Sample records for analysis energy estimates

  1. Damping Estimation of Plates for Statistical Energy Analysis

    E-Print Network [OSTI]

    Vatti, Kranthi

    2011-06-01T23:59:59.000Z

    .R.D.M. algorithm. Statistical Energy Analysis (S.E.A.), which is a natural extension of the Power Input Method, is used to evaluate coupling loss factors for two sets of plates, one set joined along a line and the other set joined at a point. Two alternative...

  2. Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density and Percent Lipids

    E-Print Network [OSTI]

    Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density impedance analysis (BIA) as a nonlethal means of predicting energy density and percent lipids for three fish. Although models that combined BIA measures with fish wet mass provided strong predictions of total energy

  3. Battery Life Estimation (BLE) and Data Analysis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIALoperatorBassi IBMofStartup

  4. Analysis of shower size as estimator of extensive air shower energy

    E-Print Network [OSTI]

    Vitor de Souza; Jeferson A. Ortiz; Gustavo Medina-Tanco; Federico Sanchez

    2005-09-16T23:59:59.000Z

    The fluorescence technique has been successfully used to detect ultrahigh energy cosmic rays by indirect measurements. The underlying idea is that the number of charged particles in the atmospheric shower, i.e, its longitudinal profile, can be extracted from the amount of emitted nitrogen fluorescence light. However the influence of shower fluctuations and the very possible presence of different nuclear species in the primary cosmic ray spectrum make the estimate of the shower energy from the fluorescence data analysis a difficult task. We investigate the potential of shower size at maximum depth as estimator of shower energy. The detection of the fluorescence light is simulated in detail and the reconstruction biases are carefully analyzed. We extend our calculations to both Auger and EUSO experiments. This kind of approach is of particular interest for showers that are not fully contained inside the field of view of the detector.

  5. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    SciTech Connect (OSTI)

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01T23:59:59.000Z

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  6. Energy Expenditure Estimation DEMO Application

    E-Print Network [OSTI]

    Lu?trek, Mitja

    and against the SenseWear, a dedicated commercial product for energy expenditure estimation. Keywords: humanEnergy Expenditure Estimation DEMO Application Bozidara Cvetkovi´c1,2 , Simon Kozina1,2 , Bostjan://www.mps.si Abstract. The paper presents two prototypes for the estimation of hu- man energy expenditure during normal

  7. Genome-scale estimate of the metabolic turnover of E. Coli from the energy balance analysis

    E-Print Network [OSTI]

    De Martino, Daniele

    2015-01-01T23:59:59.000Z

    In this article the notion of metabolic turnover is revisited in the light of recent results of out-of-equilibrium thermodynamics. By means of Monte Carlo methods we perform an exact uniform sampling of the steady state fluxes in a genome scale metabolic network of E Coli from which we infer the metabolites turnover times. However the latter are inferred from net fluxes, and we argue that this approximation is not valid for enzymes working nearby thermodynamic equilibrium. We recalculate turnover times from total fluxes by performing an energy balance analysis of the network and recurring to the fluctuation theorem. We find in many cases values one of order of magnitude lower, implying a faster picture of intermediate metabolism.

  8. Estimating Renewable Energy Costs

    Broader source: Energy.gov [DOE]

    Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

  9. Cost Estimating, Analysis, and Standardization

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1984-11-02T23:59:59.000Z

    To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

  10. State Energy Production Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14TableConference |6: "Regulating

  11. 2007 Estimated International Energy Flows

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10T23:59:59.000Z

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

  12. Estimating the Energy, Demand and Cost Savings from a Geothermal Heat Pump ESPC Project at Fort Polk, LA Through Utility Bill Analysis.

    SciTech Connect (OSTI)

    Shonder, John A [ORNL; Hughes, Patrick [ORNL

    2006-01-01T23:59:59.000Z

    Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other, more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.

  13. State energy data report 1994: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

  14. ESTIMATES OF ADDITIONAL ACHIEVABLE ENERGY SAVINGS

    E-Print Network [OSTI]

    ESTIMATES OF ADDITIONAL ACHIEVABLE ENERGY SAVINGS Supplement to California Energy. There are also likely additional savings from initiatives that are neither finalized nor funded are referred to as additional achievable energy efficiency (AAEE) impacts. Staff developed five AAEE

  15. State energy data report 1993: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

  16. State Energy Data Report, 1991: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

  17. State energy data report 1995 - consumption estimates

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

  18. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Systems Analysis Home Transportation Energy Predictive Simulation of Engines Transportation Energy Systems Analysis Transportation Energy Systems AnalysisTara...

  19. State energy data report 1996: Consumption estimates

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

  20. Estimates of US biomass energy consumption 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-06T23:59:59.000Z

    This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

  1. Improved diagnostic model for estimating wind energy

    SciTech Connect (OSTI)

    Endlich, R.M.; Lee, J.D.

    1983-03-01T23:59:59.000Z

    Because wind data are available only at scattered locations, a quantitative method is needed to estimate the wind resource at specific sites where wind energy generation may be economically feasible. This report describes a computer model that makes such estimates. The model uses standard weather reports and terrain heights in deriving wind estimates; the method of computation has been changed from what has been used previously. The performance of the current model is compared with that of the earlier version at three sites; estimates of wind energy at four new sites are also presented.

  2. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  3. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09T23:59:59.000Z

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  4. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01T23:59:59.000Z

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  5. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    - Carl Imhoff, PNNL More Documents & Publications Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations Estimating the...

  6. Estimating Energy Savings in Compressed Air Systems

    E-Print Network [OSTI]

    Schmidt, C.; Kissock, J. K.

    2004-01-01T23:59:59.000Z

    are frequently overestimated because the methods used to estimate savings neglect to consider important factors such as compressor control and type, storage, and multiple compressor operation. In this paper, a methodology is presented for modeling air... compressor performance and calculating projected energy savings from easily obtainable performance data such as full-load power, no-load power, rated capacity, average fraction full-load power or average fraction rated capacity. The methodology...

  7. Property:EstimatedTime | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to: navigation, search

  8. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Presentations Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations On September 30 and October 1, 2014, the Department of Energy...

  9. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    2014, the Department of Energy hosted a 2-day workshop on "Estimating the Benefits and Costs of Distributed Energy Technologies." The purpose of the workshop was to foster...

  10. Parameter estimation for energy balance models with memory

    E-Print Network [OSTI]

    Parameter estimation for energy balance models with memory By Lionel Roques1,*, Micka¨el D parameter estimation for one-dimensional energy balance models with mem- ory (EBMMs) given localized estimate is still possible in certain cases. Keywords: age dating; Bayesian inference; energy balance model

  11. Analysis | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of the Americas | DepartmentAnalysis Analysis

  12. NREL: Energy Analysis - Market Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz TorresMarket Analysis

  13. Clean Energy Policy Analysis: Impact Analysis of Potential Clean...

    Energy Savers [EERE]

    Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

  14. Verification of energy audit assumptions: Why engineering estimates go bad

    SciTech Connect (OSTI)

    Dent, C.L.; Swanson, D.B.; Koca, R.W.; Tibbetts, B.

    1994-12-31T23:59:59.000Z

    Often, local governments do not have the resources to fully assess and implement energy efficiency measures (EEMs) even though initial payback calculations are encouraging. To address this problem, the California Energy Commission (CEC) has been operating the Energy Partnership Program (EPP) to provide technical assistance and funding to local governments for energy efficiency projects in public buildings. A government agency interested in participating in the EPP begins the process by submitting an application which is then reviewed by the CEC for energy savings potential. Selected sites are visited by the CEC, after which they may be granted a full energy audit and recommendation study by an independent energy service company (ESCO). Also, in cases where the local government does not have the capital for new equipment purchases, the CEC can provide a loan to that government which can then be repaid through the reduced utility expenditures. Since industry experience has found that, on average, actual energy savings are only 60 - 70% of engineering estimates, the CEC hired Pacific Science & Technology (PS&T) to perform end-use metering and analysis to evaluate the accuracy of the energy audit. The CEC is not only interested in evaluating the total energy savings, but also improving the accuracy of future energy audits as well. To this end, Pacific Science & Technology is reviewing and evaluating all of the basic assumptions made by the auditor such as equipment power draws, operating schedules, fixture counts, etc. These basic assumptions are common building blocks used in energy use analysis. So, the goal of this project is to improve the audit assumptions and thereby improve the accuracy of future energy audits and EEM assessments.

  15. Estimating the Potential Impact of Renewable Energy on the Caribbean

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Estimating the Potential Impact of Renewable Energy on the Caribbean Job Sector Rebekah Shirley renewable energy projects within the Caribbean region. We present a model scenario where together energy

  16. Econometric Analysis on Efficiency of Estimator

    E-Print Network [OSTI]

    M. Khoshnevisan; F. Kaymram; Housila P. Singh; Rajesh Singh; Florentin Smarandache

    2003-04-16T23:59:59.000Z

    This paper investigates the efficiency of an alternative to ratio estimator under the super population model with uncorrelated errors and a gamma-distributed auxiliary variable. Comparisons with usual ratio and unbiased estimators are also made.

  17. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    regional estimates. Ill Price projections, especially forE.I.A. average energy price projections (Series B) --Gascunder the EIA Medium Price Projections (December 17, 1973

  18. Savings Estimates for the ENERGY STAR Voluntary Labeling Program

    E-Print Network [OSTI]

    . This paper presents past and predicted savings for the ENERGY STAR ® labeling program, operated jointly appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved

  19. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Estimation and Analysis of Life Cycle Costs of Baseline Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title...

  20. State energy data report: Consumption estimates, 1960--1987

    SciTech Connect (OSTI)

    Not Available

    1989-04-20T23:59:59.000Z

    The State Energy Data Report presents estimates of annual energy consumption at the state and national levels by major economic sector and by principal energy type for 1960 through 1987. Included in the report are documentation describing how the estimates were made for each energy source, sources of all input data, and a summary of changes from the State Energy Data Report published in April 1988.

  1. Estimating Appliance and Home Electronic Energy Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department of EnergyEstimating Appliance

  2. Technique for estimating jet fuel prices from energy futures market

    SciTech Connect (OSTI)

    Vineyard, T.A.

    1988-05-01T23:59:59.000Z

    This report presents a statistical analysis of future prices of petroleum products for use in predicting the monthly average retail price of kerosene-type jet fuel. The method of least squares was employed to examine the relationship between kerosene-type jet fuel retail prices and energy futures prices. Regression equations were constructed for four of the petroleum commodities traded on the energy futures market: heating oil No. 2, leaded regular gasoline, crude oil, and unleaded gasoline. Thirty-nine regression equations were estimated by the method of least squares to relate the cash price of kerosene-type jet fuel to the futures prices of the above four petroleum commodities for contract periods of 1 to 12 months. The analysis revealed that 19 of the 39 first-order linear regression equations provided a good fit to the data. Specifically, heating oil No. 2 performed better than the order energy futures in predicting the price of kerosene-type jet fuel. The only information required to use these regression equations are energy futures prices which are available daily from the Wall Street Journal. 5 refs., 4 tabs.

  3. Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities

    E-Print Network [OSTI]

    Hybrid Simulation Modeling to Estimate U.S. Energy Elasticities by Adam C. Baylin-Stern B.A. & Sc in the estimation of ESUBs from CIMS. Keywords: Elasticity of substitution; hybrid energy-economy model; translog-Stern Degree: Project No.: Master of Resource Management 535 Title of Thesis: Hybrid Simulation Modeling

  4. STATEWIDE ENERGY EFFICIENCY POTENTIAL ESTIMATES AND TARGETS

    E-Print Network [OSTI]

    rates of forecasted natural gas consumption, electricity consumption and peak electricity demand potential for electric consumption savings, 85 percent of the economic potential for peak demand savings Energy efficiency, energy savings, demand reduction, electricity consumption, natural gas consumption

  5. NREL: Energy Analysis - Energy Analysis Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles PhotoElla ZhouEnergy

  6. Master thesis Solar Energy Meteorology Comparison of different methods to estimate cloud height for solar

    E-Print Network [OSTI]

    Peinke, Joachim

    Master thesis ­ Solar Energy Meteorology Comparison of different methods to estimate cloud height: · Interest in meteorology and solar energy · Experiences with data handling and analysis · Good programming for solar irradiance calculations In order to derive incoming solar irradiance at the earths surface

  7. Analysis with Kernel Density Estimation University of Michigan / HERMES Collaboration

    E-Print Network [OSTI]

    Analysis with Kernel Density Estimation S. Gliske University of Michigan / HERMES Collaboration Transverse Parton Structure of the Hadron Yerevan, Armenia 25 June, 2009 Gliske (HERMES / Michigan) Analysis/Smearing Effects SIDIS cos(n) Conclusion Gliske (HERMES / Michigan) Analysis with KDEs TPSH `09 2 / 24 #12

  8. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01T23:59:59.000Z

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  9. Energy Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard | Department ofEmilyofEnergy Advising Services in

  10. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    E-Print Network [OSTI]

    Fridley, David G.

    2008-01-01T23:59:59.000Z

    Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

  11. CHP Emissions Reduction Estimator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpen Energy Information BurkinaButylCERTEL JumpCHP Emissions

  12. ESTIMATING ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS Chris Schmidt

    E-Print Network [OSTI]

    Kissock, Kelly

    ESTIMATING ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS Chris Schmidt Project Engineer Energy Industrial Assessment Center Department of Mechanical Engineering University of Dayton Dayton, Ohio ABSTRACT energy savings must be calculated in order to justify the cost of implementing the savings opportunity

  13. The primary energy estimation of inclined giant Jean Noel Capdevielle

    E-Print Network [OSTI]

    Boyer, Edmond

    Laboratory 90-950 Lodz 1, POBox 447, Poland Abstract-- Determination of the primary energy by surface arraysThe primary energy estimation of inclined giant EAS Jean Noel Capdevielle and Fabrice Cohen APC showers is no longer valid. As follows from simulations at energies near to 100 EeV, the density at 600 m

  14. Noisy Independent Factor Analysis Model for Density Estimation and Classification

    E-Print Network [OSTI]

    Amato, U.

