Powered by Deep Web Technologies
Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density and Percent Lipids  

E-Print Network [OSTI]

Reliability of Bioelectrical Impedance Analysis for Estimating Whole-Fish Energy Density impedance analysis (BIA) as a nonlethal means of predicting energy density and percent lipids for three fish. Although models that combined BIA measures with fish wet mass provided strong predictions of total energy

2

Battery Life Estimation (BLE) and Data Analysis - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover:Battery Boost ORNL

3

Analysis of shower size as estimator of extensive air shower energy  

E-Print Network [OSTI]

The fluorescence technique has been successfully used to detect ultrahigh energy cosmic rays by indirect measurements. The underlying idea is that the number of charged particles in the atmospheric shower, i.e, its longitudinal profile, can be extracted from the amount of emitted nitrogen fluorescence light. However the influence of shower fluctuations and the very possible presence of different nuclear species in the primary cosmic ray spectrum make the estimate of the shower energy from the fluorescence data analysis a difficult task. We investigate the potential of shower size at maximum depth as estimator of shower energy. The detection of the fluorescence light is simulated in detail and the reconstruction biases are carefully analyzed. We extend our calculations to both Auger and EUSO experiments. This kind of approach is of particular interest for showers that are not fully contained inside the field of view of the detector.

Vitor de Souza; Jeferson A. Ortiz; Gustavo Medina-Tanco; Federico Sanchez

2005-09-16T23:59:59.000Z

4

Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)  

SciTech Connect (OSTI)

This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

Braccio, R.; Finch, P.; Frazier, R.

2012-03-01T23:59:59.000Z

5

Energy Expenditure Estimation DEMO Application  

E-Print Network [OSTI]

and against the SenseWear, a dedicated commercial product for energy expenditure estimation. Keywords: humanEnergy Expenditure Estimation DEMO Application Bozidara Cvetkovi´c1,2 , Simon Kozina1,2 , Bostjan://www.mps.si Abstract. The paper presents two prototypes for the estimation of hu- man energy expenditure during normal

Lu?trek, Mitja

6

Density Estimation Trees in High Energy Physics  

E-Print Network [OSTI]

Density Estimation Trees can play an important role in exploratory data analysis for multidimensional, multi-modal data models of large samples. I briefly discuss the algorithm, a self-optimization technique based on kernel density estimation, and some applications in High Energy Physics.

Anderlini, Lucio

2015-01-01T23:59:59.000Z

7

Estimating Renewable Energy Costs  

Broader source: Energy.gov [DOE]

Some renewable energy measures, such as daylighting, passive solar heating, and cooling load avoidance, do not add much to the cost of a building. However, renewable energy technologies typically...

8

Analysis and estimation of the threshold for a microwave "pellicle mirror" parametric oscillator, via energy conservation  

E-Print Network [OSTI]

An experiment is proposed to observe the dynamical Casimir effect by means of two tandem, high Q, superconducting microwave cavities, which are separated from each other by only a very thin wall consisting of a flexible superconducting membrane that can be driven into motion by means of resonant "pump" microwaves injected into the left cavity. Degenerate "signal" and "idler" microwave signals can then be generated by the exponential amplification of vacuum fluctuations in the initially empty right cavity, above a certain threshold. The purpose of this paper is calculate the threshold for this novel kind of opto-mechanical parametric oscillation, using energy considerations.

Chiao, Raymond Y

2012-01-01T23:59:59.000Z

9

Cost Estimating, Analysis, and Standardization  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish policy and responsibilities for: (a) developing and reviewing project cost estimates; (b) preparing independent cost estimates and analysis; (c) standardizing cost estimating procedures; and (d) improving overall cost estimating and analytical techniques, cost data bases, cost and economic escalation models, and cost estimating systems. Cancels DOE O 5700.2B, dated 8-5-1983; DOE O 5700.8, dated 5-27-1981; and HQ 1130.1A, dated 12-30-1981. Canceled by DOE O 5700.2D, dated 6-12-1992

1984-11-02T23:59:59.000Z

10

2007 Estimated International Energy Flows  

SciTech Connect (OSTI)

An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.

Smith, C A; Belles, R D; Simon, A J

2011-03-10T23:59:59.000Z

11

State energy data report 1994: Consumption estimates  

SciTech Connect (OSTI)

This document provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), operated by EIA. SEDS provides State energy consumption estimates to members of Congress, Federal and State agencies, and the general public, and provides the historical series needed for EIA`s energy models. Division is made for each energy type and end use sector. Nuclear electric power is included.

NONE

1996-10-01T23:59:59.000Z

12

State energy data report 1993: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public; and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1995-07-01T23:59:59.000Z

13

State Energy Data Report, 1991: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sector. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to the Government, policy makers, and the public; and (2) to provide the historical series necessary for EIA`s energy models.

Not Available

1993-05-01T23:59:59.000Z

14

State energy data report 1995 - consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the State Energy Data System (SEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining SEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public, and (2) to provide the historical series necessary for EIA`s energy models.

NONE

1997-12-01T23:59:59.000Z

15

Hawaii Clean Energy Initiative Scenario Analysis: Quantitative...  

Office of Environmental Management (EM)

Hawaii Clean Energy Initiative Scenario Analysis Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010) R. Braccio, P. Finch, and R. Frazier Booz Allen...

16

State energy data report 1996: Consumption estimates  

SciTech Connect (OSTI)

The State Energy Data Report (SEDR) provides annual time series estimates of State-level energy consumption by major economic sectors. The estimates are developed in the Combined State Energy Data System (CSEDS), which is maintained and operated by the Energy Information Administration (EIA). The goal in maintaining CSEDS is to create historical time series of energy consumption by State that are defined as consistently as possible over time and across sectors. CSEDS exists for two principal reasons: (1) to provide State energy consumption estimates to Members of Congress, Federal and State agencies, and the general public and (2) to provide the historical series necessary for EIA`s energy models. To the degree possible, energy consumption has been assigned to five sectors: residential, commercial, industrial, transportation, and electric utility sectors. Fuels covered are coal, natural gas, petroleum, nuclear electric power, hydroelectric power, biomass, and other, defined as electric power generated from geothermal, wind, photovoltaic, and solar thermal energy. 322 tabs.

NONE

1999-02-01T23:59:59.000Z

17

Estimates of US biomass energy consumption 1992  

SciTech Connect (OSTI)

This report is the seventh in a series of publications developed by the Energy Information Administration (EIA) to quantify the biomass-derived primary energy used by the US economy. It presents estimates of 1991 and 1992 consumption. The objective of this report is to provide updated estimates of biomass energy consumption for use by Congress, Federal and State agencies, biomass producers and end-use sectors, and the public at large.

Not Available

1994-05-06T23:59:59.000Z

18

ESTIMATES OF ADDITIONAL ACHIEVABLE ENERGY SAVINGS  

E-Print Network [OSTI]

Demand 20142024 Revised Forecast SEPTEMBER 2013 CEC2002013005SD CALIFORNIA ENERGY COMMISSION Edmund are already incorporated in the Energy Commission's current forecast, the California Energy Demand 20142024 and forecast stakeholders through the Demand Analysis Working Group (DAWG). These scenarios varied

19

Retrofit Energy Savings Estimation Model Reference Manual  

E-Print Network [OSTI]

Retrofit Energy Savings Estimation Model Reference Manual #12;#12;Retrofit Energy Savings commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does from the Department of Energy. Any conclusions or opinions expressed in this manual represent solely

20

State energy data report 1992: Consumption estimates  

SciTech Connect (OSTI)

This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Reservation Price Estimation by Adaptive Conjoint Analysis  

E-Print Network [OSTI]

Reservation Price Estimation by Adaptive Conjoint Analysis Christoph Breidert1 , Michael Hahsler1 applied the eco- nomic definition of reservation price in combination with a conjoint study on product pricing. In this paper we present a novel approach to estimate the economic reser- vation price using

Schmidt-Thieme, Lars

22

Elmore Model for Energy Estimation in RC Trees Quming Zhou and Kartik Mohanram  

E-Print Network [OSTI]

Elmore Model for Energy Estimation in RC Trees Quming Zhou and Kartik Mohanram Department This paper presents analysis methods for energy estimation in RC trees driven by time-varying voltage sources]: Design aids--simulation General Terms: Algorithms Keywords: Energy estimation, RC trees, interconnect. 1

Mohanram, Kartik

23

Estimated United States Transportation Energy Use 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

Smith, C A; Simon, A J; Belles, R D

2011-11-09T23:59:59.000Z

24

Energy Sector Market Analysis  

SciTech Connect (OSTI)

This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

2006-10-01T23:59:59.000Z

25

Estimating Energy Savings in Compressed Air Systems  

E-Print Network [OSTI]

are frequently overestimated because the methods used to estimate savings neglect to consider important factors such as compressor control and type, storage, and multiple compressor operation. In this paper, a methodology is presented for modeling air... compressor performance and calculating projected energy savings from easily obtainable performance data such as full-load power, no-load power, rated capacity, average fraction full-load power or average fraction rated capacity. The methodology...

Schmidt, C.; Kissock, J. K.

2004-01-01T23:59:59.000Z

26

Parameter estimation for energy balance models with memory  

E-Print Network [OSTI]

Parameter estimation for energy balance models with memory By Lionel Roques1,*, Micka¨el D parameter estimation for one-dimensional energy balance models with mem- ory (EBMMs) given localized estimate is still possible in certain cases. Keywords: age dating; Bayesian inference; energy balance model

27

PART 2. MATHEMATICAL MODELS IN POLLUTION CHAPTER V. MATHEMATICAL MODELS TO ESTIMATE THE ENERGY -  

E-Print Network [OSTI]

of the methodology introduced in a section 5.1, which was used to estimate the atmospheric pollution by the fuelPART 2. MATHEMATICAL MODELS IN POLLUTION CHAPTER V. MATHEMATICAL MODELS TO ESTIMATE THE ENERGY the necessary analysis from the point of view of estimating all the pollution effects in correlation

Baica, Malvina

28

NREL: Energy Analysis - Market Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarket Analysis

29

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Energy Savers [EERE]

Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative Clean Energy Policy Analysis: Impact Analysis of...

30

Estimating the Potential Impact of Renewable Energy on the Caribbean  

E-Print Network [OSTI]

Estimating the Potential Impact of Renewable Energy on the Caribbean Job Sector Rebekah Shirley spur the creation of more jobs per unit of energy delivered locally than `business as usual' fossil with its Energy Efficiency (EE) and Renewable Energy (RE) campaign. We present a Green Jobs estimator which

Kammen, Daniel M.

31

Savings Estimates for the ENERGY STAR Voluntary Labeling Program  

E-Print Network [OSTI]

. This paper presents past and predicted savings for the ENERGY STAR ® labeling program, operated jointly appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved

32

Towards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors  

E-Print Network [OSTI]

to reliably estimate energy expenditure (EE). Direct calorimetry [5] measures the heat produced by human bodyTowards Human Energy Expenditure Estimation Using Smart Phone Inertial Sensors Bozidara Cvetkovi´c1 human energy expenditure during sport and normal daily ac- tivities. The paper presents technical

LuÂ?trek, Mitja

33

State energy data report: Consumption estimates, 1960--1987  

SciTech Connect (OSTI)

The State Energy Data Report presents estimates of annual energy consumption at the state and national levels by major economic sector and by principal energy type for 1960 through 1987. Included in the report are documentation describing how the estimates were made for each energy source, sources of all input data, and a summary of changes from the State Energy Data Report published in April 1988.

Not Available

1989-04-20T23:59:59.000Z

34

Econometric Analysis on Efficiency of Estimator  

E-Print Network [OSTI]

This paper investigates the efficiency of an alternative to ratio estimator under the super population model with uncorrelated errors and a gamma-distributed auxiliary variable. Comparisons with usual ratio and unbiased estimators are also made.

M. Khoshnevisan; F. Kaymram; Housila P. Singh; Rajesh Singh; Florentin Smarandache

2003-04-16T23:59:59.000Z

35

Current work in energy analysis  

SciTech Connect (OSTI)

This report describes the work performed at Berkeley Lab most recently. One of the Labs accomplishments is the publication of Scenarios of US Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the US. This analysis is described and played a key role in shaping the US position on climate change in the Kyoto Protocol negotiations. The Labs participation in the fundamental characterization of the climate change issue by the IPCC is described. Described also is a study of leaking electricity, which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of US residential electricity currently expended on standby losses. The 54 vignettes contained in the report summarize results of research activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national Energy Star{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China.

NONE

1998-03-01T23:59:59.000Z

36

Technique for estimating jet fuel prices from energy futures market  

SciTech Connect (OSTI)

This report presents a statistical analysis of future prices of petroleum products for use in predicting the monthly average retail price of kerosene-type jet fuel. The method of least squares was employed to examine the relationship between kerosene-type jet fuel retail prices and energy futures prices. Regression equations were constructed for four of the petroleum commodities traded on the energy futures market: heating oil No. 2, leaded regular gasoline, crude oil, and unleaded gasoline. Thirty-nine regression equations were estimated by the method of least squares to relate the cash price of kerosene-type jet fuel to the futures prices of the above four petroleum commodities for contract periods of 1 to 12 months. The analysis revealed that 19 of the 39 first-order linear regression equations provided a good fit to the data. Specifically, heating oil No. 2 performed better than the order energy futures in predicting the price of kerosene-type jet fuel. The only information required to use these regression equations are energy futures prices which are available daily from the Wall Street Journal. 5 refs., 4 tabs.

Vineyard, T.A.

1988-05-01T23:59:59.000Z

37

STATEWIDE ENERGY EFFICIENCY POTENTIAL ESTIMATES AND TARGETS  

E-Print Network [OSTI]

rates of forecasted natural gas consumption, electricity consumption and peak electricity demand potential for electric consumption savings, 85 percent of the economic potential for peak demand savings Energy efficiency, energy savings, demand reduction, electricity consumption, natural gas consumption

38

Property:EstimatedTime | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSD JumpEstimatedTime

39

Master thesis Solar Energy Meteorology Comparison of different methods to estimate cloud height for solar  

E-Print Network [OSTI]

Master thesis ­ Solar Energy Meteorology Comparison of different methods to estimate cloud height: · Interest in meteorology and solar energy · Experiences with data handling and analysis · Good programming for solar irradiance calculations In order to derive incoming solar irradiance at the earths surface

Peinke, Joachim

40

Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management  

E-Print Network [OSTI]

Smart Sensing, Estimation, and Prediction for Efficient Building Energy Management Sunil Mamidi energy management software can greatly decrease the energy usage of HVAC systems in many building to improve efficiency. In most buildings, the most advanced examples of this type of system are the motion

Chang, Yu-Han

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

Estimating Total Energy Consumption and Emissions of China’sof China’s total energy consumption mix. However, accuratelyof China’s total energy consumption, while others estimate

Fridley, David G.

2008-01-01T23:59:59.000Z

42

NREL: Energy Analysis - Energy Analysis Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanElla

43

Energy, Environmental & Economic Systems Analysis  

E-Print Network [OSTI]

Energy, Environmental & Economic Systems Analysis ENPEP-BALANCE: A Tool for Long-term Nuclear Power, Environmental & Economic Systems Analysis A resurgence of interest in nuclear energy is taking place Market Simulations Opportunity Decision and Information Sciences Division Center for Energy

44

Energy Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember 2011 EMAB MeetingInformation Center»

45

Energy Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen ProgramEnergize| Department ofAnalysis

46

NREL: Energy Analysis - Policy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of PaulPolicy

47

NREL: Energy Analysis - Sustainability Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe

48

NREL: Energy Analysis: Geospatial Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley

49

NREL: Energy Analysis: Geospatial Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesleyGeospatial

50

Analysis with Kernel Density Estimation University of Michigan / HERMES Collaboration  

E-Print Network [OSTI]

Analysis with Kernel Density Estimation S. Gliske University of Michigan / HERMES Collaboration Transverse Parton Structure of the Hadron Yerevan, Armenia 25 June, 2009 Gliske (HERMES / Michigan) Analysis/Smearing Effects SIDIS cos(n) Conclusion Gliske (HERMES / Michigan) Analysis with KDEs TPSH `09 2 / 24 #12

51

NREL: Energy Analysis - Marissa Hummon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Marissa Hummon is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Engineer On staff since January 2010 Phone number: 303-275-3269...

52

Uncertainty Estimation Improves Energy Measurement and Verification Procedures  

SciTech Connect (OSTI)

Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.

Walter, Travis; Price, Phillip N.; Sohn, Michael D.

2014-05-14T23:59:59.000Z

53

Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis  

E-Print Network [OSTI]

cost estimates) Figure 4: Capital and O&M Costs Sensitivity – Separate Refrigeration Load Distributed Energy Resourcescost estimates) Figure 8: Capital and O&M Costs Sensitivity Analysis – Integrated Refrigeration Load Distributed Energy Resources

Bailey, Owen C.; Marnay, Chris

2005-01-01T23:59:59.000Z

54

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

Tree Lawrence Berkeley National Laboratory  Page 37  California EnergyEnergy Commission EnergyPlus Run Time Analysis Plant Supply Calling Tree (Energy Commission EnergyPlus Run Time Analysis Appendix A – EnergyPlus Call Tree

Hong, Tianzhen

2009-01-01T23:59:59.000Z

55

Energy analysis program. 1994 annual report  

SciTech Connect (OSTI)

This report provides an energy analysis overview. The following topics are described: building energy analysis; urban and energy environmental issues; appliance energy efficiency standards; utility planning and policy; energy efficiency, economics, and policy issues; and international energy and environmental issues.

Levine, M.D.

1995-04-01T23:59:59.000Z

56

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International AssociationServicesforInterproject

57

Energy Storage Testing and Analysis High Power and High Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Testing and Analysis High Power and High Energy Development Energy Storage Testing and Analysis High Power and High Energy Development 2009 DOE Hydrogen Program and Vehicle...

58

CHP Emissions Reduction Estimator | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO)Burundi: EnergyCECG Maine,CHP Emissions

59

Predesign energy analysis  

SciTech Connect (OSTI)

A new graphic technique developed to help architects and engineers design more energy-efficient buildings is presented. An energy-efficient design includes two interrelated elements: physical design characteristics which minimize testing, cooling, and lighting loads; and mechanical and electrical subsystems which meet energy loads efficiently. The technique focuses on manipulation of design variables to effectively reduce excessive heat gains and losses. The technique, termed a visual one, is designed to show how a building uses energy. The technique described can also be done manually.

None

1980-09-01T23:59:59.000Z

60

International Clean Energy Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International Association of PublicClean Energy Analysis

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Estimating home energy decision parameters for a hybrid energyYeconomy policy model  

E-Print Network [OSTI]

home building structures and choosing a space heating and conditioning system. Based on a discreteEstimating home energy decision parameters for a hybrid energyYeconomy policy model Mark Jaccard

62

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

63

Building Energy Monitoring and Analysis  

SciTech Connect (OSTI)

U.S. and China are the world’s top two economics. Together they consumed one-third of the world’s primary energy. It is an unprecedented opportunity and challenge for governments, researchers and industries in both countries to join together to address energy issues and global climate change. Such joint collaboration has huge potential in creating new jobs in energy technologies and services. Buildings in the US and China consumed about 40% and 25% of the primary energy in both countries in 2010 respectively. Worldwide, the building sector is the largest contributor to the greenhouse gas emission. Better understanding and improving the energy performance of buildings is a critical step towards sustainable development and mitigation of global climate change. This project aimed to develop a standard methodology for building energy data definition, collection, presentation, and analysis; apply the developed methods to a standardized energy monitoring platform, including hardware and software, to collect and analyze building energy use data; and compile offline statistical data and online real-time data in both countries for fully understanding the current status of building energy use. This helps decode the driving forces behind the discrepancy of building energy use between the two countries; identify gaps and deficiencies of current building energy monitoring, data collection, and analysis; and create knowledge and tools to collect and analyze good building energy data to provide valuable and actionable information for key stakeholders.

Hong, Tianzhen; Feng, Wei; Lu, Alison; Xia, Jianjun; Yang, Le; Shen, Qi; Im, Piljae; Bhandari, Mahabir

2013-06-01T23:59:59.000Z

64

Strategic Energy Analysis (Fact Sheet)  

SciTech Connect (OSTI)

NREL complements its scientific research with high-quality, credible, technology-neutral, objective analysis that informs policy and investment decisions as renewable energy and energy efficiency technologies move from innovation through integration. This sheet highlights NREL's analytical capabilities and achievements.

Not Available

2014-02-01T23:59:59.000Z

65

Estimating Appliance and Home Electronic Energy Use | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department of EnergyEqual

66

Energy Savings Estimates of Light Emitting Diodes | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERECommercial2010EnergyThis report

67

Petrography Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) | Open EnergyInformationAnalysis Jump

68

Building Energy Optimization Analysis Method (BEopt) - Building...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Optimization Analysis Method (BEopt) - Building America Top Innovation Building Energy Optimization Analysis Method (BEopt) - Building America Top Innovation House graphic...

