures).

  10. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14T23:59:59.000Z

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  11. Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices

    E-Print Network [OSTI]

    Serrano, Gerardo Enrique

    2000-01-01T23:59:59.000Z

    Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed...

  12. Application of direct-fitting, mass-integral, and multi-ratemethods to analysis of flowing fluid electric conductivity logs fromHoronobe, Japan

    SciTech Connect (OSTI)

    Doughty, C.; Tsang, C.-F.; Hatanaka, K.; Yabuuchi, S.; Kurikami, H.

    2007-08-01T23:59:59.000Z

    The flowing fluid electric conductivity (FFEC) loggingmethod is an efficient way to provide information on the depths,salinities, and transmissivities of individual conductive featuresintercepted by a borehole, without the use of specialized probes. Usingit in a multiple-flow-rate mode allows, in addition, an estimate of theinherent "far-field" pressure heads in each of the conductive features.The multi-rate method was successfully applied to a 500-m borehole in agranitic formation and reported recently. The present paper presents theapplication of the method to two zones within a 1000-m borehole insedimentary rock, which produced, for each zone, three sets of logs atdifferent pumping rates, each set measured over a period of about oneday. The data sets involve a number of complications, such as variablewell diameter, free water table decline in the well, and effects ofdrilling mud. To analyze data from this borehole, we apply varioustechniques that have been developed for analyzing FFEC logs:direct-fitting, mass-integral, and the multi-rate method mentioned above.In spite of complications associated with the tests, analysis of the datais able to identify 44 hydraulically conducting fractures distributedover the depth interval 150-775 meters below ground surface. Thesalinities (in FEC), and transmissivities and pressure heads (indimensionless form) of these 44 features are obtained and found to varysignificantly among one another. These results are compared with datafrom eight packer tests with packer intervals of 10-80 m, which wereconducted in this borehole over the same depth interval. They are foundto be consistent with these independent packer-test data, thusdemonstrating the robustness of the FFEC logging method under non-idealconditions.

  13. Modeling of Reoxidation Inclusion Formation During Filling of Steel Castings

    E-Print Network [OSTI]

    Beckermann, Christoph

    1 Modeling of Reoxidation Inclusion Formation During Filling of Steel Castings Kent D. Carlson cycle of inclusions during the filling of steel castings. There are two ways that inclusions can the final location and characteristics of reoxidation inclusions in steel castings. Carlson, K

  14. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    E-Print Network [OSTI]

    Franke, Rudiger

    2010-01-01T23:59:59.000Z

    Thermo-Fluid Systems, Modelica 2003 Conference, Linkping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-

  15. Graduate Studies Environmental Fluid Mechanics

    E-Print Network [OSTI]

    Storici, Francesca

    Graduate Studies Environmental Fluid Mechanics and Water Resources Engineering GRADUATE COURSESResourcesManagement · IntermediateFluidMechanics · AdvancedFluidMechanics · EnvironmentalFluidMechanics · AdvancedEnvironmental FluidMechanics · FluidMechanicsofOrganisms · OpenChannelHydraulics · SedimentTransport · ComputationalFluidMechanics

  16. Electronic Impact of Inclusions in Diamond

    SciTech Connect (OSTI)

    Muller, E.M.; Smedley, J.; Raghothamachar, B.; Gaowei, M.; Keister, J.W.; Ben-Zvi, I.; Dudley, M.; Wu, Q.

    2010-04-07T23:59:59.000Z

    X-ray topography data are compared with photodiode responsivity maps to identify potential candidates for electron trapping in high purity, single crystal diamond. X-ray topography data reveal the defects that exist in the diamond material, which are dominated by non-electrically active linear dislocations. However, many diamonds also contain defects configurations (groups of threading dislocations originating from a secondary phase region or inclusion) in the bulk of the wafer which map well to regions of photoconductive gain, indicating that these inclusions are a source of electron trapping which affect the performance of diamond X-ray detectors. It was determined that photoconductive gain is only possible with the combination of an injecting contact and charge trapping in the near surface region. Typical photoconductive gain regions are 0.2 mm across; away from these near-surface inclusions the device yields the expected diode responsivity.

  17. Environmentally safe fluid extractor

    DOE Patents [OSTI]

    Sungaila, Zenon F. (Orland Park, IL)

    1993-01-01T23:59:59.000Z

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  18. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)

    2001-09-25T23:59:59.000Z

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  19. Viscous fluid dynamics

    E-Print Network [OSTI]

    A. K. Chaudhuri

    2007-03-12T23:59:59.000Z

    We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.

  20. HEAT TRANSFER FLUIDS

    E-Print Network [OSTI]

    Lenert, Andrej

    2012-01-01T23:59:59.000Z

    The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...

  1. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2006-05-30T23:59:59.000Z

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  2. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

    2007-09-25T23:59:59.000Z

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  3. Model Approaches to Promote Cultural Inclusiveness

    E-Print Network [OSTI]

    Feschotte, Cedric

    of inclusiveness through its recruitment and retention of faculty members. 4.4 Student Diversity: The program to work at two-year colleges Faculty of color are more likely to prepare students for responsible and the tenure process, research and publishing demands, and most significantly, subtle discrimination." Astin

  4. Web Accessibility Office of Diversity and Inclusion

    E-Print Network [OSTI]

    Jones, Michelle

    Web Accessibility Office of Diversity and Inclusion Applies to: Any website conducting university of the art digital and web based information delivery of information is increasingly central in carrying out constituencies. This policy establishes minimum standards for the accessibility of web based information

  5. Graduate Studies Environmental Fluid Mechanics

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    Graduate Studies Environmental Fluid Mechanics and Water Resources Engineering ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING (EFMWR) The environmental fluid mechanics and water resources Environmental Fluid Mechanics and Hydraulic Engineering research focuses on turbulent entrainment, transport

  6. Neutron observables from inclusive lepton scattering on nuclei

    SciTech Connect (OSTI)

    Rinat, A. S.; Taragin, M. F. [Weizmann Institute of Science, Department of Particle Physics, Rehovot 76100 (Israel)

    2010-07-15T23:59:59.000Z

    We analyze new data from Thomas Jefferson National Accelerator Facility (JLab) for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3 < or approx. x < or approx. 0.95 show reasonable agreement on a logarithmic scale for all targets. However, closer inspection of the quasielastic components reveals serious discrepancies. European Muon Collaboration (EMC) ratios with conceivably smaller systematic errors fare the same. As a consequence, the new data do not enable the extraction of the magnetic form factor G{sub M}{sup n} and the structure function F{sub 2}{sup n} of the neutron, although the application of exactly the same analysis to older data had been successful. We incorporate in the above analysis older CLAS Collaboration data on F{sub 2}{sup 2H}. Removal of some scattered points from those makes it appear possible to obtain the desired neutron information. We compare our results with others from alternative sources. Special attention is paid to the A=3 isodoublet cross sections and EMC ratios. Present data exist only for {sup 3}He, but the available input in combination with charge symmetry enables computations for {sup 3}H. Their average is the computed isoscalar part and is compared with the empirical modification of {sup 3}He EMC ratios toward a fictitious A=3 isosinglet.

  7. Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth

    SciTech Connect (OSTI)

    Powell, A.; Pal, U. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Avyle, J. van den [Sandia National Labs., Albuquerque, NM (United States)

    1997-02-01T23:59:59.000Z

    Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

  8. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20T23:59:59.000Z

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  9. Materials Science and Engineering B 117 (2005) 5361 Finite element analysis-based design of a fluid-flow control nano-valve

    E-Print Network [OSTI]

    Grujicic, Mica

    of a fluid-flow control nano-valve M. Grujicica,, G. Caoa, B. Pandurangana, W.N. Royb a Department A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction

  10. Membrane fluids and Dirac membrane fluids

    E-Print Network [OSTI]

    M. G. Ivanov

    2005-05-04T23:59:59.000Z

    There are two different methods to describe membrane (string) fluids, which use different field content. The relation between the methods is clarified by construction of combined method. Dirac membrane field appears naturally in new approach. It provides a possibility to consider new aspects of electrodynamics-type theories with electric and magnetic sources. The membrane fluid models automatically prohibit simulatenos existence of electric and magnetic currents. Possible applications to the dark energy problem are mentioned.

  11. Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin. Enhancing the Lithiation Rate of Silicon Nanowires by the Inclusion of Tin. Abstract: Silicon (Si) has a...

  12. Automated Inclusive Design Heuristics Generation with Graph Mining

    E-Print Network [OSTI]

    Sangelkar, Shraddha Chandrakant

    2013-08-01T23:59:59.000Z

    Inclusive design is a concept intended to promote the development of products and environments equally usable by all users, irrespective of their age or ability. This research focuses on developing a method to derive heuristics for inclusive design...

  13. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27T23:59:59.000Z

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  14. Disposal of drilling fluids

    SciTech Connect (OSTI)

    Bryson, W.R.

    1983-06-01T23:59:59.000Z

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  15. Inclusive jet production at the Tevatron

    SciTech Connect (OSTI)

    Norniella, Olga; /Barcelona, IFAE

    2006-08-01T23:59:59.000Z

    Preliminary results on inclusive jet production in proton-antiproton collisions at {radical}s = 1.96 TeV based on 1 fb{sup -1} of CDF Run II data are presented. Measurements are preformed using different jet algorithms in a wide range of jet transverse momentum and jet rapidity. The measured cross sections are compared to next-to-leading order perturbative QCD calculations

  16. Selfgravitation in a general-relativistic accretion of steady fluids

    E-Print Network [OSTI]

    Bogusz Kinasiewicz; Patryk Mach; Edward Malec

    2006-06-20T23:59:59.000Z

    The selfgravity of an infalling gas can alter significantly the accretion of gases. In the case of spherically symmetric steady flows of polytropic perfect fluids the mass accretion rate achieves maximal value when the mass of the fluid is 1/3 of the total mass. There are two weakly accreting regimes, one over-abundant and the other poor in fluid content. The analysis within the newtonian gravity suggests that selfgravitating fluids can be unstable, in contrast to the accretion of test fluids.

  17. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)

    2010-10-12T23:59:59.000Z

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  18. Purely radiative perfect fluids

    E-Print Network [OSTI]

    B. Bastiaensen; H. R. Karimian; N. Van den Bergh; L. Wylleman

    2007-05-08T23:59:59.000Z

    We study `purely radiative' (div E = div H = 0) and geodesic perfect fluids with non-constant pressure and show that the Bianchi class A perfect fluids can be uniquely characterized --modulo the class of purely electric and (pseudo-)spherically symmetric universes-- as those models for which the magnetic and electric part of the Weyl tensor and the shear are simultaneously diagonalizable. For the case of constant pressure the same conclusion holds provided one also assumes that the fluid is irrotational.

  19. Stress concentration near stiff inclusions: validation of rigid inclusion model and boundary layers by means of photoelasticity

    E-Print Network [OSTI]

    Diego Misseroni; Francesco Dal Corso; Summer Shahzad; Davide Bigoni

    2014-04-03T23:59:59.000Z

    Photoelasticity is employed to investigate the stress state near stiff rectangular and rhombohedral inclusions embedded in a 'soft' elastic plate. Results show that the singular stress field predicted by the linear elastic solution for the rigid inclusion model can be generated in reality, with great accuracy, within a material. In particular, experiments: (i.) agree with the fact that the singularity is lower for obtuse than for acute inclusion angles; (ii.) show that the singularity is stronger in Mode II than in Mode I (differently from a notch); (iii.) validate the model of rigid quadrilateral inclusion; (iv.) for thin inclusions, show the presence of boundary layers deeply influencing the stress field, so that the limit case of rigid line inclusion is obtained in strong dependence on the inclusion's shape. The introduced experimental methodology opens the possibility of enhancing the design of thin reinforcements and of analyzing complex situations involving interaction between inclusions and defects.

  20. MECH 386 INDUSTRIAL FLUID MECHANICS INDUSTRIAL FLUID MECHANICS

    E-Print Network [OSTI]

    MECH 386 ­ INDUSTRIAL FLUID MECHANICS 1 INDUSTRIAL FLUID MECHANICS MECH 386 Contact information Dr This course is an introduction to industrial fluid mechanics. According to J. C. R. Hunt (a famous fluid mechanics specialist): "industrial fluid mechanics broadly covers those aspects of the design, manufacture

  1. On the role of the Sivers effect in A{sub N} for inclusive particle production in pp collisions

    SciTech Connect (OSTI)

    Anselmino, Mauro [INFN-Torino (Italy); Boglione, Mariaelena [INFN-Torino (Italy); D'Alesio, Umberto [INFN Cagliari (Italy); Melis, Stefano [INFN-Torino (Italy); Murgia, Francesco [INFN Cagliari (Italy); Prokudin, Alexei [JLAB, Newport News, VA (United States)

    2014-01-01T23:59:59.000Z

    Single spin asymmetries, A{sub N} , for inclusive particle production in pp collisions are considered within a generalized parton model with inclusion of spin and tranverse momentum effects. We consider the potential role of the Sivers effect in A{sub N} , as extracted from a careful analysis of azimuthal asymmetries in SIDIS, and discuss its phenomenological consequences in connection with a recently updated study of the Collins effect.

  2. Packing frustration in dense confined fluids

    E-Print Network [OSTI]

    Kim Nygrd; Sten Sarman; Roland Kjellander

    2014-09-04T23:59:59.000Z

    Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile - each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

  3. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10T23:59:59.000Z

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  4. Numerical method for shear bands in ductile metal with inclusions

    SciTech Connect (OSTI)

    Plohr, Jee Yeon N [Los Alamos National Laboratory; Plohr, Bradley J [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    A numerical method for mesoscale simulation of high strain-rate loading of ductile metal containing inclusions is described. Because of small-scale inhomogeneities, such a composite material is prone to localized shear deformation (adiabatic shear bands). The modeling framework is the Generalized Method of Cells of Paley and Aboudi [Mech. Materials, vol. 14, pp. /27-139, 1992], which ensures that the micromechanical response of the material is reflected in the behavior of the composite at the mesoscale. To calculate the effective plastic strain rate when shear bands are present, the analytic and numerical analysis of shear bands by Glimm, Plohr, and Sharp [Mech. Materials, vol. 24, pp. 31-41, 1996] is adapted and extended.

  5. Thermodynamic Model for Fluid-Fluid Interfacial Areas in Porous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (free) and isolated (entrapped) nonwetting fluids. The model is restricted to two-fluid systems in which (1) no significant conversion of mechanical work into heat occurs,...

  6. Inclusive B decays from resummed perturbation theory.

    E-Print Network [OSTI]

    Gardi, Einan

    ar X iv :h ep -p h/ 07 03 03 6v 1 4 M ar 2 00 7 Inclusive B decays from resummed perturbation theory Einan Gardi Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK and Department of Applied Mathematics... for the experimentallyrelevant branching fractions can be derived from resummed perturbation theory and explain the way in which the resummation further provides guidance in parametrizing non-perturbative Fermimotion effects. Finally I address the comparison between...

  7. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    SciTech Connect (OSTI)

    Silva, M.K.

    1996-08-01T23:59:59.000Z

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  8. Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and...

    Open Energy Info (EERE)

    identified by reconnaissance temperature gradient drilling in the 1980s by Philips Petroleum but was never tested through deep exploration drilling. Although the 10 square miles...

  9. ORGANIC SPECIES IN GEOTHERMAL WATERS IN LIGHT OF FLUID INCLUSION GAS

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley,EnergyOHm

  10. Black Warrior: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlack Diamond Power Co

  11. Microthermometry of Fluid Inclusions from the VC-1 Core Hole in Valles

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: EnergyChina FinalMicrostaq Jump to:Caldera,

  12. Fluid Inclusion Evidence for Rapid Formation of the Vapor-Dominated Zone at

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergyOpen

  13. Fluid-inclusion evidence for past temperature fluctuations in the Kilauea

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint

  14. Black Warrior: Sub-soil gas and fluid inclusion exploration and slim well

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)andDepartment of Energy

  15. FRACTURING FLUID CHARACTERIZATION FACILITY

    SciTech Connect (OSTI)

    Subhash Shah

    2000-08-01T23:59:59.000Z

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  16. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25T23:59:59.000Z

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  17. Laminar inclusions of duplex stainless steels

    SciTech Connect (OSTI)

    Hudson, M.E. [Fluor Daniel Canada Inc., Calgary, Alberta (Canada)

    1993-12-31T23:59:59.000Z

    Duplex Stainless Steel have been utilized in the offshore petrochemical industries for over twenty years. The steels are normally manufactured to produce a 50:50 duplex austenitic and ferritic microstructure. The microstructure yields the benefits of high strength, corrosion resistance and low thermal expansion. While constructing a high pressure header box for an air cooled heat exchanger, linear indications were observed along the weld preparation faces. These laminations were parallel to the plate surfaces, reminiscent to oxide inclusions found in carbon steel plates manufactured 20 years ago. Concern over premature failure at the highly stressed corner joints resulted in the rejection of the plates. A metallurgical investigation followed. From scanning electron microscopy and energy dispersive x-ray, the indications were shown to be rich in Cr, Mn and Si. The inclusions occurred during steel manufacturing and were most likely due to incorrect removal of oxides at the top of the ingot and/or the exclusion of a secondary remelting process. New plates were ordered with tighter production controls on steel processing. The plates were ultrasonically inspected prior to fabrication and no further problems were discovered.

  18. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

    1994-01-01T23:59:59.000Z

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  19. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02T23:59:59.000Z

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  20. System for Dispensing a Precise Amount of Fluid

    DOE Patents [OSTI]

    Benett, William J. (Livermore, CA); Krulevitch, Peter A. (Pleasanton, CA); Visuri, Steven R. (Livermore, CA); Dzenitis, John M. (Danville, CA); Ness, Kevin D. (Mountain View, CA)

    2008-08-12T23:59:59.000Z

    A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.

  1. Notes 10. A thermohydrodynamic bulk-flow model for fluid film bearings

    E-Print Network [OSTI]

    San Andres, Luis

    2009-01-01T23:59:59.000Z

    The complete set of bulk-flow equations for the analysis of turbulent flow fluid film bearings. Importance of thermal effects in process fluid applications. A CFD method for solution of the bulk-flow equations....

  2. Circulating Fluid Bed Combustor

    E-Print Network [OSTI]

    Fraley, L. D.; Do, L. N.; Hsiao, K. H.

    1982-01-01T23:59:59.000Z

    The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...

  3. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B. (Idaho Falls, ID)

    2006-01-17T23:59:59.000Z

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  4. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

    1993-01-01T23:59:59.000Z

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  5. Phoresis in fluids

    E-Print Network [OSTI]

    Brenner, Howard

    This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

  6. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  7. Enhanced Inclusion Removal from Steel in the Tundish

    SciTech Connect (OSTI)

    R. C. Bradt; M.A.R. Sharif

    2009-09-25T23:59:59.000Z

    The objective of this project was to develop an effective chemical filtering system for significantly reducing the content of inclusion particles in the steel melts exiting the tundish for continuous casting. This project combined a multi-process approach that aimed to make significant progress towards an "inclusion free" steel by incorporating several interdependent concepts to reduce the content of inclusions in the molten steel exiting the tundish for the caster. The goal is to produce "cleaner" steel.

  8. System for Detection of Small Inclusions in Large Optics

    SciTech Connect (OSTI)

    Wolfe, J E; Runkel, M J

    2008-10-24T23:59:59.000Z

    The presence of defects in optical materials can lead to bulk damage or downstream modulation and subsequent surface damage in high fluence laser systems. An inclusion detection system has been developed by the National Ignition Facility Optics Metrology Group. The system detects small inclusions in optical materials with increased sensitivity and speed over previous methods. The system has detected all known inclusions and defects and has detected previously undetected defects smaller than 5 microns.