    2009-06-09T23:59:59.000Z

    We consider the problem of multivariate density estimation when the unknown density is assumed to follow a particular form of dimensionality reduction, a noisy independent factor analysis (IFA) model. In this model the ...

  15. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01T23:59:59.000Z

    SAR images of the ocean using wavelet analysis. Canadian J.images: A new approach using wavelet transform. Canadian J.S. ; De Biasio, F. A wavelet-based technique for sea wind

  16. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01T23:59:59.000Z

    cost estimates) Figure 4: Capital and O&M Costs Sensitivity – Separate Refrigeration Load Distributed Energy Resourcescost estimates) Figure 8: Capital and O&M Costs Sensitivity Analysis – Integrated Refrigeration Load Distributed Energy Resources

  17. Interruption Cost Estimate Calculator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to:IES JumpUnion forInterruption Cost

  18. Estimation of dibaryon (OO) yields at RHIC energies

    E-Print Network [OSTI]

    Zhong-Dao Lu

    2002-07-02T23:59:59.000Z

    The yields of dibaryon (Omega-Omega) in relativistic heavy ion collisions, especially at RHIC energies, are estimated by statistical model. The yields of hyperon Omega- and the ratio of dibaryon to Omega are also given.

  19. NREL: Energy Analysis - Manufacturing Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz Torres Photo

  20. NREL: Energy Analysis - Policy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieter Gagnon Photo

  1. NREL: Energy Analysis - Sustainability Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieterScott

  2. NREL: Energy Analysis: Geospatial Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYimin

  3. NREL: Energy Analysis: Geospatial Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYiminGeospatial

  4. Energy Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen O'Kane Tauscher -The OCHO providesThis

  5. Using exploratory data analysis modified Box Plots to enhance Monte Carlo simulated Range Estimating Decision Technology 

    E-Print Network [OSTI]

    Clutter, David John

    1992-01-01T23:59:59.000Z

    Range Estimating Decision Technology (REDT) is a statistical analysis program designed to evaluate the quality of estimates. REDT provides two analysis of an estimate. 1) It evaluates the probability of attaining the estimated cost of a project. 2...

  6. NREL: Energy Analysis - Sean Esterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sean Esterly is a member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. Analyst On staff since August 2013 Phone number: 303-384-7436...

  7. NREL: Energy Analysis - Marissa Hummon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marissa Hummon is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Engineer On staff since January 2010 Phone number: 303-275-3269...

  8. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    SciTech Connect (OSTI)

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-05-14T23:59:59.000Z

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.

  9. Energy analysis program. 1994 annual report

    SciTech Connect (OSTI)

    Levine, M.D.

    1995-04-01T23:59:59.000Z

    This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

  10. Energy Storage Testing and Analysis High Power and High Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

  11. Property:EstimatedTimeHigh | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to: navigation,EstimatedTimeHigh

  12. Property:EstimatedTimeMedian | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to:EstimatedTimeMedian Jump to:

  13. Predesign energy analysis

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    A new graphic technique developed to help architects and engineers design more energy-efficient buildings is presented. An energy-efficient design includes two interrelated elements: physical design characteristics which minimize testing, cooling, and lighting loads; and mechanical and electrical subsystems which meet energy loads efficiently. The technique focuses on manipulation of design variables to effectively reduce excessive heat gains and losses. The technique, termed a visual one, is designed to show how a building uses energy. The technique described can also be done manually.

  14. Estimation of Energy Baseline by Simulation for On-going Commissioning and Energy Saving Retrofit 

    E-Print Network [OSTI]

    Miyata, M.; Yoshida, H.; Asada, M.; Iwata, T.; Tanabe, Y.; Yanagisawa, T.

    2006-01-01T23:59:59.000Z

    This paper proposes a method of estimating the adjusted energy baseline using simulation models, which can calculate the energy baseline with various conditions, such as conditions of weather, occupancy and equipment operations. Especially...

  15. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  16. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6

  17. Sandia Energy - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson theCapabilities

  18. Sandia Energy - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectson theCapabilitiesComputational Modeling

  19. Sandia Energy » Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This author has not yet filled

  20. Building Energy Monitoring and Analysis

    SciTech Connect (OSTI)

    Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

    2013-06-01T23:59:59.000Z

    U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

  1. Strategic Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-02-01T23:59:59.000Z

    NREL complements its scientific research with high-quality, credible, technology-neutral, objective analysis that informs policy and investment decisions as renewable energy and energy efficiency technologies move from innovation through integration. This sheet highlights NREL's analytical capabilities and achievements.

  2. Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries Bradford Millsa * and Joachim Schleicha,b,c a Virginia Polytechnic Institute of measures of household energy use behavior are estimated using a unique dataset of approximately 5

  3. Estimating home energy decision parameters for a hybrid energyYeconomy policy model

    E-Print Network [OSTI]

    Estimating home energy decision parameters for a hybrid energyYeconomy policy model Mark Jaccard, Canada E-mail: jaccard@sfu.ca Hybrid energyYeconomy models combine the advantages of a technologically parameters translate into the behavioral parameters of a hybrid model. We then simulate household energy

  4. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome ton6 thCONTRACTORSAlaskanSandian

  5. NREL: Energy Analysis - Caroline Uriarte Chapman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chapman is a member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. Energy Analyst On staff since April 2009 Phone number:...

  6. Analysis of neutron scattering data: Visualization and parameter estimation

    SciTech Connect (OSTI)

    Beauchamp, J.J.; Fedorov, V.; Hamilton, W.A.; Yethiraj, M.

    1998-09-01T23:59:59.000Z

    Traditionally, small-angle neutron and x-ray scattering (SANS and SAXS) data analysis requires measurements of the signal and corrections due to the empty sample container, detector efficiency and time-dependent background. These corrections are then made on a pixel-by-pixel basis and estimates of relevant parameters (e.g., the radius of gyration) are made using the corrected data. This study was carried out in order to determine whether treatment of the detector efficiency and empty sample cell in a more statistically sound way would significantly reduce the uncertainties in the parameter estimators. Elements of experiment design are shortly discussed in this paper. For instance, we studied the way the time for a measurement should be optimally divided between the counting for signal, background and detector efficiency. In Section 2 we introduce the commonly accepted models for small-angle neutron and x-scattering and confine ourselves to the Guinier and Rayleigh models and their minor generalizations. The traditional approaches of data analysis are discussed only to the extent necessary to allow their comparison with the proposed techniques. Section 3 describes the main stages of the proposed method: visual data exploration, fitting the detector sensitivity function, and fitting a compound model. This model includes three additive terms describing scattering by the sampler, scattering with an empty container and a background noise. We compare a few alternatives for the first term by applying various scatter plots and computing sums of standardized squared residuals. Possible corrections due to smearing effects and randomness of estimated parameters are also shortly discussed. In Section 4 the robustness of the estimators with respect to low and upper bounds imposed on the momentum value is discussed. We show that for the available data set the most accurate and stable estimates are generated by models containing double terms either of Guinier's or Rayleigh's type. The optimal partitioning of the total experimental time between measuring various signals is discussed in Section 5. We applied a straightforward optimization instead of some special experimental techniques because of the numerical simplicity of the corresponding problem. As a criterion of optimality we selected the variance of the gyration radius maximum likelihood estimator. The statistical background of the proposed approach is given in the appendix. The properties of the maximum likelihood estimators and the corresponding iterated estimator together with its possible numerical realization are presented in subsection A.1. In subsection A.2 we prove that the use of a compound model leads to more efficient estimators than a stage-wise analysis of different components entering that model.

  7. Retrofit Energy Savings Estimation Model | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form History FacebookRegenesysRenewableStrategies (EC-LEDS)

  8. Estimating Appliance and Home Electronic Energy Use | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOEDepartment of EnergyEric J. Fygi About Us Eric

  9. Estimating Motor Efficiency in the Field | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas EnergyofIdaho | Department of EnergyEstimatingEstimating

  10. Sandia Energy - Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronicResourcesjobsJulyCatalysts

  11. NANA Strategic Energy Plan & Energy Options Analysis

    SciTech Connect (OSTI)

    Jay Hermanson; Brian Yanity

    2008-12-31T23:59:59.000Z

    NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. • Biomass Feasibility analysis in the upper Kobuk; • Run of the river hydroelectric development for the Upper Kobuk; • Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; • Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

  12. An Energy and Power Consumption Analysis of FPGA Routing Architectures

    E-Print Network [OSTI]

    Wilton, Steve

    An Energy and Power Consumption Analysis of FPGA Routing Architectures Peter Jamieson, Elec of energy and power consumption using an updated power estimation framework compatible with VPR 5.0. The goal of this research is to help FPGA vendors find the best FPGA architectures. Initially, we make some

  13. NREL: Energy Analysis - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contactK-12BSM(ATB) of

  14. NREL: Energy Analysis - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contactK-12BSM(ATB) of

  15. NREL: Energy Analysis - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contactK-12BSM(ATB)

  16. NREL: Energy Analysis - Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff National Renewable

  17. NREL: Energy Analysis - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff Webmaster Please enter

  18. Sandia Energy - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSitingStaffSunshine to Petrol

  19. Sandia Energy - Uncertainty Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home Stationary PowerUncertainty

  20. Estimating the Energy Use and Efficiency Potential of U.S. Data Centers

    E-Print Network [OSTI]

    Masanet, EricR.

    2014-01-01T23:59:59.000Z

    Keywords: data centers; energy demand modeling; energyof U.S. data center energy demand under different efficiencyfor estimation of energy demand in different data center

  1. 2005 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program

    SciTech Connect (OSTI)

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

    2006-03-07T23:59:59.000Z

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), Energy Star labels exist for more thanforty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2004, whatwe expect in 2005, and provide savings forecasts for two marketpenetration scenarios for the periods 2005 to 2010 and 2005 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  2. 2007 Status Report: Savings Estimates for the ENERGY STAR(R)VoluntaryLabeling Program

    SciTech Connect (OSTI)

    Sanchez, Marla; Webber, Carrie A.; Brown, Richard E.; Homan,Gregory K.

    2007-03-23T23:59:59.000Z

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2006, whatwe expect in 2007, and provide savings forecasts for two marketpenetration scenarios for the periods 2007 to 2015 and 2007 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  3. 2004 status report: Savings estimates for the Energy Star(R)voluntarylabeling program

    SciTech Connect (OSTI)

    Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

    2004-03-09T23:59:59.000Z

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2003, whatwe expect in 2004, and provide savings forecasts for two marketpenetration scenarios for the periods 2004 to 2010 and 2004 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  4. 2006 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program

    SciTech Connect (OSTI)

    Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan,Gregory K.

    2006-03-07T23:59:59.000Z

    ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2005, whatwe expect in 2006, and provide savings forecasts for two marketpenetration scenarios for the periods 2006 to 2015 and 2006 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

  5. Energy Analysis by Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13,Statement | Department ofEVDepartmentDepartmentEnergy Analysis by

  6. Energy Savings Estimates of Light Emitting Diodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |in STEMEnergyI.ofTrack(CHP)Saving Gift

  7. Methodologies for Estimating Building Energy Savings Uncertainty: Review and Comparison

    E-Print Network [OSTI]

    Baltazar, J.C.; Sun, Y.; Claridge, D.

    2014-01-01T23:59:59.000Z

    for the right case is given. ESL-IC-14-09-11 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 ...p. 1 INTERNATIONAL CONFERENCE FOR ENHANCED BUILDING OPERATIONS TSINGHUA UNIVERSITY – BEIJING, CHINA –SEPTEMBER 14 -17, 2014 Methodologies for Estimating Building Energy Savings Uncertainty: Review and Comparison Juan-Carlos Baltazar PhD, PE, Yifu...

  8. Property:EstimatedCostMedianUSD | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to: navigation, search Property

  9. Property:EstimatedTimeExplained | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to: navigation,

  10. Property:EstimatedTimeLow | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationTypeEstimatedCostMedianUSD Jump to:

  11. Alternative energy estimation from the shower lateral distribution function

    E-Print Network [OSTI]

    Vitor de Souza; Carlos O. Escobar; Joel Brito; Carola Dobrigkeit; Gustavo Medina-Tanco

    2005-09-16T23:59:59.000Z

    The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new estimator proposed here is shown to be a good and robust alternative to the standard single point procedure.

  12. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12T23:59:59.000Z

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  13. MODAL ENERGY ANALYSIS Nicolas Totaro1*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MODAL ENERGY ANALYSIS Nicolas Totaro1* , Jean-Louis Guyader1 1 Laboratoire Vibrations Acoustique.totaro@insa-lyon.fr Keywords: Energy methods, non resonant, pure tone, Statistical Energy Analysis, MODENA. ABSTRACT The Modal Energy Analysis presented in this paper is a method to predict energy exchanges between vibro

  14. End-use energy consumption estimates for US commercial buildings, 1989

    SciTech Connect (OSTI)

    Belzer, D.B.; Wrench, L.E.; Marsh, T.L. [Pacific Northwest Lab., Richland, WA (United States)

    1993-11-01T23:59:59.000Z

    An accurate picture of how energy is used in the nation`s stock of commercial buildings can serve a variety of program planning and policy needs within the Department of Energy, by utilities, and other groups seeking to improve the efficiency of energy use in the building sector. This report describes an estimation of energy consumption by end use based upon data from the 1989 Commercial Building Energy Consumption Survey (CBECS). The methodology used in the study combines elements of engineering simulations and statistical analysis to estimate end-use intensities for heating, cooling, ventilation, lighting, refrigeration, hot water, cooking, and miscellaneous equipment. Billing data for electricity and natural gas were first decomposed into weather and nonweather dependent loads. Subsequently, Statistical Adjusted Engineering (SAE) models were estimated by building type with annual data. The SAE models used variables such as building size, vintage, climate region, weekly operating hours, and employee density to adjust the engineering model predicted loads to the observed consumption. End-use consumption by fuel was estimated for each of the 5,876 buildings in the 1989 CBECS. The report displays the summary results for eleven separate building types as well as for the total US commercial building stock.

  15. Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest

    SciTech Connect (OSTI)

    Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

    2012-10-01T23:59:59.000Z

    Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

  16. New analysis techniques for estimating impacts of federal appliance efficiency standards

    SciTech Connect (OSTI)

    McMahon, James E.