69

Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries  

E-Print Network [OSTI]

1 Residential Energy-Efficient Technology Adoption, Energy Conservation, Knowledge, and Attitudes: An Analysis of European Countries Bradford Millsa * and Joachim Schleicha,b,c a Virginia Polytechnic Institute of measures of household energy use behavior are estimated using a unique dataset of approximately 5

Paris-Sud XI, Université de

70

Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative1AdvancedVehicles

71

NANA Strategic Energy Plan & Energy Options Analysis  

SciTech Connect (OSTI)

NANA Strategic Energy Plan summary NRC, as an Alaska Native Corporation, has committed to addressing the energy needs for its shareholders. The project framework calls for implicit involvement of the IRA Councils in the Steering Committee. Tribal Members, from the NRC to individual communities, will be involved in development of the NANA Energy Plan. NRC, as the lead tribal entity, will serve as the project director of the proposed effort. The NRC team has communicated with various governmental and policy stakeholders via meetings and discussions, including Denali Commission, Alaska Energy Authority, and other governmental stakeholders. Work sessions have been initiated with the Alaska Village Electric Cooperative, the NW Arctic Borough, and Kotzebue Electric Association. The NRC Strategic Energy Plan (SEP) Steering committee met monthly through April and May and weekly starting in June 2008 in preparation of the energy summit that was held from July 29-31, 2008. During preparations for the energy summit and afterwards, there was follow through and development of project concepts for consideration. The NANA regional energy summit was held from July 29-31, 2008, and brought together people from all communities of the Northwest Arctic Borough. The effort was planned in conjunction with the Alaska Energy Authority’s state-wide energy planning efforts. Over $80,000 in cash contributions was collected from various donors to assist with travel from communities and to develop the summit project. Available funding resources have been identified and requirements reviewed, including the Denali Commission, U.S. Dept. of Agriculture, and the Alaska Energy Authority. A component of the overall plan will be a discussion of energy funding and financing. There are current project concepts submitted, or are ready for submittal, in the region for the following areas: • Wind-diesel in Deering, Buckland, Noorik, and Kiana areas; potential development around Red Dog mine. • Biomass Feasibility analysis in the upper Kobuk; • Run of the river hydroelectric development for the Upper Kobuk; • Solar photovoltaic (PV) power demonstration projects for Noatak, Ambler, Selawik, Kiana, and Noorvik; • Heat Recovery for several communities; In September 2008, the NRC team participated at the Alaska Rural Energy Conference in Girdwood, Alaska In November 2008, the NRC team gave a presentation on the NANA regional energy plans at a DOE Tribal Energy Program conference in Denver, Colorado. In January 2009, the final SEP report was submitted to NRC.

Jay Hermanson; Brian Yanity

2008-12-31T23:59:59.000Z

72

NREL: Energy Analysis - News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmark and

73

NREL: Energy Analysis - Partnerships  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmark and

74

NREL: Energy Analysis - Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version EmailBookmark

75

NREL: Energy Analysis - Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff National

76

NREL: Energy Analysis - Webmaster  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff Webmaster Please

77

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

E-Print Network [OSTI]

ABORATORY Estimating Total Energy Consumption and Emissionscomponent of China’s total energy consumption mix. However,about 19% of China’s total energy consumption, while others

Fridley, David G.

2008-01-01T23:59:59.000Z

78

LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL  

E-Print Network [OSTI]

LEAN ENERGY ANALYSIS: IDENTIFYING, DISCOVERING AND TRACKING ENERGY SAVINGS POTENTIAL KELLY KISSOCK a methodology, called lean energy analysis, LEA, for graphically and statistically analyzing plant energy use from reducing non-production and space-conditioning energy use. In addition, graphical analysis

Kissock, Kelly

79

An Energy and Power Consumption Analysis of FPGA Routing Architectures  

E-Print Network [OSTI]

An Energy and Power Consumption Analysis of FPGA Routing Architectures Peter Jamieson, Elec of energy and power consumption using an updated power estimation framework compatible with VPR 5.0. The goal of this research is to help FPGA vendors find the best FPGA architectures. Initially, we make some

Wilton, Steve

80

2003 status report savings estimates for the energy star(R)voluntary labeling program  

SciTech Connect (OSTI)

ENERGY STAR(R) is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2002, what we expect in 2003, and provide savings forecasts for two market penetration scenarios for the period 2003 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

2004-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

2002 status report: Savings estimates for the ENERGY STAR(R) voluntary labeling program  

SciTech Connect (OSTI)

ENERGY STAR [registered trademark] is a voluntary labeling program designed to identify and promote energy-efficient products, buildings and practices. Operated jointly by the Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE), ENERGY STAR labels exist for more than thirty products, spanning office equipment, residential heating and cooling equipment, commercial and residential lighting, home electronics, and major appliances. This report presents savings estimates for a subset of ENERGY STAR program activities, focused primarily on labeled products. We present estimates of the energy, dollar and carbon savings achieved by the program in the year 2001, what we expect in 2002, and provide savings forecasts for two market penetration scenarios for the period 2002 to 2020. The target market penetration forecast represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide a forecast under the assumption of 100 percent market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period.

Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla; Koomey, Jonathan

2003-03-03T23:59:59.000Z

82

2007 Status Report: Savings Estimates for the ENERGY STAR(R)VoluntaryLabeling Program  

SciTech Connect (OSTI)

ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2006, whatwe expect in 2007, and provide savings forecasts for two marketpenetration scenarios for the periods 2007 to 2015 and 2007 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

Sanchez, Marla; Webber, Carrie A.; Brown, Richard E.; Homan,Gregory K.

2007-03-23T23:59:59.000Z

83

2004 status report: Savings estimates for the Energy Star(R)voluntarylabeling program  

SciTech Connect (OSTI)

ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2003, whatwe expect in 2004, and provide savings forecasts for two marketpenetration scenarios for the periods 2004 to 2010 and 2004 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

2004-03-09T23:59:59.000Z

84

2006 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program  

SciTech Connect (OSTI)

ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), ENERGY STAR labels exist for more thanthirty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2005, whatwe expect in 2006, and provide savings forecasts for two marketpenetration scenarios for the periods 2006 to 2015 and 2006 to 2025. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan,Gregory K.

2006-03-07T23:59:59.000Z

85

2005 Status Report Savings Estimates for the ENERGY STAR(R)Voluntary Labeling Program  

SciTech Connect (OSTI)

ENERGY STAR(R) is a voluntary labeling program designed toidentify and promote energy-efficient products, buildings and practices.Operated jointly by the Environmental Protection Agency (EPA) and theU.S. Department of Energy (DOE), Energy Star labels exist for more thanforty products, spanning office equipment, residential heating andcooling equipment, commercial and residential lighting, home electronics,and major appliances. This report presents savings estimates for a subsetof ENERGY STAR labeled products. We present estimates of the energy,dollar and carbon savings achieved by the program in the year 2004, whatwe expect in 2005, and provide savings forecasts for two marketpenetration scenarios for the periods 2005 to 2010 and 2005 to 2020. Thetarget market penetration forecast represents our best estimate of futureENERGY STAR savings. It is based on realistic market penetration goalsfor each of the products. We also provide a forecast under the assumptionof 100 percent market penetration; that is, we assume that all purchasersbuy ENERGY STAR-compliant products instead of standard efficiencyproducts throughout the analysis period.

Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

2006-03-07T23:59:59.000Z

86

Analysis of neutron scattering data: Visualization and parameter estimation  

SciTech Connect (OSTI)

Traditionally, small-angle neutron and x-ray scattering (SANS and SAXS) data analysis requires measurements of the signal and corrections due to the empty sample container, detector efficiency and time-dependent background. These corrections are then made on a pixel-by-pixel basis and estimates of relevant parameters (e.g., the radius of gyration) are made using the corrected data. This study was carried out in order to determine whether treatment of the detector efficiency and empty sample cell in a more statistically sound way would significantly reduce the uncertainties in the parameter estimators. Elements of experiment design are shortly discussed in this paper. For instance, we studied the way the time for a measurement should be optimally divided between the counting for signal, background and detector efficiency. In Section 2 we introduce the commonly accepted models for small-angle neutron and x-scattering and confine ourselves to the Guinier and Rayleigh models and their minor generalizations. The traditional approaches of data analysis are discussed only to the extent necessary to allow their comparison with the proposed techniques. Section 3 describes the main stages of the proposed method: visual data exploration, fitting the detector sensitivity function, and fitting a compound model. This model includes three additive terms describing scattering by the sampler, scattering with an empty container and a background noise. We compare a few alternatives for the first term by applying various scatter plots and computing sums of standardized squared residuals. Possible corrections due to smearing effects and randomness of estimated parameters are also shortly discussed. In Section 4 the robustness of the estimators with respect to low and upper bounds imposed on the momentum value is discussed. We show that for the available data set the most accurate and stable estimates are generated by models containing double terms either of Guinier's or Rayleigh's type. The optimal partitioning of the total experimental time between measuring various signals is discussed in Section 5. We applied a straightforward optimization instead of some special experimental techniques because of the numerical simplicity of the corresponding problem. As a criterion of optimality we selected the variance of the gyration radius maximum likelihood estimator. The statistical background of the proposed approach is given in the appendix. The properties of the maximum likelihood estimators and the corresponding iterated estimator together with its possible numerical realization are presented in subsection A.1. In subsection A.2 we prove that the use of a compound model leads to more efficient estimators than a stage-wise analysis of different components entering that model.

Beauchamp, J.J.; Fedorov, V.; Hamilton, W.A.; Yethiraj, M.

1998-09-01T23:59:59.000Z

87

Estimated United States Residential Energy Use in 2005  

SciTech Connect (OSTI)

A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

Smith, C A; Johnson, D M; Simon, A J; Belles, R D

2011-12-12T23:59:59.000Z

88

Alternative energy estimation from the shower lateral distribution function  

E-Print Network [OSTI]

The surface detector technique has been successfully used to detect cosmic ray showers for several decades. Scintillators or Cerenkov water tanks can be used to measure the number of particles and/or the energy density at a given depth in the atmosphere and reconstruct the primary particle properties. It has been shown that the experiment configuration and the resolution in reconstructing the core position determine a distance to the shower axis in which the lateral distribution function (LDF) of particles shows the least variation with respect to different primary particles type, simulation models and specific shapes of the LDF. Therefore, the signal at this distance (600 m for Haverah Park and 1000 m for Auger Observatory) has shown to be a good estimator of the shower energy. Revisiting the above technique, we show that a range of distances to the shower axis, instead of one single point, can be used as estimator of the shower energy. A comparison is done for the Auger Observatory configuration and the new estimator proposed here is shown to be a good and robust alternative to the standard single point procedure.

Vitor de Souza; Carlos O. Escobar; Joel Brito; Carola Dobrigkeit; Gustavo Medina-Tanco

2005-09-16T23:59:59.000Z

89

Thermodynamic Analysis for Energy Conservation  

E-Print Network [OSTI]

THERMODYNAMIC ANALYSIS FOR ENERGY CONSERVATION William F. Kenney Exxon Chemical Company Florham Park, New Jersey , ,,~ This paper describes a methodology for per forming a thermodynamic analysis of a process, and it demonstrates how... fired. In a cracking furnace it can reduce lost work in combustion and in the convec tion section at the cost of more surface area in the convection section, reduced steam make, and slightly higher radiative temperature differences. Preheating air...

Kenney, W. F.

1981-01-01T23:59:59.000Z

90

MODAL ENERGY ANALYSIS Nicolas Totaro1*  

E-Print Network [OSTI]

MODAL ENERGY ANALYSIS Nicolas Totaro1* , Jean-Louis Guyader1 1 Laboratoire Vibrations Acoustique.totaro@insa-lyon.fr Keywords: Energy methods, non resonant, pure tone, Statistical Energy Analysis, MODENA. ABSTRACT The Modal Energy Analysis presented in this paper is a method to predict energy exchanges between vibro

Paris-Sud XI, Université de

91

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

SciTech Connect (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy between actual and estimated energy use indicates a need for better modeling tools and assumptions. Despite the best efforts of researchers, the estimated energy savings are too inaccurate to determine reliable paybacks for retrofit projects. While the monitored data allows researchers to understand why these differences exist, it is not cost effective to monitor each home with the level of detail presented here. Therefore an appropriate balance between modeling and monitoring must be determined for more widespread application in retrofit programs and the home performance industry. Recommendations to address these deficiencies include: (1) improved tuning process for pre-retrofit energy use, which currently utilized broad-based monthly utility bills; (2) developing simple occupant-based energy models that better address the many different occupant types and their impact on energy use; (3) incorporating actual weather inputs to increase accuracy of the tuning process, which uses utility bills from specific time period; and (4) developing simple, cost-effective monitoring solutions for improved model tuning.

Blanchard, Jeremy; Widder, Sarah H.; Giever, Elisabeth L.; Baechler, Michael C.

2012-10-01T23:59:59.000Z

92

Additional Resources for Estimating Building Energy and Cost Savings to Reduce Greenhouse Gases  

Broader source: Energy.gov [DOE]

For evaluating greenhouse gas reduction strategies and estimating costs, the following information resources can help Federal agencies estimate energy and cost savings potential by building type.

93

National Renewable Energy Laboratory Analysis Capabilities  

E-Print Network [OSTI]

National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

94

CORONAL MASS EJECTION MASS, ENERGY, AND FORCE ESTIMATES USING STEREO  

SciTech Connect (OSTI)

Understanding coronal mass ejection (CME) energetics and dynamics has been a long-standing problem, and although previous observational estimates have been made, such studies have been hindered by large uncertainties in CME mass. Here, the two vantage points of the Solar Terrestrial Relations Observatory (STEREO) COR1 and COR2 coronagraphs were used to accurately estimate the mass of the 2008 December 12 CME. Acceleration estimates derived from the position of the CME front in three dimensions were combined with the mass estimates to calculate the magnitude of the kinetic energy and driving force at different stages of the CME evolution. The CME asymptotically approaches a mass of 3.4 {+-} 1.0 Multiplication-Sign 10{sup 15} g beyond {approx}10 R{sub Sun }. The kinetic energy shows an initial rise toward 6.3 {+-} 3.7 Multiplication-Sign 10{sup 29} erg at {approx}3 R{sub Sun }, beyond which it rises steadily to 4.2 {+-} 2.5 Multiplication-Sign 10{sup 30} erg at {approx}18 R{sub Sun }. The dynamics are described by an early phase of strong acceleration, dominated by a force of peak magnitude of 3.4 {+-} 2.2 Multiplication-Sign 10{sup 14} N at {approx}3 R{sub Sun }, after which a force of 3.8 {+-} 5.4 Multiplication-Sign 10{sup 13} N takes effect between {approx}7 and 18 R{sub Sun }. These results are consistent with magnetic (Lorentz) forces acting at heliocentric distances of {approx}<7 R{sub Sun }, while solar wind drag forces dominate at larger distances ({approx}>7 R{sub Sun }).

Carley, Eoin P.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); McAteer, R. T. James [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

2012-06-10T23:59:59.000Z

95

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

System . . . . . Capital Cost Estimates for a 2000 T/D Purox1976. Table F-2 Estimates of Capital Costs for Solar Thermalcapital costs, power rating at an optimal average wind velocity and energy costs The capacity factors, according to the estimate

Authors, Various

2010-01-01T23:59:59.000Z

96

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models  

E-Print Network [OSTI]

Integrating Photovoltaic Inverter Reliability into Energy Yield Estimation with Markov Models@illinois.edu Abstract-- Markov reliability models to estimate Photovoltaic (PV) inverter reliability of the inverters. Keywords-Photovoltaic energy conversion, Markov reliability models, utility-interactive inverters

Liberzon, Daniel

97

An Estimate of Energy Use in Laboratories, Cleanrooms, and Data Centers in New York  

SciTech Connect (OSTI)

Laboratories, cleanrooms and data centers are very energy-intensive. For example, laboratories are typically three to eight times as energy intensive as a typical office building, and a data center may be as much as 20-50 times as energy intensive as a typical office building. This technical note presents an estimate of the total energy use in laboratories, cleanrooms and data centers in New York. There is generally very limited data on energy use in the high tech sector, both at the national and state level. Since it was beyond the scope of this project to develop primary data through surveys, the analysis relied primarily on the use of proxy indicators and extrapolation from national data where available. The results for each building type are summarized below in table E-1 and figure E-1.

Mathew, Paul

2008-10-01T23:59:59.000Z

98

An Estimation and Simulation Framework for Energy Efficient Design using Platform FPGAs  

E-Print Network [OSTI]

An Estimation and Simulation Framework for Energy Efficient Design using Platform FPGAs Sumit modeling technique, domain specific modeling, and a methodology for energy-efficient design of application

Prasanna, Viktor K.

99

New analysis techniques for estimating impacts of federal appliance efficiency standards  

SciTech Connect (OSTI)

Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

McMahon, James E.

2003-06-24T23:59:59.000Z

100

LOCAL ENERGY ESTIMATES FOR THE FINITE ELEMENT METHOD ON SHARPLY VARYING GRIDS  

E-Print Network [OSTI]

. We present local a priori energy estimates that are valid on shape regular grids, an assumption which subdomains under the assumption that the finite element grid is quasi-uniform. Such local energy estimates element theory. Here we prove local energy error estimates under the assumption that the fi- nite element

Demlow, Alan

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

LOCAL ENERGY ESTIMATES FOR THE FINITE ELEMENT METHOD ON SHARPLY VARYING GRIDS  

E-Print Network [OSTI]

. We present local a priori energy estimates that are valid on shape regular grids, an assumption which subdomains under the assumption that the finite element grid is quasi-uniform. Such local energy estimates. Here we prove local energy error estimates under the assumption that the fi- nite element triangulation

Guzmán, Johnny

102

Energy Analysis of the Texas Capitol Restoration  

E-Print Network [OSTI]

This paper presents the methodology and results of a detailed energy analysis of the Texas Capitol Restoration. The purpose of this analysis was two-fold: 1) to determine the projected energy cost savings of a series of design alternatives...

Hunn, B. D.; Banks, J. A.; Reddy, S. N.

103

Sensitivity analysis of aquifer parameter estimations based on the Laplace equation with linearized boundary conditions  

E-Print Network [OSTI]

boundary conditions Jozsef Szilagyi Conservation and Survey Division, University of Nebraska analysis Citation: Szilagyi, J., Sensitivity analysis of aquifer parameter estimations based on the Laplace

Szilagyi, Jozsef

104

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

the ORNL Residential Energy Demand Model to the EvaluationDept. of Energy THE ORNL ENERGY DEMAND TO THE EVALUATION OFORNL) Residential Energy Demand Model (REDM) was developed

Authors, Various

2013-01-01T23:59:59.000Z

105

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in theof indigenous renewable and geothermal energy re- sources inocean thermal energy gradients, and geothermal energy. Some

Authors, Various

2013-01-01T23:59:59.000Z

106

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2Topo II: AnTrainingTransportation Analysis SHARE

107

ESTIMATING DAMPING PARAMETERS IN MULTI-DEGREE-OF-FREEDOM VIBRATION SYSTEMS BY BALANCING ENERGY0  

E-Print Network [OSTI]

ESTIMATING DAMPING PARAMETERS IN MULTI-DEGREE-OF-FREEDOM VIBRATION SYSTEMS BY BALANCING ENERGY0 B is outlined, involving a balance of dissipated and supplied energies over a cycle of pe- riodic vibration a damping estimation method based on the balance of energy. The idea is to compute the energy input per

Feeny, Brian

108

Origins of Analysis Methods Used to Design High Performance Commercial Buildings: Part II, Solar Energy Analysis  

E-Print Network [OSTI]

PV, solar thermal, passive solar analysis programs are reivewed using a new comprehensive genealogy chart. In companion papers, the origins of the analysis methods of whole-building energy and daylighting simulation programs are reviewed (Oh... analysis programs evaluate the performance of solar systems that are designed to collect and use solar radiation for thermal or electricity conversion. These programs are used for simulations and design methods: Computer simulations estimate the time...

Oh, S.; Haberl, J.S.

109

Home Performance with ENERGY STAR: Utility Bill Analysis on Homes Participating in Austin Energy's Program  

SciTech Connect (OSTI)

Home Performance with ENERGY STAR (HPwES) is a jointly managed program of the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA). This program focuses on improving energy efficiency in existing homes via a whole-house approach to assessing and improving a home's energy performance, and helping to protect the environment. As one of HPwES's local sponsors, Austin Energy's HPwES program offers a complete home energy analysis and a list of recommendations for efficiency improvements, along with cost estimates. To determine the benefits of this program, the National Renewable Energy Laboratory (NREL) collaborated with the Pacific Northwest National Laboratory (PNNL) to conduct a statistical analysis using energy consumption data of HPwES homes provided by Austin Energy. This report provides preliminary estimates of average savings per home from the HPwES Loan Program for the period 1998 through 2006. The results from this preliminary analysis suggest that the HPwES program sponsored by Austin Energy had a very significant impact on reducing average cooling electricity for participating households. Overall, average savings were in the range of 25%-35%, and appear to be robust under various criteria for the number of households included in the analysis.