  9. R3 fluids

    E-Print Network [OSTI]

    R. Caimmi

    2006-07-27T23:59:59.000Z

    With regard to large-scale astrophysical systems, the current paper deals with (i) formulation of tensor virial equations from the standpoint of analytical mechanics; (ii) investigation on the role of systematic and random motions for virial equilibrium configurations; (iii) extent to which systematic and random motions are equivalent in changing a fluid shape. The tensor virial equations are formulated using analytical mechanics, and the self potential-energy tensor is shown to be symmetric. The role of systematic and random motions in collisionless, ideal, self-gravitating fluids, is analysed in detail including radial and tangential velocity dispersion on the equatorial plane. R3 fluids are defined as ideal, self-gravitating fluids in virial equilibrium, with systematic rotation around a principal axis of inertia, and ihe related virial equations are formulated. A unified theory of systematic and random motions is developed for R3 fluids, taking into consideration imaginary rotation. The effect of random motion excess is shown to be equivalent to an additional real or imaginary rotation, respectively, inducing flattening or elongation. R3 fluids are found to admit adjoint configurations with isotropic random velocity distribution. Further constraints are established on the amount of random velocity anisotropy along the principal axes, for triaxial configurations. A necessary condition is formulated for the occurrence of bifurcation points from axisymmetric to triaxial configurations in virial equilibrium, which is independent of the anisotropy parameters. In the special case of homeoidally striated Jacobi ellipsoid, some previously known results are reproduced.

  10. Mary Ann Fresco receives OPM award for creating, fostering inclusive...

    National Nuclear Security Administration (NNSA)

    receives OPM award for creating, fostering inclusive diversity Mary Ann Fresco, Senior Advisor to NNSA's Management and Business Office (NA-MB), was recently recognized by the...

  11. Progress in computing inclusive B decay spectra.

    E-Print Network [OSTI]

    Gardi, Einan; Andersen, Jeppe R

    ar X iv :h ep -p h/ 06 01 18 1v 1 2 1 Ja n 20 06 Progress in computing inclusive B decay spectra Einan Gardi and Jeppe R. Andersen Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK We review the progress... V, M0E =1.7GeV x =1GeV, M0E =1.7GeV, fully diff. x =1GeV, M0E =0.66GeV max + =1GeV, P0E =0.66GeV, fully diff. max + =1GeV, P0E Figure 4. The P? spectrum in B ?? Xul? as calculated by DGE [17], after integration over P+ and El in four different...

  12. Inclusive jet cross section at CDF

    SciTech Connect (OSTI)

    Lefevre, R.; Martinez, M.; /Barcelona, IFAE

    2005-01-01T23:59:59.000Z

    This contribution reports on preliminary measurements of the inclusive jet production cross section in p{bar p} collisions at {radical}s = 1.96 TeV using data collected with CDF corresponding to an integrated luminosity of 385 pb{sup -1}. Two analyzes are presented: one uses the longitudinally invariant k{sub T} algorithm to reconstruct the jets, the other uses the midpoint algorithm. Both are limited to jets with rapidity in the range 0.1 < |y{sup jet}| < 0.7. The measured cross sections are in good agreement with next-to-leading order perturbative QCD predictions after including the non-perturbative corrections necessary to account for underlying event and hadronization effects.

  13. Lecture notes Introductory fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (22nd February 2013 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow 2.1 Flow A material essential to all modern car braking mechanisms. Fluids can be further subcatergorized. There are ideal

  14. Lecture notes Introductory fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Introductory fluid mechanics Simon J.A. Malham Simon J.A. Malham (17th March 2014 of fluid mechanics and along the way see lots of interesting applications. 2 Fluid flow, the Continuum are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

  15. Fluid Mechanics and Homeland Security

    E-Print Network [OSTI]

    Settles, Gary S.

    Fluid Mechanics and Homeland Security Gary S. Settles Mechanical and Nuclear Engineering Department. 2006. 38:87­110 The Annual Review of Fluid Mechanics is online at fluid.annualreviews.org doi: 10 security involves many applications of fluid mechanics and offers many opportunities for research

  16. Analysis of nonconcurrent cable moorings with rigid and elastic inclusions

    E-Print Network [OSTI]

    Greer, Geral Glen

    2012-06-07T23:59:59.000Z

    pointsQ2andQ3are 2 X2i + Y2S + 2k (e) r3 = X31 + Y3J + 23k The external forces at the attachment points are as previously defined and are given by l = Fxli + Fy]1 F2 = Fx2i + Fy2~ F3 = Rx3i + Fy3$ + Fzlk + FZ2k + Fz3k (8) The cable reactions... C1X2 + C612 - C3 3 6 3 0 (20) CZX2 - CSY2 + C4X3 - C6Y3 = 0 The coefficients Cl - C6 in the above equations are defined as Cl = Fz2 + Rz2 C3 Fz3 + Rz3 4 = Fy3 ' Ry3 C6 = Fx2 + Rx 2 C6 = Fx3 + RX3 Solution of Nonlinear Simultaneous E uations...

  17. On equivalence of thinning fluids used for hydraulic fracturing

    E-Print Network [OSTI]

    Linkov, Alexander

    2012-01-01T23:59:59.000Z

    The paper aims to answer the question: if and how non-Newtonian fluids may be compared in their mechanical action when used for hydraulic fracturing? By employing the modified formulation of the PKN problem we obtain its simple analytical solutions in the cases of perfectly plastic and Newtonian fluids. Since the results for shear thinning fluids are intermediate between those for these cases, the obtained equation for the fracture length suggests a criterion of the equivalence of various shear thinning fluids for the problem of hydraulic fractures. We assume fluids equivalent in their hydrofracturing action, when at a reference time they produce fractures of the same length. The equation for the fracture length translates the equivalence in terms of the hydraulic fracture length and treatment time into the equivalence in terms of the properties of a fracturing fluid (behavior and consistency indices). Analysis shows that the influence of the consistency and behavior indices on the fracture length, particle v...

  18. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C. (Davis, CA)

    1997-01-01T23:59:59.000Z

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  19. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01T23:59:59.000Z

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  20. National Aeronautics and Space Administration NASA Diversity and Inclusion

    E-Print Network [OSTI]

    Waliser, Duane E.

    Plan FY 2012 ­ FY 2015 March 16, 2012 Enclosure #12;NASA Diversity and Inclusion Strategic and Inclusion Assessment Survey, deployed in FY 2010, as well as the annual government-wide Employee Viewpoint actions for the Office of Personnel Management (OPM), the Office of Management and Budget (OMB), the Equal

  1. Prediction of Reoxidation Inclusion Composition in Casting of Steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    Prediction of Reoxidation Inclusion Composition in Casting of Steel Liang Wang and Christoph ABSTRACT A model is developed to calculate the composition of reoxidation inclusions in steel casting. It is assumed that oxygen is continually absorbed by the steel during pouring. The software package Thermo

  2. Simulation of Reoxidation Inclusion Formation in Steel Casting

    E-Print Network [OSTI]

    Beckermann, Christoph

    Simulation of Reoxidation Inclusion Formation in Steel Casting Antonio J. Melendez, Kent D. Carlson the formation of reoxidation inclusions in carbon and low-alloy steel castings. A model is developed are conducted using radiographs of cast steel weld plates. The limit of resolution in the radiographs is about 1

  3. Prediction of Reoxidation Inclusion Composition in Casting of Steel

    E-Print Network [OSTI]

    Beckermann, Christoph

    Prediction of Reoxidation Inclusion Composition in Casting of Steel LIANG WANG and CHRISTOPH pouring of steel castings. The software package Thermo-Calc is used to obtain the inclusion phase fractions and compositions as a function of the temperature and oxygen content of the steel. Oxygen

  4. Inclusion of Scatter in HADES: Final Report

    SciTech Connect (OSTI)

    Aufderheide, M B

    2010-12-20T23:59:59.000Z

    Covert nuclear attack is one of the foremost threats facing the United States and is a primary focus of the War on Terror. The Domestic Nuclear Detection Office (DNDO), within the Department of Homeland Security (DHS), is chartered to develop, and improve domestic systems to detect and interdict smuggling for the illicit use of a nuclear explosive device, fissile material or radiologica1 material. The CAARS (Cargo Advanced Automated Radiography System) program is a major part of the DHS effort to enhance US security by harnessing cutting-edge technologies to detect radiological and nuclear threats at points of entry to the United States. DNDO has selected vendors to develop complete radiographic systems. It is crucial that the initial design and testing concepts for the systems be validated and compared prior to the substantial efforts to build and deploy prototypes and subsequent large-scale production. An important aspect of these systems is the scatter which interferes with imaging. Monte Carlo codes, such as MCNP (X-5 Monte Carlo Team, 2005 Revision) allow scatter to be calculatied, but these calculations are very time consuming. It would be useful to have a fast scatter estimation algorithm in a fast ray tracing code. We have been extending the HADES ray-tracing radiographic simulation code to model vendor systems in a flexible and quick fashion and to use this tool to study a variety of questions involving system performance and the comparative value of surrogates. To enable this work, HADES has been linked to the BRL-CAD library (BRL-CAD Open Source Project, 2010), in order to enable the inclusion of complex CAD geometries in simulations, scanner geometries have been implemented in HADES, and the novel detector responses have been included in HADES. A major extension of HADES which has been required by this effort is the inclusion of scatter in these radiographic simulations. Ray tracing codes generally do not easily allow the inclusion of scatter, because these codes define a source and a grid of detector pixels and only compute the attenuation along rays between these points. Scatter is an extremely complex set of processes which can involve rays which change directions many times between the source and detector. Scatter from outside the field of view of the imaging system, as well as within the field of view, can have an important role in image formation. In this report, we will describe how we implemented a treatment of scatter in HADES. We begin with a discussion of how we define scatter in Section 2, followed by a description of how single Compton scatter is now included in HADES in Section 3. In Section 4 we report a set of verification tests against MCNP and tests of how the technique scales with image size, number of scatters allowed and number of processors used in the calculations. In Section 5, we describe how we plan to extend this approach to other forms of scatter and conclude in Section 6. It should be emphasized that the purpose of this report is to show that a form of scatter has been implemented in HADES and has been verified against MCNP. Validation, the process of comparing simulation and experiment, is a future task.

  5. Spreading of viscous fluids and granular materials on slopes

    E-Print Network [OSTI]

    Takagi, Daisuke

    2010-11-16T23:59:59.000Z

    advance of long lava flows is studied by considering the flow of viscous fluid released on sloping channels. A scaling analysis, in agreement with analog experiments and field data, offers a practical tool for predicting the advance of lava flows...

  6. 2.25 Advanced Fluid Mechanics, Fall 2002

    E-Print Network [OSTI]

    Sonin, A. A.

    Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. ...

  7. View dependent fluid dynamics

    E-Print Network [OSTI]

    Barran, Brian Arthur

    2006-08-16T23:59:59.000Z

    VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2006 Major Subject: Visualization... Sciences VIEW DEPENDENT FLUID DYNAMICS A Thesis by BRIAN ARTHUR BARRAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Donald...

  8. Detecting low levels of radionuclides in fluids

    DOE Patents [OSTI]

    Patch, Keith D. (Lexington, MA); Morgan, Dean T. (Sudbury, MA)

    2000-01-01T23:59:59.000Z

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  9. Carbon-bearing fluids at nanoscale interfaces

    SciTech Connect (OSTI)

    Cole, David [Ohio State University; Ok, Salim [Ohio State University, Columbus; Phan, A [Ohio State University, Columbus; Rother, Gernot [ORNL; Striolo, Alberto [Oklahoma University; Vlcek, Lukas [ORNL

    2013-01-01T23:59:59.000Z

    The behaviour of fluids at mineral surfaces or in confined geometries (pores, fractures) typically differs from their bulk behaviour in many ways due to the effects of large internal surfaces and geometrical confinement. We summarize research performed on C-O-H fluids at nanoscale interfaces in materials of interest to the earth and material sciences (e.g., silica, alumina, zeolites, clays, rocks, etc.), emphasizing those techniques that assess microstructural modification and/or dynamical behaviour such as gravimetric analysis, small-angle (SANS) neutron scattering, and nuclear magnetic resonance (NMR). Molecular dynamics (MD) simulations will be described that provide atomistic characterization of interfacial and confined fluid behaviour as well as aid in the interpretation of the neutron scattering results.

  10. Relativistic fluid mechanics, Kahler manifolds and supersymmetry

    E-Print Network [OSTI]

    T. S. Nyawelo; J. W. van Holten; S. Groot Nibbelink

    2003-09-11T23:59:59.000Z

    We propose an alternative for the Clebsch decomposition of currents in fluid mechanics, in terms of complex potentials taking values in a Kahler manifold. We reformulate classical relativistic fluid mechanics in terms of these complex potentials and rederive the existence of an infinite set of conserved currents. We perform a canonical analysis to find the explicit form of the algebra of conserved charges. The Kahler-space formulation of the theory has a natural supersymmetric extension in 4-D space-time. It contains a conserved current, but also a number of additional fields complicating the interpretation. Nevertheless, we show that an infinite set of conserved currents emerges in the vacuum sector of the additional fields. This sector can therefore be identified with a regime of supersymmetric fluid mechanics. Explicit expressions for the current and the density are obtained.

  11. DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto

    E-Print Network [OSTI]

    Boyer, Edmond

    DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid

  12. The simulation of free surface flows with Computational Fluid Dynamics B. Godderidge1

    E-Print Network [OSTI]

    1 The simulation of free surface flows with Computational Fluid Dynamics B. Godderidge1 A of these applications make their simulation with computational fluid dynamics particularly challenging. The successful Computational fluid dynamics is a powerful and versatile tool for the analysis of flow problems encountered

  13. Relativistic viscoelastic fluid mechanics

    E-Print Network [OSTI]

    Masafumi Fukuma; Yuho Sakatani

    2011-09-01T23:59:59.000Z

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski spacetime become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  14. Supersymmetric Fluid Mechanics

    E-Print Network [OSTI]

    R. Jackiw; A. P. Polychronakos

    2000-07-17T23:59:59.000Z

    When anticommuting Grassmann variables are introduced into a fluid dynamical model with irrotational velocity and no vorticity, the velocity acquires a nonvanishing curl and the resultant vorticity is described by Gaussian potentials formed from the Grassmann variables. Upon adding a further specific interaction with the Grassmann degrees of freedom, the model becomes supersymmetric.

  15. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06T23:59:59.000Z

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  16. Fluid Flow Modeling in Fractures

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2004-01-01T23:59:59.000Z

    In this paper we study fluid flow in fractures using numerical simulation and address the challenging issue of hydraulic property characterization in fractures. The methodology is based on Computational Fluid Dynamics, ...

  17. E-Print Network 3.0 - asme fluids engineerin Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering, Center for Life Cycle Analysis Collection: Renewable Energy 3 CURRICULUM VITAE ET STUDIORUM MARCO AMABILI Summary: of Fluids and Structures, Elsevier, since...

  18. Stress and Fluid-Flow Interaction for the Coso Geothermal Field...

    Open Energy Info (EERE)

    California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within...

  19. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOE Patents [OSTI]

    White, Jack C. (Albany, OR); Traut, Davis E. (Corvallis, OR); Oden, Laurance L. (Albany, OR); Schmitt, Roman A. (Corvallis, OR)

    1992-01-01T23:59:59.000Z

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  20. Lecture notes Ideal fluid mechanics

    E-Print Network [OSTI]

    Malham, Simon J.A.

    Lecture notes Ideal fluid mechanics Simon J.A. Malham Simon J.A. Malham (6th Feb 2010) Maxwell and in the process learn about the subtleties of fluid mechanics and along the way see lots of interesting are generally incompressible--a feature essential to all modern car braking mechanisms. Fluids can be further

  1. Full Life Wind Turbine Gearbox Lubricating Fluids

    SciTech Connect (OSTI)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28T23:59:59.000Z

    Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

  2. Oscillating fluid power generator

    SciTech Connect (OSTI)

    Morris, David C

    2014-02-25T23:59:59.000Z

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  3. Fluid-fluid versus fluid-solid demixing in mixtures of parallel hard hypercubes

    E-Print Network [OSTI]

    Luis Lafuente; Yuri Martinez-Raton

    2011-02-08T23:59:59.000Z

    It is well known that the increase of the spatial dimensionality enhances the fluid-fluid demixing of a binary mixture of hard hyperspheres, i.e. the demixing occurs for lower mixture size asymmetry as compared to the three-dimensional case. However, according to simulations, in the latter dimension the fluid-fluid demixing is metastable with respect to the fluid-solid transition. According to the results obtained from approximations to the equation of state of hard hyperspheres in higher dimensions, the fluid-fluid demixing might becomes stable for high enough dimension. However, this conclusion is rather speculative since none of the above works have taken into account the stability of the crystalline phase (nor by a minimization of a given density functional, neither spinodal calculations or MC simulations). Of course, the lack of results is justified by the difficulty for performing density functional calculations or simulations in high dimensions and, in particular, for highly asymmetric binary mixtures. In the present work, we will take advantage of a well tested theoretical tool, namely the fundamental measure density functional theory for parallel hard hypercubes (in the continuum and in the hypercubic lattice). With this, we have calculated the fluid-fluid and fluid-solid spinodals for different spatial dimensions. We have obtained, no matter of the dimensionality, the mixture size asymmetry nor the polydispersity (included as a bimodal distribution function centered around the asymmetric edge-lengths), that the fluid-fluid critical point is always located above the fluid-solid spinodal. In conclusion, these results point to the existence of demixing between at least one solid phase rich in large particles and one fluid phase rich in small ones, preempting a fluid-fluid demixing, independently of the spatial dimension or the polydispersity.

  4. Green's kernels for transmission problems in bodies with small inclusions

    E-Print Network [OSTI]

    Vladimir Maz'ya; Alexander Movchan; Michael Nieves

    2010-05-24T23:59:59.000Z

    The uniform asymptotic approximation of Green's kernel for the transmission problem of antiplane shear is obtained for domains with small inclusions. The remainder estimates are provided. Numerical simulations are presented to illustrate the effectiveness of the approach.

  5. On fractional differential inclusions with the Jumarie derivative

    SciTech Connect (OSTI)

    Kamocki, Rafa?, E-mail: rafkam@math.uni.lodz.pl [Faculty of Mathematics and Computer Science, Chair of Differential Equations and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz (Poland)] [Faculty of Mathematics and Computer Science, Chair of Differential Equations and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz (Poland); Obczy?ski, Cezary, E-mail: czacza@math.uni.lodz.pl [Faculty of Mathematics and Computer Science, Chair of Nonlinear Analysis, University of Lodz, Banacha 22, 90-238 Lodz (Poland)] [Faculty of Mathematics and Computer Science, Chair of Nonlinear Analysis, University of Lodz, Banacha 22, 90-238 Lodz (Poland)

    2014-02-15T23:59:59.000Z

    In the paper, fractional differential inclusions with the Jumarie derivative are studied. We discuss the existence and uniqueness of a solution to such problems. Our study relies on standard variational methods.

  6. E-Print Network 3.0 - antilambda0 inclusively produced Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inclusions with a sliding and bonded interfaces are compared. It is shown that the energy... in the inclusion with sliding interface due to uniform eigenstrain is greater...