    2003-06-24T23:59:59.000Z

    Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

  17. CORONAL MASS EJECTION MASS, ENERGY, AND FORCE ESTIMATES USING STEREO

    SciTech Connect (OSTI)

    Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); McAteer, R. T. James [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

    2012-06-10T23:59:59.000Z

    Understanding coronal mass ejection (CME) energetics and dynamics has been a long-standing problem, and although previous observational estimates have been made, such studies have been hindered by large uncertainties in CME mass. Here, the two vantage points of the Solar Terrestrial Relations Observatory (STEREO) COR1 and COR2 coronagraphs were used to accurately estimate the mass of the 2008 December 12 CME. Acceleration estimates derived from the position of the CME front in three dimensions were combined with the mass estimates to calculate the magnitude of the kinetic energy and driving force at different stages of the CME evolution. The CME asymptotically approaches a mass of 3.4 {+-} 1.0 Multiplication-Sign 10{sup 15} g beyond {approx}10 R{sub Sun }. The kinetic energy shows an initial rise toward 6.3 {+-} 3.7 Multiplication-Sign 10{sup 29} erg at {approx}3 R{sub Sun }, beyond which it rises steadily to 4.2 {+-} 2.5 Multiplication-Sign 10{sup 30} erg at {approx}18 R{sub Sun }. The dynamics are described by an early phase of strong acceleration, dominated by a force of peak magnitude of 3.4 {+-} 2.2 Multiplication-Sign 10{sup 14} N at {approx}3 R{sub Sun }, after which a force of 3.8 {+-} 5.4 Multiplication-Sign 10{sup 13} N takes effect between {approx}7 and 18 R{sub Sun }. These results are consistent with magnetic (Lorentz) forces acting at heliocentric distances of {approx}<7 R{sub Sun }, while solar wind drag forces dominate at larger distances ({approx}>7 R{sub Sun }).

  18. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    System . . . . . Capital Cost Estimates for a 2000 T/D Purox1976. Table F-2 Estimates of Capital Costs for Solar Thermalcapital costs, power rating at an optimal average wind velocity and energy costs The capacity factors, according to the estimate

  19. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  20. Alternative energy estimation from the shower lateral distribution function

    E-Print Network [OSTI]

    De Souza, V; Brito, J; Dobrigkeit, C; Medina-Tanco, G; Souza, Vitor de; Escobar, Carlos O.; Brito, Joel; Dobrigkeit, Carola; Medina-Tanco, Gustavo

    2005-01-01T23:59:59.000Z

    The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new...

  1. Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions

    E-Print Network [OSTI]

    Szilagyi, Jozsef

    boundary conditions Jozsef Szilagyi Conservation and Survey Division, University of Nebraska analysis Citation: Szilagyi, J., Sensitivity analysis of aquifer parameter estimations based on the Laplace

  2. Analysis Methodologies | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT SAmes LabSystems Analysis » Analysis

  3. Resource Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergyforDepartmentSystems Analysis » Analysis

  4. NREL: Energy Analysis - Newsletter Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The Energy Analysis at NREL

  5. NREL: Energy Analysis - Nick Grue

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The Energy Analysis atGrue

  6. NREL: Energy Analysis - Nick Muerdter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The Energy Analysis

  7. NREL: Energy Analysis - Owen Zinaman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The Energy AnalysisOwen

  8. Geothermal Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |Information 6thGeothermal Analysis Jump to:

  9. Development of an energy-use estimation methodology for the revised Navy Manual MO-303

    SciTech Connect (OSTI)

    Richman, E.E.; Keller, J.M.; Wood, A.G.; Dittmer, A.L.

    1995-01-01T23:59:59.000Z

    The U.S. Navy commissioned Pacific Northwest Laboratory (PNL) to revise and/or update the Navy Utilities Targets Manual, NAVFAC MO-303 (U.S. Navy 1972b). The purpose of the project was to produce a current, applicable, and easy-to-use version of the manual for use by energy and facility engineers and staff at all Navy Public Works Centers (PWCs), Public Works Departments (PWDs), Engineering Field Divisions (EFDs), and other related organizations. The revision of the MO-303 manual involved developing a methodology for estimating energy consumption in buildings and ships. This methodology can account for, and equitably allocate, energy consumption within Navy installations. The analyses used to develop this methodology included developing end-use intensities (EUIs) from a vast collection of Navy base metering and billing data. A statistical analysis of the metering data, weather data, and building energy-use characteristics was used to develop appropriate EUI values for use at all Navy bases. A complete Navy base energy reconciliation process was also created for use in allocating all known energy consumption. Initial attempts to use total Navy base consumption values did not produce usable results. A parallel effort using individual building consumption data provided an estimating method that incorporated weather effects. This method produced a set of building EUI values and weather adjustments for use in estimating building energy use. A method of reconciling total site energy consumption was developed based on a {open_quotes}zero-sum{close_quotes} principle. This method provides a way to account for all energy use and apportion part or all of it to buildings and other energy uses when actual consumption is not known. The entire text of the manual was also revised to present a more easily read understood and usable document.

  10. An Estimate of Energy Use in Laboratories, Cleanrooms, and Data Centers in New York

    SciTech Connect (OSTI)

    Mathew, Paul

    2008-10-01T23:59:59.000Z

    Laboratories, cleanrooms and data centers are very energy-intensive. For example, laboratories are typically three to eight times as energy intensive as a typical office building, and a data center may be as much as 20-50 times as energy intensive as a typical office building. This technical note presents an estimate of the total energy use in laboratories, cleanrooms and data centers in New York. There is generally very limited data on energy use in the high tech sector, both at the national and state level. Since it was beyond the scope of this project to develop primary data through surveys, the analysis relied primarily on the use of proxy indicators and extrapolation from national data where available. The results for each building type are summarized below in table E-1 and figure E-1.

  11. Quantitative Financial Analysis of Alternative Energy Efficiency Shareholder Incentive Mechanisms

    E-Print Network [OSTI]

    Cappers, Peter

    2010-01-01T23:59:59.000Z

    Analysis of Alternative Energy Efficiency ShareholderAnalysis of Alternative Energy Efficiency Shareholderof alternative shareholder incentive mechanisms for energy

  12. An Estimation and Simulation Framework for Energy Efficient Design using Platform FPGAs

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    An Estimation and Simulation Framework for Energy Efficient Design using Platform FPGAs Sumit modeling technique, domain specific modeling, and a methodology for energy-efficient design of application

  13. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Issues in International Energy Consumption Analysis: Electricity Usage in India's Housing Sector November 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of...

  14. Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossaryProgramRussiaSpaceNewsSustainableSystems Analysis

  15. Department of Energy Analysis of Economic Impact

    National Nuclear Security Administration (NNSA)

    Department of Energy Analysis of Economic Impact Final Rule, 10 CFR 810 February 3, 2015 1 Executive Summary The Department of Energy (DOE) published a Notice of Proposed...

  16. Energy Systems Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Analysis All stages of energy production have inputs and outputs. Argonne researchers analyze the total production picture and develop tools for members of the...

  17. Energy Analysis of the Texas Capitol Restoration

    E-Print Network [OSTI]

    Hunn, B. D.; Banks, J. A.; Reddy, S. N.

    This paper presents the methodology and results of a detailed energy analysis of the Texas Capitol Restoration. The purpose of this analysis was two-fold: 1) to determine the projected energy cost savings of a series of design alternatives...

  18. Origins of Analysis Methods Used to Design High Performance Commercial Buildings: Part II, Solar Energy Analysis

    E-Print Network [OSTI]

    Oh, S.; Haberl, J.S.

    PV, solar thermal, passive solar analysis programs are reivewed using a new comprehensive genealogy chart. In companion papers, the origins of the analysis methods of whole-building energy and daylighting simulation programs are reviewed (Oh... analysis programs evaluate the performance of solar systems that are designed to collect and use solar radiation for thermal or electricity conversion. These programs are used for simulations and design methods: Computer simulations estimate the time...

  19. Energy Use Analysis for the Federal Energy Management Program 

    E-Print Network [OSTI]

    Mazzucchi, R. P.; Devine, K. D.

    1988-01-01T23:59:59.000Z

    -efficient, the Federal Energy Management Program (FEMP) endeavors to improve the technical basis for such performance-based contracting. Specific tasks include the development of improved energy use baselining methods, refinement of a simplified energy analysis method...

  20. ESTIMATING DAMPING PARAMETERS IN MULTI-DEGREE-OF-FREEDOM VIBRATION SYSTEMS BY BALANCING ENERGY0

    E-Print Network [OSTI]

    Feeny, Brian

    ESTIMATING DAMPING PARAMETERS IN MULTI-DEGREE-OF-FREEDOM VIBRATION SYSTEMS BY BALANCING ENERGY0 B is outlined, involving a balance of dissipated and supplied energies over a cycle of pe- riodic vibration a damping estimation method based on the balance of energy. The idea is to compute the energy input per

  1. Environmental Analysis | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -RailroadEnvironmental Analysis

  2. Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program

    SciTech Connect (OSTI)

    Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

    2007-07-01T23:59:59.000Z

    Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

  3. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    the ORNL Residential Energy Demand Model to the EvaluationDept. of Energy THE ORNL ENERGY DEMAND TO THE EVALUATION OFORNL) Residential Energy Demand Model (REDM) was developed

  4. Current Work in Energy Analysis (Energy Analysis Program -1996 Annual Report)

    SciTech Connect (OSTI)

    Energy Analysis Program

    1998-03-01T23:59:59.000Z

    This report describes the work that Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory has been doing most recently. One of our proudest accomplishments is the publication of Scenarios of U.S. Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the U.S. This analysis played a key role in shaping the U.S. position on climate change in the Kyoto Protocol negotiations. Our participation in the fundamental characterization of the climate change issue by the IPCC is described. We are also especially proud of our study of ''leaking electricity,'' which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of U.S. residential electricity currently expended on standby losses. The 54 vignettes contained in the following pages summarize results of research. activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national ENERGY STAR{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China. These are the intellectual endeavors of a talented team of researchers dedicated to public service.

  5. Wave Energy Resource Analysis for Use in Wave Energy Conversion 

    E-Print Network [OSTI]

    Pastor, J.; Liu, Y.; Dou, Y.

    2014-01-01T23:59:59.000Z

    In order to predict the response of wave energy converters an accurate representation of the wave climate resource is crucial. This paper gives an overview of wave resource modeling techniques as well as detailing a methodology for estimating...

  6. Analysis Procedures to Estimate Seismic Demands of Structures | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s Reply Comments AT&T,FACT SAmes LabSystems Analysis »Department ofof

  7. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    of each county's total future cooling-water requirementscooling require- ments were compared with estimates of present and future

  8. NREL: Energy Analysis - NREL Releases Report on Policy Options...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more at http:energy.govsunshot. For the latest updates on information regarding energy analysis, visit the Energy Analysis website. You can also subscribe to the Energy...

  9. Industrial Geospatial Analysis Tool for Energy Evaluation 

    E-Print Network [OSTI]

    Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

    2013-01-01T23:59:59.000Z

    . The tool applies statistical modeling to multiple datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption...

  10. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01T23:59:59.000Z

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  11. Transportation Analysis | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

  12. Analysis of power estimation techniques in CDMA systems

    E-Print Network [OSTI]

    Pei, Ying

    1999-01-01T23:59:59.000Z

    estimation techniques, the expectation maximization (EM) algorithm, the decorrelating estimator and the averaging method, on both AWGN and Rayleigh fading channels. The implementation of the EM algorithm on TMS320C62 is also presented. The performance...

  13. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    United States and China, Energy and Buildings, 2013. Underin Singapore. Energy and Buildings, 37, 167-174. Eom, J. ,building operations. Energy and Buildings, 33, 783–791.

  14. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    Center for Building Energy Efficiency, and the China Center on Building Energy Efficiency (CERC-BEE) November,1)  CERC  Building  Energy  Efficiency  (CERC?BEE) 

  15. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    Local Population of Geothermal Energy Development in theof coal, nuclear and geothermal energy sources. Overall, thewith new or expanded geothermal energy development. Fig. 1.

  16. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    due to different definitions of energy use and boundary,due to different definitions of energy use and boundary, methodology for building energy data definition, collection,

  17. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    Local Population of Geothermal Energy Development in theuse of coal, nuclear and geothermal energy sources. Overall,of indigenous renewable and geothermal energy re- sources in

  18. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    for geothermal energy, OTEC, solar thermal electricity andsolar thermal electric systems and geothermal energy. Solarsolar thermal electric plants, ocean thermal energy plants (

  19. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    trade winds, biomass, ocean thermal energy gradients, andfrom biomass ocean thermal energy conversion geothermalelectric plants, ocean thermal energy plants (OTEC) and

  20. Accuracy of Contemporary Parametric Software Estimation Models: A Comparative Analysis

    E-Print Network [OSTI]

    Tomkins, Andrew

    with delays and being costly and error- prone. Inaccurate estimation of project resources is considered as one the costs, schedule and the resources for IT projects. Software estimation is the process of predicting the effort, duration and cost required to develop a software system [2]. Estimators often rely on one or more

  1. Scripted Building Energy Modeling and Analysis (Presentation)

    SciTech Connect (OSTI)

    Macumber, D.

    2012-10-01T23:59:59.000Z

    Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

  2. Hydrogen Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Analysis Hydrogen Analysis Presentation on Hydrogen Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004 to discuss and define role of...

  3. Optimal Strategies for Communication and Remote Estimation with an Energy Harvesting Sensor

    E-Print Network [OSTI]

    Teneketzis, Demosthenis

    1 Optimal Strategies for Communication and Remote Estimation with an Energy Harvesting Sensor A strategies. Communication problems with energy harvesting transmitters have been studied recently (see [1 with an energy harvesting sensor and a remote estimator. The sensor observes the state of a discrete-time source

  4. INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS

    E-Print Network [OSTI]

    INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

  5. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation

    E-Print Network [OSTI]

    Xing, Eric P.