Belzer, D.; Mosey, G.; Plympton, P.; Dagher, L.

2007-07-01T23:59:59.000Z

110

Blower upkeep, energy savings estimated at $20,000/yr  

SciTech Connect (OSTI)

Vinyl chloride gas must be removed from operating vessels in a polymerization process at Occidental Chemical, Addis, LA. If left intact, the gases can polymerize and form deposits. Considered for this function were reciprocating and liquid ring type compressors. They were rejected, however, because of anticipated high valve maintenance and energy consumption. Since high reliability and leak-free performance are essential, two double-mechanical-sealed, positive displacement blowers were installed with water injection in 1980. The blowers are designed for those special applications where gas leak tightness is required or where continuous, high-pressure or vacuum, single-stage or two-stage is needed. The lobe-type blowers were selected by Occidental because they were considered to be best suited for the low-pressure differential operation. All internal surfaces are specially cleaned to reduce contamination and may be operated with non-hydrocarbon lubricants. A back-up seal on the drive shaft provides protection against leakage of process gas to the atmosphere. Maintenance and energy savings are estimated at $20,000/yr. The blowers were used with the water injection technique because previous experience vinyl chloride monomer indicated that there were major deposits inside the compressors and ring units. The blowers have provided contaminant-free (oil-free) monomer, and the water injection has prevented the polymerization material from sticking to the surfaces of the blowers. This has ensured practically trouble-free operation, and has greatly reduced maintenance and operation downtime, significantly reducing cost.

Diehl, R.; Powers, J.

1987-05-01T23:59:59.000Z

111

Current Work in Energy Analysis (Energy Analysis Program -1996 Annual Report)  

SciTech Connect (OSTI)

This report describes the work that Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory has been doing most recently. One of our proudest accomplishments is the publication of Scenarios of U.S. Carbon Reductions, an analysis of the potential of energy technologies to reduce carbon emissions in the U.S. This analysis played a key role in shaping the U.S. position on climate change in the Kyoto Protocol negotiations. Our participation in the fundamental characterization of the climate change issue by the IPCC is described. We are also especially proud of our study of ''leaking electricity,'' which is stimulating an international campaign for a one-watt ceiling for standby electricity losses from appliances. This ceiling has the potential to save two-thirds of the 5% of U.S. residential electricity currently expended on standby losses. The 54 vignettes contained in the following pages summarize results of research. activities ranging in scale from calculating the efficacy of individual lamp ballasts to estimating the cost-effectiveness of the national ENERGY STAR{reg_sign} labeling program, and ranging in location from a scoping study of energy-efficiency market transformation in California to development of an energy-efficiency project in the auto parts industry in Shandong Province, China. These are the intellectual endeavors of a talented team of researchers dedicated to public service.

Energy Analysis Program

1998-03-01T23:59:59.000Z

112

NREL: Energy Analysis - NREL Releases Report on Policy Options...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Learn more at http:energy.govsunshot. For the latest updates on information regarding energy analysis, visit the Energy Analysis website. You can also subscribe to the Energy...

113

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in theof coal, nuclear and geothermal energy sources. Overall, thewith new or expanded geothermal energy development. Fig. 1.

Authors, Various

2013-01-01T23:59:59.000Z

114

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

due to different definitions of energy use and boundary,due to different definitions of energy use and boundary, methodology for building energy data definition, collection,

Hong, Tianzhen

2014-01-01T23:59:59.000Z

115

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

trade winds, biomass, ocean thermal energy gradients, andfrom biomass ocean thermal energy conversion geothermalelectric plants, ocean thermal energy plants (OTEC) and

Authors, Various

2013-01-01T23:59:59.000Z

116

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

SciTech Connect (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

117

Transportation Analysis | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis SHARE Transportation Analysis Transportation Analysis efforts at Oak Ridge National Laboratory contribute to the efficient, safe, and free movement of...

118

Parameter estimation of coupled water and energy balance models based on stationary constraints of surface states  

E-Print Network [OSTI]

[1] We use a conditional averaging approach to estimate the parameters of a land surface water and energy balance model and then use the estimated parameters to partition net radiation into latent, sensible, and ground ...

Sun, Jian

119

Scripted Building Energy Modeling and Analysis (Presentation)  

SciTech Connect (OSTI)

Building energy analysis is often time-intensive, error-prone, and non-reproducible. Entire energy analyses can be scripted end-to-end using the OpenStudio Ruby API. Common tasks within an analysis can be automated using OpenStudio Measures. Graphical user interfaces (GUI's) and component libraries reduce time, decrease errors, and improve repeatability in energy modeling.

Macumber, D.

2012-10-01T23:59:59.000Z

120

Frontier estimation as a particular case of Conditional extreme value analysis  

E-Print Network [OSTI]

Frontier estimation as a particular case of Conditional extreme value analysis Salim Rao Bengal estimation and frontier estimation can be seen as particular cases of Conditional Extreme Value Analysis generating the realiza- tions of X are independent, the cumulative distribution of Yn may be expressed as [F

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation  

E-Print Network [OSTI]

Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy component of our free energy estimates can useful in distinguishing native

Xing, Eric P.

122

Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation  

E-Print Network [OSTI]

Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP, we show that the entropy compo- nent of our free energy estimates can be useful in distinguishing

Langmead, Christopher James

123

VTrack: Accurate, Energy-Aware Road Traffic Delay Estimation Using Mobile Phones  

E-Print Network [OSTI]

for travel time estimation using this sensor data that addresses two key challenges: energy consumptionVTrack: Accurate, Energy-Aware Road Traffic Delay Estimation Using Mobile Phones Arvind Thiagarajan the bat- tery quickly. In these cases, VTrack can use alternative, less energy-hungry but noisier sensors

Gummadi, Ramakrishna

124

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, AND PUBLICATIONS  

E-Print Network [OSTI]

INVENTORY OF SOLAR RADIATION/SOLAR ENERGY SYSTEMS ESTIMATORS, MODELS, SITE-SPECIFIC DATA, and Buildings Systems Integration Center National Renewable Energy Laboratory 8 July 2009 SOLAR SYSTEM POTENTIAL/calculators/PVWATTS/version1/ http://rredc.nrel.gov/solar/calculators/PVWATTS/version2/ Estimates the electrical energy

125

Energy Planning for Progressive Estimation in Multihop Sensor Networks  

E-Print Network [OSTI]

routing tree establishment, transmission energy plan- ninglarge gap of energy between the single-hop tree and therouting tree finding and the transmis- sion energy planning

Huang, Yi; Hua, Yingbo

2009-01-01T23:59:59.000Z

126

Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...  

Office of Environmental Management (EM)

in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant...

127

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE  

E-Print Network [OSTI]

California Energy Commission definition of “heat storm”: “storm“ than the Energy Commission definition quoted above toCalifornia Energy Commission. 2008. Definition of Heat

Sathaye, Jayant

2011-01-01T23:59:59.000Z

128

Proceedings of the 2008 International Conference on Electrical Machines Paper ID 1436 Comparative Analysis of Estimation Techniques  

E-Print Network [OSTI]

is a prevailing design of electric drive for EVs. Drives Efficiency is crucial to saving energy and offering moreProceedings of the 2008 International Conference on Electrical Machines Paper ID 1436 Comparative Analysis of Estimation Techniques of SFOC Induction Motor for Electric Vehicles A. Haddoun1,2 , M

Paris-Sud XI, Université de

129

Renewable Energy and Efficiency Modeling Analysis Partnership: An Analysis of How Different Energy Models Addressed a Common High Renewable Energy Penetration Scenario in 2025  

E-Print Network [OSTI]

Analysis of How Different Energy Models Addressed a CommonSUBJECT TERMS energy system; energy models; energy modeling;Analysis of How Different Energy Models Addressed a Common

Blair, N.

2010-01-01T23:59:59.000Z

130

San Carlos Apache Tribe - Energy Organizational Analysis  

SciTech Connect (OSTI)

The San Carlos Apache Tribe (SCAT) was awarded $164,000 in late-2011 by the U.S. Department of Energy (U.S. DOE) Tribal Energy Program's "First Steps Toward Developing Renewable Energy and Energy Efficiency on Tribal Lands" Grant Program. This grant funded: ? The analysis and selection of preferred form(s) of tribal energy organization (this Energy Organization Analysis, hereinafter referred to as "EOA"). ? Start-up staffing and other costs associated with the Phase 1 SCAT energy organization. ? An intern program. ? Staff training. ? Tribal outreach and workshops regarding the new organization and SCAT energy programs and projects, including two annual tribal energy summits (2011 and 2012). This report documents the analysis and selection of preferred form(s) of a tribal energy organization.

Rapp, James; Albert, Steve

2012-04-01T23:59:59.000Z

131

Sensitivity Analysis of Offshore Wind Cost of Energy (Poster)  

SciTech Connect (OSTI)

No matter the source, offshore wind energy plant cost estimates are significantly higher than for land-based projects. For instance, a National Renewable Energy Laboratory (NREL) review on the 2010 cost of wind energy found baseline cost estimates for onshore wind energy systems to be 71 dollars per megawatt-hour ($/MWh), versus 225 $/MWh for offshore systems. There are many ways that innovation can be used to reduce the high costs of offshore wind energy. However, the use of such innovation impacts the cost of energy because of the highly coupled nature of the system. For example, the deployment of multimegawatt turbines can reduce the number of turbines, thereby reducing the operation and maintenance (O&M) costs associated with vessel acquisition and use. On the other hand, larger turbines may require more specialized vessels and infrastructure to perform the same operations, which could result in higher costs. To better understand the full impact of a design decision on offshore wind energy system performance and cost, a system analysis approach is needed. In 2011-2012, NREL began development of a wind energy systems engineering software tool to support offshore wind energy system analysis. The tool combines engineering and cost models to represent an entire offshore wind energy plant and to perform system cost sensitivity analysis and optimization. Initial results were collected by applying the tool to conduct a sensitivity analysis on a baseline offshore wind energy system using 5-MW and 6-MW NREL reference turbines. Results included information on rotor diameter, hub height, power rating, and maximum allowable tip speeds.

Dykes, K.; Ning, A.; Graf, P.; Scott, G.; Damiami, R.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Veers, P.

2012-10-01T23:59:59.000Z

132

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

of the history of oil and gas reserve estimation was alsogas as well as other competitive substitutes from inhospitable domestic reserves.

Authors, Various

2013-01-01T23:59:59.000Z

133

Energy Analysis by Sector | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OF THEofEndstatesOctober marks

134

Accuracy of Contemporary Parametric Software Estimation Models: A Comparative Analysis  

E-Print Network [OSTI]

with delays and being costly and error- prone. Inaccurate estimation of project resources is considered as one the costs, schedule and the resources for IT projects. Software estimation is the process of predicting the effort, duration and cost required to develop a software system [2]. Estimators often rely on one or more

Tomkins, Andrew

135

Estimating the Impact (Energy, Emissions and Economics) of the US Fluid Power Industry  

SciTech Connect (OSTI)

The objective of this report is to estimate the impact (energy, emissions and economics) of United Fluid power (hydraulic and pneumatic actuation) is the generation, control, and application of pumped or compressed fluids when this power is used to provide force and motion to mechanisms. This form of mechanical power is an integral part of United States (U.S.) manufacturing and transportation. In 2008, according to the U.S. Census Bureau, sales of fluid power components exceeded $17.7B, sales of systems using fluid power exceeded $226B. As large as the industry is, it has had little fundamental research that could lead to improved efficiency since the late 1960s (prior to the 1970 energy crisis). While there have been some attempts to replace fluid powered components with electric systems, its performance and rugged operating condition limit the impact of simple part replacement. Oak Ridge National Laboratory and the National Fluid Power Association (NFPA) collaborated with 31 industrial partners to collect and consolidate energy specific measurements (consumption, emissions, efficiency) of deployed fluid power systems. The objective of this study was to establish a rudimentary order of magnitude estimate of the energy consumed by fluid powered systems. The analysis conducted in this study shows that fluid powered systems consumed between 2.0 and 2.9 Quadrillion (1015) Btus (Quads) of energy per year; producing between 310 and 380 million metric tons (MMT) of Carbon Dioxide (CO2). In terms of efficiency, the study indicates that, across all industries, fluid power system efficiencies range from less than 9% to as high as 60% (depending upon the application), with an average efficiency of 22%. A review of case studies shows that there are many opportunities to impact energy savings in both the manufacturing and transportation sectors by the development and deployment of energy efficient fluid power components and systems.

Love, Lonnie J [ORNL

2012-12-01T23:59:59.000Z

136

Hydrogen for Energy Storage Analysis Overview (Presentation)  

SciTech Connect (OSTI)

Overview of hydrogen for energy storage analysis presented at the National Hydrogen Association Conference & Expo, May 3-6, 2010, Long Beach, CA.

Steward, D. M.; Ramsden, T.; Harrison, K.

2010-06-01T23:59:59.000Z

137

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network [OSTI]

Mar 22, 2012 ... Economic and Environmental Analysis of Photovoltaic Energy Systems via Robust Optimization. Shimpei Okido(oks1024 ***at*** hotmail.com)

Shimpei Okido

2012-03-22T23:59:59.000Z

138

The Smart Grid: An Estimation of the Energy and Carbon Dioxide...  

Open Energy Info (EERE)

Benefits Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Smart Grid: An Estimation of the Energy and Carbon Dioxide (CO2) Benefits Focus Area: Crosscutting Topics:...

139

Building Energy Monitoring and Analysis  

E-Print Network [OSTI]

a future with very low energy buildings resulting in very making  for  low  energy  buildings.   This  project  will and operation of low energy buildings.  Several studies, 

Hong, Tianzhen

2014-01-01T23:59:59.000Z

140

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

Local Population of Geothermal Energy Development in thedevelopment is hindered by conflicts between regulations and regulators at local, state and federal levels. Energy

Authors, Various

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

new energy technologies (e.g. OTEC, STEC), crude oil fromof electricity from wind, OTEC, photovoltaics, solar thermalfor geothermal energy, OTEC, solar thermal electricity and

Authors, Various

2013-01-01T23:59:59.000Z

142

Energy Management and Cost Analysis (A case study)  

E-Print Network [OSTI]

Abstract — Lighting constitutes a main portion of energy consumption in commercial and industrial sector. The Energy Auditing is the key of the consumption which stabilize the situation of energy crisis by providing the conservation schemes. Any organization so called bulk consumer of electrical energy propose to adopt suitable technology or scheme of energy conservation to minimize the unwanted power shutdown either incidentally or by load shedding. In educational buildings a significant component of the energy used is spent in illuminating the interior of the building. As the energy costs increases, possible efforts are to be done to minimize the energy consumption of lighting installations. This follow three basic directions: new more efficient equipment (lamps, control gear, etc.), utilization of improved lighting design practices, improvements in lighting control systems to avoid energy waste for unoccupied and daylight hours. In this paper an Energy audit has been conducted in the educational Institute to estimate the Energy consumption. In this Energy audit the cost analysis and pay back periods have been calculated by replacing the higher consumption lamps with Energy efficient Lightning. The profit of implementing the energy efficiency measures in buildings are considerable both in terms of energy savings and cost savings.

unknown authors

143

Energy Market Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,IdahoWyomingManagement for Motor-DrivenEnergy

144

Industrial Geospatial Analysis Tool for Energy Evaluation (IGATE-E)  

SciTech Connect (OSTI)

IGATE-E is an energy analysis tool for industrial energy evaluation. The tool applies statistical modeling to multiple publicly available datasets and provides information at the geospatial resolution of zip code using bottom up approaches. Within each zip code, the current version of the tool estimates electrical energy consumption of manufacturing industries based on each type of industries using DOE s Industrial Assessment Center database (IAC-DB) and DOE s Energy Information Administration Manufacturing Energy Consumption Survey database (EIA-MECS DB), in addition to other commercially available databases such as the Manufacturing News database (MNI, Inc.). Ongoing and future work include adding modules for the predictions of fuel energy consumption streams, manufacturing process steps energy consumption, major energy intensive processes (EIPs) within each industry type among other metrics of interest. The tool provides validation against DOE s EIA-MECS state level energy estimations and permits several statistical examinations. IGATE-E is intended to be a decision support and planning tool to a wide spectrum of energy analysts, researchers, government organizations, private consultants, industry partners, and alike.

Alkadi, Nasr E [ORNL] [ORNL; Starke, Michael R [ORNL] [ORNL; Ma, Ookie [DOE EERE] [DOE EERE; Nimbalkar, Sachin U [ORNL] [ORNL; Cox, Daryl [ORNL] [ORNL

2013-01-01T23:59:59.000Z

145

Wave Energy Resource Analysis for Use in Wave Energy Conversion  

E-Print Network [OSTI]

spectra for that given region from a selected deep-water calibration station. METHODOLOGY FOR ESTIMATING THE AVAILABLE WAVE ENERGY RESOURCE This section will describe the methodology for estimating the naturally available and technically recoverable... resource in a given region. In a recent study done by the EPRI, data was gathered from U.S. coastal waters for a 51- month Wavewatch III hindcast database that was developed specifically for the EPRI by NOAA’s National Centers for Environmental...

Pastor, J.; Liu, Y.; Dou, Y.

2014-01-01T23:59:59.000Z

146

On Energy for Progressive and Consensus Estimation in Multihop Sensor Networks  

E-Print Network [OSTI]

energy and power plan- ning, multihop sensor networks, network with routing tree,with routing tree. Using the exact energy model and takingenergy planning algorithm for a progressive estimation method which exploits routing tree

Huang, Yi; Hua, Yingbo

2011-01-01T23:59:59.000Z

147

A tool to estimate materials and manufacturing energy for a product  

E-Print Network [OSTI]

This study proposes an easy-to-use methodology to estimate the materials embodied energy and manufacturing energy for a product. The tool requires as input the product's Bill of Materials and the knowledge on how these ...

Duque Ciceri, Natalia

148

Eigen-Inference for Energy Estimation of Multiple Sources  

E-Print Network [OSTI]

by overlaying the spectrum licensed to outdoors R. Couillet and M. Debbah are with the Alcatel-Lucent Chair techniques. Index Terms--Statistical inference, random matrix theory, power estimation, cognitive radio, G-estimation. I. INTRODUCTION At a time when radio resources become scarce, the alterna- tive offered by cognitive

149

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Office of Environmental Management (EM)

Pathways to Sustained Energy Development in Oklahoma Oklahoma Tribal Leader Forum - August 2012 Oklahoma City, Oklahoma 1 Office of Indian Energy Goals and Objectives * Promote...

150

Decision analysis for geothermal energy  

E-Print Network [OSTI]

One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

Yost, Keith A

2012-01-01T23:59:59.000Z

151

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications  

E-Print Network [OSTI]

Analysis of Hawaii Biomass Energy Resources for Distributed Energy Applications Prepared for State) concentrations on a unit energy basis for sugar cane varieties and biomass samples of Tables Table 1-A. Analyses of biomass materials found in the State of Hawaii

152

9. Statistical Energy Analysis (SEA) 80 9. Statistical Energy Analysis (SEA)  

E-Print Network [OSTI]

9. Statistical Energy Analysis (SEA) 80 _____________________________________________________________________________ 9. Statistical Energy Analysis (SEA) 9.1 Introduction In this chapter an introduction to a framework denoted Statistical Energy Analysis was developed in the 1960's, to a great extent to clarify and handle

Berlin,Technische Universität

153

NREL: Energy Analysis - Transportation Energy Futures Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable VersionStaff

154

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

problems of implemenation for larger scale technologies such as wind energy conversion, biomass conversion, photovoltaics and solar

Authors, Various

2013-01-01T23:59:59.000Z

155

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

solar energy technologies. performance warranties for complete solar installations; building performance applications as alter- natives to building codes

Authors, Various

2013-01-01T23:59:59.000Z

156

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

energy conservation and load leveling policies for the metropolitan area of New York City,"energy self-sufficient city of 13,450 acres would still be less than the median area (its energy needs. In Future 3, if the land area of the city

Authors, Various

2013-01-01T23:59:59.000Z

157

Efficient estimation of energy transfer efficiency in light-harvesting complexes  

E-Print Network [OSTI]

The fundamental physical mechanisms of energy transfer in photosynthetic complexes is not yet fully understood. In particular, the degree of efficiency or sensitivity of these systems for energy transfer is not known given their non-perturbative and non-Markovian interactions with proteins backbone and surrounding photonic and phononic environments. One major problem in studying light-harvesting complexes has been the lack of an efficient method for simulation of their dynamics in biological environments. To this end, here we revisit the second-order time-convolution (TC2) master equation and examine its reliability beyond extreme Markovian and perturbative limits. In particular, we present a derivation of TC2 without making the usual weak system-bath coupling assumption. Using this equation, we explore the long time behaviour of exciton dynamics of Fenna-Matthews-Olson (FMO) protein complex. Moreover, we introduce a constructive error analysis to estimate the accuracy of TC2 equation in calculating energy transfer efficiency, exhibiting reliable performance for environments with weak and intermediate memory and strength. Furthermore, we numerically show that energy transfer efficiency is optimal and robust for the FMO protein complex of green sulphur bacteria with respect to variations in reorganization energy and bath correlation time-scales.