  7. Bibliographic survey of medium energy inclusive reaction data

    SciTech Connect (OSTI)

    Arthur, E.D.; Madland, D.G.; McClellan, D.M.

    1986-04-01T23:59:59.000Z

    A bibliographic survey of inclusive reaction data (experimental and theoretical) for several projectile types having energies between 50 and 1000 MeV has been completed. Approximately one thousand references selected from this survey describe the current state of knowledge for particle-induced inclusive reaction data. The search covered data for the following projectiles: p, d, t, /sup 3/He, /sup 4/He, and lithium ions.

  8. Higher Derivative Corrections to Charged Fluids in 2n Dimensions

    E-Print Network [OSTI]

    Nabamita Banerjee; Suvankar Dutta; Akash Jain

    2015-02-25T23:59:59.000Z

    We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.

  9. Higher Derivative Corrections to Charged Fluids in 2n Dimensions

    E-Print Network [OSTI]

    Banerjee, Nabamita; Jain, Akash

    2015-01-01T23:59:59.000Z

    We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.

  10. Higher Derivative Corrections to Charged Fluids in 2n Dimensions

    E-Print Network [OSTI]

    Nabamita Banerjee; Suvankar Dutta; Akash Jain

    2015-01-31T23:59:59.000Z

    We study anomalous charged fluid in $2n$-dimensions ($n\\geq 2$) up to sub-leading derivative order. Only the effect of gauge anomaly is important at this order. Using the Euclidean partition function formalism, we find the constraints on different sub-leading order transport coefficients appearing in parity-even and odd sectors of the fluid. We introduce a new mechanism to count different fluid data at arbitrary derivative order. We show that only the knowledge of independent scalar-data is sufficient to find the constraints. In appendix we further extend this analysis to obtain fluid data at sub-sub-leading order (where both gauge and gravitational anomaly contribute) for parity-odd fluid.

  11. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT DYTRAN BENCHMARK ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN FLAT TOP TANKS

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2007-02-16T23:59:59.000Z

    The work reported in this document was performed in support of a project entitled ''Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Analyses''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The work herein was motivated by review comments from a Project Review Meeting held on March 20-21, 2006. One of the recommendations from that meeting was that the effects of the interaction between the tank liquid and the roof be further studied (Rinker, Deibler, Johnson, Karri, Pilli, Abatt, Carpenter, and Hendrix - Appendix E of RPP-RPT-28968, Rev. 1). The reviewers recommended that solutions be obtained for seismic excitation of flat roof tanks containing liquid with varying headspace between the top of the liquid and the tank roof. It was recommended that the solutions be compared with simple, approximate procedures described in BNL (1995) and Malhotra (2005). This report documents the results of the requested studies and compares the predictions of Dytran simulations to the approximate procedures in BNL (1995) and Malhotra (2005) for flat roof tanks. The four cases analyzed all employed a rigid circular cylindrical flat top tank with a radius of 450 in. and a height of 500 in. The initial liquid levels in the tank were 460,480,490, and 500 in. For the given tank geometry and the selected seismic input, the maximum unconstrained slosh height of the liquid is slightly greater than 25 in. Thus, the initial liquid level of 460 in. represents an effectively roofless tank, the two intermediate liquid levels lead to intermittent interaction between the liquid and tank roof, and the 500 in. liquid level represents a completely full tank with no sloshing. Although this work was performed in support of the seismic analysis of the Hanford DSTs, the tank models in this study are for an idealized flat top configuration. Moreover, the liquid levels used in the present models are for study purposes only and are independent of the actual operating levels of the DSTs. The response parameters that are evaluated in this study are the total hydrodynamic reaction forces, the peak convective hydrodynamic forces, the fundamental convective frequencies, the liquid pressures, and peak slosh heights. The results show that the Dytran solutions agree well with the known solutions for the roofless tank and completely full tank. At the two intermediate liquid levels, there are some significant differences between the Dytran results and the approximate estimates. The results show that the estimates of peak hydrodynamic reaction forces appearing in BNL (1995) and Malhotra (2005) are reasonable and generally conservative relative to the Dytran solutions. At the 460 and 480 in. liquid levels, Dytran underestimates the convective component of the reaction force compared to the estimated in BNL (1995) and Malhotra (2005), but the convective component of the reaction force is small relative to the total reaction force. At the 490 in. liquid levels, the peak convective reaction force is more than twice as large as predicted by the approximate methods in BNL (1995) and Malhotra (2005). All three methods give similar answers for the fundamental convective frequency at the 460 and 480 in. liquid levels, but the Dytran solution indicates a significant increase in the apparent convective frequency at the 490 in. liquid level that is caused by the interaction with the roof. The peak wall pressures in the tank at the two intermediate liquid levels are essentially the same as for a roofless tank in the lower two-thirds of the tank wall, but diverge from that solution in the upper third of the tank wall. The estimates of peak wall pressures appearing in BNL (1995) are quite conservative lower in the tank, but may underestimate the peak wall pressures closer to the tank roof. Finally, the peak roof pre

  12. Fluid management plan for the Project Shoal Area Offsites Subproject

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject`s Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria.

  13. Development of an analytical model for organic-fluid fouling

    SciTech Connect (OSTI)

    Panchal, C.B.; Watkinson, A.P.

    1994-10-01T23:59:59.000Z

    The research goal of this project is to determine ways to effectively mitigate fouling in organic fluids: hydrocarbons and derived fluids. The fouling research focuses on the development of methodology for determining threshold conditions for fouling. Initially, fluid containing chemicals known to produce foulant is analyzed; subsequently, fouling of industrial fluids is investigated. The fouling model developed for determining the effects of physical parameters is the subject of this report. The fouling model is developed on the premise that the chemical reaction for generation of precursor can take place in the bulk fluid, in the thermal-boundary layer, or at the fluid/wall interface, depending upon the interactive effects of fluid dynamics, heat and mass transfer, and the controlling chemical reaction. In the analysis, the experimental data are examined for fouling deposition of polyperoxide produced by autoxidation of indene in kerosene. The effects of fluid and wall temperatures for two flow geometries are analyzed. The results show that the relative effects of physical parameters on the fouling rate differ for the three fouling mechanisms. Therefore, to apply the closed-flow-loop data to industrial conditions, the controlling mechanism must be identified.

  14. Self-similar Breakup of Near-inviscid Fluids

    E-Print Network [OSTI]

    Castrejon-Pita, J.R.; Castrejon-Pita, A.A.; Hinch, E.J.; Lister, J.R.; Hutchings, I.M.

    2012-01-01T23:59:59.000Z

    Castrejon-Pita, J.R., Castrejon-Pita, A.A., Hinch, E.J., Lister, J.R., Hutchings, I.M., Physical Review (in press 2012) 'Self-similar Breakup of Near-inviscid Fluids' Self-similar Breakup of Near-inviscid Fluids J.R. Castrejon-Pita, A.A. Castrejo... 3 9EW, U.K. The final stages of pinchoff and breakup of dripping droplets of near-inviscid Newtonian fluids are studied experimentally for pure water and ethanol. High speed imaging and image analysis are used to determine the angle and the minimum...

  15. Classical analogous of quantum cosmological perfect fluid models

    E-Print Network [OSTI]

    Batista, A B; Gonalves, S V B; Tossa, J

    2001-01-01T23:59:59.000Z

    Quantization in the mini-superspace of a gravity system coupled to a perfect fluid, leads to a solvable model which implies singularity free solutions through the construction of a superposition of the wavefunctions. We show that such models are equivalent to a classical system where, besides the perfect fluid, a repulsive fluid with an equation of state $p_Q = \\rho_Q$ is present. This leads to speculate on the true nature of this quantization procedure. A perturbative analysis of the classical system reveals the condition for the stability of the classical system in terms of the existence of an anti-gravity phase.

  16. LUBRICANTS AND HYDRAULIC FLUIDS

    E-Print Network [OSTI]

    Engineer Manual Department

    Contents) Major General, USA Chief of Staff i Table of Contents Purpose ........................................................ 1-1 1-1 Applicability .................................................... 1-2 1-1 References ...................................................... 1-3 1-1 Distribution Statement ............................................. 1-4 1-1 Scope ......................................................... 1-5 1-2 Friction ........................................................ 2-1 2-1 Wear .......................................................... 2-2 2-4 Lubrication and Lubricants ......................................... 2-3 2-6 Hydrodynamic or Fluid Film Lubrication ............................... 2-4 2-6 Boundary Lubrication ............................................. 2-5 2-8 Extreme Pressure (EP) Lubrication ................................... 2-6 2-9 Elastohydrodynamic (EHD) Lubrication ................................ 2-7 2-9 Oil R

  17. Mixture of anisotropic fluids

    E-Print Network [OSTI]

    Wojciech Florkowski; Radoslaw Maj

    2013-09-11T23:59:59.000Z

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  18. Ultrasonic fluid quality sensor system

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2002-10-08T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  19. Ultrasonic Fluid Quality Sensor System

    DOE Patents [OSTI]

    Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

    2003-10-21T23:59:59.000Z

    A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

  20. Using the FLUENT computational fluid dynamics code to model the NACOK corrosion test

    E-Print Network [OSTI]

    Parks, Benjamin T

    2004-01-01T23:59:59.000Z

    As a part of advancing nuclear technology, computational fluid dynamics (CFD) analysis offers safer and lower-cost results relative to experimental work. Its use as a safety analysis tool is gaining much broader acceptance ...

  1. Lateral Stability Analysis of Hypersonic Vehicle under Pressure Fluctuation by Solving Mathieu Differential Equation

    E-Print Network [OSTI]

    Wei, Qingkai

    2012-01-01T23:59:59.000Z

    Two recent test failures of Hypersonic Technology Vehicle 2 impose a strike to the increasingly growing enthusiasm, not only on the United States side. It is important to find out the exact failure reason, otherwise a solution is impossible. In this Note, we propose a potential failure reason from the perspective of lateral stability analysis. We argue that the time variant pressure fluctuations, which are normally omitted in classical aircraft dynamics analysis, could not be neglected in dynamic analysis of hypersonic vehicles. To demonstrate the idea, a hypersonic model is imagined in this work and its aerodynamic parameters are estimated using fundamental fluid principles. Pressure fluctuations are thereafter estimated by an empirical formula. A lateral dynamic equation is set up, taking those time variant fluctuations into account. The resulted equation is a Mathieu differential equation. Numerical solutions of this equation show that the inclusion of fluctuation terms generates more complicated dynamics ...

  2. Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack WarriorInformationEnergyOpenLab

  3. Isotopic Analysis- Fluid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place: EdenOverview Jump to: navigation, search GEOTHERMAL

  4. Drag forces on inclusions in classical fields with dissipative dynamics

    E-Print Network [OSTI]

    Vincent Demery; D. S. Dean

    2010-04-01T23:59:59.000Z

    We study the drag force on uniformly moving inclusions which interact linearly with dynamical free field theories commonly used to study soft condensed matter systems. Drag forces are shown to be nonlinear functions of the inclusion velocity and depend strongly on the field dynamics. The general results obtained can be used to explain drag forces in Ising systems and also predict the existence of drag forces on proteins in membranes due to couplings to various physical parameters of the membrane such as composition, phase and height fluctuations.

  5. Spin and Madelung fluid

    E-Print Network [OSTI]

    G. Salesi

    2009-06-23T23:59:59.000Z

    Starting from the Pauli current we obtain the decomposition of the non-relativistic local velocity in two parts: one parallel and the other orthogonal to the momentum. The former is recognized to be the ``classical'' part, that is the velocity of the center-of-mass, and the latter the ``quantum'' one, that is the velocity of the motion in the center-of-mass frame (namely, the internal ``spin motion'' or {\\em Zitterbewegung}). Inserting the complete expression of the velocity into the kinetic energy term of the classical non-relativistic (i.e., Newtonian) Lagrangian, we straightforwardly derive the so-called ``quantum potential'' associated to the Madelung fluid. In such a way, the quantum mechanical behaviour of particles appears to be strictly correlated to the existence of spin and Zitterbewegung.

  6. BE436 FUNDAMENTALS OF FLUID MECHANICS (Spring 2014) Fluid mechanics is the study of how and why fluids move. The behavior of fluids plays a

    E-Print Network [OSTI]

    Vajda, Sandor

    BE436 FUNDAMENTALS OF FLUID MECHANICS (Spring 2014) Fluid mechanics is the study of how and why fluids move. The behavior of fluids plays a fundamental role in the function of living biological, and microfluidic devices. Course info: We will examine all of the usual topics in fluid mechanics. This course

  7. Fluid inflation with brane correction

    E-Print Network [OSTI]

    Ratbay Myrzakulov; Lorenzo Sebastiani

    2014-11-03T23:59:59.000Z

    In this paper, we have investigated the possibility to have inflation from inhomogeneous viscous fluids by taking into account the brane correction coming from string-inspired five dimensional Einsten's gravity. We have realized several kinds of viable solutions for early-time acceleration. At the end of inflation, the classical Einstein's gravity is recovered and fluids produce decelerated expansion.

  8. Fluid jet electric discharge source

    DOE Patents [OSTI]

    Bender, Howard A. (Ripon, CA)

    2006-04-25T23:59:59.000Z

    A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

  9. LECTURES IN ELEMENTARY FLUID DYNAMICS

    E-Print Network [OSTI]

    McDonough, James M.

    LECTURES IN ELEMENTARY FLUID DYNAMICS: Physics, Mathematics and Applications J. M. McDonough Departments of Mechanical Engineering and Mathematics University of Kentucky, Lexington, KY 40506-0503 c 1987, 1990, 2002, 2004, 2009 #12;Contents 1 Introduction 1 1.1 Importance of Fluids

  10. Swansea Academy of Inclusivity and Learner Support (SAILS)

    E-Print Network [OSTI]

    Martin, Ralph R.

    Swansea Academy of Inclusivity and Learner Support (SAILS) Contact the College of Science for more information www.swansea.ac.uk/science The College of Science brings together Bioscience, Computer Science - for example, in our new Foundation programme. Widening Access in Science Science at Swansea has always been

  11. Towards a more inclusive and precautionary indicator of global sustainability

    E-Print Network [OSTI]

    Pezzey, Jack

    an environmentally pessimistic, physical constraint on global warming. Our methodology extends the World Bank growth; technical progress #12;2 1. Introduction Are current levels of global human well1 Towards a more inclusive and precautionary indicator of global sustainability John C.V. Pezzeya

  12. Report of the Task Force on Faculty Diversity and Inclusiveness

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    faculty search committees or to inform search committees themselves on best practices for increasing care demands affect tenure track faculty in unique ways; and many of our peer institutions a more diverse and inclusive institution. In response, the Task Force proposes 31 recommendations

  13. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Murata, Tomoya

    2015-01-01T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  14. Extraction of Neutrino Flux from the Inclusive Muon Cross Section

    E-Print Network [OSTI]

    Tomoya Murata; Toru Sato

    2015-01-23T23:59:59.000Z

    We have studied a method to extract neutrino flux from the data of neutrino-nucleus reaction by using maximum entropy method. We demonstrate a promising example to extract neutrino flux from the inclusive cross section of muon production without selecting a particular reaction process such as quasi-elastic nucleon knockout.

  15. Inserting Group Variables into Fluid Mechanics

    E-Print Network [OSTI]

    R. Jackiw

    2004-10-28T23:59:59.000Z

    A fluid, like a quark-gluon plasma, may possess degrees of freedom indexed by a group variable, which retains its identity even in the fluid/continuum description. Conventional Eulerian fluid mechanics is extended to encompass this possibility.

  16. Finite element simulation of electrorheological fluids

    E-Print Network [OSTI]

    Rhyou, Chanryeol, 1973-

    2005-01-01T23:59:59.000Z

    Electrorheological (ER) fluids change their flow properties dramatically when an electric field is applied. These fluids are usually composed of dispersions of polarizable particles in an insulating base fluid or composed ...

  17. Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

    SciTech Connect (OSTI)

    Chatrchyan, Serguei; et al.

    2012-04-01T23:59:59.000Z

    The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 < pT < 200 GeV for several rapidity intervals. The results are also given as the ratio of the b-jet production cross section to the inclusive jet production cross section. The measurement is performed with two different analyses, which differ in their trigger selection and b-jet identification: a jet analysis that selects events with a b jet using a sample corresponding to an integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

  18. Studying possible higher twist contributions in the inclusive charged hadron cross sections

    E-Print Network [OSTI]

    Esko Pohjoisaho

    2014-07-15T23:59:59.000Z

    In the standard pQCD picture particles are produced via the parton jet fragmentation process. However, there are also other production mechanisms like higher twist (HT) processes. A usual example of a HT process is a direct production of an outgoing hadron, where the hadron is produced in the hard subprocess without fragmentation. We study the HT phenomena using a shape analysis (xT scaling) of the inclusive invariant cross sections of charged hadrons, measured by the ALICE collaboration at center-of-mass energies \\sqrt{s}=2.76 TeV and 7 TeV. The data is compared to PYTHIA8 event generator and to a phenomenological model for HT. Using PYTHIA8, we explore a possible enhancement of HT phenomena for isolated particles, by comparing the shapes of the isolated distributions to inclusive distributions. The results from the standard PYTHIA8, without HT, is compared to a PYTHIA8 where we had included a HT process. Finally, we found out that the effects observed in the xT spectra originate from kinematic biases posed by the isolation cuts, rather than from an enrichment of the HT hadrons at the observed cross sections. A more detailed data analysis is ongoing.

  19. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, M.D.; Sweeney, C.E.; Spangler, B.S. Jr.

    1993-11-30T23:59:59.000Z

    A flow meter and temperature measuring device are described comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips. 7 figures.

  20. Fluid flow monitoring device

    DOE Patents [OSTI]

    McKay, Mark D. (1426 Socastee Dr., North Augusta, SC 29841); Sweeney, Chad E. (3600 Westhampton Dr., Martinez, GA 30907-3036); Spangler, Jr., B. Samuel (2715 Margate Dr., Augusta, GA 30909)

    1993-01-01T23:59:59.000Z

    A flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

  1. Computational fluid dynamic applications

    SciTech Connect (OSTI)

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03T23:59:59.000Z

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  2. Fluid sampling system

    DOE Patents [OSTI]

    Houck, E.D.

    1994-10-11T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

  3. Fluid sampling system

    DOE Patents [OSTI]

    Houck, Edward D. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

  4. Violation of Bell's inequality in fluid mechanics

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2013-05-28T23:59:59.000Z

    We show that a classical fluid mechanical system can violate Bell's inequality because the fluid motion is correlated over large distances.

  5. Variable flexure-based fluid filter

    DOE Patents [OSTI]

    Brown, Steve B.; Colston Jr., Billy W.; Marshall, Graham; Wolcott, Duane

    2007-03-13T23:59:59.000Z

    An apparatus and method for filtering particles from a fluid comprises a fluid inlet, a fluid outlet, a variable size passage between the fluid inlet and the fluid outlet, and means for adjusting the size of the variable size passage for filtering the particles from the fluid. An inlet fluid flow stream is introduced to a fixture with a variable size passage. The size of the variable size passage is set so that the fluid passes through the variable size passage but the particles do not pass through the variable size passage.

  6. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, M.D.; Sagan, F.J.; Burkhardt, M.R.

    1993-12-21T23:59:59.000Z

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid. 7 figures.