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy component of our free energy estimates can useful in distinguishing native

  6. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation

    E-Print Network [OSTI]

    Langmead, Christopher James

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy compo- nent of our free energy estimates can be useful in distinguishing

  7. Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

    2012-10-01T23:59:59.000Z

    No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

  8. Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications

    E-Print Network [OSTI]

    Energy Institute School of Ocean and Earth Sciences and Technology Scott Q. Turn Vheissu Keffer MiltonAnalysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples

  9. San Carlos Apache Tribe - Energy Organizational Analysis

    SciTech Connect (OSTI)

    Rapp, James; Albert, Steve

    2012-04-01T23:59:59.000Z

    The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.

  10. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    California Energy Commission definition of “heat storm”: “storm“ than the Energy Commission definition quoted above toCalifornia Energy Commission. 2008. Definition of Heat

  11. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Office of Environmental Management (EM)

    in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

  12. The Smart Grid: An Estimation of the Energy and Carbon Dioxide...

    Open Energy Info (EERE)

    Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

  13. Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry

    SciTech Connect (OSTI)

    Love, Lonnie J [ORNL

    2012-12-01T23:59:59.000Z

    The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

  14. Hydrogen for Energy Storage Analysis Overview (Presentation)

    SciTech Connect (OSTI)

    Steward, D. M.; Ramsden, T.; Harrison, K.

    2010-06-01T23:59:59.000Z

    Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

  15. Energy Market Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 FederalTexas Energy Incentive Programs,Energy LiteracyManagementEnergy

  16. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias Solar Energy Jump to: navigation,Machines Corp IBMsource

  17. International Clean Energy Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii | Open Energy Informationsource History View

  18. Determination of uncertainty in reserves estimate from analysis of production decline data

    E-Print Network [OSTI]

    Wang, Yuhong

    2007-09-17T23:59:59.000Z

    Analysts increasingly have used probabilistic approaches to evaluate the uncertainty in reserves estimates based on a decline curve analysis. This is because the results represent statistical analysis of historical data that usually possess...

  19. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01T23:59:59.000Z

    a future with very low energy buildings resulting in very making  for  low  energy  buildings.   This  project  will and operation of low energy buildings.  Several studies, 

  20. Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

  1. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    new energy technologies (e.g. OTEC, STEC), crude oil fromof electricity from wind, OTEC, photovoltaics, solar thermalfor geothermal energy, OTEC, solar thermal electricity and

  2. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    Local Population of Geothermal Energy Development in thedevelopment is hindered by conflicts between regulations and regulators at local, state and federal levels. Energy

  3. A tool to estimate materials and manufacturing energy for a product

    E-Print Network [OSTI]

    Duque Ciceri, Natalia

    This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge on how these ...

  4. Decision analysis for geothermal energy

    E-Print Network [OSTI]

    Yost, Keith A

    2012-01-01T23:59:59.000Z

    One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

  5. NREL: Energy Analysis: Energy-Water Nexus

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYimin ZhangEnergy-Water

  6. A Censoring Strategy for Decentralized Estimation in Energy-Constrained Adaptive Diffusion Networks

    E-Print Network [OSTI]

    Leus, Geert

    A Censoring Strategy for Decentralized Estimation in Energy-Constrained Adaptive Diffusion Networks.j.t.leus}@tudelft.nl Abstract--This paper presents a censoring strategy for dis- tributed estimation over adaptive networks in scenarios where energy resources are limited. Sensors apply selective communi- cation policies in order

  7. Data-driven Techniques to Estimate Parameters in the Homogenized Energy Model for Shape Memory Alloys

    E-Print Network [OSTI]

    Data-driven Techniques to Estimate Parameters in the Homogenized Energy Model for Shape Memory. In this paper, we focus on the homogenized energy model for shape memory alloys (SMA). Specifically, we develop parameters are compared to the initial estimates. 1 Introduction Shape memory alloys (SMA) are novel

  8. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    * Tribal electricity and energy usage * Land Ownership Oklahoma Energy Market 11 Oklahoma Wind Potential 12 Oklahoma Community Wind Potential 13 Oklahoma Solar PV Potential 14...

  9. Sandia Energy - Transportation Energy Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution

  10. Estimating material and energy intensities of urban areas

    E-Print Network [OSTI]

    Quinn, David James, Ph. D. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

  11. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    solar energy technologies. performance warranties for complete solar installations; building performance applications as alter- natives to building codes

  12. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    with high potential for developing its rich renewable energypotential "pathfinder" for the large- scale use of renewable energy

  13. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    energy conservation and load leveling policies for the metropolitan area of New York City,"energy self-sufficient city of 13,450 acres would still be less than the median area (its energy needs. In Future 3, if the land area of the city

  14. Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH

    E-Print Network [OSTI]

    Kurapov, Alexander

    Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic of boundary energy in local budgets. Until recently, internal wave energy fluxes in ocean observations were 2004, in final form 3 February 2005) ABSTRACT Energy flux is a fundamental quantity for understanding

  15. Estimating ProteinLigand Binding Free Energy: Atomic Solvation Parameters for Partition Coefficient and

    E-Print Network [OSTI]

    Luhua, Lai

    Estimating Protein­Ligand Binding Free Energy: Atomic Solvation Parameters for Partition Coefficient and Solvation Free Energy Calculation Jianfeng Pei,1,2 Qi Wang,1,2 Jiaju Zhou,3 and Luhua Lai1 free energy and the correct scoring in docking studies. We have developed a new solvation energy

  16. An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T. FASULLO

    E-Print Network [OSTI]

    Fasullo, John

    An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T, in final form 25 September 2007) ABSTRACT Monthly net surface energy fluxes (FS) over the oceans ocean energy content" are compared with the directly observed ocean energy content (OE) and tendency

  17. NREL: Energy Analysis - Technology Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieterScottTechnology

  18. NREL: Energy Analysis: Analysis of Project Finance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYimin Zhang Photo

  19. NREL: Energy Analysis - Transportation Energy Futures Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster ToStaff

  20. State Level Analysis of Industrial Energy Use

    E-Print Network [OSTI]

    Elliott, R. N.; Shipley, A. M.; Brown, E.

    industrial energy use data is not readily available. The only data available is at the national or census regional level (DOE/EIA 200Ia). As a result, a methodology was developed based upon state-level economic activity data and national energy intensity... data reported in the 1998 Manufacturing Energy Consumption Survey (MECS)(DOE/EIA 2001a) and value of shipments data reported in the 1998 Annual Survey of Manufacturing (ASM)(Department of Commerce 2000) are used to estimate energy data from...

  1. Energy Analysis Program 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  2. Energy Analysis Program 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

  3. How to Estimate the Economic Impacts from Renewable Energy

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy Technical Assistance Project (TAP) for state and local officials; Gail Mosey and Eric Lantz, National Renewable Energy Laboratory; Jobs and Economic Development Impacts (JEDI) Wind Model.

  4. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMaryEnergy Permalink Gallery

  5. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMaryEnergy Permalink

  6. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMaryEnergy

  7. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMaryEnergyCapabilities Permalink

  8. Petrography Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to:PersonalPetroSunEnergy Jump to:

  9. Market penetration analysis for direct heat geothermal energy applications

    SciTech Connect (OSTI)

    Thomas, R.J.; Nelson, R.A.

    1981-06-01T23:59:59.000Z

    This study is concerned with the estimation of the National geothermal market potential and penetration in direct heat applications for residences and certain industry segments. An important aspect of this study is that the analysis considers both known and anticipated goethermal resources. This allows for an estimation of the longer-range potential for geothermal applications. Thus the approach and results of this study provide new insights and valuable information not obtained from more limited, site-specific types of analyses. Estimates made in this study track geothermal market potential and projected penetration from the present to the year 2020. Private sector commercialization of geothermal energy over this period requires assistance in the identification of markets and market sizes, potential users, and appropriate technical applications.

  10. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    solar process heat deep (2000m) undersea DC transmissionSolar and geothermal energy can also be used as sources of process heat.solar thermal electricity photovoltaics liquid fuels from biomass ocean thermal energy conversion geothermal electricity and process heat

  11. Energy, Environmental & Economic Systems Analysis

    E-Print Network [OSTI]

    for analyzing integrated energy and electricity systems. Worldwide Use of ENPEP ENPEP is used around the world and government analysts are using the model for energy planning. Further, the World Bank and other lending and consumption activities independently, each optimizing individual objectives. ENPEP-BALANCE finds its solution

  12. Hydrogen Technical Analysis: Energy Station

    E-Print Network [OSTI]

    , which represents approximately 50% of the energy supplied by the fuel. More efficient heat recovery approximately 50% of the energy supplied by the fuel. More efficient heat recovery systems and improved system with buildings and potential for cogeneration Analyze potential for heat recovery from fuel cell

  13. LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL

    E-Print Network [OSTI]

    Kissock, Kelly

    and Fuel Cell Technologies Conference, Livonia, MI, Oct 11-13, 2004. 1 #12;For example, the anomaly, and for diagnostic purposes. Case study examples demonstrate the lean energy analysis method and its application

  14. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag" |Energy Diesel: Theof thePolicy Options

  15. Risk Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofittingFund

  16. NREL: Energy Analysis Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNREL in the Insights In

  17. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMaryEnergy PermalinkClimate

  18. Hawaii Clean Energy Initiative Scenario Analysis

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis of potential policy options to help the state reach the 70% Hawaii Clean Energy Initiative (HCEI) goal, including possible pathways to attain the goal based on currently available technology.

  19. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect (OSTI)

    Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Lake, Joe E [ORNL

    2012-01-01T23:59:59.000Z

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  20. Sandia Energy - Estimating Device or System Probability of Failure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46Energy Storage Systems

  1. ENERGY ANALYSIS PROGRAM FY-1979.

    E-Print Network [OSTI]

    Authors, Various

    2013-01-01T23:59:59.000Z

    efficiency of the system makes photovoltaics an attractiveOTEC, photovoltaics, solar thermal electric systems andphotovoltaics, solar thermal electric plants, ocean thermal energy plants (OTEC) and certainly geother- mal plants, perhaps even future advanced systems

  2. analysis energy analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy, Environmental, and Economic...

  3. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMary

  4. Sandia Energy » Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThirdSandian

  5. Get Daily Energy Analysis Delivered to Your Website | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your...

  6. QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED

    E-Print Network [OSTI]

    QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED J.-M. BARBAROUX for the hydrogen ground state energy in the Pauli-Fierz model up to the order O(5 log -1), where denotes). As a consequence, we prove that the ground state energy is not a real analytic function of , and verify

  7. Free Energy Estimates of All-atom Protein Structures Using Generalized Belief

    E-Print Network [OSTI]

    Langmead, Christopher James

    Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation H Detection, Free Energy, Probabilistic Graphical Models #12;Abstract We present a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP). The accuracy and utility

  8. Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics

    E-Print Network [OSTI]

    Sun, Sean

    Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change

  9. Statistical Simulation to Estimate Uncertain Behavioral Parameters of Hybrid Energy-Economy Models

    E-Print Network [OSTI]

    Statistical Simulation to Estimate Uncertain Behavioral Parameters of Hybrid Energy-Economy Models 2011 # Springer Science+Business Media B.V. 2011 Abstract In energy-economy modeling, new hybrid models) backcasting a hybrid energy- economy model over a historical time period; and (3) the application of Markov

  10. Improved estimates of the total correlation energy in the ground state of the water molecule

    E-Print Network [OSTI]

    Anderson, James B.

    Improved estimates of the total correlation energy in the ground state of the water molecule Arne National Laboratory, Richland, Washington 99352 Received 1 October 1996; accepted 5 February 1997 Two new calculations of the electronic energy of the ground state of the water molecule yield energies lower than those

  11. DISPERSIVE ESTIMATES FOR SCHR ODINGER OPERATORS IN DIMENSION TWO WITH OBSTRUCTIONS AT ZERO ENERGY

    E-Print Network [OSTI]

    Erdogan, Mehmet

    DISPERSIVE ESTIMATES FOR SCHR ¨ODINGER OPERATORS IN DIMENSION TWO WITH OBSTRUCTIONS AT ZERO ENERGY for the Schr¨odinger operator H = -+V when there are obstructions, resonances or an eigenvalue, at zero energy. In particular, we show that the existence of an s-wave resonance at zero energy does not destroy the t-1 decay

  12. EAC: A Compiler Framework for High-Level Energy Estimation and Optimization

    E-Print Network [OSTI]

    Sivasubramaniam, Anand

    University University Park, PA, 16802, USA Abstract This paper presents a novel Energy-Aware Compilation (EAC) framework that can estimate and optimize energy consumption of a given code taking as input the architec on the system power consumption. In order to develop and evaluate new energy-conscious compiler optimizations

  13. ESTIMATING CONSUMER BEHAVIOUR IN AN ENERGY-ECONOMY POLICY MODEL

    E-Print Network [OSTI]

    SIMON FRASER UNIVERSITY Fall, 2007 All rights reserved. This work may not be reproduced in whole, and editing · Vicky Weekes for editing, balance, and all around back-up · Many other REMmers and EMRGers Council, the Canadian Institute of Energy, the Energy and Materials Research Group, and Simon Fraser

  14. Retrospective analysis of energy use and conservation trends: 1972-1982. Appendix

    SciTech Connect (OSTI)

    Adams, R.C.; Belzer, D.B.; Fang, J.M.; Imhoff, K.L.; Lax, D.H.; Moe, R.J.; Roop, J.M.; Wusterbarth, A.R.

    1985-06-01T23:59:59.000Z

    This appendix contains the detailed documentation corresponding to the end-use sectoral analyses presented in the main report. The data and methods used to calculate alternative scenarios for estimating energy savings in four economic sectors are provided in this volume. Appendix A contains the detailed documentation for the residential sector analysis. The methodology used to prepare estimates of building energy savings in the commercial sector is provided in Appendix B. Finally, Appendices C and D discuss the data and explain the analytical techniques used to derive estimates of energy savings in the industrial and transportation sectors, respectively. 9 refs., 14 figs., 86 tabs.

  15. Analysis of Scattered Signal to Estimate Reservoir Fracture Parameters

    E-Print Network [OSTI]

    Grandi, Samantha K.