Alireza Shabani; Masoud Mohseni; Herschel Rabitz; Seth Lloyd

2012-04-13T23:59:59.000Z

158

Estimating material and energy intensities of urban areas  

E-Print Network [OSTI]

The objective of this thesis is to develop methods to estimate, analyze and visualize the resource intensity of urban areas. Understanding the resource consumption of the built environment is particularly relevant in cities ...

Quinn, David James, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

159

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE  

E-Print Network [OSTI]

Change Scenarios and Sea Level Rise Estimates for theThe puzzle of global sea-level rise. ” Physics Today 55 (3):2009. The Impacts of Sea-Level Rise on the California Coast.

Sathaye, Jayant

2011-01-01T23:59:59.000Z

160

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH  

E-Print Network [OSTI]

Estimating Internal Wave Energy Fluxes in the Ocean JONATHAN D. NASH College of Oceanic FE u p cgE is a fundamental quan- tity in internal wave energetics to identify energy sources, wave propagation, and energy sinks. Internal wave radiation transports energy from the boundaries

Kurapov, Alexander

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T. FASULLO  

E-Print Network [OSTI]

An Observational Estimate of Inferred Ocean Energy Divergence KEVIN E. TRENBERTH AND JOHN T, in final form 25 September 2007) ABSTRACT Monthly net surface energy fluxes (FS) over the oceans ocean energy content" are compared with the directly observed ocean energy content (OE) and tendency

Fasullo, John

162

Annual Energy Consumption Analysis Report for Richland Middle School  

SciTech Connect (OSTI)

Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

Liu, Bing

2003-12-18T23:59:59.000Z

163

NREL: Energy Analysis - Technology Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnology Systems

164

NREL: Energy Analysis: Analysis of Project Finance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley Cole

165

NREL Job Task Analysis: Energy Auditor | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor NREL Job Task Analysis: Energy

166

Energy Analysis Program 1990 annual report  

SciTech Connect (OSTI)

The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, Energy Efficiency, Developing Countries, and Eastern Europe,'' part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program's researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

Not Available

1992-01-01T23:59:59.000Z

167

Energy Analysis Program 1990 annual report  

SciTech Connect (OSTI)

The Energy Analysis Program has played an active role in the analysis and discussion of energy and environmental issues at several levels. (1) at the international level, with programs as developing scenarios for long-term energy demand in developing countries and organizing leading an analytic effort, ``Energy Efficiency, Developing Countries, and Eastern Europe,`` part of a major effort to increase support for energy efficiency programs worldwide; (2) at national level, the Program has been responsible for assessing energy forecasts and policies affecting energy use (e.g., appliance standards, National Energy Strategy scenarios); and (3) at the state and utility levels, the Program has been a leader in promoting integrated resource utility planning; the collaborative process has led to agreement on a new generation of utility demand-site programs in California, providing an opportunity to use knowledge and analytic techniques of the Program`s researchers. We continue to place highest on analyzing energy efficiency, with particular attention given to energy use in buildings. The Program continues its active analysis of international energy issues in Asia (including China), the Soviet Union, South America, and Western Europe. Analyzing the costs and benefits of different levels of standards for residential appliances continues to be the largest single area of research within the Program. The group has developed and applied techniques for forecasting energy demand (or constructing scenarios) for the United States. We have built a new model of industrial energy demand, are in the process of making major changes in our tools for forecasting residential energy demand, have built an extensive and documented energy conservation supply curve of residential energy use, and are beginning an analysis of energy-demand forecasting for commercial buildings.

Not Available

1992-01-01T23:59:59.000Z

168

Estimation of the relationship between remotely sensed anthropogenic heat discharge and building energy use  

SciTech Connect (OSTI)

This paper examined the relationship between remotely sensed anthropogenic heat discharge and energy use from residential and commercial buildings across multiple scales in the city of Indianapolis, Indiana, USA. Anthropogenic heat discharge was estimated based on a remote sensing-based surface energy balance model, which was parameterized using land cover, land surface temperature, albedo, and meteorological data. Building energy use was estimated using a GIS-based building energy simulation model in conjunction with Department of Energy/ Energy Information Administration survey data, Assessor's parcel data, GIS floor areas data, and remote sensing-derived building height data.

Zhou, Yuyu; Weng, Qihao; Gurney, Kevin R.; Shuai, Yanmin; Hu, Xuefei

2012-01-01T23:59:59.000Z

169

Analysis Methodologies | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy|thermoelectric wasteSystems

170

Analysis Tools | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy|thermoelectricDepartment

171

ENERGY UTILIZATION ANALYSIS OF BUILDINGS  

E-Print Network [OSTI]

Solar Energy, Cairo, Egypt, June 16 - 22, 1978 RECEIVED LBL7826 LAWRENCE BEPXVlfV LABORATORY JUN 141978 LIBRARY AND DOCUMENTS SECTION TWO-WEEK LOAN

Lokmanhekim, M.

2011-01-01T23:59:59.000Z

172

Production and analysis of a Southern Ocean state estimate  

E-Print Network [OSTI]

A modern general circulation model of the Southern Ocean with one-sixth of a degree resolution is optimized to the observed ocean in a weighted least squares sense. Convergence toward the state estimate solution is carried ...

Mazloff, Matthew R

2006-01-01T23:59:59.000Z

173

ENERGY ANALYSIS PROGRAM FY-1979.  

E-Print Network [OSTI]

solar process heat deep (2000m) undersea DC transmissionSolar and geothermal energy can also be used as sources of process heat.solar thermal electricity photovoltaics liquid fuels from biomass ocean thermal energy conversion geothermal electricity and process heat

Authors, Various

2013-01-01T23:59:59.000Z

174

NISTIR 6045 Method for Estimating the Energy Efficiency Ratio of  

E-Print Network [OSTI]

to all electric units having rated cooling capacities less than 19 kW (65,000 Btu/h) and charged with Refrigerant 22. To estimate the EER(95) of one or more combinations that use the same condensing unit, a lab

Oak Ridge National Laboratory

175

Environmental Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessinSupportingEnergy2 ENRONDecember 2014Past

176

Market penetration analysis for direct heat geothermal energy applications  

SciTech Connect (OSTI)

This study is concerned with the estimation of the National geothermal market potential and penetration in direct heat applications for residences and certain industry segments. An important aspect of this study is that the analysis considers both known and anticipated goethermal resources. This allows for an estimation of the longer-range potential for geothermal applications. Thus the approach and results of this study provide new insights and valuable information not obtained from more limited, site-specific types of analyses. Estimates made in this study track geothermal market potential and projected penetration from the present to the year 2020. Private sector commercialization of geothermal energy over this period requires assistance in the identification of markets and market sizes, potential users, and appropriate technical applications.

Thomas, R.J.; Nelson, R.A.

1981-06-01T23:59:59.000Z

177

ESTIMATING CONSUMER BEHAVIOUR IN AN ENERGY-ECONOMY POLICY MODEL  

E-Print Network [OSTI]

SIMON FRASER UNIVERSITY Fall, 2007 All rights reserved. This work may not be reproduced in whole, and editing · Vicky Weekes for editing, balance, and all around back-up · Many other REMmers and EMRGers Council, the Canadian Institute of Energy, the Energy and Materials Research Group, and Simon Fraser

178

analysis energy analysis: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy analysis First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Energy, Environmental, and Economic...

179

Data-driven Techniques to Estimate Parameters in the Homogenized Energy Model for Shape Memory Alloys  

E-Print Network [OSTI]

, ferroelectric, and ferromagnetic materials. The energy origin of the model was originally investigated for SMA]. The original mod- els determined the equilibrium phase using the Gibbs energy to predict the mesoscopic (orData-driven Techniques to Estimate Parameters in the Homogenized Energy Model for Shape Memory

180

CONTEXT-BASED ENERGY ESTIMATOR: APPLICATION TO OBJECT SEGMENTATION ON THE TREE OF SHAPES  

E-Print Network [OSTI]

CONTEXT-BASED ENERGY ESTIMATOR: APPLICATION TO OBJECT SEGMENTATION ON THE TREE OF SHAPES Yongchao. A classical approach is to define an energy minimization framework, where interesting contours correspond to local minima of this energy. Active contours, graph cuts or minimum ratio cuts are instances of such ap

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics  

E-Print Network [OSTI]

Equilibrium free energy estimates based on nonequilibrium work relations and extended dynamics the equilibrium free energy and the nonequilibrium work is useful for computer simulations. In this paper, we exploit the fact that the free energy is a state function, independent of the pathway taken to change

Sun, Sean

182

Free Energy Estimates of All-atom Protein Structures Using Generalized Belief  

E-Print Network [OSTI]

Free Energy Estimates of All-atom Protein Structures Using Generalized Belief Propagation H Detection, Free Energy, Probabilistic Graphical Models #12;Abstract We present a technique for approximating the free energy of protein structures using Generalized Belief Propagation (GBP). The accuracy and utility

Langmead, Christopher James

183

Improved estimates of the total correlation energy in the ground state of the water molecule  

E-Print Network [OSTI]

Improved estimates of the total correlation energy in the ground state of the water molecule Arne National Laboratory, Richland, Washington 99352 Received 1 October 1996; accepted 5 February 1997 Two new calculations of the electronic energy of the ground state of the water molecule yield energies lower than those

Anderson, James B.

184

Estimating ProteinLigand Binding Free Energy: Atomic Solvation Parameters for Partition Coefficient and  

E-Print Network [OSTI]

on the assumption that the overall solvation free energy is the sum of all atomic solvation contributions: Gs iAi (1Estimating Protein­Ligand Binding Free Energy: Atomic Solvation Parameters for Partition Coefficient and Solvation Free Energy Calculation Jianfeng Pei,1,2 Qi Wang,1,2 Jiaju Zhou,3 and Luhua Lai1

Luhua, Lai

185

A Process Algebraic Framework for Estimating the Energy Consumption in Ad-hoc Wireless Sensor Networks  

E-Print Network [OSTI]

A Process Algebraic Framework for Estimating the Energy Consumption in Ad-hoc Wireless Sensor their connecti- vity properties and their performances in terms of energy consumption, throughput and other and the evaluation or esti- mation of energy consumption in ad-hoc WSNs. The frame- work is based on a variant

Rossi, Sabina

186

QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED  

E-Print Network [OSTI]

QUANTITATIVE ESTIMATES ON THE HYDROGEN GROUND STATE ENERGY IN NON-RELATIVISTIC QED J.-M. BARBAROUX for the hydrogen ground state energy in the Pauli-Fierz model up to the order O(5 log -1), where denotes). As a consequence, we prove that the ground state energy is not a real analytic function of , and verify

187

An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements  

SciTech Connect (OSTI)

The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

Olama, Mohammed M [ORNL; Allgood, Glenn O [ORNL; Kuruganti, Phani Teja [ORNL; Lake, Joe E [ORNL

2012-01-01T23:59:59.000Z

188

Get Daily Energy Analysis Delivered to Your Website | Department...  

Broader source: Energy.gov (indexed) [DOE]

Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your...

189

Analysis of power estimation techniques in CDMA systems  

E-Print Network [OSTI]

) is the estimator of i-th user's j-t. h paralneter Zl, (j). Figures 1I ? 14 show the performance of the three t, echniques for SNR=--10, 0, 10 anrl 20dB with different number of users. For I, he EM algorithm, thc initial values are zeros and the number...

Pei, Ying

1999-01-01T23:59:59.000Z

190

An analysis of radar estimated precipitation to rain gauge measurements  

E-Print Network [OSTI]

the surface. These levels included 1.0 1.5@ 2.0 @ 2.5 km, and 3.0 km. Radar precipitation estimates were calculated at each 1.4 2 level using Z = 30ORand Z = 25OR" . The precipitation amounts, as measured by both the gauges and the radar,were used...

Gleason, Byron Edward

1997-01-01T23:59:59.000Z

191

Resource Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartmentEnergyHydrokineticClothes WashersDepartment ofBTO Peer Review

192

NREL: Energy Analysis - Eric Lantz  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanEllaEnergyEric

193

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

Energy Engineering & Systems Analysis Success Stories For further information, contact: Seth Snyder greenhouse gas emissions, and lower energy costs," said biochemical engineer Seth Snyder. Resin Wafer for Excellence in Technology Transfer for this separations technology. A team led by Argonne biochemical engineer

Kemner, Ken

194

Free energy differences : Representations, estimators, and sampling strategies   

E-Print Network [OSTI]

In this thesis we examine methodologies for determining free energy differences (FEDs) of phases via Monte Carlo simulation. We identify and address three generic issues that arise in FED calculations; the choice of representation, the choice...

Acharya, Arjun R

195

Energy analysis program. 1995 Annual report  

SciTech Connect (OSTI)

This year the role of energy technology research and analysis supporting governmental and public interests is again being challenged at high levels of government. This situation is not unlike that of the early 1980s, when the Administration questioned the relevance of a federal commitment to applied energy research, especially for energy efficiency and renewable energy technologies. Then Congress continued to support such activities, deeming them important to the nation`s interest. Today, Congress itself is challenging many facets of the federal role in energy. The Administration is also selectively reducing its support, primarily for the pragmatic objective of reducing federal expenditures, rather than because of principles opposing a public role in energy. this report is divided into three sections: International Energy and the global environment; Energy, economics, markets, and policy; and Buildings and their environment.

Levine, M.D.

1996-05-01T23:59:59.000Z

196

How to Estimate Energy Lost to Gravitational Waves (revised)  

E-Print Network [OSTI]

The energy--momentum radiated in gravitational waves by an isolated source is given by a formula of Bondi. This formula is highly non--local: the energy--momentum is not given as the integral of a well--defined local density. It has therefore been unclear whether the Bondi formula can be used to get information from gravity--wave measurements. In this note, we obtain, from local knowledge of the radiation field, a lower bound on the Bondi flux.

Adam D. Helfer

1993-07-19T23:59:59.000Z

197

Procedure for estimating fracture energy from fracture surface roughness  

DOE Patents [OSTI]

The fracture energy of a material is determined by first measuring the length of a profile of a section through a fractured surface of the material taken on a plane perpendicular to the mean plane of that surface, then determining the fractal dimensionality of the surface. From this, the yield strength of the material, and the Young's Modulus of that material, the fracture energy is calculated.

Williford, Ralph E. (Kennewick, WA)

1989-01-01T23:59:59.000Z

198

NREL: Energy Analysis - About the Strategic Energy Analysis Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email Contact for

199

Energy Analysis and Diagnostics Data Analysis From Industrial Energy Assessments for Manufacturing Industries  

E-Print Network [OSTI]

collected as a result of these assessments. Although waste minimization and productivity improvements have been recommended on some of these assessments in addition to energy savings, this paper focuses on energy analysis and diagnostics information...

Gopalakrishnan, B.; Plummer, R. W.; Srinath, S.; Meffe, C. M.; Ipe, J. J.; Veena, R.

200

Property:EstimatedCostLowUSD | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSD Jump to:

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Property:EstimatedCostMedianUSD | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSD Jump

202

Property:EstimatedTimeExplained | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSD

203

Property:EstimatedTimeHigh | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, search PropertyEstimatedCostLowUSDEstimatedTimeHigh

204

Property:EstimatedTimeMedian | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to: navigation, searchEstimatedTimeMedian Jump to: navigation, search

205

ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

206

WATER AND ENERGY BALANCE ESTIMATION IN PUERTO RICO USING SATELLITE REMOTE SENSING  

E-Print Network [OSTI]

WATER AND ENERGY BALANCE ESTIMATION IN PUERTO RICO USING SATELLITE REMOTE SENSING Eric. W Management of water resources relies on estimates of the hydrologic water balance within defined and/or similar land use. Components of the water balance include precipitation, actual

Gilbes, Fernando

207

ARM Best Estimate Data (ARMBE) Products for Climate Science for a Sustainable Energy Future (CSSEF)  

SciTech Connect (OSTI)

This data set was created for the Climate Science for a Sustainable Energy Future (CSSEF) model testbed project and is an extension of the hourly average ARMBE dataset to other extended facility sites and to include uncertainty estimates. Uncertainty estimates were needed in order to use uncertainty quantification (UQ) techniques with the data.

Riihimaki, Laura; Gaustad, Krista; McFarlane, Sally

2014-06-12T23:59:59.000Z

208

Estimating the energy of stitching together the Maxwell and Fermi neutron spectra  

SciTech Connect (OSTI)

The energy of stitching together the Maxwell and Fermi spectra is estimated on the basis of experimental data and the results of calculations carried out using the MCU-RFFI and MCU-5 codes.

Ionov, V. S., E-mail: ivs2010@vver.kiae.ru; Marin, S. V. [National Research Center Kurchatov Institute (Russian Federation)

2014-12-15T23:59:59.000Z

209

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining Energy Use Loss and Opportunities Analysis: U.S. Manufacturing & Mining energyuselossopportunitiesanalys...

210

Analysis of Energy, Environmental and Life Cycle Cost Reduction...  

Broader source: Energy.gov (indexed) [DOE]

Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Analysis of Energy, Environmental and Life...

211

Analysis of the Relationship between Reaction Energies of Electrophili...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reaction Energies of Electrophilic SWNT Additionsand Sidewall Curvature: Chiral Nanotubes. Analysis of the Relationship between Reaction Energies of Electrophilic SWNT...

212

NREL: Energy Analysis - Related Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version

213

Systems Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupply

214

Systems Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment of EnergyServicesStevenSupplyAbout the Geothermal

215

Geothermal Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS) | OpenGeotechnicalmap...

216

NREL: Energy Analysis - Catherine Burke  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update

217

NREL: Energy Analysis - Ethan Warner  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools

218

NREL: Energy Analysis - Jaquelin Cochran  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco

219

NREL: Energy Analysis - Laura Vimmerstedt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of

220

NREL: Energy Analysis - Timothy Remo  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways to Sustained Energy

222

Estimating the Benefits and Costs of Distributed Energy Technologies  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice EnvironmentalDISTRIBUTIO FROM: DAE Y. CHUNGWorkshop

223

State Energy Profiles and Estimates (SEDS) Report Archives  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328AdministrationRelease ScheduleU.S. Energy Information

224

ESTIMATING ENERGY SAVINGS IN COMPRESSED AIR SYSTEMS Chris Schmidt  

E-Print Network [OSTI]

obtainable performance data such as full-load power, no-load power, rated capacity, average fraction full-load performance and calculating projected energy savings using four of the five following performance metrics: full-load power (FLP), no-load power (NLP), rated capacity (FLC), fraction full-load power (FP

Kissock, Kelly

225

Savings estimates for the United States Environmental Protection Agency?s ENERGY STAR voluntary product labeling program  

SciTech Connect (OSTI)

ENERGY STAR is a voluntary energy efficiency-labeling program operated jointly by the United States Department of Energy and the United States Environmental Protection Agency (US EPA). Since the program inception in 1992, ENERGY STAR has become a leading international brand for energy efficient products. ENERGY STAR's central role in the development of regional, national, and international energy programs necessitates an open process whereby its program achievements to date as well as projected future savings are shared with committed stakeholders. Through 2006, US EPA?S ENERGY STAR labeled products saved 4.8 EJ of primary energy and avoided 82 Tg C equivalent. We project that US EPA?S ENERGY STAR labeled products will save 12.8 EJ and avoid 203 Tg C equivalent over the period 2007-2015. A sensitivity analysis examining two key inputs (carbon factor and ENERGY STAR unit sales) bounds the best estimate of carbon avoided between 54 Tg C and 107 Tg C (1993 to 2006) and between 132 Tg C and 278 Tg C (2007 to 2015).

