Powered by Deep Web Technologies
Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE Hydrogen Analysis Repository: Advanced Vehicle Simulator (ADVISOR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Simulator (ADVISOR) Advanced Vehicle Simulator (ADVISOR) Project Summary Full Title: Advanced Vehicle Simulator (ADVISOR) Project ID: 108 Principal Investigator: Matthew Thornton Brief Description: ADVISOR is used to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. Keywords: Hybrid electric vehicles (HEV); vehicle characteristics; vehicle performance; fuel consumption Purpose ADVISOR was designed as an analysis tool to assist the DOE in developing and understanding hybrid electric vehicles through the Hybrid Vehice Propulsion Systems contracts with Ford, GM, and DaimlerChrysler. Performer Principal Investigator: Matthew Thornton Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd.

2

Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety  

SciTech Connect

This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized.

Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

1993-03-01T23:59:59.000Z

3

JIFT Workshop `Advanced Simulation Methods in Plasma Physics'at NIFS, Dec.14-16 Particle Simulation AnalysisParticle Simulation Analysis  

E-Print Network (OSTI)

reconstruction of 3D structures in your brain. #12;JIFT Workshop `Advanced Simulation Methods in Plasma Physics

Ito, Atsushi

4

Process/equipment co-simulation for designe and analysis of advanced energy systems  

SciTech Connect

b s t r a c t The grand challenge facing the power and energy industries is the development of efficient, environmentally friendly, and affordable technologies for next-generation energy systems. To provide solutions for energy and the environment, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) and its research partners in industry and academia are relying increasingly on the use of sophisticated computer-aided process design and optimization tools. In this paper, we describe recent progress toward developing an Advanced Process Engineering Co-Simulator (APECS) for the high-fidelity design, analysis, and optimization of energy plants. The APECS software system combines steady-state process simulation with multiphysics-based equipment simulations, such as those based on computational fluid dynamics (CFD). These co-simulation capabilities enable design engineers to optimize overall process performance with respect to complex thermal and fluid flow phenomena arising in key plant equipment items, such as combustors, gasifiers, turbines, and carbon capture devices. In this paper we review several applications of the APECS co-simulation technology to advanced energy systems, including coal-fired energy plants with carbon capture. This paper also discusses ongoing co-simulation R&D activities and challenges in areas such as CFD-based reduced-order modeling, knowledge management, advanced analysis and optimization, and virtual plant co-simulation. Continued progress in co-simulation technology – through improved integration, solution, and deployment – will have profound positive impacts on the design and optimization of high-efficiency, near-zero emission fossil energy systems.

Zitney, S.

2010-01-01T23:59:59.000Z

5

Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source  

SciTech Connect

This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

2014-01-01T23:59:59.000Z

6

E-Print Network 3.0 - analysis advanced simulation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

time tmax 50000 time units. The advanced user can assign arbitrary... of gyration vs. simulation time, or energy vs. ... Source: Dokholyan, Nikolay V. - Department of...

7

Advanced Simulation and Computing  

National Nuclear Security Administration (NNSA)

NA-ASC-117R-09-Vol.1-Rev.0 NA-ASC-117R-09-Vol.1-Rev.0 Advanced Simulation and Computing PROGRAM PLAN FY09 October 2008 ASC Focal Point Robert Meisner, Director DOE/NNSA NA-121.2 202-586-0908 Program Plan Focal Point for NA-121.2 Njema Frazier DOE/NNSA NA-121.2 202-586-5789 A Publication of the Office of Advanced Simulation & Computing, NNSA Defense Programs i Contents Executive Summary ----------------------------------------------------------------------------------------------- 1 I. Introduction -------------------------------------------------------------------------------------------------------- 2 Realizing the Vision ------------------------------------------------------------------------------------------------- 2 The Future of the Nuclear Weapons Complex ---------------------------------------------------------------- 2

8

Advanced Simulation Capability for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simulation Capability for Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of perfor- mance and risk assessments for cleanup and closure activi- ties throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing pro- grams as well as collaborating with the Offices of Science, Fossil Energy, and Nuclear Energy. Challenge Current groundwater and soil remediation challenges that will continue to be addressed in the next decade include

9

ADVANCED VISUALIZATION OF ENGINE SIMULATION DATA USING TEXTURE SYNTHESIS AND TOPOLOGICAL ANALYSIS  

E-Print Network (OSTI)

Figure 1: Idealized in-cylinder flow through a diesel engine (left) and a gas engine (right). ADVANCED motion found inside diesel and gas engines, respectively. Texture-based flow visualization techniques use for the design of a diesel engine try to create an ideal pattern of motion, which can be described by a swirling

Chen, Guoning

10

Advanced Modeling & Simulation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation Advanced Modeling & Simulation ADVANCING THE STATE OF THE ART Innovation advances science. Historically, innovation resulted almost exclusively from fundamental theories combined with observation and experimentation over time. With advancements in engineering, computing power and visualization tools, scientists from all disciplines are gaining insights into physical systems in ways not possible with traditional approaches alone. Modeling and simulation has a long history with researchers and scientists exploring nuclear energy technologies. In fact, the existing fleet of currently operating reactors was licensed with computational tools that were produced or initiated in the 1970s. Researchers and scientists in

11

Advanced Simulation Capability for Environmental Management (ASCEM) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) Advanced Simulation Capability for Environmental Management (ASCEM) ASCEM is being developed to provide a tool and approach to facilitate robust and standardized development of performance and risk assessments for cleanup and closure activities throughout the EM complex. The ASCEM team is composed of scientists from eight National Laboratories. This team is leveraging Department of Energy (DOE) investments in basic science and applied research including high performance computing codes developed through the Advanced Scientific Computing Research and Advanced Simulation & Computing programs as well as collaborating with the Offices of Science,

12

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

13

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling and Simulation (NEAMS) Software Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the NEAMS Software V&V Plan is to define what the NEAMS program expects in terms of V&V for the computational models that are developed under NEAMS. NEAMS Software Verification and Validation Plan Requirements Version 0.pdf More Documents & Publications NEAMS Quarterly Report for January-March 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

14

Advanced Process Engineering Co-Simulator (APECS) | Open Energy Information  

Open Energy Info (EERE)

Advanced Process Engineering Co-Simulator (APECS) Advanced Process Engineering Co-Simulator (APECS) (Redirected from APECS) Jump to: navigation, search Tool Summary Name: APECS Agency/Company /Organization: National Energy Technology Laboratory Partner: ANSYS Sector: Energy Focus Area: Industry Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.netl.doe.gov/technologies/coalpower/advresearch/apecs.html APECS Screenshot References: APECS Homepage[1] Logo: APECS Advanced Process Engineering Co-Simulator (APECS) is an innovative software tool that provides process/equipment co-simulation capabilities for model-based decision support in steady-state process design and optimization. Developed by NETL, ANSYS, and other research partners, the Advanced Process

15

Advanced Process Engineering Co-simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 AdvAnced Process engineering co-simulAtion Description The National Energy Technology Laboratory (NETL) and its R&D collaboration partners are developing the Advanced Process Engineering Co-Simulator (APECS) as an innovative software tool that combines process simulation with high-fidelity equipment models based on computational fluid dynamics (CFD). Winner of a 2004 R&D 100 Award and a 2007 Federal Laboratory Consortium (FLC) Excellence in Technology Transfer Award, this powerful co-simulation technology, for the first time, provides the necessary level of detail and accuracy essential for engineers to analyze and optimize the coupled fluid flow, heat and mass transfer, and chemical reactions that drive overall plant performance. Combined with advanced visualization and high-performance computing,

16

An advanced fuel cell simulator  

E-Print Network (OSTI)

of Fuel Cells ...................... 4 D. Fuel Cell Power Plant ..................... 4 E. Challenges in Fuel Cell Development ............ 5 F. Previous Work ......................... 6 G. Solar Array Simulators .................... 8 H. Battery... ............................. 54 28 Under-voltage Fault ........................... 55 1 CHAPTER I INTRODUCTION The depleting fossil fuel resources and increasing pollution are leading to the research and development of alternate energy generation techniques like fuel cells...

Acharya, Prabha Ramchandra

2005-11-01T23:59:59.000Z

17

CESAR: Center for Exascale Simulation of Advanced Reactors | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR: Center for Exascale Simulation of Advanced Reactors CESAR is an interdisciplinary center for developing an innovative, next-generation nuclear reactor analysis tool that both utilizes and guides the development of exascale computing platforms. Existing reactor analysis codes are highly tuned and calibrated for commercial light-water reactors, but they lack the physics fidelity to seamlessly carry over to new classes of reactors with significantly different design characteristics-as, for example, innovative concepts such as TerraPower's Traveling Wave reactor and Small Modular Reactor concepts. Without vastly improved modeling capabilities, the economic and safety characteristics of these and other novel systems will require tremendous

18

Fundamental Research on Percussion Drilling: Improved rock mechanics analysis, advanced simulation technology, and full-scale laboratory investigations  

SciTech Connect

This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptual drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.

Michael S. Bruno

2005-12-31T23:59:59.000Z

19

Sandia National Laboratories: Advanced Simulation and Computing  

NLE Websites -- All DOE Office Websites (Extended Search)

Facebook Facebook Twitter YouTube Flickr RSS Advanced Simulation and Computing Advanced Simulation and Computing Taking on the World's Complex Challenges Advancing Science Frontiers Our research is producing new scientific insights about the world in which we live and assists in certifying the safety and reliability of the nation's nuclear weapons stockpile. Technology Provides the Tools Growth in data and the software and hardware demands needed for physics-based answers and predictive capabilities are driving technology improvements. We could not achieve the breakthroughs we're making without these important tools. Partnerships Accelerate Innovation Partnerships leverage talent and multiply the effectiveness of our research efforts. Impacting Global Issues ASC software and hardware tools solve global issues ranging from nuclear

20

E-Print Network 3.0 - advanced experimental analysis Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics - Develop advanced experimental techniques and new diagnostics to support... , simulation and analysis new experiments and simulation and ... Source: Los Alamos National...

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Modeling and Simulation Documents | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Modeling & Simulation » Advanced Modeling Advanced Modeling & Simulation » Advanced Modeling and Simulation Documents Advanced Modeling and Simulation Documents October 30, 2013 NEAMS Quarterly Report April-June 2013 The Nuclear Energy Advanced Modeling and Simulation (NEAMS) quarterly report includes highlights, fuel and reactor product line accomplishments, recent and upcoming milestones, news on BISON fuel benchmarks, the latest MeshKit release features, and information on numerical simulations of pebble-bed reactor cores performed by the thermal hydraulics team. September 9, 2013 Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements The purpose of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan is to define what the NEAMS

22

Gasification CFD Modeling for Advanced Power Plant Simulations  

SciTech Connect

In this paper we have described recent progress on developing CFD models for two commercial-scale gasifiers, including a two-stage, coal slurry-fed, oxygen-blown, pressurized, entrained-flow gasifier and a scaled-up design of the PSDF transport gasifier. Also highlighted was NETL’s Advanced Process Engineering Co-Simulator for coupling high-fidelity equipment models with process simulation for the design, analysis, and optimization of advanced power plants. Using APECS, we have coupled the entrained-flow gasifier CFD model into a coal-fired, gasification-based FutureGen power and hydrogen production plant. The results for the FutureGen co-simulation illustrate how the APECS technology can help engineers better understand and optimize gasifier fluid dynamics and related phenomena that impact overall power plant performance.

Zitney, S.E.; Guenther, C.P.

2005-09-01T23:59:59.000Z

23

ADVANCED DECISION ANALYSIS Winter 2011  

E-Print Network (OSTI)

ADVANCED DECISION ANALYSIS PH 444 Winter 2011 Course Instructor: Gordon Hazen, Ph.D. Professor a factored cost-effectiveness model · Construct a stochastic tree transition diagram for a medical treatment problem. · Convert a stochastic tree diagram to a discrete-time Markov chain transition diagram

Chisholm, Rex L.

24

Advancing Material Models for Automotive Forming Simulations  

SciTech Connect

Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior to larger scale industrial validation.

Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E. [Corus Research Development and Technology, PO Box 10000, 1970 CA IJmuiden (Netherlands)

2005-08-05T23:59:59.000Z

25

Software Framework for Advanced Power Plant Simulations  

SciTech Connect

This report summarizes the work accomplished during the Phase II development effort of the Advanced Process Engineering Co-Simulator (APECS). The objective of the project is to develop the tools to efficiently combine high-fidelity computational fluid dynamics (CFD) models with process modeling software. During the course of the project, a robust integration controller was developed that can be used in any CAPE-OPEN compliant process modeling environment. The controller mediates the exchange of information between the process modeling software and the CFD software. Several approaches to reducing the time disparity between CFD simulations and process modeling have been investigated and implemented. These include enabling the CFD models to be run on a remote cluster and enabling multiple CFD models to be run simultaneously. Furthermore, computationally fast reduced-order models (ROMs) have been developed that can be 'trained' using the results from CFD simulations and then used directly within flowsheets. Unit operation models (both CFD and ROMs) can be uploaded to a model database and shared between multiple users.

John Widmann; Sorin Munteanu; Aseem Jain; Pankaj Gupta; Mark Moales; Erik Ferguson; Lewis Collins; David Sloan; Woodrow Fiveland; Yi-dong Lang; Larry Biegler; Michael Locke; Simon Lingard; Jay Yun

2010-08-01T23:59:59.000Z

26

Advanced Vehicle Technology Analysis & Evaluation Team  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

27

NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NEAMS: The Nuclear Energy Advanced NEAMS: The Nuclear Energy Advanced Modeling and Simulation Program The Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program is developing a simulation tool kit using leading-edge computational methods that will accelerate the development and deployment of nuclear power technologies that employ enhanced safety and security features, produce power more cost-effectively, and utilize natural resources more efficiently. The NEAMS ToolKit

28

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Software Verification and Validation (V&V) Plan Requirements Nuclear Energy Advanced Modeling and Simulation (NEAMS) Software Verification and Validation (V&V) Plan Requirements...

29

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Plan Nuclear Energy Advanced Modeling and Simulation (NEAMS) Program Plan The NEAMS program plan includes information on the program vision, objective, scope, schedule and...

30

Recent Advances and Future Challenges in the Modeling and Simulations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

in the Modeling and Simulations of the injection of Urea-Water-Solution for Automotive SCR Systems Recent Advances and Future Challenges in the Modeling and Simulations of the...

31

NETL: Gasification Systems - Advanced Virtual Energy Simulation Training  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Advanced Virtual Energy Simulation Training And Research (AVESTAR(tm)) Facility Project No: Adv Gas-FY131415 Task 6 Developed as a part of NETL's initiative to advance new clean coal technology, the Advanced Virtual Energy Simulation Training And Research (AVESTARTM) Center is focused on training engineers and energy plant operators in the efficient, productive, and safe operation of highly efficient power generation systems that also protect the environment. Comprehensive dynamic simulator-based instruction better prepares operators and engineers to manage advanced energy plants according to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. Advanced Virtual Energy Simulation Training and Research Center - AVESTAR

32

Risk Analysis and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis and Simulation Analysis and Simulation for Geologic Storage of CO 2 BEST PRACTICES for: 2013 Revised Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The

33

Advanced Vehicle Technology Analysis & Evaluation Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Analysis and Evaluation Team Lee Slezak Manager, AVTAET Office of FreedomCAR and Vehicle Technologies DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. 2 Charter * AVTAET's mission is to develop and apply the tools and skills necessary to: - Identify technology development needs and requirements to support OFCVT goals and - Collect, analyze, and disseminate unbiased information on advanced transportation technology components, systems, and vehicles that potentially support OFCVT goals. * Goal of analytical groups at ANL, NREL and ORNL - Develop and apply modeling and simulation tools to help DOE, manufacturers and suppliers design and develop clean, energy efficient components and systems for

34

EM Leads with Advanced Simulation Capability Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Advanced Simulation Capability Technology with Advanced Simulation Capability Technology EM Leads with Advanced Simulation Capability Technology April 4, 2013 - 12:00pm Addthis Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 1: Advanced Simulation Capability for Environmental Management Thrust Areas. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 2: Spatial distribution of technetium-99 after the releases from the BC cribs using VisIt software on the Hanford Central Plateau. Figure 3: Conceptual model of uranium attenuation processes in the Savannah River F Area Seepage Basins plume, including adsorption/desorption (1); dissolution/precipitation (2); mixing/dilution (3); aqueous reactions (4); microbial interactions (5); and abiotic organic interactions (6).

35

Advanced Power Plant Development and Analysis Methodologies  

SciTech Connect

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include 'Zero Emission' power plants and the 'FutureGen' H2 co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the 'Vision 21' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

A.D. Rao; G.S. Samuelsen; F.L. Robson; B. Washom; S.G. Berenyi

2006-06-30T23:59:59.000Z

36

DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Simulator Training to Brazil's Petrobas Advances Goal of DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad DOE Simulator Training to Brazil's Petrobas Advances Goal of Deploying Clean Coal Technology at Home and Abroad September 25, 2012 - 1:00pm Addthis Washington, DC - A recently-completed comprehensive Department of Energy (DOE) training initiative using an innovative high-fidelity combined-cycle dynamic simulator has provided employees of a Brazilian multi-national company the opportunity to learn to operate and control the near-zero-emission power plants critical to a cleaner energy future. The 8-day course for power plant operators from Petrobras used a simulator from the National Energy Technology Laboratory (NETL)-sponsored AVESTAR™ (Advanced Virtual Energy Simulation Training and Research) Center.

37

Co-Simulation for Advanced Process Design and Optimization  

SciTech Connect

Meeting the increasing demand for clean, affordable, and secure energy is arguably the most important challenge facing the world today. Fossil fuels can play a central role in a portfolio of carbon-neutral energy options provided CO{sub 2} emissions can be dramatically reduced by capturing CO{sub 2} and storing it safely and effectively. Fossil energy industry faces the challenge of meeting aggressive design goals for next-generation power plants with CCS. Process designs will involve large, highly-integrated, and multipurpose systems with advanced equipment items with complex geometries and multiphysics. APECS is enabling software to facilitate effective integration, solution, and analysis of high-fidelity process/equipment (CFD) co-simulations. APECS helps to optimize fluid flow and related phenomena that impact overall power plant performance. APECS offers many advanced capabilities including ROMs, design optimization, parallel execution, stochastic analysis, and virtual plant co-simulations. NETL and its collaborative R&D partners are using APECS to reduce the time, cost, and technical risk of developing high-efficiency, zero-emission power plants with CCS.

Stephen E. Zitney

2009-01-01T23:59:59.000Z

38

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network (OSTI)

National Impacts Analysis (EERE)Analysis (EERE) #12;4 Past Projects · Development of map-based and engineering attributes · MATLAB/Simulink environment Lab Testing · Advanced Powertrain Research Facility · Re

39

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters  

E-Print Network (OSTI)

Advanced accelerator simulation research: miniaturizing accelerators from kilometers to meters W: Advanced accelerator research is aimed at finding new technologies that can dramatically reduce the size and cost of future high-energy accelerators. Supercomputing is already playing a dramatic and critical role

Geddes, Cameron Guy Robinson

40

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

interface between analysis codes (e.g,. a physics simulation) and iterative systems analysis methods such as optimization or uncertainty quantification. It includes algorithms...

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Improved Solvers for Advanced Engine Combustion Simulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volvo; multi-zone cycle simulation, OpenFOAM model development Bosch; High Performance Computing of HCCISI transition Delphi; direct injection GE Research; new...

42

Presented by CASL: The Consortium for Advanced Simulation  

E-Print Network (OSTI)

Presented by Nuclear Energy CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors Doug Kothe Director, CASL Oak Ridge National Laboratory #12;www.casl.gov Nuclear Power in the US Top 10 Nuclear Generating

43

Thermal Simulation of Advanced Powertrain Systems  

Energy.gov (U.S. Department of Energy (DOE))

Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

44

Advanced materials: Information and analysis needs  

SciTech Connect

This report presents the findings of a study to identify the types of information and analysis that are needed for advanced materials. The project was sponsored by the US Bureau of Mines (BOM). It includes a conceptual description of information needs for advanced materials and the development and implementation of a questionnaire on the same subject. This report identifies twelve fundamental differences between advanced and traditional materials and discusses the implications of these differences for data and analysis needs. Advanced and traditional materials differ significantly in terms of physical and chemical properties. Advanced material properties can be customized more easily. The production of advanced materials may differ from traditional materials in terms of inputs, the importance of by-products, the importance of different processing steps (especially fabrication), and scale economies. The potential for change in advanced materials characteristics and markets is greater and is derived from the marriage of radically different materials and processes. In addition to the conceptual study, a questionnaire was developed and implemented to assess the opinions of people who are likely users of BOM information on advanced materials. The results of the questionnaire, which was sent to about 1000 people, generally confirm the propositions set forth in the conceptual part of the study. The results also provide data on the categories of advanced materials and the types of information that are of greatest interest to potential users. 32 refs., 1 fig., 12 tabs.

Curlee, T.R.; Das, S.; Lee, R.; Trumble, D.

1990-09-01T23:59:59.000Z

45

DOE Releases New Analysis Showing Significant Advances in Electric...  

Office of Environmental Management (EM)

Analysis Showing Significant Advances in Electric Vehicle Deployment DOE Releases New Analysis Showing Significant Advances in Electric Vehicle Deployment February 8, 2011 -...

46

FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle Technology AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies U.S. Department of Energy FreedomCAR and Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2006 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities FY 2006 Annual Report CONTENTS I. INTRODUCTION............................................................................................................................ 1 II. MODELING AND SIMULATION ................................................................................................ 9

47

GEOTEMP2. Advanced Wellbore Thermal Simulator  

SciTech Connect

GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with several different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.

Mitchell, R.F. [Enertech Engineering and Research Co., Houston, TX (United States); Monday, L.A.; Duda, L.E. [Sandia National Labs., Albuquerque, NM (United States)

1984-11-01T23:59:59.000Z

48

Advances in NLTE Modeling for Integrated Simulations  

SciTech Connect

The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, {Delta}n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

Scott, H A; Hansen, S B

2009-07-08T23:59:59.000Z

49

ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS  

SciTech Connect

High-Resolution Source Parameters using Calibration from Ambient Seismic Noise (ASN) Zhongwen Zhan, Shengji Wei, Sidao Ni, and Don V. Helmberger Abstract Several new methods have been developed to retrieve local Green's functions based on the cross-correlation of ambient seismic noise (station-to-station) and conventional (source-to-station) inversions. The latter methods provide the most broadband results but require accurate source parameters for phase-delay recovery which depends on the starting model. Considerable progress is being made in providing such information from 3D modeling, Tape et al. (2008), using Adjoint Tomography. But to match waveforms for the recent Chino Hills event still requires shifting synthetics to align on data. This means that it is difficult to use 3D simulations to refine source locations in near-real time. We can avoid the 3D problems by applying the CAP method and storing shifts from past events, Tan (2006), and/or using ASN, Shapiro et al. (2005), to predict lags for surface waves. Here, we directly compare results from CAP predictions with ASN results using stations near the Chino Hills event. We use the same SC seismic model as used in the Library of Earthquakes to generate Green's functions for noise (single force) for comparison with ASN correlations and allow Cap delays. We apply these delays or corrections to determine precise Centroid locations.

Helmberger, Donald V.; Tromp, Jeroen; Rodgers, Arthur J.

2009-04-30T23:59:59.000Z

50

Patch-Clamp Analysis ADVANCED TECHNIQUES  

E-Print Network (OSTI)

Patch-Clamp Analysis ADVANCED TECHNIQUES Second Edition Edited by Wolfgang Walz Department of the development of the planar patch technique. Instrumentation based on the planar patch clamp principle is made available by Nanion Technologies GmbH. (www.nanion.de) #12;14 Planar Patch Clamping Jan C. Behrends

Movileanu, Liviu

51

ADVANCE Fall 2013 Grant Writing Boot Camp Analysis  

E-Print Network (OSTI)

ADVANCE Fall 2013 Grant Writing Boot Camp Analysis;ADVANCE Boot Camp ­ Fall 2013 2 Overview In the spring of 2013, the Research. Of the many meetings and events deemed critical, the ADVANCE Grant Writing Boot Camp

Dyer, Bill

52

Master in Advanced Economics, curriculum Economic analysis Master in Advanced Economics, curriculum Economic analysis aims to provide a broad education  

E-Print Network (OSTI)

Master in Advanced Economics, curriculum Economic analysis Master in Advanced Economics, curriculum Economic analysis aims to provide a broad education in the fields of methods, techniques and professional that work into European and International areas. Economic analysis curriculum especially focuses

Di Pillo, Gianni

53

E-Print Network 3.0 - advanced computer simulations Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

computer simulation of biomolecular systems Wilfred F. van Gunsteren... computing power. Recent advances in simulation methodology e.g. to rapidly compute many free energies...

54

E-Print Network 3.0 - advanced computational simulation Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

computer simulation of biomolecular systems Wilfred F. van Gunsteren... computing power. Recent advances in simulation methodology e.g. to rapidly compute many free energies...

55

2003-01-2546 Simulating Advanced Life Support Systems for Integrated  

E-Print Network (OSTI)

, the simulation is a replacement for the Advanced Life Support (ALS) hardware and crew, allowing for testing2003-01-2546 Simulating Advanced Life Support Systems for Integrated Controls Research David of an integrated advanced life support system. It contains models of the major components of an Advanced Life

Kortenkamp, David

56

Sandia National Laboratories: Advanced Simulation Computing: Verification &  

NLE Websites -- All DOE Office Websites (Extended Search)

Verification & Validation Verification & Validation high-fidelity simulations The Verification and Validation (V&V) program conducts two major activities at Sandia. The first is to perform assessments and studies that quantify confidence in Advanced Simulation and Computing (ASC) calculation results. The second activity develops and improves V&V and uncertainty quantification methods, metrics, and standards. Assessments This project area conducts studies and assessments for Sandia's engineering simulation focus areas (outlined below). These assessments quantify the prediction uncertainty of the engineering codes as they apply to applications in the four focus areas. Safety and Security This area focuses on engineering codes as they apply to nuclear weapon. External load prediction capability includes mechanical (impact, pressure,)

57

Advanced Fuel Cycle Economic Sensitivity Analysis  

SciTech Connect

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

58

Advanced Simulation Capability for Environmental Management (ASCEM) Phase II Demonstration  

SciTech Connect

In 2009, the National Academies of Science (NAS) reviewed and validated the U.S. Department of Energy Office of Environmental Management (EM) Technology Program in its publication, Advice on the Department of Energy’s Cleanup Technology Roadmap: Gaps and Bridges. The NAS report outlined prioritization needs for the Groundwater and Soil Remediation Roadmap, concluded that contaminant behavior in the subsurface is poorly understood, and recommended further research in this area as a high priority. To address this NAS concern, the EM Office of Site Restoration began supporting the development of the Advanced Simulation Capability for Environmental Management (ASCEM). ASCEM is a state-of-the-art scientific approach that uses an integration of toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The ASCEM modeling toolset is modular and open source. It is divided into three thrust areas: Multi-Process High Performance Computing (HPC), Platform and Integrated Toolsets, and Site Applications. The ASCEM toolsets will facilitate integrated approaches to modeling and site characterization that enable robust and standardized assessments of performance and risk for EM cleanup and closure activities. During fiscal year 2012, the ASCEM project continued to make significant progress in capabilities development. Capability development occurred in both the Platform and Integrated Toolsets and Multi-Process HPC Simulator areas. The new Platform and Integrated Toolsets capabilities provide the user an interface and the tools necessary for end-to-end model development that includes conceptual model definition, data management for model input, model calibration and uncertainty analysis, and model output processing including visualization. The new HPC Simulator capabilities target increased functionality of process model representations, toolsets for interaction with the Platform, and model confidence testing and verification for quality assurance. The Platform and HPC capabilities are being tested and evaluated for EM applications through a suite of demonstrations being conducted by the Site Applications Thrust. In 2010, the Phase I Demonstration focused on testing initial ASCEM capabilities. The Phase II Demonstration, completed in September 2012, focused on showcasing integrated ASCEM capabilities. For Phase II, the Hanford Site Deep Vadose Zone (BC Cribs) served as an application site for an end-to-end demonstration of ASCEM capabilities on a site with relatively sparse data, with emphasis on integration and linkages between the Platform and HPC components. Other demonstrations included in this Phase II report included addressing attenuation-based remedies at the Savannah River Site F-Area, to exercise linked ASCEM components under data-dense and complex geochemical conditions, and conducting detailed simulations of a representative waste tank. This report includes descriptive examples developed by the Hanford Site Deep Vadose Zone, the SRS F-Area Attenuation-Based Remedies for the Subsurface, and the Waste Tank Performance Assessment working groups. The integrated Phase II Demonstration provides test cases to accompany distribution of the initial user release (Version 1.0) of the ASCEM software tools to a limited set of users in 2013. These test cases will be expanded with each new release, leading up to the release of a version that is qualified for regulatory applications in the 2015 time frame.?

Freshley, M.; Hubbard, S.; Flach, G.; Freedman, V.; Agarwal, D.; Andre, B.; Bott, Y.; Chen, X.; Davis, J.; Faybishenko, B.; Gorton, I.; Murray, C.; Moulton, D.; Meyer, J.; Rockhold, M.; Shoshani, A.; Steefel, C.; Wainwright, H.; Waichler, S.

2012-09-28T23:59:59.000Z

59

Interoperable mesh and geometry tools for advanced petascale simulations  

SciTech Connect

SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and datastructure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications.

Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M; Tautges, T; Trease, H

2007-07-04T23:59:59.000Z

60

Simulated Distillation for Biofuel Analysis  

Science Journals Connector (OSTI)

Simulated Distillation for Biofuel Analysis ... SimDis therefore can easily be used to classifiy novel biofuels, for example, also bidodiesel made of algae or novel oilseed, regarding boiling characteristics and quality. ... and potential of biofuels in the transport sector including types of biofuel, feedstocks and technologies and some of the possible socio-economic, environmental and political implications of the widespread use of biofuels in our society. ...

Christine Bachler; Sigurd Schober; Martin Mittelbach

2009-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advancement of DOE's EnergyPlus Building Energy Simulation Payment  

SciTech Connect

EnergyPlus{sup TM} is a new generation computer software analysis tool that has been developed, tested, and commercialized to support DOEâ??s Building Technologies (BT) Program in terms of whole-building, component, and systems R&D (http://www.energyplus.gov). It is also being used to support evaluation and decision making of zero energy building (ZEB) energy efficiency and supply technologies during new building design and existing building retrofits. The 5-year project was managed by the National Energy Technology Laboratory and was divided into 5 budget period between 2006 and 2011. During the project period, 11 versions of EnergyPlus were released. This report summarizes work performed by an EnergyPlus development team led by the University of Central Floridaâ??s Florida Solar Energy Center (UCF/FSEC). The team members consist of DHL Consulting, C. O. Pedersen Associates, University of Illinois at Urbana-Champaign, Oklahoma State University, GARD Analytics, Inc., and WrightSoft Corporation. The project tasks involved new feature development, testing and validation, user support and training, and general EnergyPlus support. The team developed 146 new features during the 5-year period to advance the EnergyPlus capabilities. Annual contributions of new features are 7 in budget period 1, 19 in period 2, 36 in period 3, 41 in period 4, and 43 in period 5, respectively. The testing and validation task focused on running test suite and publishing report, developing new IEA test suite cases, testing and validating new source code, addressing change requests, and creating and testing installation package. The user support and training task provided support for users and interface developers, and organized and taught workshops. The general support task involved upgrading StarTeam (team sharing) software and updating existing utility software. The project met the DOE objectives and completed all tasks successfully. Although the EnergyPlus software was enhanced significantly under this project, more enhancements are needed for further improvement to ensure that EnergyPlus is able to simulate the latest technologies and perform desired HAVC system operations for the development of next generation HVAC systems. Additional development will be performed under a new 5-year project managed by the National Renewable Energy Laboratory.

Lixing Gu; Don Shirey; Richard Raustad; Bereket Nigusse; Chandan Sharma; Linda Lawrie; Rich Strand; Curt Pedersen; Dan Fisher; Edwin Lee; Mike Witte; Jason Glazer; Chip Barnaby

2011-03-31T23:59:59.000Z

62

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

Phadke, Amol

2008-01-01T23:59:59.000Z

63

A Virtual Engineering Framework for Simulating Advanced Power System  

SciTech Connect

In this report is described the work effort performed to provide NETL with VE-Suite based Virtual Engineering software and enhanced equipment models to support NETL's Advanced Process Engineering Co-simulation (APECS) framework for advanced power generation systems. Enhancements to the software framework facilitated an important link between APECS and the virtual engineering capabilities provided by VE-Suite (e.g., equipment and process visualization, information assimilation). Model enhancements focused on improving predictions for the performance of entrained flow coal gasifiers and important auxiliary equipment (e.g., Air Separation Units) used in coal gasification systems. In addition, a Reduced Order Model generation tool and software to provide a coupling between APECS/AspenPlus and the GE GateCycle simulation system were developed. CAPE-Open model interfaces were employed where needed. The improved simulation capability is demonstrated on selected test problems. As part of the project an Advisory Panel was formed to provide guidance on the issues on which to focus the work effort. The Advisory Panel included experts from industry and academics in gasification, CO2 capture issues, process simulation and representatives from technology developers and the electric utility industry. To optimize the benefit to NETL, REI coordinated its efforts with NETL and NETL funded projects at Iowa State University, Carnegie Mellon University and ANSYS/Fluent, Inc. The improved simulation capabilities incorporated into APECS will enable researchers and engineers to better understand the interactions of different equipment components, identify weaknesses and processes needing improvement and thereby allow more efficient, less expensive plants to be developed and brought on-line faster and in a more cost-effective manner. These enhancements to APECS represent an important step toward having a fully integrated environment for performing plant simulation and engineering. Furthermore, with little effort the modeling capabilities described in this report can be extended to support other DOE programs, such as ultra super critical boiler development, oxy-combustion boiler development or modifications to existing plants to include CO2 capture and sequestration.