    We detect fracture corridors and determine their orientation and average spacing based on an analysis of seismic coda in the frequency-wave number (f-k ) domain. Fracture corridors have dimensions similar to seismic ...

  16. Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

    2006-10-01T23:59:59.000Z

    This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

  17. Estimating rock properties in two phase petroleum reservoirs: an error analysis

    E-Print Network [OSTI]

    Paul, Anthony Ian

    1983-01-01T23:59:59.000Z

    ESTIMATING ROCK PROPERTIES IN TWO PHASE PETROLEUM RESERVOIRS: AN ERROR ANALYSIS A Thesis by ANTHONY IAN PAUL Submitted to the Graduate College of Texas AE:M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1983 Maior Subjecu Chemical Engineering ESTIMATING ROCK PROPERTIES IN TWO PHASE PETROLEUM RESERVOIRS: AN ERROR ANALYSIS A Thesis by ANTHONY IAN PAUL Approved as to style and content by: A. T. Watson (Chairman of Commiuee) C. J...

  18. Transportation Analysis | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Tool ofTopoCarbon|defaultSolar

  19. NREL: Energy Analysis - Parthiv Kurup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The EnergyParthiv Kurup

  20. NREL: Energy Analysis - Paul Denholm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The EnergyParthiv

  1. NREL: Energy Analysis - Paul Schwabe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The EnergyParthivSchwabe

  2. Core Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and Heat Islands Jump|Information Dobson, EtCore

  3. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley Ruehl Home KelleyMary CrawfordMesaModelingClimate

  4. Cuttings Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.pngRoofs and HeatOpenInformationInformation Dees, Jump

  5. WATER AND ENERGY BALANCE ESTIMATION IN PUERTO RICO USING SATELLITE REMOTE SENSING

    E-Print Network [OSTI]

    Gilbes, Fernando

    WATER AND ENERGY BALANCE ESTIMATION IN PUERTO RICO USING SATELLITE REMOTE SENSING Eric. W Management of water resources relies on estimates of the hydrologic water balance within defined and/or similar land use. Components of the water balance include precipitation, actual

  6. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    SciTech Connect (OSTI)

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    2014-06-12T23:59:59.000Z

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  7. ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

    This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

  8. A Review of Geothermal Resource Estimation Methodology | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOf

  9. Estimating Demand Response Market Potential | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLCInsulation IncentivesEshone EnergyEstero,Demand

  10. Energy analysis program. 1995 Annual report

    SciTech Connect (OSTI)

    Levine, M.D.

    1996-05-01T23:59:59.000Z

    This year the role of energy technology research and analysis supporting governmental and public interests is again being challenged at high levels of government. This situation is not unlike that of the early 1980s, when the Administration questioned the relevance of a federal commitment to applied energy research, especially for energy efficiency and renewable energy technologies. Then Congress continued to support such activities, deeming them important to the nation`s interest. Today, Congress itself is challenging many facets of the federal role in energy. The Administration is also selectively reducing its support, primarily for the pragmatic objective of reducing federal expenditures, rather than because of principles opposing a public role in energy. this report is divided into three sections: International Energy and the global environment; Energy, economics, markets, and policy; and Buildings and their environment.

  11. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Broader source: Energy.gov (indexed) [DOE]

    Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

  12. Estimating the energy of stitching together the Maxwell and Fermi neutron spectra

    SciTech Connect (OSTI)

    Ionov, V. S., E-mail: ivs2010@vver.kiae.ru; Marin, S. V. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    The energy of stitching together the Maxwell and Fermi spectra is estimated on the basis of experimental data and the results of calculations carried out using the MCU-RFFI and MCU-5 codes.

  13. NREL: Energy Analysis - About the Strategic Energy Analysis Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contactK-12

  14. Free energy differences : Representations, estimators, and sampling strategies 

    E-Print Network [OSTI]

    Acharya, Arjun R

    In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of ...

  15. Energy Engineering and Systems Analysis

    E-Print Network [OSTI]

    Kemner, Ken

    , energy is produced by the nuclear fission process in which uranium atoms are split into two major atoms to shutdown the fission process. Heat Production and Removal and Power Production The heat produced during reactor operation is removed by a flowing coolant, e.g. water, and the heat is then converted

  16. Procedure for estimating fracture energy from fracture surface roughness

    DOE Patents [OSTI]

    Williford, Ralph E. (Kennewick, WA)

    1989-01-01T23:59:59.000Z

    The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

  17. State Energy Data System Consumption Estimates Technical Notes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 SpecialNanoparticulate FeS

  18. Property:EstimatedCostLowUSD | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType

  19. Analysis of the Relationship between Reaction Energies of Electrophili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energies of Electrophilic SWNT Additionsand Sidewall Curvature: Chiral Nanotubes. Analysis of the Relationship between Reaction Energies of Electrophilic SWNT Additionsand...

  20. Systems Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossaryProgramRussiaSpaceNewsSustainableSystems

  1. Analysis Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn Earth-Friendly Wind

  2. NREL: Energy Analysis - Ben Maples

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering

  3. NREL: Energy Analysis - David Palchak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems

  4. NREL: Energy Analysis - Nate Blair

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower

  5. NREL: Energy Analysis: Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter

  6. Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York

    SciTech Connect (OSTI)

    Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

    2007-08-03T23:59:59.000Z

    The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOE’s Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

  7. Estimated Rare Earth Reserves and Deposits | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|July 14, 2014JulyEnergy’sMany of the

  8. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of Energy Establishing the

  9. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010Salt | Department of Energy Establishing theWorkshop -

  10. U.S. Uranium Reserves Estimates - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram | Department Home >Area: U.S. EastCapacity

  11. Property:Estimated End Date | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSppEnvReviewLeasingEstReservoirVol Jump

  12. Property:EstimatedCostHighUSD | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation,PillarPublicationType JumpDOEInvolveRtoSppEnvReviewLeasingEstReservoirVol

  13. Table C3. Primary Energy Consumption Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: Total

  14. Table E10. Residential Sector Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks DefinitionsWeekly.0.

  15. Table E11. Commercial Sector Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks DefinitionsWeekly.0.1.

  16. Table E13. Transportation Sector Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks

  17. Table E14. Electric Power Sector Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. Electric Power Sector

  18. Table E3. Residential Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. Electric

  19. Table E4. Commercial Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. ElectricE4.

  20. Table E5. Industrial Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. ElectricE4.E5.

  1. Table E6. Transportation Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. ElectricE4.E5.E6.

  2. Table E7. Electric Power Sector Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. ElectricE4.E5.E6.E7.

  3. Module: Estimating Historical Emissions from Deforestation | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman WindMoana(Tempel,

  4. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska Energy Basics STRATEGIC

  5. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska Energy Basics

  6. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska Energy Basics3: Project

  7. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||Alaska Energy Basics3:

  8. Savings estimates for the United States Environmental Protection Agency?s ENERGY STAR voluntary product labeling program

    SciTech Connect (OSTI)

    Sanchez, Marla Christine; Sanchez, Marla Christine; Brown, Richard; Homan, Gregory; Webber, Carrie

    2008-06-03T23:59:59.000Z

    ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2006, US EPA?S ENERGY STAR labeled products saved 4.8 EJ of primary energy and avoided 82 Tg C equivalent. We project that US EPA?S ENERGY STAR labeled products will save 12.8 EJ and avoid 203 Tg C equivalent over the period 2007-2015. A sensitivity analysis examining two key inputs (carbon factor and ENERGY STAR unit sales) bounds the best estimate of carbon avoided between 54 Tg C and 107 Tg C (1993 to 2006) and between 132 Tg C and 278 Tg C (2007 to 2015).

  9. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah

    SciTech Connect (OSTI)

    Cole, Pamala C.; Lucas, Robert G.

    2009-05-01T23:59:59.000Z

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

  10. Simulation for the Optimal Design of a Biped Robot: Analysis of Energy Consumption

    E-Print Network [OSTI]

    Gini, Giuseppina

    Simulation for the Optimal Design of a Biped Robot: Analysis of Energy Consumption Federico Moro1 at Chicago, USA 3 University of Belgrade, Institute Mihajlo Pupin, Robotics Laboratory, Serbia Abstract. Our first aim is to develop a systematic method to estimate energy consumption of bipedal locomotion

  11. Guidelines for the analysis of free energy calculations

    E-Print Network [OSTI]

    Klimovich, PV; Shirts, MR; Mobley, DL; Mobley, DL

    2015-01-01T23:59:59.000Z

    Efficient estimation of free energy differ- ences from Montenumerical instabilities in free energy calculations based onD.L. , DiCapua, F.M. : Free energy via molecular simulation:

  12. DOE Hydrogen Transition Analysis Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Workshop DOE Hydrogen Transition Analysis Workshop The U.S. Department of Energy sponsored a Hydrogen Transition Analysis Workshop in Washington, DC, on January 26,...

  13. Built Environment Energy Analysis Tool Overview (Presentation)

    SciTech Connect (OSTI)

    Porter, C.

    2013-04-01T23:59:59.000Z

    This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  14. Natural Daylighting - An Energy Analysis

    E-Print Network [OSTI]

    Jarrell, R. P.

    1987-01-01T23:59:59.000Z

    tiers of elevators, which afforded met by the codes in both economic and energy savings. Because at the time of the design and con- Of the basic premise of the planning con- ~truction. The following table gives data cept, the two-tower scheme... temperature and ventilation control is provided by induction boxes. These boxes reclaim up to 50 percent of the heat from the lights by inducing warm air from the ceiling plenum to the exterior areas where heat is needed in winter. In the summer...

  15. NREL: Energy Analysis - Key Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To contactK-12BSM -JEDI JobsKey

  16. NREL: Energy Analysis - Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | NationalWebmaster To

  17. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery Mesa delMission

  18. Sandia Energy - Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery Mesa delMission

  19. NREL: Energy Analysis - Aaron Bloom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering Center The

  20. NREL: Energy Analysis - Aaron Levine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering Center TheLevine Photo of

  1. NREL: Energy Analysis - Aaron Townsend

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering Center TheLevine Photo

  2. NREL: Energy Analysis - Ahmad Mayyas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering Center TheLevine

  3. NREL: Energy Analysis - Alberta Carpenter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering Center TheLevineAlberta

  4. NREL: Energy Analysis - Andrew Weekley

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering Center

  5. NREL: Energy Analysis - Anelia Milbrandt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering CenterAnelia Milbrandt

  6. NREL: Energy Analysis - Anthony Lopez

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering CenterAneliaAnthony Lopez

  7. NREL: Energy Analysis - Aron Dobos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering CenterAneliaAnthony

  8. NREL: Energy Analysis - Austin Brown

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems Engineering CenterAneliaAnthonyAustin

  9. NREL: Energy Analysis - Ben Sigrin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin Photo of Ben Sigrin

  10. NREL: Energy Analysis - Bethany Frew

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin Photo of Ben

  11. NREL: Energy Analysis - Bethany Speer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin Photo of BenSpeer

  12. NREL: Energy Analysis - Carolyn Davidson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin Photo ofBrian

  13. NREL: Energy Analysis - Catherine Burke

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin Photo

  14. NREL: Energy Analysis - Chad Augustine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin PhotoChad Augustine

  15. NREL: Energy Analysis - Changgui Dong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin PhotoChad

  16. NREL: Energy Analysis - Chris Webber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin PhotoChadChris

  17. NREL: Energy Analysis - Clayton Barrows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrin

  18. NREL: Energy Analysis - Dani Salyer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColin A. McMillanDani

  19. NREL: Energy Analysis - Daniel Getman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColin A.

  20. NREL: Energy Analysis - Daniel Inman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColin A.Inman Photo

  1. NREL: Energy Analysis - Daniel Steinberg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColin A.Inman

  2. NREL: Energy Analysis - David Harrison

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColin

  3. NREL: Energy Analysis - David Hurlbut

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColinHurlbut Photo of

  4. NREL: Energy Analysis - David Keyser

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColinHurlbut

  5. NREL: Energy Analysis - David Mooney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower Systems EngineeringSigrinColinHurlbutMooney

  6. NREL: Energy Analysis - Dheepak Krishnamurthy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles Photo of

  7. NREL: Energy Analysis - Donna Heimiller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles Photo ofDonna

  8. NREL: Energy Analysis - Dylan Hettinger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles Photo ofDonnaDylan

  9. NREL: Energy Analysis - Elaine Hale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles Photo

  10. NREL: Energy Analysis - Ella Zhou

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles PhotoElla Zhou Photo

  11. NREL: Energy Analysis - Eric Lantz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles PhotoEllaEric Lantz

  12. NREL: Energy Analysis - Ethan Warner

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-Giles PhotoEllaEricEthan

  13. NREL: Energy Analysis - Garvin Heath

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvin Heath Photo of

  14. NREL: Energy Analysis - Greg Brinkman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvin Heath Photo

  15. NREL: Energy Analysis - Heidi Pawlowski

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvin Heath

  16. Program Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in the U.S. by6 (AprilProductionScheduleProgram

  17. NREL: Energy Analysis - Janine Freeman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvin HeathJanine

  18. NREL: Energy Analysis - Jaquelin Cochran

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvin

  19. NREL: Energy Analysis - Jay Huggins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvinJay Huggins

  20. NREL: Energy Analysis - Jeffrey Logan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvinJay

  1. NREL: Energy Analysis - Jennie Jorgenson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvinJayJennie

  2. NREL: Energy Analysis - Jenny Heeter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie Brodt-GilesGarvinJayJennieHeeter

  3. NREL: Energy Analysis - Jenny Melius

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbie

  4. NREL: Energy Analysis - Jessica Katz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz Photo of Jessica

  5. NREL: Energy Analysis - Jim Leyshon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz Photo of JessicaJim

  6. NREL: Energy Analysis - John Krueger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz Photo

  7. NREL: Energy Analysis - Jon Weers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz PhotoJon Weers Photo

  8. NREL: Energy Analysis - Jordan Macknick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz PhotoJon Weers

  9. NREL: Energy Analysis - Josh Novacheck

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz PhotoJon WeersJosh

  10. NREL: Energy Analysis - Karlynn Cory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica Katz

  11. NREL: Energy Analysis - Katherine Young

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica KatzKatherine Young, P.E.