Sanchez, Marla Christine; Sanchez, Marla Christine; Brown, Richard; Homan, Gregory; Webber, Carrie

2008-06-03T23:59:59.000Z

226

NREL: Energy Analysis - Key Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover twoPrintable Version Email ContactJEDI

227

Program Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309Department ofDepartment of Energy

228

NREL: Energy Analysis Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies The Insights In

229

Delivery Analysis | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing With the Issues of NuclearHigh ImpactDelawareDepartment

230

NREL: Energy Analysis - Aaron Bloom  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of Aaron Bloom

231

NREL: Energy Analysis - Aaron Levine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of Aaron

232

NREL: Energy Analysis - Aaron Townsend  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo of

233

NREL: Energy Analysis - Ahmad Mayyas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo ofAhmad Mayyas

234

NREL: Energy Analysis - Alberta Carpenter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo ofAhmad

235

NREL: Energy Analysis - Andrew Weekley  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo ofAhmadAndrew

236

NREL: Energy Analysis - Anelia Milbrandt  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom Photo

237

NREL: Energy Analysis - Anthony Lopez  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom PhotoAnnAnthony

238

NREL: Energy Analysis - Aron Dobos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom PhotoAnnAnthonyAron

239

NREL: Energy Analysis - Austin Brown  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -Bloom

240

NREL: Energy Analysis - Ben Maples  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo of Ben

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Energy Analysis - Ben Sigrin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo of

242

NREL: Energy Analysis - Bethany Frew  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo ofFrew

243

NREL: Energy Analysis - Bethany Speer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaples Photo

244

NREL: Energy Analysis - Carolyn Davidson  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools Update -BloomMaplesCarolyn

245

NREL: Energy Analysis - Chad Augustine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo of Chad

246

NREL: Energy Analysis - Changgui Dong  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo of

247

NREL: Energy Analysis - Chris Webber  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo ofChris

248

NREL: Energy Analysis - Clayton Barrows  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine Photo

249

NREL: Energy Analysis - Dani Salyer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine PhotoColin

250

NREL: Energy Analysis - Daniel Getman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad Augustine

251

NREL: Energy Analysis - Daniel Inman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInman Photo of

252

NREL: Energy Analysis - Daniel Steinberg  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInman Photo

253

NREL: Energy Analysis - David Harrison  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad AugustineInmanHarrison

254

NREL: Energy Analysis - David Hurlbut  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChad

255

NREL: Energy Analysis - David Keyser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J. Feldman

256

NREL: Energy Analysis - David Mooney  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J. FeldmanMooney

257

NREL: Energy Analysis - David Palchak  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J.

258

NREL: Energy Analysis - Dheepak Krishnamurthy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid J.DebbieDheepak

259

NREL: Energy Analysis - Donna Heimiller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavid

260

NREL: Energy Analysis - Dylan Hettinger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylan Hettinger

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Energy Analysis - Elaine Hale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylan

262

NREL: Energy Analysis - Ella Zhou  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsTools UpdateChadDavidDylanElla Zhou

263

NREL: Energy Analysis - Garvin Heath  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino Photo

264

NREL: Energy Analysis - Greg Brinkman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino PhotoGreg

265

NREL: Energy Analysis - Heidi Pawlowski  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-Espino

266

NREL: Energy Analysis - Janine Freeman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFrancisco Flores-EspinoJanine

267

NREL: Energy Analysis - Jay Huggins  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo of Jay

268

NREL: Energy Analysis - Jeffrey Logan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo of

269

NREL: Energy Analysis - Jennie Jorgenson  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo ofJennie

270

NREL: Energy Analysis - Jenny Heeter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins Photo

271

NREL: Energy Analysis - Jenny Melius  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins PhotoMelius

272

NREL: Energy Analysis - Jessica Katz  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay Huggins

273

NREL: Energy Analysis - Jim Leyshon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJim Leyshon

274

NREL: Energy Analysis - John Krueger  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJimKrueger

275

NREL: Energy Analysis - Jon Weers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay HugginsJimKruegerJon

276

NREL: Energy Analysis - Jordan Macknick  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJay

277

NREL: Energy Analysis - Josh Novacheck  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh Novacheck Photo of

278

NREL: Energy Analysis - Karlynn Cory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJosh

279

NREL: Energy Analysis - Katherine Young  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherine Young,

280

NREL: Energy Analysis - Kelly Eurek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherine

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NREL: Energy Analysis - Kermit Witherbee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of WomenEventsToolsFranciscoJayJoshKatherineKelsey

282

NREL: Energy Analysis - Liz Torres  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz Torres is

283

NREL: Energy Analysis - Lori Bird  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz Torres isLori

284

NREL: Energy Analysis - Mackay Miller  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz Torres

285

NREL: Energy Analysis - Margaret Mann  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz TorresMargaret

286

NREL: Energy Analysis - Mark Ruth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres Liz

287

NREL: Energy Analysis - Matt Rahill  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarketMatt Rahill

288

NREL: Energy Analysis - Maureen Hand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres LizMarketMattMaureen

289

NREL: Energy Analysis - Melissa Hudman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz Torres

290

NREL: Energy Analysis - Michael Bahl  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl Photo of Michael

291

NREL: Energy Analysis - Michael Gleason  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl Photo of

292

NREL: Energy Analysis - Michael Mendelsohn  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl Photo

293

NREL: Energy Analysis - Michael Woodhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl PhotoWoodhouse

294

NREL: Energy Analysis - Monisha Shah  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahl

295

NREL: Energy Analysis - Nate Blair  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate Blair Photo

296

NREL: Energy Analysis - Newsletter Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate Blair

297

NREL: Energy Analysis - Nick Grue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNate

298

NREL: Energy Analysis - Owen Zinaman  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNateOwen Zinaman

299

NREL: Energy Analysis - Parthiv Kurup  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz TorresBahlNateOwenParthiv

300

NREL: Energy Analysis - Paul Denholm  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of Liz

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Energy Analysis - Paul Schwabe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of Paul Schwabe

302

NREL: Energy Analysis - Philipp Beiter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of Paul

303

NREL: Energy Analysis - Ran Fu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe Photo of

304

NREL: Energy Analysis - Sadie Cox  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie Cox Photo

305

NREL: Energy Analysis - Scott Jenne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie CoxScott

306

NREL: Energy Analysis - Sean Esterly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadie

307

NREL: Energy Analysis - Sertac Akar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadieSertac Akar

308

NREL: Energy Analysis - Stuart Cohen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabe PhotoSadieSertac

309

NREL: Energy Analysis - Thomas Jenkin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnologyThomas

310

NREL: Energy Analysis - Tian Tian  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo of LizSchwabeTechnologyThomasTian

311

NREL: Energy Analysis - Travis Lowder  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo of Travis

312

NREL: Energy Analysis - Trieu Mai  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo of

313

NREL: Energy Analysis - Trish Cozart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo ofTrish

314

NREL: Energy Analysis - Tyler Stehly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder Photo ofTrishTyler

315

NREL: Energy Analysis - Venkat Kirshnan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder PhotoVenkat

316

NREL: Energy Analysis - Victor Diakov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis Lowder PhotoVenkatVictor

317

NREL: Energy Analysis - Wesley Cole  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley Cole Photo of

318

NREL: Energy Analysis - Yimin Zhang  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis LowderWesley Cole Photo

319

NREL: Energy Analysis: Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz Torres Photo ofTravis

320

Built Environment Energy Analysis Tool Overview (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the Built Environment Energy Analysis Tool, which is designed to assess impacts of future land use/built environment patterns on transportation-related energy use and greenhouse gas (GHG) emissions. The tool can be used to evaluate a range of population distribution and urban design scenarios for 2030 and 2050. This tool was produced as part of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

Porter, C.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries  

E-Print Network [OSTI]

Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries estimation Li-ion battery Robustness analysis a b s t r a c t Battery State of Charge (SOC) estimation. This paper analyzes the robustness of SOC estimation algorithms for two types of Li-ion batteries under

Peng, Huei

322

Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings Analysis At NewInformation

323

Estimate of fine sediment deposit dynamics on a gravel bar using photography analysis  

E-Print Network [OSTI]

Estimate of fine sediment deposit dynamics on a gravel bar using photography analysis B. CAMENEN1 , M. JODEAU2 , and M. JABALLAH3 Abstract Three different methods to analyse fine sediment deposits the ground. These methods were used to estimate the surface of fine sediment deposits before and after

Paris-Sud XI, Université de

324

A Simple Biomass-Based Length-Cohort Analysis for Estimating Biomass and Fishing Mortality  

E-Print Network [OSTI]

F was also examined. Results of the analysis showed that the allometric power coefficient b for northern rock sole Lepidopsetta polyxystra in the eastern Bering Sea. A comparison of biomass-based LCA population biomass estimates with northern rock sole research survey biomass estimates showed good agreement

325

Crosstalk compensation in analysis of energy storage devices...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial...

326

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network [OSTI]

of ocean thermal energy conversion technology. U.S. DOE.Open cycle ocean thermal energy conversion. A preliminaryCompany. Ocean thermal energy conversion mission analysis

Sands, M. D.

2011-01-01T23:59:59.000Z

327

Estimation of Several Political Action Effects of Energy Prices  

E-Print Network [OSTI]

One important effect of price shocks in the United States has been increased political attention paid to the structure and performance of oil and natural gas markets, along with some governmental support for energy conservation. This paper describes how price changes helped lead the emergence of a political agenda accompanied by several interventions, as revealed through Granger causality tests on change in the legislative agenda.

Whitford, Andrew B

2015-01-01T23:59:59.000Z

328

Module: Estimating Historical Emissions from Deforestation | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithun Jump to:

329

Analysis of Energy Saving Impacts of ASHRAE 90.1-2004 for New York  

SciTech Connect (OSTI)

The New York State Energy Research and Development Authority (NYSERDA) and New York State Department of State (DOS) requested the help of DOE’s Building Energy Codes Program (BECP) in estimating the annual building energy savings and cost impacts of adopting ANSI/ASHRAE/IESNA Standard 90.1-2004 (ASHRAE 2004) requirements. This report summarizes the analysis methodology and results of energy simulation in response to that request.

Gowri, Krishnan; Halverson, Mark A.; Richman, Eric E.

2007-08-03T23:59:59.000Z

330

Solution-verified reliability analysis and design of bistable MEMS using error estimation and adaptivity.  

SciTech Connect (OSTI)

This report documents the results for an FY06 ASC Algorithms Level 2 milestone combining error estimation and adaptivity, uncertainty quantification, and probabilistic design capabilities applied to the analysis and design of bistable MEMS. Through the use of error estimation and adaptive mesh refinement, solution verification can be performed in an automated and parameter-adaptive manner. The resulting uncertainty analysis and probabilistic design studies are shown to be more accurate, efficient, reliable, and convenient.

Eldred, Michael Scott; Subia, Samuel Ramirez; Neckels, David; Hopkins, Matthew Morgan; Notz, Patrick K.; Adams, Brian M.; Carnes, Brian; Wittwer, Jonathan W.; Bichon, Barron J.; Copps, Kevin D.

2006-10-01T23:59:59.000Z

331

Using exploratory data analysis modified Box Plots to enhance Monte Carlo simulated Range Estimating Decision Technology  

E-Print Network [OSTI]

of the thesis is written with the intent of reviewing some of the significant pieces of literature relating to Monte Carlo simulated REDT and exploratory data analysis Box Plots. In 1964 David Hertz published an article in the Harvard Business Review... entitled, "Risk Analysis in Capital Investment" (Hertz 1964). While this article does not directly discuss range estimating, it is the foundation for the current REDT theory. In his atticle, Hertz discussed the problems associated with estimating...

Clutter, David John

1992-01-01T23:59:59.000Z

332

Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Utah  

SciTech Connect (OSTI)

The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the current Utah code, the 2006 IECC. The most notable changes are improved duct sealing and efficient lighting requirements. A limited analysis of these changes resulted in estimated savings of $168 to $188 for an average new house in Utah at recent fuel prices.

Cole, Pamala C.; Lucas, Robert G.

2009-05-01T23:59:59.000Z

333

GAO Cost Estimating and Assessment Guide | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.FinancialofFuel CycleDepartmentG. BrianCost

334

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways to Sustained

335

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways to SustainedFinancing

336

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways to

337

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways toDay 2 Project

338

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways toDay 2 Project3:

339

Indian Country Solar Energy Potential Estimates & DOE IE Updates  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012Pathways toDay 2

340

Table C3. Primary Energy Consumption Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajorC3.

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Table E10. Residential Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.

342

Table E11. Commercial Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.1.

343

Table E13. Transportation Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:0.1.3.

344

Table E14. Electric Power Sector Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary

345

Table E3. Residential Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.

346

Table E4. Commercial Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.

347

Table E5. Industrial Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.

348

Table E6. Transportation Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.E6.

349

Table E7. Electric Power Sector Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary5.E4.E5.E6.E7.

350

U.S. Uranium Reserves Estimates - Energy Information Administration  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--StateWinterYear Jan Feb2009 2010 2011DecadeLower 48all

351

Estimating Motor Efficiency in the Field | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals DuringSalt | Department

352

Estimating the Benefits and Costs of Distributed Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals DuringSalt |

353

Estimating the Benefits and Costs of Distributed Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -DepartmentNovember 1, 2010December 1,Goals DuringSalt |Workshop - Day

354

Estimated Rare Earth Reserves and Deposits | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department of Energy Environmental RestorationErik Hyrkas AboutOfficer

355

State Energy Data System Consumption Estimates Technical Notes  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, Oil and10: "TheElectricity

356

Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 00/03)%Year

357

EIA - Appendix B: Estimation Methodologies of Household Vehicles Energy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data03. U.S. uraniumForms

358

Estimates of State Energy-Related Carbon Dioxide Emissions  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade2003 DetailedUse inRevenueMay

359

Optical Flow Estimation using Laplacian Mesh Energy Wenbin Li Darren Cosker Matthew Brown Rui Tang  

E-Print Network [OSTI]

Optical Flow Estimation using Laplacian Mesh Energy Wenbin Li Darren Cosker Matthew Brown Rui Tang.p.cosker,m.brown,r.tang}@bath.ac.uk Abstract In this paper we present a novel non-rigid optical flow algorithm for dense image correspondence and non-rigid registration. The algorithm uses a unique Laplacian Mesh Energy term to encourage local

Martin, Ralph R.

360

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network [OSTI]

Industrial Geospatial Analysis Tool for Energy Evaluation- IGATE-E Nasr Alkadi, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Michael Starke, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Ookie Ma, Scientist, US Department... of Energy, Washington, DC Sachin Nimbalkar, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Daryl Cox, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Kevin Dowling, Student Researcher, University of Tennessee, Knoxville, TN Brendon...

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Supply: Cost Estimate for Hydrogen Pathways-Scoping Analysis.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:GroundtoProduction TechnicalSensorof Energy

362

EIS-0189: Supplement Analysis | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThreeEnergy DrivingD EERE ProgramReport189: Supplement Analysis

363

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

364

Southeast Regional Clean Energy Policy Analysis (Revised)  

SciTech Connect (OSTI)

More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

McLaren, J.

2011-04-01T23:59:59.000Z

365

Strategic Analysis and Modeling  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

analysis Conceptual Process Design Material and Energy Balance Capital and Project Cost Estimates Environmental Sustainability Analysis R&D DOE Goals Economic Analysis...

366

ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE  

SciTech Connect (OSTI)

This report outlines the results of a study of the impact of climate change on the energy infrastructure of California and the San Francisco Bay region, including impacts on power plant generation; transmission line and substation capacity during heat spells; wildfires near transmission lines; sea level encroachment upon power plants, substations, and natural gas facilities; and peak electrical demand. Some end-of-century impacts were projected:Expected warming will decrease gas-fired generator efficiency. The maximum statewide coincident loss is projected at 10.3 gigawatts (with current power plant infrastructure and population), an increase of 6.2 percent over current temperature-induced losses. By the end of the century, electricity demand for almost all summer days is expected to exceed the current ninetieth percentile per-capita peak load. As much as 21 percent growth is expected in ninetieth percentile peak demand (per-capita, exclusive of population growth). When generator losses are included in the demand, the ninetieth percentile peaks may increase up to 25 percent. As the climate warms, California's peak supply capacity will need to grow faster than the population.Substation capacity is projected to decrease an average of 2.7 percent. A 5C (9F) air temperature increase (the average increase predicted for hot days in August) will diminish the capacity of a fully-loaded transmission line by an average of 7.5 percent.The potential exposure of transmission lines to wildfire is expected to increase with time. We have identified some lines whose probability of exposure to fire are expected to increase by as much as 40 percent. Up to 25 coastal power plants and 86 substations are at risk of flooding (or partial flooding) due to sea level rise.

Sathaye, Jayant; Dale, Larry; Larsen, Peter; Fitts, Gary; Koy, Kevin; Lewis, Sarah; Lucena, Andre

2011-06-22T23:59:59.000Z

367

Energy, Environmental, and Economic Systems Analysis  

E-Print Network [OSTI]

and deregulated, shifting control from a single decision maker (i.e., a single, government-owned electric utility determining electricity consumption (customer agents), unit commitment (generation companies), bilateralEnergy, Environmental, and Economic Systems Analysis Electricity Market Complex Adaptive System

368

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

Energy Engineering & Systems Analysis Success Stories For further information, contact: Dileep Singh, dsingh@anl.gov NOx/O2 Sensors for High Temperature Applications In vehicle engines, monitoring with an internal reference gas system. The Solution Using a unique deformation bonding method that joins

Kemner, Ken

369

Energy Engineering & Systems Analysis Success Stories  

E-Print Network [OSTI]

Energy Engineering & Systems Analysis Success Stories Helping Make the U.S. Power Grid Smarter-way communication technologies into the power grid, the nation will have a more robust and efficient system to the limit, requiring upgrades. The Solution A multidisciplinary mix of scientists and engineers from Argonne

Kemner, Ken

370

Enhancing e-waste estimates: Improving data quality by multivariate Input–Output Analysis  

SciTech Connect (OSTI)

Highlights: • A multivariate Input–Output Analysis method for e-waste estimates is proposed. • Applying multivariate analysis to consolidate data can enhance e-waste estimates. • We examine the influence of model selection and data quality on e-waste estimates. • Datasets of all e-waste related variables in a Dutch case study have been provided. • Accurate modeling of time-variant lifespan distributions is critical for estimate. - Abstract: Waste electrical and electronic equipment (or e-waste) is one of the fastest growing waste streams, which encompasses a wide and increasing spectrum of products. Accurate estimation of e-waste generation is difficult, mainly due to lack of high quality data referred to market and socio-economic dynamics. This paper addresses how to enhance e-waste estimates by providing techniques to increase data quality. An advanced, flexible and multivariate Input–Output Analysis (IOA) method is proposed. It links all three pillars in IOA (product sales, stock and lifespan profiles) to construct mathematical relationships between various data points. By applying this method, the data consolidation steps can generate more accurate time-series datasets from available data pool. This can consequently increase the reliability of e-waste estimates compared to the approach without data processing. A case study in the Netherlands is used to apply the advanced IOA model. As a result, for the first time ever, complete datasets of all three variables for estimating all types of e-waste have been obtained. The result of this study also demonstrates significant disparity between various estimation models, arising from the use of data under different conditions. It shows the importance of applying multivariate approach and multiple sources to improve data quality for modelling, specifically using appropriate time-varying lifespan parameters. Following the case study, a roadmap with a procedural guideline is provided to enhance e-waste estimation studies.

Wang, Feng, E-mail: fwang@unu.edu [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Huisman, Jaco [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Stevels, Ab [Design for Sustainability Lab, Faculty of Industrial Design Engineering, Delft University of Technology, Landbergstraat 15, 2628CE Delft (Netherlands); Baldé, Cornelis Peter [Institute for Sustainability and Peace, United Nations University, Hermann-Ehler-Str. 10, 53113 Bonn (Germany); Statistics Netherlands, Henri Faasdreef 312, 2492 JP Den Haag (Netherlands)

2013-11-15T23:59:59.000Z

371

15-11-061ETSAP Energy Technology Systems Analysis  

E-Print Network [OSTI]

15-11-061ETSAP Energy Technology Systems Analysis Programme (ETSAP) ­ Annex X ETSAP Semi · Global Energy Supply: Model-based Scenario Analysis of Resource Use and Energy Trade. Uwe Remme, Maryse Policy Scenario to address energy security and environmental concerns. Based on the detailed analysis

372

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect (OSTI)

This is a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM`s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1984-04-01T23:59:59.000Z

373

Energy Engineering Analysis Program, Fort Bliss, TX. Executive summary  

SciTech Connect (OSTI)

This summary provides a brief overview of a report which consists of nine volumes and a set of appendices in which the EEAP results to date are presented. All calculational routines for the analyzed Energy Conserving Measures (ECM`s) are either explicitly presented or the computer code employed is referenced. The purpose of the presentation is to allow others to follow the procedures in a straight-forward manner. Costs of implementing an ECM are also shown, broken out by labor and material where applicable, referenced and adjusted to the Fort Bliss market. Where appropriate, applicability lists have been prepared identifying where the ECM1s are to be implemented. Additionally, ECIP Economic Analysis Summary Sheets, Detailed Cost Estimates, and Life Cycle Cost Analysis Summary Sheets are included where appropriate. A brief overview of each volume is presented below.

NONE

1983-09-01T23:59:59.000Z

374

Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate  

E-Print Network [OSTI]

1 Energy consumption and comfort analysis for different low- energy cooling systems in a mild. "Energy consumption and comfort analysis for different low-energy cooling systems in a mild climate the architectural and mechanical design of a building. Several researchers have demonstrated the analysis of low-energy

Chen, Qingyan "Yan"

375

Estimating Total Energy Consumption and Emissions of China's Commercial and Office Buildings  

SciTech Connect (OSTI)

Buildings represent an increasingly important component of China's total energy consumption mix. However, accurately assessing the total volume of energy consumed in buildings is difficult owing to deficiencies in China's statistical collection system and a lack of national surveys. Official statistics suggest that buildings account for about 19% of China's total energy consumption, while others estimate the proportion at 23%, rising to 30% over the next few years. In addition to operational energy, buildings embody the energy used in the in the mining, extraction, harvesting, processing, manufacturing and transport of building materials as well as the energy used in the construction and decommissioning of buildings. This embodied energy, along with a building's operational energy, constitutes the building's life-cycle energy and emissions footprint. This report first provides a review of international studies on commercial building life-cycle energy use from which data are derived to develop an assessment of Chinese commercial building life-cycle energy use, then examines in detail two cases for the development of office building operational energy consumption to 2020. Finally, the energy and emissions implications of the two cases are presented.