Mike Bockelie; Dave Swensen; Martin Denison; Stanislav Borodai

2008-06-18T23:59:59.000Z

64

Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis Pursuing Energy Efficiency From Building Simulation to Portfolio Analysis Speaker(s): Paul Mathew Date: January 4, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Stephen Wiel Dr. Mathew's presentation will describe two aspects of energy efficiency and sustainable design, viewed from the perspective of market transformation: 1. Building Simulation: case study on the use of detailed energy simulation for evaluating advanced building systems and building integrated energy systems, using DOE-2 and a CAD-integrated, heat-balance-based energy simulation tool developed by Dr. Mathew at CMU. 2. Energy Portfolio Analysis: a "curve-based" actuarial approach for modeling and valuing large portfolios of energy efficiency projects and tools that were developed at Enron to support this business strategy

65

Advanced modeling and simulation to design and manufacture high performance and reliable advanced microelectronics and microsystems.  

SciTech Connect

An interdisciplinary team of scientists and engineers having broad expertise in materials processing and properties, materials characterization, and computational mechanics was assembled to develop science-based modeling/simulation technology to design and reproducibly manufacture high performance and reliable, complex microelectronics and microsystems. The team's efforts focused on defining and developing a science-based infrastructure to enable predictive compaction, sintering, stress, and thermomechanical modeling in ''real systems'', including: (1) developing techniques to and determining materials properties and constitutive behavior required for modeling; (2) developing new, improved/updated models and modeling capabilities, (3) ensuring that models are representative of the physical phenomena being simulated; and (4) assessing existing modeling capabilities to identify advances necessary to facilitate the practical application of Sandia's predictive modeling technology.

Nettleship, Ian (University of Pittsburgh, Pittsburgh, PA); Hinklin, Thomas; Holcomb, David Joseph; Tandon, Rajan; Arguello, Jose Guadalupe, Jr. (,; .); Dempsey, James Franklin; Ewsuk, Kevin Gregory; Neilsen, Michael K.; Lanagan, Michael (Pennsylvania State University, University Park, PA)

2007-07-01T23:59:59.000Z

66

Advanced Seismic Data Analysis Program- The "Hot Pot" Project  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Seismic Data Analysis Program- The "Hot Pot" Project presentation at the April 2013 peer review meeting held in Denver, Colorado.

67

Advanced coal gasifier designs using large-scale simulations  

SciTech Connect

Porting of the legacy code MFIX to a high performance computer (HPC) and the use of high resolution simulations for the design of a coal gasifier are described here. MFIX is based on a continuum multiphase flow model that considers gas and solids to form interpenetrating continua. Low resolution simulations of a commercial scale gasifier with a validated MFIX model revealed interesting physical phenomena with implications on the gasifier design, which prompted the study reported here. To be predictive, the simulations need to model the spatiotemporal variations in gas and solids volume fractions, velocities, temperatures with any associated phase change and chemical reactions. These processes occur at various time- and length-scales requiring very high spatial resolution and large number of iterations with small time-steps. We were able to perform perhaps the largest known simulations of gas-solids reacting flows, providing detailed information about the gas-solids flow structure and the pressure, temperature and species distribution in the gasifier. One key finding is the new features of the coal jet trajectory revealed with the high spatial resolution, which provides information on the accuracy of the lower resolution simulations. Methodologies for effectively combining high and low resolution simulations for design studies must be developed. From a computational science perspective, we found that global communication has to be reduced to achieve scalability to 1000s of cores, hybrid parallelization is required to effectively utilize the multicore chips, and the wait time in the batch queue significantly increases the actual time-to-solution. From our experience, development is required in the following areas: efficient solvers for heterogeneous, massively parallel systems; data analysis tools to extract information from large data sets; and programming environments for easily porting legacy codes to HPC.

Syamlal, M [National Energy Technology Laboratory (NETL); Guenther, Chris [National Energy Technology Laboratory (NETL); Gel, Aytekin [Aeolus Research Inc.; Pannala, Sreekanth [ORNL

2009-01-01T23:59:59.000Z

68

Weapons Activities/ Advanced Simulation and Computing Campaign FY 2011 Congressional Budget  

E-Print Network (OSTI)

Weapons Activities/ Advanced Simulation and Computing Campaign FY 2011 Congressional Budget weapons assessment and certification requirements including weapon codes, weapons science, computing testing to determine weapon behavior. As such, ASC simulations are central to our national security. Our

69

Advanced computational simulation of flow phenomena associated with orifice meters  

SciTech Connect

This paper presents and discusses results from a series of computational fluid dynamics (CFD) simulations of fluid flow phenomena associated with orifice meters. These simulations were performed using a new, state-of-the-art CFD code developed at Southwest Research Institute. This code is based on new techniques designed to take advantage of parallel computers to increase computational performance and fidelity of simulation results. This algorithm uses a domain decomposition strategy to create grid systems for very complex geometries composed of simpler geometric subregions, allowing for the accurate representation of the fluid flow domain. The domain decomposition technique maps naturally to parallel computer architectures. Here, the concept of message-passing is used to create a parallel algorithm, using the Parallel Virtual Machine (PVM) library. This code is then used to simulate the flow through an orifice meter run consisting of an orifice with a beta ratio of 0.5 and air flowing at a Reynolds number of 91,100. The work discussed in this paper is but the first step in developing a Virtual Metering Research Facility to support research, analysis, and formulation of new standards for metering.

Freitas, C.J. [Southwest Research Inst., San Antonio, TX (United States)

1995-12-31T23:59:59.000Z

70

Advanced Coal Wind Hybrid: Economic Analysis  

SciTech Connect

Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

2008-11-28T23:59:59.000Z

71

2009 US-Japan Workshop on Advanced Simulation Methods in Plasma Physics Holistic Simulation of Auroral Arcs Formation  

E-Print Network (OSTI)

2009 US-Japan Workshop on Advanced Simulation Methods in Plasma Physics Holistic Simulation convection flow generated in the vicinity of the magnetospheric equator by the solar wind is expected) simulations on the basis of the feedback instability theory attempted to demonstrate the quiet auroral arcs

Ito, Atsushi

72

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS  

SciTech Connect

Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

Louis J. Durlofsky; Khalid Aziz

2004-08-20T23:59:59.000Z

73

Advanced Process and Chemical Complex Analysis Systems Derya Ozyurtb  

E-Print Network (OSTI)

157g Advanced Process and Chemical Complex Analysis Systems Derya Ozyurtb , Aimin Xub , Thomas for statements or opinions contained in papers or printed in its publications. #12;Abstract: The Advanced Process Analysis System is used to perform economic and environmental evaluations of a plant. The main components

Pike, Ralph W.

74

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

IGCC PC advanced coal-wind hybrid combined cycle power plantnatural gas combined cycle gas turbine power plant carboncrude gasification combined cycle power plant with carbon

Phadke, Amol

2008-01-01T23:59:59.000Z

75

ADVISOR (ADvanced VehIcle SimulatOR) | Open Energy Information  

Open Energy Info (EERE)

ADVISOR (ADvanced VehIcle SimulatOR) ADVISOR (ADvanced VehIcle SimulatOR) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: ADVISOR (ADvanced VehIcle SimulatOR) Focus Area: Fuel Economy Topics: System & Application Design Website: sourceforge.net/projects/adv-vehicle-sim/ Equivalent URI: cleanenergysolutions.org/content/advisor-advanced-vehicle-simulator Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This tool, originally developed by the National Renewable Energy Laboratory (NREL), allows users to simulate and analyze conventional, advanced, light, and heavy vehicles, including hybrid electric and fuel cell vehicles. The tool allows users to assess the effect of changes in vehicle components (such as motors, batteries, catalytic converters, climate control systems,

76

Transportation Analysis, Modeling, and Simulation (TAMS) Application  

E-Print Network (OSTI)

Transportation Analysis, Modeling, and Simulation (TAMS) Application Center for Transportation Passenger Flows Supply Chain Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Center for Transportation Analysis (CTA) TAMS application is a web-based tool that supports

77

Advanced wellbore thermal simulator GEOTEMP2 research report  

SciTech Connect

The development of the GEOTEMP2 wellbore thermal simulator is described. The major technical features include a general purpose air and mist drilling simulator and a two-phase steam flow simulator that can model either injection or production.

Mitchell, R.F.

1982-02-01T23:59:59.000Z

78

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

Phadke, Amol

2008-01-01T23:59:59.000Z

79

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

G+CC+CCS IGCC+CCS FT HVAC HVDC IGCC PC advanced coal-windthan the Base Case (HVDC Only Transmission) Sensitivity toused in the FEAST model. HVDC transmission lines have lower

Phadke, Amol

2008-01-01T23:59:59.000Z

80

DOE Releases New Analysis Showing Significant Advances in Electric Vehicle  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Analysis Showing Significant Advances in Electric New Analysis Showing Significant Advances in Electric Vehicle Deployment DOE Releases New Analysis Showing Significant Advances in Electric Vehicle Deployment February 8, 2011 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today released One Million Electric Vehicles by 2015 (pdf - 220 kb), an analysis of advances in electric vehicle deployment and progress to date in meeting President Obama's goal of putting one million electric vehicles on the road by 2015. The analysis shows that while the goal is ambitious, it is also achievable based on steps already taken as part of the Recovery Act and additional policy initiatives proposed by President Obama -- including improvements to existing consumer tax credits, programs to help cities prepare for the growing demand for electric vehicles, and strong support

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Advanced simulation of electron heat transport in fusion plasmas  

SciTech Connect

Electron transport in burning plasmas is more important since fusion products first heat electrons. First-principles simulations of electron turbulence are much more challenging due to the multi-scale dynamics of the electron turbulence, and have been made possible by close collaborations between plasma physicists and computational scientists. The GTC simulations of collisionless trapped electron mode (CTEM) turbulence show that the electron heat transport exhibits a gradual transition from Bohm to gyroBohm scaling when the device size is increased. The deviation from the gyroBohm scaling can be induced by large turbulence eddies, turbulence spreading, and non-diffusive transport processes. Analysis of radial correlation function shows that CTEM turbulence eddies are predominantly microscopic but with a significant tail in the mesoscale. A comprehensive analysis of kinetic and fluid time scales shows that zonal flow shearing is the dominant decorrelation mechanism. The mesoscale eddies result from a dynamical process of linear streamers breaking by zonal flows and merging of microscopic eddies. The radial profile of the electron heat conductivity only follows the profile of fluctuation intensity on a global scale, whereas the ion transport tracks more sensitively the local fluctuation intensity. This suggests the existence of a nondiffusive component in the electron heat flux, which arises from the ballistic radial E x B drift of trapped electrons due to a combination of the presence of mesoscale eddies and the weak de-tuning of the toroidal precessional resonance that drives the CTEM instability. On the other hand, the ion radial excursion is not affected by the mesoscale eddies due to a parallel decorrelation, which is not operational for the trapped electrons because of a bounce averaging process associated with the electron fast motion along magnetic field lines. The presence of the nondiffusive component raises question on the applicability of the usual quasilinear theory for the CTEM electron transport. This is in contrast to the good agreement between the quasilinear transport theory and simulation results of the electron heat transport in electron temperature gradient (ETG) turbulence, which is regulated by a wave-particle decorrelation. Therefore, the transport in the CTEM turbulence is a fluid-like eddy mixing process even though the linear CTEM instability is driven by a kinetic resonance. In contrast, a kinetic process dominates the transport in the ETG turbulence, which is characterized by macroscopic streamers.

Lin, Zhihong [University of California, Irvine; Xiao, Y. [University of California, Irvine; Klasky, Scott A [ORNL; Lofstead, J. [Georgia Institute of Technology

2009-01-01T23:59:59.000Z

82

Large Eddy Simulation (LES) Applied to Advanced Engine Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

over broad operating ranges) - Requirements for efficient and routine use of high-performance computing (HPC), development of both predictive and affordable models for advanced...

83

Advanced Fuel Performance: Modeling and Simulation Light Water...  

NLE Websites -- All DOE Office Websites (Extended Search)

models, and will be designed for implementa- tion not only on today's leadership- class computers, but also for advanced architecture platforms now under de- velopment by DOE, as...

84

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations 2015 back to top Smith, K., Advances in Reactor Physics and Computational Science, Physor 2014 International Conference, "The Role of Reactor Physics toward a...

85

2009 US-Japan Workshop on Advanced Simulation Methods in Plasma Physics Plasma Particle Simulation with Adaptive Mesh Refinement Technique  

E-Print Network (OSTI)

2009 US-Japan Workshop on Advanced Simulation Methods in Plasma Physics Plasma Particle Simulation-5292, Japan 2 Kobe University, Kobe 657-8501, Japan 3 Kyoto University, Uji 611-0011, Japan 4 Japan Aerospace Exploration Agency, Sagamihara 229-8510, Japan 5 Japan Science and Technology Agency, CREST, Kawaguchi 332

Ito, Atsushi

86

Challenges in Merger Simulation Analysis  

E-Print Network (OSTI)

In this paper, we share our experience with merger simulations using a Random Coefficient Logit model on the demand side and assuming a static Bertrand game on the supply side. Drawing largely from our work in Knittel and ...

Knittel, Christopher Roland

87

Definition: Software - Advanced Analysis/Visualization | Open Energy  

Open Energy Info (EERE)

Software - Advanced Analysis/Visualization Software - Advanced Analysis/Visualization Jump to: navigation, search Dictionary.png Software - Advanced Analysis/Visualization Systems installed to analyze grid information or help human operators.[1] Related Terms System References ↑ [www.smartgrid.gov/sites/default/files/pdfs/description_of_assets.pdf SmartGrid.gov 'Description of Assets'] An Like Like You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Software_-_Advanced_Analysis/Visualization&oldid=480431" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services

88

Recent advances in image treatment for chromosome analysis  

E-Print Network (OSTI)

/ computers / network / image analysis / chromoscan INTRODUCTION Karyotyping machines are now commercially available. More than ten systems have been developed for cytogenetic analysis. The choice of such a systemRecent advances in image treatment for chromosome analysis A Geneix P M alet Faculté de Médecine

Paris-Sud XI, Université de

89

Advancing Simulation Science: The Legacy of the ASC Academic Strategic Alliance Program  

National Nuclear Security Administration (NNSA)

a a min [Type the abstract of the document here. The abstract is typically a short summary of the contents of the document.] Advancing Simulation Science: The Legacy of the ASC Academic Strategic Alliance Program ii ON THE COVER: Hot gas flow field and propellant stress in propellant of Titan IV rocket motor. Fully coupled "fluid-structure interaction" simulation performed using CSAR Rocstar Simulation Suite." University of Illinois at Urbana-Champaign: Center for Simulation of Advanced Rockets (CSAR) NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United

90

Office of Advanced Simulation and Computing and Institutional R&D Programs  

National Nuclear Security Administration (NNSA)

Advanced Simulation and Computing and Institutional R&D Programs Advanced Simulation and Computing and Institutional R&D Programs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog ASC Office of Advanced Simulation and Computing and Institutional R&D Programs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and ...

91

The Synergy Between Total Scattering and Advanced Simulation Techniques: Quantifying Geopolymer Gel Evolution  

SciTech Connect

With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.

White, Claire [Los Alamos National Laboratory; Bloomer, Breaunnah E. [Los Alamos National Laboratory; Provis, John L. [The University of Melbourne; Henson, Neil J. [Los Alamos National Laboratory; Page, Katharine L. [Los Alamos National Laboratory

2012-05-16T23:59:59.000Z

92

Development of Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Approaches Computational Approaches for Simulation and Advanced Controls for Hybrid Combustion-Gasification Chemical Looping Background The United States Department of Energy (DOE) National Energy Technology Laboratory (NETL) develops affordable and clean energy from coal and other fossil fuels to secure a sustainable energy economy. To further this mission, NETL funds research and development of advanced control technologies, including chemical looping (CL)

93

E-Print Network 3.0 - advanced test-analysis model Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

test-analysis model Search Powered by Explorit Topic List Advanced Search Sample search results for: advanced test-analysis model Page: << < 1 2 3 4 5 > >> 1 Advanced Vehicle...

94

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

29, 2014. Torres-Tan, S.A., Coupled Fluid Structure Simulations for Application to Grid-to-Rod Fretting, December 15, 2014. Stagg, A.K., M.A. Christon and K. Frick, Native...

95

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method  

Science Journals Connector (OSTI)

Analysis of Marine Diesel Fuel with the Advanced Distillation Curve Method ... Energy Fuels, 2013, 27 (2), ...

Peter Y. Hsieh; Kathryn R. Abel; Thomas J. Bruno

2013-01-17T23:59:59.000Z

96

Numerical Simulations and Optimisation in Forming of Advanced Materials  

Science Journals Connector (OSTI)

With the introduction of new materials as high strength steels metastable steels and fiber reinforce composites the need for advanced physically valid constitutive models arises. A biaxial test equipment is developed and applied for the determination of material data as well as for validation of material models. An adaptive through? thickness integration scheme for plate elements is developed which improves the accuracy of spring back prediction at minimal costs. An optimization strategy is proposed that assists an engineer to model an optimization problem.

J. Huétink

2007-01-01T23:59:59.000Z

97

Monitoring- Based Commissioning with Advanced EMIS Analysis  

E-Print Network (OSTI)

?EMIS ? The?cornerstone?of?MBCx?is?a?comprehensive? Energy?Management?Information?System?(EMIS) An?EMIS?is?an?analytical?engine?with?capabilities?above?and? beyond?that?of?a?BAS.??Capabilities?include?up?to: ? Utility?cost?and?billing?analysis ? Enhanced...

Ratkovich, B.

2013-01-01T23:59:59.000Z

98

Some Specific CASL Requirements for Advanced Multiphase Flow Simulation of Light Water Reactors  

SciTech Connect

Because of the diversity of physical phenomena occuring in boiling, flashing, and bubble collapse, and of the length and time scales of LWR systems, it is imperative that the models have the following features: • Both vapor and liquid phases (and noncondensible phases, if present) must be treated as compressible. • Models must be mathematically and numerically well-posed. • The models methodology must be multi-scale. A fundamental derivation of the multiphase governing equation system, that should be used as a basis for advanced multiphase modeling in LWR coolant systems, is given in the Appendix using the ensemble averaging method. The remainder of this work focuses specifically on the compressible, well-posed, and multi-scale requirements of advanced simulation methods for these LWR coolant systems, because without these are the most fundamental aspects, without which widespread advancement cannot be claimed. Because of the expense of developing multiple special-purpose codes and the inherent inability to couple information from the multiple, separate length- and time-scales, efforts within CASL should be focused toward development of a multi-scale approaches to solve those multiphase flow problems relevant to LWR design and safety analysis. Efforts should be aimed at developing well-designed unified physical/mathematical and high-resolution numerical models for compressible, all-speed multiphase flows spanning: (1) Well-posed general mixture level (true multiphase) models for fast transient situations and safety analysis, (2) DNS (Direct Numerical Simulation)-like models to resolve interface level phenmena like flashing and boiling flows, and critical heat flux determination (necessarily including conjugate heat transfer), and (3) Multi-scale methods to resolve both (1) and (2) automatically, depending upon specified mesh resolution, and to couple different flow models (single-phase, multiphase with several velocities and pressures, multiphase with single velocity and pressure, etc.) A unified, multi-scale approach is advocated to extend the necessary foundations and build the capability to simultaneously solve the fluid dynamic interface problems (interface resolution) as well as multiphase mixtures (homogenization).

R. A. Berry

2010-11-01T23:59:59.000Z

99

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

behavior in AP1000 reactor core Test run signals emergence of the next generation in nuclear power reactor analysis tools OAK RIDGE, Tenn., Feb. 18, 2014 - Scientists and...

100

Consortium for Advanced Simulation of Light Water Reactors (CASL...  

NLE Websites -- All DOE Office Websites (Extended Search)

has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel performance...

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Simulating Deep Earthquakes in the Laboratory | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

A "Sponge" Path to Better Catalysts and Energy Materials A "Sponge" Path to Better Catalysts and Energy Materials Metal Model Mimics Metalloenzymes New Physics in a Copper-Iridium Compound A Key Target for Diabetes Drugs Molten Metal Solidifies into a New Kind of Glass Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Simulating Deep Earthquakes in the Laboratory September 26, 2013 Bookmark and Share Olivine crystal of a sample used to simulate deep earthquakes. The olivine contains small crystals of pyroxene within it that have been cut by "nanofaults." The numbers each show the parts of a pyroxene crystal that has been cut and displaced along a "nanofault." Image courtesy of

102

AVESTAR® - Advanced Virtual Energy Simulation Training And Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Avestar Video Avestar Video AVESTAR Center for Operational Excellence of Clean Energy Systems The AVESTAR Center is dedicated to accelerating progress toward achieving operational excellence for the nation's energy systems, from smart power plants to smart grid. Attaining operational excellence requires maximizing the efficiency and profitability from operations through excellent automation and control, all while reducing negative environmental impact and improving safety. Driving people excellence via the development, training, and empowerment of a highly-skilled engineering and operations workforce is another critical component of operational excellence. The AVESTAR Center is addressing all of these challenges by bringing together dynamic simulation, control, and 3D virtual reality technologies, state-of-the-art training simulators and facilities, and leading industry experts to focus on the optimal operation of clean energy systems in the smart grid era.

103

Advanced wellbore thermal simulator: GEOTEMP2 user manual  

SciTech Connect

GEOTEMP2 is a wellbore thermal simulator designed for geothermal well drilling and production problems. GEOTEMP2 includes the following features: fully transient heat conduction, wellbore fluid flow options, well completion options, and drilling-production histories. The data input format is given, along with input examples and comments on special features of the input. Ten examples that illustrate all of the flowing options and input options in GEOTEMP2 are included.

Mitchell, R.F.

1982-02-01T23:59:59.000Z

104

Complex Fluid Analysis with the Advanced Distillation Curve Approach  

E-Print Network (OSTI)

Complex Fluid Analysis with the Advanced Distillation Curve Approach Thomas J. Bruno, Lisa S. Ott for measuring distillation curves reveals the physicochemical properties of complex fluids such as fuels distillation curves of complex fluids. The distillation curve provides the only practical avenue to assess

105

Sandia National Laboratories: Advanced Simulation Computing: Research &  

NLE Websites -- All DOE Office Websites (Extended Search)

Research & Collaboration Research & Collaboration Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These collaborations help solve the challenges of developing computing platforms and simulation tools across a number of disciplines. Computer Science Research Institute The Computer Science Research Institute brings university faculty and students to Sandia for focused collaborative research on DOE computer and computational science problems. Organized under the DOE Stockpile Computing Program, participants conduct leading-edge research, interact with scientists and engineers at the Laboratories, and help transfer the results of their research to programs at the Labs.

106

Methodology for Validating Building Energy Analysis Simulations  

SciTech Connect

The objective of this report was to develop a validation methodology for building energy analysis simulations, collect high-quality, unambiguous empirical data for validation, and apply the validation methodology to the DOE-2.1, BLAST-2MRT, BLAST-3.0, DEROB-3, DEROB-4, and SUNCAT 2.4 computer programs. This report covers background information, literature survey, validation methodology, comparative studies, analytical verification, empirical validation, comparative evaluation of codes, and conclusions.

Judkoff, R.; Wortman, D.; O'Doherty, B.; Burch, J.

2008-04-01T23:59:59.000Z

107

Advanced nuclear reactor safety analysis: the simulation of a small break loss of coolant accident in the simplified boiling water reactor using RELAP5/MOD3.1.1  

E-Print Network (OSTI)

The thermal hydraulic simulation code RELAP5/MOD3.1.1 was utilized to model General Electric's Simplified Boiling Water Reactor plant. The model of the plant was subjected to a small break loss of coolant accident occurring from a guillotine shear...

Faust, Christophor Randall

1995-01-01T23:59:59.000Z

108

Sensitivity Analysis with Building Simulations to Support the Commissioning Process  

E-Print Network (OSTI)

Building performance simulations can support the commissioning process of buildings. This paper introduces an approach to implement saving measures using sensitivity analysis with a simulation model and data analysis of measured data from...

Burhenne, S.; Elci, M.; Jacob, D.; Neumann, C.; Herkel, S.

2010-01-01T23:59:59.000Z

109

Simulation Problem Analysis and Research Kernel | Open Energy...  

Open Energy Info (EERE)

Problem Analysis and Research Kernel Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simulation Problem Analysis and Research Kernel AgencyCompany Organization:...

110

Experimental and CFD Analysis of Advanced Convective Cooling Systems  

SciTech Connect

The objective of this project is to study the fundamental physical phenomena in the reactor cavity cooling system (RCCS) of very high-temperature reactors (VHTRs). One of the primary design objectives is to assure that RCCS acts as an ultimate heat sink capable of maintaining thermal integrity of the fuel, vessel, and equipment within the reactor cavity for the entire spectrum of postulated accident scenarios. Since construction of full-scale experimental test facilities to study these phenomena is impractical, it is logical to expect that computational fluid dynamics (CFD) simulations will play a key role in the RCCS design process. An important question then arises: To what extent are conventional CFD codes able to accurately capture the most important flow phenomena, and how can they be modified to improve their quantitative predictions? Researchers are working to tackle this problem in two ways. First, in the experimental phase, the research team plans to design and construct an innovative platform that will provide a standard test setting for validating CFD codes proposed for the RCCS design. This capability will significantly advance the state of knowledge in both liquid-cooled and gas-cooled (e.g., sodium fast reactor) reactor technology. This work will also extend flow measurements to micro-scale levels not obtainable in large-scale test facilities, thereby revealing previously undetectable phenomena that will complement the existing infrastructure. Second, in the computational phase of this work, numerical simulation of the flow and temperature profiles will be performed using advanced turbulence models to simulate the complex conditions of flows in critical zones of the cavity. These models will be validated and verified so that they can be implemented into commercially available CFD codes. Ultimately, the results of these validation studies can then be used to enable a more accurate design and safety evaluation of systems in actual nuclear power applications (both during normal operation and accident scenarios).

Yassin A. Hassan; Victor M. Ugaz

2012-06-27T23:59:59.000Z

111

Advanced Simulation & Computing FY09-FY10 Implementation Plan Volume 2, Rev. 0  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the safety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future nonnuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC)1 is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear-weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable Stockpile Life Extension Programs (SLEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining the support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1. Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2--Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear-weapons performances in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3--Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Meisner, R; Perry, J; McCoy, M; Hopson, J

2008-04-30T23:59:59.000Z

112

Advanced Simulation and Computing FY10-11 Implementation Plan Volume 2, Rev. 0  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 Robust Tools--Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 Prediction through Simulation--Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 Balanced Operational Infrastructure--Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Carnes, B

2009-06-08T23:59:59.000Z

113

Advanced Simulation and Computing Fiscal Year 2011-2012 Implementation Plan, Revision 0  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: Objective 1 - Robust Tools. Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements. Objective 2 - Prediction through Simulation. Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile. Objective 3 - Balanced Operational Infrastructure. Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

McCoy, M; Phillips, J; Hpson, J; Meisner, R

2010-04-22T23:59:59.000Z

114

Advanced Simulation and Computing FY09-FY10 Implementation Plan Volume 2, Rev. 1  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Kissel, L

2009-04-01T23:59:59.000Z

115

Advanced Simulation and Computing FY10-FY11 Implementation Plan Volume 2, Rev. 0.5  

SciTech Connect

The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses past nuclear test data along with current and future non-nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering (D&E) programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of current facilities and programs along with new experimental facilities and computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computational resources to support the annual stockpile assessment and certification, to study advanced nuclear weapons design and manufacturing processes, to analyze accident scenarios and weapons aging, and to provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is focused on increasing its predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (focused on sufficient resolution, dimensionality and scientific details); to quantify critical margins and uncertainties (QMU); and to resolve increasingly difficult analyses needed for the SSP. Moreover, ASC has restructured its business model from one that was very successful in delivering an initial capability to one that is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools. ASC must continue to meet three objectives: (1) Robust Tools - Develop robust models, codes, and computational techniques to support stockpile needs such as refurbishments, SFIs, LEPs, annual assessments, and evolving future requirements; (2) Prediction through Simulation - Deliver validated physics and engineering tools to enable simulations of nuclear weapons performance in a variety of operational environments and physical regimes and to enable risk-informed decisions about the performance, safety, and reliability of the stockpile; and (3) Balanced Operational Infrastructure - Implement a balanced computing platform acquisition strategy and operational infrastructure to meet Directed Stockpile Work (DSW) and SSP needs for capacity and high-end simulation capabilities.

Meisner, R; Peery, J; McCoy, M; Hopson, J

2009-09-08T23:59:59.000Z

116

Analysis of ship maneuvering data from simulators  

Science Journals Connector (OSTI)

We analyze complex manuevering histories of ships obtained from training sessions on bridge simulators. Advanced ships are used in fields like offshore oil exploration: dive support vessels supply vessels anchor handling vessels tugs cable layers and multi?purpose vessels. Due to high demands from the operations carried out these ships need to have very high maneuverability. This is achieved through a propulsion system with several thrusters water jets and rudders in addition to standard propellers. For some operations like subsea maintenance it is crucial that the ship accurately keeps a fixed position. Therefore bridge systems usually incorporate equipment for Dynamic Positioning (DP). DP is a method to keep ships and semi submersible rigs in a fixed position using the propulsion systems instead of anchors. It may also be used for sailing a vessel from one position to another along a predefined route. Like an autopilot on an airplane DP may operate without human involvement. The method relies on accurate determination of position from external reference systems like GPS as well as a continuously adjusted mathematical model of the ship and external forces from wind waves and currents. In a specific simulator exercise for offshore crews a ship is to be taken up to an installation consisting of three nearby oil platforms connected by bridges (Frigg field North Sea) where a subsea inspection is to be carried out. Due to the many degrees of freedom during maneuvering including partly or full use of DP the chosen routes vary significantly. In this poster we report preliminary results on representations of the complex maneuvering histories; representations that allow comparison between crew groups and possibly sorting of the different strategic choices behind.

V. Frette; G. Kleppe; K. Christensen

2011-01-01T23:59:59.000Z

117

Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)  

SciTech Connect

This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.

Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.

2014-06-01T23:59:59.000Z

118

Imaging spectroscopic analysis at the Advanced Light Source  

SciTech Connect

One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

1999-05-12T23:59:59.000Z

119

Security Analysis of Selected AMI Failure Scenarios Using Agent Based Game Theoretic Simulation  

SciTech Connect

Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, and information assets. We concentrated our analysis on the Advanced Metering Infrastructure (AMI) functional domain which the National Electric Sector Cyber security Organization Resource (NESCOR) working group has currently documented 29 failure scenarios. The strategy for the game was developed by analyzing five electric sector representative failure scenarios contained in the AMI functional domain. From these five selected scenarios, we characterize them into three specific threat categories affecting confidentiality, integrity and availability (CIA). The analysis using our ABGT simulation demonstrates how to model the AMI functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the AMI network with respect to CIA.

Abercrombie, Robert K [ORNL] [ORNL; Schlicher, Bob G [ORNL] [ORNL; Sheldon, Frederick T [ORNL] [ORNL

2014-01-01T23:59:59.000Z

120

Advanced virtual energy simulation training and research: IGCC with CO2 capture power plant  

SciTech Connect

In this presentation, we highlight the deployment of a real-time dynamic simulator of an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture at the Department of Energy's (DOE) National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTARTM) Center. The Center was established as part of the DOE's accelerating initiative to advance new clean coal technology for power generation. IGCC systems are an attractive technology option, generating low-cost electricity by converting coal and/or other fuels into a clean synthesis gas mixture in a process that is efficient and environmentally superior to conventional power plants. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Fueled with coal, petroleum coke, and/or biomass, the gasification island of the simulated IGCC plant consists of two oxygen-blown, downward-fired, entrained-flow, slagging gasifiers with radiant syngas coolers and two-stage sour shift reactors, followed by a dual-stage acid gas removal process for CO{sub 2} capture. The combined cycle island consists of two F-class gas turbines, steam turbine, and a heat recovery steam generator with three-pressure levels. The dynamic simulator can be used for normal base-load operation, as well as plant start-up and shut down. The real-time dynamic simulator also responds satisfactorily to process disturbances, feedstock blending and switchovers, fluctuations in ambient conditions, and power demand load shedding. In addition, the full-scope simulator handles a wide range of abnormal situations, including equipment malfunctions and failures, together with changes initiated through actions from plant field operators. By providing a comprehensive IGCC operator training system, the AVESTAR Center is poised to develop a workforce well-prepared to operate and control commercial-scale gasification-based power plants capable of 90% pre-combustion CO{sub 2} capture and compression, as well as low sulfur, mercury, and NOx emissions. With additional support from the NETL-Regional University Alliance (NETL-RUA), the Center will educate and train engineering students and researchers by providing hands-on 'learning by operating' experience The AVESTAR Center also offers unique collaborative R&D opportunities in high-fidelity dynamic modeling, advanced process control, real-time optimization, and virtual plant simulation. Objectives and goals are aimed at safe and effective management of power generation systems for optimal efficiency, while protecting the environment. To add another dimension of realism to the AVESTAR experience, NETL will introduce an immersive training system with innovative three-dimensional virtual reality technology. Wearing a stereoscopic headset or eyewear, trainees will enter an interactive virtual environment that will allow them to move freely throughout the simulated 3-D facility to study and learn various aspects of IGCC plant operation, control, and safety. Such combined operator and immersive training systems go beyond traditional simulation and include more realistic scenarios, improved communication, and collaboration among co-workers.