  7. Calibration method and apparatus for measuring the concentration of components in a fluid

    DOE Patents [OSTI]

    Durham, Michael D. (Castle Rock, CO); Sagan, Francis J. (Lakewood, CO); Burkhardt, Mark R. (Denver, CO)

    1993-01-01T23:59:59.000Z

    A calibration method and apparatus for use in measuring the concentrations of components of a fluid is provided. The measurements are determined from the intensity of radiation over a selected range of radiation wavelengths using peak-to-trough calculations. The peak-to-trough calculations are simplified by compensating for radiation absorption by the apparatus. The invention also allows absorption characteristics of an interfering fluid component to be accurately determined and negated thereby facilitating analysis of the fluid.

  8. Three-Dimensional Computational Fluid Dynamics

    SciTech Connect (OSTI)

    Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.

    1998-09-01T23:59:59.000Z

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  9. Drilling fluids and reserve pit toxicity

    SciTech Connect (OSTI)

    Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

    1988-11-01T23:59:59.000Z

    Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

  10. Insertable fluid flow passage bridgepiece and method

    DOE Patents [OSTI]

    Jones, Daniel O. (Glenville, NV)

    2000-01-01T23:59:59.000Z

    A fluid flow passage bridgepiece for insertion into an open-face fluid flow channel of a fluid flow plate is provided. The bridgepiece provides a sealed passage from a columnar fluid flow manifold to the flow channel, thereby preventing undesirable leakage into and out of the columnar fluid flow manifold. When deployed in the various fluid flow plates that are used in a Proton Exchange Membrane (PEM) fuel cell, bridgepieces of this invention prevent mixing of reactant gases, leakage of coolant or humidification water, and occlusion of the fluid flow channel by gasket material. The invention also provides a fluid flow plate assembly including an insertable bridgepiece, a fluid flow plate adapted for use with an insertable bridgepiece, and a method of manufacturing a fluid flow plate with an insertable fluid flow passage bridgepiece.

  11. The Quantum Theory of Fluids

    E-Print Network [OSTI]

    Ben Gripaios; Dave Sutherland

    2014-06-24T23:59:59.000Z

    The quantum theory of fields is largely based on studying perturbations around non-interacting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is `freer', in the sense that the non-interacting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree- and loop-level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behaviour is radically different to both classical fluids and quantum fields, with interesting physical consequences for fluids in the low temperature regime.

  12. Fluid Mixing from Viscous Fingering

    E-Print Network [OSTI]

    Jha, Birendra

    Mixing efficiency at low Reynolds numbers can be enhanced by exploiting hydrodynamic instabilities that induce heterogeneity and disorder in the flow. The unstable displacement of fluids with different viscosities, or ...

  13. Bio-inspired fluid locomotion

    E-Print Network [OSTI]

    Chan, Brian, 1980-

    2009-01-01T23:59:59.000Z

    We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

  14. Correlation of characteristics for steel containing nonmetallic inclusions

    SciTech Connect (OSTI)

    Shtremel', M.A.; Fadeev, Yu.I.; Maksimova, O.V.; Chernukha, L.G.; Anisimova, N.I.

    1988-01-01T23:59:59.000Z

    The quality of steel is largely determined by nonmetallic inclusions (NI). Improvement of quantitative methods of testing for NI is part of quality evaluation. Metallographic methods of visual evaluation in accordance with GOST 1778-70 are very laborious and are thus being replaced by automatic ones based on computerized image processors (CIP) such as instruments of the Quantimet type and by methods of isolating and analyzing NI. The authors have examined the relationship between counting fields containing NI (method Sh8 in accordance with GOST 1778-70), measurements with the Quantimet-360 and Quantimet-720 CIP, as well as the determination of the concentrations of electrically isolated oxide inclusions. The authors examined hot-rolled 38KhN3MFA steel from seven commercial batches.

  15. Image texture analysis of elastograms

    E-Print Network [OSTI]

    Hussain, Fasahat

    1999-01-01T23:59:59.000Z

    generated elastograms to obtain effective texture features. Four image analysis techniques, co-occurrence statistics, wavelet decomposition, fractal analysis and granulomeay are used to extract a number of features from each image. The inclusions...-RESOLUTION FRACTAL ANALYSIS . . . . . . E. GRANULOMETRIC FEATURES . . F. DATA NORMALIZATION . G. SEPARABILITY MEASURE 13 13 . . . . . 14 . . . . . 20 . . . . . 29 33 36 36 IV TEXTURE ANALYSIS OF SIMULATED ELASTOGRAMS. . . . . . . . . . . 38 A. SIMULATION...

  16. A_N in inclusive lepton-proton collisions

    SciTech Connect (OSTI)

    Prokudin, Alexey; Anselmino, Mauro; Boglione, Mariaelena; D'Alesio, Umberto; Melis, Stefano; Murgia, Francesco

    2014-11-01T23:59:59.000Z

    Some estimates for the transverse single spin asymmetry, A_N, in the inclusive processes l p(transv. Pol.) -> h X are compared with new experimental data. The calculations are based on the Sivers and Collins functions as extracted from SIDIS azimuthal asymmetries, within a transverse momentum dependent factorization approach. The values of A_N thus obtained agree in sign and shape with the data. Predictions for future experiments are also given.

  17. QCD Jet Rates with the Inclusive Generalized kt Algorithms

    E-Print Network [OSTI]

    Erik Gerwick; Ben Gripaios; Steffen Schumann; Bryan Webber

    2013-04-15T23:59:59.000Z

    We derive generating functions, valid to next-to-double logarithmic accuracy, for QCD jet rates according to the inclusive forms of the kt, Cambridge/Aachen and anti-kt algorithms, which are equivalent at this level of accuracy. We compare the analytical results with jet rates and average jet multiplicities from the SHERPA event generator, and study the transition between Poisson-like and staircase-like behaviour of jet ratios.

  18. Inclusive Electron Scattering from Nuclei at $x \\simeq 1$

    E-Print Network [OSTI]

    J. Arrington; P. Anthony; R. G. Arnold; E. J. Beise; J. E. Belz; P. E. Bosted; H. -J. Bulten; M. S. Chapman; K. P. Coulter; F. Dietrich; R. Ent; M. Epstein; B. W. Filippone; H. Gao; R. A. Gearhart; D. F. Geesaman; J. -O. Hansen; R. J. Holt; H. E. Jackson; C. E. Jones; C. E. Keppel; E. R. Kinney; S. Kuhn; K. Lee; W. Lorenzon; A. Lung; N. C. R. Makins; D. J. Margaziotis; R. D. McKeown; R. G. Milner; B. Mueller; J. Napolitano; J. Nelson; T. G. O'Neill; V. Papavassiliou; G. G. Petratos; D. H. Potterveld; S. E. Rock; M. Spengos; Z. M. Szalata; L. H. Tao; K. vanBibber; J. F. J. van den Brand; J. L. White; D. Winter; B. Zeidman

    1995-04-25T23:59:59.000Z

    The inclusive A(e,e') cross section for $x \\simeq 1$ was measured on $^2$H, C, Fe, and Au for momentum transfers $Q^2$ from 1-7 (GeV/c)$^2$. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit $\\xi$-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.

  19. Inclusive electron scattering from nuclei at x $\\appprox$ 1

    E-Print Network [OSTI]

    Arrington, J; Arnold, R G; Beise, E J; Belz, J E; Bosted, P E; Bulten, H J; Chapman, M S; Coulter, K P; Dietrich, F S; Ent, R; Epstein, M B; Filippone, B W; Gao, H; Gearhart, R A; Geesaman, D F; Hansen, J O; Holt, R J; Jackson, H E; Jones, C E; Keppel, C E; Kinney, E R; Kuhn, S E; Lee, K; Lorenzon, W; Lung, A; Makins, N C R; Margaziotis, D J; McKeown, R D; Milner, R G; Mller, B; Napolitano, J; Nelson, J; O'Neill, T G; Papavassiliou, V; Petratos, G G; Potterveld, D H; Rock, S E; Spengos, M; Szalata, Z M; Tao, L H; Van den Brand, J F J; White, J L; Winter, D; Zeidman, B; Arrington, J; Beise, E J; Belz, J E; Bosted, P E; Bulten, H J; Chapman, M S; Coulter, K P; Dietrich, F; Ent, R; Epstein, M; Filippone, B W; Gao, H; Gearhart, R A; Geesaman, D F; Hansen, J O; Holt, R J; Jackson, H E; Jones, C E; Keppel, C E; Kinney, E R; Kuhn, S; Lee, K; Lorenzon, W; Lung, A; Makins, N C R; Margaziotis, D J; McKeown, R D; Milner, R G; Mueller, B; Napolitano, J; Nelson, J; O'Neill, T G; Papavassiliou, V; Petratos, G G; Potterveld, D H; Rock, S E; Spengos, M; Szalata, Z M; Tao, L H; van den Brand, J F J; White, J L; Winter, D; Zeidman, B

    1995-01-01T23:59:59.000Z

    The inclusive A(e,e') cross section for x \\simeq 1 was measured on ^2H, C, Fe, and Au for momentum transfers Q^2 from 1-7 (GeV/c)^2. The scaling behavior of the data was examined in the region of transition from y-scaling to x-scaling. Throughout this transitional region, the data exhibit \\xi-scaling, reminiscent of the Bloom-Gilman duality seen in free nucleon scattering.

  20. Micro-macro models for viscoelastic fluids: modelling, mathematics and numerics

    E-Print Network [OSTI]

    C. Le Bris; T. Lelivre

    2011-02-01T23:59:59.000Z

    This paper is an introduction to the modelling of viscoelastic fluids, with an emphasis on micro-macro (or multiscale) models. Some elements of mathematical and numerical analysis are provided. These notes closely follow the lectures delivered by the second author at the Chinese Academy of Science during the Workshop "Stress Tensor Effects on Fluid Mechanics", in January 2010.

  1. Averaging out Inhomogeneous Newtonian Cosmologies: I. Fluid Mechanics and the Navier-Stokes Equation

    E-Print Network [OSTI]

    Roustam Zalaletdinov

    2002-12-18T23:59:59.000Z

    The basic concepts and equations of classical fluid mechanics are presented in the form necessary for the formulation of Newtonian cosmology and for derivation and analysis of a system of the averaged Navier-Stokes-Poisson equations. A special attention is paid to the analytic formulation of the definitions and equations of moving fluids and to their physical content.

  2. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

    1999-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  3. FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND

    E-Print Network [OSTI]

    Boyland, Philip

    FLUID MECHANICS AND MATHEMATICAL STRUCTURES PHILIP BOYLAND Department of Mathematics University in the most basic models of fluid motion. 1. Introduction Fluid mechanics is the source of many of the ideas, Lagrange, . . .. Mathematicians have abstracted and vastly generalized ba- sic fluid mechanical concepts

  4. Mechanical Engineering ME 3720 FLUID MECHANICS

    E-Print Network [OSTI]

    Panchagnula, Mahesh

    Mechanical Engineering ME 3720 FLUID MECHANICS Pre-requisite: ME 2330 Co-requisite: ME 3210) to develop an understanding of the physical mechanisms and the mathematical models of fluid mechanics of fluid mechanics problems in engineering practice. The basic principles of fluid mechanics

  5. Pitch-catch only ultrasonic fluid densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Harris, R.V.

    1999-03-23T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  6. Fluid Mechanics IB Lecturer: Dr Natalia Berloff

    E-Print Network [OSTI]

    -efficient aircraft design, hydroelectric power, chemical processing, jet-driven cutting tools · our fluid environment

  7. Transparent fluids for 157-nm immersion lithography

    E-Print Network [OSTI]

    Rollins, Andrew M.

    - gineers. [DOI: 10.1117/1.1637366] Subject terms: 157-nm lithography; immersion fluid; perfluoropolyether

  8. Purification of inclusion bodies and refolding of proteins Basic StrongLab protocol, based on a recipe concocted by Pingwei Li, (cite, if used: Steinle, A.,

    E-Print Network [OSTI]

    Strong, Roland K.

    DI, et al. (1998) 'Production, crystallization, and preliminary x-ray analysis of the human MHC class. Centrifuge to collect inclusion bodies (for example, 6000 rpm for 15 minutes). Crush the pellet and lysozyme can be added at this point to improve the purity of the pellet. e. Repeat step d two more times

  9. Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed

    SciTech Connect (OSTI)

    Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education

    2008-05-15T23:59:59.000Z

    Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.

  10. Condensation in Totally Asymmetric Inclusion Process Joint work with Paul Chleboun and Stefan Grosskinsky

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    Condensation in Totally Asymmetric Inclusion Process Jiarui Cao Joint work with Paul Chleboun and Stefan Grosskinsky January 10, 2013 Jiarui Cao Condensation in Totally Asymmetric Inclusion Process #12;Outline 1. Totally Asymmetric Inclusion Process (TASIP) 2. Condensation in TASIP Model 3. Dynamics

  11. FLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS

    E-Print Network [OSTI]

    Sen, Mihir

    = heat, f = LO-mode, g = LO, h = LA-mode, i = negligible, j = remote heat sink 7/ 70 #12;Heat conductionFLUID MECHANICS AND HEAT TRANSFER OF ELECTRON FLOW IN SEMICONDUCTORS Mihir Sen Department · Shallow water analogy · Vorticity dynamics · Linear stability analysis · Numerical simulations of heat

  12. PII S0016-7037(98)00266-X Evidence of fluid inclusions in metamorphic microdiamonds from the Kokchetav massif,

    E-Print Network [OSTI]

    Cartigny, Pierre

    the Kokchetav massif, northern Kazakhstan K. DE CORTE,*1,2 P. CARTIGNY,3 V. S. SHATSKY,4 N. V. SOBOLEV,4 and M) Abstract--Microdiamonds from garnet clinopyroxenites of the Kokchetav massif (northern Kazakhstan in ultra-high pressure metamorphic (UHPM) rocks from the Kokchetav massif, northern Kazakhstan (Sobolev

  13. Geothermal fluid genesis in the Great Basin

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.K.

    1990-01-01T23:59:59.000Z

    Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

  14. Elevated thermal maturation in Pennsylvanian rocks, Cherokee basin, southeastern Kansas: Importance of regional fluid flow

    SciTech Connect (OSTI)

    Wojcik, K.M.; Goldstein, R.H.; Walton, A.W. (Univ. of Kansas, Lawrence (United States)); Barker, C.E. (Geological Survey, Denver, CO (United States))

    1991-03-01T23:59:59.000Z

    Thermal history of sedimentary basins is commonly assumed to be dominated by burial heating. Marked contrast between reconstructed burial temperatures and other temperature determinations would suggest alternative processes. In the Cherokee basin of southeastern Kansas, reconstruction of burial and thermal history indicates that basal Pennsylvanian strata were not buried more than 1.8 km, and should have reached only about 90C. However, the study of Pennsylvanian rocks of the Cherokee basin indicates that higher temperatures were reached and that the pattern of thermal maturation is inconsistent with simple burial heating. Regional pattern of vitrinite reflectance reveals several warm spots' where thermal maturation is elevated above the regional background. Primary fluid inclusions in late Ca-Mg-Fe carbonate cements yield homogenization-temperature modes or petrographically consistent populations ranging from 100 to 150C. These data suggest that the samples experienced at least those temperatures, hence fluid inclusions closely agree with vitrinite and Rock-Eval. Elevated temperatures, warm spots, confined thermal spikes, a low R{sub m} gradient argue against simple burial heating. These observations are consistent with regional invasion of warm fluids, probably from the Ouachita-Arkoma system, and their subsequent upward migration into Pennsylvanian strata through faults and fractures. Petroleum exploration should consider the possibility of regionally elevated thermal maturation levels with even more elevated local maxima. Consequences may include local generation of hydrocarbons or local changes in diagenetic patterns.

  15. Extraction and analysis of pollutant organics from contaminated solids using off-line supercritical fluid extraction (SFE) and on-line SFE-infrared spectroscopy. Task 2. Semiannual report, November 1995--March 1996

    SciTech Connect (OSTI)

    Hawthorne, S.B.

    1996-04-01T23:59:59.000Z

    This document describes activities in the following tasks associated with a project on environmental management technology decontamination and commercialization: A commercialized version of a field-portable instrument for performing supercritical fluid extraction (SFE) with on-line Fourier transform infrared (FT-IR) detection;pyrolysis of plastic wastes associated with mixtures of radioactive wastes;management and reporting activities; centrifugal membrane filtration with application to tank waste remediation; technology development integration activities associated with remedial action and waste management.

  16. STUDY OF WORKING FLUID MIXTURES AND HIGH TEMPERATURE WORKING FLUIDS FOR COMPRESSOR DRIVEN SYSTEMS

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    FILE COPY DO NOT REWMOVE STUDY OF WORKING FLUID MIXTURES AND HIGH TEMPERATURE WORKING FLUIDS is the Step 2 product of the project "Study of working fluid mixtures and high temperature working fluids-ECONOMICAL EVALUATIONS ON COMPRESSION HEAT PUMPS WORKING WITH NONAZEOTROPIC MIXTURES OF FLUIDS 79 6.1 Introduction 79 6

  17. The nature of the phase transition in dipolar fluids

    E-Print Network [OSTI]

    J. M. Tavares; J. J. Weis; M. M. Telo da Gama

    2005-05-02T23:59:59.000Z

    Monte Carlo computer simulations of a quasi two dimensional (2D) dipolar fluid at low and intermediate densities indicate that the structure of the fluid is well described by an ideal mixture of self-assembling clusters. A detailed analysis of the topology of the clusters, of their internal energy and of their size (or mass) distributions further suggests that the system undergoes a phase transition from a dilute phase characterized by a number of disconnected clusters to a condensed phase characterized by a network or spanning (macroscopic) cluster that includes most of the particles in the system.

  18. Maxwell's fluid model of magnetism

    E-Print Network [OSTI]

    Robert Brady; Ross Anderson

    2015-02-20T23:59:59.000Z

    In 1861, Maxwell derived two of his equations of electromagnetism by modelling a magnetic line of force as a `molecular vortex' in a fluid-like medium. Later, in 1980, Berry and colleagues conducted experiments on a `phase vortex', a wave geometry in a fluid which is analogous to a magnetic line of force and also exhibits behaviour corresponding to the quantisation of magnetic flux. Here we unify these approaches by writing down a solution to the equations of motion for a compressible fluid which behaves in the same way as a magnetic line of force. We then revisit Maxwell's historical inspiration, namely Faraday's 1846 model of light as disturbances in lines of force. Using our unified model, we show that such disturbances resemble photons: they are polarised, absorbed discretely, obey Maxwell's full equations of electromagnetism to first order, and quantitatively reproduce the correlation that is observed in the Bell tests.

  19. Investigation into the discrepancies between computational fluid dynamics lift predictions and experimental results

    E-Print Network [OSTI]

    Fairman, Randall S. (Randall Scott), 1967-

    2002-01-01T23:59:59.000Z

    An analysis of current computational fluid dynamics capabilities in predicting mean lift forces for two dimensional foils is conducted. It is shown that both integral boundary layer theory and Reynolds Averaged Navier ...

  20. Numerical and analytical modeling of heat transfer between fluid and fractured rocks

    E-Print Network [OSTI]

    Li, Wei, S.M. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Modeling of heat transfer between fluid and fractured rocks is of particular importance for energy extraction analysis in EGS, and therefore represents a critical component of EGS design and performance evaluation. In ...

  1. Holographic plasma and anyonic fluids

    E-Print Network [OSTI]

    Daniel K. Brattan; Gilad Lifschytz

    2013-10-20T23:59:59.000Z

    We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

  2. Viscosity of a nucleonic fluid

    E-Print Network [OSTI]

    Aram Z. Mekjian

    2012-03-21T23:59:59.000Z

    The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.