Fridley, David; Fridley, David G.; Zheng, Nina; Zhou, Nan

2008-03-01T23:59:59.000Z

376

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect (OSTI)

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

377

Scripted Building Energy Modeling and Analysis: Preprint  

SciTech Connect (OSTI)

Building energy modeling and analysis is currently a time-intensive, error-prone, and nonreproducible process. This paper describes the scripting platform of the OpenStudio tool suite (http://openstudio.nrel.gov) and demonstrates its use in several contexts. Two classes of scripts are described and demonstrated: measures and free-form scripts. Measures are small, single-purpose scripts that conform to a predefined interface. Because measures are fairly simple, they can be written or modified by inexperienced programmers.

Hale, E.; Macumber, D.; Benne, K.; Goldwasser, D.

2012-08-01T23:59:59.000Z

378

Community Economic Analysis Guide | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreisVolcanicPowerRaftColumbiaCommercialEconomic Analysis

379

Analysis Â… Targeting Zero Net Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical Challenges to Smart Gridof Energy Analysis of the Efficiency

380

Analysis of Minimizers of the Lawrence-Doniach Energy for ...  

E-Print Network [OSTI]

an asymptotic formula for the minimum Lawrence-Doniach energy as e and the ... In this case, an analysis of the behavior of energy minimizers and their.

2014-04-07T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

State Clean Energy Policies Analysis (SCEPA): State Policy and...  

Open Energy Info (EERE)

Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy...

382

Energy Analysis Program. 1992 Annual report  

SciTech Connect (OSTI)

The Program became deeply involved in establishing 4 Washington, D.C., project office diving the last few months of fiscal year 1942. This project office, which reports to the Energy & Environment Division, will receive the majority of its support from the Energy Analysis Program. We anticipate having two staff scientists and support personnel in offices within a few blocks of DOE. Our expectation is that this office will carry out a series of projects that are better managed closer to DOE. We also anticipate that our representation in Washington will improve and we hope to expand the Program, its activities, and impact, in police-relevant analyses. In spite of the growth that we have achieved, the Program continues to emphasize (1) energy efficiency of buildings, (2) appliance energy efficiency standards, (3) energy demand forecasting, (4) utility policy studies, especially integrated resource planning issues, and (5) international energy studies, with considerate emphasis on developing countries and economies in transition. These continuing interests are reflected in the articles that appear in this report.

Not Available

1993-06-01T23:59:59.000Z

383

An Estimate of the Thermodynamic Pressure in High-Energy Collisions  

E-Print Network [OSTI]

We introduce a novel approach to estimate the thermodynamic pressure from heavy-ion collisions based on recently measured higher-order moments of particle multiplicities by the STAR experiment. We start with fitting the experimental results in the most-central collisions. Then, we integrate them back to lower ones. For example, we find that the first-order moment, the mean multiplicity, is exactly reproduced from the integral of variance, the second-order moment. Therefore, the zero-order moment, the thermodynamic pressure, can be estimated from the integral of the mean multiplicity. the possible comparison between such a kind of pressure (deduced from the integral of particle multiplicity) and the lattice pressure and the relating of Bjorken energy density to the lattice energy density are depending on lattice QCD at finite baryon chemical potential and first-principle estimation of the formation time of the quark-gluon plasma (QGP).

Tawfik, Abdel Nasser

2015-01-01T23:59:59.000Z

384

Quarterly Analysis Review February 2015 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Quarterly Analysis Review (QAR) surveys both work supported by the Vehicle Technologies Office Analysis Program within the broader context of energy and automotive U.S. and...

385

SEA-03: Special Environmental Analysis | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

SEA-03: Special Environmental Analysis SEA-03: Special Environmental Analysis Department of Energy, National Nuclear Security Administration, Actions Taken in Response to the Cerro...

386

Clean Energy Options for Sabah: An Analysis of Resource Availability...  

Open Energy Info (EERE)

An Analysis of Resource Availability and Cost Jump to: navigation, search Name Clean Energy Options for Sabah: An Analysis of Resource Availability and Cost AgencyCompany...

387

STEP Utility Bill Analysis Report | Department of Energy  

Energy Savers [EERE]

STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP). G5d STEP Utility Bill Analysis Report.pdf More Documents &...

388

Extragalactic Water Masers, Geometric Estimation of H_o and Characterization of Dark Energy  

E-Print Network [OSTI]

High precision estimation of the equation of state of dark energy depends on constraints external to analyses of Cosmic Microwave Background fluctuations. A geometric estimation of the local expansion rate, H_o, would provide the most direct and robust constraint. Traditional techniques to estimate H_o have depended on observations of standard candles for which systematic effects can be 10% or more. Observations of water maser sources in the accretion disks that feed the central engines of active galaxies enable simplified, robust, and largely geometric analyses. Many thousand maser sources will be discovered in studies with the SKA, owing to its great sensitivity. Spectroscopic monitoring and interferometric mapping - with intercontinental baselines - will allow estimation of H_o to 1% and possibly better.

L. J. Greenhill

2004-09-10T23:59:59.000Z

389

Extragalactic Water Masers, Geometric Estimation of H_o and Characterization of Dark Energy  

E-Print Network [OSTI]

High precision estimation of the equation of state of dark energy depends on constraints external to analyses of Cosmic Microwave Background fluctuations. A geometric estimation of the local expansion rate, H_o, would provide the most direct and robust constraint. Traditional techniques to estimate H_o have depended on observations of standard candles for which systematic effects can be 10% or more. Observations of water maser sources in the accretion disks that feed the central engines of active galaxies enable simplified, robust, and largely geometric analyses. Many thousand maser sources will be discovered in studies with the SKA, owing to its great sensitivity. Spectroscopic monitoring and interferometric mapping - with intercontinental baselines - will allow estimation of H_o to 1% and possibly better.

Greenhill, L J

2004-01-01T23:59:59.000Z

390

Lac Courte Oreilles Energy Analysis Project  

SciTech Connect (OSTI)

The Lac Courte Oreilles Tribe applied for first step funding in 2007 and was awarded in October of that year. We wanted to perform an audit to begin fulfilling two commitments we made to our membership and resolutions that we adopted. One was the Kyoto Protocol and reduce our carbon emissions by 25% and to produce 25% of our energy by sustainable means. To complete these goals we needed to begin with first assessing what our carbon emissions are and begin taking the steps to conserve on the energy we currently use. The First Step Grant gave us the opportunity to do this. Upon funding the Energy Project was formed under the umbrella of the LCO Public Works Department and Denise Johnson was hired as the coordinator. She quickly began fulfilling the objectives of the project. Denise began by contact the LCO College and hiring interns who were able to go to each Tribal entity and perform line logging to read and document the energy used for each electrical appliance. Data was also gathered for one full year from each entity for all their utility bills (gasoline, electric, natural gas, fuel oil, etc.). Relationships were formed with the Green Team and other Green Committees in the area that could assist us in this undertaking. The Energy Task Force was of great assistance as well recommending other committees and guidance to completing our project. The data was gathered, compiled and placed into spreadsheets that would be understandable for anyone who didn't have a background in Renewable Resources. While gathering the data Denise was also looking for ways to conserve energy usage, policies changes to implement and any possible viable renewable energy resources. Changes in the social behaviors of our members and employees will require further education by workshops, energy fairs, etc.. This will be looked into and done in coordination with our schools. The renewable resources seem most feasible are wind resources as well as Bio Mass both of which need further assessment and funding to do so will be sought. While we already are in ownership of a Hydro Dam it is currently not functioning to its full capacity we are seeking operation and maintenance firm proposals and funding sources. One of our biggest accomplishment this project gave us was our total Carbon Emissions 9989.45 tons, this will be the number that we will use to base our reductions from. It will help us achieve our goals we have set for ourselves in achieving the Kyoto Protocol and saving our Earth for our future generations. Another major accomplishment and lesson learned is we need to educate ourselves and our people on how to conserve energy to both impact the environment and our own budgets. The Lac Courte Oreilles (LCO) Energy Analysis Project will perform an energy audit to gather information on the Tribe's energy usage and determine the carbon emissions. By performing the audit we will be able to identify areas where conservation efforts are most viable and recommend policies that can be implemented. These steps will enable LCO to begin achieving the goals that have been set by the Tribal Governing Board and adopted through resolutions. The goals are to reduce emissions by 25% and to produce 25% of its energy using sustainable sources. The project objectives were very definitive to assist the Tribe in achieving its goals; reducing carbon emissions and obtaining a sustainable source of energy. The following were the outlined objectives: (1) Coordinate LCO's current and future conservation and renewable energy projects; (2) Establish working relationships with outside entities to share information and collaborate on future projects; (3) Complete energy audit and analyze LCO's energy load and carbon emissions; (4) Identify policy changes, education programs and conservation efforts which are appropriate for the LCO Reservation; and (5) Create a plan to identify the most cost effective renewable energy options for LCO.

Leslie Isham; Denise Johnson

2009-04-01T23:59:59.000Z

391

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

entirely of passive solar houses. We have estimated theWe estimate that a passive solar house constructed to thesecommercial buildings, passive solar houses, and retrofit in-

Authors, Various

2010-01-01T23:59:59.000Z

392

Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement  

E-Print Network [OSTI]

Freezers Commercial Steam Cookers b EnergyStar EnergyStarFreezers Com Steam Cookers Water-Cooled Ice Machines Pre-Printer Commercial Steam Cookers Commercial Central Air 

Taylor, Margaret

2014-01-01T23:59:59.000Z

393

Semiclassical Estimates of Electromagnetic Casimir Self-Energies of Spherical and Cylindrical Metallic Shells  

E-Print Network [OSTI]

The leading semiclassical estimates of the electromagnetic Casimir stresses on a spherical and a cylindrical metallic shell are within 1% of the field theoretical values. The electromagnetic Casimir energy for both geometries is given by two decoupled massless scalars that satisfy conformally covariant boundary conditions. Surface contributions vanish for smooth metallic boundaries and the finite electromagnetic Casimir energy in leading semiclassical approximation is due to quadratic fluctuations about periodic rays in the interior of the cavity only. Semiclassically the non-vanishing Casimir energy of a metallic cylindrical shell is almost entirely due to Fresnel diffraction.

Martin Schaden

2010-06-16T23:59:59.000Z

394

Energy Aware Node Selection for Cluster-based Data Accuracy Estimation in Wireless Sensor Networks  

E-Print Network [OSTI]

The main objective of this paper is to reduce the number of sensor nodes by estimating a trade off between data accuracy and energy consumption for selecting nodes in probabilistic approach in distributed networks. Design Procedure/Approach: Observed data are highly correlated among sensor nodes in the spatial domain due to deployment of high density of sensor nodes. These sensor nodes form non-overlapping distributed clusters due to high data correlation among them. We develop a probabilistic model for each distributed cluster to perform data accuracy and energy consumption model in the network. Finally we find a trade off between data accuracy and energy consumption model to select an optimal number of sensor nodes in each distributed cluster. We also compare the performance for our data accuracy estimation model with information accuracy model for each distributed cluster in the network. Practical Implementation: Measuring temperature in physical environment and measuring moisture content in agricultural f...

Karjee, Jyotirmoy

2011-01-01T23:59:59.000Z

395

Cooling load estimation methods  

SciTech Connect (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

396

Cost analysis of energy storage systems for electric utility applications  

SciTech Connect (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

397

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using Reformulated Models and characterize capacity fade in lithium-ion batteries. As a comple- ment to approaches to mathematically model been made in developing lithium-ion battery models that incor- porate transport phenomena

Subramanian, Venkat

398

Stability and error analysis of the polarization estimation inverse problem for solid oxide fuel cells.  

E-Print Network [OSTI]

describe the performance of a solid oxide fuel cell requires the solution of an inverse problem. Two at the electrodeelectrolyte interfaces of solid oxide fuel cells (SOFC) is investigated physically using ElectrochemicalStability and error analysis of the polarization estimation inverse problem for solid oxide fuel

Renaut, Rosemary

399

AN ANALYSIS OF SOME PRACTICAL METHODS FOR ESTIMATING HEATS OF COMBUSTION IN  

E-Print Network [OSTI]

99-42 AN ANALYSIS OF SOME PRACTICAL METHODS FOR ESTIMATING HEATS OF COMBUSTION IN FIRE SAFETY (*) Factory Mutual Research Corporation, Norwood, Ma, USA ABSTRACT The theoretical (net) heat of combustion of the heats of combustion, that is to say when at most a simple datasheet processor is the only tool required

Paris-Sud XI, Université de

400

Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program  

SciTech Connect (OSTI)

This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

Steinberg, D.; Porro, G.; Goldberg, M.

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Statistical Energy Analysis and the second principle of thermodynamics  

E-Print Network [OSTI]

Statistical Energy Analysis and the second principle of thermodynamics Alain Le Bot Abstract Statistical Energy Analysis is a statistical method in vibroacoustics en- tirely based on the application discussed. 1 Introduction Statistical Energy Analysis [1, 2] is born from the application of statistical

Paris-Sud XI, Université de

402

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

toward the goal of net zero energy buildings. EnergyPlusdesigns and low or net-zero energy buildings. EnergyPlus

Hong, Tianzhen

2009-01-01T23:59:59.000Z

403

First Year Analysis of Industrial Energy Conservation in Texas A&M's Energy Analysis and Diagnostic Center Program  

E-Print Network [OSTI]

FIRST YEAR ANALYSIS OF INIXJSTRIAL ENERGY crNSERVATIOO IN TEXAS A&M' S ENERGY ANALYSIS AND DIAEnergy Analysis and Diagnostic Center Mechanical Engineering Department Texas A&M University COllege Station..., Texas ABSTRACT Texas A&M University's Energy Analysis and Diagnostic Center (EADC) performed 15 energy audits of small- to medium-size manufacturing plants during its first year. The EADC program is funded by the United States Department...

Grubb, M. K.; Heffington, W. M.

404

Program Potential: Estimates of Federal Energy Cost Savings from Energy Efficient Procurement  

E-Print Network [OSTI]

Water Heaters ..Table 7: Annual energy and cost savings of water heaters (Boilers Commercial Water Heater See Appendix F for

Taylor, Margaret

2014-01-01T23:59:59.000Z

405

Category:Core Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status ofCore Analysis page? For

406

Category:Cuttings Analysis | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Status ofCore AnalysisCuttings

407

Updated estimation of energy efficiencies of U.S. petroleum refineries.  

SciTech Connect (OSTI)

Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

Palou-Rivera, I.; Wang, M. Q. (Energy Systems)

2010-12-08T23:59:59.000Z

408

1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects  

E-Print Network [OSTI]

1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis Concerns for Wind Energy Fall Into Three Potential Categories 1. Area Stigma: Concern that rural areas

Firestone, Jeremy

409

Meta-Analysis of Estimates of Life Cycle Greenhouse Gas Emissions from Concentrating Solar Power: Preprint  

SciTech Connect (OSTI)

In reviewing life cycle assessment (LCA) literature of utility-scale CSP systems, this analysis focuses on clarifying central tendency and reducing variability in estimates of life cycle greenhouse gas (GHG) emissions through a meta-analytical process called harmonization. From 125 references reviewed, 10 produced 36 independent GHG emission estimates passing screens for quality and relevance: 19 for parabolic trough technology and 17 for power tower technology. The interquartile range (IQR) of published GHG emission estimates was 83 and 20 g CO2eq/kWh for trough and tower, respectively, with medians of 26 and 38 g CO2eq/kWh. Two levels of harmonization were applied. Light harmonization reduced variability in published estimates by using consistent values for key parameters pertaining to plant design and performance. Compared to the published estimates, IQR was reduced by 69% and median increased by 76% for troughs. IQR was reduced by 26% for towers, and median was reduced by 34%. A second level of harmonization was applied to five well-documented trough LC GHG emission estimates, harmonizing to consistent values for GHG emissions embodied in materials and from construction activities. As a result, their median was further reduced by 5%, while the range increased by 6%. In sum, harmonization clarified previous results.

Heath, G. A.; Burkhardt, J. J.

2011-09-01T23:59:59.000Z

410

Estimating rock properties in two phase petroleum reservoirs: an error analysis  

E-Print Network [OSTI]

. 60x10 1. 16x10 4. 16x10 1. 01 9. 13x10 1. 51 2. 07%10 6. 51x10 5. 42x10 8. 18 3. 16x10 26 function approximated in the tt parameter space gives a mean prediction error which is essentially zero. However, using the permeability estimates obtained.... G ver (Mem er) . L. Curry . D. Ho land ( d of Department) December 1983 ABSTRACT Estimating Rock Properties In Two Phase Petroleum Reservoirs: An Error Analysis. (December 1983) Anthony Ian Paul B. Sc. , Imperial College, London University...

Paul, Anthony Ian

1983-01-01T23:59:59.000Z

411

Review of Evaluation, Measurement and Verification Approaches Used to Estimate the Load Impacts and Effectiveness of Energy Efficiency Programs  

SciTech Connect (OSTI)

Public and private funding for end-use energy efficiency actions is expected to increase significantly in the United States over the next decade. For example, Barbose et al (2009) estimate that spending on ratepayer-funded energy efficiency programs in the U.S. could increase from $3.1 billion in 2008 to $7.5 and 12.4 billion by 2020 under their medium and high scenarios. This increase in spending could yield annual electric energy savings ranging from 0.58% - 0.93% of total U.S. retail sales in 2020, up from 0.34% of retail sales in 2008. Interest in and support for energy efficiency has broadened among national and state policymakers. Prominent examples include {approx}$18 billion in new funding for energy efficiency programs (e.g., State Energy Program, Weatherization, and Energy Efficiency and Conservation Block Grants) in the 2009 American Recovery and Reinvestment Act (ARRA). Increased funding for energy efficiency should result in more benefits as well as more scrutiny of these results. As energy efficiency becomes a more prominent component of the U.S. national energy strategy and policies, assessing the effectiveness and energy saving impacts of energy efficiency programs is likely to become increasingly important for policymakers and private and public funders of efficiency actions. Thus, it is critical that evaluation, measurement, and verification (EM&V) is carried out effectively and efficiently, which implies that: (1) Effective program evaluation, measurement, and verification (EM&V) methodologies and tools are available to key stakeholders (e.g., regulatory agencies, program administrators, consumers, and evaluation consultants); and (2) Capacity (people and infrastructure resources) is available to conduct EM&V activities and report results in ways that support program improvement and provide data that reliably compares achieved results against goals and similar programs in other jurisdictions (benchmarking). The National Action Plan for Energy Efficiency (2007) presented commonly used definitions for EM&V in the context of energy efficiency programs: (1) Evaluation (E) - The performance of studies and activities aimed at determining the effects and effectiveness of EE programs; (2) Measurement and Verification (M&V) - Data collection, monitoring, and analysis associated with the calculation of gross energy and demand savings from individual measures, sites or projects. M&V can be a subset of program evaluation; and (3) Evaluation, Measurement, and Verification (EM&V) - This term is frequently seen in evaluation literature. EM&V is a catchall acronym for determining both the effectiveness of program designs and estimates of load impacts at the portfolio, program and project level. This report is a scoping study that assesses current practices and methods in the evaluation, measurement and verification (EM&V) of ratepayer-funded energy efficiency programs, with a focus on methods and practices currently used for determining whether projected (ex-ante) energy and demand savings have been achieved (ex-post). M&V practices for privately-funded energy efficiency projects (e.g., ESCO projects) or programs where the primary focus is greenhouse gas reductions were not part of the scope of this study. We identify and discuss key purposes and uses of current evaluations of end-use energy efficiency programs, methods used to evaluate these programs, processes used to determine those methods; and key issues that need to be addressed now and in the future, based on discussions with regulatory agencies, policymakers, program administrators, and evaluation practitioners in 14 states and national experts in the evaluation field. We also explore how EM&V may evolve in a future in which efficiency funding increases significantly, innovative mechanisms for rewarding program performance are adopted, the role of efficiency in greenhouse gas mitigation is more closely linked, and programs are increasingly funded from multiple sources often with multiple program administrators and in

Messenger, Mike; Bharvirkar, Ranjit; Golemboski, Bill; Goldman, Charles A.; Schiller, Steven R.