Zitney, S.; Liese, E.; Mahapatra, P.; Bhattacharyya, D.; Provost, G.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN – FY 2015 – FY 2019  

SciTech Connect

SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable “use case” demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

Ronaldo H. Szilard; Curtis L. Smith

2014-09-01T23:59:59.000Z

122

The Simulation Analysis of Fire Feature on Underground Substation  

Science Journals Connector (OSTI)

Underground transformer substations constructed with non-dwelling buildings have a ... out simulation analysis of fire feature on underground substation. The corresponding fire protection strategy is also...

Xin Han; Xie He; Beihua Cong

2012-01-01T23:59:59.000Z

123

Advanced Neutron Source Reactor thermal analysis of fuel plate defects  

SciTech Connect

The Advanced Neutron Source Reactor (ANSR) is a research reactor designed to provide the highest continuous neutron beam intensity of any reactor in the world. The present technology for determining safe operations were developed for the High Flux Isotope Reactor (HFIR). These techniques are conservative and provide confidence in the safe operation of HFIR. However, the more intense requirements of ANSR necessitate the development of more accurate, but still conservative, techniques. This report details the development of a Local Analysis Technique (LAT) that provides an appropriate approach. Application of the LAT to two ANSR core designs are presented. New theories of the thermal and nuclear behavior of the U{sub 3}Si{sub 2} fuel are utilized. The implications of lower fuel enrichment and of modifying the inspection procedures are also discussed. Development of the computer codes that enable the automate execution of the LAT is included.

Giles, G.E.

1995-08-01T23:59:59.000Z

124

Beam Optics Analysis - An Advanced 3D Trajectory Code  

SciTech Connect

Calabazas Creek Research, Inc. has completed initial development of an advanced, 3D program for modeling electron trajectories in electromagnetic fields. The code is being used to design complex guns and collectors. Beam Optics Analysis (BOA) is a fully relativistic, charged particle code using adaptive, finite element meshing. Geometrical input is imported from CAD programs generating ACIS-formatted files. Parametric data is inputted using an intuitive, graphical user interface (GUI), which also provides control of convergence, accuracy, and post processing. The program includes a magnetic field solver, and magnetic information can be imported from Maxwell 2D/3D and other programs. The program supports thermionic emission and injected beams. Secondary electron emission is also supported, including multiple generations. Work on field emission is in progress as well as implementation of computer optimization of both the geometry and operating parameters. The principle features of the program and its capabilities are presented.

Ives, R. Lawrence; Bui, Thuc; Vogler, William; Neilson, Jeff; Read, Mike [Calabazas Creek Research, Inc., 20937 Comer Drive, Saratoga, CA 95070-3753 (United States); Shephard, Mark; Bauer, Andrew; Datta, Dibyendu [Scientific Center for Computational Research, Rensselaer Polytechnic Institute, Troy NY 12180 (United States); Beal, Mark [Simmetrix, Inc., Clifton Park, NY 12065 (United States)

2006-01-03T23:59:59.000Z

125

Uncertainty analysis of LBLOCA for Advanced Heavy Water Reactor  

Science Journals Connector (OSTI)

The main objective of safety analysis is to demonstrate in a robust way that all safety requirements are met, i.e. sufficient margins exist between real values of important parameters and their threshold values at which damage of the barriers against release of radioactivity would occur. As stated in the IAEA Safety Requirements for Design of \\{NPPs\\} “a safety analysis of the plant design shall be conducted in which methods of both deterministic and probabilistic analysis shall be applied”. It is required that “the computer programs, analytical methods and plant models used in the safety analysis shall be verified and validated, and adequate consideration shall be given to uncertainties”. Uncertainties are present in calculations due to the computer codes, initial and boundary conditions, plant state, fuel parameters, scaling and numerical solution algorithm. All conservative approaches, still widely used, were introduced to cover uncertainties due to limited capability for modelling and understanding of physical phenomena at the early stages of safety analysis. The results obtained by this approach are quite unrealistic and the level of conservatism is not fully known. Another approach is the use of Best Estimate (BE) codes with realistic initial and boundary conditions. If this approach is selected, it should be based on statistically combined uncertainties for plant initial and boundary conditions, assumptions and code models. The current trends are going into direction of the best estimate code with some conservative assumptions of the system with realistic input data with uncertainty analysis. The BE analysis with evaluation of uncertainties offers, in addition, a way to quantify the existing plant safety margins. Its broader use in the future is therefore envisaged, even though it is not always feasible because of the difficulty of quantifying code uncertainties with sufficiently narrow range for every phenomenon and for each accident sequence. In this paper, uncertainty analysis for the Large Break LOCA (200% Inlet Header Break) of Advanced Heavy Water Reactor (AHWR) has been carried out. The uncertainty analysis was carried out for the peak cladding temperature (PCT), based on the two different methods i.e., Wilk’s method and the response surface technique. Their findings have also been compared.

A. Srivastava; H.G. Lele; A.K. Ghosh; H.S. Kushwaha

2008-01-01T23:59:59.000Z

126

Advanced numerical methods for analysis and design in aircraft aerodynamics  

Science Journals Connector (OSTI)

A review is presented of developments in recent years in computational methods for aerodynamic design and analysis. The discussion is mainly influenced by the industrial requirements and developments at Dornier. The need and use of computational aerodynamics in the design of aircraft and missile configurations is explored through several examples. These include synthesis-programs and predesign and evaluation work of aircraft and missile weapon systems, airfoil and high lift analysis and deign methodologies, three-dimensional transport- and fighter aircraft wing-body analysis methods for the complete speed range from subsonic to supersonic speed even including leading edge vortex flows, engine-inlet flows and interference problems. Besides the importance of advanced numerical schemes and fast large computers the cost-limiting factor of complex geometry handling and data pre- and post-processing is discussed. The use of these numerical methods has proved to substantially increase aircraft performance capabilities while reducing risk, flow time, and testing requirements and thus total costs. At the same time such methods are in use to analyse and improve current and future wind tunnel limitations like wall effects, flow angularity, and Reynolds number.

W. Schmidt

1986-01-01T23:59:59.000Z

127

Simulations of Failure via Three-Dimensional Cracking in Fuel Cladding for Advanced Nuclear Fuels  

SciTech Connect

Enhancing performance of fuel cladding and duct alloys is a key means of increasing fuel burnup. This project will address the failure of fuel cladding via three-dimensional cracking models. Researchers will develop a simulation code for the failure of the fuel cladding and validate the code through experiments. The objective is to develop an algorithm to determine the failure of fuel cladding in the form of three-dimensional cracking due to prolonged exposure under varying conditions of pressure, temperature, chemical environment, and irradiation. This project encompasses the following tasks: 1. Simulate 3D crack initiation and growth under instantaneous and/or fatigue loads using a new variant of the material point method (MPM); 2. Simulate debonding of the materials in the crack path using cohesive elements, considering normal and shear traction separation laws; 3. Determine the crack propagation path, considering damage of the materials incorporated in the cohesive elements to allow the energy release rate to be minimized; 4. Simulate the three-dimensional fatigue crack growth as a function of loading histories; 5. Verify the simulation code by comparing results to theoretical and numerical studies available in the literature; 6. Conduct experiments to observe the crack path and surface profile in unused fuel cladding and validate against simulation results; and 7. Expand the adaptive mesh refinement infrastructure parallel processing environment to allow adaptive mesh refinement at the 3D crack fronts and adaptive mesh merging in the wake of cracks. Fuel cladding is made of materials such as stainless steels and ferritic steels with added alloying elements, which increase stability and durability under irradiation. As fuel cladding is subjected to water, chemicals, fission gas, pressure, high temperatures, and irradiation while in service, understanding performance is essential. In the fast fuel used in advanced burner reactors, simulations of the nuclear fuels are critical to understand the burnup, and thus the fuel efficiency.

Lu, Hongbing; Bukkapatnam, Satish; Harimkar, Sandip; Singh, Raman; Bardenhagen, Scott

2014-01-09T23:59:59.000Z

128

Simulation and Formal Analysis of Visual Attention  

E-Print Network (OSTI)

a simulation model for visual attention is discussed and formally analysed. The model is part of the design of the situation in the field. A case study is described in which the model is used to simulate a human subject these specifications. Keywords: Visual attention, ambient intelligence, cognitive modeling, simulation, philosophical

Treur, Jan

129

Agent-Based Modeling and Simulation for Hydrogen Transition Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on Agent-Based Modeling and Simulation for Hydrogen Transition Analysis given by Marianne Mintz of ANL during the DOE Hydrogen Transition Analysis Workshop on January 26, 2006.

130

Systems and Controls Analysis and Testing; Harvesting More Wind Energy with Advanced Controls Technology (Fact Sheet)  

SciTech Connect

This fact sheet outlines the systems and controls analysis and testing that takes place at the NWTC on the Controls Advanced Research Turbines.

Not Available

2010-01-01T23:59:59.000Z

131

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC).  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. Achieving the objective of modeling the performance of a disposal scenario requires describing processes involved in waste form degradation and radionuclide release at the subcontinuum scale, beginning with mechanistic descriptions of chemical reactions and chemical kinetics at the atomic scale, and upscaling into effective, validated constitutive models for input to high-fidelity continuum scale codes for coupled multiphysics simulations of release and transport. Verification and validation (V&V) is required throughout the system to establish evidence-based metrics for the level of confidence in M&S codes and capabilities, including at the subcontiunuum scale and the constitutive models they inform or generate. This Report outlines the nature of the V&V challenge at the subcontinuum scale, an approach to incorporate V&V concepts into subcontinuum scale modeling and simulation (M&S), and a plan to incrementally incorporate effective V&V into subcontinuum scale M&S destined for use in the NEAMS Waste IPSC work flow to meet requirements of quantitative confidence in the constitutive models informed by subcontinuum scale phenomena.

Schultz, Peter Andrew

2011-12-01T23:59:59.000Z

132

A review on recent advances in the numerical simulation for coalbed-methane-recovery process  

SciTech Connect

The recent advances in numerical simulation for primary coalbed methane (CBM) recovery and enhanced coalbed-methane recovery (ECBMR) processes are reviewed, primarily focusing on the progress that has occurred since the late 1980s. Two major issues regarding the numerical modeling will be discussed in this review: first, multicomponent gas transport in in-situ bulk coal and, second, changes of coal properties during methane (CH{sub 4}) production. For the former issues, a detailed review of more recent advances in modeling gas and water transport within a coal matrix is presented. Further, various factors influencing gas diffusion through the coal matrix will be highlighted as well, such as pore structure, concentration and pressure, and water effects. An ongoing bottleneck for evaluating total mass transport rate is developing a reasonable representation of multiscale pore space that considers coal type and rank. Moreover, few efforts have been concerned with modeling water-flow behavior in the coal matrix and its effects on CH{sub 4} production and on the exchange of carbon dioxide (CO{sub 2}) and CH{sub 4}. As for the second issue, theoretical coupled fluid-flow and geomechanical models have been proposed to describe the evolution of pore structure during CH{sub 4} production, instead of traditional empirical equations. However, there is currently no effective coupled model for engineering applications. Finally, perspectives on developing suitable simulation models for CBM production and for predicting CO{sub 2}-sequestration ECBMR are suggested.

Wei, X.R.; Wang, G.X.; Massarotto, P.; Golding, S.D.; Rudolph, V. [University of Queensland, Brisbane, Qld. (Australia)

2007-12-15T23:59:59.000Z

133

Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models  

SciTech Connect

An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two types of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.

Cetiner, Mustafa Sacit; none,; Flanagan, George F. [ORNL] [ORNL; Poore III, Willis P. [ORNL] [ORNL; Muhlheim, Michael David [ORNL] [ORNL

2014-07-30T23:59:59.000Z

134

Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data  

E-Print Network (OSTI)

Advanced Visualization and MATLAB for the Analysis of 3DAdvanced Visualization and MATLAB for the Analysis of 3Dthis challenge by linking PCX and Matlab R 6 via a dedicated

Ruebel, Oliver

2012-01-01T23:59:59.000Z

135

MODELING, ANALYSIS AND SIMULATION OF MULTIBODY SYSTEMS  

E-Print Network (OSTI)

painting device to the simulation of hundreds of mobile robots in a complex environment. Former "Graspees of multibody systems plays an important role in a wide range of fields, from robotics to computer animation

Plotkin, Joshua B.

136

Generic Repository Concepts and Thermal Analysis for Advanced Fuel Cycles  

SciTech Connect

The current posture of the used nuclear fuel management program in the U.S. following termination of the Yucca Mountain Project, is to pursue research and development (R&D) of generic (i.e., non-site specific) technologies for storage, transportation and disposal. Disposal R&D is directed toward understanding and demonstrating the performance of reference geologic disposal concepts selected to represent the current state-of-the-art in geologic disposal. One of the principal constraints on waste packaging and emplacement in a geologic repository is management of the waste-generated heat. This paper describes the selection of reference disposal concepts, and thermal management strategies for waste from advanced fuel cycles. A geologic disposal concept for spent nuclear fuel (SNF) or high-level waste (HLW) consists of three components: waste inventory, geologic setting, and concept of operations. A set of reference geologic disposal concepts has been developed by the U.S. Department of Energy (DOE) Used Fuel Disposition Campaign, for crystalline rock, clay/shale, bedded salt, and deep borehole (crystalline basement) geologic settings. We performed thermal analysis of these concepts using waste inventory cases representing a range of advanced fuel cycles. Concepts of operation consisting of emplacement mode, repository layout, and engineered barrier descriptions, were selected based on international progress and previous experience in the U.S. repository program. All of the disposal concepts selected for this study use enclosed emplacement modes, whereby waste packages are in direct contact with encapsulating engineered or natural materials. The encapsulating materials (typically clay-based or rock salt) have low intrinsic permeability and plastic rheology that closes voids so that low permeability is maintained. Uniformly low permeability also contributes to chemically reducing conditions common in soft clay, shale, and salt formations. Enclosed modes are associated with temperature constraints that limit changes to the encapsulating materials, and they generally have less capacity to dissipate heat from the waste package and its immediate surroundings than open modes such as that proposed for a repository at Yucca Mountain, Nevada. Open emplacement modes can be ventilated for many years prior to permanent closure of the repository, limiting peak temperatures both before and after closure, and combining storage and disposal functions in the same facility. Open emplacement modes may be practically limited to unsaturated host formations, unless emplacement tunnels are effectively sealed everywhere prior to repository closure. Thermal analysis of disposal concepts and waste inventory cases has identified important relationships between waste package size and capacity, and the duration of surface decay storage needed to meet temperature constraints. For example, the choice of salt as the host medium expedites the schedule for geologic disposal by approximately 50 yr (other factors held constant) thereby reducing future reliance on surface decay storage. Rock salt has greater thermal conductivity and stability at higher temperatures than other media considered. Alternatively, the choice of salt permits the use of significantly larger waste packages for SNF. The following sections describe the selection of reference waste inventories, geologic settings, and concepts of operation, and summarize the results from the thermal analysis.

Hardin, Ernest [Sandia National Laboratories (SNL)] [Sandia National Laboratories (SNL); Blink, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Carter, Joe [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL); Massimiliano, Fratoni [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Greenberg, Harris [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Howard, Rob L [ORNL] [ORNL

2011-01-01T23:59:59.000Z

137

Advances on Reduced Reservoir Representation for Fast Analysis of Oil Recovery Opportunities This seminar presents recent results of a strategy that uses a reduced representation of reservoirs.  

E-Print Network (OSTI)

Advances on Reduced Reservoir Representation for Fast Analysis of Oil Recovery Opportunities of reservoirs. The strategy facilitates the task of producing recovery projections on individual or a portfolio of reservoirs, by using space reduction techniques and analytical simulations. The drive for this type

Sukop, Mike

138

Analysis and Modeling of Parasitic Capacitances in Advanced Nanoscale Devices  

E-Print Network (OSTI)

In order to correctly perform circuit simulation, it is crucial that parasitic capacitances near devices are accurately extracted and are consistent with the SPICE models. Although 3D device simulation can be used to extract such parasitics...

Bekal, Prasanna

2012-07-16T23:59:59.000Z

139

FY2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Advanced Vehicle Technology Analysis and Evaluation Activities Bringing you a prosperous future where energy is clean, abundant, reliable and affordable 2003 Annual Progress Report freedomCAR & vehicle technologies program Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle U.S. Department of Energy FreedomCAR & Vehicle Technologies Program 1000 Independence Avenue, S.W. Washington, DC 20585-0121 FY 2003 Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities Submitted to: U.S. Department of Energy Energy Efficiency and Renewable Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Technology Analysis and Evaluation Lee Slezak, Technology Manager Advanced Vehicle Technology Analysis and Evaluation Activities

140

An Analysis Tool for Flight Dynamics Monte Carlo Simulations  

E-Print Network (OSTI)

and analysis work to understand vehicle operating limits and identify circumstances that lead to mission failure. A Monte Carlo simulation approach that varies a wide range of physical parameters is typically used to generate thousands of test cases...

Restrepo, Carolina 1982-

2011-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Avogadro: an advanced semantic chemical editor, visualization, and analysis platform  

Science Journals Connector (OSTI)

The Avogadro project has developed an advanced molecule editor and visualizer designed for cross-platform use in computational chemistry, molecular modeling, ... Avogadro seeks to enhance the semantic accessibili...

Marcus D Hanwell; Donald E Curtis; David C Lonie…

2012-08-01T23:59:59.000Z

142

Vehicle Technologies Office: Advanced Battery Development, System Analysis, and Testing  

Energy.gov (U.S. Department of Energy (DOE))

To develop better lithium-ion (Li-ion) batteries for plug-in electric vehicles, researchers must integrate the advances made in exploratory battery materials and applied battery research into full...

143

PROTEUS - Simulation Toolset for Reactor Physics and Fuel Cycle Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulation Toolset for Simulation Toolset for Reactor Physics and Fuel Cycle Analysis PROTEUS Faster and more accurate neutronics calculations enable optimum reactor design... Argonne National Laboratory's powerful reactor physics toolset, PROTEUS, empowers users to create optimal reactor designs quickly, reliably and accurately. ...Reducing costs for designers of fast spectrum reactors. PROTEUS' long history of validation provides confidence in predictive simulations Argonne's simulation tools have more than 30 years of validation history against numerous experiments and measurements. The tools within PROTEUS work together, using the same interface files for easier integration of calculations. Multi-group Fast Reactor Cross Section Processing: MC 2 -3 No other fast spectrum multigroup generation tool

144

Simulation of High Efficiency Clean Combustion Engines and Detailed Chemical Kinetic Mechanisms Development  

Energy.gov (U.S. Department of Energy (DOE))

Discusses continuing work on exploring fuel chemistry, analysis of advanced combustion regimes, and improvements in simulation methodologies

145

Agent-Based Modeling and Simulation for Hydrogen Transition Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Agent Agent Agent - - Based Modeling Based Modeling and Simulation (ABMS) and Simulation (ABMS) for Hydrogen Transition for Hydrogen Transition Analysis Analysis Marianne Mintz Hydrogen Transition Analysis Workshop US Department of Energy January 26, 2006 Objectives and Scope for Phase 1 2 Analyze the hydrogen infrastructure development as a complex adaptive system using an agent-based modeling and simulation (ABMS) approach Develop an ABMS model to simulate the evolution of that system, spanning the entire H2 supply chain from production to consumption Identify key factors that either promote or inhibit the growth of H2 infrastructure Apply ABMS to get new insights into transition, particularly early transition phase - Dynamic interplay between supply and demand

146

CRITICAL FEATURES IN HUMAN MOTION SIMULATION FOR ERGONOMIC ANALYSIS  

E-Print Network (OSTI)

CRITICAL FEATURES IN HUMAN MOTION SIMULATION FOR ERGONOMIC ANALYSIS Matthew P. Reed, Don B. Chaffin of choice for assessments of the physical ergonomics of products and workplaces. Software representations important for ergonomic analysis. This paper identifies and justifies a set of these critical features

Faraway, Julian

147

Advanced simulation capability for environmental management (ASCEM): An overview of initial results  

E-Print Network (OSTI)

Research (ASCR) Office’s Scientific Discovery through Advanced Computing (SciDAC) program, and the DOE National Nuclear

Williamson, M.

2012-01-01T23:59:59.000Z

148

DOE Hydrogen Analysis Repository: MOVES (Motor Vehicle Emission Simulator)  

NLE Websites -- All DOE Office Websites (Extended Search)

MOVES (Motor Vehicle Emission Simulator) MOVES (Motor Vehicle Emission Simulator) Project Summary Full Title: MOVES (Motor Vehicle Emission Simulator) Previous Title(s): New Generation Mobile Source Emissions Model (NGM) Project ID: 179 Principal Investigator: Margo Oge Brief Description: Estimates emissions for on-road and nonroad sources, multiple pollutants, fine-scale analysis to national inventory estimation. Keywords: Vehicle; transportation; emissions Purpose Estimate emissions for on-road and nonroad sources, cover a broad range of pollutants, and allow multiple scale analysis, from fine-scale analysis to national inventory estimation. When fully implemented MOVES will serve as the replacement for MOBILE. Performer Principal Investigator: Margo Oge Organization: U.S. Environmental Protection Agency

149

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area,  

Open Energy Info (EERE)

Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Simulation analysis of the unconfined aquifer, Raft River Geothermal Area, Idaho-Utah Details Activities (1) Areas (1) Regions (0) Abstract: This study covers about 1000 mi2 (2600 km2) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1200 feet squared per day (110

150

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.  

Energy.gov (U.S. Department of Energy (DOE))

Pumped Storage Hydropower (Detailed Analysis to Demonstrate Value)-Modeling and Analysis of Value of Advanced Pumped Storage Hydropower in the U.S.

151

Cyber security analysis testbed : combining real, emulation, and simulation.  

SciTech Connect

Cyber security analysis tools are necessary to evaluate the security, reliability, and resilience of networked information systems against cyber attack. It is common practice in modern cyber security analysis to separately utilize real systems of computers, routers, switches, firewalls, computer emulations (e.g., virtual machines) and simulation models to analyze the interplay between cyber threats and safeguards. In contrast, Sandia National Laboratories has developed novel methods to combine these evaluation platforms into a hybrid testbed that combines real, emulated, and simulated components. The combination of real, emulated, and simulated components enables the analysis of security features and components of a networked information system. When performing cyber security analysis on a system of interest, it is critical to realistically represent the subject security components in high fidelity. In some experiments, the security component may be the actual hardware and software with all the surrounding components represented in simulation or with surrogate devices. Sandia National Laboratories has developed a cyber testbed that combines modeling and simulation capabilities with virtual machines and real devices to represent, in varying fidelity, secure networked information system architectures and devices. Using this capability, secure networked information system architectures can be represented in our testbed on a single, unified computing platform. This provides an 'experiment-in-a-box' capability. The result is rapidly-produced, large-scale, relatively low-cost, multi-fidelity representations of networked information systems. These representations enable analysts to quickly investigate cyber threats and test protection approaches and configurations.

Villamarin, Charles H.; Eldridge, John M.; Van Leeuwen, Brian P.; Urias, Vincent E.

2010-07-01T23:59:59.000Z

152

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network (OSTI)

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

153

E-Print Network 3.0 - advanced analytical simulation Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

design and modeling environment which allows integration of existing analytical model and simulation... software including ns2 and NIST ATM simulator. (FY 99) Design and...

154

Analysis of advanced solar hybrid desiccant cooling systems for buildings  

SciTech Connect

This report describes an assessment of the energy savings possible from developing hybrid desiccant/vapor-compression air conditioning systems. Recent advances in dehumidifier design for solar desiccant cooling systems have resulted in a dehumidifier with a low pressure drop and high efficiency in heat and mass transfer. A recent study on hybrid desiccant/vapor compression systems showed a 30%-80% savings in resource energy when compared with the best conventional systems with vapor compression. A system consisting of a dehumidifier with vapor compression subsystems in series was found to be the simplest and best overall performer.

Schlepp, D.; Schultz, K.

1984-10-01T23:59:59.000Z

155

Advanced computational simulation for design and manufacturing of lightweight material components for automotive applications  

SciTech Connect

Computational vehicle models for the analysis of lightweight material performance in automobiles have been developed through collaboration between Oak Ridge National Laboratory, the National Highway Transportation Safety Administration, and George Washington University. The vehicle models have been verified against experimental data obtained from vehicle collisions. The crashed vehicles were analyzed, and the main impact energy dissipation mechanisms were identified and characterized. Important structural parts were extracted and digitized and directly compared with simulation results. High-performance computing played a key role in the model development because it allowed for rapid computational simulations and model modifications. The deformation of the computational model shows a very good agreement with the experiments. This report documents the modifications made to the computational model and relates them to the observations and findings on the test vehicle. Procedural guidelines are also provided that the authors believe need to be followed to create realistic models of passenger vehicles that could be used to evaluate the performance of lightweight materials in automotive structural components.

Simunovic, S.; Aramayo, G.A.; Zacharia, T. [Oak Ridge National Lab., TN (United States); Toridis, T.G. [George Washington Univ., Washington, DC (United States); Bandak, F.; Ragland, C.L. [Dept. of Transportation, Washington, DC (United States)

1997-04-01T23:59:59.000Z

156

Systems integration and analysis of advanced life support technologies  

E-Print Network (OSTI)

................................................................................... 17 3.1. Methodical Analysis of ALS Technologies.............................................. 17 3.2. Computer-Aided Analysis ........................................................................ 18 4 METHODS OF ANALYSIS... requirement of the system [kWth] Ceq Mass equivalency factor for the cooling infrastructure [kg/kWth] CT Total crewtime requirement of the system [CM-h/y] D Duration of the mission segment of interest [y] CTeq Mass equivalency factor for the crewtime...

Nworie, Grace A.

2009-06-02T23:59:59.000Z

157

Simulation analysis of a printed circuit board functional test process  

E-Print Network (OSTI)

. 89 hr 7. 1% Type IV 3. 28 min 1. 74 hr 2 0% Table 1. Mean Test Time, Repair Time, & Failure Percentages for Station Modeled 3. 3 Arrival Stream Generation As previously stated, data available for use in the development of the simulation model... TEST PROCESS ANALYSIS . . . . . . . . . . . . . . . . . . . . 4. 1 Model Validation 4. 2 Initial System Operating Characteristics . 4. 3 Analysis of System Sensitivity to Variation of X For Fixed p, 7 7 9 . 11 15 . . . 18 19 . . . 19 22...

Brinkley, Paul Andrew

2012-06-07T23:59:59.000Z

158

Modelling, simulation and sensitivity analysis of steam-methane reformers  

Science Journals Connector (OSTI)

A mathematical model to calculate temperature, conversion and pressure profiles for static operations in steam-methane reformers was simulated. A rigorous kinetic model describing steam-methane reactions was compared to a first order one and an empirical heat distribution model was fitted to describe heat absorbed along the reactor length. A control interface was simulated to allow sensitivity analysis with different control schemes. The kinetic models were tested with data from industrial steam-gas reformers. Simulation results agreed with actual plant data for conversion, temperature and pressure. Nevertheless, the first order kinetic model gave unrealistic sensitivity results to pressure and steam-to-carbon ratio variations. The rigorous model could confidently be used for design analysis, control, and economic evaluation purposes.

I.M. Alatiqi; A.M. Meziou; G.A. Gasmelseed

1989-01-01T23:59:59.000Z

159

Waste-To-Energy Feasibility Analysis: A Simulation Model  

E-Print Network (OSTI)

Waste- To- Energy Feasibility Analysis: A Simulation Model Viet- An Duong College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/WasteToEnergy.pdf May 1, 2014 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664-4337 | www of the main battles of our generation. Using waste to produce electricity can be a major source of energy

Sekhon, Jasjeet S.

160

A knowledge model for analysis and simulation of regulatory networks  

Science Journals Connector (OSTI)

......Oxford University Press 2000 Ontology A knowledge model for analysis and simulation of...of a domain-specific ontology, or knowledge model. Results: We introduce an ontological...for the representation of biological knowledge related to regulatory networks in vertebrates......

Andrey Rzhetsky; Tomohiro Koike; Sergey Kalachikov; Shawn M. Gomez; Michael Krauthammer; Sabina H. Kaplan; Pauline Kra; James J. Russo; Carol Friedman

2000-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GEOSTATISTICAL ANALYSIS OF VALIDATION DATA OF AN AIR POLLUTION SIMULATOR  

E-Print Network (OSTI)

GEOSTATISTICAL ANALYSIS OF VALIDATION DATA OF AN AIR POLLUTION SIMULATOR JEAN-PAUL CHILĂ?S 1 , SERGE SĂ?GURET 1 and PIERRE-MARC RIBOUD 2 1 MINES ParisTech, Fontainebleau, France 2 EDF R&D, Chatou, France ABSTRACT Chemistry-transport models for air quality forecasting are affected by the uncertainty

Paris-Sud XI, Université de

162

Performance Validation and Energy Analysis of HVAC Systems using Simulation  

E-Print Network (OSTI)

that energy savings of between 15% and 40% could be made in commercial buildings by closer monitoring and supervision of energy-usage and related data. An earlier study by Kao and Pierce (1983) showed that sensor1 Performance Validation and Energy Analysis of HVAC Systems using Simulation Tim Salsbury and Rick

Diamond, Richard

163

Efficient Simulation, Accurate Sensitivity Analysis and Reliable Parameter Estimation for Delay Differential  

E-Print Network (OSTI)

Efficient Simulation, Accurate Sensitivity Analysis and Reliable Parameter Estimation for Delay 2009 by Hossein ZivariPiran #12;Abstract Efficient Simulation, Accurate Sensitivity Analysis for approximating the solution, performing a sensitivity analysis and estimating unknown parameters. In this thesis

Toronto, University of

164

Engineering design and analysis of advanced physical fine coal cleaning technologies  

SciTech Connect

The major goal is to provide the simulation tools for modeling both conventional and advanced coal cleaning technologies. This project is part of a major research initiative by the Pittsburgh Energy Technology Center (PETC) aimed at advancing three advanced coal cleaning technologies-heavy-liquid cycloning, selective agglomeration, and advanced froth flotation through the proof-of-concept (POC) level. The ASPEN PLUS process simulation package will be extended to handle coal cleaning applications. Algorithms for predicting the process performance, equipment size, and flowsheet economics of commercial coal cleaning devices and related ancillary equipment will be incorporated into the coal cleaning simulator. The work plan for the froth quarter called for completion of the washability interpolation routine, gravity separation models, and dewatering models. As these items were completed, work in the areas of size reduction, classification and froth flotation were scheduled to begin. As each model was completed, testing and validation procedures were scheduled to begin. Costing models were also planned to be implemented and tested as each of the gravity separation models were completed. 1 tab.

Gallier, P.W.

1990-10-20T23:59:59.000Z

165

Geothermal: Sponsored by OSTI -- Advanced Seismic Data Analysis...  

Office of Scientific and Technical Information (OSTI)

Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

166

Scoping analysis of the Advanced Test Reactor using SN2ND  

SciTech Connect

A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of the SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature requirements for the ATR, and also to demonstrate the feasibility of performing this analysis with a deterministic transport code capable of modeling heterogeneous geometries. The work performed indicates that a minimum of 260,000 linear finite elements combined with a L3T11 cubature (96 angles on the sphere) is required for both eigenvalue and flux convergence of the ATR. A critical finding was that the fuel meat and water channels must each be meshed with at least 3 'radial zones' for accurate flux convergence. A small number of 3D calculations were also performed to show axial mesh and eigenvalue convergence for a full core problem. Finally, a brief analysis was performed with different cross sections sets generated from DRAGON and SCALE, and the findings show that more effort will be required to improve the multigroup cross section generation process. The total number of degrees of freedom for a converged 27 group, 2D ATR problem is {approx}340 million. This number increases to {approx}25 billion for a 3D ATR problem. This scoping study shows that both 2D and 3D calculations are well within the capabilities of the current SN2ND solver, given the availability of a large-scale computing center such as BlueGene/P. However, dynamics calculations are not realistic without the implementation of improvements in the solver.