  3. Non-Newtonian fluid flow

    E-Print Network [OSTI]

    Osinski, Charles Anthony

    1963-01-01T23:59:59.000Z

    zero and unity. The Ostwald- de Waele Equation (4), commonly known as the power law, is sometimes used to describe fluid behavior of this type. The rheological equation is (4) where the parameters "k" and "n" are constant for a particular fluid... be extended to include Reynolds numbers and the type of flow determined to be laminar and/or turbulent. It is assumed that the transition from laminar to turbulent flow occurs at a Reynolds number of 2100, the numeric distribution of Reynolds numbers...

  4. Nonlinear waves in strongly interacting relativistic fluids

    E-Print Network [OSTI]

    D. A. Fogaa; F. S. Navarra; L. G. Ferreira Filho

    2012-12-31T23:59:59.000Z

    During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are obtained from different equations of state (EOS). In nuclear matter, the Walecka EOS may lead to a KdV equation. We explore equations of state such as those extracted from the MIT Bag Model and from QCD in the mean field theory approach. Some of these equations are integrable and have analytical solitonic solutions. We derive these equations also in spherical and cylindrical coordinates. We extend the analysis to two and three dimensions to obtain the Kadomtsev-Petviashvili (KP) equation, which is the generalization of the KdV. The KP is also integrable and presents analytical solitonic solutions. In viscous relativistic hydrodynamics we have second order patial derivatives which physically represent dissipation terms. We present numerical solutions and their corresponding algorithms for the cases where the equations are not integrable.

  5. Inclusive b-jet production in pp collisions at sqrt(s)=7 TeV

    E-Print Network [OSTI]

    CMS Collaboration

    2014-07-27T23:59:59.000Z

    The inclusive b-jet production cross section in pp collisions at a center-of-mass energy of 7 TeV is measured using data collected by the CMS experiment at the LHC. The cross section is presented as a function of the jet transverse momentum in the range 18 integrated luminosity of 34 inverse picobarns, and a muon analysis requiring a b jet with a muon based on an integrated luminosity of 3 inverse picobarns. In both approaches the b jets are identified by requiring a secondary vertex. The results from the two methods are in agreement with each other and with next-to-leading order calculations, as well as with predictions based on the PYTHIA event generator.

  6. A Precision Measurement of the Inclusive ep Scattering Cross Section at HERA

    E-Print Network [OSTI]

    Aaron, F D; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, S; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jemanov, V; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Korbel, V; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U.; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naroska, B; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Sheviakov, I; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U.; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wallny, R; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R; 10.1140/epjc/s10052-009-1169-x

    2009-01-01T23:59:59.000Z

    A measurement of the inclusive deep-inelastic neutral current e+p scattering cross section is reported in the region of four-momentum transfer squared, 12<=Q^2<=150 GeV^2, and Bjorken x, 2x10^-4<=x<=0.1. The results are based on data collected by the H1 Collaboration at the ep collider HERA at positron and proton beam energies of E_e=27.6 GeV and E_p=920 GeV, respectively. The data are combined with previously published data, taken at E_p=820 GeV. The accuracy of the combined measurement is typically in the range of 1.3-2%. A QCD analysis at next-to-leading order is performed to determine the parton distributions in the proton based on H1 data.

  7. Radiation induces turbulence in particle-laden fluids

    SciTech Connect (OSTI)

    Zamansky, Rmi [Centre for Turbulence Research, Stanford University, Stanford, California 94305-3035 (United States); Coletti, Filippo [Mechanical Engineering, Stanford University, California 94305-3035 (United States); Massot, Marc [Centre for Turbulence Research, Stanford University, Stanford, California 94305-3035 (United States); Ecole Centrale Paris, Laboratoire EM2C - UPR CNRS 288 et Fdration de Mathmatiques - FR CNRS 3487, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Mani, Ali [Centre for Turbulence Research, Stanford University, Stanford, California 94305-3035 (United States); Mechanical Engineering, Stanford University, California 94305-3035 (United States)

    2014-07-15T23:59:59.000Z

    When a transparent fluid laden with solid particles is subject to radiative heating, non-uniformities in particle distribution result in local fluid temperature fluctuations. Under the influence of gravity, buoyancy induces vortical fluid motion which can lead to strong preferential concentration, enhancing the local heating and more non-uniformities in particle distribution. By employing direct numerical simulations this study shows that the described feedback loop can create and sustain turbulence. The velocity and length scale of the resulting turbulence is not known a priori, and is set by balance between viscous forces and buoyancy effects. When the particle response time is comparable to a viscous time scale, introduced in our analysis, the system exhibits intense fluctuations of turbulent kinetic energy and strong preferential concentration of particles.

  8. Single-spin asymmetries in semi-inclusive pion production

    E-Print Network [OSTI]

    U. Elschenbroich; for the HERMES Collaboration

    2005-04-14T23:59:59.000Z

    For the first time single-spin asymmetries in semi-inclusive pion production are measured by the HERMES experiment with a transversely polarised hydrogen target. Two different sine-modulations are extracted which can be related to the transversity \\delta q(x) and Sivers f_{1T}^{\\perp q}(x) quark distribution functions. The extracted sine-moments still contain small sub-leading twist contributions which can be extracted from HERMES data combining the results from the transversely polarised hydrogen target with previously measured results from a longitudinally polarised hydrogen target.

  9. Measurement of the inclusive semielectronic D(0) branching fraction

    E-Print Network [OSTI]

    Baringer, Philip S.

    1996-09-01T23:59:59.000Z

    Farlane, P. M. Patel, and B. Spaan McGill University and the Institute of Particle Physics, Montreal, Quebec H3A 2T8, Canada A. J. Sadoff Ithaca College, Ithaca, New York 14850 R. Ammar, P. Baringer, A. Bean, D. Besson, D. Coppage, N. Copty, R. Davis, N...PHYSICAL REVIEW D 1 SEPTEMBER 1996VOLUME 54, NUMBER 5ARTICLES Measurement of the inclusive semielectronic D0 branching fraction Y. Kubota, M. Lattery, J. K. Nelson, S. Patton, R. Poling, T. Riehle, V. Savinov, and R. Wang University of Minnesota...

  10. Inclusive-jet photoproduction at HERA and determination of alphas

    E-Print Network [OSTI]

    ZEUS Collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; P. Antonioli; A. Antonov; M. Arneodo; V. Aushev; Y. Aushev; O. Bachynska; A. Bamberger; A. N. Barakbaev; G. Barbagli; G. Bari; F. Barreiro; N. Bartosik; D. Bartsch; M. Basile; O. Behnke; J. Behr; U. Behrens; L. Bellagamba; A. Bertolin; S. Bhadra; M. Bindi; C. Blohm; V. Bokhonov; T. Bold; K. Bondarenko; E. G. Boos; K. Borras; D. Boscherini; D. Bot; I. Brock; E. Brownson; R. Brugnera; N. Brummer; A. Bruni; G. Bruni; B. Brzozowska; P. J. Bussey; B. Bylsma; A. Caldwell; M. Capua; R. Carlin; C. D. Catterall; S. Chekanov; J. Chwastowski; J. Ciborowski; R. Ciesielski; L. Cifarelli; F. Cindolo; A. Contin; A. M. Cooper-Sarkar; N. Coppola; M. Corradi; F. Corriveau; M. Costa; G. D'Agostini; F. Dal Corso; J. del Peso; R. K. Dementiev; S. De Pasquale; M. Derrick; R. C. E. Devenish; D. Dobur; B. A. Dolgoshein; G. Dolinska; A. T. Doyle; V. Drugakov; L. S. Durkin; S. Dusini; Y. Eisenberg; P. F. Ermolov; A. Eskreys; S. Fang; S. Fazio; J. Ferrando; M. I. Ferrero; J. Figiel; M. Forrest; B. Foster; G. Gach; A. Galas; E. Gallo; A. Garfagnini; A. Geiser; I. Gialas; A. Gizhko; L. K. Gladilin; D. Gladkov; C. Glasman; O. Gogota; Yu. A. Golubkov; P. Gottlicher; I. Grabowska-Bold; J. Grebenyuk; I. Gregor; G. Grigorescu; G. Grzelak; O. Gueta; M. Guzik; C. Gwenlan; T. Haas; W. Hain; R. Hamatsu; J. C. Hart; H. Hartmann; G. Hartner; E. Hilger; D. Hochman; R. Hori; K. Horton; A. Huttmann; Z. A. Ibrahim; Y. Iga; R. Ingbir; M. Ishitsuka; H. -P. Jakob; F. Januschek; T. W. Jones; M. Jungst; I. Kadenko; B. Kahle; S. Kananov; T. Kanno; U. Karshon; F. Karstens; I. I. Katkov; M. Kaur; P. Kaur; A. Keramidas; L. A. Khein; J. Y. Kim; D. Kisielewska; S. Kitamura; R. Klanner; U. Klein; E. Koffeman; N. Kondrashova; O. Kononeko; P. Kooijman; Ie. Korol; I. A. Korzhavina; A. Kotanski; U. Kotz; H. Kowalski; O. Kuprash; M. Kuze; A. Lee; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; T. Y. Ling; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Lohr; E. Lohrmann; K. R. Long; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; S. Magill; I. Makarenko; J. Malka; R. Mankel; A. Margotti; G. Marini; J. F. Martin; A. Mastroberardino; M. C. K. Mattingly; I. -A. Melzer-Pellmann; S. Mergelmeyer; S. Miglioranzi; F. Mohamad Idris; V. Monaco; A. Montanari; J. D. Morris; K. Mujkic; B. Musgrave; K. Nagano; T. Namsoo; R. Nania; A. Nigro; Y. Ning; T. Nobe; U. Noor; D. Notz; R. J. Nowak; A. E. Nuncio-Quiroz; B. Y. Oh; N. Okazaki; K. Oliver; K. Olkiewicz; Yu. Onishchuk; K. Papageorgiu; A. Parenti; E. Paul; J. M. Pawlak; B. Pawlik; P. G. Pelfer; A. Pellegrino; W. Perlanski; H. Perrey; K. Piotrzkowski; P. Plucinski; N. S. Pokrovskiy; A. Polini; A. S. Proskuryakov; M. Przybycien; A. Raval; D. D. Reeder; B. Reisert; Z. Ren; J. Repond; Y. D. Ri; A. Robertson; P. Roloff; I. Rubinsky; M. Ruspa; R. Sacchi; U. Samson; G. Sartorelli; A. A. Savin; D. H. Saxon; M. Schioppa; S. Schlenstedt; P. Schleper; W. B. Schmidke; U. Schneekloth; V. Schonberg; T. Schorner-Sadenius; J. Schwartz; F. Sciulli; L. M. Shcheglova; R. Shehzadi; S. Shimizu; I. Singh; I. O. Skillicorn; W. Slominski; W. H. Smith; V. Sola; A. Solano; D. Son; V. Sosnovtsev; A. Spiridonov; H. Stadie; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; A. Stifutkin; P. Stopa; S. Suchkov; G. Susinno; L. Suszycki; J. Sztuk-Dambietz; D. Szuba; J. Szuba; A. D. Tapper; E. Tassi; J. Terron; T. Theedt; H. Tiecke; K. Tokushuku; J. Tomaszewska; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; M. Vazquez; A. Verbytskyi; O. Viazlo; N. N. Vlasov; R. Walczak; W. A. T. Wan Abdullah; J. J. Whitmore; L. Wiggers; M. Wing; M. Wlasenko; G. Wolf; H. Wolfe; K. Wrona; A. G. Yagues-Molina; S. Yamada; Y. Yamazaki; R. Yoshida; C. Youngman; O. Zabiegalov; A. F. Zarnecki; L. Zawiejski; O. Zenaiev; W. Zeuner; B. O. Zhautykov; N. Zhmak; C. Zhou; A. Zichichi; Z. Zolkapli; D. S. Zotkin

    2012-05-28T23:59:59.000Z

    Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 energies in the region 142 energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.

  11. Compressor bleed cooling fluid feed system

    DOE Patents [OSTI]

    Donahoo, Eric E; Ross, Christopher W

    2014-11-25T23:59:59.000Z

    A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.

  12. Quantum fluids in the Kaehler parametrization

    E-Print Network [OSTI]

    L. Holender; M. A. Santos; I. V. Vancea

    2012-03-21T23:59:59.000Z

    In this paper we address the problem of the quantization of the perfect relativistic fluids formulated in terms of the K\\"{a}hler parametrization. This fluid model describes a large set of interesting systems such as the power law energy density fluids, Chaplygin gas, etc. In order to maintain the generality of the model, we apply the BRST method in the reduced phase space in which the fluid degrees of freedom are just the fluid potentials and the fluid current is classically resolved in terms of them. We determine the physical states in this setting, the time evolution and the path integral formulation.

  13. Fundamentals of Engineering (FE) Exam Fluid Mechanics Review

    E-Print Network [OSTI]

    Provancher, William

    Fundamentals of Engineering (FE) Exam Fluid Mechanics Review Steven Burian Civil & Environmental Engineering March 22, 2013 #12;Morning (Fluid Mechanics) A. Flow measurement B. Fluid properties C. Fluid, and compressors K. Non-Newtonian flow L. Flow through packed beds Fluids and FE #12;#12;#12;Fluids § Fluids

  14. Local structure and dynamics in colloidal fluids and gels

    E-Print Network [OSTI]

    Takehiro Ohtsuka; C. Patrick Royall; Hajime Tanaka

    2009-04-17T23:59:59.000Z

    Gels in soft-matter systems are an important nonergodic state of matter. We study a colloid-polymer mixture which is quenched by increasing the polymer concentration, from a fluid to a gel. Using confocal microscopy, we study both the static structure and dynamics in three dimensions (3D). Between the dynamically arrested gel and ergodic fluid comprised of isolated particles we find an intermediate 'cluster fluid' state, where the 'bonds' between the colloidal particles have a finite lifetime. The local dynamics are reminiscent of a fluid, while the local structure is almost identical to that of the gel. Simultaneous real-time local structural analysis and particle tracking in 3D at the single-particle level yields the following interesting information. Particles in the clusters move in a highly correlated manner, but, at the same time, exhibit significant dynamical heterogeneity, reflecting the enhanced mobility near the free surface. Deeper quenching eventually leads to a gel state where the 'bond' lifetime exceeds that of the experiment, although the local structure is almost identical to that of the 'cluster fluid'.

  15. Visually simulating realistic fluid motion

    E-Print Network [OSTI]

    Naithani, Priyanka

    2002-01-01T23:59:59.000Z

    's second law of motion and Conservation of Mass, which leads to the continuity equation. Newton's second law states that the total force F, acting on an element equals mass m times the element's acceleration a. In the case of fluids we do not consider...

  16. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

    1996-01-01T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

  17. Directed flow fluid rinse trough

    DOE Patents [OSTI]

    Kempka, S.N.; Walters, R.N.

    1996-07-02T23:59:59.000Z

    Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs. 9 figs.

  18. A Universe with a generalized ghost dark energy and Van der Waals fluid interacting with a fluid

    E-Print Network [OSTI]

    M. Khurshudyan; B. Pourhassan; E. Chubaryan

    2014-02-22T23:59:59.000Z

    In this paper we consider an unusual connection between different fluids. Having established a research goal we would like to consider a toy model of the Universe and investigate its behavior, especially for later time evolution for well known facts. The main goal of the article is to consider a toy model of the Universe with generalized ghost dark energy, Van der Waals gas and a phenomenologically modified fluid. The origin of the last component can be understood as a result of interaction between some original fluid and some source of energy or matter in Universe. By unusual connection we mean an assumption that generalized ghost dark energy has its contribution to the model by an interaction term $Q$ and we suppose an interaction $Q=3Hb(\\rho_{\\small{tot}}-\\rho_{GDe})$ of the form. Graphical analysis is performed and the questions of validity of the generalized second law of thermodynamics and stability of the model also approached in this paper.

  19. Surface tension and the mechanics of liquid inclusions in compliant solids

    E-Print Network [OSTI]

    Robert W. Style; John S. Wettlaufer; Eric R. Dufresne

    2014-09-06T23:59:59.000Z

    Eshelby's theory of inclusions has wide-reaching implications across the mechanics of materials and structures including the theories of composites, fracture, and plasticity. However, it does not include the effects of surface stress, which has recently been shown to control many processes in soft materials such as gels, elastomers and biological tissue. To extend Eshelby's theory of inclusions to soft materials, we consider liquid inclusions within an isotropic, compressible, linear-elastic solid. We solve for the displacement and stress fields around individual stretched inclusions, accounting for the bulk elasticity of the solid and the surface tension (\\textit{i.e.} isotropic strain-independent surface stress) of the solid-liquid interface. Surface tension significantly alters the inclusion's shape and stiffness as well as its near- and far-field stress fields. These phenomenon depend strongly on the ratio of inclusion radius, $R$, to an elastocapillary length, $L$. Surface tension is significant whenever inclusions are smaller than $100L$. While Eshelby theory predicts that liquid inclusions generically reduce the stiffness of an elastic solid, our results show that liquid inclusions can actually stiffen a solid when $Rsurface tension cloaks the far-field signature of liquid inclusions when $R=3L/2$. These results are have far-reaching applications from measuring local stresses in biological tissue, to determining the failure strength of soft composites.

  20. Heat Transfer in Complex Fluids

    SciTech Connect (OSTI)

    Mehrdad Massoudi

    2012-01-01T23:59:59.000Z

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

  1. Large silica-rich igneous-textured inclusions in the Buzzard Coulee chondrite: Condensates, differentiates, or impact melts?

    E-Print Network [OSTI]

    microanalytical techniques (OLM, SEM, EMPA, SIMS) to better elucidate the origins of igneous inclusions

  2. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    SciTech Connect (OSTI)

    WITTEKIND WD

    2007-10-03T23:59:59.000Z

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  3. Phenomenology and simulations of active fluids

    E-Print Network [OSTI]

    Tjhung, Elsen

    2013-11-28T23:59:59.000Z

    Active fluids are an interesting new class of non-equilibrium systems in physics. In such fluids, the system is forced out of equilibrium by the individual active particles - in contrast to driven systems where the system ...

  4. Quantifying the stimuli of photorheological fluids

    E-Print Network [OSTI]

    Bates, Sarah Woodring

    2010-01-01T23:59:59.000Z

    We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...

  5. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, L.K.; Alper, N.I.

    1994-11-22T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

  6. Fluid Flow Simulation in Fractured Reservoirs

    E-Print Network [OSTI]

    Sarkar, Sudipta

    2002-01-01T23:59:59.000Z

    The purpose of this study is to analyze fluid flow in fractured reservoirs. In most petroleum reservoirs, particularly carbonate reservoirs and some tight sands, natural fractures play a critical role in controlling fluid ...

  7. Fluid sampling system for a nuclear reactor

    DOE Patents [OSTI]

    Lau, Louis K. (Monroeville, PA); Alper, Naum I. (Monroeville, PA)

    1994-01-01T23:59:59.000Z

    A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.

  8. The contact angle in inviscid fluid mechanics

    E-Print Network [OSTI]

    P N Shankar; R Kidambi

    2005-08-17T23:59:59.000Z

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived; however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions' in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions'; they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  9. Ultrasonic fluid densitometer for process control

    DOE Patents [OSTI]

    Greenwood, Margaret S. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

  10. Supercritical Fluid Attachment of Palladium Nanoparticles on...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attachment of Palladium Nanoparticles on Aligned Carbon Nanotubes. Supercritical Fluid Attachment of Palladium Nanoparticles on Aligned Carbon Nanotubes. Abstract: Nanocomposite...