  12. NREL: Energy Analysis - Kathleen Nawaz

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica KatzKatherine Young,

  13. NREL: Energy Analysis - Kelly Eurek

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica KatzKatherine Young,Kelly

  14. NREL: Energy Analysis - Laura Vimmerstedt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessica KatzKatherineLaura

  15. NREL: Energy Analysis - Liz Torres

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz Torres Photo of Liz

  16. NREL: Energy Analysis - Lori Bird

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz Torres Photo of

  17. NREL: Energy Analysis - Mackay Miller

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz Torres Photo ofMackay

  18. NREL: Energy Analysis - Margaret Mann

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz Torres PhotoMargaret

  19. NREL: Energy Analysis - Mark Ruth

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz Torres

  20. NREL: Energy Analysis - Matt Rahill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLiz TorresMarketMatt

  1. NREL: Energy Analysis - Maureen Hand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureen Hand Photo of

  2. NREL: Energy Analysis - Meghan Mooney

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureen Hand Photo

  3. NREL: Energy Analysis - Melissa Hudman

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureen Hand

  4. NREL: Energy Analysis - Michael Bahl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureen HandBahl Photo

  5. NREL: Energy Analysis - Michael Gleason

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureen HandBahl

  6. NREL: Energy Analysis - Michael Mendelsohn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureen

  7. NREL: Energy Analysis - Michael Woodhouse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureenMichael

  8. NREL: Energy Analysis - Monisha Shah

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPower SystemsDebbieJessicaLizMaureenMichaelMonisha

  9. NREL: Energy Analysis - Philipp Beiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The

  10. NREL: Energy Analysis - Pieter Gagnon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieter Gagnon Photo of

  11. NREL: Energy Analysis - Ran Fu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieter Gagnon PhotoRan Fu

  12. NREL: Energy Analysis - Sadie Cox

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieter GagnonRobert

  13. NREL: Energy Analysis - Scott Jenne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieterScott Jenne Photo

  14. NREL: Energy Analysis - Sertac Akar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieterScott Jenne

  15. NREL: Energy Analysis - Stuart Cohen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive ThePieterScott JenneStuart

  16. NREL: Energy Analysis - Thomas Jenkin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin Photo of Thomas

  17. NREL: Energy Analysis - Tian Tian

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin Photo of

  18. NREL: Energy Analysis - Timothy Remo

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin Photo ofTimothy

  19. NREL: Energy Analysis - Travis Lowder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin Photo

  20. NREL: Energy Analysis - Trieu Mai

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin PhotoTrieu Mai

  1. NREL: Energy Analysis - Trish Cozart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin PhotoTrieu

  2. NREL: Energy Analysis - Tyler Stehly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas Jenkin PhotoTrieuTyler

  3. NREL: Energy Analysis - Venkat Kirshnan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas JenkinVenkat Krishnan

  4. NREL: Energy Analysis - Victor Diakov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas JenkinVenkat

  5. NREL: Energy Analysis - Wesley Cole

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomas

  6. NREL: Energy Analysis - Yimin Zhang

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter ArchiveThomasYimin Zhang Photo of

  7. Crosstalk compensation in analysis of energy storage devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

  8. OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS

    E-Print Network [OSTI]

    Sands, M. D.

    2011-01-01T23:59:59.000Z

    of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

  9. Estimation of Several Political Action Effects of Energy Prices

    E-Print Network [OSTI]

    Whitford, Andrew B

    2015-01-01T23:59:59.000Z

    One important effect of price shocks in the United States has been increased political attention paid to the structure and performance of oil and natural gas markets, along with some governmental support for energy conservation. This paper describes how price changes helped lead the emergence of a political agenda accompanied by several interventions, as revealed through Granger causality tests on change in the legislative agenda.

  10. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects) This analysis was funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis

  11. Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel HydrogenM M aDesignJanuary

  12. BreezChirp: Energy Efficient Wi-Fi Bandwidth Estimator for Smartphones

    E-Print Network [OSTI]

    Boutaba, Raouf

    ; two, terminal mobility requires frequent update of bandwidth measurements; three, energy efficiencyBreezChirp: Energy Efficient Wi-Fi Bandwidth Estimator for Smartphones Jian Li, Jin Xiao, Huu Nhat--Mobile data service is a rapidly growing business sector today. Available application bandwidth

  13. WATER AND ENERGY BALANCE ESTIMATION IN PUERTO RICO USING SATELLITE REMOTE SENSING

    E-Print Network [OSTI]

    Gilbes, Fernando

    countries (i.e., Haiti and the Dominican Republic). #12;Technical Approach #12;Algorithm Flow Chart ObtainWATER AND ENERGY BALANCE ESTIMATION IN PUERTO RICO USING SATELLITE REMOTE SENSING Eric.W. Harmsen Solar Radiation, wind speed, rainfall, etc,. for yesterday Expand the components of the Surface Energy

  14. Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis

    SciTech Connect (OSTI)

    Wang, Feng, E-mail: fwang@unu.edu [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Huisman, Jaco [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Stevels, Ab [Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Baldé, Cornelis Peter [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Statistics Netherlands, Henri Faasdreef 312, 2492 JP Den Haag (Netherlands)

    2013-11-15T23:59:59.000Z

    Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.

  15. GAO Cost Estimating and Assessment Guide | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNG |ofFuelOn JuneTheGAO

  16. Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)Year

  17. EIA - Appendix B: Estimation Methodologies of Household Vehicles Energy

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877 951,322 1,381,127byForms What's

  18. Estimates of State Energy-Related Carbon Dioxide Emissions

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use as an IndicatorNatural GasRevenueMay

  19. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11 Page 1

  20. State Energy Profiles and Estimates (SEDS) Report Archives

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables TablesPricesSpot Prices

  1. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandardGeneration |10 DOEGoals During NRELHighTitle,Workshop -

  2. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 || DepartmentMarchINDIAN

  3. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 || DepartmentMarchINDIANTribal

  4. Indian Country Solar Energy Potential Estimates & DOE IE Updates

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions for DOEthe RankingReform atSolar2014 ||

  5. Sandia National Laboratories: Analysis, Modeling, Cost of Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

  6. Analysis of Environmental Impacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1Albuquerque, NMPerformance |Should2.1.0.301 AnalysisAnalysisAnalysis

  7. Rock Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy ResourcesRock Lab Analysis Jump

  8. Southeast Regional Clean Energy Policy Analysis (Revised)

    SciTech Connect (OSTI)

    McLaren, J.

    2011-04-01T23:59:59.000Z

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  9. Energy Engineering & Systems Analysis Success Stories

    E-Print Network [OSTI]

    Kemner, Ken

    Energy Engineering & Systems Analysis Success Stories Helping Make the U.S. Power Grid Smarter-way communication technologies into the power grid, the nation will have a more robust and efficient system it delivered. The Challenge President Barack Obama has called for one million plug-in hybrid electric vehicles

  10. Energy, Environmental, and Economic Systems Analysis

    E-Print Network [OSTI]

    and deregulated, shifting control from a single decision maker (i.e., a single, government-owned electric utility determining electricity consumption (customer agents), unit commitment (generation companies), bilateralEnergy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System

  11. Ris-R-Report Energy Systems Analysis of Waste to Energy

    E-Print Network [OSTI]

    Risø-R-Report Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN Marie Münster Risø-R-1667(EN) April 2009 #12;Author: Marie Münster Title: Energy Systems Analysis of Waste to Energy Technologies by use of EnergyPLAN Division: Systems Analysis Division Risø-R-1667(EN) April 2009

  12. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    SciTech Connect (OSTI)

    Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

    2011-06-22T23:59:59.000Z

    This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

  13. 15-11-061ETSAP Energy Technology Systems Analysis

    E-Print Network [OSTI]

    15-11-061ETSAP Energy Technology Systems Analysis Programme (ETSAP) ­ Annex X ETSAP Semi · Global Energy Supply: Model-based Scenario Analysis of Resource Use and Energy Trade. Uwe Remme, Maryse Policy Scenario to address energy security and environmental concerns. Based on the detailed analysis

  14. Estimation of Energy Consumption in SpeedIndependent Control Peter A. Beerel and ChengTa Hsieh and Suhrid Wadekar

    E-Print Network [OSTI]

    . As an alternative, Kudva et al. [7] suggest determining the energy per operation (cycle of activityEstimation of Energy Consumption in Speed­Independent Control Circuits Peter A. Beerel and Cheng Abstract: We describe a technique to estimate the energy consumed by speed­independent asynchronous (clock

  15. System Analysis Projects | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment of SustainXBetterProjects System Analysis

  16. Systems Analysis Success Stories | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummaryDepartment of SustainXBetterProjectsSystems Analysis

  17. LEDSGP/analysis/impacts | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano, Hawaii9969995°,I JumpJumpLEDSGP/analysis/impacts <

  18. Decision Analysis for EGS | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8 Deaerators3Decision Analysis

  19. NREL: Energy Analysis - Nicholas DiOrio

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter Archive The Energy Analysis at

  20. Community Economic Analysis Guide | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:CookingCommonwealthAnalysis

  1. Cooling load estimation methods

    SciTech Connect (OSTI)

    McFarland, R.D.

    1984-01-01T23:59:59.000Z

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  2. Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models

    E-Print Network [OSTI]

    Subramanian, Venkat

    Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

  3. AN ANALYSIS OF SOME PRACTICAL METHODS FOR ESTIMATING HEATS OF COMBUSTION IN

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    99-42 AN ANALYSIS OF SOME PRACTICAL METHODS FOR ESTIMATING HEATS OF COMBUSTION IN FIRE SAFETY (*) Factory Mutual Research Corporation, Norwood, Ma, USA ABSTRACT The theoretical (net) heat of combustion of the heats of combustion, that is to say when at most a simple datasheet processor is the only tool required

  4. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements

    E-Print Network [OSTI]

    Silver, Whendee

    Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux Abstract High ground-level ozone concentrations are typical of Mediterranean climates. Plant exposure to this oxidant is known to reduce carbon assimilation. Ozone damage has been traditionally measured through

  5. Stability and error analysis of the polarization estimation inverse problem for solid oxide fuel cells.

    E-Print Network [OSTI]

    Renaut, Rosemary

    at the electrodeelectrolyte interfaces of solid oxide fuel cells (SOFC) is investigated physically using Electrochemical describe the performance of a solid oxide fuel cell requires the solution of an inverse problem. TwoStability and error analysis of the polarization estimation inverse problem for solid oxide fuel

  6. Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis with Applications in Genomics

    E-Print Network [OSTI]

    Zollanvari, Amin

    2012-02-14T23:59:59.000Z

    formulation of the joint distribution of the true error of misclassification and two of its commonly used estimators, resubstitution and leave-one-out, as well as their marginal and mixed moments, in the context of the Linear Discriminant Analysis (LDA...

  7. Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

  8. Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...

    Energy Savers [EERE]

    Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalysis.pdf...

  9. SEA-03: Special Environmental Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    SEA-03: Special Environmental Analysis SEA-03: Special Environmental Analysis Department of Energy, National Nuclear Security Administration, Actions Taken in Response to the Cerro...

  10. Clean Energy Options for Sabah: An Analysis of Resource Availability...

    Open Energy Info (EERE)

    An Analysis of Resource Availability and Cost Jump to: navigation, search Name Clean Energy Options for Sabah: An Analysis of Resource Availability and Cost AgencyCompany...

  11. STEP Utility Bill Analysis Report | Department of Energy

    Energy Savers [EERE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP). G5d STEP Utility Bill Analysis Report.pdf More Documents &...

  12. Extragalactic Water Masers, Geometric Estimation of H_o and Characterization of Dark Energy

    E-Print Network [OSTI]

    L. J. Greenhill

    2004-09-10T23:59:59.000Z

    High precision estimation of the equation of state of dark energy depends on constraints external to analyses of Cosmic Microwave Background fluctuations. A geometric estimation of the local expansion rate, H_o, would provide the most direct and robust constraint. Traditional techniques to estimate H_o have depended on observations of standard candles for which systematic effects can be 10% or more. Observations of water maser sources in the accretion disks that feed the central engines of active galaxies enable simplified, robust, and largely geometric analyses. Many thousand maser sources will be discovered in studies with the SKA, owing to its great sensitivity. Spectroscopic monitoring and interferometric mapping - with intercontinental baselines - will allow estimation of H_o to 1% and possibly better.

  13. Extragalactic Water Masers, Geometric Estimation of H_o and Characterization of Dark Energy

    E-Print Network [OSTI]

    Greenhill, L J

    2004-01-01T23:59:59.000Z

    High precision estimation of the equation of state of dark energy depends on constraints external to analyses of Cosmic Microwave Background fluctuations. A geometric estimation of the local expansion rate, H_o, would provide the most direct and robust constraint. Traditional techniques to estimate H_o have depended on observations of standard candles for which systematic effects can be 10% or more. Observations of water maser sources in the accretion disks that feed the central engines of active galaxies enable simplified, robust, and largely geometric analyses. Many thousand maser sources will be discovered in studies with the SKA, owing to its great sensitivity. Spectroscopic monitoring and interferometric mapping - with intercontinental baselines - will allow estimation of H_o to 1% and possibly better.

  14. Scripted Building Energy Modeling and Analysis: Preprint

    SciTech Connect (OSTI)

    Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

    2012-08-01T23:59:59.000Z

    Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

  15. Methodology for Validating Building Energy Analysis Simulations

    SciTech Connect (OSTI)

    Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

    2008-04-01T23:59:59.000Z

    The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

  16. Analysis of Minimizers of the Lawrence-Doniach Energy for ...

    E-Print Network [OSTI]

    2014-04-07T23:59:59.000Z

    an asymptotic formula for the minimum Lawrence-Doniach energy as e and the ... In this case, an analysis of the behavior of energy minimizers and their.

  17. State Clean Energy Policies Analysis (SCEPA): State Policy and...

    Open Energy Info (EERE)

    Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy...

  18. Analysis & Projections - U.S. Energy Information Administration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recent methodological developments in the field of behavioral economics as applied to energy demand analysis and energy efficiency programs. This meeting supports the EIA goal...