Wolters, E.; Smith, M. (NE NEAMS PROGRAM); ( SC)

2012-07-26T23:59:59.000Z

167

Neutronic Analysis of an Advanced Fuel Design Concept for the High Flux Isotope Reactor  

SciTech Connect

This study presents the neutronic analysis of an advanced fuel design concept for the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) that could significantly extend the current fuel cycle length under the existing design and safety criteria. A key advantage of the fuel design herein proposed is that it would not require structural changes to the present HFIR core, in other words, maintaining the same rated power and fuel geometry (i.e., fuel plate thickness and coolant channel dimensions). Of particular practical importance, as well, is the fact that the proposed change could be justified within the bounds of the existing nuclear safety basis. The simulations herein reported employed transport theory-based and exposure-dependent eigenvalue characterization to help improve the prediction of key fuel cycle parameters. These parameters were estimated by coupling a benchmarked three-dimensional MCNP5 model of the HFIR core to the depletion code ORIGEN via the MONTEBURNS interface. The design of an advanced HFIR core with an improved fuel loading is an idea that evolved from early studies by R. D. Cheverton, formerly of ORNL. This study contrasts a modified and increased core loading of 12 kg of 235U against the current core loading of 9.4 kg. The simulations performed predict a cycle length of 39 days for the proposed fuel design, which represents a 50% increase in the cycle length in response to a 25% increase in fissile loading, with an average fuel burnup increase of {approx}23%. The results suggest that the excess reactivity can be controlled with the present design and arrangement of control elements throughout the core's life. Also, the new power distribution is comparable or even improved relative to the current power distribution, displaying lower peak to average fission rate densities across the inner fuel element's centerline and bottom cells. In fact, the fission rate density in the outer fuel element also decreased at these key locations for the proposed design. Overall, it is estimated that the advanced core design could increase the availability of the HFIR facility by {approx}50% and generate {approx}33% more neutrons annually, which is expected to yield sizeable savings during the remaining life of HFIR, currently expected to operate through 2014. This study emphasizes the neutronics evaluation of a new fuel design. Although a number of other performance parameters of the proposed design check favorably against the current design, and most of the core design features remain identical to the reference, it is acknowledged that additional evaluations would be required to fully justify the thermal-hydraulic and thermal-mechanical performance of a new fuel design, including checks for cladding corrosion performance as well as for industrial and economic feasibility.

Xoubi, Ned [ORNL; Primm, Trent [ORNL; Maldonado, G. Ivan [University of Tennessee, Knoxville (UTK)

2009-01-01T23:59:59.000Z

168

Visualization and analysis of eddies in a global ocean simulation  

SciTech Connect

Eddies at a scale of approximately one hundred kilometers have been shown to be surprisingly important to understanding large-scale transport of heat and nutrients in the ocean. Due to difficulties in observing the ocean directly, the behavior of eddies below the surface is not very well understood. To fill this gap, we employ a high-resolution simulation of the ocean developed at Los Alamos National Laboratory. Using large-scale parallel visualization and analysis tools, we produce three-dimensional images of ocean eddies, and also generate a census of eddy distribution and shape averaged over multiple simulation time steps, resulting in a world map of eddy characteristics. As expected from observational studies, our census reveals a higher concentration of eddies at the mid-latitudes than the equator. Our analysis further shows that mid-latitude eddies are thicker, within a range of 1000-2000m, while equatorial eddies are less than 100m thick.

Williams, Sean J [Los Alamos National Laboratory; Hecht, Matthew W [Los Alamos National Laboratory; Petersen, Mark [Los Alamos National Laboratory; Strelitz, Richard [Los Alamos National Laboratory; Maltrud, Mathew E [Los Alamos National Laboratory; Ahrens, James P [Los Alamos National Laboratory; Hlawitschka, Mario [UC DAVIS; Hamann, Bernd [UC DAVIS

2010-10-15T23:59:59.000Z

169

Simulation and Analysis of Converging Shock Wave Test Problems  

SciTech Connect

Results and analysis pertaining to the simulation of the Guderley converging shock wave test problem (and associated code verification hydrodynamics test problems involving converging shock waves) in the LANL ASC radiation-hydrodynamics code xRAGE are presented. One-dimensional (1D) spherical and two-dimensional (2D) axi-symmetric geometric setups are utilized and evaluated in this study, as is an instantiation of the xRAGE adaptive mesh refinement capability. For the 2D simulations, a 'Surrogate Guderley' test problem is developed and used to obviate subtleties inherent to the true Guderley solution's initialization on a square grid, while still maintaining a high degree of fidelity to the original problem, and minimally straining the general credibility of associated analysis and conclusions.

Ramsey, Scott D. [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory

2012-06-21T23:59:59.000Z

170

Advancing Adaptive Optics Technology: Laboratory Turbulence Simulation and Optimization of Laser Guide Stars  

E-Print Network (OSTI)

of cone photoreceptors with adaptive optics spectral-domaincoherence tomography,” Optics Express, Vol. 14, Issue 10,of Multi-Object Adaptive Optics on a Simulated 10-Meter

Rampy, Rachel

2013-01-01T23:59:59.000Z

171

Advances in Adaptive Data Analysis Vol. 3, No. 3 (2011) 325338  

E-Print Network (OSTI)

Advances in Adaptive Data Analysis Vol. 3, No. 3 (2011) 325­338 c World Scientific Publishing, Taipa, Macao, China lmzhang@umac.mo HONG LI School of Mathematics and Statistics, Huazhong University. The principle of the algorithm gives rise to fast convergence in terms of energy. Effective- ness

172

Use of advanced cluster analysis to characterize seafood consumption patterns and methyle mercury exposures among  

E-Print Network (OSTI)

1 N° 2007/14 Use of advanced cluster analysis to characterize seafood consumption patterns. This study provides demonstrates that a global increase in seafood consumption could lead to MeHg exposure exclusively from eating fish and seafood products. Of the organic mercury compounds, MeHg is the most toxic

Paris-Sud XI, Université de

173

ADVANCED DIGITAL TERRAIN ANALYSIS USING ROUGNESS-DISSECTIVITY PARAMETERS IN GIS  

E-Print Network (OSTI)

1 ADVANCED DIGITAL TERRAIN ANALYSIS USING ROUGNESS-DISSECTIVITY PARAMETERS IN GIS Peter P. Siska is to develop new methods and procedures for terrain analyses within a GIS environment. The focus is to develop characteristics in one unified package and programmed in GIS using the ARC Macro Language (AML). The digital

Hung, I-Kuai

174

Modeling and Simulation of Advanced Nano-Scale Very Large Scale Integration Circuits  

E-Print Network (OSTI)

is one level beyond simulation and modeling to directly optimize design, but is also built upon accurate simulations and modeling. Two simple, yet efficient, buffering and gate sizing techniques are presented. On 20 industrial designs in 45nm and 65nm...

Zhou, Ying

2010-07-14T23:59:59.000Z

175

Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells  

SciTech Connect

Research results for the second year of this project on the development of improved modeling techniques for non-conventional (e.g., horizontal, deviated or multilateral) wells were presented. The overall program entails the development of enhanced well modeling and general simulation capabilities. A general formulation for black-oil and compositional reservoir simulation was presented.

Durlofsky, Louis J.; Aziz, Khalid

2001-08-23T23:59:59.000Z

176

Advanced method for turbine steam path deterioration and performance analysis  

SciTech Connect

The deterioration of a Steam Path affects the efficiency of a turbine. The most critical factors which affect the efficiency of steam and gas turbines are: seals wearing out, deposits, corrosion which causes material losses, solid particle erosion which leads to severe blade trailing edge material losses and others. Computer programs for design analysis of steam and gas turbines were developed. The input data are the steam or gas parameters before and after the turbine, mass flow and the blade path geometry (length, width, diameter, metal angles and clearances). The program calculates steam and gas parameters and their deviation from the design data. The blade path deterioration changes the dimensions such as blade throat, and in extreme cases also the angles. Putting the actual geometry into the program, the deviations from the design points are calculated exactly. The deviations expressed in kW as losses per stage are determined and listed. The paper briefly describes the program algorithm, sensitivity to geometry measurement errors and overall exactitude. Also, examples from field evaluations of some turbines are presented and illustrated. These tools are very helpful to the management the power plants in undertaking a correct decision concerning the date of the next major maintenance and replacement part procurement. The data gathered can be utilized for a more precise performance diagnostic during operation of the turbine.

Kubiak, J.; Angel, F. del; Carnero, A.; Campos, A.; Urquiza, G.; Marino, C.; Villegas, M. [Inst. de Investigaciones Electricas, Temixco, Morelos (Mexico). Div. Sistemas Mecanicos

1996-12-31T23:59:59.000Z

177

BioSim: An Integrated Simulation of an Advanced Life Support System for Intelligent Control Research  

E-Print Network (OSTI)

waste heat. · Waste: collects and conditions waste material from anywhere in the vehicle revitalization, water recovery, food production, solid waste processing and the crew. The goal of autonomously acceptable food, and managing wastes. A typical advanced life support system consists of the following

Kortenkamp, David

178

Simulating the Value of Advanced Electricity Storage: Initial Results from a Case Study  

E-Print Network (OSTI)

with the growing challenges of integrating renewable electricity generation. For example, a recent news article by the Pacific Northwest National Laboratory's assessment of energy storage for grid balancing and arbitrage, Inc in bulk energy storage using GCAES, the General Compression Advanced Energy StorageTM technology

Ford, Andrew

179

Multi-scale analysis and simulation of powder blending in pharmaceutical manufacturing  

E-Print Network (OSTI)

A Multi-Scale Analysis methodology was developed and carried out for gaining fundamental understanding of the pharmaceutical powder blending process. Through experiment, analysis and computer simulations, microscopic ...

Ngai, Samuel S. H

2005-01-01T23:59:59.000Z

180

Feature-Based Statistical Analysis of Combustion Simulation Data  

SciTech Connect

We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing and reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for combustion science; however, it is applicable to many other science domains.

Bennett, J; Krishnamoorthy, V; Liu, S; Grout, R; Hawkes, E; Chen, J; Pascucci, V; Bremer, P T

2011-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Simulation of High Efficiency Clean Combustion Engines and Detailed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

continuing work on exploring fuel chemistry, analysis of advanced combustion regimes, and improvements in simulation methodologies deer12flowers.pdf More Documents & Publications...

182

A Versatile and Powerful Simulator for Design, Advanced Control and Expert Systems  

E-Print Network (OSTI)

and powerful steady state simulator which has been satisfactorily applied to both on-line and off-line applications for plant utility and other process systems. Designated as MASSBAL MK II, the simulator has a unique architecture, menu/and or graphic... optimization Process synthesis Start-up,shut-down,on-line changes Training Debugging, trouble-shooting and monitoring Control Plantwide control, scheduling and Economic management [1] MASSBAL MK II was developed over a two-year period by SACDA...

Schindler, H. E.; Leaver, E. W.; Shewchuk, C. F.

183

An advanced signal processing and file management software for relay testing using digital simulators  

E-Print Network (OSTI)

configuration. A digital model power system has been built by Bonneville Power Administration (BPA) using commercially available hardware [46]. Current and voltage amplifiers were built in-house by BPA. The simulator is capable of replaying both fault... configuration. A digital model power system has been built by Bonneville Power Administration (BPA) using commercially available hardware [46]. Current and voltage amplifiers were built in-house by BPA. The simulator is capable of replaying both fault...

Namasivayam, Padmanaban

2012-06-07T23:59:59.000Z

184

A modified release analysis procedure using advanced froth flotation mechanisms. Technical report, September 1--November 30, 1995  

SciTech Connect

The objective of this study is to reinvestigate the release analysis procedure, which is traditionally conducted using a laboratory Denver cell, and to develop a modified process that can be used for all froth flotation technologies. Recent studies have found that the separation performance achieved by multiple stage cleaning and, in some cases, single stage cleaning using column flotation is superior to the performance achieved by the traditional release procedure. These findings are a result of the advanced flotation mechanisms provided by column flotation, which will be incorporated into a modified release analysis procedure developed in this study. A fundamental model of an open column has been developed which incorporates the effects of system hydrodynamics, froth drop-back, selective and non-selective detachment, operating parameters, feed solids content, and feed component flotation kinetics. Simulation results obtained during this reporting period indicate that the ultimate separation that can be achieved by a column flotation process can only be obtained in a single cleaning stage if the detachment mechanism in the froth phase is highly selective, which does not appear to occur in practice based on experimental results. Two to three cleaning stages were found to be required to obtain the ultimate performance if non-selective detachment or kinetic limiting conditions are assumed. this simulated finding agrees well with the experimental results obtained from the multiple stage cleaning of an Illinois No. 5 seam coal using the Packed-Column. Simulated results also indicate that the separation performance achieved by column flotation improves with increasing feed solids content after carrying-capacity limiting conditions are realized. These findings will be utilized in the next reporting period to modify the traditional release analysis procedure.

Honaker, R.Q.; Mohanty, M.K. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mining Engineering

1995-12-31T23:59:59.000Z

185

Chapter 5 - DP4 – Advanced Simulation Settings: Racing Car Engine Connecting Rod  

Science Journals Connector (OSTI)

Publisher Summary In developing race-winning cars, Triple Eight utilizes Autodesk Inventor and Dynamic Simulation. One of the critical design issues in developing race-winning cars is weight, as this has a considerable impact on the performance of the cars. In this design problem, one highlights the key components of the engine and demonstrates how one can make effective use of Dynamic Simulation to simulate the explosion of gases on the piston–crank assembly. In the design problem, one determines several things like the time taken for the engine speed to reach 7000 rpm, the engine torque with friction taken into account, the engine torque with friction not taken into account, and the reaction forces acting on the connecting rod.

Wasim Younis

2010-01-01T23:59:59.000Z

186

MCAMC: An Advanced Algorithm for Kinetic Monte Carlo Simulations: from Magnetization Switching to Protein Folding  

E-Print Network (OSTI)

We present the Monte Carlo with Absorbing Markov Chains (MCAMC) method for extremely long kinetic Monte Carlo simulations. The MCAMC algorithm does not modify the system dynamics. It is extremely useful for models with discrete state spaces when low-temperature simulations are desired. To illustrate the strengths and limitations of this algorithm we introduce a simple model involving random walkers on an energy landscape. This simple model has some of the characteristics of protein folding and could also be experimentally realizable in domain motion in nanoscale magnets. We find that even the simplest MCAMC algorithm can speed up calculations by many orders of magnitude. More complicated MCAMC simulations can gain further increases in speed by orders of magnitude.

M. A. Novotny; Shannon M. Wheeler

2002-11-02T23:59:59.000Z

187

Advanced methods in global gyrokinetic full f particle simulation of tokamak transport  

SciTech Connect

A new full f nonlinear gyrokinetic simulation code, named ELMFIRE, has been developed for simulating transport phenomena in tokamak plasmas. The code is based on a gyrokinetic particle-in-cell algorithm, which can consider electrons and ions jointly or separately, as well as arbitrary impurities. The implicit treatment of the ion polarization drift and the use of full f methods allow for simulations of strongly perturbed plasmas including wide orbit effects, steep gradients and rapid dynamic changes. This article presents in more detail the algorithms incorporated into ELMFIRE, as well as benchmarking comparisons to both neoclassical theory and other codes.Code ELMFIRE calculates plasma dynamics by following the evolution of a number of sample particles. Because of using an stochastic algorithm its results are influenced by statistical noise. The effect of noise on relevant magnitudes is analyzed.Turbulence spectra of FT-2 plasma has been calculated with ELMFIRE, obtaining results consistent with experimental data.

Ogando, F. [Euratom-Tekes Association TKK (Finland); Universidad Nacional de Educacion a Distancia (Spain); Heikkinen, J. A. [Euratom-Tekes Association VTT (Finland); Henriksson, S.; Janhunen, S. J.; Kiviniemi, T. P.; Leerink, S. [Euratom-Tekes Association TKK (Finland)

2006-11-30T23:59:59.000Z

188

NISAC | National Infrastructure Simulation and Analysis Center | NISAC  

NLE Websites -- All DOE Office Websites (Extended Search)

Logo Logo National Infrastructure Simulation and Analysis Center Search Btn search this site... Overview Fact Sheets Capabilities Chemical Supply Chain Analysis Complex Adaptive Systems of Systems (CASoS) National Transportation Fuels Model Network Optimization Models (RNAS and ATOM) NISAC Agent-Based Laboratory for Economics (N-ABLE(tm)) Publications Contacts Home Featured Previous National Transportatio... National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,... Read More

189

The Architecture of MEG Simulation and Analysis Software  

E-Print Network (OSTI)

MEG (Mu to Electron Gamma) is an experiment dedicated to search for the $\\mu^+ \\rightarrow e^+\\gamma$ decay that is strongly suppressed in the Standard Model but predicted in several Super Symmetric extensions of it at an accessible rate. MEG is a small-size experiment ($\\approx 50-60$ physicists at any time) with a life span of about 10 years. The limited human resource available, in particular in the core offline group, emphasized the importance of reusing software and exploiting existing expertise. Great care has been devoted to provide a simple system that hides implementation details to the average programmer. That allowed many members of the collaboration to contribute to the development of the software of the experiment with limited programming skill. The offline software is based on two frameworks: {\\bf REM} in FORTRAN 77 used for the event generation and detector simulation package {\\bf GEM}, based on GEANT 3, and {\\bf ROME} in C++ used in the readout simulation {\\bf Bartender} and in the reconstruction and analysis program {\\bf Analyzer}. Event display in the simulation is based on GEANT 3 graphic libraries and in the reconstruction on ROOT graphic libraries. Data are stored in different formats in various stage of the processing. The frameworks include utilities for input/output, database handling and format conversion transparent to the user.

Paolo W. Cattaneo; Fabrizio Cei; Ryu Sawada; Matthias Schneebeli; Shuei Yamada

2011-06-20T23:59:59.000Z

190

NREL: Photovoltaics Research - Testing and Analysis to Advance R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing and Analysis to Advance R&D Testing and Analysis to Advance R&D Get the Adobe Flash Player to see this video. Text Alternative NREL has capabilities and experts in measurements, characterization, reliability, engineering, scientific computing, and theory to support photovoltaic (PV) research and development (R&D) across a range of conversion technologies and scales. Conversion technologies include the primary areas of silicon, polycrystalline thin films (cadmium telluride [CdTe], copper indium gallium diselenide [CIGS]), III-V-based multijunctions, and organic PV. And scales of interest range from materials, to cells, modules, and systems. Measurements and Characterization Photo of a hand holding tweezers pinching a square wafer that is striped gold and black. We provide a huge range of techniques for measuring and characterizing PV

191

Numerical modelling of solid fuel combustion processes using advanced CFD-based simulation tools  

Science Journals Connector (OSTI)

Computational modelling of combustion processes has been the subject of coninuous research at the Institute of Process Engineering and Power Plant Technology (IVD) over the last two decades. To this end, finite-volume-based computer codes have been developed. In the present paper, some fundamental ideas and approaches of the applied mathematical models and the numerical methods are described, followed by some examples of typical applications of the procedures with special emphasis on the validation of simulation results. These examples show that the application of combustion simulation codes has been extended to comprise a wide range of several different areas ranging from huge bituminous coal-fired utility boilers for electricity production to decentralised small-scale furnaces and tile stove heating inserts for domestic heating.

Uwe Schnell

2001-01-01T23:59:59.000Z

192

Development of an Advanced Stimulation/Production Predictive Simulator for Enhanced Geothermal Systems  

Energy.gov (U.S. Department of Energy (DOE))

Project objective: to develop a 3-D numerical simulator to model the following aspects of stimulation and long-term operation: (1)perturbation of natural stress, pore pressure, and formation temperature distributions caused by cold water injection, (2) shear slippage and aperture increase along Ťfracture patches? and aperture change caused by changes in effective normal stress,(3) Ťfracture patch? linkup to form connected permeable volume and both reversible and irreversible permeability changes.

193

Advanced Seismic data Analysis Program (The "Hot Pot Project")  

Open Energy Info (EERE)

data Analysis Program (The "Hot Pot Project") data Analysis Program (The "Hot Pot Project") Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Advanced Seismic data Analysis Program (The "Hot Pot Project") Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The proposed exploration surveys, drilling programs, data analysis and report generation will require 18 months to complete. It is anticipated that the resource confirmation drilling program will be successful in intersecting structural targets predicted by the 2.5-D advanced seismic analysis and model construction, effectively validating use of this innovative technology as a means to reduce drilling risk through improved well targeting. Oski expects that temporary field jobs will be created during the drilling stage and that long-term direct and indirect jobs would be created once this geothermal resource is proven and a geothermal plant is designed, financed and built.

194

Causality and sensitivity analysis in distributed design simulation  

E-Print Network (OSTI)

Numerous collaborative design frameworks have been developed to accelerate the product development, and recently environments for building distributed simulations have been proposed. For example, a simulation framework ...

Kim, Jaehyun, 1970-

2002-01-01T23:59:59.000Z

195

Computer simulation and economic analysis for ammonia fiber explosion (AFEX) pretreatment process  

E-Print Network (OSTI)

simulation and cost analysis. In this study, a steady state computer simulation package was developed for the AFEX process. Corn fiber was used as the representative biomass treated by AFEX. Different ammonia loadings, water loadings, temperatures...

Wang, Lin

2012-06-07T23:59:59.000Z

196

An economic comparison and evaluation of two geothermal district heating systems for advanced exergoeconomic analysis  

Science Journals Connector (OSTI)

Abstract This paper refers to an economic comparison and evaluation of two geothermal district heating systems (GDHSs) under same reference state condition and mechanic/economic parameters by using an advanced exergoeconomic analysis. In this analysis, costs of investment and exergy destruction of each component for the thermal systems such as the Afyon and Sarayköy \\{GDHSs\\} were split into endogenous/exogenous and unavoidable/avoidable parts, and were also compared with each other for the first time. The results obtained show that the advanced exergoeconomic analysis makes the information more accurate and useful, and supplies additional information that cannot be provided by the conversional analysis. Furthermore, the Afyon GDHS can be made more cost effectiveness, removing the system components’ irreversibilities, technical-economic limitations, and poorly chosen manufacturing methods, according to the Sarayköy GDHS. The majority of the components in the Sarayköy GDHS are to operate more economically than those in the Afyon GDHS. As a result, the usefulness of this method was clearly demonstrated comparing both the systems.

P?nar Keçeba?; Harun Gökgedik; Mehmet Ali Alkan; Ali Keçeba?

2014-01-01T23:59:59.000Z

197

Weather data analysis based on typical weather sequence analysis. Application: energy building simulation  

E-Print Network (OSTI)

In building studies dealing about energy efficiency and comfort, simulation software need relevant weather files with optimal time steps. Few tools generate extreme and mean values of simultaneous hourly data including correlation between the climatic parameters. This paper presents the C++ Runeole software based on typical weather sequences analysis. It runs an analysis process of a stochastic continuous multivariable phenomenon with frequencies properties applied to a climatic database. The database analysis associates basic statistics, PCA (Principal Component Analysis) and automatic classifications. Different ways of applying these methods will be presented. All the results are stored in the Runeole internal database that allows an easy selection of weather sequences. The extreme sequences are used for system and building sizing and the mean sequences are used for the determination of the annual cooling loads as proposed by Audrier-Cros (Audrier-Cros, 1984). This weather analysis was tested with the datab...

David, Mathieu; Garde, Francois; Boyer, Harry

2014-01-01T23:59:59.000Z

198

An educational model for ensemble streamflow simulation and uncertainty analysis  

E-Print Network (OSTI)

P. : Advances in real-time flood forecasting, Philos. T.nonstationarity in future flood predictions, Hydrol. Earthrainfall–runoff modeling and flood management en- tails a

AghaKouchak, Amir; Nakhjiri, N.; Habib, E.

2013-01-01T23:59:59.000Z

199

Challenge problem and milestones for : Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC).  

SciTech Connect

This report describes the specification of a challenge problem and associated challenge milestones for the Waste Integrated Performance and Safety Codes (IPSC) supporting the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The NEAMS challenge problems are designed to demonstrate proof of concept and progress towards IPSC goals. The goal of the Waste IPSC is to develop an integrated suite of modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. To demonstrate proof of concept and progress towards these goals and requirements, a Waste IPSC challenge problem is specified that includes coupled thermal-hydrologic-chemical-mechanical (THCM) processes that describe (1) the degradation of a borosilicate glass waste form and the corresponding mobilization of radionuclides (i.e., the processes that produce the radionuclide source term), (2) the associated near-field physical and chemical environment for waste emplacement within a salt formation, and (3) radionuclide transport in the near field (i.e., through the engineered components - waste form, waste package, and backfill - and the immediately adjacent salt). The initial details of a set of challenge milestones that collectively comprise the full challenge problem are also specified.

Freeze, Geoffrey A.; Wang, Yifeng; Howard, Robert; McNeish, Jerry A.; Schultz, Peter Andrew; Arguello, Jose Guadalupe, Jr.

2010-09-01T23:59:59.000Z

200

Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data  

SciTech Connect

Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchers the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.

Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark; Knowles, David W.; Weber, Gunther H.; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes

2011-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks  

Science Journals Connector (OSTI)

Product Analysis and Thermodynamic Simulations from the Pyrolysis of Several Biomass Feedstocks ... Forestry residue is one of the most viable biomass feedstocks for liq. ...

Jieling Zhang; Hossein Toghiani; Dinesh Mohan; Charles U. Pittman, Jr.; Rebecca K. Toghiani

2007-05-25T23:59:59.000Z

202

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-19T23:59:59.000Z

203

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2007-11-13T23:59:59.000Z

204

Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases  

SciTech Connect

The Performance Demonstration Program (PDP) for headspace gases distributes sample gases of volatile organic compounds (VOCs) for analysis. Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document. Participating measurement facilities must analyze PDP samples using the same procedures used for routine waste characterization analyses of WIPP samples.

Carlsbad Field Office

2006-04-01T23:59:59.000Z

205

An analysis of cost effective incentives for initial commercial deployment of advanced clean coal technologies  

SciTech Connect

This analysis evaluates the incentives necessary to introduce commercial scale Advanced Clean Coal Technologies, specifically Integrated Coal Gasification Combined Cycle (ICGCC) and Pressurized Fluidized Bed Combustion (PFBC) powerplants. The incentives required to support the initial introduction of these systems are based on competitive busbar electricity costs with natural gas fired combined cycle powerplants, in baseload service. A federal government price guarantee program for up to 10 Advanced Clean Coal Technology powerplants, 5 each ICGCC and PFBC systems is recommended in order to establish the commercial viability of these systems by 2010. By utilizing a decreasing incentives approach as the technologies mature (plants 1--5 of each type), and considering the additional federal government benefits of these plants versus natural gas fired combined cycle powerplants, federal government net financial exposure is minimized. Annual net incentive outlays of approximately 150 million annually over a 20 year period could be necessary. Based on increased demand for Advanced Clean Coal Technologies beyond 2010, the federal government would be revenue neutral within 10 years of the incentives program completion.

Spencer, D.F. [SIMTECHE, Half Moon Bay, CA (United States)

1997-12-31T23:59:59.000Z

206

Community Petascale Project for Accelerator Science and Simulation: Advancing Computational Science for Future Accelerators and Accelerator Technologies  

SciTech Connect

The design and performance optimization of particle accelerators are essential for the success of the DOE scientific program in the next decade. Particle accelerators are very complex systems whose accurate description involves a large number of degrees of freedom and requires the inclusion of many physics processes. Building on the success of the SciDAC-1 Accelerator Science and Technology project, the SciDAC-2 Community Petascale Project for Accelerator Science and Simulation (ComPASS) is developing a comprehensive set of interoperable components for beam dynamics, electromagnetics, electron cooling, and laser/plasma acceleration modelling. ComPASS is providing accelerator scientists the tools required to enable the necessary accelerator simulation paradigm shift from high-fidelity single physics process modeling (covered under SciDAC1) to high-fidelity multiphysics modeling. Our computational frameworks have been used to model the behavior of a large number of accelerators and accelerator R&D experiments, assisting both their design and performance optimization. As parallel computational applications, the ComPASS codes have been shown to make effective use of thousands of processors. ComPASS is in the first year of executing its plan to develop the next-generation HPC accelerator modeling tools. ComPASS aims to develop an integrated simulation environment that will utilize existing and new accelerator physics modules with petascale capabilities, by employing modern computing and solver technologies. The ComPASS vision is to deliver to accelerator scientists a virtual accelerator and virtual prototyping modeling environment, with the necessary multiphysics, multiscale capabilities. The plan for this development includes delivering accelerator modeling applications appropriate for each stage of the ComPASS software evolution. Such applications are already being used to address challenging problems in accelerator design and optimization. The ComPASS organization for software development and applications accounts for the natural domain areas (beam dynamics, electromagnetics, and advanced acceleration), and all areas depend on the enabling technologies activities, such as solvers and component technology, to deliver the desired performance and integrated simulation environment. The ComPASS applications focus on computationally challenging problems important for design or performance optimization to all major HEP, NP, and BES accelerator facilities. With the cost and complexity of particle accelerators rising, the use of computation to optimize their designs and find improved operating regimes becomes essential, potentially leading to significant cost savings with modest investment.

Spentzouris, P.; /Fermilab; Cary, J.; /Tech-X, Boulder; McInnes, L.C.; /Argonne; Mori, W.; /UCLA; Ng, C.; /SLAC; Ng, E.; Ryne, R.; /LBL, Berkeley

2011-11-14T23:59:59.000Z

207

Technical analysis of advanced wastewater-treatment systems for coal-gasification plants  

SciTech Connect

This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

Not Available

1981-03-31T23:59:59.000Z

208

Realistic Performance Analysis of WSN Protocols Through Trace Based Simulation  

E-Print Network (OSTI)

. Generic network simulators are often used, but they tend to rely on synthetic models. Because WSN enable trace based WSN simulation by first enhancing an existing WSN profiler that automates. These include simulation area, node density, radio model, noise model, etc. These parameters are used

Han, Qi "Chee"

209

Analysis of WebBased Simulation Data Andrew F. Seila  

E-Print Network (OSTI)

simulation, all output data depend upon the initial state of the system. The objective of running a transient simulation is to estimate a system parameter that is conditioned on the starting state. A steady and systems. The use of beans in Web­based simulation allows many independently developed components to work

Miller, John A.

210

Modeling and simulation of vertebrate limb development and algorithms for comparative genomics.  

E-Print Network (OSTI)

?? Advancing our understanding of biological phenomena can be carried out through two complementary approaches: modeling and simulation of biological processes and bioinformatic analysis of… (more)

Christley, Scott

2010-01-01T23:59:59.000Z

211

Behavioral Simulation Techniques for Substrate Noise Analysis in PLL Jae Wook Kim  

E-Print Network (OSTI)

@gloworm.stanford.edu Abstract- This paper presents a methodology to simulate, at the system level, the substrate noise coupling. The simulation of PLLs requires transient analysis with small time-steps over long intervals in order to achieve to simulate the system in a coarse but fast way in order to gain initial design guidance. For example, speed

Dutton, Robert W.

212

Impact of relief accuracy on flood simulations and road network vulnerability analysis  

E-Print Network (OSTI)

1 Impact of relief accuracy on flood simulations and road network vulnerability analysis Jean). Numerical representation of relief (DTM) is a prime necessity in risk simulation, in particular in flood of the flood simulation. On that account, we consider ways to enrich the DTM by integrating relevant

Paris-Sud XI, Université de

213

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

214

Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems  

SciTech Connect

The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

D. E. Shropshire

2009-01-01T23:59:59.000Z

215

ADVANCED INTEGRATION OF MULTI-SCALE MECHANICS AND WELDING PROCESS SIMULATION IN WELD INTEGRITY ASSESSMENT  

SciTech Connect

The potential to save trillions of BTU’s in energy usage and billions of dollars in cost on an annual basis based on use of higher strength steel in major oil and gas transmission pipeline construction is a compelling opportunity recognized by both the US Department of Energy (DOE). The use of high-strength steels (X100) is expected to result in energy savings across the spectrum, from manufacturing the pipe to transportation and fabrication, including welding of line pipe. Elementary examples of energy savings include more the 25 trillion BTUs saved annually based on lower energy costs to produce the thinner-walled high-strength steel pipe, with the potential for the US part of the Alaskan pipeline alone saving more than 7 trillion BTU in production and much more in transportation and assembling. Annual production, maintenance and installation of just US domestic transmission pipeline is likely to save 5 to 10 times this amount based on current planned and anticipated expansions of oil and gas lines in North America. Among the most important conclusions from these studies were: • While computational weld models to predict residual stress and distortions are well-established and accurate, related microstructure models need improvement. • Fracture Initiation Transition Temperature (FITT) Master Curve properly predicts surface-cracked pipe brittle-to-ductile initiation temperature. It has value in developing Codes and Standards to better correlate full-scale behavior from either CTOD or Charpy test results with the proper temperature shifts from the FITT master curve method. • For stress-based flaw evaluation criteria, the new circumferentially cracked pipe limit-load solution in the 2007 API 1104 Appendix A approach is overly conservative by a factor of 4/?, which has additional implications. . • For strain-based design of girth weld defects, the hoop stress effect is the most significant parameter impacting CTOD-driving force and can increase the crack-driving force by a factor of 2 depending on strain-hardening, pressure level as a % of SMYS, and flaw size. • From years of experience in circumferential fracture analyses and experimentation, there has not been sufficient integration of work performed for other industries into analogous problems facing the oil and gas pipeline markets. Some very basic concepts and problems solved previously in these fields could have circumvented inconsistencies seen in the stress-based and strain-based analysis efforts. For example, in nuclear utility piping work, more detailed elastic-plastic fracture analyses were always validated in their ability to predict loads and displacements (stresses and strains). The eventual implementation of these methodologies will result in acceleration of the industry adoption of higher-strength line-pipe steels.