  11. Harmonic Fluids Changxi Zheng Doug L. James

    E-Print Network [OSTI]

    Columbia University

    Harmonic Fluids Changxi Zheng Doug L. James Cornell University Abstract Fluid sounds- ing. Furthermore, while offline applications can rely on talented foley artists to "cook up" plausible for vortex-based fluid sounds [Dobashi et al. 2003] and solid bodies [O'Brien et al. 2001; James et al. 2006

  12. 2014 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS

    E-Print Network [OSTI]

    Wang, Yuhang

    for Civil and Environmental Engineers · Stochastic Hydrology · Water Resources Management · Fluid Mechanics2014 GRADUATE STUDIES ENVIRONMENTAL FLUID MECHANICS AND WATER RESOURCES ENGINEERING RESEARCH AREAS SELECTED COURSES FACILITIES The Environmental Fluid Mechanics and Water Resources program at the Georgia

  13. Journal of Fluid Mechanics Hesitant Nature

    E-Print Network [OSTI]

    Journal of Fluid Mechanics Focus luids on F Hesitant Nature E. VILLERMAUX Aix-Marseille Universit0022112009991303 1 #12;Journal of Fluid Mechanics Focus luids on F 1 mm Figure 1. The `gobbling' phenomenon). J. Fluid Mech. (2009), vol. 636, pp. 1­4. c Cambridge University Press 2009 doi:10.1017/S

  14. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    Santos, Juan

    SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW J. E. Santos1, G. B. Savioli2, J. M. Carcione3, D´e, Argentina SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. I Storage of CO2). SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW ­ p. #12;Introduction. II CO2 is separated from natural

  15. Fluid Construction Grammar on Real Robots

    E-Print Network [OSTI]

    Steels, Luc

    Chapter 10 Fluid Construction Grammar on Real Robots Luc Steels1,2, Joachim De Beule3, and Pieter and P. Wellens (2012). Fluid Construction Grammar on Real Robots. In Luc Steels and Manfred Hild (Eds game experiments reported in this book. This framework is called Fluid Construction Grammar (FCG

  16. Numerical simulation of the stochastic dynamics of inclusions in biomembranes in presence of surface tension

    E-Print Network [OSTI]

    H. Rafii-Tabar; H. R. Sepangi

    2005-08-30T23:59:59.000Z

    The stochastic dynamics of inclusions in a randomly fluctuating biomembrane is simulated. These inclusions can represent the embedded proteins and the external particles arriving at a cell membrane. The energetics of the biomembrane is modelled via the Canham-Helfrich Hamiltonian. The contributions of both the bending elastic-curvature energy and the surface tension of the biomembrane are taken into account. The biomembrane is treated as a two-dimensional sheet whose height variations from a reference frame is treated as a stochastic Wiener process. The lateral diffusion parameter associated with this Wiener process coupled with the longitudinal diffusion parameter obtained from the standard Einsteinian diffusion theory completely determine the stochastic motion of the inclusions. It is shown that the presence of surface tension significantly affects the overall dynamics of the inclusions, particularly the rate of capture of the external inclusions, such as drug particles, at the site of the embedded inclusions, such as the embedded proteins.

  17. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00:123

    E-Print Network [OSTI]

    Buscaglia, Gustavo C.

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2011; 00 for the treatment of discontinuous pressures in multi­fluid flows Roberto F. Ausas1 , Gustavo C. Buscaglia1 WORDS: Multi­fluids, Two­phase flows, Embedded interfaces, Finite element method, Surface tension

  18. Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics

    E-Print Network [OSTI]

    Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics Instructor: M. S. Howe EMA 218 mshowe@bu.edu This course is intended to consolidate your knowledge of fluid mechanics specialized courses on fluid mechanics, acoustics and aeroacoustics. Outline syllabus: Equations of motion

  19. PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical

    E-Print Network [OSTI]

    Audoly, Basile

    PHYSICS OF FLUIDS 24, 043102 (2012) A numerical investigation of the fluid mechanical sewing or jet of liquid falling onto a fixed surface is one of the simplest situations in fluid mechanics, yet by Chiu-Webster and Lister9 (henceforth CWL), who called it the "fluid mechanical sewing machine

  20. Introduction to Computational Fluid Dynamics 424512 E #1 -rz Introduction to Computational Fluid Dynamics

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven ?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 ?bo Akademi Univ - Thermal and Flow Engineering

  1. Inclusion of Building Envelope Thermal Lag Effects in Linear Regression Models of Daily Basis Building Energy Use Data

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D. E.

    2012-01-01T23:59:59.000Z

    Inclusion?of?Building?Envelope?Thermal?Lag? Effects?in?Linear?Regression?Models?of?Daily? Basis?Building?Energy?Use?Data The?12th International?Conference?for?Enhanced?Building?Operations October?22nd?26th,?2012 Manchester,?UK Hiroko...?for?simple?energy?performance?analysis ? 24?hour?cycle?variations?are?averaged?out?in?daily?data. ? The?dominant?driving?terms?of?most?buildings?follow?a?24?h?cycle.?(Rabl,?1992)? solar?irradiance,?OA?temperature,?ventilation,?occupancy?level,?lights?and?equipment?loads,? delayed?loads?due?to?thermal...

  2. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    SciTech Connect (OSTI)

    Hart, R.D.

    1981-01-01T23:59:59.000Z

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited.

  3. An improved lattice Boltzmann scheme for multiphase fluid with multi-range interactions

    SciTech Connect (OSTI)

    Maquignon, Nicolas; Duchateau, Julien; Roussel, Gilles; Rousselle, Franois; Renaud, Christophe [Laboratoire Informatique Signal et Image de la Cte d' Opale, 50 rue Ferdinand Buisson, 62100 Calais (France); Universit du Littoral Cte d'Opale, 1 place de l'Yser, 59140, Dunkerque (France); Association INNOCOLD, MREI 1, 145 (France)

    2014-10-06T23:59:59.000Z

    Modeling of fluids with liquid to gas phase transition has become important for understanding many environmental or industrial processes. Such simulations need new techniques, because traditional solvers are often limited. The Lattice Boltzmann Model (LBM) allows simulate complex fluids, because its mesoscopic nature gives possibility to incorporate additional physics in comparison to usual methods. In this work, an improved lattice Boltzmann model for phase transition flow will be introduced. First, the state of art for Shan and Chen (SC) type of LBM will be reminded. Then, link to real thermodynamics will be established with Maxwell equal areas construction. Convergence to isothermal liquid vapor equilibrium will be shown and discussed. Inclusion of an equation of state for real fluid and better incorporation of force term is presented. Multi-range interactions have been used for SC model, but it hasn't been yet applied to real fluid with non-ideal equation of state. In this work, we evaluate this model when it is applied to real liquid-vapor equilibrium. We show that important differences are found for evaluation of gas density. In order to recover thermodynamic consistency, we use a new scheme for calculation of force term, which is a combination of multi range model and numerical weighting used by Gong and Cheng. We show the superiority of our new model by studying convergence to equilibrium values over a large temperature range. We prove that spurious velocities remaining at equilibrium are decreased.

  4. Fluid dynamics on sieve trays

    SciTech Connect (OSTI)

    Hag, M.A.

    1982-08-01T23:59:59.000Z

    A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.

  5. Electrokinetic micro-fluid mixer

    DOE Patents [OSTI]

    Paul, Phillip H. (Livermore, CA); Rakestraw, David J. (Fremont, CA)

    2000-01-01T23:59:59.000Z

    A method and apparatus for efficiently and rapidly mixing liquids in a system operating in the creeping flow regime such as would be encountered in capillary-based systems. By applying an electric field to each liquid, the present invention is capable of mixing together fluid streams in capillary-based systems, where mechanical or turbulent stirring cannot be used, to produce a homogeneous liquid.

  6. Fluid dynamics kill Wyoming icicle

    SciTech Connect (OSTI)

    Grace, R.D.

    1987-04-01T23:59:59.000Z

    Control of a blowout in which a portion of the drill collar string was extending through the rotary table and into the derrick was compounded by ice building up on the derrick and substructure. However, the momentum kill procedure proved successful. Topics considered in this paper include oil wells, natural gas wells, sleeves, rotary drills, drilling rigs, fluid mechanics, occupational safety, blowouts, drill pipes, rotary drilling, ice removal, and freezing.

  7. Template for project inclusion for Remote Sensing Systems' MSU/AMSU brightness temperatures in the C

    E-Print Network [OSTI]

    Template for project inclusion for Remote Sensing Systems' MSU/AMSU brightness temperatures- Quality control procedures, including ongoing improvements. Brightness temperatures and geolocation data

  8. Semi-inclusive charged-current neutrino-nucleus reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moreno, Omar [California State Univ., Los Angeles, CA (United States); Donnelly, T. W. [California State Univ., Los Angeles, CA (United States); Van Orden, Jay Wallace [Old Dominion Univ., Norfolk, VA (United States); Jefferson Lab., Newport News, VA (United States); Ford, William P. [Univ. of Southern Mississippi, Hattiesburg, MS (United States)

    2014-07-01T23:59:59.000Z

    The general, universal formalism for semi-inclusive charged-current (anti)neutrino-nucleus reactions is given for studies of any hadronic system, namely, either nuclei or the nucleon itself. The detailed developments are presented with the former in mind and are further specialized to cases where the final-state charged lepton and an ejected nucleon are presumed to be detected. General kinematics for such processes are summarized and then explicit expressions are developed for the leptonic and hadronic tensors involved and for the corresponding responses according to the usual charge, longitudinal and transverse projections, keeping finite the masses of all particles involved. In the case of the hadronic responses, general symmetry principles are invoked to determine which contributions can occur. Finally, the general leptonic-hadronic tensor contraction is given as well as the cross section for the process.

  9. Cosmological perturbations for imperfect fluids

    E-Print Network [OSTI]

    Massimo Giovannini

    2005-11-11T23:59:59.000Z

    Interacting fluids, endowed with bulk viscous stresses, are discussed in a unified perspective with the aim of generalizing the treatment of cosmological perturbation theory to the case where both fluctuating decay rates and fluctuating bulk viscosity coefficients are simultaneously present in the relativistic plasma. A gauge-invariant treatment of the qualitatively new phenomena arising in this context is provided. In a complementary approach, faithful gauge-fixed descriptions of the gravitational and hydrodynamical fluctuations are developed and exploited. To deepen the interplay between bulk viscous stresses and fluctuating decay rates, illustrative examples are proposed and discussed both analytically and numerically. Particular attention is paid to the coupled evolution of curvature and entropy fluctuations when, in the relativistic plasma, at least one of the interacting fluids possesses a fluctuating bulk viscosity coefficient. It is argued that this class of models may be usefully employed as an effective description of the decay of the inflaton as well as of other phenomena involving imperfect relativistic fluids.

  10. Organic fluids in a supercritical Rankine cycle for low temperature power generation

    SciTech Connect (OSTI)

    Vidhi, Rachana [University of South Florida, Tampa; Kuravi, Sarada [University of South Florida, Tampa; Goswami, Yogi D. [University of South Florida, Tampa; Stefanakos, Elias [University of South Florida, Tampa; Sabau, Adrian S [ORNL

    2013-01-01T23:59:59.000Z

    This paper presents a performance analysis of a supercritical organic Rankine cycle (SORC) with various working fluids with thermal energy provided from a geothermal energy source. In the present study, a number of pure fluids (R23, R32, R125, R143a, R134a, R218, and R170) are analyzed to identify the most suitable fluids for different operating conditions. The source temperature is varied between 125 C and 200 C, to study its effect on the efficiency of the cycle for fixed and variable pressure ratios. The energy and exergy efficiencies for each working fluid are obtained and the optimum fluid is selected. It is found that thermal efficiencies as high as 21% can be obtained with 200 C source temperature and 10 C cooling water temperature considered in this study. For medium source temperatures (125 150 C), thermal efficiencies higher than 12% are obtained.

  11. Applying one-dimensional fluid thermal elements into a 3D CLIC accelerating strucutre

    E-Print Network [OSTI]

    Raatikainen, Riku; sterberg, Kenneth; Riddone, Germana; Samoshkin, Alexander; Gudkov, Dmitry

    2010-01-01T23:59:59.000Z

    A finite element modeling method to simplify the analysis of coupled thermal-structural model for the CLIC accelerating structure is presented. In addition, the results of thermal and structural analyses for the accelerating structure are presented. Instead of using a standard 3D computational fluid dynamics (CFD) method for solving problems involving fluid dynamics and heat transfer in 3D environment, one-dimensional fluid thermal elements are used. In one-dimensional flow, the governing equations of fluid dynamics are considerably simplified. Thus, it is expected that the computational time for more complex simulations becomes shorter. The method was first applied to several test models, which demonstrated the suitability of the one-dimensional flow modeling. The results show that one-dimensional fluid flow reduces the computation time considerably allowing the modeling for the future larger assemblies with sufficient accuracy.

  12. Locomotion in complex fluids: Integral theorems

    E-Print Network [OSTI]

    Eric Lauga

    2014-10-15T23:59:59.000Z

    The biological fluids encountered by self-propelled cells display complex microstructures and rheology. We consider here the general problem of low-Reynolds number locomotion in a complex fluid. {Building on classical work on the transport of particles in viscoelastic fluids,} we demonstrate how to mathematically derive three integral theorems relating the arbitrary motion of an isolated organism to its swimming kinematics {in a non-Newtonian fluid}. These theorems correspond to three situations of interest, namely (1) squirming motion in a linear viscoelastic fluid, (2) arbitrary surface deformation in a weakly non-Newtonian fluid, and (3) small-amplitude deformation in an arbitrarily non-Newtonian fluid. Our final results, valid for a wide-class of {swimmer geometry,} surface kinematics and constitutive models, at most require mathematical knowledge of a series of Newtonian flow problems, and will be useful to quantity the locomotion of biological and synthetic swimmers in complex environments.

  13. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    SciTech Connect (OSTI)

    Berryman, J.G.

    2010-06-01T23:59:59.000Z

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated in some detail, as are permeabilities of some of the simpler types of fractured materials.

  14. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1982-05-04T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

  15. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, James R. (Rigby, ID)

    1982-01-01T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  16. GEOPHYSICAL FLUID DYNAMICS-I OC512/AS509 2011 P.Rhines 19-21 Jan 2011 LECTUREs 7-8: Dynamics of a single-layer fluid: waves, inertial oscillations, and

    E-Print Network [OSTI]

    -water' balance in a homogeneous fluid. The MASS conservation equation for a constant density fluid implies.1-7.6 (began last week), 10.4 (Kelvin waves) (similar material in Vallis §§ 2.8, 3.1, 3.6-3.8 Bretherton than a fraction of a wavelength. This is implicit in a scale analysis of the governing equation

  17. Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry

    SciTech Connect (OSTI)

    Love, Lonnie J [ORNL

    2012-12-01T23:59:59.000Z

    The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

  18. ALFVEN WAVES IN A PARTIALLY IONIZED TWO-FLUID PLASMA

    SciTech Connect (OSTI)

    Soler, R.; Ballester, J. L.; Terradas, J. [Departament de Fisica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Carbonell, M., E-mail: roberto.soler@uib.es, E-mail: joseluis.ballester@uib.es, E-mail: jaume.terradas@uib.es, E-mail: marc.carbonell@uib.es [Departament de Matematiques i Informatica, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain)

    2013-04-20T23:59:59.000Z

    Alfven waves are a particular class of magnetohydrodynamic waves relevant in many astrophysical and laboratory plasmas. In partially ionized plasmas the dynamics of Alfven waves is affected by the interaction between ionized and neutral species. Here we study Alfven waves in a partially ionized plasma from the theoretical point of view using the two-fluid description. We consider that the plasma is composed of an ion-electron fluid and a neutral fluid, which interact by means of particle collisions. To keep our investigation as general as possible, we take the neutral-ion collision frequency and the ionization degree as free parameters. First, we perform a normal mode analysis. We find the modification due to neutral-ion collisions of the wave frequencies and study the temporal and spatial attenuation of the waves. In addition, we discuss the presence of cutoff values of the wavelength that constrain the existence of oscillatory standing waves in weakly ionized plasmas. Later, we go beyond the normal mode approach and solve the initial-value problem in order to study the time-dependent evolution of the wave perturbations in the two fluids. An application to Alfven waves in the low solar atmospheric plasma is performed and the implication of partial ionization for the energy flux is discussed.

  19. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, Terry D. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A fluid transfer apparatus includes: a) a plurality of orifices for connection with fluid sources; b) a plurality of orifices for connection with fluid targets; c) a set of fluid source conduits and fluid target conduits associated with the orifices; d) a pump fluidically interposed between the source and target conduits to transfer fluid therebetween; e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; g) pump control means for controlling operation of the pump; h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits.

  20. Multiple source/multiple target fluid transfer apparatus

    DOE Patents [OSTI]

    Turner, T.D.

    1997-08-26T23:59:59.000Z

    A fluid transfer apparatus includes: (a) a plurality of orifices for connection with fluid sources; (b) a plurality of orifices for connection with fluid targets; (c) a set of fluid source conduits and fluid target conduits associated with the orifices; (d) a pump fluidically interposed between the source and target conduits to transfer fluid there between; (e) a purge gas conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass a purge gas under pressure; (f) a solvent conduit in fluid communication with the fluid source conduits, fluid target conduits and pump to receive and pass solvent, the solvent conduit including a solvent valve; (g) pump control means for controlling operation of the pump; (h) purge gas valve control means for controlling operation of the purge gas valve to selectively impart flow of purge gas to the fluid source conduits, fluid target conduits and pump; (i) solvent valve control means for controlling operation of the solvent valve to selectively impart flow of solvent to the fluid source conduits, fluid target conduits and pump; and (j) source and target valve control means for controlling operation of the fluid source conduit valves and the fluid target conduit valves to selectively impart passage of fluid between a selected one of the fluid source conduits and a selected one of the fluid target conduits through the pump and to enable passage of solvent or purge gas through selected fluid source conduits and selected fluid target conduits. 6 figs.

  1. Microscale fluid flow induced by thermoviscous expansion along a traveling wave

    E-Print Network [OSTI]

    Franz M. Weinert; Jonas A. Kraus; Thomas Franosch; Dieter Braun

    2008-04-02T23:59:59.000Z

    The thermal expansion of a fluid combined with a temperature-dependent viscosity introduces nonlinearities in the Navier-Stokes equations unrelated to the convective momentum current. The couplings generate the possibility for net fluid flow at the microscale controlled by external heating. This novel thermo-mechanical effect is investigated for a thin fluid chamber by a numerical solution of the Navier-Stokes equations and analytically by a perturbation expansion. A demonstration experiment confirms the basic mechanism and quantitatively validates our theoretical analysis.

  2. Subcritical finite-amplitude solutions in plane Couette flow of visco-elastic fluids

    E-Print Network [OSTI]

    Alexander N. Morozov; Wim van Saarloos

    2004-11-10T23:59:59.000Z

    Plane Couette flow of visco-elastic fluids is shown to exhibit a purely elastic subcritical instability in spite of being linearly stable. The mechanism of this instability is proposed and the nonlinear stability analysis of plane Couette flow of the Upper-Convected Maxwell fluid is presented. It is found that above the critical Weissenberg number, a small finite-size perturbation is sufficient to create a secondary flow, and the threshold value for the amplitude of the perturbation decreases as the Weissenberg number increases. The results suggest a scenario for weakly turbulent visco-elastic flow which is similar to the one for Newtonian fluids as a function of Reynolds number.