2010-04-14T23:59:59.000Z

412

Estimation of Saturation of Permanent-Magnet Synchronous Motors Through an Energy-Based Model  

E-Print Network [OSTI]

We propose a parametric model of the saturated Permanent-Magnet Synchronous Motor (PMSM) together with an estimation method of the magnetic parameters. The model is based on an energy function which simply encompasses the saturation effects. Injection of fast-varying pulsating voltages and measurements of the resulting current ripples then permit to identify the magnetic parameters by linear least squares. Experimental results on a surface-mounted PMSM and an interoir magnet PMSM illustrate the relevance of the approach.

Jebai, AlKassem; Martin, Philippe; Rouchon, Pierre

2011-01-01T23:59:59.000Z

413

Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)  

SciTech Connect (OSTI)

Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

Esposito, A.; Augustine, C.

2012-04-01T23:59:59.000Z

414

Analysis of the results of Federal incentives used to stimulate energy production  

SciTech Connect (OSTI)

The research program analyzed the Federal incentives used to stimulate nuclear, hydro, coal, gas, oil, and electricity production in order to supply what was learned to the selection of an incentives strategy to induce new energy production from renewable resources. Following the introductory chapter, Chapter 2 examines the problem of estimating effects from a theoretical perspective. Methods of quantifying and identifying the many interactive effects of government actions are discussed. Chapter 3 presents a generic analysis of the result of Federal incentives. Chapters 4 through 9 deal with incentives to energy forms - nuclear, hydro, coal, oil, gas, and electricity. Chapter 10 summarizes the estimated results of the incentives, which are presented in terms of their quantity and price impacts. The incentive costs per million Btu of induced energy production is also discussed. Chapter 11 discusses the parity issue, that is an equivalence between Federal incentives to renewable resources and to traditional energy resources. Any analysis of incentives for solar needs will profit from an analysis of the costs of solar incentives per million Btu compared with those for traditional energy forms. Chapter 12 concludes the analysis, discussing the history of traditional energy incentives as a guide to solar-energy incentives. 216 references, 38 figures, 91 tables.

Cone, B.W.; Emery, J.C.; Fassbender, A.G.

1980-06-01T23:59:59.000Z

415

Karuk Tribe Strategic Energy Plan and Energy Options Analysis  

SciTech Connect (OSTI)

Energy planning document to assist the Karuk Tribe in making educated decisions about future energy priorities and implementation.

Ramona Taylor, Karuk Tribe; David Carter, Winzler and Kelly

2009-03-31T23:59:59.000Z

416

Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate  

SciTech Connect (OSTI)

In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

Warren, R.N.

1998-09-29T23:59:59.000Z

417

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

we select three alternative energy futures for California inwith the ~J -xi- alternative energy futures in order toassess the impacts of alternative energy futures. In later

Authors, Various

2010-01-01T23:59:59.000Z

418

Uncertainty analysis of geothermal energy economics.  

E-Print Network [OSTI]

?? This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy… (more)

Sener, Adil Caner

2009-01-01T23:59:59.000Z

419

Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis with Applications in Genomics  

E-Print Network [OSTI]

, Aniruddha Datta Guy L. Curry Head of Department, Costas N. Georghiades December 2010 Major Subject: Electrical Engineering iii ABSTRACT Analytic Study of Performance of Error Estimators for Linear Discriminant Analysis with Applications in Genomics... : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133 x LIST OF TABLES TABLE Page I Minimum sample size, n, (n0 = n1 = n) for desired (n;0:5) in univariate case. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 67 II Genes selected using the validity-goodness model selection...

Zollanvari, Amin

2012-02-14T23:59:59.000Z

420

Decision Analysis for EGS | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Decision Analysis for EGS Decision Analysis for EGS Project objectives: DEVELOPMENT OF ANALYSIS TOOLS TO ASSESS: Uncertainties associated with exploration for EGS; Uncertainties...

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

EnergyPlus Run Time Analysis  

E-Print Network [OSTI]

net-zero energy buildings. EnergyPlus does sub-hourly calculationsnet zero energy buildings. EnergyPlus does sub-hourly whole building integrated heat balance calculations

Hong, Tianzhen

2009-01-01T23:59:59.000Z

422

COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT  

E-Print Network [OSTI]

CHAPTER 1 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS;2 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS consumption computational network, enabled with soft- ware that allows cooperation and the sharing of resources. The energy

Li, Juan "Jen"

423

Canadian Industrial Energy End-use Data and Analysis  

E-Print Network [OSTI]

CIEEDAC Canadian Industrial Energy End-use Data and Analysis Centre Prospectus and Business Plan as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian EXECUTIVE SUMMARY CIEEDAC ii Executive Summary 1. Background The Canadian Industrial Energy End-use Data

424

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

California Energy Supply Model Operation Resource Requirements Dimensions of Housing Types , Annual Incremental Energy and Capacity Savings from Passive Solar

Authors, Various

2010-01-01T23:59:59.000Z

425

A Retrospective Analysis of Commercial Building Energy Codes: 1990 – 2008  

SciTech Connect (OSTI)

Building Energy Codes Program's efforts are designed to result in increased stringency in national model energy codes, more rapid and broader adoption by states and localities of updated codes, and increased compliance and enforcement. Report estimates the historical impact of Building Energy Codes Program in terms of energy savings achieved that are based upon various editions of ANSI/ASHRAE/IESNA Standard 90.1 (ASHRAE Standard 90.1).

Belzer, David B.; McDonald, Sean C.; Halverson, Mark A.

2010-10-01T23:59:59.000Z

426

The Smart Grid: An Estimation of the Energy and CO2 Benefits  

SciTech Connect (OSTI)

This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

2010-01-15T23:59:59.000Z

427

The Smart Grid: An Estimation of the Energy and CO2 Benefits  

SciTech Connect (OSTI)

This report articulates nine mechanisms by which the smart grid can reduce energy use and carbon impacts associated with electricity generation and delivery. The quantitative estimates of potential reductions in electricity sector energy and associated CO2 emissions presented are based on a survey of published results and simple analyses. This report does not attempt to justify the cost effectiveness of the smart grid, which to date has been based primarily upon the twin pillars of cost-effective operation and improved reliability. Rather, it attempts to quantify the additional energy and CO2 emission benefits inherent in the smart grid’s potential contribution to the nation’s goal of mitigating climate change by reducing the carbon footprint of the electric power system.

Pratt, Robert G.; Balducci, Patrick J.; Gerkensmeyer, Clint; Katipamula, Srinivas; Kintner-Meyer, Michael CW; Sanquist, Thomas F.; Schneider, Kevin P.; Secrest, Thomas J.

2010-01-27T23:59:59.000Z

428

Energy Use Analysis for the Federal Energy Management Program  

E-Print Network [OSTI]

Recent congressional legislation allows federal agencies new authorities to contract for energy savings by sharing the acquired savings with an energy service company. As part of its charter to make the federal government more energy...

Mazzucchi, R. P.; Devine, K. D.

1988-01-01T23:59:59.000Z

429

Table E8. Primary Energy, Electricity, and Total Energy Expenditure Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table

430

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation), NREL (National Renewable Energy Laboratory)  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATE RELEASEEmissions ofESTIMATE OF

431

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data  

E-Print Network [OSTI]

Estimates of wind energy input to the Ekman layer in the Southern Ocean from surface drifter data the contribution from the anticyclonic frequencies dominate the wind energy input. The latitudinal and seasonal variations of the wind energy input to the Ekman layer are closely related to the variations of the wind

Gille, Sarah T.

432

This paper introduces a methodology for estimation of energy consumption in peripherals such as audio and video devices.  

E-Print Network [OSTI]

ABSTRACT This paper introduces a methodology for estimation of energy consumption in peripherals such as audio and video devices. Peripherals can be responsible for significant amount of the energy consumption in current embedded systems. We introduce a cycle- accurate energy simulator and profiler capable

Simunic, Tajana

433

Analysis Activities at Fossil Energy/ National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

Presentation on NETL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

434

Remainder estimates for the Long Range Behavior of the van der Waals interaction energy  

E-Print Network [OSTI]

The van der Waals-London's law, for a collection of atoms at large separation, states that their interaction energy is pairwise attractive and decays proportionally to one over their distance to the sixth. The first rigorous result in this direction was obtained by Lieb and Thirring [LT], by proving an upper bound which confirms this law. Recently the van der Waals-London's law was proven under some assumptions by I.M. Sigal and the author [AS]. Following the strategy of [AS] and reworking the approach appropriately, we prove estimates on the remainder of the interaction energy. Furthermore, using an appropriate test function, we prove an upper bound for the interaction energy, which is sharp to leading order. For the upper bound, our assumptions are weaker, the remainder estimates stronger and the proof is simpler. The upper bound, for the cases it applies, improves considerably the upper bound of Lieb and Thirring. However, their bound is much more general. Here we consider only spinless Fermions.

Ioannis Anapolitanos

2014-10-21T23:59:59.000Z

435

Information-Theoretic Analysis of an Energy Harvesting Communication System  

E-Print Network [OSTI]

Information-Theoretic Analysis of an Energy Harvesting Communication System Omur Ozel Sennur Ulukus@umd.edu ulukus@umd.edu Abstract--In energy harvesting communication systems, an exogenous recharge process supplies energy for the data trans- mission and arriving energy can be buffered in a battery before

Ulukus, Sennur

436

Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajor U.S.6:6.

437

Table C2. Energy Consumption Estimates for Major Energy Sources in Physical Units, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajor

438

Table E1. Primary Energy, Electricity, and Total Energy Price Estimates, 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1.NumberRefinerMotorSummary Topic:

439

Estimation of Building Parameters Using Simplified Energy Balance Model and Metered Whole Building Energy Use  

E-Print Network [OSTI]

to the difference between the total energy entering and leaving the system. That is, CV entering leaving air cond sol occ E C H E E E Q Q Q Q Q E E ? ? ? ? ? ? ? ? ? ? (1) where Qair, Qcond, Qsol, Qocc, and QE are building heat load components from air... is defined as (Shao, 2006): BL E C H E C H air cond sol occ E Q E E fE E E Q Q Q Q ? ? ? ? ? ? ? ? ? ? ? (2) where EE is the metered whole-building non-cooling electricity use. The multiplicative factor f represents a fraction of EE which...

Masuda, H.; Claridge, D.

2012-01-01T23:59:59.000Z

440

Figure ES1. Schema for Estimating Energy and Energy-Related Statistics,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31 705PC'sFigure ES1.

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Clean Energy Policy Analysis: Impact Analysis of Potential Clean...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

-Ready Requirements Tax Incentives with Pass-Through Option for Nontaxable Entities for Green Buildings and Energy Efficiency Improvements Density Bonus Residential Energy...

442

NREL's System Advisor Model Simplifies Complex Energy Analysis...  

Office of Scientific and Technical Information (OSTI)

NREL's System Advisor Model Simplifies Complex Energy Analysis (Fact Sheet) Re-direct Destination: NREL has developed a tool -- the System Advisor Model (SAM) -- that can help...

443

ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

444

State Clean Energy Policies Analysis: State, Utility, and Municipal...  

Open Energy Info (EERE)

State, Utility, and Municipal Loan Programs Jump to: navigation, search Name State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs AgencyCompany...

445

Office of Energy Policy and Systems Analysis Site Upgrade  

Broader source: Energy.gov [DOE]

Office of Energy Policy and Systems Analysis site is currently being upgraded to better serve on audience. Please check back shortly.

446

Analysis of Potential Benefits and Costs of Adopting a Commercial Building Energy Standard in South Dakota  

SciTech Connect (OSTI)

The state of South Dakota is considering adopting a commercial building energy standard. This report evaluates the potential costs and benefits to South Dakota residents from requiring compliance with the most recent edition of the ANSI/ASHRAE/IESNA 90.1-2001 Energy Standard for Buildings except Low-Rise Residential Buildings. These standards were developed in an effort to set minimum requirements for the energy efficient design and construction of new commercial buildings. The quantitative benefits and costs of adopting a commercial building energy code are modeled by comparing the characteristics of assumed current building practices with the most recent edition of the ASHRAE Standard, 90.1-2001. Both qualitative and quantitative benefits and costs are assessed in this analysis. Energy and economic impacts are estimated using results from a detailed building simulation tool (Building Loads Analysis and System Thermodynamics [BLAST] model) combined with a Life-Cycle Cost (LCC) approach to assess corresponding economic costs and benefits.

Belzer, David B.; Cort, Katherine A.; Winiarski, David W.; Richman, Eric E.

2005-03-04T23:59:59.000Z

447

Estimation of Parigi reservoir characteristics using seismic attributes, AVO analysis and AVO inversion, and seismic inversion  

SciTech Connect (OSTI)

In the carbonate reservoir, the gas was trapped in the cavity of the formation. First of all, to identify the cavity as the distribution of the cavity or porous zone will be done by reflection strength and instantaneous frequency from the seismic attribute analysis. After the zone has been identified, the existing gas and the value of porosity can be estimated using AVO analysis and AVO inversion technique. This idea was applied to the carbonate reservoir within the Parigi Formation in the Northwest Java Basin (Indonesia) by Santoso et al. The result shows a clear zone of high reflection strength and low instantaneous frequency in the carbonate build up. The porosity estimated by AVO inversion gives a value of the porosity about 38% and the Poisson`s ratio around 0.22-0.26. This paper is continuation of Santoso et al. study. It is done by the delineation of the porosity which can be displayed by the acoustic impedance section as a result of seismic inversion process. The delineation of the reservoir characters to the horizontal direction as previous study gives around a similar value as shown by acoustic impedance value. When these results were compared to the borehole data in the location, they are very close. Therefore this idea has given a satisfactory result in estimating porosity from seismic data and delineating the carbonate reservoir away from the borehole.

Santoso, D.; Hendrajaya, L.; Watkins, J.S. [and others

1995-12-31T23:59:59.000Z

448

Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Kansas City, Missouri  

SciTech Connect (OSTI)

The 2009 International Energy Conservation Code (IECC) contains several major improvements in energy efficiency over the 2006 IECC. The notable changes are: (1) Improved duct sealing verified by testing the duct system; (2) Increased duct insulation; (3) Improvement of window U-factors from 0.40 to 0.35; and (4) Efficient lighting requirements. An analysis of these changes resulted in estimated annual energy cost savings of about $145 a year for an average new house. Construction cost increases are estimated at $655. Home owners will experience an annual cost savings of close to $100 a year because reduction to energy bills will more than compensate for increased mortgage payments and other costs.

Lucas, Robert G.

2011-09-30T23:59:59.000Z

449

Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands  

SciTech Connect (OSTI)

This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

Doris, E.; Lopez, A.; Beckley, D.

2013-02-01T23:59:59.000Z

450

Analysis of Energy Conservation Options for USDOE Child Development Center  

E-Print Network [OSTI]

pumps. The architect's estimate of the energy savings from these measures totaled 31.5 MWh per year, an annual savings of about $1,575 (at $0.05/kWh). The DOE-2 predicted total annual energy use for the CDC with all the ECO's installed is 146,317 k...

Bou-Saada, T. E.; Haberl, J. S.

1993-01-01T23:59:59.000Z

451

Estimation of 6 groups of effective delayed neutron fraction based on continuous energy Monte Carlo method  

SciTech Connect (OSTI)

New method is proposed to estimate effective fraction of delayed neutrons radiated from precursors categorized into 6 groups of decay constant. Instead of adjoint flux {Phi}*, an expected number of fission neutrons in next generations, M, is applied as a weight function [1]. Introduction of M enables us to calculate the fraction based on continuous energy Monte Carlo method. For the calculation of the fraction, an algorithm is established and implemented into the MCNP-5 code. The method is verified using reactor period data obtained in reactivity measurements. (authors)

Nauchi, Y.; Kameyama, T. [Central Research Inst., Electric Power Industry, 2-11-1 Iwado-Kita, Komae-shi, Tokyo 201-8511 (Japan)

2006-07-01T23:59:59.000Z

452

Geothermal -- The Energy Under Our Feet: Geothermal Resource Estimates for the United States  

SciTech Connect (OSTI)

On May 16, 2006, the National Renewable Energy Laboratory (NREL) in Golden, Colorado hosted a geothermal resources workshop with experts from the geothermal community. The purpose of the workshop was to re-examine domestic geothermal resource estimates. The participating experts were organized into five working groups based on their primary area of expertise in the following types of geothermal resource or application: (1) Hydrothermal, (2) Deep Geothermal Systems, (3) Direct Use, (4) Geothermal Heat Pumps (GHPs), and (5) Co-Produced and Geopressured. The workshop found that the domestic geothermal resource is very large, with significant benefits.

Green, B. D.; Nix, R. G.

2006-11-01T23:59:59.000Z

453

Estimates of the Global Indirect Energy-Use Emission Impacts of USA Biofuel Policy  

SciTech Connect (OSTI)

This paper evaluates the indirect energy-use emission implications of increases in the use of biofuels in the USA between 2001 and 2010 as mandates within a dynamic global computable general equilibrium model. The study incorporates explicit markets for biofuels, petroleum and other fossil fuels, and accounts for interactions among all sectors of an 18-region global economy. It considers bilateral trade, as well as the dynamics of capital allocation and investment. Simulation results show that the biofuel mandates in the USA generate an overall reduction in global energy use and emissions over the simulation period from 2001 to 2030. Consequently, the indirect energy-use emission change or emission leakage under the mandate is negative. That is, global emission reductions are larger than the direct emission savings from replacing petroleum with biofuels under the USA RFS2 over the last decade. Under our principal scenario this enhanced the direct emission reduction from biofuels by about 66%. The global change in lifecycle energy-use emissions for this scenario was estimated to be about 93 million tons of CO2e in 2010, 45 million tons of CO2e in 2020, and an increase of 5 million tons of CO2e in 2030, relative to the baseline scenario. Sensitivity results of six alternative scenarios provided additional insights into the pattern of the regional and global effects of biofuel mandates on energy-use emissions.

Oladosu, Gbadebo A [ORNL

2012-01-01T23:59:59.000Z

454

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans-Alaska Pipeline that is consumed in pumping.  

E-Print Network [OSTI]

Estimate the fraction of the total transported energy (in the form of gasoline) in the Trans m). So we can toss this out. Now estimate the energy content of gasoline: Many of you tried figuring

Nimmo, Francis

455

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

456

Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found.  

E-Print Network [OSTI]

· Using the fracture energies for the two films a first estimate of fracture toughness, K, can be found. · Assumptions are made to estimate the crack area based on the fracture mode seen in the SEM. · The total crack length is assumed to be 3 times the contact radius, , at the fracture depth. · To find

Collins, Gary S.

457

Analysis Activities at National Renewable Energy Laboratory  

Broader source: Energy.gov [DOE]

Presentation on NREL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

458

2003 status report savings estimates for the energy star(R) voluntary labeling program  

E-Print Network [OSTI]

of Energy, 2000. Annual Energy Outlook 2001 with Projectionsof Energy, 1999. Annual Energy Outlook 2000 with ProjectionsEnergy, 1996a. Annual Energy Outlook 1996 with Projections

Webber, Carrie A.; Brown, Richard E.; McWhinney, Marla

2004-01-01T23:59:59.000Z

459

2006 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program  

E-Print Network [OSTI]

Energy, 1998b. Annual Energy Outlook 1999 with Projectionsof Energy, 1999. Annual Energy Outlook 2000 with Projectionsof Energy, 2000. Annual Energy Outlook 2001 with Projections

Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla; Homan, Gregory K.

2006-01-01T23:59:59.000Z

460

Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)  

SciTech Connect (OSTI)

Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

Not Available

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Estimates of Energy Cost Savings Achieved from 2009 IECC Code-Compliant, Single Family Residences in Texas  

E-Print Network [OSTI]

The annual energy cost savings were estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. 2009 IECC Cost Savings Report, p.ii January 2011 Energy Systems Laboratory, Texas A...). 3.2 Annual Total Energy Cost Similar trends were observed in the annual energy costs estimated with $0.11/kWh for electricity and $0.84/therm (Climate Zone 2) and $0.64/therm (Climate Zone 3 and 4) for natural gas. Across the counties, the 2001...

Kim, H.; Baltazar, J. C.; Haberl, J.

462

Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States (Presentation)  

SciTech Connect (OSTI)

Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties such as depth to basement and formation thickness are well known. The availability of this data reduces exploration risk and allows development of geologic exploration models for each basin. This study estimates the magnitude of recoverable geothermal energy from 15 major known U.S. sedimentary basins and ranks these basins relative to their potential. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by (Muffler, 1979). A qualitative recovery factor was determined for each basin based on data on flow volume, hydrothermal recharge, and vertical and horizontal permeability. Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient information was gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data were insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission databases. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size, temperature distribution, and a probable quantitative recovery factor.

Esposito, A.; Porro, C.; Augustine, C.; Roberts, B.