Wilkowski, Gery M.; Rudland, David L.; Shim, Do-Jun; Brust, Frederick W.; Babu, Sundarsanam

2008-06-30T23:59:59.000Z

216

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.  

SciTech Connect

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

2009-01-01T23:59:59.000Z

217

CALTECH ASCI TECHNICAL REPORT 135 Analysis of Numerical Simulations of Detonation Diffraction  

E-Print Network (OSTI)

CALTECH ASCI TECHNICAL REPORT 135 Analysis of Numerical Simulations of Detonation Diffraction M. Arienti and J.E.Shepherd #12;Analysis of Numerical Simulations of Detonation Diffraction Marco Arienti Abstract We investigate the problem of a self-sustaining detonation wave diffracting from a tube

Barr, Al

218

Techno-economic and environmental risk analysis for advanced marine propulsion systems  

Science Journals Connector (OSTI)

A Techno-economic, Environmental and Risk Analysis (TERA) computational method has been developed for marine propulsion systems. The method comprises several numerical models which simulate the life cycle operation of marine gas turbines installed on marine vessels. Using a system-of-systems approach, the effect of operational profile can be taken into consideration in the assessment of a novel prime mover. Stochastic estimates of the powerplant’s life cycle net present cost are generated. The ship performance model plays a central role in the TERA method. This is an integrated virtual marine vessel operating environment that allows the calculation of engine performance and exhaust emissions (nitric oxide (NOx), carbon monoxide CO, carbon dioxide (CO2) and unburned hydrocarbon (UHC)) for a given trip. The life of the gas turbine is assessed through a creep-life prediction method, which plays a significant role on the maintenance cost calculation in the economic model. The economic model predicts net present cost over the operating life of the vessel using stochastic analysis of the earning capacity of the ship powered by the chosen prime mover. The TERA simulation of a 25 MW marine gas turbine powering a RoPax fast ferry in an integrated full electric propulsion system is presented as an illustration of the method. The example includes aspects of the systemic analysis of engine and ship performance, accompanied by environmental effect and engine life prediction, coupled with an economic feasibility stochastic study of the selected propulsion system under several journey and economic scenarios.

G. Doulgeris; T. Korakianitis; P. Pilidis; E. Tsoudis

2012-01-01T23:59:59.000Z

219

Advances in X-Ray Chemical Analysis, Japan, 43 (2012) ISSN 0911-7806 Reviews on Forensic Analysis of Wakayama Arsenic Case  

E-Print Network (OSTI)

Advances in X-Ray Chemical Analysis, Japan, 43 (2012) ISSN 0911-7806 © X Reviews on Forensic;#12;43 49 X Adv. X-Ray. Chem. Anal., Japan 43, pp.49-87 (2012) 606-8501 X Reviews on Forensic Analysis-ray fluorescence analysis (SR-XRF) is used for forensic analysis. It has been clarified that the SPring- 8 SR

Jun, Kawai

220

FY2005 - Annual Progress Report for Advanced Vehicle Technology Analysis and Evaluation Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

AdvAnced vehicle AdvAnced vehicle Technology AnAlysis And evAluATion AcTiviTies Less dependence on foreign oil, and eventual transition to an emissions-free, petroleum-free vehicle F r e e d o m C A r A n d V e h i C l e T e C h n o l o g i e s P r o g r A m Acknowledgement We would like to express our sincere appreciation to QSS Group, Inc., Oak Ridge National Laboratory, and Argonne National Laboratory for their technical and artistic contributions in preparing and publishing this report. In addition, we would like to thank all the participants for their contributions to the pro- grams and all the authors who prepared the project abstracts that comprise this report. This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis  

SciTech Connect

The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

Terasawa, K.L.; Whipple, D.W.

1980-12-01T23:59:59.000Z

222

TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis  

SciTech Connect

The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

Liles, D.R.; Mahaffy, J.H.

1984-02-01T23:59:59.000Z

223

Solar Site Survey for the Advanced Technology Solar Telecope. I. Analysis of the Seeing Data  

E-Print Network (OSTI)

The site survey for the Advanced Technology Solar Telescope concluded recently after more than two years of data gathering and analysis. Six locations, including lake, island and continental sites, were thoroughly probed for image quality and sky brightness. The present paper describes the analysis methodology employed to determine the height stratification of the atmospheric turbulence. This information is crucial because day-time seeing is often very different between the actual telescope aperture (~30 m) and the ground. Two independent inversion codes have been developed to analyze simultaneously data from a scintillometer array and a solar differential image monitor. We show here the results of applying them to a sample subset of data from May 2003, which was used for testing. Both codes retrieve a similar seeing stratification through the height range of interest. A quantitative comparison between our analysis procedure and actual in situ measurements confirms the validity of the inversions. The sample data presented in this paper reveal a qualitatively different behavior for the lake sites (dominated by high-altitude seeing) and the rest (dominated by near-ground turbulence).

H. Socas-Navarro; J. Beckers; P. Brandt; J. Briggs; T. Brown; W. Brown; M. Collados; C. Denker; S. Fletcher; S. Hegwer; F. Hill; T. Horst; M. Komsa; J. Kuhn; A. Lecinski; H. Lin; S. Oncley; M. Penn; T. Rimmele; K. Streander

2005-08-31T23:59:59.000Z

224

Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 Chemical State Analysis of Al Contained in Iron and Steel Slag  

E-Print Network (OSTI)

Advances in X-Ray Chemical Analysis, Japan, 41 (2010) ISSN 0911-7806 © X Al Chemical State Analysis of Al Contained in Iron and Steel Slag Using Chemical Shift of X-Ray Fluorescence Spectra Tomohiro YAMAMOTO, Hiroya MIYAUCHI, Takashi YAMAMOTO and Jun KAWAI #12;#12;41 177 X Al Adv. X-Ray. Chem. Anal

Jun, Kawai

225

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

226

Simulation and analysis of district-heating and -cooling systems  

SciTech Connect

A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

Bloomster, C.H.; Fassbender, L.L.

1983-03-01T23:59:59.000Z

227

Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards  

SciTech Connect

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

228

Context DDFV Scheme Numerical analysis ECG Simulation 2D/3D DDFV scheme for anisotropic-heterogeneous  

E-Print Network (OSTI)

Context DDFV Scheme Numerical analysis ECG Simulation 2D/3D DDFV scheme for anisotropic Numerical analysis ECG Simulation Authors : Laboratoire de math´ematiques Jean Leray, Universit´e de Nantes Pays de l'Adour : · Charles Pierre #12;Context DDFV Scheme Numerical analysis ECG Simulation Outline

Pierre, Charles

229

NETL: Advanced Research - Computation Energy Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Computational Energy Sciences > APECS Computational Energy Sciences > APECS Advanced Research Computational Energy Sciences APECS APECS Virtual Plant APECS (Advanced Process Engineering Co-Simulator) is the first simulation software to combine the disciplines of process simulation and computational fluid dynamics (CFD). This unique combination makes it possible for engineers to create "virtual plants" and to follow complex thermal and fluid flow phenomena from unit to unit across the plant. Advanced visualization software tools aid in analysis and optimization of the entire plant's performance. This tool can significantly reduce the cost of power plant design and optimization with an emphasis on multiphase flows critical to advanced power cycles. A government-industry-university collaboration (including DOE, NETL, Ansys/

230

Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load  

E-Print Network (OSTI)

Proper Orthogonal Decomposition-Based Modeling, Analysis, and Simulation of Dynamic Wind Load.1061/ ASCE 0733-9399 2005 131:4 325 CE Database subject headings: Simulation; Wind loads; Buildings; Random on the decomposition of the covariance and XPSD matrices is presented. A physically meaningful linkage between the wind

Chen, Xinzhong

231

Bistatic radar imaging of the marine environment. Part II: simulation and results analysis  

E-Print Network (OSTI)

operational interest for instance to detect oil spills or ship wakes [5]­[7]. Since a large coverage1 Bistatic radar imaging of the marine environment. Part II: simulation and results analysis present a bistatic, polarimetric and real aper- ture Marine Radar Simulator (MaRS) producing pseudo

Boyer, Edmond

232

ELECTRICAL SIMULATION METHODOLOGY DEDICATED TO EMC DIGITAL CIRCUITS EMISSIONS ANALYSIS ON PCB  

E-Print Network (OSTI)

ELECTRICAL SIMULATION METHODOLOGY DEDICATED TO EMC DIGITAL CIRCUITS EMISSIONS ANALYSIS ON PCB Jean integrated on closer structures, and the upsurge of electric/electromagnetic couplings in a large frequency optimise an electrical models library dedicated to the simulations of EMC emissions of digital integrated

Paris-Sud XI, Université de

233

Co-simulation for performance prediction of integrated building and HVAC systems -An analysis of solution  

E-Print Network (OSTI)

Co-simulation for performance prediction of integrated building and HVAC systems - An analysis performance simulation of buildings and heating, ventilation and air- conditioning (HVAC) systems can help, heating, ventilation and air-conditioning (HVAC) systems are responsible for 10%-60% of the total building

234

Biodiesel Sim: Crowdsourcing Simulations for Complex Model Analysis Derek Riley, Xiaowei Zhang, Xenofon Koutsoukos  

E-Print Network (OSTI)

Biodiesel Sim: Crowdsourcing Simulations for Complex Model Analysis Derek Riley, Xiaowei Zhang Computation, Biodiesel Abstract Biodiesel is an alternative fuel source that can be easily made by novices of the proces- sor. A biodiesel processor is a complex system that can be modeled and simulated using formal

Koutsoukos, Xenofon D.

235

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

7: Simulation results for the batteries alone kW kW Batteryor even lithium-ion batteries. This is another advantagewith the air-electrode batteries. Table 6: Simulation

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

236

Loads Analysis of a Floating Offshore Wind Turbine Using Fully Coupled Simulation: Preprint  

SciTech Connect

This paper presents the use of fully coupled aero-hydro-servo-elastic simulation tools to perform a loads analysis of a 5-MW offshore wind turbine supported by a barge with moorings, one of many promising floating platform concepts.

Jonkman, J. M.; Buhl, M. L., Jr.

2007-06-01T23:59:59.000Z

237

A survey of Existing V&V, UQ and M&S Data and Knowledge Bases in Support of the Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS)  

SciTech Connect

The Nuclear Energy - Knowledge base for Advanced Modeling and Simulation (NE-KAMS) is being developed at the Idaho National Laboratory in conjunction with Bettis Laboratory, Sandia National Laboratories, Argonne National Laboratory, Oak Ridge National Laboratory, Utah State University and others. The objective of this consortium is to establish a comprehensive knowledge base to provide Verification and Validation (V&V) and Uncertainty Quantification (UQ) and other resources for advanced modeling and simulation (M&S) in nuclear reactor design and analysis. NE-KAMS will become a valuable resource for the nuclear industry, the national laboratories, the U.S. NRC and the public to help ensure the safe operation of existing and future nuclear reactors. A survey and evaluation of the state-of-the-art of existing V&V and M&S databases, including the Department of Energy and commercial databases, has been performed to ensure that the NE-KAMS effort will not be duplicating existing resources and capabilities and to assess the scope of the effort required to develop and implement NE-KAMS. The survey and evaluation have indeed highlighted the unique set of value-added functionality and services that NE-KAMS will provide to its users. Additionally, the survey has helped develop a better understanding of the architecture and functionality of these data and knowledge bases that can be used to leverage the development of NE-KAMS.

Hyung Lee; Rich Johnson, Ph.D.; Kimberlyn C. Moussesau

2011-12-01T23:59:59.000Z

238

Optimization and Simulation in Drug Development -Review and Analysis  

E-Print Network (OSTI)

in the context of the pharmaceutical industry. 4 #12; 1 Introduction The presen-Eriksen and Jens Clausen Keywords: Pharmaceutical R&D, Drug Discovery and Development, Modelling and sim- ulation, Clinical Trial Simulation Portfolio optimization 1 #12; Contents 1 Introduction 5 2 Pharmaceutical products

239

Data Analysis of Villin Headpiece Subdomain Folding Simulations.  

E-Print Network (OSTI)

seeks to understand the process of protein folding by analyzing the vast amount of data generated while simulating the folding of the villin headpiece. Introduction Protein folding has been called one proteins unlike homology or threading based approaches. Protein folding studies the folding trajectory

240

Citizen Engagement: Analysis of Johnson County Budget Simulator  

E-Print Network (OSTI)

.................................................................................................................................. 44 Kruskal-Wallis Analysis ............................................................................................................................ 50 V. Recommendations... ................................................................................ 50 Table 10: Kruskal-Wallis Test Results ........................................................................................................................... 52 Table 11: Grouped Median Scores by Household Income for Statistically Significant...

Combs, Fred; Funk, Jessie; Gotfredson, Mike; Koontz, Jeanne; Lawson, Greg; Minter, Marilyn; Mong, Susan; York, Mike; Zook, Sandy

2012-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Experimental spectra analysis in THM with the help of simulation based on Geant4 framework  

E-Print Network (OSTI)

The Coulomb barrier and electron screening cause difficulties in directly measuring nuclear reaction cross sections of charged particles in astrophysical energies. The Trojan-horse method has been introduced to solve the difficulties as a powerful indirect tool. In order to understand experimental spectra better, Geant4 is employed to simulate the method for the first time. Validity and reliability of the simulation are examined by comparing the experimental data with simulated results. The Geant4 simulation can give useful information to understand the experimental spectra better in data analysis and is beneficial to the design for future related experiments.

Chengbo Li; Qungang Wen; Shuhua Zhou; Yuanyong Fu; Jing Zhou; Qiuying Meng; Zongjun Jiang; Xiaolian Wang

2014-08-27T23:59:59.000Z

242

Simulation and analysis of VIM measurements: feedback on design parameters  

E-Print Network (OSTI)

The Visible-light Imager and Magnetograph (VIM) proposed for the ESA Solar Orbiter mission will observe a photospheric spectral line at high spatial resolution. Here we simulate and interpret VIM measurements. Realistic MHD models are used to synthesize "observed" Stokes profiles of the photospheric Fe I 617.3 nm line. The profiles are degraded by telescope diffraction and detector pixel size to a spatial resolution of 162 km on the solar surface. We study the influence of spectral resolving power, noise, and limited wavelength sampling on the vector magnetic fields and line-of-sight velocities derived from Milne-Eddington inversions of the simulated measurements. VIM will provide reasonably accurate values of the atmospheric parameters even with filter widths of 120 mA and 3 wavelength positions plus continuum, as long as the noise level is kept below 10^-3 I_c.

Suarez, D O; Vargas, S; Bonet, J A; Pillet, V M; Del Toro-Iniesta, Jose Carlos

2006-01-01T23:59:59.000Z

243

Simulation and analysis of VIM measurements: feedback on design parameters  

E-Print Network (OSTI)

The Visible-light Imager and Magnetograph (VIM) proposed for the ESA Solar Orbiter mission will observe a photospheric spectral line at high spatial resolution. Here we simulate and interpret VIM measurements. Realistic MHD models are used to synthesize "observed" Stokes profiles of the photospheric Fe I 617.3 nm line. The profiles are degraded by telescope diffraction and detector pixel size to a spatial resolution of 162 km on the solar surface. We study the influence of spectral resolving power, noise, and limited wavelength sampling on the vector magnetic fields and line-of-sight velocities derived from Milne-Eddington inversions of the simulated measurements. VIM will provide reasonably accurate values of the atmospheric parameters even with filter widths of 120 mA and 3 wavelength positions plus continuum, as long as the noise level is kept below 10^-3 I_c.

D. Orozco Suarez; L. R. Bellot Rubio; S. Vargas Dominguez; J. A. Bonet; V. Martinez Pillet; J. C. del Toro Iniesta

2006-11-14T23:59:59.000Z

244

Organic Tanks Safety Program: Advanced organic analysis FY 1996 progress report  

SciTech Connect

Major focus during the first part of FY96 was to evaluate using organic functional group concentrations to screen for energetics. Fourier transform infrared and Raman spectroscopy would be useful screening tools for determining C-H and COO- organic content in tank wastes analyzed in a hot cell. These techniques would be used for identifying tanks of potential safety concern that may require further analysis. Samples from Tanks 241-C-106 and -C-204 were analyzed; the major organic in C-106 was B2EHPA and in C-204 was TBP. Analyses of simulated wastes were also performed for the Waste Aging Studies Task; organics formed as a result of degradation were identified, and the original starting components were monitored quantitatively. Sample analysis is not routine and required considerable methods adaptation and optimization. Several techniques have been evaluated for directly analyzing chelator and chelator fragments in tank wastes: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and liquid chromatography with ultraviolet detection using Cu complexation. Although not directly funded by the Tanks Safety Program, the success of these techniques have implications for both the Flammable Gas and Organic Tanks Safety Programs.

NONE

1996-09-01T23:59:59.000Z

245

Imaging Performance Analysis of Simbol-X with Simulations  

SciTech Connect

Simbol-X is an X-Ray telescope operating in formation flight. It means that its optical performances will strongly depend on the drift of the two spacecrafts and its ability to measure these drifts for image reconstruction. We built a dynamical ray tracing code to study the impact of these parameters on the optical performance of Simbol-X (see Chauvin et al., these proceedings). Using the simulation tool we have developed, we have conducted detailed analyses of the impact of different parameters on the imaging performance of the Simbol-X telescope.

Chauvin, M.; Roques, J. P. [Universite de Toulouse, UPS, CESR, 9 ave colonel Roche, F-31028 Toulouse ceclex 9 (France); CNRS, UMR5187, F-31028 Toulouse (France)

2009-05-11T23:59:59.000Z

246

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

247

Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations  

Open Energy Info (EERE)

Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations Cost-Benefit Analysis of Smart Grid Technologies Through System Simulations Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Cost-Benefit_Analysis_of_Smart_Grid_Technologies_Through_System_Simulations&oldid=514355"

248

A Research Code for Dynamic Power System Simulation and Analysis Steve Schaffer, Kevin Wedeward and Steven Ball  

E-Print Network (OSTI)

], and the object- oriented modeling language Modelica was chosen to create a library and graphically of states. This paper reports on the basic features and the various simulation and analysis tools that have access to simulation options, model components and analysis tools. The simulation can be used for both

Wedeward, Kevin

249

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.  

SciTech Connect

The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr. (,; .); Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2006-09-01T23:59:59.000Z

250

Performance analysis of Intel multiprocessors using astrophysics simulations  

Science Journals Connector (OSTI)

This paper provides a performance evaluation and investigation of the astrophysics code FLASH for a variety of Intel multiprocessors. This work was performed at the NASA Center for Computational Sciences (NCCS) on behalf of the Carnegie Institution of ... Keywords: FLASH, multicore, performance analysis

Tyler A. Simon; William A. Ward, Jr.; Alan P. Boss

2012-02-01T23:59:59.000Z

251

Advances in Electric Drive Vehicle Modeling with Subsequent Experimentation and Analysis  

E-Print Network (OSTI)

coefficients in order to build a high-level, yet accurate state of charge prediction model. Moreover, this work utilizes automotive grade lithium-based batteries for realistic outcomes in the electrified vehicle realm. The fourth chapter describes an advanced...

Hausmann, Austin Joseph

2012-08-31T23:59:59.000Z

252

Windows Registry Forensics: Advanced Digital Forensic Analysis of the Windows Registry  

Science Journals Connector (OSTI)

Harlan Carvey brings readers an advanced book on Windows Registry. The first book of its kind EVER -- Windows Registry Forensics provides the background of the Registry to help develop an understanding of the binary structure of Registry hive files. ...

Harlan Carvey

2011-02-01T23:59:59.000Z

253

Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process  

SciTech Connect

The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

E. R. Johnson; R. E. Best

2009-12-28T23:59:59.000Z

254

An adaptive simulation model for analysis of nuclear material shipping operations  

SciTech Connect

Los Alamos has developed an advanced simulation environment designed specifically for nuclear materials operations. This process-level simulation package, the Process Modeling System (ProMoS), is based on high-fidelity material balance criteria and contains intrinsic mechanisms for waste and recycle flows, contaminant estimation and tracking, and material-constrained operations. Recent development efforts have focused on coupling complex personnel interactions, personnel exposure calculations, and stochastic process-personnel performance criteria to the material-balance simulation. This combination of capabilities allows for more realistic simulation of nuclear material handling operations where complex personnel interactions are required. They have used ProMoS to assess fissile material shipping performance characteristics at the Los Alamos National Laboratory plutonium facility (TA-55). Nuclear material shipping operations are ubiquitous in the DOE complex and require the largest suite of varied personnel interacting in a well-timed manner to accomplish the task. They have developed a baseline simulation of the present operations and have estimated the operational impacts and requirement of the pit production mission at TA-55 as a result of the SSM-PEIS. Potential bottlenecks have been explored and mechanisms for increasing operational efficiency are identified.

Boerigter, S.T.; Sena, D.J.; Fasel, J.H.

1998-12-31T23:59:59.000Z

255

Development of a Simulation Model and Safety Evaluation for a Depressurization Accident Without Reactor Scram in an Advanced HTGR  

SciTech Connect

It is important to use analyses to prove outstanding inherent reactor safety during a severe accident in order to convince the public and licensing authority of the safety advantage of the high-temperature gas-cooled reactor (HTGR). In this study, the simulation of a depressurization accident without reactor scram (DAWS) was performed for a future HTGR with 450-MW thermal output, introducing the annular core of pin-in-block-type fuel, which was originally designed in Japan. The DAWS has the possibility of becoming one of the severe accidents postulated in the HTGR. To perform an accurate simulation, a new analytical model for reactor dynamics and indirect decay heat removal from the surface of the reactor pressure vessel (RPV) during the DAWS was developed. The features of the new simulation model are as follows:1. A single-channel model is coupled with a two-dimensional reactor thermal model in the new simulation model. The reactor kinetics with a single-channel model during the DAWS is simulated taking into account heat removal from the reactor calculated in the R-Z reactor thermal model, including the RPV and indirect vessel cooling system. No conventional calculation codes with a single channel have a heat removal model from an RPV or were able to simulate precisely the transient during DAWS.2. A xenon buildup and decay model for the reactivity calculation is made in addition to one point-kinetics approximation to simulate a recriticality and a power oscillation following the initiation of the DAWS.3. A transient simulation can be performed for two kinds of core models of pin-in-block- and multihole-type fuels.The accurate evaluation of xenon density and core temperature is of prime importance in the simulation of the DAWS. From the simulation result with a proper safety margin, it was confirmed that the safety performance of passive decay heat removal with cooling indirectly from the surface of the RPV is outstanding for the DAWS, and a severe-accident-free HTGR can be designed. The newly developed code is applicable to the detailed safety evaluation necessary to future HTGR design.

Nakagawa, Shigeaki; Saikusa, Akio; Kunitomi, Kazuhiko [Japan Atomic Energy Research Institute (Japan)

2001-02-15T23:59:59.000Z

256

Simulation and Analysis of Superconducting Traveling-Wave Parametric Amplifiers  

E-Print Network (OSTI)

Superconducting parametric amplifiers have great promise for quantum-limited readout of superconducting qubits and detectors. Until recently, most superconducting parametric amplifiers had been based on resonant structures, limiting their bandwidth and dynamic range. Broadband traveling-wave parametric amplifiers based both on the nonlinear kinetic inductance of superconducting thin films and on Josephson junctions are in development. By modifying the dispersion property of the amplifier circuit, referred to as dispersion engineering, the gain can be greatly enhanced and the size can be reduced. We present two theoretical frameworks for analyzing and understanding such parametric amplifiers: (1) generalized coupled-mode equations and (2) a finite difference time domain (FDTD) model combined with a small signal analysis. We show how these analytical and numerical tools may be used to understand device performance.

Saptarshi Chaudhuri; Jiansong Gao; Kent Irwin

2015-01-11T23:59:59.000Z

257

Description of interfaces of fluid-tethered chains: advances in density functional theories and off-lattice computer simulations  

E-Print Network (OSTI)

Many objects of nanoscopic dimensions involve fluid-tethered chain interfaces. These systems are of interest for basic science and for several applications, in particular for design of nanodevices for specific purposes. We review recent developments of theoretical methods in this area of research and in particular of density functional (DF) approaches, which provide important insights into microscopic properties of such interfaces. The theories permit to describe the dependence of adsorption, wettability, solvation forces and electric interfacial phenomena on thermodynamic states and on characteristics of tethered chains. Computer simulations for the problems in question are overviewed as well. Theoretical results are discussed in relation to simulation results and to some experimental observations.

S. Soko?owski; J. Ilnytskyi; O. Pizio

2014-03-06T23:59:59.000Z

258

DOE Hydrogen Analysis Repository: Advanced Vehicle Cost and Energy-use  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Vehicle Cost and Energy-use Model (AVCEM) Advanced Vehicle Cost and Energy-use Model (AVCEM) Project Summary Full Title: Advanced Vehicle Cost and Energy-use Model (AVCEM) Project ID: 123 Principal Investigator: Mark Delucchi Brief Description: AVCEM is an electric and gasoline vehicle energy-use and lifetime-cost model. AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. Purpose AVCEM designs a motor vehicle to meet range and performance requirements specified by the modeler, and then calculates the initial retail cost and total private and social lifetime cost of the designed vehicle. It can be used to investigate the relationship between the lifetime cost -- the total

259

Using exploratory data analysis modified Box Plots to enhance Monte Carlo simulated Range Estimating Decision Technology  

E-Print Network (OSTI)

of the thesis is written with the intent of reviewing some of the significant pieces of literature relating to Monte Carlo simulated REDT and exploratory data analysis Box Plots. In 1964 David Hertz published an article in the Harvard Business Review... entitled, "Risk Analysis in Capital Investment" (Hertz 1964). While this article does not directly discuss range estimating, it is the foundation for the current REDT theory. In his atticle, Hertz discussed the problems associated with estimating...

Clutter, David John

1992-01-01T23:59:59.000Z

260

736 IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 28, NO. 4, NOVEMBER 2005 Simulation of Lossy Package Transmission Lines  

E-Print Network (OSTI)

Package Transmission Lines Using Extracted Data From One-Port TDR Measurements and Nonphysical RLGC Models, the frequency-dependent characteristic impedance and propagation constant of lossy transmission lines have been ( ), conductance ( ) and capacitance ( ) (RLGC) models have been developed for simulating lossy transmission lines

Swaminathan, Madhavan

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Researching a New Fuel for the HFIR Advancements at ORNL Require Multiphysics Simulation to Contribute to Safety and Reliability  

SciTech Connect

Research into the conversion of the High Flux Isotope Reactor to low-enriched uranium fuel to meet requirements established by the Global Threat Reduction Initiative is ongoing at Oak Ridge National Laboratory. Researchers have turned to multiphysics simulations to evaluate the safety and performance of the new fuel and reactor core design.

Curtis, Franklin G [ORNL] [ORNL; Freels, James D [ORNL] [ORNL

2014-01-01T23:59:59.000Z

262

E-Print Network 3.0 - advanced neutronic analysis Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

by Chadwick, neutron spectroscopy Summary: activation analysis (PGNAA) and delayed gamma-ray neutron activation analysis (DGNAA), i.e. with respect... improvement in neutron...

263

Modeling and design optimization of switched reluctance machine by boundary element analysis and simulation  

SciTech Connect

Nonlinear boundary element analysis provides a more accurate and detailing tool for the design of switched reluctance machines, than the conventional equivalent-circuit methods. Design optimization through more detailed analysis and simulation can reduce development and prototyping costs and time to market. Firstly, magnetic field modeling of an industrial switched reluctance machine by boundary element method is reported in this paper. Secondly, performance prediction and dynamic simulation of motor and control design are presented. Thirdly, magnetic forces that cause noise and vibration are studied, to include the effects of motor and control design variations on noise in the design process. Testing of the motor in NEMA 215-Frame size is carried out to verify the accuracy of modeling and simulation.

Tang, Y.; Kline, J.A. Sr. [Emerson Motor Technology Center, St. Louis, MO (United States). U.S. Electrical Motors Div.] [Emerson Motor Technology Center, St. Louis, MO (United States). U.S. Electrical Motors Div.

1996-12-01T23:59:59.000Z

264

Survey and Analysis of Weather Data for Building Energy Simulations Mahabir Bhandari, Som Shrestha, Joshua New  

E-Print Network (OSTI)

Page 1 Survey and Analysis of Weather Data for Building Energy Simulations Mahabir Bhandari, Som data plays an important role in this calibration process and projected energy savings. It would; relative humidity; direct, diffuse and horizontal solar radiation; and wind speed are statistically

Wang, Xiaorui "Ray"

265

Simulation and Analysis of Energy Consumption of Public Building in Chongquig  

E-Print Network (OSTI)

Calculation and analysis of energy consumption must be on the base of simulation of building load. DeST is adopted to calculate dynamic cooling load of the main building in Chongqing city. Then water chilling unit's plant capability is checked...

Chen, G.; Lu, J.; Chen, J.

2006-01-01T23:59:59.000Z

266

An analysis on observed and simulated PNA associated atmospheric diabatic heating  

E-Print Network (OSTI)

An analysis on observed and simulated PNA associated atmospheric diabatic heating B. Yu Ă? Y. M Copyright 2008 Abstract This study examines the PNA associated atmospheric diabatic heating by linearly-dimensional diabatic heating are examined. The Rossby wave sources in association with the PNA are also diagnosed

Tang, Youmin

267

LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS AND SIMULATION  

E-Print Network (OSTI)

LINEAR TIME PERIODIC MODELLING OF POWER ELECTRONIC DEVICES FOR POWER SYSTEM HARMONIC ANALYSIS by simulation. 1. INTRODUCTION The variety and the wide spread use of power electronic devices in the power networks is due to their diverse and multiple functions: compensation, protection and interface

Boyer, Edmond

268

Is Protein Unfolding the Reverse of Protein Folding? A Lattice Simulation Analysis  

E-Print Network (OSTI)

Is Protein Unfolding the Reverse of Protein Folding? A Lattice Simulation Analysis Aaron R. Dinner1- turing conditions are commonly employed to study the mechanism by which a protein folds to its native of determining the mechanism by which a protein folds would be to use an accurate high-resolution model

Dinner, Aaron

269

Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis  

E-Print Network (OSTI)

Simulator Generation Using an Automaton Based Pipeline Model for Timing Analysis Rola Kassem, Mika the description of the pipeline. The description is transformed into an automaton and a set of resources which. The blocks communicate and synchronise with each other in order to handle the pipeline hazards. A pipeline

Paris-Sud XI, Université de

270

Simulation and Economic Analysis of Indirect Coal-to-Liquid Technology Coupling Carbon Capture and Storage  

Science Journals Connector (OSTI)

Simulation and Economic Analysis of Indirect Coal-to-Liquid Technology Coupling Carbon Capture and Storage ... How to ensure sufficient CO2 emission reductions for coal utilization in a low-carbon economy is an important issue regarding the development of CTL technology. ...

Li Zhou; Wen-Ying Chen; Xi-Liang Zhang; Tian-Yu Qi

2013-06-18T23:59:59.000Z

271

Simulated Task Environment for HCI Analysis of NextGen Maricel Medina-Mora  

E-Print Network (OSTI)

in the transmission process, and a reduction in delays, leading to enhanced sector productivity and capacityGen, Data Comm, simulated task environment, system analysis and design, usability, party line. INTRODUCTION route operational errors were voice communications related. Of those, 30 percent of the high severity

272

Asclepios: a Research Project-Team at INRIA for the Analysis and Simulation of Biomedical  

E-Print Network (OSTI)

Asclepios: a Research Project-Team at INRIA for the Analysis and Simulation of Biomedical Images N objectives are described and illustrated in this article. 1 Introduction 1.1 The revolution of biomedical is supported by a continually increasing number of biomedical devices providing in vivo measurements

Paris-Sud XI, Université de

273

Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint  

SciTech Connect

This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

Sparks, W.; Singer, M.

2010-06-01T23:59:59.000Z

274

Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage  

Science Journals Connector (OSTI)

Abstract A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected.