  3. Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite epitaxially by exsolution from their host silicate. Close examination of clinopyroxene- hosted inclusions of silicate-hosted titanomagnetite inclusions: An electron holography study, J. Geophys. Res., 111, B12S15

  4. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  5. Fluid cooled vehicle drive module

    DOE Patents [OSTI]

    Beihoff, Bruce C.; Radosevich, Lawrence D.; Meyer, Andreas A.; Gollhardt, Neil; Kannenberg, Daniel G.

    2005-11-15T23:59:59.000Z

    An electric vehicle drive includes a support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support, in conjunction with other packaging features may form a shield from both external EM/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  6. Study of thermal-gradient-induced migration of brine inclusions in salt. Final report

    SciTech Connect (OSTI)

    Olander, D.R.

    1984-08-01T23:59:59.000Z

    Natural salt deposits, which are being considered for high-level waste disposal, contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine (the all-liquid inclusions) migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms, which is undesirable. Therefore it is important to consider the migration of brine inclusions in salt under imposed temperature gradients to properly evaluate the performance of a future salt repository for nuclear wastes. The migration velocities of the inclusions were found to be dependent on temperature, temperature gradient, and inclusion shape and size. The velocities were also dictated by the interfacial mass transfer resistance at brine/solid interface. This interfacial resistance depends on the dislocation density in the crystal, which in turn, depends on the axial compressive loading of the crystal. At low axial loads, the dependence between the velocity and temperature gradient is nonlinear. At high axial loads, the interfacial resistance is reduced and the migration velocity depends linearly on the temperature gradient. All-liquid inclusions filled with mixed brines were also studied. For gas-liquid inclusions, helium, air and argon were compared. Migration studies were also conducted on single crystallites of natural salt as well as in polycrystalline natural salt samples. The behavior of the inclusions at large-ange grain boundaries was observed.

  7. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01T23:59:59.000Z

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  8. On the equivalence of nonadiabatic fluids

    E-Print Network [OSTI]

    W. Barreto

    2010-11-17T23:59:59.000Z

    Here we show how an anisotropic fluid in the diffusion limit can be equivalent to an isotropic fluid in the streaming out limit, in spherical symmetry. For a particular equation of state this equivalence is total, from one fluid we can obtain the other and vice versa. A numerical master model is presented, based on a generic equation of state, in which only quantitative differences are displayed between both nonadiabatic fluids. From a deeper view, other difference between fluids is shown as an asymmetry that can be overcome if we consider the appropriate initial-boundary conditions. Equivalence in this context can be considered as a first order method of approximation to study dissipative fluids.

  9. Supercritical fluid thermodynamics for coal processing

    SciTech Connect (OSTI)

    van Swol, F. (Illinois Univ., Urbana, IL (United States). Dept. of Chemical Engineering); Eckert, C.A. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Chemical Engineering)

    1988-09-15T23:59:59.000Z

    The main objective of this research is to develop an equation of state that can be used to predict solubilities and tailor supercritical fluid solvents for the extraction and processing of coal. To meet this objective we have implemented a two-sided. approach. First, we expanded the database of model coal compound solubilities in higher temperature fluids, polar fluids, and fluid mixtures systems. Second, the unique solute/solute, solute/cosolvent and solute/solvent intermolecular interactions in supercritical fluid solutions were investigated using spectroscopic techniques. These results increased our understanding of the molecular phenomena that affect solubility in supercritical fluids and were significant in the development of an equation of state that accurately reflects the true molecular makeup of the solution. (VC)

  10. Process for retarding fluid flow

    SciTech Connect (OSTI)

    Sandford, B.B.; Zillmer, R.C.

    1989-01-10T23:59:59.000Z

    A process is described for retarding the flow of fluid in a subterranean formation, comprising: (a) introducing an effective amount of a gel-forming composition into a subterranean formation, the gel-forming composition being operable when gelled in the formation for retarding the flow of fluid therein. The gel-forming composition consists of: i. a first substance dissolved in water to form an aqueous solution, the first substance being selected from the group consisting of polyvivyl alcohols, and mixtures thereof, wherein the gel-forming composition contains an amount of the first substance of from about 0.5 to about 5 weight percent of the gel-forming composition, and ii. an effective amount of glutaraldehyde which is operable for forming a weakly acidic condition having a pH from about 5.5 to less than 7 in the gel-forming composition and also operable for promoting crosslinking of the first substance and glutaraldehyde and for forming a gel from the gel-forming composition under the weakly acidic condition within a period of time no greater than about 5 days without adding an acidic catalyst to the gel-forming composition to lower the pH of the gel-forming composition below about 5.5.

  11. Apparatus for unloading pressurized fluid

    DOE Patents [OSTI]

    Rehberger, K.M.

    1994-01-04T23:59:59.000Z

    An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

  12. System and method for filling a plurality of isolated vehicle fluid circuits through a common fluid fill port

    SciTech Connect (OSTI)

    Sullivan, Scott C; Fansler, Douglas

    2014-10-14T23:59:59.000Z

    A vehicle having multiple isolated fluid circuits configured to be filled through a common fill port includes a first fluid circuit disposed within the vehicle, the first fluid circuit having a first fill port, a second fluid circuit disposed within the vehicle, and a conduit defining a fluid passageway between the first fluid circuit and second fluid circuit, the conduit including a valve. The valve is configured such that the first and second fluid circuits are fluidly coupled via the passageway when the valve is open, and are fluidly isolated when the valve is closed.

  13. Vibratory pumping of a free fluid stream

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM); Woloshun, Keith A. (Los Alamos, NM)

    1990-01-01T23:59:59.000Z

    A vibratory fluid pump having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments.

  14. Vibratory pumping of a free fluid stream

    DOE Patents [OSTI]

    Merrigan, M.A.; Woloshun, K.A.

    1990-11-13T23:59:59.000Z

    A vibratory fluid pump is described having a force generator for generating asymmetric periodic waves or oscillations connected to one end of one or more fluid conveyance means, such as filaments. The opposite ends of the filaments are connected to springs. Fluid introduced onto the filaments will traverse along the filaments according to the magnitude of the positive and negative excursions of the periodic waves or oscillations, and can be recovered from the filaments. 3 figs.

  15. Hydrostatic bearings for a turbine fluid flow metering device

    DOE Patents [OSTI]

    Fincke, J.R.

    1980-05-02T23:59:59.000Z

    A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

  16. Quantum Mechanical Description of Fluid Dynamics

    E-Print Network [OSTI]

    H. Y. Cui

    2001-08-16T23:59:59.000Z

    In this paper, we deal with fluid motion in terms of quantum mechanics. Mechanism accounting for the appearance of quantum behavior is discussed.

  17. Coupled atomistic-continuum methods for fluids

    E-Print Network [OSTI]

    I will discuss the coupling scheme, its application to polymer fluids, and the major difficulties in implementations. In the second part of the talk, I will discuss the...

  18. SEISMIC MONITORING OF CARBON DIOXIDE FLUID FLOW

    E-Print Network [OSTI]

    santos

    SEISMIC MONITORING OF. CARBON DIOXIDE FLUID FLOW. J. E. Santos. 1. , G. B. Savioli. 2. , J. M. Carcione. 3. , D. Gei. 3. 1. CONICET, IGPUBA, Fac.

  19. Gas powered fluid gun with recoil mitigation

    DOE Patents [OSTI]

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12T23:59:59.000Z

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  20. Fluid casting of particle-based articles

    DOE Patents [OSTI]

    Menchhofer, Paul (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A method for the production of articles made of a particle-based material; e.g., ceramics and sintered metals. In accordance with one aspect of the invention, a thermally settable slurry containing a relatively high concentration of the particles is introduced into an immiscible, heated fluid. The slurry sets or hardens into a shape determined by the physical characteristics of the fluid and the manner of introduction of the slurry into the fluid. For example, the slurry is pulse injected into the fluid to provide spherical articles. The hardened spheres may then be sintered to consolidate the particles and provide a high density product.

  1. Solution generating theorems for perfect fluid spheres

    E-Print Network [OSTI]

    Petarpa Boonserm; Matt Visser; Silke Weinfurtner

    2006-09-20T23:59:59.000Z

    The first static spherically symmetric perfect fluid solution with constant density was found by Schwarzschild in 1918. Generically, perfect fluid spheres are interesting because they are first approximations to any attempt at building a realistic model for a general relativistic star. Over the past 90 years a confusing tangle of specific perfect fluid spheres has been discovered, with most of these examples seemingly independent from each other. To bring some order to this collection, we develop several new transformation theorems that map perfect fluid spheres into perfect fluid spheres. These transformation theorems sometimes lead to unexpected connections between previously known perfect fluid spheres, sometimes lead to new previously unknown perfect fluid spheres, and in general can be used to develop a systematic way of classifying the set of all perfect fluid spheres. In addition, we develop new ``solution generating'' theorems for the TOV, whereby any given solution can be ``deformed'' to a new solution. Because these TOV-based theorems work directly in terms of the pressure profile and density profile it is relatively easy to impose regularity conditions at the centre of the fluid sphere.

  2. Spinning Fluids: A Group Theoretical Approach

    E-Print Network [OSTI]

    Dario Capasso; Debajyoti Sarkar

    2014-04-07T23:59:59.000Z

    We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.

  3. Fluid&ParticulateSystems 424514/2010

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Being often a low temperature process, better energy economy than, for example, distillation Fluid species (no solvent present) are separated by partial freezing Zone melting (refining) from solid

  4. Maximally Random Jamming of Two-Dimensional One-Component and Binary Hard Disc Fluids

    E-Print Network [OSTI]

    Xinliang Xu; Stuart A. Rice

    2010-10-05T23:59:59.000Z

    We report calculations of the density of maximally random jamming (aka random close packing) of one-component and binary hard disc fluids. The theoretical structure used provides a common framework for description of the hard disc liquid to hexatic, the liquid to hexagonal crystal and the liquid-to-maximally random jammed state transitions. Our analysis is based on locating a particular bifurcation of the solutions of the integral equation for the inhomogeneous single particle density at the transition between different spatial structures. The bifurcation of solutions we study is initiated from the dense metastable fluid, and we associate it with the limit of stability of the fluid, which we identify with the transition from the metastable fluid to a maximally random jammed state. For the one-component hard disc fluid the predicted packing fraction at which the metastable fluid to maximally random jammed state transition occurs is 0.84, in excellent agreement with the experimental value 0.84 \\pm 0.02. The corresponding analysis of the limit of stability of a binary hard disc fluid with specified disc diameter ratio and disc composition requires extra approximations in the representations of the direct correlation function, the equation of state, and the number of order parameters accounted for. Keeping only the order parameter identified with the largest peak in the structure factor of the highest density regular lattice with the same disc diameter ratio and disc composition as the binary fluid, the predicted density of maximally random jamming is found to be 0.84 to 0.87, depending on the equation of state used, and very weakly dependent on the ratio of disc diameters and the fluid composition, in agreement with both experimental data and computer simulation data.

  5. Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems

    SciTech Connect (OSTI)

    Douville, E. [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie] [Univ. Bretagne Occidentale, Brest (France). Dept. de Chimie; [IFREMER Centre de Brest, Plouzane (France); Appriou, P. [Univ. Bretagne Occidentale, Brest (France)] [Univ. Bretagne Occidentale, Brest (France); Bienvenu, P. [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques] [CEA Cadarache, Saint Paul Lez Durance (France). Lab. d`Analyses Radiochimiques et Chimiques; Charlou, J.L.; Donval, J.P.; Fouquet, Y. [IFREMER Centre de Brest, Plouzane (France)] [IFREMER Centre de Brest, Plouzane (France); Gamo, Toshitaka [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.] [Univ. of Tokyo, Nakano, Tokyo (Japan). Ocean Research Inst.

    1999-03-01T23:59:59.000Z

    Rare earth element (REE) and yttrium (Y) concentrations were measured in fluids collected from deep-sea hydrothermal systems including the Mid-Atlantic Ridge (MAR), i.e., Menez Gwen, Lucky Strike, TAG, and Snakepit; the East Pacific Rise (EPR), i.e., 13{degree}N and 17--19{degree}S; and the Lau (Vai Lili) and Manus (Vienna Woods, PacManus, Desmos) Back-arc Basins (BAB) in the South-West Pacific. In most fluids, Y is trivalent and behaves like Ho. Chondrite normalized Y-REE (Y-REE{sub N}) concentrations of fluids from MAR, EPR, and two BAB sites, i.e., Vai Lili and Vienna Woods, showed common patterns with LREE enrichment and positive Eu anomalies. REE analysis of plagioclase collected at Lucky Strike strengthens the idea that fluid REE contents, are controlled by plagioclase phenocrysts. Other processes, however, such as REE complexation by ligands (Cl{sup {minus}}, F{sup {minus}}, So{sub 4}{sup 2{minus}}), secondary phase precipitation, and phase separation modify REE distributions in deep-sea hydrothermal fluids. REE speciation calculations suggest that aqueous REE are mainly complexed by Cl{sup {minus}} ions in hot acidic fluids from deep-sea hydrothermal systems. REE concentrations in the fluid phases are, therefore, influenced by temperature, pH, and duration of rock-fluid interaction. Unusual Y-REE{sub N} patterns found in the PacManus fluids are characterized by depleted LREE and a positive Eu anomaly. The Demos fluid sample shows a flat Y-REE{sub N} pattern, which increases regularly from LREE to HREE with no Eu anomaly. These Manus Basin fluids also have an unusual major element chemistry with relatively high Mg, So{sub 4}, H{sub 2}S, and F contents, which may be due to the incorporation of magmatic fluids into heated seawater during hydrothermal circulation. REE distribution in PacManus fluids may stem from a subseafloor barite precipitation and the REE in Demos fluids are likely influenced by the presence of sulfate ions.

  6. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D

    E-Print Network [OSTI]

    Zielinski, R. G.

    1981-01-01T23:59:59.000Z

    Several features were incorporated into NATOF-2D, a twodimensional, two fluid code developed at M.I.T. for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, ...

  7. Development of a three-dimensional two-fluid code with transient neutronic feedback for LWR applications

    E-Print Network [OSTI]

    Griggs, D. P.

    1981-01-01T23:59:59.000Z

    The development of a three-dimensional coupled neutronics/thermalhydraulics code for LWR safety analysis has been initiated. The transient neutronics code QUANDRY has been joined to the two-fluid thermal-hydraulics code ...

  8. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E. (Kennewick, WA); Stenkamp, Victoria S. (Richland, WA)

    2008-03-18T23:59:59.000Z

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  9. Conditions for fluid separations in microchannels, capillary-driven fluid separations, and laminated devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2005-04-05T23:59:59.000Z

    Methods of separating fluids using capillary forces and/or improved conditions for are disclosed. The improved methods may include control of the ratio of gas and liquid Reynolds numbers relative to the Suratman number. Also disclosed are wick-containing, laminated devices that are capable of separating fluids.

  10. Solutions of Eshelby-Type Inclusion Problems and a Related Homogenization Method Based on a Simplified Strain Gradient Elasticity Theory

    E-Print Network [OSTI]

    Ma, Hemei

    2011-08-08T23:59:59.000Z

    Eshelby-type inclusion problems of an infinite or a finite homogeneous isotropic elastic body containing an arbitrary-shape inclusion prescribed with an eigenstrain and an eigenstrain gradient are analytically solved. The solutions are based on a...

  11. Neutron and synchrotron radiation scattering by nonpolar magnetic fluids

    SciTech Connect (OSTI)

    Aksenov, V. L., E-mail: aksenov@kiae.ru [National Research Center Kurchatov Institute (Russian Federation); Avdeev, M. V. [Joint Institute for Nuclear Research (Russian Federation); Shulenina, A. V. [Moscow State University (Russian Federation); Zubavichus, Y. V.; Veligzhanin, A. A. [National Research Center Kurchatov Institute (Russian Federation); Rosta, L. [Hungarian Academy of Sciences, Research Institute for Solid State Physics and Optics (Hungary); Garamus, V. M. [Helmholtz-Zentrum Geesthacht (Germany); Vekas, L. [Romanian Academy, Timisoara Division, Laboratory of Magnetic Fluids, Center of Fundamental and Advanced Technical Research (Romania)

    2011-09-15T23:59:59.000Z

    The complex approach (which comprises different physical methods, including neutron and synchrotron radiation scattering) is justified in the structural analysis of magnetic fluids (MFs). Investigations of MFs based on nonpolar organic solvents with magnetite nanoparticles (2-20 nm in size) coated by various monocarboxylic acids have been performed. It is shown that the use of saturated linear acids with various alkyl chain (C12-C18) lengths instead of unsaturated oleic acid (alkyl chain C18 with a kink in the middle due to the double bond in the cis-configuration) in the classical stabilization procedure for the given type of magnetic fluids leads to a decrease in the mean size and polydispersity of nanoparticles in the final systems.

  12. Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Laser microfluidics : fluid actuation by light Laser microfluidics: fluid actuation by light Jean.delville@cpmoh.u-bordeaux1.fr Abstract: The development of microfluidic devices is still hindered by the lack of robust to extend this concept to microfluidic two-phase flows. First, we investigate the destabilization of fluid

  13. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 31: 345358 (1999)

    E-Print Network [OSTI]

    Roy, Subrata

    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 31: 345­358 (1999 AND S. ROYc,3 a Engineering Science Program, MAES Department, 316A Perkins Hall, Uni6ersity of Tennessee Corporation, Burr Ridge, IL, USA SUMMARY The quest continues for accurate and efficient computational fluid

  14. Under consideration for publication in J. Fluid Mech. 1 The fluid dynamics of an underfloor air

    E-Print Network [OSTI]

    Linden, Paul F.

    Under consideration for publication in J. Fluid Mech. 1 The fluid dynamics of an underfloor air-0411, U.S.A., (Received 30 May 2005) This paper discusses the fluid dynamics of an under floor air. The experiments show that the properties of the system are determined by the entrainment into the plumes

  15. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-07-11T23:59:59.000Z

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

  16. Immersible solar heater for fluids

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01T23:59:59.000Z

    An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

  17. Two non-comoving stiff fluids in radial motion and spherical symmetry

    E-Print Network [OSTI]

    Valentin Kostov

    2008-11-04T23:59:59.000Z

    The problem of two stiff fluids (energy density = pressure) moving radially in spherical symmetry is treated. The metric ansatz is chosen spherically symmetric, conformally static with a multiplicative separation of variables. The first fluid is described mathematically via a massless scalar field. The coordinate system is chosen comoving with the second fluid which the separation of variables requires to be stiff too. The fluids are interacting only gravitationally and their energy momentum tensors are separately conserved. The Einstein equations are reduced to a single nonlinear ODE of second order which is shown to lead to an Abel ODE. A few particular exact solutions were found using a polynomial ansatz. The two non-comoving gravitational sources in the solutions can be interpreted either as scalar fields or stiff fluids. A complete analysis is performed on the range of parameters for which the stiff fluid interpretation is physically acceptable. General formulas are derived for the conformal vectors of the solutions. By making the second fluid vanish, a few single scalar field solutions are generated some of which appear to be new. All solutions considered in this paper have a time-like singularity at the origin (except the trivial FRW one) and are not asymptotically flat (except the static one with k=0).

  18. Dense colloidal fluids form denser amorphous sediments

    E-Print Network [OSTI]

    Schofield, Andrew B.