  19. First Year Analysis of Industrial Energy Conservation in Texas A&M's Energy Analysis and Diagnostic Center Program

    E-Print Network [OSTI]

    Grubb, M. K.; Heffington, W. M.

    energy and, where appropriate, the use of alternate (less expensive) energy sources in the operation of small- and medium-size manufacturing The Energy Analysis and Diagnostic Center program is financially supported by the Office of Industrial...FIRST YEAR ANALYSIS OF INIXJSTRIAL ENERGY crNSERVATIOO IN TEXAS A&M' S ENERGY ANALYSIS AND DIAEnergy Analysis and Diagnostic Center Mechanical Engineering Department Texas A&M University COllege Station...

  20. Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor

    E-Print Network [OSTI]

    Lu?trek, Mitja

    Estimation of Human Energy Expenditure Using Inertial Sensors and Heart Rate Sensor Bozidara, we tested a combination of thigh inertial sensor with hart rate monitor, usually worn by athletes and availability and ease of development. Average smart phone has a rather powerful processing unit. It comes

  1. Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings

    SciTech Connect (OSTI)

    Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

    2008-03-01T23:59:59.000Z

    Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

  2. Improvements and Applications of the Methodology for Potential Energy Savings Estimation from Retro-commissioning/Retrofit Measures 

    E-Print Network [OSTI]

    Liu, Jingjing

    2010-03-24T23:59:59.000Z

    This thesis has improved Baltazar's methodology for potential energy savings estimation from retro-commissioning/retrofits measures. Important improvements and discussions are made on optimization parameters, limits on ...

  3. Energy Analysis Program. 1992 Annual report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

  4. Estimation of Energy Savings Resulting From the BestPractices Program, Fiscal Year 2002

    SciTech Connect (OSTI)

    Truett, LF

    2003-09-24T23:59:59.000Z

    Within the U.S. Department of Energy (DOE), the Office of Energy Efficiency and Renewable Energy (EERE) has a vision of a future with clean, abundant, reliable, and affordable energy. Within EERE, the Industrial Technologies Program (ITP), formerly the Office of Industrial Technologies, works in partnership with industry to increase energy efficiency, improve environmental performance, and boost productivity. The BestPractices (BP) Program, within ITP, works directly with industries to encourage energy efficiency. The purpose of the BP Program is to improve energy utilization and management practices in the industrial sector. The program targets distinct technology areas, including pumps, process heating, steam, compressed air, motors, and insulation. This targeting is accomplished with a variety of delivery channels, such as computer software, printed publications, Internet-based resources, technical training, technical assessments, and other technical assistance. A team of program evaluators from Oak Ridge National Laboratory (ORNL) was tasked to evaluate the fiscal year 2002 (FY02) energy savings of the program. The ORNL assessment enumerates levels of program activity for technology areas across delivery channels. In addition, several mechanisms that target multiple technology areas--e.g., Plant-wide Assessments (PWAs), the ''Energy Matters'' newsletter, and special events--are also evaluated for their impacts. When possible, the assessment relies on published reports and the Industrial Assessment Center (IAC) database for estimates of energy savings that result from particular actions. Data were also provided by ORNL, Lawrence Berkeley National Laboratory (LBNL) and Project Performance Corporation (PPC), the ITP Clearinghouse at Washington State University, the National Renewable Energy Laboratory (NREL), Energetics Inc., and the Industrial Technologies Program Office. The estimated energy savings in FY02 resulting from activities of the BP Program are almost 81.9 trillion Btu (0.0819 Quad), which is about 0.25% of the 32.5 Quads of energy consumed during FY02 by the industrial sector in the United States. The technology area with the largest estimated savings is steam, with 32% of the total energy savings. The delivery mechanism with the largest savings is that of software systems distribution, encompassing 44% of the total savings. Training results in an energy savings of 33%. Energy savings from PWAs and PWA replications equal 10%. Sources of overestimation of energy savings might derive from (1) a possible overlap of energy savings resulting from separate events (delivery channels) occurring in conjunction with one another (e.g., a training event and CTA at the same plant), and (2) a possible issue with the use of the average CTA value to assess savings for training and software distribution. Any overestimation attributable to these sources probably is outweighed by underestimations caused by the exclusion of savings resulting from general awareness workshops, data not submitted to the ITP Tracking Database, omission of savings attributable to web downloads of publications, use of BP products by participants over multiple years, and the continued utilization of equipment installed or replaced in previous years. Next steps in improving these energy savings estimates include continuing to enhance the design of the ITP Tracking Database and to improve reporting of program activities for the distribution of products and services; obtaining more detailed information on implementation rates and savings estimates for software training, tools, and assessments; continuing attempts to quantify savings based on Qualified Specialist activities; defining a methodology for assessing savings based on web downloads of publications; establishing a protocol for evaluating savings from other BP-sponsored events and activities; and continuing to refine the estimation methodology and reduction factors.

  5. Electronic dissemination of energy data and analysis

    SciTech Connect (OSTI)

    Rodekohr, M.E.

    1997-06-01T23:59:59.000Z

    This paper provides a discussion of the Energy Information Administration`s (EIA) Electronic Dissemination program. This program is designed to deliver EIA energy information, statistics and analysis in the most timely fashion possible using the latest technologies to provide economies to both the provider (the U.S. government) and users of EIA information products. The EIA is responsible for producing the nation`s statistics and analysis on energy production, consumption, imports, and prices. These statistics are often available by month, year, region or other disaggregation. Just one of their databases (the Oil and Gas Resource Information Database) contains 50MB of energy data. The delivery of these data in a efficient and timely manner is critical to the EIA. The paper is organized around several sections which describe: (1) Electronic Dissemination Goals and Strategies, (2) Dissemination Techniques, (3) EIA`s Experience with Electronic Dissemination Methods, (4) Possibilities for the Future, and (5) Electronic Dissemination Policy Issues. Strategy, techniques usage statistics, and other policy related factors are discussed in some detail.

  6. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program

    SciTech Connect (OSTI)

    Steinberg, D.; Porro, G.; Goldberg, M.

    2012-04-01T23:59:59.000Z

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

  7. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    entirely of passive solar houses. We have estimated theWe estimate that a passive solar house constructed to thesecommercial buildings, passive solar houses, and retrofit in-

  8. Analysis of Energy Efficiency Program Impacts Based on Program...

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis of Energy Efficiency Program Impacts Based on Program Spending May 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S....

  9. Cost analysis of energy storage systems for electric utility applications

    SciTech Connect (OSTI)

    Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

    1997-02-01T23:59:59.000Z

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

  10. Semiclassical Estimates of Electromagnetic Casimir Self-Energies of Spherical and Cylindrical Metallic Shells

    E-Print Network [OSTI]

    Martin Schaden

    2010-06-16T23:59:59.000Z

    The leading semiclassical estimates of the electromagnetic Casimir stresses on a spherical and a cylindrical metallic shell are within 1% of the field theoretical values. The electromagnetic Casimir energy for both geometries is given by two decoupled massless scalars that satisfy conformally covariant boundary conditions. Surface contributions vanish for smooth metallic boundaries and the finite electromagnetic Casimir energy in leading semiclassical approximation is due to quadratic fluctuations about periodic rays in the interior of the cavity only. Semiclassically the non-vanishing Casimir energy of a metallic cylindrical shell is almost entirely due to Fresnel diffraction.

  11. Energy Aware Node Selection for Cluster-based Data Accuracy Estimation in Wireless Sensor Networks

    E-Print Network [OSTI]

    Karjee, Jyotirmoy

    2011-01-01T23:59:59.000Z

    The main objective of this paper is to reduce the number of sensor nodes by estimating a trade off between data accuracy and energy consumption for selecting nodes in probabilistic approach in distributed networks. Design Procedure/Approach: Observed data are highly correlated among sensor nodes in the spatial domain due to deployment of high density of sensor nodes. These sensor nodes form non-overlapping distributed clusters due to high data correlation among them. We develop a probabilistic model for each distributed cluster to perform data accuracy and energy consumption model in the network. Finally we find a trade off between data accuracy and energy consumption model to select an optimal number of sensor nodes in each distributed cluster. We also compare the performance for our data accuracy estimation model with information accuracy model for each distributed cluster in the network. Practical Implementation: Measuring temperature in physical environment and measuring moisture content in agricultural f...

  12. Lac Courte Oreilles Energy Analysis Project

    SciTech Connect (OSTI)

    Leslie Isham; Denise Johnson

    2009-04-01T23:59:59.000Z

    The Lac Courte Oreilles Tribe applied for first step funding in 2007 and was awarded in October of that year. We wanted to perform an audit to begin fulfilling two commitments we made to our membership and resolutions that we adopted. One was the Kyoto Protocol and reduce our carbon emissions by 25% and to produce 25% of our energy by sustainable means. To complete these goals we needed to begin with first assessing what our carbon emissions are and begin taking the steps to conserve on the energy we currently use. The First Step Grant gave us the opportunity to do this. Upon funding the Energy Project was formed under the umbrella of the LCO Public Works Department and Denise Johnson was hired as the coordinator. She quickly began fulfilling the objectives of the project. Denise began by contact the LCO College and hiring interns who were able to go to each Tribal entity and perform line logging to read and document the energy used for each electrical appliance. Data was also gathered for one full year from each entity for all their utility bills (gasoline, electric, natural gas, fuel oil, etc.). Relationships were formed with the Green Team and other Green Committees in the area that could assist us in this undertaking. The Energy Task Force was of great assistance as well recommending other committees and guidance to completing our project. The data was gathered, compiled and placed into spreadsheets that would be understandable for anyone who didn't have a background in Renewable Resources. While gathering the data Denise was also looking for ways to conserve energy usage, policies changes to implement and any possible viable renewable energy resources. Changes in the social behaviors of our members and employees will require further education by workshops, energy fairs, etc.. This will be looked into and done in coordination with our schools. The renewable resources seem most feasible are wind resources as well as Bio Mass both of which need further assessment and funding to do so will be sought. While we already are in ownership of a Hydro Dam it is currently not functioning to its full capacity we are seeking operation and maintenance firm proposals and funding sources. One of our biggest accomplishment this project gave us was our total Carbon Emissions 9989.45 tons, this will be the number that we will use to base our reductions from. It will help us achieve our goals we have set for ourselves in achieving the Kyoto Protocol and saving our Earth for our future generations. Another major accomplishment and lesson learned is we need to educate ourselves and our people on how to conserve energy to both impact the environment and our own budgets. The Lac Courte Oreilles (LCO) Energy Analysis Project will perform an energy audit to gather information on the Tribe's energy usage and determine the carbon emissions. By performing the audit we will be able to identify areas where conservation efforts are most viable and recommend policies that can be implemented. These steps will enable LCO to begin achieving the goals that have been set by the Tribal Governing Board and adopted through resolutions. The goals are to reduce emissions by 25% and to produce 25% of its energy using sustainable sources. The project objectives were very definitive to assist the Tribe in achieving its goals; reducing carbon emissions and obtaining a sustainable source of energy. The following were the outlined objectives: (1) Coordinate LCO's current and future conservation and renewable energy projects; (2) Establish working relationships with outside entities to share information and collaborate on future projects; (3) Complete energy audit and analyze LCO's energy load and carbon emissions; (4) Identify policy changes, education programs and conservation efforts which are appropriate for the LCO Reservation; and (5) Create a plan to identify the most cost effective renewable energy options for LCO.

  13. Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint

    SciTech Connect (OSTI)

    Heath, G. A.; Burkhardt, J. J.

    2011-09-01T23:59:59.000Z

    In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

  14. Automating Natural Disaster Impact Analysis: An Open Resource to Visually Estimate a Hurricane s Impact on the Electric Grid

    SciTech Connect (OSTI)

    Barker, Alan M [ORNL; Freer, Eva B [ORNL; Omitaomu, Olufemi A [ORNL; Fernandez, Steven J [ORNL; Chinthavali, Supriya [ORNL; Kodysh, Jeffrey B [ORNL

    2013-01-01T23:59:59.000Z

    An ORNL team working on the Energy Awareness and Resiliency Standardized Services (EARSS) project developed a fully automated procedure to take wind speed and location estimates provided by hurricane forecasters and provide a geospatial estimate on the impact to the electric grid in terms of outage areas and projected duration of outages. Hurricane Sandy was one of the worst US storms ever, with reported injuries and deaths, millions of people without power for several days, and billions of dollars in economic impact. Hurricane advisories were released for Sandy from October 22 through 31, 2012. The fact that the geoprocessing was automated was significant there were 64 advisories for Sandy. Manual analysis typically takes about one hour for each advisory. During a storm event, advisories are released every two to three hours around the clock, and an analyst capable of performing the manual analysis has other tasks they would like to focus on. Initial predictions of a big impact and landfall usually occur three days in advance, so time is of the essence to prepare for utility repair. Automated processing developed at ORNL allowed this analysis to be completed and made publicly available within minutes of each new advisory being released.

  15. Estimated {sup 55}Mn and {sup 90}Zr Cross Section Covariances in the Fast Neutron Energy Region

    SciTech Connect (OSTI)

    Pigni, M.T. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)], E-mail: pigni@bnl.gov; Herman, M.; Oblozinsky, P. [National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2008-12-15T23:59:59.000Z

    We completed estimates of neutron cross section covariances for {sup 55}Mn and {sup 90}Zr, from the keV energy range to 25 MeV, considering the most important reaction channels, total, elastic, inelastic, capture, and (n,2n). The nuclear reaction model code EMPIRE was used to calculate sensitivity to model parameters by a perturbation of parameters that define the optical model potential, nuclear level densities and strength of the pre-equilibrium emission. The sensitivity analysis was performed with the set of parameters which reproduces the ENDF/B-VII.0 cross sections. The experimental data were analyzed and both statistical and systematic uncertainties were extracted from almost 30 selected experiments. Then, the Bayesian code KALMAN was used to combine the sensitivity analysis and the experiments to obtain the evaluated covariance matrices.