Yuan Zhang; Ke Yang; Xuemei Li; Jianzhong Xu

2014-01-01T23:59:59.000Z

275

GIS-Based Hazardous Gas Dispersion, Simulations and Analysis Debasis Karmakar, Samit Ray Chaudhuri and Eduardo Jose Maguino  

E-Print Network (OSTI)

GIS-Based Hazardous Gas Dispersion, Simulations and Analysis Debasis Karmakar, Samit Ray Chaudhuri methodology to be developed for hazardous gas dispersion connecting Disaster Simulation and Trace with GIS of Gas Dispersion Affected Area Overlaid on Satellite Image (using ArcGIS 9.2) Scenario-based Simulation

Shinozuka, Masanobu

276

Using EnergyPlus to Simulate the Dynamic Response of a Residential Building to Advanced Cooling Strategies: Preprint  

SciTech Connect

This study demonstrates the ability of EnergyPlus to accurately model complex cooling strategies in a real home with a goal of shifting energy use off peak and realizing energy savings. The house was retrofitted through the Sacramento Municipal Utility District's (SMUD) deep energy retrofit demonstration program; field tests were operated by the National Renewable Energy Laboratory (NREL). The experimental data were collected as part of a larger study and are used here to validate simulation predictions.

Booten, C.; Tabares-Velasco, P. C.

2012-08-01T23:59:59.000Z

277

Simulations and Experiments on Modifying the q-Profile for Advanced Tokamak Discharges on Alcator C-Mod  

NLE Websites -- All DOE Office Websites (Extended Search)

and Experiments on and Experiments on Modifying the q-Profile for Advanced Tokamak Discharges on Alcator C-Mod C. E. Kessel 1 , A. E. Hubbard 2 P. Bonoli 2 , M. Greenwald, J. Ko 2 , Y. Lin 2 , R. Parker 2 , A. E. Schmidt 2 , S. Scott 1 , J. Snipes, D. Terry 2 , G. Wallace 2 , R. Wilson 1 , S. Wolfe 2 , S. Wukitch 2 1 Princeton Plasma Physics Laboratory 2 Plasma Science and Fusion Center, MIT APS Division of Plasma Physics, November 2007 Controlling the q-Profile in Alcator C-Mod * Lower Hybrid current drive provides a strong source of non- inductive current at large minor radius * ICRF provides central and off-axis heating * Cryopump provides density control * MSE/Faraday rotation provide current profile diagnostics * Goal is to produce 100% non-inductive plasma current with LHCD and bootstrap current * Goal is to elevate the safety factor and control the q-profile

278

Community petascale project for accelerator science and simulation: Advancing computational science for future accelerators and accelerator technologies  

E-Print Network (OSTI)

al. 2005 Impact of SciDAC on accelerator projects across the171; Spentzouris P 2006 Accelerator modeling under SciDAC:of next-generation accelerator design, analysis, and

Spentzouris, Panagiotis

2008-01-01T23:59:59.000Z

279

System definition and analysis gas-fired industrial advanced turbine systems  

SciTech Connect

The objective is to define and analyze an engine system based on the gas fuel Advanced Turbine from Task 3. Using the cycle results of Task 3, a technical effort was started for Task 6 which would establish the definition of the engine flowpath and the key engine component systems. The key engine systems are: gas turbine engine overall flowpath; booster (low pressure compressor); intercooler; high pressure compressor; combustor; high pressure turbine; low pressure turbine and materials; engine system packaging; and power plant configurations. The design objective is to use the GE90 engine as the platform for the GE Industrial Advanced Turbine System. This objective sets the bounds for the engine flowpath and component systems.

Holloway, G.M.

1997-05-01T23:59:59.000Z

280

Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs  

SciTech Connect

The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

Jean Ragusa; Karen Vierow

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Experience with advanced nodal codes at YAEC  

SciTech Connect

Yankee Atomic Electric Company (YAEC) has been performing reload licensing analysis since 1969. The basic pressurized water reactor (PWR) methodology involves the use of LEOPARD for cross-section generation, PDQ for radial power distributions and integral control rod worth, and SIMULATE for axial power distributions and differential control rod worth. In 1980, YAEC began performing reload licensing analysis for the Vermont Yankee boiling water reactor (BWR). The basic BWR methodology involves the use of CASMO for cross-section generation and SIMULATE for three-dimensional power distributions. In 1986, YAEC began investigating the use of CASMO-3 for cross-section generation and the advanced nodal code SIMULATE-3 for power distribution analysis. Based on the evaluation, the CASMO-3/SIMULATE-3 methodology satisfied all requirements. After careful consideration, the cost of implementing the new methodology is expected to be offset by reduced computing costs, improved engineering productivity, and fuel-cycle performance gains.

Cacciapouti, R.J.

1990-01-01T23:59:59.000Z

282

Building simulation approaches for the training of automated data analysis tools in building energy management  

Science Journals Connector (OSTI)

Abstract The field of building energy management, which monitors and analyses the energy use of buildings with the aim to control and reduce energy expenditure, is seeing a rapid evolution. Automated meter reading approaches, harvesting data at hourly or even half-hourly intervals, create a large pool of data which needs analysis. Computer analysis by means of machine learning techniques allows automated processing of this data, invoking expert analysis where anomalies are detected. However, machine learning always requires a historical dataset to train models and develop a benchmark to define what constitutes an anomaly. Computer analysis by means of building performance simulation employs physical principles to predict energy behaviour, and allows the assessment of the behaviour of buildings from a pure modelling background. This paper explores how building simulation approaches can be fused into energy management practice, especially with a view to the production of artificial bespoke benchmarks where historical profiles are not available. A real accommodation block, which is subject to monitoring, is used to gather an estimation of the accuracy of this approach. The findings show that machine learning from simulation models has a high internal accuracy; comparison with actual metering data shows prediction errors in the system (20%) but still achieves a substantial improvement over industry benchmark values.

Pieter de Wilde; Carlos Martinez-Ortiz; Darren Pearson; Ian Beynon; Martin Beck; Nigel Barlow

2013-01-01T23:59:59.000Z

283

A fuzzy expert system for the human reliability analysis of crews in simulated nuclear emergency procedures  

Science Journals Connector (OSTI)

The use of Human Reliability Analysis (HRA) for a particular safety assessment is still a difficult problem. In order to perform a comparison of the available methods, the best approach is simulation. In this regard, the pilot study proposed by the Organisation for Economic Co-operation and Development (OECD) Halden Reactor Project (HRP) is intended to provide a first guidance in HRA methods evaluation through experimental data on crew performance in simulated scenarios. The quantitative evaluation of the results of these simulations in terms of crew performance and Human Error Probabilities (HEPs) is quite a difficult task. In this paper, a fuzzy expert system for systematically assessing crew performance is presented. The feasibility of the method is proved on a case study concerning a scenario of an incomplete scram in a Boiling Water Reactor (BWR).

E. Zio; P. Baraldi; M. Librizzi

2010-01-01T23:59:59.000Z

284

Application of a Tractive Energy Analysis to Quantify the Benefits of Advanced Efficiency Technologies Using Characteristic Drive Cycle Data  

SciTech Connect

Accurately predicting the fuel savings that can be achieved with the implementation of various technologies developed for fuel efficiency can be very challenging, particularly when considering combinations of technologies. Differences in the usage of highway vehicles can strongly influence the benefits realized with any given technology, which makes generalizations about fuel savings inappropriate for different vehicle applications. A model has been developed to estimate the potential for reducing fuel consumption when advanced efficiency technologies, or combinations of these technologies, are employed on highway vehicles, particularly medium- and heavy-duty trucks. The approach is based on a tractive energy analysis applied to drive cycles representative of the vehicle usage, and the analysis specifically accounts for individual energy loss factors that characterize the technologies of interest. This tractive energy evaluation is demonstrated by analyzing measured drive cycles from a long-haul trucking fleet and the results of an assessment of the fuel savings potential for combinations of technologies are presented. The results of this research will enable more reliable estimates of the fuel savings benefits that can be realized with particular technologies and technology combinations for individual trucking applications so that decision makers can make informed investment decisions for the implementation of advanced efficiency technologies.

LaClair, Tim J [ORNL

2012-01-01T23:59:59.000Z

285

Technical analysis of US Army Weapons Systems and related advanced technologies of military interest. Final report  

SciTech Connect

This report summarizes the activities and accomplishments of an US Army technology security project designed to identify and develop effective policy guidelines for militarily critical technologies in specific Army systems and in broad generic technology areas of military interest, Individual systems analyses are documented in separate Weapons Systems Technical Assessments (WSTAs) and the general generic technology areas are evaluated in the Advanced Technology Assessment Reports (ATARs), However, specific details of these assessments are not addressed here, only recommendations regarding aspects of the defined approach, methodology, and format are provided and discussed.

NONE

1991-06-14T23:59:59.000Z

286

An Advanced Analysis Technique for Transient Searches in Wide-Field Gamma-Ray Observatories  

E-Print Network (OSTI)

Wide-field gamma-ray telescopes typically have highly variable event-by-event resolution which leads to a number of unique and challenging analysis requirements -- particularly when conducting transient searches over multiple time scales. By generalizing the ideas of the Gaussian weighting analysis to point-spread functions of arbitrary shape and the regime of Poisson statistics, an efficient analysis which uses the event-by-event resolution is developed with a sensitivity similar to that of a well-implemented maximum likelihood analysis. In this development, the effect of a number of different approximations on the sensitivity and speed of the final analysis can be easily determined and tuned to the particular application. The analysis method is particularly well suited to transient detection in wide field-of-view gamma-ray observatories, and is currently used for the 40 s -- 3 hour transient search in the Milagro observatory.

M. F. Morales; D. A. Williams; T. DeYoung

2003-07-15T23:59:59.000Z

287

Using Network Analysis to Understand and Advance Falls Prevention Services and Programs.  

E-Print Network (OSTI)

??The purpose of this study was to understand referral linkages that exist among falls prevention agencies in a southern Ontario region using network analysis theory.… (more)

Dang, Phuc

2013-01-01T23:59:59.000Z

288

Using Advanced Technology-Rich Models for Regional And Global Economic Analysis of GHG Mitigation  

Science Journals Connector (OSTI)

This article presents the case for a detailed regional analysis of the economic impacts of GHG control, via a set of inter-connected...

Richard Loulou; Amit Kanudia

2002-01-01T23:59:59.000Z

289

Advances in Adaptive Data Analysis Vol. 5, No. 1 (2013) 1350005 (19 pages)  

E-Print Network (OSTI)

of artificially synthesized signals and two sets of practical signals: wind turbine noise and earthquake motion March 2013 Published 23 April 2013 Ensemble empirical mode decomposition (EEMD) is a noise-assisted data of analysis. To minimize the mode mixing problem, a noise-assisted data analysis method was proposed

Tsai, Pi-Wen

290

The SFM/ToF-SIMS combination for advanced chemically-resolved analysis at the nanoscale  

Science Journals Connector (OSTI)

Abstract The combination of Time-of-flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Scanning Force Microscopy (SFM) allows the 3D-compositional analysis of samples or devices. Typically, the topographical data obtained by SFM is used to determine the initial sample topography and the absolute depth of the ToF-SIMS analysis. Here ToF-SIMS and SFM data sets obtained on 2 prototypical samples are explored to go beyond conventional 3D-compositional analysis. SFM topographical and material contrast maps are combined with ToF-SIMS retrospective analysis to detect features that would have escaped a conventional ToF-SIMS data analysis. In addition, SFM data is used to extrapolate the chemical information beyond the spatial resolution of ToF-SIMS, allowing the mapping of the chemical composition at the nanoscale.

Laetitia Bernard; Jakob Heier; Wolfgang Paul; Hans J. Hug

2014-01-01T23:59:59.000Z

291

Value analysis of advanced heat rejection systems for geothermal power plants  

SciTech Connect

A computer model is developed to evaluate the performance of the binary geothermal power plants (Organic Rankine Cycles) with various heat rejection systems and their impact on the levelized cost of electricity. The computer model developed in this work is capable of simulating the operation of a geothermal power plant which consists mainly of an Organic Rankine Cycle (binary plants) with different types of working fluids such as pure hydrocarbons and some binary mixtures of the most promising combinations of hydrocarbons.

Bliem, C. [CJB Consulting, Longmont, CO (United States); Zangrando, F.; Hassani, V. [National Renewable Energy Lab., Golden, CO (United States)

1996-04-10T23:59:59.000Z

292

Going Beyond a Resnet Certification for Code-Compliant Simulations: A Sensitivity Analysis of Detailed Results of Three RESNET-Certified, Code-Compliant Residential Simulation Programs  

E-Print Network (OSTI)

2. Based on the values listed in COMPARISON OF SIMULATION RESULTS Table 2, two locations were simulated in this analysis, Houston and Dallas. All simulations used the TMY2 hourly weather data. Figure 1 and Table 3 shows the total energy use... 2500 2500 Conditioned Area 2500 Average Wall Height 8 8 Average Wall Height 8 8 Conditioned Volume 20000 CLIMATE CLIMATE CLIMATE Location Houston Houston Location Houston Houston Location Houston Weather File TMY2 TMY2 Weather File TMY2 TMY2 HDD...

Haberl, J.; Liu, Z.; Mukhopadhyay, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Montgomery, C.; Kim, H.

2010-01-01T23:59:59.000Z

293

Analysis of the differences in energy simulation results between building information modeling (BIM)-based simulation method and the detailed simulation method  

Science Journals Connector (OSTI)

Building Information Modeling (BIM)-based simulation models have been used to automate lengthy building energy modeling processes and it enable fast acquisition of results. Recent improvements of simulation programs have continued to the increase in ...

Seongchan Kim; Jeong-Han Woo

2011-12-01T23:59:59.000Z

294

ADVANCED EXERGY ANALYSIS APPLIED TO THE GAS-TURBINE BASED CO-GENERATION SYSTEM.  

E-Print Network (OSTI)

??The thesis focuses on the evaluation and improvement of a gas-turbine based co-generation system, from an exergetic point of view. A conventional exergy analysis has… (more)

AZZARELLI, GIUSEPPE

2008-01-01T23:59:59.000Z

295

New Advances in Shale Gas Reservoir Analysis Using Water Flowback Data  

E-Print Network (OSTI)

Shale gas reservoirs with multistage hydraulic fractures are commonly characterized by analyzing long-term gas production data, but water flowback data is usually not included in the analysis. However, this work shows there can be benefits...

Alkouh, Ahmad

2014-04-04T23:59:59.000Z

296

Advances in Adaptive Data Analysis Vol. 2, No. 4 (2010) 521543  

E-Print Network (OSTI)

, for example, Huang and Attoh- Okine, 2005 and Huang and Shen, 1999]. HHT has initiated a brand new approach]. Additionally, the original time series analysis method has also been extended to image and multi

297

A modified release analysis procedure using advanced froth flotation mechanisms: Technical report, March 1, 1996-May 31, 1996  

SciTech Connect

Recent studies indicate that the optimum separation performances achieved by multiple stage cleaning using various column flotation technologies and single stage cleaning using a Packed-Flotation Column are superior to the performance achieved by the traditional release procedure, especially in terms of pyritic sulfur rejection. This superior performance is believed to be the result of the advanced flotation mechanisms provided by column flotation technologies. Thus, the objective of this study is to develop a suitable process utilizing the advanced froth flotation mechanisms to characterize the true flotation response of a coal sample. Work in this reporting period concentrated on developing a modified coal flotation characterization procedure, termed as Advanced Flotation Washability (AFW) technique. The new apparatus used for this procedure is essentially a batch operated packed-column device equipped with a controlled wash water system. Several experiments were conducted using the AFW technique on a relatively high sulfur, -100 mesh Illinois No. 5 run-of-mine coal sample collected from a local coal preparation plant. Similar coal characterization experiments were also conducted using the traditional release and tree analysis procedures. The best performance curve generated using the AFW technique was found to be superior to the optimum curve produced by the traditional procedures. For example, at a combustible recovery of 80%, a 19% improvement in the reduction of the pyritic sulfur content was achieved by the AFW method while the ash reduction was also enhanced by 4%. Several tests are on-going to solidify the AFW procedure and verify the above finding by conducting Anova analyses to evaluate the repeatability of the AFW method and the statistical significance of the difference in the performance achieved from the traditional and modified coal characterization procedures.

Honaker, R.Q., Mohanty, M.K. [Southern Illinois Univ., Department of Mining Engineering, Carbondale, IL (United States)

1997-04-01T23:59:59.000Z

298

Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis  

SciTech Connect

Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

Paul Turinsky; Ross Hays

2011-09-02T23:59:59.000Z

299

Identification of Genes Associated With Progression and Metastasis of Advanced Cervical Cancers After Radiotherapy by cDNA Microarray Analysis  

SciTech Connect

Purpose: To identify a set of genes related to the progression and metastasis of advanced cervical cancer after radiotherapy and to establish a predictive method. Methods and Materials: A total of 28 patients with cervical cancer (15 stage IIIB, 13 stage IVA patients) who underwent definitive radiotherapy between May 1995 and April 2001 were included in this study. All patients were positive for human papillomavirus infection and harbored the wild-type p53 gene. The expression profiles of 14 tumors with local failure and multiple distant metastasis and 14 tumors without metastasis (cancer free) obtained by punch biopsy were compared before treatment, using a cDNA microarray consisting of 23,040 human genes. Results: Sixty-three genes were selected on the basis of a clustering analysis, and the validity of these genes was confirmed using a cross-validation test. The most accurate prediction was achieved for 63 genes (sensitivity, 78.8%; specificity, 38.1%). Some of these genes were already known to be associated with metastasis via chromosomal instability (TTK, BUB1B), extracellular matrix components (matrix metalloproteinase 1 [MMP-1]), and carcinogenesis (protein phosphatase 1 regulatory subunit 7 [PPP1R7]). A 'predictive score' system was developed that could predict the probability for development of metastases using leave-one-out cross-validation methods. Conclusions: The present results may provide valuable information for identified predictive markers and novel therapeutic target molecules for progression and metastasis of advanced cervical cancer.

Harima, Yoko, E-mail: harima@takii.kmu.ac.j [Department of Radiology, Takii Hospital, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 (Japan); Ikeda, Koshi; Utsunomiya, Keita; Shiga, Toshiko; Komemushi, Atsushi [Department of Radiology, Takii Hospital, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi, Osaka 570-8507 (Japan); Kojima, Hiroyuki; Nomura, Motoo; Kamata, Minoru; Sawada, Satoshi [Department of Radiology, Hirakata Hospital, Kansai Medical University, 2-3 Shinmachi, Hirakata, Osaka 573-1191 (Japan)

2009-11-15T23:59:59.000Z

300

Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) verification and validation plan. version 1.  

SciTech Connect

The objective of the U.S. Department of Energy Office of Nuclear Energy Advanced Modeling and Simulation Waste Integrated Performance and Safety Codes (NEAMS Waste IPSC) is to provide an integrated suite of computational modeling and simulation (M&S) capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive-waste storage facility or disposal repository. To meet this objective, NEAMS Waste IPSC M&S capabilities will be applied to challenging spatial domains, temporal domains, multiphysics couplings, and multiscale couplings. A strategic verification and validation (V&V) goal is to establish evidence-based metrics for the level of confidence in M&S codes and capabilities. Because it is economically impractical to apply the maximum V&V rigor to each and every M&S capability, M&S capabilities will be ranked for their impact on the performance assessments of various components of the repository systems. Those M&S capabilities with greater impact will require a greater level of confidence and a correspondingly greater investment in V&V. This report includes five major components: (1) a background summary of the NEAMS Waste IPSC to emphasize M&S challenges; (2) the conceptual foundation for verification, validation, and confidence assessment of NEAMS Waste IPSC M&S capabilities; (3) specifications for the planned verification, validation, and confidence-assessment practices; (4) specifications for the planned evidence information management system; and (5) a path forward for the incremental implementation of this V&V plan.

Bartlett, Roscoe Ainsworth; Arguello, Jose Guadalupe, Jr.; Urbina, Angel; Bouchard, Julie F.; Edwards, Harold Carter; Freeze, Geoffrey A.; Knupp, Patrick Michael; Wang, Yifeng; Schultz, Peter Andrew; Howard, Robert (Oak Ridge National Laboratory, Oak Ridge, TN); McCornack, Marjorie Turner

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Grand Challenges in Modeling, Simulation and Analysis: Extraction and Visualization of Power Systems  

SciTech Connect

Threats to the national electric power grid often require the coupling of real-time state data with look-ahead or forecasting models to provide timely disruption warnings. However, successful accomplishment of this capability presents a grand challenge in modeling, simulation, and analysis. Analysis of inter-area oscillatory modes may provide a new path to anticipate power system stability and address this grand challenge. An algorithm is presented for the identification and analysis of such modes from high resolution phasor measurement data that might indicate a pathway to meet this grand challenge. The process outlined includes data collection, conditioning, extraction of the primary oscillatory frequency, and determination of participating areas of the system.

Fernandez, Steven J [ORNL] [ORNL; Omitaomu, Olufemi A [ORNL] [ORNL

2010-01-01T23:59:59.000Z

302

Proceedings of the The IEEE Computer Society's 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'04)  

E-Print Network (OSTI)

, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'04) 1526-7539/04 $20.00 © 2004, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'04) 1526-7539/04 $20.00 © 2004, Analysis, and Simulation of Computer and Telecommunications Systems (MASCOTS'04) 1526-7539/04 $20.00 © 2004

Menascé, Daniel A.

303

Incorporation of a risk analysis approach for the nuclear fuel cycle advanced transparency framework.  

SciTech Connect

Proliferation resistance features that reduce the likelihood of diversion of nuclear materials from the civilian nuclear power fuel cycle are critical for a global nuclear future. A framework that monitors process information continuously can demonstrate the ability to resist proliferation by measuring and reducing diversion risk, thus ensuring the legitimate use of the nuclear fuel cycle. The automation of new nuclear facilities requiring minimal manual operation makes this possible by generating instantaneous system state data that can be used to track and measure the status of the process and material at any given time. Sandia National Laboratories (SNL) and the Japan Atomic Energy Agency (JAEA) are working in cooperation to develop an advanced transparency framework capable of assessing diversion risk in support of overall plant transparency. The ''diversion risk'' quantifies the probability and consequence of a host nation diverting nuclear materials from a civilian fuel cycle facility. This document introduces the details of the diversion risk quantification approach to be demonstrated in the fuel handling training model of the MONJU Fast Reactor.

Mendez, Carmen Margarita (Sociotecnia Solutions, LLC); York, David L.; Inoue, Naoko (Japan Atomic Energy Agency); Kitabata, Takuya (Japan Atomic Energy Agency); Vugrin, Eric D.; Vugrin, Kay White; Rochau, Gary Eugene; Cleary, Virginia D.

2007-05-01T23:59:59.000Z

304

Advanced BWR core component designs and the implications for SFD analysis  

SciTech Connect

Prior to the DF-4 boiling water reactor (BWR) severe fuel damage (SFD) experiment conducted at the Sandia National Laboratories in 1986, no experimental data base existed for guidance in modeling core component behavior under postulated severe accident conditions in commercial BWRs. This paper will present the lessons learned from the DF-4 experiment (and subsequent German CORA BWR SFD tests) and the impact on core models in the current generation of SFD codes. The DF-4 and CORA BWR test assemblies were modeled on the core component designs circa 1985; that is, the 8 x 8 fuel assembly with two water rods and a cruciform control blade constructed of B{sub 4}C-filled tubelets. Within the past ten years, the state-of-the-art with respect to BWR core component development has out-distanced the current SFD experimental data base and SFD code capabilities. For example, modern BWR control blade design includes hafnium at the tips and top of each control blade wing for longer blade operating lifetimes; also water rods have been replaced by larger water channels for better neutronics economy; and fuel assemblies now contain partial-length fuel rods, again for better neutronics economy. This paper will also discuss the implications of these advanced fuel assembly and core component designs on severe accident progression and on the current SFD code capabilities.

Ott, L.J.

1997-02-01T23:59:59.000Z

305

Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.  

SciTech Connect

The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

2005-01-01T23:59:59.000Z

306

Forward period analysis and the long term simulation of a periodic Hamiltonian system  

E-Print Network (OSTI)

The period of a Morse oscillator and mathematical pendulum system are obtained, accurate to 100 significant digits, by forward period analysis (FPA). From these results, the long-term [0, 10^60] (time unit) solutions, which overlap from the Planck time to the age of the universe, are computed reliably and quickly with a parallel multiple-precision Taylor series (PMT) scheme. The application of FPA to periodic systems can reduce the computation loops of long-term reliable simulation from O(t^(1+1/M)) to O(lnt+t/h0) where T is the period, M the order and h0 a constant step-size. This scheme provides a way to generate reference solutions to test other schemes' long-term simulations.

Pengfei Wang

2014-10-23T23:59:59.000Z

307

Data analysis Pipeline for EChO end-to-end simulations  

E-Print Network (OSTI)

Atmospheric spectroscopy of extrasolar planets is an intricate business. Atmospheric signatures typically require a photometric precision of $1 \\times 10^{-4}$ in flux over several hours. Such precision demands high instrument stability as well as an understanding of stellar variability and an optimal data reduction and removal of systematic noise. In the context of the EChO mission concept, we here discuss the data reduction and analysis pipeline developed for the EChO end-to-end simulator EChOSim. We present and discuss the step by step procedures required in order to obtain the final exoplanetary spectrum from the EChOSim`raw data' using a simulated observation of the secondary eclipse of the hot-Neptune 55 Cnc e.

Waldmann, Ingo P

2014-01-01T23:59:59.000Z

308

Dynamic Human Reliability Analysis: Benefits and Challenges of Simulating Human Performance  

SciTech Connect

To date, there has been considerable work on dynamic event trees and other areas related to dynamic probabilistic safety assessment (PSA). The counterpart to these efforts in human reliability analysis (HRA) has centered on the development of specific methods to account for the dynamic nature of human performance. In this paper, the author posits that the key to dynamic HRA is not in the development of specific methods but in the utilization of cognitive modeling and simulation to produce a framework of data that may be used in quantifying the likelihood of human error. This paper provides an overview of simulation approaches to HRA; reviews differences between first, second, and dynamic generation HRA; and outlines potential benefits and challenges of this approach.

R. L. Boring

2007-06-01T23:59:59.000Z

309

Performance analysis of co-firing waste materials in an advanced pressurized fluidized-bed combustor  

SciTech Connect

The co-firing of waste materials with coal in utility scale power plants has emerged as an effective approach to produce energy and manage municipal wastes. Leading this approach is the atmospheric fluidized-bed combustor (AFBC). It has demonstrated its commercial acceptance in the utility market as a reliable source of power by burning a variety of waste and alternative fuels. The application of pressurized fluidized-bed combustor (PFBC) technology, although relatively new, can provide significant enhancements to the efficient production of electricity while maintaining the waste management benefits of AFBC. A study was undertaken to investigate the technical and economical feasibility of co-firing a PFBC with coal and municipal and industrial wastes. Focus was placed on the production of electricity and the efficient disposal of wastes for application in central power station and distributed locations. Issues concerning waste material preparation and feed, PFBC operation, plant emissions, and regulations are addressed. The results and conclusions developed are generally applicable to current and advanced PFBC design concepts. Wastes considered for co-firing include municipal solid waste (MSW), sewage sludge, and industrial de-inking sludge. Conceptual designs of two power plants rated at 250 MWe and 150 MWe were developed. Heat and material balances were completed for each plant along with environmental issues. With the PFBC`s operation at high temperature and pressure, efforts were centered on defining feeding systems capable of operating at these conditions. Air emissions and solid wastes were characterized to assess the environmental performance comparing them to state and Federal regulations. This paper describes the results of this investigation, presents conclusions on the key issues, and provides recommendations for further evaluation.

Bonk, D.L.; McDaniel, H.M. [USDOE Morgantown Energy Technology Center, WV (United States); DeLallo, M.R. Jr.; Zaharchuk, R. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1995-07-01T23:59:59.000Z

310

Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor  

SciTech Connect

A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)

Stauff, N.E.; Klim, T.K.; Taiwo, T.A. [Argonne National Laboratory, Argonne, IL (United States); Fiorina, C. [Politecnico di Milano, Milan (Italy); Franceschini, F. [Westinghouse Electric Company LLC., Cranberry Township, Pennsylvania (United States)

2013-07-01T23:59:59.000Z

311

Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model  

SciTech Connect

The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

D. E. Shropshire; W. H. West

2005-11-01T23:59:59.000Z

312

ECE533 Advanced MOS Concepts and VLSI Design Spring 2012  

E-Print Network (OSTI)

ECE533 Advanced MOS Concepts and VLSI Design Spring 2012 S.K. Islam, 504 Min Kao Building, 974, Prentice Hall/Pearson 2003, ISBN 0-13-090996-3 CMOS Digital Integrated Circuits Analysis and Design, Sung Circuit Design, Layout, and Simulation, IEEE Press, 1998. · Ken Martin, Digital Integrated Circuit Design

Tennessee, University of

313

Using the BEopt Automated Residential Simulation Test Suite to Enable Comparative Analysis Between Energy Simulation Engines: Preprint  

SciTech Connect

Verification and validation are crucial software quality control procedures when developing and implementing models. This is particularly important as a variety of stakeholders rely on accurate predictions from building simulation programs. This study uses the BEopt Automated Residential Simulation Test Suite (BARTS) to facilitate comparison of two energy simulation engines across various building components and includes models that isolate the impacts of specific building components on annual energy consumption. As a case study, BARTS has been used to identify important discrepancies between the engines for several components of the building models; these discrepancies are caused by differences in the models used by the engines or coding errors.

Tabares-Velasco, P. C.; Maguire, J.; Horowitz, S.; Christensen, C.

2014-09-01T23:59:59.000Z

314

Ancillary Services Analysis of an Offshore Wind Farm Cluster – Technical Integration Steps of a Simulation Tool  

Science Journals Connector (OSTI)

Abstract In this publication, the authors present methodology and example results for the analysis of ancillary services of an offshore wind farm cluster and its electrical power system. Thereby the operation tool Wind Cluster Management System (WCMS) is used as simulation tool to evaluate certain planning scenarios. Emphasis is made on two topics: 1) the integration of high voltage direct current (HVDC) technology to the WCMS, 2) the ancillary service analysis. As examples, voltage source converter based HVDC (VSC-HVDC) and the provision of reserve respectively balancing power are discussed in detail. The analyzed study case considers the Kriegers Flak area while the associated power system connects wind farms to Sweden, Denmark and Germany.

Tobias Hennig; Lothar Löwer; Luis Mariano Faiella; Sebastian Stock; Malte Jansen; Lutz Hofmann; Kurt Rohrig

2014-01-01T23:59:59.000Z

315

Advanced Concepts Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop Advanced Concepts Working Group Facilitator: John J. Petrovic Scribe: Sherry Marin Advanced Storage Techniques/ Approaches in Priority Order 1. Crystalline Nanoporous Materials (15) 2. Polymer Microspheres (12) Self-Assembled Nanocomposites (12) 3. Advanced Hydrides (11) Metals - Organic (11) 4. BN Nanotubes (5) Hydrogenated Amorphous Carbon (5) 5. Mesoporous materials (4) Bulk Amorphous Materials (BAMs) (4) 6. Iron Hydrolysis (3) 7. Nanosize powders (2) 8. Metallic Hydrogen (1) Hydride Alcoholysis (1) Overarching R&D Questions for All Advanced Materials * Maximum storage capacity - theoretical model * Energy balance / life cycle analysis * Hydrogen absorption / desorption kinetics * Preliminary cost analysis - potential for low cost, high

316

Science-Based Simulation Model of Human Performance for Human Reliability Analysis  

SciTech Connect

Human reliability analysis (HRA), a component of an integrated probabilistic risk assessment (PRA), is the means by which the human contribution to risk is assessed, both qualitatively and quantitatively. However, among the literally dozens of HRA methods that have been developed, most cannot fully model and quantify the types of errors that occurred at Three Mile Island. Furthermore, all of the methods lack a solid empirical basis, relying heavily on expert judgment or empirical results derived in non-reactor domains. Finally, all of the methods are essentially static, and are thus unable to capture the dynamics of an accident in progress. The objective of this work is to begin exploring a dynamic simulation approach to HRA, one whose models have a basis in psychological theories of human performance, and whose quantitative estimates have an empirical basis. This paper highlights a plan to formalize collaboration among the Idaho National Laboratory (INL), the University of Maryland, and The Ohio State University (OSU) to continue development of a simulation model initially formulated at the University of Maryland. Initial work will focus on enhancing the underlying human performance models with the most recent psychological research, and on planning follow-on studies to establish an empirical basis for the model, based on simulator experiments to be carried out at the INL and at the OSU.

Dana L. Kelly; Ronald L. Boring; Ali Mosleh; Carol Smidts

2011-10-01T23:59:59.000Z

317

Implementing advanced data analysis techniques in near-real-time materials accounting  

SciTech Connect

Materials accounting for special nuclear material in fuel cycle facilities is implemented more efficiently by applying decision analysis methods, based on estimation and detection theory, to analyze process data for missing material. These methods are incorporated in the computer program DECANAL, which calculates sufficient statistics containing all accounting information, sets decision thresholds, and compares these statistics to the thresholds in testing the hypothesis H/sub 0/ of no missing material against the alternative H/sub 1/ that material is missing. DECANAL output provides alarm charts indicating the likelihood of missing material and plots of statistics that estimate materials loss. This program is a useful tool for aggregating and testing materials accounting data for timely detection of missing material.