    Dense colloidal fluids form denser amorphous sediments Shir R. Libera,b , Shai Borohovicha of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems

  19. Foam vessel for cryogenic fluid storage

    DOE Patents [OSTI]

    Spear, Jonathan D (San Francisco, CA)

    2011-07-05T23:59:59.000Z

    Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.

  20. Conservation of Momentum: Fluids and Elastic Solids

    E-Print Network [OSTI]

    Chicone, Carmen

    Chapter 3 Conservation of Momentum: Fluids and Elastic Solids The description of the motion, t) dx = (A,t) t(x, t) + div(u)(x, t) dx (3.2) (see A.11). By conservation of mass, the rate is conserved by the fluid motion. A differential equation for the velocity field u is obtained from the equa

  1. Engineering Insights 2006 Complex Fluids Design Consortium

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Engineering Insights 2006 Complex Fluids Design Consortium (CFDC) www.mrl.ucsb.edu/cfdc Overview;Engineering Insights 2006 Objectives -- continued · Create a world-class center for complex fluid and soft and Research Highlights Glenn Fredrickson October 18, 2006 #12;Engineering Insights 2006 What is the CFDC

  2. Radiation stability of biocompatibile magnetic fluid

    E-Print Network [OSTI]

    Natalia Tomasovicova; Ivan Haysak; Martina Koneracka; Jozef Kovac; Milan Timko; Vlasta Zavisova; Alexander Okunev; Alexander Parlag; Alexey Fradkin; Peter Kopcansky

    2010-09-30T23:59:59.000Z

    The radiation stability of biocompatibile magnetic fluid used in nanomedicine after electron irradiation was studied. Two types of the water-based magnetic fluids were prepared. The first one was based on the magnetite nanoparticles stabilized by one surfactant natrium oleate. The second one was biocompatibile magnetic fluid stabilized with two surfactants, natrium oleate as a first surfactant and Poly(ethylene glycol) (PEG) as a second surfactant. The magnetization measurements showed that electron irradiation up to 1000Gy caused 50% reduction of saturation magnetization in the case of the first sample with only one surfactant while in the case of the second biocompatibile magnetic fluid, only 25% reduction of saturation magnetization was observed. In the first magnetic fluid the radiation caused the higher sedimentation of the magnetic particles than in the second case, when magnetic particles are covered also with PEG. The obtained results show that PEG behave as a protective element.

  3. Fluid permeability measurement system and method

    DOE Patents [OSTI]

    Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

    2008-02-05T23:59:59.000Z

    A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

  4. Static Isotropic Spacetimes with Radially Imperfect Fluids

    E-Print Network [OSTI]

    Tomasz Konopka

    2009-08-25T23:59:59.000Z

    When solving the equations of General Relativity in a symmetric sector, it is natural to consider the same symmetry for the geometry and stress-energy. This implies that for static and isotropic spacetimes, the most general natural stress-energy tensor is a sum of a perfect fluid and a radial imperfect fluid component. In the special situations where the perfect fluid component vanishes or is a spacetime constant, the solutions to Einstein's equations can be thought of as modified Schwarzschild and Schwarzschild-de Sitter spaces. Exact solutions of this type are derived and it is shown that whereas deviations from the unmodified solutions can be made small, among the manifestations of the imperfect fluid component is a shift in angular momentum scaling for orbiting test-bodies at large radius. Based on this effect, the question of whether the imperfect fluid component can feasibly describe dark matter phenomenology is addressed.

  5. Holographic Fluids with Vorticity and Analogue Gravity

    E-Print Network [OSTI]

    Robert G. Leigh; Anastasios C. Petkou; P. Marios Petropoulos

    2012-05-28T23:59:59.000Z

    We study holographic three-dimensional fluids with vorticity in local equilibrium and discuss their relevance to analogue gravity systems. The Fefferman-Graham expansion leads to the fluid's description in terms of a comoving and rotating Papapetrou-Randers frame. A suitable Lorentz transformation brings the fluid to the non-inertial Zermelo frame, which clarifies its interpretation as moving media for light/sound propagation. We apply our general results to the Lorentzian Kerr-AdS_4 and Taub-NUT-AdS_4 geometries that describe fluids in cyclonic and vortex flows respectively. In the latter case we associate the appearance of closed timelike curves to analogue optical horizons. In addition, we derive the classical rotational Hall viscosity of three-dimensional fluids with vorticity. Our formula remarkably resembles the corresponding result in magnetized plasmas.

  6. Conformal higher-order viscoelastic fluid mechanics

    E-Print Network [OSTI]

    Masafumi Fukuma; Yuho Sakatani

    2012-05-28T23:59:59.000Z

    We present a generally covariant formulation of conformal higher-order viscoelastic fluid mechanics with strain allowed to take arbitrarily large values. We give a general prescription to determine the dynamics of a relativistic viscoelastic fluid in a way consistent with the hypothesis of local thermodynamic equilibrium and the second law of thermodynamics. We then elaborately study the transient time scales at which the strain almost relaxes and becomes proportional to the gradients of velocity. We particularly show that a conformal second-order fluid with all possible parameters in the constitutive equations can be obtained without breaking the hypothesis of local thermodynamic equilibrium, if the conformal fluid is defined as the long time limit of a conformal second-order viscoelastic system. We also discuss how local thermodynamic equilibrium could be understood in the context of the fluid/gravity correspondence.

  7. Extreme pressure fluid sample transfer pump

    DOE Patents [OSTI]

    Halverson, Justin E. (Grovertown, GA); Bowman, Wilfred W. (North Augusta, SC)

    1990-01-01T23:59:59.000Z

    A transfer pump for samples of fluids at very low or very high pressures comprising a cylinder having a piston sealed with an O-ring, the piston defining forward and back chambers, an inlet and exit port and valve arrangement for the fluid to enter and leave the forward chamber, and a port and valve arrangement in the back chamber for adjusting the pressure across the piston so that the pressure differential across the piston is essentially zero and approximately equal to the pressure of the fluid so that the O-ring seals against leakage of the fluid and the piston can be easily moved, regardless of the pressure of the fluid. The piston may be actuated by a means external to the cylinder with a piston rod extending through a hole in the cylinder sealed with a bellows attached to the piston head and the interior of the back chamber.

  8. Euler's fluid equations: Optimal Control vs Optimization

    E-Print Network [OSTI]

    Darryl D. Holm

    2009-09-28T23:59:59.000Z

    An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.

  9. Pumping viscoelastic two-fluid media

    E-Print Network [OSTI]

    Hirofumi Wada

    2010-04-08T23:59:59.000Z

    Using a two-fluid model for viscoelastic polymer solutions, we study analytically fluid transport driven by a transverse, small amplitude traveling wave propagation. The pumping flow far from the waving boundary is shown to be strongly wave number and viscosity dependent, in contrast to a viscous Newtonian fluid. We find the two qualitatively different regimes: In one regime relevant to small wave numbers, the fluidic transport is almost the same as the Newtonian case, and uniform viscoelastic constitutive equations provide a good approximation. In the other regime, the pumping is substantially decreased because of the gel-like character. The boundary separating these two regimes is clarified. Our results suggest possible needs of two-fluid descriptions for the transport and locomotion in biological fluids with cilia and flagella.

  10. Modelling anisotropic fluid spheres in general relativity

    E-Print Network [OSTI]

    Boonserm, Petarpa; Visser, Matt

    2015-01-01T23:59:59.000Z

    We argue that an arbitrary general relativistic anisotropic fluid sphere, (spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully modelled by suitable linear combinations of quite ordinary classical matter: an isotropic perfect fluid, a classical electromagnetic field, and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore we show how this decomposition relates to the distribution of electric charge density and scalar charge density throughout the model that is used to mimic the anisotropic fluid sphere. Consequently, we can build physically reasonable matter models for almost any spherically symmetric spacetime.

  11. Landau Fluid Equations The Navier--Stokes equations for neutral fluids are highly effective at describing the

    E-Print Network [OSTI]

    Hammett, Greg

    Chapter 3 Landau Fluid Equations The Navier--Stokes equations for neutral fluids are highly for deriving the plasma fluid equations of Braginskii (1965). Plasma waves, especially those driven. The approach to deriving plasma fluid equation by Hammett and Perkins (1990) was to derive the fluid closures

  12. Chapter 17 in Encyclopedia of Computational Mechanics, Volume 3: Fluids Finite Element Methods for Fluid Dynamics with

    E-Print Network [OSTI]

    Tezduyar, Tayfun E.

    Chapter 17 in Encyclopedia of Computational Mechanics, Volume 3: Fluids Finite Element Methods surfaces, two-fluid interfaces, fluid­object and fluid­structure in- teractions, and moving mechanical in Encyclopedia of Computational Mechanics, Volume 3: Fluids (eds. E. Stein, R. De Borst and T.J.R. Hughes), John

  13. Criteria for shear banding in time-dependent flows of complex fluids

    E-Print Network [OSTI]

    Robyn L. Moorcroft; Suzanne M. Fielding

    2013-01-21T23:59:59.000Z

    Within a highly generalised theoretical framework for the flow properties of complex fluids, we study the onset of shear banding in the three most common time-dependent experimental protocols: step stress, step strain and shear startup. By means of a linear stability analysis we derive a fluid-universal criterion for the onset of banding, separately for each protocol, that depends only on the shape of the experimentally measured time-dependent rheological response function, independent of the constitutive law and internal state variables of the particular fluid in question. Our predictions thus have the same status, in these time-dependent flows, as the widely known criterion for banding in steady state (of negatively sloping shear stress vs. shear rate). We support them with simulations of the rolie-poly model of polymeric fluids, the soft glassy rheology model, and a fluidity model.

  14. Method and apparatus for measuring the mass flow rate of a fluid

    DOE Patents [OSTI]

    Evans, Robert P. (Idaho Falls, ID); Wilkins, S. Curtis (Idaho Falls, ID); Goodrich, Lorenzo D. (Shelley, ID); Blotter, Jonathan D. (Pocatello, ID)

    2002-01-01T23:59:59.000Z

    A non invasive method and apparatus is provided to measure the mass flow rate of a multi-phase fluid. An accelerometer is attached to a pipe carrying a multi-phase fluid. Flow related measurements in pipes are sensitive to random velocity fluctuations whose magnitude is proportional to the mean mass flow rate. An analysis of the signal produced by the accelerometer shows a relationship between the mass flow of a fluid and the noise component of the signal of an accelerometer. The noise signal, as defined by the standard deviation of the accelerometer signal allows the method and apparatus of the present invention to non-intrusively measure the mass flow rate of a multi-phase fluid.

  15. Thermomigration of Tellurium Inclusions in CZT Brian Faulkner, Dr. Kelvin Lynn and Kelly Jones

    E-Print Network [OSTI]

    Collins, Gary S.

    Thermomigration of Tellurium Inclusions in CZT Brian Faulkner, Dr. Kelvin Lynn and Kelly Jones Datta, Kelly Jones, Chandrasekar Minnal Santosh Swain, Gitau Munge, Raji Soundararajan To make a good

  16. Method of Measuring Permittivity of Composite Materials with Hexagonal Ferrite Inclusions

    E-Print Network [OSTI]

    Koledintseva, Marina Y.

    Method of Measuring Permittivity of Composite Materials with Hexagonal Ferrite Inclusions Alexander containing hexagonal ferrite powders, as well on such dielectric materials, as PMMA, schungite composites, waveguide, reflection coefficient, hexagonal ferrite, schungite, PMMA, alabaster I. INTRODUCTION In many

  17. Hadronization in semi-inclusive deep-inelastic scattering on nuclei

    E-Print Network [OSTI]

    Hadronization in semi-inclusive deep-inelastic scattering on nuclei A. Airapetian p , N. Akopov aa , Z. Akopov aa , E.C. Aschenauer g , W. Augustyniak z , R. Avakian aa , A. Avetissian aa , E

  18. The Inclusive Semileptonic Decay Lepton Spectrum from $B \\to X e \\overline?$

    E-Print Network [OSTI]

    Lisa Randall

    1994-07-15T23:59:59.000Z

    In this talk, we review the QCD calculation of the lepton spectrum from inclusive semileptonic $B$ decay. We compare this prediction to that of the ACCMM model. This latter work was done in collaboration with Csaba Csaki.

  19. Co-production and Co-creation: Creative practice in Social Inclusion

    E-Print Network [OSTI]

    Boyer, Edmond

    to leverage methods from digital media art practice in contexts that result in social innovation. Keywords: interactive music, social inclusion, social innovation, co-production of knowledge, triangulation 1

  20. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    E-Print Network [OSTI]

    Conrad, Janet

    We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction ...

  1. Perceptions Of Texas Agricultural Education Teachers Regarding Diversity Inclusion In Secondary Agricultural Education Programs

    E-Print Network [OSTI]

    Lavergne, Douglas D.

    2010-01-14T23:59:59.000Z

    of this study was to explore and analyze Texas secondary agricultural education teachers' attitudes toward diversity inclusion in Texas secondary agricultural education programs. Using a web-based questionnaire, the researcher employed a nonproportional...

  2. Not just in it to win it : inclusive game play in an MIT dorm

    E-Print Network [OSTI]

    Kolos, Hillary (Hillary Anne)

    2010-01-01T23:59:59.000Z

    The recent increase in digital gaming players and platforms does not imply that digital gaming is as inclusive as it could be. There are still gaps in participation that, if left unaddressed, will exclude groups who have ...

  3. Thermal Storage and Advanced Heat Transfer Fluids (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Fact sheet describing NREL CSP Program capabilities in the area of thermal storage and advanced heat transfer fluids: measuring thermophysical properties, measuring fluid flow and heat transfer, and simulating flow of thermal energy and fluid.

  4. The incorporation of bubbles into a computer graphics fluid simulation

    E-Print Network [OSTI]

    Greenwood, Shannon Thomas

    2005-08-29T23:59:59.000Z

    We present methods for incorporating bubbles into a photorealistc fluid simulation. Previous methods of fluid simulation in computer graphics do not include bubbles. Our system automatically creates bubbles, which are simulated on top of the fluid...

  5. Arterial LDL Transport Incorporating Fluid Solid Interactions, Hyperthermia, and Atherosclerosis

    E-Print Network [OSTI]

    Chung, Stephen

    2013-01-01T23:59:59.000Z

    of Mechanical Engineers, Fluids Engineering Division (FED, Bio-Medical Fluids Engineering 21, 8. Buckwalter, J.Fluid Solid Interactions, Hyperthermia, and Atherosclerosis by Stephen Chung Doctor of Philosophy, Graduate Program in Mechanical Engineering

  6. Territoire, bien-tre et inclusion sociale, Confrences cadres LE SYSTEME REGIONAL D'INNOVATION

    E-Print Network [OSTI]

    Boyer, Edmond

    Territoire, bien-être et inclusion sociale, Conférences cadres 26 LE SYSTEME REGIONAL D'INNOVATION la période fordiste, l'innovation y est analysée comme le résultat d'un produit social et)" #12;Territoire, bien-être et inclusion sociale, Conférences cadres 27 Le système régional d'innovation

  7. Delamination characterization of composite plates with holes/inclusions under general in-plane loading

    E-Print Network [OSTI]

    Bense, Ronald

    2012-06-07T23:59:59.000Z

    DELAMINATION CHARACTERIZATION OF COMPOSITE PLATES WITH HOLES/INCLUSIONS UNDER GENERAL IN ? PLANE LOADING A Thesis by RONALD BENSE Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1989 KIaj or Subject: Mechanical Engineering DELAMINATION CHARACTERIZATION OF COMPOSITE PLATES WITH HOLES/INCLUSIONS UNDER GENERAL IN ? PLANE LOADING A Thesis by RONALD BENSE Approved as to style and content by...

  8. Fluid sampling apparatus and method

    DOE Patents [OSTI]

    Yeamans, D.R.

    1998-02-03T23:59:59.000Z

    Incorporation of a bellows in a sampling syringe eliminates ingress of contaminants, permits replication of amounts and compression of multiple sample injections, and enables remote sampling for off-site analysis. 3 figs.

  9. TILT POUR TRIALS AND ANALYSIS Bob Bryant1

    E-Print Network [OSTI]

    Beckermann, Christoph

    TILT POUR TRIALS AND ANALYSIS Bob Bryant1 , Kent D. Carlson2 , Shouzhu Ou2 , Christoph Beckermann2 reduce inclusion severity, compared to standard techniques. Bryant, R., Carlson, K.D., Ou, S

  10. A blurred interface formulation of The Reference Map Technique for Fluid-Solid Interactions and Fluid-Solid-Solid Interactions

    E-Print Network [OSTI]

    Valkov, Boris Ivanov

    2014-01-01T23:59:59.000Z

    In this work we present a blurred interface method for Fluid-Solid Interactions (FSI) and multiple solids immersed in a fluid or FSSI (Fluid-Solid-Solid Interactions) based on the reference map technique as presented by ...

  11. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar...

  12. A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS

    E-Print Network [OSTI]

    Anderson, C.

    2011-01-01T23:59:59.000Z

    FLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andFLUID DISPLACEMENT IN PETROLEUM RESERVOIRS C. Anderson andachieve optimal recovery of petroleum from a reservoir, it

  13. Application of Neutron Imaging and Scattering to Fluid Flow and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS Environments Application of Neutron Imaging and Scattering to Fluid Flow and Fracture in EGS...

  14. Working Fluids Low Global Warming Potential Refrigerants - 2013...

    Energy Savers [EERE]

    Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Working Fluids Low Global Warming Potential Refrigerants - 2013 Peer Review Emerging Technologies...

  15. Fracture Network and Fluid Flow Imaging for EGS Applications...

    Broader source: Energy.gov (indexed) [DOE]

    Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure Fracture Network and Fluid Flow Imaging for EGS Applications...

  16. Chemically Reactive Working Fluids for the Capture and Transport...

    Broader source: Energy.gov (indexed) [DOE]

    Specifically, the primary heat transfer fluid (HTF), which transmits the collected solar power to power cycle Evaluate Chemically Reacting Working Fluids (CRWFs) as HTFs...

  17. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    deep structural controls on fluid pathways in the field, which has compartmentalized the fluids and limited the degree of mixing between them. Authors Ayling, B.; Molling, P.;...

  18. Evaluation of Biodiesel Fuels from Supercritical Fluid Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biodiesel Fuels from Supercritical Fluid Processing with the Advanced Distillation Curve Method Evaluation of Biodiesel Fuels from Supercritical Fluid Processing with the Advanced...

  19. Computational fluid dynamics for the CFBR : challenges that lie ahead /

    SciTech Connect (OSTI)

    Kashiwa, B. A.; Yang, Wen-ching,

    2001-01-01T23:59:59.000Z

    The potential of Computational Fluid Dynamics as a tool for design and analysis of the Circulating Fluidized Bed Reactor is considered. The ruminations are largely philosophical in nature, and are based mainly on experience. An assessment of where CFD may, or may not, be a helpful tool for developing the needed understanding, is furnished. To motivate this assessment, a clarification of what composes a CFD analysis is provided. Status of CFD usage in CFBR problems is summarized briefly. Some successes and failures of CFD in CFBR analysis are also discussed; this suggests a practical way to proceed toward the goal of adding CFD as a useful tool, to be used in combination with well-defined experiments, for CFBR needs. The conclusion is that there remains substantial hope that CFD could be very useful in this application. In order to make the hope a reality, nontrivial, and achievable, advances in multiphase flow theory must be made.

  20. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.