  16. Non resonant transmission modelling with Statistical modal Energy distribution Analysis

    E-Print Network [OSTI]

    Boyer, Edmond

    be used as an alternative to Statistical Energy Analysis for describing subsystems with low modal overlap1 Non resonant transmission modelling with Statistical modal Energy distribution Analysis L. Maxit Capelle, F-69621 Villeurbanne Cedex, France Statistical modal Energy distribution Analysis (SmEdA) can

  17. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01T23:59:59.000Z

    , cooling and heating and weather data using multiple linear regression models based on the simplified steady-state energy balance for a whole building. Two approaches using different response variables: the energy balance load (EBL) and the building thermal...

  18. Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use 

    E-Print Network [OSTI]

    Masuda, H.; Claridge, D.

    2012-01-01T23:59:59.000Z

    , cooling and heating and weather data using multiple linear regression models based on the simplified steady-state energy balance for a whole building. Two approaches using different response variables: the energy balance load (EBL) and the building thermal...

  19. Energy Policy Act of 2005 -Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Policy Act of 2005 - Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/ ©Washington State University Extension Energy Program Energy Policy Act of 2005: Links to Select News and Analysis Compiled by staff of the Washington State University Extension Energy Library Last updated April

  20. Energy Policy Act of 2005 -Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/

    E-Print Network [OSTI]

    Collins, Gary S.

    Energy Policy Act of 2005 - Select News and Analysis WSU Extension Energy Library http://www.energy.wsu.edu/library/ ©Washington State University Extension Energy Program Energy Policy Act of 2005: Links to Select News and Analysis Compiled by staff of the Washington State University Extension Energy Library Last updated July 7

  1. Planning, Budget, and Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning, Budget, and Analysis Planning, Budget, and Analysis Presentation on Planning, Budget, and Analysis to the DOE Systems Analysis Workshop held in Washington, D.C. July...

  2. Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate

    SciTech Connect (OSTI)

    Warren, R.N.

    1998-09-29T23:59:59.000Z

    In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

  3. Threat Analysis Framework | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transferon theTed Donat AboutTheDepartment ofEarlyThreat Analysis

  4. EnergyPlus Run Time Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2009-01-01T23:59:59.000Z

    the goal of net zero energy buildings. EnergyPlus does sub-and low or net-zero energy buildings. EnergyPlus does sub-

  5. An analysis of buildings-related energy use in manufacturing

    SciTech Connect (OSTI)

    Niefer, M.J.; Ashton, W.B.

    1997-04-01T23:59:59.000Z

    This report presents research by the Pacific Northwest National Laboratory (PNNL) to develop improved estimates of buildings-related energy use in US manufacturing facilities. The research was supported by the Office of Building Technology, State and Community Programs (BTS), Office of Energy Efficiency and Renewable Energy (EERE), US Department of Energy (DOE). The research scope includes only space conditioning and lighting end uses. In addition, this study also estimates the energy savings potential for application of selected commercial buildings technologies being developed by the BTS office to manufacturing and other industrial process facilities. 17 refs., 2 figs., 19 tabs.

  6. Essays on Regression Spline Structural Nonparametric Stochastic Production Frontier Estimation and Inefficiency Analysis Models

    E-Print Network [OSTI]

    Li, Ke

    2012-02-14T23:59:59.000Z

    of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Major Subject: Agricultural Economics Essays on Regression Spline Structural Nonparametric Stochastic Production Frontier Estimation and Ine ciency Analysis Models Copyright 2010 Ke Li... of the requirements for the degree of DOCTOR OF PHILOSOPHY Approved by: Chair of Committee, Ximing Wu Committee Members, David Bessler H. Alan Love Qi Li Head of Department, John P. Nichols December 2010 Major Subject: Agricultural Economics iii ABSTRACT...

  7. Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis with Applications in Genomics 

    E-Print Network [OSTI]

    Zollanvari, Amin

    2012-02-14T23:59:59.000Z

    , Aniruddha Datta Guy L. Curry Head of Department, Costas N. Georghiades December 2010 Major Subject: Electrical Engineering iii ABSTRACT Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis with Applications in Genomics... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133 x LIST OF TABLES TABLE Page I Minimum sample size, n, (n0 = n1 = n) for desired (n;0:5) in univariate case. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67 II Genes selected using the validity-goodness model selection...

  8. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

    2010-12-08T23:59:59.000Z

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  9. Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement

    E-Print Network [OSTI]

    Taylor, Margaret

    2014-01-01T23:59:59.000Z

    Water Heaters ..Table 7: Annual energy and cost savings of water heaters (Boilers Commercial Water Heater See Appendix F for

  10. Analysis of the results of Federal incentives used to stimulate energy production

    SciTech Connect (OSTI)

    Cone, B.W.; Emery, J.C.; Fassbender, A.G.

    1980-06-01T23:59:59.000Z

    The research program analyzed the Federal incentives used to stimulate nuclear, hydro, coal, gas, oil, and electricity production in order to supply what was learned to the selection of an incentives strategy to induce new energy production from renewable resources. Following the introductory chapter, Chapter 2 examines the problem of estimating effects from a theoretical perspective. Methods of quantifying and identifying the many interactive effects of government actions are discussed. Chapter 3 presents a generic analysis of the result of Federal incentives. Chapters 4 through 9 deal with incentives to energy forms - nuclear, hydro, coal, oil, gas, and electricity. Chapter 10 summarizes the estimated results of the incentives, which are presented in terms of their quantity and price impacts. The incentive costs per million Btu of induced energy production is also discussed. Chapter 11 discusses the parity issue, that is an equivalence between Federal incentives to renewable resources and to traditional energy resources. Any analysis of incentives for solar needs will profit from an analysis of the costs of solar incentives per million Btu compared with those for traditional energy forms. Chapter 12 concludes the analysis, discussing the history of traditional energy incentives as a guide to solar-energy incentives. 216 references, 38 figures, 91 tables.

  11. Estimation of Saturation of Permanent-Magnet Synchronous Motors Through an Energy-Based Model

    E-Print Network [OSTI]

    Jebai, AlKassem; Martin, Philippe; Rouchon, Pierre

    2011-01-01T23:59:59.000Z

    We propose a parametric model of the saturated Permanent-Magnet Synchronous Motor (PMSM) together with an estimation method of the magnetic parameters. The model is based on an energy function which simply encompasses the saturation effects. Injection of fast-varying pulsating voltages and measurements of the resulting current ripples then permit to identify the magnetic parameters by linear least squares. Experimental results on a surface-mounted PMSM and an interoir magnet PMSM illustrate the relevance of the approach.

  12. Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs

    SciTech Connect (OSTI)

    Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill; Goldman, Charles A.; Schiller, Steven R.

    2010-04-14T23:59:59.000Z

    Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and in

  13. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01T23:59:59.000Z

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  14. Low-risk and cost-effective prior savings estimates for large-scale energy conservation projects in housing: Learning from the Fort Polk GHP project

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J. [Oak Ridge National Lab., TN (United States); Thornton, J.W. [Thermal Energy Systems Specialists, Inc., Madison, WI (United States)

    1997-08-01T23:59:59.000Z

    Many opportunities exist for large-scale energy conservation projects in housing. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, the authors have collected energy use data which allowed them to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. They believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was totaled, and by adjusting thermostat setpoints and outdoor air infiltration parameters, the models were matched to field-collected energy consumption data for the entire feeder. The energy conservation measures were then implemented in the calibrated model: the air source heat pumps were replaced by geothermal heat pumps with desuperheaters; hot water loads were reduced to account for the low-flow shower heads; and lighting loads were reduced to account for fixture delamping and replacement with compact fluorescent lights. The analysis of pre- and post-retrofit data indicates that the retrofits have saved 30.3% of pre-retrofit electrical energy consumption on the feeder modeled in this paper.

  15. Preliminary Findings from an Analysis of Building Energy Information System

    E-Print Network [OSTI]

    -based energy monitoring, web-based energy management linked to controls, demand response, and enterprise energyLBNL-2224E Preliminary Findings from an Analysis of Building Energy Information System Technologies of Building Energy Information System Technologies Jessica Granderson Mary Ann Piette Girish Ghatikar Phillip

  16. Decision Analysis for EGS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Decision Analysis for EGS Decision Analysis for EGS Project objectives: DEVELOPMENT OF ANALYSIS TOOLS TO ASSESS: Uncertainties associated with exploration for EGS; Uncertainties...

  17. Estimation of Energy Baseline by Simulation for On-going Commissioning and Energy Saving Retrofit

    E-Print Network [OSTI]

    Miyata, M.; Yoshida, H.; Asada, M.; Iwata, T.; Tanabe, Y.; Yanagisawa, T.

    2006-01-01T23:59:59.000Z

    is about 3% more accurate than the model of Level 1 and 2. 1. INTRODUCTION It is important to propose an objective and rational method to evaluate energy savings caused by the implementation of Commissioning or the retrofit conducted by ESCO (Energy... be calibrated using measured data in order to make them accurate enough. Because the accuracy calibration needs detailed operational data in general and it seems difficult to obtain such data before the implementation of commissioning or ESCO retrofit...

  18. Karuk Tribe Strategic Energy Plan and Energy Options Analysis

    SciTech Connect (OSTI)

    Ramona Taylor, Karuk Tribe; David Carter, Winzler and Kelly

    2009-03-31T23:59:59.000Z

    Energy planning document to assist the Karuk Tribe in making educated decisions about future energy priorities and implementation.

  19. Simulating Urban Environments for Energy Analysis

    E-Print Network [OSTI]

    Weber, Gunther H.

    2014-01-01T23:59:59.000Z

    to offset peak energy demand. However, in addition it can beespecially solar and wind energy), demand response, elec-policy decisions for energy supply and demand response. The

  20. Sandia National Laboratories: Transporation Energy System Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  1. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

  2. Performance Validation and Energy Analysis of HVAC Systems using Simulation

    E-Print Network [OSTI]

    Diamond, Richard

    monitored system outputs for performance validation and energy analysis. The paper presents results from1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick Francisco. 1 Introduction Significant potential exists with the current technology of energy management

  3. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

  4. Lead Coolant Test Facility Systems Design, Thermal Hydraulic Analysis and Cost Estimate

    SciTech Connect (OSTI)

    Soli Khericha; Edwin Harvego; John Svoboda; Ryan Dalling

    2012-01-01T23:59:59.000Z

    The Idaho National Laboratory prepared a preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic coolant. Based on review of current world lead or lead-bismuth test facilities and research needs listed in the Generation IV Roadmap, five broad areas of requirements were identified as listed: (1) Develop and Demonstrate Feasibility of Submerged Heat Exchanger; (2) Develop and Demonstrate Open-lattice Flow in Electrically Heated Core; (3) Develop and Demonstrate Chemistry Control; (4) Demonstrate Safe Operation; and (5) Provision for Future Testing. This paper discusses the preliminary design of systems, thermal hydraulic analysis, and simplified cost estimate. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 4200 C. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M (in 2006 $). It is also estimated that the facility will require two years to be constructed and ready for operation.

  5. A Retrospective Analysis of Commercial Building Energy Codes: 1990 – 2008

    SciTech Connect (OSTI)

    Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

    2010-10-01T23:59:59.000Z

    Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

  6. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: Total U.S..

  7. Table C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. Coal Stocks at Manufacturing:: Total U.S..C2.

  8. Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks DefinitionsWeekly.

  9. Table E8. Primary Energy, Electricity, and Total Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4.

  10. The Smart Grid: An Estimation of the Energy and CO2 Benefits

    SciTech Connect (OSTI)

    Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

    2010-01-27T23:59:59.000Z

    This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

  11. The Smart Grid: An Estimation of the Energy and CO2 Benefits

    SciTech Connect (OSTI)

    Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

    2010-01-15T23:59:59.000Z

    This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

  12. Energy star product specification development framework: Using data and analysis to make program decisions

    E-Print Network [OSTI]

    McWhinney, Marla; Fanara, Andrew; Clark, Robin; Hershberg, Craig; Schmeltz, Rachel; Roberson, Judy

    2003-01-01T23:59:59.000Z

    represent the top quartile of energy efficient products Dataand Future Trends”. Energy Policy. vol.26, no. 8. July. ppSavings Estimates for the Energy Star Voluntary Labeling

  13. Bayesian semiparametric power spectral density estimation in gravitational wave data analysis

    E-Print Network [OSTI]

    Edwards, Matthew C; Christensen, Nelson

    2015-01-01T23:59:59.000Z

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.

  14. Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Kansas City, Missouri

    SciTech Connect (OSTI)

    Lucas, Robert G.

    2011-09-30T23:59:59.000Z

    The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of about $145 a year for an average new house. Construction cost increases are estimated at $655. Home owners will experience an annual cost savings of close to $100 a year because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

  15. Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota

    SciTech Connect (OSTI)

    Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

    2005-03-04T23:59:59.000Z

    The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

  16. Control, Estimation and Optimization of Energy Efficient Buildings Jeff Borggaard , John A. Burns , Amit Surana , Lizette Zietsman

    E-Print Network [OSTI]

    Burns, John A.

    Control, Estimation and Optimization of Energy Efficient Buildings Jeff Borggaard , John A. Burns-- Commercial buildings are responsible for a sig- nificant fraction of the energy consumption and greenhouse efficient buildings can have a tremendous impact on energy cost and greenhouse gas emission. Buildings

  17. Abstract--This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing

    E-Print Network [OSTI]

    Gutowski, Timothy

    to the manufacturing energy requirements to process the materials. The database contains a total of 74 entriesAbstract-- This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge

  18. This paper introduces a methodology for estimation of energy consumption in peripherals such as audio and video devices.

    E-Print Network [OSTI]

    Simunic, Tajana

    ABSTRACT This paper introduces a methodology for estimation of energy consumption in peripherals such as audio and video devices. Peripherals can be responsible for significant amount of the energy consumption in current embedded systems. We introduce a cycle- accurate energy simulator and profiler capable

  19. Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data

    E-Print Network [OSTI]

    Gille, Sarah T.

    Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data March 2009; published 5 June 2009. [1] The energy input to the upper ocean Ekman layer is assessed velocities, with an adjustment to account for the vertical structure of the upper ocean. The energy input

  20. Analysis Activities at Fossil Energy/ National Energy Technology Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.