Markin, J.T.; Baker, A.L.; Shipley, J.P.

1980-01-01T23:59:59.000Z

318

Aromatization of propane: Techno-economic analysis by multiscale “kinetics-to-process” simulation  

Science Journals Connector (OSTI)

Abstract This paper addresses the techno-economic analysis of the propane aromatization process, by adopting a novel kinetics-to-process approach. The recent interest in this technological route derives from the development of new third generation biorefinery concepts, in which, algal oil is subjected to catalytic hydrodeoxygenation processes for the production of (Hydrotreated Renewable Jet) HRJ fuels. Beside biofuels, co-production of large amounts of propane is observed, which can be upgraded by a catalytic conversion to aromatics on zeolites. Kinetic studies of propane aromatization over H-ZSM-5 zeolite in a wide range of conversions are reported in the literature. Based on these results, a general kinetic model of propane aromatization has been developed. The revised kinetic scheme is then embedded in a process simulation, performed with the commercial code SimSci PRO/II by Schneider Electric. Basing on the process simulation and on available price assessments, a techno-economic analysis has been performed to show limits as well as potentialities of the proposed layout.

Michele Corbetta; Flavio Manenti; Carlo Pirola; Mark V. Tsodikov; Andrey V. Chistyakov

2014-01-01T23:59:59.000Z

319

Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.  

SciTech Connect

This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

Saffer, Shelley (Sam) I.

2014-12-01T23:59:59.000Z

320

Simulation and Analysis of HP/LP EGR for Heavy-Duty Applications  

Energy.gov (U.S. Department of Energy (DOE))

High- and low-pressure exhaust gas recirculation can be combined for an advanced airpath control strategy

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Simulation and analysis of Magnetically-Applied Pressure-Shear (MAPS) experiments.  

SciTech Connect

A new experimental technique to measure material shear strength at high pressures has been developed for use on magnetohydrodynamic (MHD) drive pulsed power platforms. The technique is referred to as Magnetically-Applied Pressure-Shear (MAPS). By applying an external static magnetic field to the sample region, the MHD drive directly induces a shear stress wave in addition to the usual longitudinal stress wave. Strength is probed by passing this shear wave through a sample material where the transmissible shear stress is limited to the sample strength. The magnitude of the transmitted shear wave is measured via a transverse velocity interferometry system (VISAR) from which the sample strength is determined. The strength of materials is defined as the ability of a material to sustain deviatoric (shear) stresses. Strength is an important aspect of the response of materials subjected to compression to high pressure. Beyond the elastic response, material strength will govern at what pressure and to what extent a material will plastically deform. The MAPS technique cleverly exploits the property that, for a von Mises yield criterion at a given longitudinal stress, the maximum amplitude shear wave that can be transmitted is limited by the strength at that stress level. Successful fielding of MAPS experiments to measure shear stresses relies upon correct numerical simulation of the experiment. Complex wave interactions among forward and reflected longitudinal and shear waves, as well as the advancing magnetic diffusion front of the MHD drive, can make the design of the experiment complicated. Careful consideration must be given to driver, sample, and anvil materials; to the thicknesses of the driver, sample and anvil layers; as well as to the timing of the interacting waves. This paper will present and analyze the 2D MHD simulations used to design the MAPS experiments. The MAPS experiments are modeled using Sandia's ALEGRA-MHD simulation code. ALEGRA-MHD is an operator-split, multi-physics, multi-material, arbitrary lagrangian-eulerian code developed to model magnetic implosion, ceramic fracture, and electromagnetic launch. We will detail the numerical investigations into MHD shear generation, longitudinal and shear stress coupling, timing of wave interactions, and transmission of shear at material interfaces.

Haill, Thomas A.; Alexander, C. Scott; Asay, James Russell

2011-06-01T23:59:59.000Z

322

Market and equipment performance analysis for the application of coal-based fuels/advanced combustion systems: Commercial and small industrial applications: Volume B, Appendices  

SciTech Connect

In March 1985, Burns and Roe Services Corporation (BRSC) under Contract No. AC22-84PC72571 with the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC) initiated a task entitled ''Market and Equipment Performance Analysis for the Application of Coal-Based Fuels/Advanced Combustion Systems.'' This volume contains the following Appendices: Commercial sector applications of coal based fuels and advanced technologies, EOS Technologies, Inc.; Estimation of fuel use and population for industrial boilers <50 mm Btu/hr and direct fired combustors <100 mm Btu/hr firing oil and gas, PEI Associates; Characteristics of oil and gas fired boilers; Characteristics of oil and gas fired process heaters; Environmental permitting considerations; States air emission rules and regulations applying to commercial/industrial boilers and process heaters <100 mm Btu/hr heat input; Advanced coal combustion systems; Application of advanced coal combustion systems to watertube boilers; Application of advanced coal combustion systems to firetube boilers; and Application of advanced coal combustion systems to process heaters.

Not Available

1986-05-01T23:59:59.000Z

323

Advanced organic analysis and analytical methods development: FY 1995 progress report. Waste Tank Organic Safety Program  

SciTech Connect

This report describes the work performed during FY 1995 by Pacific Northwest Laboratory in developing and optimizing analysis techniques for identifying organics present in Hanford waste tanks. The main focus was to provide a means for rapidly obtaining the most useful information concerning the organics present in tank waste, with minimal sample handling and with minimal waste generation. One major focus has been to optimize analytical methods for organic speciation. Select methods, such as atmospheric pressure chemical ionization mass spectrometry and matrix-assisted laser desorption/ionization mass spectrometry, were developed to increase the speciation capabilities, while minimizing sample handling. A capillary electrophoresis method was developed to improve separation capabilities while minimizing additional waste generation. In addition, considerable emphasis has been placed on developing a rapid screening tool, based on Raman and infrared spectroscopy, for determining organic functional group content when complete organic speciation is not required. This capability would allow for a cost-effective means to screen the waste tanks to identify tanks that require more specialized and complete organic speciation to determine tank safety.

Wahl, K.L.; Campbell, J.A.; Clauss, S.A. [and others

1995-09-01T23:59:59.000Z

324

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced...

325

Sandia National Laboratories: Sandia and General Motors: Advancing...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECAbout ECFacilitiesCRFSandia and General Motors: Advancing Clean Combustion Engines with Predictive Simulation Tools Sandia and General Motors: Advancing Clean Combustion...

326

2014 Advanced Grid Modeling Peer Review Presentations - Day Two...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

with Advanced Computing - Yousu Chen, PNNL Advancing the Adoption of High Performance Computing for Time Domain Simulation - Liang Min, LLNL, Carol Woodward, LLNL An...

327

Development of 3rd Generation Advanced High Strength Steels ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach Development of 3rd Generation Advanced High Strength Steels (AHSS) with...

328

A framework of motion capture system based human behaviours simulation for ergonomic analysis  

E-Print Network (OSTI)

With the increasing of computer capabilities, Computer aided ergonomics (CAE) offers new possibilities to integrate conventional ergonomic knowledge and to develop new methods into the work design process. As mentioned in [1], different approaches have been developed to enhance the efficiency of the ergonomic evaluation. Ergonomic expert systems, ergonomic oriented information systems, numerical models of human, etc. have been implemented in numerical ergonomic software. Until now, there are ergonomic software tools available, such as Jack, Ergoman, Delmia Human, 3DSSPP, and Santos, etc. [2-4]. The main functions of these tools are posture analysis and posture prediction. In the visualization part, Jack and 3DSSPP produce results to visualize virtual human tasks in 3-dimensional, but without realistic physical properties. Nowadays, with the development of computer technology, the simulation of physical world is paid more attention. Physical engines [5] are used more and more in computer game (CG) field. The a...

Ma, Ruina; Bennis, Fouad; Ma, Liang

2011-01-01T23:59:59.000Z

329

Advanced Windows Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Exterior of Advanced Windows Test Facility Exterior of Advanced Windows Test Facility Advanced Windows Test Facility This multi-room laboratory's purpose is to test the performance and properties of advanced windows and window systems such as electrochromic windows, and automatically controlled shutters and blinds. The lab simulates real-world office spaces. Embedded instrumentation throughout the lab records solar gains and losses for specified time periods, weather conditions, energy use, and human comfort indicators. Electrochromic glazings promise to be a major advance in energy-efficient window technology, helping to achieve the goal of transforming windows and skylights from an energy liability in buildings to an energy source. The glazing can be reversibly switched from a clear to a transparent, colored

330

Advanced CSP Systems Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

and sensitivity analyses for assessing system performance and economics of a solar thermal power plant * Acquired tools and methods to develop integrated models to...

331

Analysis of advanced biofuels.  

SciTech Connect

Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

2010-09-01T23:59:59.000Z

332

Advanced robot locomotion.  

SciTech Connect

This report contains the results of a research effort on advanced robot locomotion. The majority of this work focuses on walking robots. Walking robot applications include delivery of special payloads to unique locations that require human locomotion to exo-skeleton human assistance applications. A walking robot could step over obstacles and move through narrow openings that a wheeled or tracked vehicle could not overcome. It could pick up and manipulate objects in ways that a standard robot gripper could not. Most importantly, a walking robot would be able to rapidly perform these tasks through an intuitive user interface that mimics natural human motion. The largest obstacle arises in emulating stability and balance control naturally present in humans but needed for bipedal locomotion in a robot. A tracked robot is bulky and limited, but a wide wheel base assures passive stability. Human bipedal motion is so common that it is taken for granted, but bipedal motion requires active balance and stability control for which the analysis is non-trivial. This report contains an extensive literature study on the state-of-the-art of legged robotics, and it additionally provides the analysis, simulation, and hardware verification of two variants of a proto-type leg design.

Neely, Jason C.; Sturgis, Beverly Rainwater; Byrne, Raymond Harry; Feddema, John Todd; Spletzer, Barry Louis; Rose, Scott E.; Novick, David Keith; Wilson, David Gerald; Buerger, Stephen P.

2007-01-01T23:59:59.000Z

333

X-RAY FLUORESCENCE ANALYSIS OF HANFORD LOW ACTIVITY WASTE SIMULANTS  

SciTech Connect

Savannah River National Laboratory (SRNL) was requested to develop an x-ray fluorescence (XRF) spectrometry method for elemental characterization of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) pretreated low activity waste (LAW) stream to the LAW Vitrification Plant. The WTP is evaluating the potential for using XRF as a rapid turnaround technique to support LAW product compliance and glass former batching. The overall objective of this task was to develop XRF analytical methods that provide the rapid turnaround time (<8 hours) requested by the WTP, while providing sufficient accuracy and precision to determine waste composition variations. For Phase 1a, SRNL (1) evaluated, selected, and procured an XRF instrument for WTP installation, (2) investigated three XRF sample methods for preparing the LAW sub-sample for XRF analysis, and (3) initiated scoping studies on AN-105 (Envelope A) simulant to determine the instrument's capability, limitations, and optimum operating parameters. After preliminary method development on simulants and the completion of Phase 1a activities, SRNL received approval from WTP to begin Phase 1b activities with the objective of optimizing the XRF methodology. Three XRF sample methods used for preparing the LAW sub-sample for XRF analysis were studied: direct liquid analysis, dried spot, and fused glass. The direct liquid method was selected because its major advantage is that the LAW can be analyzed directly without any sample alteration that could bias the method accuracy. It also is the fastest preparation technique--a typical XRF measurement could be completed in < 1hr after sample delivery. Except for sodium, the method detection limits (MDLs) for the most important analytes in solution, the hold point elements, were achieved by this method. The XRF detection limits are generally adequate for glass former batching and product composition reporting, but may be inadequate for some species (Hg, Cd, and Ba) important to land disposal restrictions. The long term precision (24-hr) also was good with percent relative standard deviations (%RSDs) < 10 % for most elements in filtered solution. There were some issues with a few elements precipitating out of solution over time affecting the long term precision of the method. Additional research will need to be performed to resolve this sample stability problem. Activities related to methodology optimization in the Phase 1b portion of the study were eliminated as a result of WTP request to discontinue remaining activities due to funding reduction. These preliminary studies demonstrate that developing an XRF method to support the LAW vitrification plant is feasible. When funding is restored for the WTP, it is recommended that optimization of this technology should be pursued.

Jurgensen, A; David Missimer, D; Ronny Rutherford, R

2006-05-08T23:59:59.000Z

334

Searching for z ~ 6 Objects with the HST Advanced Camera for Surveys: Preliminary Analysis of a Deep Parallel Field  

E-Print Network (OSTI)

Recent results suggest that z ~ 6 marks the end of the reionization era. A large sample of objects at z ~ 6, therefore, will be of enormous importance, as it will enable us to observationally determine the exact epoch of the reionization and the sources that are responsible for it. With the HST Advanced Camera for Surveys (ACS) coming on line, we now have an unique opportunity to discover a significant number of objects at z ~ 6. The pure parallel mode implemented for the Wide Field Camera (WFC) has greatly enhanced this ability. We present our preliminary analysis of a deep ACS/WFC parallel field at |b|=74.4^o. We find 30 plausible z ~ 6 candidates, all of which have S/N > 7 in the F850LP-band. The major source of contamination could be faint Galactic cool dwarfs, and we estimated that they would contribute at most 4 objects to our candidate list. We derived the cumulative number density of galaxies at 6.0 <= z <= 6.5 as 2.3 arcmin^{-2} to a limit of 28.0 mag in the F850LP-band, which is slightly higher than our prediction. If this is not due to an underestimated contamination rate, it could possibly imply that the faint-end slope of the z ~ 6 luminosity function is steeper than alpha=-1.6. At the very least, our result suggests that galaxies with L

Haojing Yan; Rogier A. Windhorst; Seth H. Cohen

2003-01-29T23:59:59.000Z

335

Reliability Analysis for the Advanced Electric Power Grid: From Cyber Control and Communication to Physical Manifestations of Failure  

Science Journals Connector (OSTI)

The advanced electric power grid is a cyber-physical system comprised of ... of the device and the reliability of the power grid on which they are deployed. The IEEE118...

Ayman Z. Faza; Sahra Sedigh…

2009-01-01T23:59:59.000Z

336

Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling and Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced heavy...

337

Advanced Combustion Technology to Enable High Efficiency Clean...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Combustion System + Air Handling Air Handling + Sensors + Calibration Low P, High Flow Rate EGR + VVA - Simulated Robustness Advanced Combustion Concepts - Simulated 0.0...

338

Origins of Analysis Methods in Energy Simulation Programs Used for High Performance Commercial Buildings  

E-Print Network (OSTI)

Current designs of high performance buildings utilize hourly building energy simulations of complex, interacting systems. Such simulations need to quantify the benefits of numerous features including: thermal mass, HVAC systems and, in some cases...

Oh, Sukjoon

2013-08-19T23:59:59.000Z

339

Monte Carlo Simulation-based Sensitivity Analysis of the Model of a Thermal-Hydraulic Passive System  

E-Print Network (OSTI)

1 Monte Carlo Simulation-based Sensitivity Analysis of the Model of a Thermal-Hydraulic Passive, and for this reason are expected to improve the safety of nuclear power plants. However, uncertainties are present Engineering and System Safety 107 (2012) 90-106" DOI : 10.1016/j.ress.2011.08.006 #12;2 power plants because

Paris-Sud XI, Université de

340

Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock-capturing  

E-Print Network (OSTI)

U N C O R R EC TED PR O O F Investigation of the hydrodynamics of flash floods in ephemeral channels: Scaling analysis and simulation using a shock-capturing flow model incorporating the effects; revised 29 August 2005; accepted 11 September 2005 Abstract Flow and infiltration during flash floods

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Advanced Vehicle Testing & Evaluation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation vss029karner2011o.pdf More Documents & Publications Advanced Vehicle Testing & Evaluation Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and...

342

Vehicle Technologies Office: 2011 Advanced Power Electronics...  

Energy Savers (EERE)

2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters...

343

Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

20098 Annual Progress Report describing accomplishments in: modeling and simulation; integration and validation; laboratory testing and benchmarking; operational and fleet testing; thermal management; friction and wear; and aerodynamics.

344

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report  

Energy.gov (U.S. Department of Energy (DOE))

2009 annual progress report describing accomplishments in: modeling and simulation; integration and validation; laboratory testing and benchmarking; operational and fleet testing; thermal management; friction and wear; and aerodynamics.

345

Process Systems Engineering R&D for Advanced Fossil Energy Systems  

SciTech Connect

This presentation will examine process systems engineering R&D needs for application to advanced fossil energy (FE) systems and highlight ongoing research activities at the National Energy Technology Laboratory (NETL) under the auspices of a recently launched Collaboratory for Process & Dynamic Systems Research. The three current technology focus areas include: 1) High-fidelity systems with NETL's award-winning Advanced Process Engineering Co-Simulator (APECS) technology for integrating process simulation with computational fluid dynamics (CFD) and virtual engineering concepts, 2) Dynamic systems with R&D on plant-wide IGCC dynamic simulation, control, and real-time training applications, and 3) Systems optimization including large-scale process optimization, stochastic simulation for risk/uncertainty analysis, and cost estimation. Continued R&D aimed at these and other key process systems engineering models, methods, and tools will accelerate the development of advanced gasification-based FE systems and produce increasingly valuable outcomes for DOE and the Nation.

Zitney, S.E.

2007-09-11T23:59:59.000Z

346

DOE Issues Funding Opportunity for Advanced Computational and Modeling  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Funding Opportunity for Advanced Computational and Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System DOE Issues Funding Opportunity for Advanced Computational and Modeling Research for the Electric Power System May 23, 2012 - 8:36am Addthis The objective of this Funding Opportunity Announcement (FOA) is to leverage scientific advancements in mathematics and computation for application to power system models and software tools, with the long-term goal of enabling real-time protection and control based on wide-area sensor measurements. Specifically, this FOA focuses on two foundational research challenges: 1) handling of large data sets to improve suitability for operational (and/or planning) models and analysis; and 2) "faster than real-time" simulations that improve understanding of

347

Simulation analysis of LER and dose tradeoffs for EUV resist with photo-decomposable quencher  

E-Print Network (OSTI)

Tradeoffs for EUV Resists with Photo-Decomposable Quenchersconduct a simulation study of photo-decomposable quencher (to be marginal. Keywords: Photo-Decomposable Quenchers (

Bhattarai, Suchit

2014-01-01T23:59:59.000Z

348

Development of Boiling Water Reactor Nuclear Power Plant Simulator for Human Reliability Analysis Education and Research.  

E-Print Network (OSTI)

??This thesis discusses the development of Full scope BWR Simulator developed for human reliability course initiated at The Ohio State University. Human System Interface (HSI)… (more)

Gupta, Atul

2013-01-01T23:59:59.000Z

349

Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis  

SciTech Connect

We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 ?s, and the obtained trajectory of C{sub ?} atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

Naritomi, Yusuke [Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan)] [Department of Supramolecular Biology, Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Fuchigami, Sotaro, E-mail: sotaro@tsurumi.yokohama-cu.ac.jp [Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan)] [Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan)

2013-12-07T23:59:59.000Z

350

DOE Hydrogen Analysis Repository: Powertrain Systems Analysis Toolkit  

NLE Websites -- All DOE Office Websites (Extended Search)

Powertrain Systems Analysis Toolkit (PSAT) Powertrain Systems Analysis Toolkit (PSAT) Project Summary Full Title: Powertrain Systems Analysis Toolkit (PSAT) Project ID: 122 Principal Investigator: Aymeric Rousseau Brief Description: PSAT is a forward-looking model that simulates fuel economy and performance in a realistic manner -- taking into account transient behavior and control system characteristics. It can simulate an unrivaled number of predefined configurations (conventional, electric, fuel cell, series hybrid, parallel hybrid, and power split hybrid). Keywords: Hybrid electric vehicles (HEV); fuel cell vehicles (FCV); vehicle characteristics Purpose Simulate performance and fuel economy of advanced vehicles to support U.S. DOE R&D activities Performer Principal Investigator: Aymeric Rousseau

351

Analysis and forecast improvements from simulated satellite water vapor profiles and rainfall using a global data assimilation system  

SciTech Connect

The potential improvements of analyses and forecasts from the use of satellite-observed rainfall and water vapor measurements from the Defense Meteorological Satellite Program Sensor Microwave (SSM) T-1 and T-2 instruments are investigated in a series of observing system simulation experiments using the Air Force Phillips Laboratory (formerly Air Force Geophysics Laboratory) data assimilation system. Simulated SSM radiances are used directly in a radiance retrieval step following the conventional optimum interpolation analysis. Simulated rainfall rates in the tropics are used in a moist initialization procedure to improve the initial specification of divergence, moisture, and temperature. Results show improved analyses and forecasts of relative humidity and winds compared to the control experiment in the tropics and the Southern Hemisphere. Forecast improvements are generally restricted to the first 1-3 days of the forecast. 27 refs., 11 figs.

Nehrkorn, T.; Hoffman, R.N.; Louis, J.F.; Isaacs, R.G.; Moncet, J.L. (Atmospheric and Environmental Research, Inc., Cambridge, MA (United States))

1993-10-01T23:59:59.000Z

352

Analysis of a commercial absorption-refrigeration water-ammonia (ARWA) cycle using Aspen Plus simulator  

Science Journals Connector (OSTI)

The Robur absorption-refrigeration-water-ammonia (ARWA) cycle is analyzed using Aspen Plus flowsheet simulator. The results are compared with experimental and some manufacturer data reported in the open literature. Among performance parameters analyzed ... Keywords: Aspen, COP, absorption, ammonia, refrigeration, simulation, water

N. A. Darwish; S. H. Al-Hashimi; A. S. Al-Mansoori

2008-08-01T23:59:59.000Z

353

Towards the Integration of APECS and VE-Suite for Virtual Power Plant Co-Simulation  

SciTech Connect

Process modeling and simulation tools are widely used for the design and operation of advanced power generation systems. These tools enable engineers to solve the critical process systems engineering problems that arise throughout the lifecycle of a power plant, such as designing a new process, troubleshooting a process unit or optimizing operations of the full process. To analyze the impact of complex thermal and fluid flow phenomena on overall power plant performance, the Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has developed the Advanced Process Engineering Co-Simulator (APECS). The APECS system is an integrated software suite that combines process simulation (e.g., Aspen Plus) and high-fidelity equipment simulations such as those based on computational fluid dynamics (CFD), together with advanced analysis capabilities including case studies, sensitivity analysis, stochastic simulation for risk/uncertainty analysis, and multi-objective optimization. In this paper we discuss the initial phases of the integration of the APECS system with the immersive and interactive virtual engineering software, VE-Suite, developed at Iowa State University and Ames Laboratory. VE-Suite uses the ActiveX (OLE Automation) controls in the Aspen Plus process simulator wrapped by the CASI library developed by Reaction Engineering International to run process/CFD co-simulations and query for results. This integration represents a necessary step in the development of virtual power plant co-simulations that will ultimately reduce the time, cost, and technical risk of developing advanced power generation systems.

Zitney, S.E.; McCorkle, D. (Iowa State University, Ames, IA); Yang, C. (Reaction Engineering International, Salt Lake City, UT); Jordan, T.; Swensen, D. (Reaction Engineering International, Salt Lake City, UT); Bryden, M. (Iowa State University, Ames, IA)

2007-05-01T23:59:59.000Z

354

Modelling and Simulation of a 3kW Residential Photovoltaic for Harmonics Analysis  

Science Journals Connector (OSTI)

Growing concern for environmental issues and advancement in power electronic technology resulted in fast development of energy production using renewable energy resources (RES). These natural resources play an important role on power system generation ... Keywords: renewable energy resources, photovoltaic, inverter, harmonics, THD

Muhyaddin J. H. Rawa; Dave W. P. Thomas; Mark Sumner

2013-04-01T23:59:59.000Z

355

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE  

E-Print Network (OSTI)

THE CENTER FOR INTEGRATIVE BIOMEDICAL COMPUTING: ADVANCING BIOMEDICAL SCIENCE WITH OPEN SOURCE the new Center for Integrative Biomedical Com- puting (CIBC) whose mission is to produce high performance im- age analysis, simulation, and visualization software in support of biomedical research. Software

Utah, University of

356

The HuMAnS toolbox, a homogenous framework for motion capture, analysis and simulation  

E-Print Network (OSTI)

measures given by multiple sensors. They allow as well simulating precisely human motion, with a muscle environment. These models can be interconnected and processed then with the help of Scilab's powerful

Paris-Sud XI, Université de

357

Analysis and simulation of dynamic response behavior of Scots pine trees to wind loading  

Science Journals Connector (OSTI)

This paper presents an empirical approach for the decomposition, simulation, and reconstruction of wind-induced stem displacement of plantation-grown Scots ... tree motion patterns in response to non-destructive

Dirk Schindler; Hannes Fugmann; Helmut Mayer

2013-11-01T23:59:59.000Z

358

Surface Wind Regionalization over Complex Terrain: Evaluation and Analysis of a High-Resolution WRF Simulation  

Science Journals Connector (OSTI)

This study analyzes the daily-mean surface wind variability over an area characterized by complex topography through comparing observations and a 2-km-spatial-resolution simulation performed with the Weather Research and Forecasting (WRF) model ...

Pedro A. Jiménez; J. Fidel González-Rouco; Elena García-Bustamante; Jorge Navarro; Juan P. Montávez; Jordi Vilŕ-Guerau de Arellano; Jimy Dudhia; Antonio Muńoz-Roldan

2010-02-01T23:59:59.000Z

359

Enabling microscopic simulators to perform system-level analysis of viscoelastic flows  

E-Print Network (OSTI)

State-of-the-art methods for simulating viscoelastic flows couple the conservation equations for mass and momentum with a model from kinetic theory that describes the microstructural state of the polymer. Introduction of ...

Anwar, Zubair

2008-01-01T23:59:59.000Z

360

Numerical Simulation/Analysis and Computer Aided Engineering for Virtual Protyping of Heavy Ground Vehicle  

E-Print Network (OSTI)

Heavy Ground Vehicles. The numerical simulation technology capabilities are fully explored to specifically tackle the kinematics, dynamics, statics, and structural problems, some with the added realism of today's 3D high fidelity graphical environment...

Abd. Rahim, Mohd. Razi

2010-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass to Ethanol: Process Simulation, Validation and Sensitivity Analysis of a Gasifier and a Bioreactor.  

E-Print Network (OSTI)

??The Gasification-Fermentation process for the production of fuel-grade ethanol from agricultural biomass is being investigated at Oklahoma State University, Stillwater. Process simulation software, Aspen Plus… (more)

Rao, Sirigudi Rahul

2005-01-01T23:59:59.000Z

362

Simulation Analysis of Biomass Gasification in an Autothermal Gasifier Using Aspen Plus  

Science Journals Connector (OSTI)

Based on simulation, biomass gasification in an autothermal gasifier is analyzed, the effects of the equivalence ... The results indicate that the temperature in the gasifier increases when the ER increases, whil...

Zhongbin Fu; Yaning Zhang; Hui Liu; Bo Zhang…

2013-01-01T23:59:59.000Z

363

Architectural Design and Complexity Analysis of Large-Scale Cortical Simulation on a Hybrid Computing Platform  

E-Print Network (OSTI)

- performance computing platform for large-scale mathematical models. Traditional computing architecture cannot hybrid computing architecture for the simulation and evaluation of large-scale associative neural memory models. The proposed architecture achieves very high computing and communication performances

Qiu, Qinru

364

Evaluation of WRF mesoscale simulations and particle trajectory analysis for the MILAGRO field campaign  

E-Print Network (OSTI)

Accurate numerical simulations of the complex wind flows in the Mexico City Metropolitan Area (MCMA) can be an invaluable tool for interpreting the MILAGRO field campaign results. This paper uses three methods to evaluate ...

de Foy, B.

365

A high-performance workflow system for subsurface simulation  

Science Journals Connector (OSTI)

The U.S. Department of Energy (DOE) recently invested in developing a numerical modeling toolset called ASCEM (Advanced Simulation Capability for Environmental Management) to support modeling analyses at legacy waste sites. This investment includes the ... Keywords: ASCEM, Akuna, Amanzi, Contaminant transport, Model calibration, Uncertainty analysis, Vadose zone, Workflows

Vicky L. Freedman, Xingyuan Chen, Stefan Finsterle, Mark D. Freshley, Ian Gorton, Luke J. Gosink, Elizabeth H. Keating, Carina S. Lansing, William A. M. Moeglein, Christopher J. Murray, George S. H. Pau, Ellen Porter, Sumit Purohit, Mark Rockhold, Karen L. Schuchardt, Chandrika Sivaramakrishnan, Velimir V. Vessilinov, Scott R. Waichler

2014-05-01T23:59:59.000Z

366

Addendum to the Building America House Simulation Protocols  

Energy.gov (U.S. Department of Energy (DOE))

The House Simulation Protocols (HSP) provide guidance to program partners and managers so that energy savings for new construction and retrofit projects can be compared alongside each other. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

367

CHEMICAL ANALYSIS OF SIMULATED HIGH LEVEL WASTE GLASSES TO SUPPORT SULFATE SOLUBILITY MODELING  

SciTech Connect

The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms both within the DOE complex and to some extent at U.K. sites. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerated cleanup missions. Much of the previous work on improving sulfate retention in waste glasses has been done on an empirical basis, making it difficult to apply the findings to future waste compositions despite the large number of glass systems studied. A more fundamental, rather than empirical, model of sulfate solubility in glass, under development at Sheffield Hallam University (SHU), could provide a solution to the issues of sulfate solubility. The model uses the normalized cation field strength index as a function of glass composition to predict sulfate capacity, and has shown early success for some glass systems. The objective of the current scope is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DOE waste vitrification efforts, allowing for enhanced waste loadings and waste throughput. A series of targeted glass compositions was selected to resolve data gaps in the current model. SHU fabricated these glasses and sent samples to the Savannah River National Laboratory (SRNL) for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for simulated waste glasses fabricated SHU in support of sulfate solubility model development. A review of the measured compositions revealed that there are issues with the B{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations missing their targeted values by a significant amount for several of the study glasses. SHU is reviewing the fabrication of these glasses and the chemicals used in batching them to identify the source of these issues. The measured sulfate concentrations were all below their targeted values. This is expected, as the targeted concentrations likely exceeded the solubility limit for sulfate in these glass compositions. Some volatilization of sulfate may also have occurred during fabrication of the glasses. Measurements of the other oxides in the study glasses were reasonably close to their targeted values

Fox, K.; Marra, J.

2014-08-14T23:59:59.000Z

368

Advances in X-Ray Chemical Analysis, Japan, 45 (2014) ISSN 0911-7806 Role of Infrared Absorption Spectroscopy in the Forensic Analysis of  

E-Print Network (OSTI)

Spectroscopy in the Forensic Analysis of Wakayama Curry Arsenic Poisoning Case Anthony T. TU and Jun KAWAI #12 80523, U. S. A. 606-8501 Role of Infrared Absorption Spectroscopy in the Forensic Analysis of Wakayama-8 X-ray fluorescence analysis was the key scientific evidence for the forensic analysis

Jun, Kawai

369

A modified release analysis procedure using advanced froth flotation mechanisms. Final technical report, September 1, 1995--August 31, 1996  

SciTech Connect

Recent studies indicate that the optimum separation performances achieved by multiple stage cleaning using various column flotation technologies and single stage cleaning using a Packed-Flotation Column are superior to the performance achieved by the traditional release procedure, especially in terms of pyritic sulfur rejection. This superior performance is believed to be the result of the advanced flotation mechanisms provided by column flotation technologies. Thus, the objective of this study was to develop a suitable process utilizing the advanced froth flotation mechanisms to characterize the true flotation response of a coal sample. This investigation resulted in the development of a modified coal flotation characterization procedure, termed as the Advanced Flotation Washability (AFW) technique. The apparatus used for this procedure is a batch operated Packed-Column device which provides enhanced selectivity due to a plug-flow environment and a deep froth zone. The separation performance achieved by the AFW procedure was found to be superior to those produced by the conventional tree and release procedures for three nominally -100 mesh coal samples and two micronized samples. The largest difference in separation performance was obtained on the basis of product pyritic sulfur content. A comparison conducted between the AFW and the release procedures at an 80% recovery value showed that the AFW technique provided a 19% improvement in the reduction of pyritic sulfur. For an Illinois No. 5 coal sample, this improvement corresponded to a reduction in pyritic sulfur content from 1.38% to 0.70% or a total rejection of 66%. Micronization of the sample improved the pyritic sulfur rejection to 85% while rejecting 92% of the ash-bearing material. In addition, the separation performance provided by the AFW procedure was superior to that obtained from multiple cleaning stages using a continuous Packed-Column under both kinetic and carrying-capacity limiting conditions.