2012-09-01T23:59:59.000Z

463

Estimate of Geothermal Energy Resource in Major U.S. Sedimentary Basins (Presentation)  

SciTech Connect (OSTI)

This study estimates the magnitude of geothermal energy from fifteen major known US sedimentary basins and ranks these basins relative to their potential. Because most sedimentary basins have been explored for oil and gas, well logs, temperatures at depth, and reservoir properties are known. This reduces exploration risk and allows development of geologic exploration models for each basin as well as a relative assessment of geologic risk elements for each play. The total available thermal resource for each basin was estimated using the volumetric heat-in-place method originally proposed by Muffler (USGS). Total sedimentary thickness maps, stratigraphic columns, cross sections, and temperature gradient Information were gathered for each basin from published articles, USGS reports, and state geological survey reports. When published data was insufficient, thermal gradients and reservoir properties were derived from oil and gas well logs obtained on oil and gas commission websites. Basin stratigraphy, structural history, and groundwater circulation patterns were studied in order to develop a model that estimates resource size and temperature distribution, and to qualitatively assess reservoir productivity.

Porro, C.; Augustine, C.

2012-04-01T23:59:59.000Z

464

Effects of improved modeling on best estimate BWR severe accident analysis  

SciTech Connect (OSTI)

Since 1981, ORNL has completed best estimate studies analyzing several dominant BWR accident scenarios. These scenarios were identified by early Probabilistic Risk Assessment (PRA) studies and detailed ORNL analysis complements such studies. In performing these studies, ORNL has used the MARCH code extensively. ORNL investigators have identified several deficiencies in early versions of MARCH with regard to BWR modeling. Some of these deficiencies appear to have been remedied by the most recent release of the code. It is the purpose of this paper to identify several of these deficiencies. All the information presented concerns the degraded core thermal/hydraulic analysis associated with each of the ORNL studies. This includes calculations of the containment response. The period of interest is from the time of permanent core uncovery to the end of the transient. Specific objectives include the determination of the extent of core damage and timing of major events (i.e., onset of Zr/H/sub 2/O reaction, initial clad/fuel melting, loss of control blade structure, etc.). As mentioned previously the major analysis tool used thus far was derived from an early version of MARCH. BWRs have unique features which must be modeled for best estimate severe accident analysis. ORNL has developed and incorporated into its version of MARCH several improved models. These include (1) channel boxes and control blades, (2) SRV actuations, (3) vessel water level, (4) multi-node analysis of in-vessel water inventory, (5) comprehensive hydrogen and water properties package, (6) first order correction to the ideal gas law, and (7) separation of fuel and cladding. Ongoing and future modeling efforts are required. These include (1) detailed modeling for the pressure suppression pool, (2) incorporation of B/sub 4/C/steam reaction models, (3) phenomenological model of corium mass transport, and (4) advanced corium/concrete interaction modeling. 10 references, 17 figures, 1 table.

Hyman, C.R.; Ott, L.J.

1984-01-01T23:59:59.000Z

465

Determination analysis of energy conservation standards for distribution transformers  

SciTech Connect (OSTI)

This report contains information for US DOE to use in making a determination on proposing energy conservation standards for distribution transformers as required by the Energy Policy Act of 1992. Potential for saving energy with more efficient liquid-immersed and dry-type distribution transformers could be significant because these transformers account for an estimated 140 billion kWh of the annual energy lost in the delivery of electricity. Objective was to determine whether energy conservation standards for distribution transformers would have the potential for significant energy savings, be technically feasible, and be economically justified from a national perspective. It was found that energy conservation for distribution transformers would be technically and economically feasible. Based on the energy conservation options analyzed, 3.6-13.7 quads of energy could be saved from 2000 to 2030.

Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Das, S.

1996-07-01T23:59:59.000Z

466

Transformation of potential energy surfaces for estimating isotopic shifts in anharmonic vibrational frequency calculations  

SciTech Connect (OSTI)

A transformation of potential energy surfaces (PES) being represented by multi-mode expansions is introduced, which allows for the calculation of anharmonic vibrational spectra of any isotopologue from a single PES. This simplifies the analysis of infrared spectra due to significant CPU-time savings. An investigation of remaining deviations due to truncations and the so-called multi-level approximation is provided. The importance of vibrational-rotational couplings for small molecules is discussed in detail. In addition, an analysis is proposed, which provides information about the quality of the transformation prior to its execution. Benchmark calculations are provided for a set of small molecules.

Meier, Patrick; Oschetzki, Dominik; Rauhut, Guntram, E-mail: rauhut@theochem.uni-stuttgart.de [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany)] [Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart (Germany); Berger, Robert [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)] [Clemens-Schöpf Institut für Organische Chemie and Biochemie, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt (Germany)

2014-05-14T23:59:59.000Z

467

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First-Principles-Based Efficient Reformulated Models  

E-Print Network [OSTI]

Parameter Estimation and Capacity Fade Analysis of Lithium-Ion Batteries Using First parameters of lithium-ion batteries are estimated using a first-principles electrochemical engineering model and understanding of lithium-ion batteries using physics-based first-principles models. These models are based

Subramanian, Venkat

468

Correlated Component Analysis for diffuse component separation with error estimation on simulated Planck polarization data  

E-Print Network [OSTI]

We present a data analysis pipeline for CMB polarization experiments, running from multi-frequency maps to the power spectra. We focus mainly on component separation and, for the first time, we work out the covariance matrix accounting for errors associated to the separation itself. This allows us to propagate such errors and evaluate their contributions to the uncertainties on the final products.The pipeline is optimized for intermediate and small scales, but could be easily extended to lower multipoles. We exploit realistic simulations of the sky, tailored for the Planck mission. The component separation is achieved by exploiting the Correlated Component Analysis in the harmonic domain, that we demonstrate to be superior to the real-space application (Bonaldi et al. 2006). We present two techniques to estimate the uncertainties on the spectral parameters of the separated components. The component separation errors are then propagated by means of Monte Carlo simulations to obtain the corresponding contributi...

Ricciardi, S; Natoli, P; Polenta, G; Baccigalupi, C; Salerno, E; Kayabol, K; Bedini, L; De Zotti, G; 10.1111/j.1365-2966.2010.16819.x

2010-01-01T23:59:59.000Z

469

Systems analysis of major consumer energy decisions  

E-Print Network [OSTI]

American consumers make a number of decisions that significantly impact their energy use. Some of the most important of these decisions were identified and analyzed for the purpose of including them in a Consumer Energy ...

Sisler, Nicholas Daniel

2011-01-01T23:59:59.000Z

470

ANALYSIS ON THE MAJOR INFLUENCE FACTORS OF ENERGY INTENSITY CHANGING  

E-Print Network [OSTI]

Based on the energy intensity data of period 1990-2008, this paper uses impulse response function and variance decomposition model to empirical analysis the main influencing factors and effects of energy intensity,. The empirical results show that: the energy intensity of itself, and the proportion of secondary industry have a larger impact on energy intensity; the change of energy price and technological progress also play a certain impact on energy intensity; and the link with the internal relations and interaction mechanisms, which can play an active role in improving energy efficiency.

Xia Wang; Lu Tang

471

Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis  

E-Print Network [OSTI]

Supplying Renewable Energy to Deferrable Loads: Algorithms and Economic Analysis Anthony compares to price responsive demand in terms capacity gains and energy market revenues for renewable to renewable generation. I. INTRODUCTION Renewable power is emerging as a mainstream source of energy supply

Oren, Shmuel S.

472

GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION  

E-Print Network [OSTI]

GLOBAL OPTIMIZATION AND ANALYSIS FOR THE GIBBS FREE ENERGY FUNCTION USING THE UNIFAC, WILSON equilibrium involves two important problems: (i) the minimization of the Gibbs free energy, and (ii of the Gibbs free energy. However, a drawback of all previous approaches is that they could not provide

Neumaier, Arnold

473

Automated Analysis of Performance and Energy Consumption for Cloud Applications  

E-Print Network [OSTI]

Automated Analysis of Performance and Energy Consumption for Cloud Applications Feifei Chen, John providers is thus to develop resource provisioning and management solutions at minimum energy consumption system performance and energy consumption patterns in complex cloud systems is imperative to achieve

Schneider, Jean-Guy

474

Waste-To-Energy Feasibility Analysis: A Simulation Model  

E-Print Network [OSTI]

Waste- To- Energy Feasibility Analysis: A Simulation Model Viet- An Duong College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/WasteToEnergy.pdf May 1, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www of the main battles of our generation. Using waste to produce electricity can be a major source of energy

Sekhon, Jasjeet S.

475

Energy Analysis of the Corn-Ethanol Biofuel Cycle  

E-Print Network [OSTI]

Energy Analysis of the Corn-Ethanol Biofuel Cycle First Draft Tad W. Patzek Department of Civil legitimately ask: Why do the various energy balances of the corn-ethanol cycle still differ so much? Why do some authors claim that the corn-ethanol cycle has a positive net energy balance (Wang et al., 1997

Patzek, Tadeusz W.

476

Performance Validation and Energy Analysis of HVAC Systems using Simulation  

E-Print Network [OSTI]

that energy savings of between 15% and 40% could be made in commercial buildings by closer monitoring and supervision of energy-usage and related data. An earlier study by Kao and Pierce (1983) showed that sensor1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick

Diamond, Richard

477

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy  

E-Print Network [OSTI]

Mycle Schneider Consulting Independent Analysis on Energy and Nuclear Policy 45, allée des deux Mycle Schneider International Consultant on Energy and Nuclear Policy Paris, May 2009 This research the Author Mycle Schneider works as independent international energy nuclear policy consultant. Between 1983

Laughlin, Robert B.

478

Analysis of Green Energy Options for The Phipps Conservatory  

E-Print Network [OSTI]

power and thermal energy via on-site generation or purchases of renewable energy credits: 1) A 5kW solid1 Analysis of Green Energy Options for The Phipps Conservatory Shahzeen Attari Elisabeth Gilmore or educational projects may make them worth the additional expense. Qualitative relative rankings of the project

Attari, Shahzeen Z.

479

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis  

E-Print Network [OSTI]

Wind Energy Conversion Systems Fault Diagnosis Using Wavelet Analysis Elie Al-Ahmar1,2 , Mohamed El, induction generator, Discrete Wavelet Transform (DWT), failure diagnosis. I. Introduction Wind energy the condition of induction machines. Fig. 1. Worldwide growth of wind energy installed capacity [1]. 1 E. Al

Paris-Sud XI, Université de

480

Energy sector analysis and modeling – From primary to final energy.  

E-Print Network [OSTI]

?? Climate change and energy supply limitation are growing concerns. Solving them requires strong implication from our societies and more and more stakeholders and scientists… (more)

Praz, Bastien

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis energy estimates" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations  

E-Print Network [OSTI]

4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

Konopacki, S.J.

2010-01-01T23:59:59.000Z

482

Analysis of Energy Saving Impacts of New Commercial Energy Codes for the Gulf Coast  

SciTech Connect (OSTI)

Report on an analysis of the energy savings and cost impacts associated with the use of newer and more efficiently commercial building energy codes in the states of Louisiana and Mississippi.

Halverson, Mark A.; Gowri, Krishnan; Richman, Eric E.

2006-12-15T23:59:59.000Z

483

Global estimation of evapotranspiration using a leaf area index-based surface energy and water balance model  

E-Print Network [OSTI]

using Advanced Very High Res- olution Radiometer Lai data, Climate Research Unit climate dataGlobal estimation of evapotranspiration using a leaf area index-based surface energy and water-relative-humidity-based two-source (ARTS) E model that simulates the surface energy balance, soil water balance

Martin, Timothy

484

Estimation of Absolute Free Energies of Hydration using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions  

E-Print Network [OSTI]

Estimation of Absolute Free Energies of Hydration using Continuum Methods: Accuracy of Partial, and Irwin D. Kuntz Supporting Information Table S1. Experimental Free Energies of Hydration (Ghyd) in kcal,2-dimethylcyclohexane 1.58 36 trans-1,4-dimethylcyclohexane 2.11 37 ethene 1.28 38 propene 1.32 39 but-1-ene 1.38 40

Rizzo, Robert C.

485

Power-spectrum analysis of Super-Kamiokande solar neutrino data, taking into account asymmetry in the error estimates  

E-Print Network [OSTI]

The purpose of this article is to carry out a power-spectrum analysis (based on likelihood methods) of the Super-Kamiokande 5-day dataset that takes account of the asymmetry in the error estimates. Whereas the likelihood analysis involves a linear optimization procedure for symmetrical error estimates, it involves a nonlinear optimization procedure for asymmetrical error estimates. We find that for most frequencies there is little difference between the power spectra derived from analyses of symmetrized error estimates and from asymmetrical error estimates. However, this proves not to be the case for the principal peak in the power spectra, which is found at 9.43 yr-1. A likelihood analysis which allows for a "floating offset" and takes account of the start time and end time of each bin and of the flux estimate and the symmetrized error estimate leads to a power of 11.24 for this peak. A Monte Carlo analysis shows that there is a chance of only 1% of finding a peak this big or bigger in the frequency band 1 - 36 yr-1 (the widest band that avoids artificial peaks). On the other hand, an analysis that takes account of the error asymmetry leads to a peak with power 13.24 at that frequency. A Monte Carlo analysis shows that there is a chance of only 0.1% of finding a peak this big or bigger in that frequency band 1 - 36 yr-1. From this perspective, power spectrum analysis that takes account of asymmetry of the error estimates gives evidence for variability that is significant at the 99.9% level. We comment briefly on an apparent discrepancy between power spectrum analyses of the Super-Kamiokande and SNO solar neutrino experiments.

P. A. Sturrock; J. D. Scargle

2006-06-20T23:59:59.000Z

486

Capital requirements for the transportation of energy materials: 1979 arc estimates  

SciTech Connect (OSTI)

Summaries of transportation investment requirements through 1990 are given for the low, medium and high scenarios. Total investment requirements for the three modes and the three energy commodities can accumulate to a $46.3 to $47.0 billion range depending on the scenario. The high price of oil, following the evidence of the last year, is projected to hold demand for oil below the recent past. Despite the overall decrease in traffic some investment in crude oil and LPG pipelines is necessary to reach new sources of supply. Although natural gas production and consumption is projected to decline through 1990, new investments in carrying capacity also are required due to locational shifts in supply. The Alaska Natural Gas Transportation System is the dominant investment for energy transportation in the next ten years. This year's report focuses attention on waterborne coal transportation to the northeast states in keeping with a return to significant coal consumption projected for this area. A resumption of such shipments will require a completely new fleet. The investment estimates given in this report identify capital required to transport projected energy supplies to market. The requirement is strategic in the sense that other reasonable alternatives do not exist or that a shared load of new growth can be expected. Not analyzed or forecasted are investments in transportation facilities made in response to local conditions. The total investment figures, therefore, represent a minimum necessary capital improvement to respond to changes in interregional supply conditions.

Not Available

1980-08-29T23:59:59.000Z

487

EnergyPlus Run Time Analysis  

SciTech Connect (OSTI)

EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

Hong, Tianzhen; Buhl, Fred; Haves, Philip

2008-09-20T23:59:59.000Z

488

Multi-Year Analysis of Renewable Energy Impacts in California: Results from the Renewable Portfolio Standards Integration Cost Analysis; Preprint  

SciTech Connect (OSTI)

California's Renewable Portfolio Standard (RPS, Senate Bill 1078) requires the state's investor-owned utilities to obtain 20% of their energy mix from renewable generation sources. To facilitate the imminent increase in the penetration of renewables, the California Energy Commission (CEC), in support of the California Public Utility Commission (CPUC), initiated a study of integration costs in the context of RPS implementation. This effort estimated the impact of renewable generation in the regulation and load-following time scales and calculated the capacity value of renewable energy sources using a reliability model. The analysis team, consisting of researchers from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL) and the California Wind Energy Collaborative (CWEC), performed the study in cooperation with the California Independent System Operator (CaISO), the Pacific Gas and Electric Company (PG&E), and Southern California Edison (SCE). The study was conducted over three phases and was followed by an analysis of a multi-year period. This paper presents results from the multi-year analysis and the Phase III recommendations.

Milligan, M.; Shiu, H.; Kirby, B.; Jackson, K.

2006-08-01T23:59:59.000Z

489

Department of Energy Analysis of Economic Impact  

National Nuclear Security Administration (NNSA)

were derived from the WNA's Reactor Database (which is linked to the International Atomic Energy Agency's Power Reactor Information System). The coefficients were then applied to...

490

Energy analysis in the extrusion of plastics.  

E-Print Network [OSTI]

??An experiment was conducted to investigate the energy consumed during extruder runs using an amorphous polymer (polyamide) of grade grimaldi TR 55, in the Arcada… (more)

Nana, Levi Njobet

2012-01-01T23:59:59.000Z

491

NREL Job Task Analysis: Energy Auditor  

SciTech Connect (OSTI)

A summary of job task analyses for the position of energy auditor when evaluating a residence before and during weatherization work.

Kurnik, C.; Woodley, C.

2011-05-01T23:59:59.000Z

492

Economic and Environmental Analysis of Photovoltaic Energy ...  

E-Print Network [OSTI]

Mar 22, 2012 ... which contributes to the greenhouse effect. A global movement in promoting low- or zero-carbon energy production will be necessary to help ...

2012-03-22T23:59:59.000Z

493

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

of the impact of the ASHRAE 90-75 stan- dard on newAssessment of ASHRAE Standard 90-75, Energy Conservation in

Authors, Various

2010-01-01T23:59:59.000Z

494

Estimates of energy consumption by building type and end use at U.S. Army installations  

SciTech Connect (OSTI)

This report discusses the use of LBNL`s End-use Disaggregation Alogrithm (EDA) to 12 US Army installations nationwide in order to obtain annual estimates of electricity use for all major building types and end uses. The building types include barrack, dining hall, gymnasium, administration, vehicle maintenance, hospital, residential, warehouse, and misc. Up to 8 electric end uses for each type were considered: space cooling, ventilation (air handling units, fans, chilled and hot water pumps), cooking, misc./plugs, refrigeration, exterior and interior lighting, and process loads. Through building simulations, we also obtained estimates of natural gas space heating energy use. Average electricity use for these 12 installations and Fort Hood are: HVAC, misc., and indoor lighting end uses consumed the most electricity (28, 27, and 26% of total[3.8, 3.5, and 3.3 kWh/ft{sup 2}]). Refrigeration, street lighting, exterior lighting, and cooking consumed 7, 7, 3, and 2% of total (0.9, 0.9, 0.4, and 0.3 kWh/ft{sup 2})

Konopacki, S.J.; Akbari, H.

1996-08-01T23:59:59.000Z

495

Spectral Energy Distributions and Age Estimates of 78 Star Clusters in M33  

E-Print Network [OSTI]

In this third paper of our series, we present CCD spectrophotometry of 78 star clusters that were detected by Chandar, Bianchi, & Ford in the nearby spiral galaxy M33. CCD images of M33 were obtained as a part of the BATC Color Survey of the sky in 13 intermediate-band filters from 3800 to 10000{\\AA}. By aperture photometry, we obtain the spectral energy distributions of these 78 star clusters. As Chandar, Bianchi, & Ford did, we estimate the ages of our sample clusters by comparing the photometry of each object with theoretical stellar population synthesis models for different values of metallicity. We find that the sample clusters formed continuously in M33 from $\\sim 3\\times10^6$ -- $10^{10}$ years. This conclusion is consistent with Chandar, Bianchi, & Ford. The results also show that, there are two peaks in cluster formation, at $\\sim 8\\times10^6$ and $\\sim 10^9$ years in these clusters.

Ma, J; Chen, J; Wu, H; Jiang, Z; Xue, S; Zhu, J; Ma, Jun; Zhou, Xu; Chen, Jiansheng; Wu, Hong; Jiang, Zhaoji; Xue, Suijian; Zhu, Jin

2002-01-01T23:59:59.000Z

496

Wavelets, Self-organizing Maps and Artificial Neural Nets for Predicting Energy Use and Estimating Uncertainties in Energy Savings in Commercial Buildings  

E-Print Network [OSTI]

This dissertation develops a "neighborhood" based neural network model utilizing wavelet analysis and Self-organizing Map (SOM) to predict building baseline energy use. Wavelet analysis was used for feature extraction of the daily weather profiles...

Lei, Yafeng

2010-01-14T23:59:59.000Z

497

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector Management AssistanceStage 3

498

Energy System and Scenario Analysis Toolkit | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpen Energy Information Energy Sector Management AssistanceStage

499

Flexible Framework for Building Energy Analysis: Preprint  

SciTech Connect (OSTI)

In the building energy research and advanced practitioner communities, building models are perturbed across large parameter spaces to assess energy and cost performance in the face of programmatic and economic constraints. This paper describes the OpenStudio software framework for performing such analyses.

Hale, E.; Macumber, D.; Weaver, E.; Shekhar, D.

2012-09-01T23:59:59.000Z

500

2005 Status Report Savings Estimates for the ENERGY STAR(R) Voluntary Labeling Program  

E-Print Network [OSTI]

Energy, 1996a. Annual Energy Outlook 1996 with ProjectionsEnergy, 1996b. Annual Energy Outlook 1997 with ProjectionsEnergy, 1997b. Annual Energy Outlook 1998 with Projections

Webber, Carrie A.; Brown, Richard E.; Sanchez, Marla

2006-01-01T23:59:59.000Z