Honaker, R.Q.; Mohanty, M.K. [Southern Illinois Univ., Carbondale, IL (United States)

1997-05-01T23:59:59.000Z

370

AGATA - Advanced Gamma Tracking Array  

E-Print Network (OSTI)

The Advanced GAmma Tracking Array (AGATA) is a European project to develop and operate the next generation gamma-ray spectrometer. AGATA is based on the technique of gamma-ray energy tracking in electrically segmented high-purity germanium crystals. This technique requires the accurate determination of the energy, time and position of every interaction as a gamma ray deposits its energy within the detector volume. Reconstruction of the full interaction path results in a detector with very high efficiency and excellent spectral response. The realization of gamma-ray tracking and AGATA is a result of many technical advances. These include the development of encapsulated highly-segmented germanium detectors assembled in a triple cluster detector cryostat, an electronics system with fast digital sampling and a data acquisition system to process the data at a high rate. The full characterization of the crystals was measured and compared with detector-response simulations. This enabled pulse-shape analysis algorithms, to extract energy, time and position, to be employed. In addition, tracking algorithms for event reconstruction were developed. The first phase of AGATA is now complete and operational in its first physics campaign. In the future AGATA will be moved between laboratories in Europe and operated in a series of campaigns to take advantage of the different beams and facilities available to maximize its science output. The paper reviews all the achievements made in the AGATA project including all the necessary infrastructure to operate and support the spectrometer.

S. Akkoyun; A. Algora; B. Alikhani; F. Ameil; G. de Angelis; L. Arnold; A. Astier; A. Ataç; Y. Aubert; C. Aufranc; A. Austin; S. Aydin; F. Azaiez; S. Badoer; D. L. Balabanski; D. Barrientos; G. Baulieu; R. Baumann; D. Bazzacco; F. A. Beck; T. Beck; P. Bednarczyk; M. Bellato; M. A. Bentley; G. Benzoni; R. Berthier; L. Berti; R. Beunard; G. Lo Bianco; B. Birkenbach; P. G. Bizzeti; A. M. Bizzeti-Sona; F. Le Blanc; J. M. Blasco; N. Blasi; D. Bloor; C. Boiano; M. Borsato; D. Bortolato; A. J. Boston; H. C. Boston; P. Bourgault; P. Boutachkov; A. Bouty; A. Bracco; S. Brambilla; I. P. Brawn; A. Brondi; S. Broussard; B. Bruyneel; D. Bucurescu; I. Burrows; A. Bürger; S. Cabaret; B. Cahan; E. Calore; F. Camera; A. Capsoni; F. Carrió; G. Casati; M. Castoldi; B. Cederwall; J. -L. Cercus; V. Chambert; M. El Chambit; R. Chapman; L. Charles; J. Chavas; E. Clément; P. Cocconi; S. Coelli; P. J. Coleman-Smith; A. Colombo; S. Colosimo; C. Commeaux; D. Conventi; R. J. Cooper; A. Corsi; A. Cortesi; L. Costa; F. C. L. Crespi; J. R. Cresswell; D. M. Cullen; D. Curien; A. Czermak; D. Delbourg; R. Depalo; T. Descombes; P. Désesquelles; P. Detistov; C. Diarra; F. Didierjean; M. R. Dimmock; Q. T. Doan; C. Domingo-Pardo; M. Doncel; F. Dorangeville; N. Dosme; Y. Drouen; G. Duchęne; B. Dulny; J. Eberth; P. Edelbruck; J. Egea; T. Engert; M. N. Erduran; S. Ertürk; C. Fanin; S. Fantinel; E. Farnea; T. Faul; M. Filliger; F. Filmer; Ch. Finck; G. de France; A. Gadea; W. Gast; A. Geraci; J. Gerl; R. Gernhäuser; A. Giannatiempo; A. Giaz; L. Gibelin; A. Givechev; N. Goel; V. González; A. Gottardo; X. Grave; J. Gr?bosz; R. Griffiths; A. N. Grint; P. Gros; L. Guevara; M. Gulmini; A. Görgen; H. T. M. Ha; T. Habermann; L. J. Harkness; H. Harroch; K. Hauschild; C. He; A. Hernández-Prieto; B. Hervieu; H. Hess; T. Hüyük; E. Ince; R. Isocrate; G. Jaworski; A. Johnson; J. Jolie; P. Jones; B. Jonson; P. Joshi; D. S. Judson; A. Jungclaus; M. Kaci; N. Karkour; M. Karolak; A. Ka?ka?; M. Kebbiri; R. S. Kempley; A. Khaplanov; S. Klupp; M. Kogimtzis; I. Kojouharov; A. Korichi; W. Korten; Th. Kröll; R. Krücken; N. Kurz; B. Y. Ky; M. Labiche; X. Lafay; L. Lavergne; I. H. Lazarus; S. Leboutelier; F. Lefebvre; E. Legay; L. Legeard; F. Lelli; S. M. Lenzi; S. Leoni; A. Lermitage; D. Lersch; J. Leske; S. C. Letts; S. Lhenoret; R. M. Lieder; D. Linget; J. Ljungvall; A. Lopez-Martens; A. Lotodé; S. Lunardi; A. Maj; J. van der Marel; Y. Mariette; N. Marginean; R. Marginean; G. Maron; A. R. Mather; W. M?czy?ski; V. Mendéz; P. Medina; B. Melon; R. Menegazzo; D. Mengoni; E. Merchan; L. Mihailescu; C. Michelagnoli; J. Mierzejewski; L. Milechina; B. Million; K. Mitev; P. Molini; D. Montanari; S. Moon; F. Morbiducci; R. Moro; P. S. Morrall; O. Möller; A. Nannini; D. R. Napoli; L. Nelson; M. Nespolo; V. L. Ngo; M. Nicoletto; R. Nicolini; Y. Le Noa; P. J. Nolan; M. Norman; J. Nyberg; A. Obertelli; A. Olariu; R. Orlandi; D. C. Oxley; C. Özben; M. Ozille; C. Oziol; E. Pachoud; M. Palacz; J. Palin; J. Pancin; C. Parisel; P. Pariset; G. Pascovici; R. Peghin; L. Pellegri; A. Perego; S. Perrier; M. Petcu; P. Petkov; C. Petrache; E. Pierre; N. Pietralla; S. Pietri; M. Pignanelli; I. Piqueras; Z. Podolyak; P. Le Pouhalec; J. Pouthas; D. Pugnére; V. F. E. Pucknell; A. Pullia; B. Quintana; R. Raine; G. Rainovski; L. Ramina; G. Rampazzo; G. La Rana; M. Rebeschini; F. Recchia; N. Redon; M. Reese; P. Reiter; P. H. Regan; S. Riboldi; M. Richer; M. Rigato; S. Rigby; G. Ripamonti; A. P. Robinson; J. Robin; J. Roccaz; J. -A. Ropert; B. Rossé; C. Rossi Alvarez; D. Rosso; B. Rubio; D. Rudolph; F. Saillant; E. ?ahin; F. Salomon; M. -D. Salsac; J. Salt; G. Salvato; J. Sampson; E. Sanchis; C. Santos; H. Schaffner; M. Schlarb; D. P. Scraggs; D. Seddon; M. ?enyi?it; M. -H. Sigward; G. Simpson; J. Simpson; M. Slee; J. F. Smith; P. Sona; B. Sowicki; P. Spolaore; C. Stahl; T. Stanios; E. Stefanova; O. Stézowski; J. Strachan; G. Suliman; P. -A. Söderström; J. L. Tain; S. Tanguy; S. Tashenov; Ch. Theisen; J. Thornhill; F. Tomasi; N. Toniolo; R. Touzery; B. Travers; A. Triossi; M. Tripon; K. M. M. Tun-Lanoë; M. Turcato; C. Unsworth; C. A. Ur; J. J. Valiente-Dobon; V. Vandone; E. Vardaci; R. Venturelli; F. Veronese; Ch. Veyssiere; E. Viscione; R. Wadsworth; P. M. Walker; N. Warr; C. Weber; D. Weisshaar; D. Wells; O. Wieland; A. Wiens; G. Wittwer; H. J. Wollersheim; F. Zocca; N. V. Zamfir; M. Zi?bli?ski; A. Zucchiatti

2011-11-24T23:59:59.000Z

371

Advances in diapriid (Hymenoptera: diapriidae) systematics, with contributions to cybertaxonomy and the analysis of rRNA sequence data  

E-Print Network (OSTI)

) .................................... 115 5.6 Results for 6P (28S D2, using k-words of length 4) ................................. 116 5.7 Results for analysis 6N (28S D2 bracketed data alone and recoded using ARCO characters...) ........................................................................... 117 5.8 Results for analysis 6Q (using k-word size 4 on 28S D2 bracketed data alone) ........................................................................................................ 118 5.9 Results for analysis 6Q (elison k-word recoding...

Yoder, Matthew Jon

2009-05-15T23:59:59.000Z

372

NREL: Wind Research - Controls Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Controls Analysis Controls Analysis Photo of a man working inside the hub of a large 3-blades turbine. Working in the hub of Controls Advanced Research Turbine (CART) at the National Wind Technology Center (NWTC) Man in wind turbine hub viewed from inside a wind turbine's blade. At the National Wind Technology Center (NWTC), we design, implement, and test advanced wind turbine controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are simulated using specialized modeling software. The resulting advanced controls algorithms are field tested on the NWTC's Controls Advanced Research Turbines (CARTs). NWTC researchers are also studying blade pitch and generator torque, and employing advanced sensors to optimize power capture and reduce wind

373

Game theoretic analysis and agent-based simulation of electricity markets  

E-Print Network (OSTI)

In power system analysis, uncertainties in the supplier side are often difficult to estimate and have a substantial impact on the result of the analysis. This thesis includes preliminary work to approach the difficulties. ...

Ono, Teruo, S.M. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

374

The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips  

E-Print Network (OSTI)

The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger latency buffering section of pixel chips. A fully shared architecture and a distributed one have been described at behavioral level and simulated; the resulting memory occupancy statistics and hit loss rates have subsequently been compared.

S. Marconi; E. Conti; P. Placidi; J. Christiansen; T. Hemperek

2014-08-14T23:59:59.000Z

375

Thermo-Hydrological-Mechanical Analysis of a Clay Barrier for Radioactive Waste Isolation: Probabilistic Calibration and Advanced Modeling  

E-Print Network (OSTI)

............................................................................. 129 5.2 Micro Structural Model .............................................................................. 136 5.3 Interaction Between Micro and Macro Structures ..................................... 138 6. MODELING OF FULL SCALE FEBEX INSITU... Conditions .................................................... 154 6.2.4 Results of Thermo-Hydro-Mechanical Analysis ............................ 156 6.2.5 Analysis of Mechanical Behavior .................................................. 161 6...

Dontha, Lakshman

2012-07-16T23:59:59.000Z

376

Analysis of Borderline Substitution/Electron Transfer Pathways from Direct ab initio MD Simulations  

SciTech Connect

Ab initio molecular dynamics simulations were carried out for the borderline reaction pathways in the reaction of CH2O?- with CH3Cl. The simulations reveal distinctive features of three types of mechanisms passing through the SN2-like transition state (TS): (i) a direct formation of SN2 products, (ii) a direct formation of ET products, and (iii) a 2-step formation of ET products via the SN2 valley. The direct formation of the ET product through the SN2-like TS appears to be more favorable at higher temperatures. The 2-step process depends on the amount of energy that goes into the C-C stretching mode.

Yamataka, H (Osaka University, Japan); Aida, M A. (Department of Chemistry, Graduate School of Science, Hiroshima University); Dupuis, Michel (BATTELLE (PACIFIC NW LAB))

2001-12-01T23:59:59.000Z

377

Temporal Downscaling of Daily Gauged Precipitation by Application of a Satellite Product for Flood Simulation in a Poorly Gauged Basin and Its Evaluation with Multiple Regression Analysis  

Science Journals Connector (OSTI)

The study demonstrates that the temporal downscaling of rain gauge–measured precipitation with satellite-based precipitation estimates enhances the accuracy of hydrological simulations, especially for flood duration. Multiple regression analysis ...

Masahiro Ryo; Oliver C. Saavedra Valeriano; Shinjiro Kanae; Tinh Dang Ngoc

2014-04-01T23:59:59.000Z

378

E-Print Network 3.0 - advanced methods properties Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering, Ohio State University Collection: Materials Science 16 Advances in Modeling and Simulation of Nonstationary Arrival Processes Summary: Advances in Modeling...

379

E-Print Network 3.0 - advanced-cycle systems final Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

instruction; eventqueue.advance(cyclesconsumed); eventqueue.advance(cycles... goal of simulation is to enable rapid exploration and validation of system designs before...

380

E-Print Network 3.0 - advanced microwave sounding Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

power systems. It is described as an advanced modern tool ready for the direct use in simulation... in a number of advanced commercial software available by the ... Source:...

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

Dutton, S.P.

1996-04-30T23:59:59.000Z

382

Analysis and optimization of the Emergency Department at Beth Israel Deaconess Medical Center via simulation  

E-Print Network (OSTI)

We develop a simulation model based on patient data from 2/1/05 to 1/31/06 that represents the operations of the Emergency Department at Beth Israel Deaconess Medical Center, a Harvard teaching hospital and a leading medical ...

Noyes, Clay W

2008-01-01T23:59:59.000Z

383

Analysis of instability growth and collisionless relaxation in thermionic converters using 1-D PIC simulations  

SciTech Connect

This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 {times} 10{sup {minus}11} seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 {times} 10{sup {minus}10} seconds. Since the electron-electron collision rate of 10{sup 9} Hz and the electron atom collision rate of 10{sup 7} Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism.

Kreh, B.B.

1994-12-01T23:59:59.000Z

384

Identification of Potential Efficiency Opportunities in Internal Combustion Engines Using a Detailed Thermodynamic Analysis of Engine Simulation Results  

SciTech Connect

Current political and environmental concerns are driving renewed efforts to develop techniques for improving the efficiency of internal combustion engines. A detailed thermodynamic analysis of an engine and its components from a 1st and 2nd law perspective is necessary to characterize system losses and to identify efficiency opportunities. We have developed a method for performing this analysis using engine-simulation results obtained from WAVE , a commercial engine-modeling software package available from Ricardo, Inc. Results from the engine simulation are post-processed to compute thermodynamic properties such as internal energy, enthalpy, entropy, and availability (or exergy), which are required to perform energy and availability balances of the system. This analysis is performed for all major components (turbocharger, intercooler, EGR cooler, etc.) of the engine as a function of crank angle degree for the entire engine cycle. With this information, we are able to identify potential efficiency opportunities as well as guide engine experiments for exploring new technologies for recovering system losses.

Edwards, Kevin Dean [ORNL; Wagner, Robert M [ORNL; Graves, Ronald L [ORNL

2008-01-01T23:59:59.000Z

385

9 - An economic and engineering analysis of a 700 °C advanced ultra-supercritical pulverized coal power plant  

Science Journals Connector (OSTI)

Abstract: EPRI has completed an engineering and economic evaluation of advanced ultra-supercritical pulverized coal (A-USC PC) technology to determine its generating efficiency and cost effectiveness. For a location in the United States, absent any cost imposed for CO2 emissions, the cost of electricity from the A-USC PC design is slightly higher than that from a conventional supercritical PC design. However, as the CO2/MWh emitted by the A-USC PC plant is lower, imposing a relatively modest cost of $25 per tonne of CO2 shifts the economics in its favor. The lower CO2 emissions also lower the cost of carbon capture and storage once integrated with the A-USC PC power plant.

J.M. Wheeldon; J.N. Phillips

2013-01-01T23:59:59.000Z

386

An Analysis of Methanol and Hydrogen Production via High-Temperature Electrolysis Using the Sodium Cooled Advanced Fast Reactor  

SciTech Connect

Integration of an advanced, sodium-cooled fast spectrum reactor into nuclear hybrid energy system (NHES) architectures is the focus of the present study. A techno-economic evaluation of several conceptual system designs was performed for the integration of a sodium-cooled Advanced Fast Reactor (AFR) with the electric grid in conjunction with wind-generated electricity. Cases in which excess thermal and electrical energy would be reapportioned within an integrated energy system to a chemical plant are presented. The process applications evaluated include hydrogen production via high temperature steam electrolysis and methanol production via steam methane reforming to produce carbon monoxide and hydrogen which feed a methanol synthesis reactor. Three power cycles were considered for integration with the AFR, including subcritical and supercritical Rankine cycles and a modified supercritical carbon dioxide modified Brayton cycle. The thermal efficiencies of all of the modeled power conversions units were greater than 40%. A thermal efficiency of 42% was adopted in economic studies because two of the cycles either performed at that level or could potentially do so (subcritical Rankine and S-CO2 Brayton). Each of the evaluated hybrid architectures would be technically feasible but would demonstrate a different internal rate of return (IRR) as a function of multiple parameters; all evaluated configurations showed a positive IRR. As expected, integration of an AFR with a chemical plant increases the IRR when “must-take” wind-generated electricity is added to the energy system. Additional dynamic system analyses are recommended to draw detailed conclusions on the feasibility and economic benefits associated with AFR-hybrid energy system operation.

Shannon M. Bragg-Sitton; Richard D. Boardman; Robert S. Cherry; Wesley R. Deason; Michael G. McKellar

2014-03-01T23:59:59.000Z

387

A Study on Uncertainty Analysis of Safety Systems of Advanced Heavy Water Reactor using Fuzzy Set Theory  

Science Journals Connector (OSTI)

Inherent to any reliability calculation is a degree of uncertainty in ... ) are also being used in the risk analysis for quantifying the basic event uncertainty and ... of probabilistic and fuzzy methodologies fo...

Rao K. Durga; V. Gopika; M. H. Prasad…

2004-01-01T23:59:59.000Z

388

The Centralized Reliability Data Organization (CREDO); an Advanced Nuclear Reactor Reliability, Availability, and Maintainability Data Bank and Data Analysis Center  

Science Journals Connector (OSTI)

The Centralized Reliability Data Organization (CREDO) is a data bank and data analysis center, which since 1985 has been jointly ... of Technology Support Programs and Japan’s Power Reactor and Nuclear Fuel Devel...

H. E. Knee

1991-01-01T23:59:59.000Z

389

Simulation and rheological analysis of Hanford Tank 241-SY-101. Final report  

SciTech Connect

Rheological characterization and small scale simulation of Hanford Tank 241-SY-101 has been initiated to aid in the remediation efforts for the Department of Energy Hanford Site. The study has been initiated in response to growing concerns about the potential flammability hazard pertaining to the periodic release of up to 10,000 cubic feet of hydrogen, nitrous oxide, nitrogen, and ammonia gases. Various stimulants emulating the radioactive waste stored in this tank have been used to ascertain the rheological parameters of the waste, simulate the ongoing processes of gas generation and release phenomenon inside the tank, and determine the feasibility of jet mixing to achieve a controlled release of the gas mixture.

Sams, E.C.; Tennant, R.A.; Piccola, J.P. Jr.

1993-10-01T23:59:59.000Z

390

Airflow Simulation and Energy Analysis in Ventilated Room with a New Type of Air Conditioning  

E-Print Network (OSTI)

quality will be achieved. Our study aims to simulate airflow in the ventilated room with this new type of air conditioning. Radiation is taken into account by the energy conservation in the system. The following section presents algorithm, thermal..., the governing equations to be solved are the conservation equations for continuity, momentum, and energy as well as the equations for turbulent kinetic energy and its dissipation rate. The buoyancy effect is accounted for by Boussinesq approximation...

Liu, D.; Tang, G.; Zhao, F.

2006-01-01T23:59:59.000Z

391

A new simulation approach and its integration with perturbation analysis in tandem queueing systems  

E-Print Network (OSTI)

. (August 1992) Ki- Young Jeong, B. E. (Industrial Engr. ), Korea University, Korea Chair of Advisory Committee: Dr. Don T, Phillips This research presents a new simulation approach (NSA) to a single-server tandem queueing system (TQS) and empirically... resource, a single name can be assigned to several different resource types with each resource having its own capacity. 2. 1. 2. Components and structures of an EDSA The following components and structures of an EDSA are well explained by Law P. aw...

Jeong, Ki-Young

1992-01-01T23:59:59.000Z

392

Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis  

SciTech Connect

An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

Morris, J P; Johnson, S M

2008-03-26T23:59:59.000Z

393

Simulations of Fracture and Fragmentation of Geologic Materials using Combined FEM/DEM Analysis  

SciTech Connect

Results are presented from a study investigating the effect of explosive and impact loading on geological media using the Livermore Distinct Element Code (LDEC). LDEC was initially developed to simulate tunnels and other structures in jointed rock masses with large numbers of intact polyhedral blocks. However, underground structures in jointed rock subjected to explosive loading can fail due to both rock motion along preexisting interfaces and fracture of the intact rock mass itself. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model these types of problems, we have implemented Cosserat point theory and cohesive element formulations into the current version of LDEC, thereby allowing for dynamic fracture and combined finite element/discrete element simulations. Results of a large-scale LLNL simulation of an explosive shock wave impacting an elaborate underground facility are also discussed. It is confirmed that persistent joints lead to an underestimation of the impact energy needed to fill the tunnel systems with rubble. Non-persistent joint patterns, which are typical of real geologies, inhibit shear within the surrounding rock mass and significantly increase the load required to collapse a tunnel.

Morris, J P; Rubin, M B; Block, G I; Bonner, M P

2005-05-26T23:59:59.000Z

394

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source reactor at Oak Ridge National Laboratory  

SciTech Connect

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at ORNL. Damage propagation is postulated to occur from thermal conduction between dmaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur beause of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A parametric study was done for several uncertain variables. The study included investigating effects of plate contact area, convective heat transfer coefficient, thermal conductivity on fuel swelling, and initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects of damage propagation. Results provide useful insights into how variouss uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-12-31T23:59:59.000Z

395

Uncertainty Analysis of Runoff Simulations and Parameter Identifiability in the Community Land Model – Evidence from MOPEX Basins  

SciTech Connect

With the emergence of earth system models as important tools for understanding and predicting climate change and implications to mitigation and adaptation, it has become increasingly important to assess the fidelity of the land component within earth system models to capture realistic hydrological processes and their response to the changing climate and quantify the associated uncertainties. This study investigates the sensitivity of runoff simulations to major hydrologic parameters in version 4 of the Community Land Model (CLM4) by integrating CLM4 with a stochastic exploratory sensitivity analysis framework at 20 selected watersheds from the Model Parameter Estimation Experiment (MOPEX) spanning a wide range of climate and site conditions. We found that for runoff simulations, the most significant parameters are those related to the subsurface runoff parameterizations. Soil texture related parameters and surface runoff parameters are of secondary significance. Moreover, climate and soil conditions play important roles in the parameter sensitivity. In general, site conditions within water-limited hydrologic regimes and with finer soil texture result in stronger sensitivity of output variables, such as runoff and its surface and subsurface components, to the input parameters in CLM4. This study demonstrated the feasibility of parameter inversion for CLM4 using streamflow observations to improve runoff simulations. By ranking the significance of the input parameters, we showed that the parameter set dimensionality could be reduced for CLM4 parameter calibration under different hydrologic and climatic regimes so that the inverse problem is less ill posed.

Huang, Maoyi; Hou, Zhangshuan; Leung, Lai-Yung R.; Ke, Yinghai; Liu, Ying; Fang, Zhufeng; Sun, Yu

2013-12-01T23:59:59.000Z

396

Lagrangian analysis of the vertical structure of eddies simulated in the Japan Basin of the Japan/East Sea  

E-Print Network (OSTI)

The output from an eddy-resolved multi-layered circulation model is used to analyze the vertical structure of simulated deep-sea eddies in the Japan Basin of the Japan/East Sea constrained by bottom topography. We focus on Lagrangian analysis of anticyclonic eddies, generated in the model in a typical year approximately at the place of the mooring and the hydrographic sections, where such eddies have been regularly observed in different years (1993--1997, 1999--2001). Using a quasi-3D computation of the finite-time Lyapunov exponents and displacements for a large number of synthetic tracers in each depth layer, we demonstrate how the simulated feature evolves of the eddy, that does not reach the surface in summer, into a one reaching the surface in fall. This finding is confirmed by computing deformation of the model layers across the simulated eddy in zonal and meridional directions and in the corresponding temperature cross sections. Computed Lagrangian tracking maps allow to trace the origin and fate of wa...

Prants, S V; Budyansky, M V; Uleysky, M Yu; Fyman, P A

2014-01-01T23:59:59.000Z

397

Advanced Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Systems: Advanced Systems: high Performance fenestration systems Research areas: Research activities to improve the performance of windows and other fenestration products must address window systems issues as well as Glazing Materials research. LBNL activities in the area of Advanced Systems include research at both the product level and the building envelope and building systems levels. Highly insulating windows - using non structural center layers Lower cost solutions to more insulating three layer glazing systems, with the potential to turn windows in U.S. heating dominated residential applications into net-energy gainers. Highly Insulating Window Frames In collaboration with the Norwegian University of Science and Technology, we are researching the potentials for highly insulating window frames. Our initial work examines European frames with reported U-factors under 0.15 Btu/hr-ft2-F. Future research aims to analyze these designs, verify these performance levels and ensure that procedures used to calculate frame performance are accurate.

398

Exploratory Analysis of Early Toxicity of Sunitinib in Advanced Hepatocellular Carcinoma Patients: Kinetics and Potential Biomarker Value  

Science Journals Connector (OSTI)

...12%) and other adverse events in our study may limit the power of analysis of these associations. In conclusion, sunitinib...Clin Oncol 2009;27:3027-35. 7. Siegel AB , Cohen EI, Ocean A, Lehrer D, Goldenberg A, Knox JJ, et alPhase II trial...

Andrew X. Zhu; Dan G. Duda; Marek Ancukiewicz; Emmanuelle di Tomaso; Jeffrey W. Clark; Rebecca Miksad; Charles S. Fuchs; David P. Ryan; and Rakesh K. Jain

2011-02-15T23:59:59.000Z

399

Advanced Policy Practice Spring 2014  

E-Print Network (OSTI)

Advanced Policy Practice Spring 2014 SW 548-001 Instructor course that focuses on the theory and evidence-based skill sets of policy analysis, development, implementation, and change. The course focuses on policy

Grissino-Mayer, Henri D.

400

Database analysis and visualization of simulated and recorded electrophysiological data with PANDORA's Toolbox in Matlab  

Science Journals Connector (OSTI)

We developed a generic database-supported analysis and visualization software, PANDORA, for research projects with large datasets and many parameters. PANDORA ... the power of SQL databases, while the Matlab comp...

Cengiz Günay; Dieter Jaeger

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Bulk analysis of a simulated environmental sample in natural abundance performed in KAERI for nuclear safeguards  

Science Journals Connector (OSTI)

A highly accurate and precise analysis of ultra-trace amounts of nuclear materials contained in environmental samples plays an essential role in monitoring undeclared nuclear activities for nuclear safeguards pur...

Jong-Ho Park; Sunyoung Lee; Young-Geun Ha…

2014-08-01T23:59:59.000Z

402

Sensitivity analysis of dimensionless parameters for physical simulation of water-flooding reservoir  

Science Journals Connector (OSTI)

A numerical approach to optimize dimensionless parameters of water-flooding porous media flows is proposed based on the analysis of the sensitivity factor defined as the variation ration of a target function w...

Yuhu Bai; Jiachun Li; Jifu Zhou

2005-07-01T23:59:59.000Z

403

Coalbed Methane Production Analysis and Filter Simulation for Quantifying Gas Drainage from Coal Seams  

Science Journals Connector (OSTI)

Gas and water production rate analysis of CBM wells help determining dynamic reservoir properties of ... for estimating GIP and its change between particular production periods. Moreover, geostatistics can be use...

C. Özgen Karacan; Ricardo A. Olea

2014-01-01T23:59:59.000Z

404

Advanced Power Plant Development and Analyses Methodologies  

SciTech Connect

Under the sponsorship of the U.S. Department of Energy/National Energy Technology Laboratory, a multi-disciplinary team led by the Advanced Power and Energy Program of the University of California at Irvine is defining the system engineering issues associated with the integration of key components and subsystems into advanced power plant systems with goals of achieving high efficiency and minimized environmental impact while using fossil fuels. These power plant concepts include ''Zero Emission'' power plants and the ''FutureGen'' H{sub 2} co-production facilities. The study is broken down into three phases. Phase 1 of this study consisted of utilizing advanced technologies that are expected to be available in the ''Vision 21'' time frame such as mega scale fuel cell based hybrids. Phase 2 includes current state-of-the-art technologies and those expected to be deployed in the nearer term such as advanced gas turbines and high temperature membranes for separating gas species and advanced gasifier concepts. Phase 3 includes identification of gas turbine based cycles and engine configurations suitable to coal-based gasification applications and the conceptualization of the balance of plant technology, heat integration, and the bottoming cycle for analysis in a future study. Also included in Phase 3 is the task of acquiring/providing turbo-machinery in order to gather turbo-charger performance data that may be used to verify simulation models as well as establishing system design constraints. The results of these various investigations will serve as a guide for the U. S. Department of Energy in identifying the research areas and technologies that warrant further support.

G.S. Samuelsen; A.D. Rao

2006-02-06T23:59:59.000Z

405

Simulation and Analysis of a Tissue Equivalent Proportional Counter Using the Monte Carlo Transport Code FLUKA  

E-Print Network (OSTI)

wall effect. That is, energy iv deposition in the gas volume can occur even when the primary beam does not pass through the gas volume. A final comparison to experimental data was made for the simulated TEPC exposed to various broad beams... in the energy range of 200 ? 1000 MeV/nucleon. FLUKA overestimated energy deposition in the gas volume in all cases. The FLUKA results differed from the experimental data by an average of 25.2 % for yF and 12.4 % for yD. It is suggested...

Northum, Jeremy Dell

2011-08-08T23:59:59.000Z

406

An analysis of test effectiveness via surrogate simulation of a commercial IC  

E-Print Network (OSTI)

calculations for both test sets 23 LIST OF FIGURES FIGURE Page An arbitrary circuit with points P and Q inside Example of the detection of a stuck-at fault Example of the detection of two bridging surrogates . General usage of FastScan+~ Flow chart... of bridging surrogate simulation 21 Defective part level prediction using stuck-at faults DO-RE-ME bridging detections and ATPG stuck-at detections Matching the MPG-D prediction to briclging detections . Cumulat&ve defective part level contribution of each...

Wicker, Jason David

2001-01-01T23:59:59.000Z

407

Simulation and analysis of different quenching alternatives for an industrial vacuum gasoil hydrotreater  

Science Journals Connector (OSTI)

A heterogeneous one-dimensional reactor model was developed to simulate and analyze an industrial VGO hydrotreater with different quenching schemes considering the hydrodesulfurization, hydrodearomatization and hydrodenitrogenation reactions. The model was applied to predict the behavior of the reaction system with and without the injection of different quench fluids: hydrogen, VGO, diesel and water. Reactor temperature profiles, changes in partial pressure and molar concentration are determined for each alternative and compared with those obtained for the system without quenching. It was recognized the great impact of the resulting reactor temperature profiles on impurity removal by affecting reaction rate constants and gas–liquid equilibrium.

Anton Alvarez; Jorge Ancheyta

2008-01-01T23:59:59.000Z

408

EVALUATION OF CORE PHYSICS ANALYSIS METHODS FOR CONVERSION OF THE INL ADVANCED TEST REACTOR TO LOW-ENRICHMENT FUEL  

SciTech Connect

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR.

Mark DeHart; Gray S. Chang

2012-04-01T23:59:59.000Z

409

Evaluation of core physics analysis methods for conversion of the INL advanced test reactor to low-enrichment fuel  

SciTech Connect

Computational neutronics studies to support the possible conversion of the ATR to LEU are underway. Simultaneously, INL is engaged in a physics methods upgrade project to put into place modern computational neutronics tools for future support of ATR fuel cycle and experiment analysis. A number of experimental measurements have been performed in the ATRC in support of the methods upgrade project, and are being used to validate the new core physics methods. The current computational neutronics work is focused on performance of scoping calculations for the ATR core loaded with a candidate LEU fuel design. This will serve as independent confirmation of analyses that have been performed previously, and will evaluate some of the new computational methods for analysis of a candidate LEU fuel for ATR. (authors)

DeHart, M. D.; Chang, G. S. [Idaho National Laboratory, 2525 Fremont Street, Idaho Falls, ID 83415-3870 (United States)

2012-07-01T23:59:59.000Z

410

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26-28 2013 ABSTRACT QUESTIONNAIRE  

E-Print Network (OSTI)

IV Iberian Symposium on Hydrogen, Fuel Cells and Advanced Batteries. Estoril, Portugal, June 26 Other Marketing analysis Standards and regulations #12;IV Iberian Symposium on Hydrogen, Fuel Cells PEM fuel cells X Numerical simulation SO fuel cells New materials Other fuel cells New processes

Batlle, Carles

411

An evaluation of voice stress analysis techniques in a simulated AWACS environment  

E-Print Network (OSTI)

groups were used for the stress analysis data. ~Sub'ects Sixteen Air Force officers (thirteen male and three female with an average age of 26) from the 552d Air Wing, Tinker Air Force Base, Oklahoma, were assigned to Brooks Air Force Base, Texas...

Jones, William Archer

2012-06-07T23:59:59.000Z

412

3D MEMS Simulation Modeling Using Modified Nodal Analysis J. V. Clark, N. Zhou, D. Bindel,  

E-Print Network (OSTI)

, process sensitivities, induced currents, and the transient performance in accelerated reference frames a system of ODEs that is solved by static, steady state, and transient solvers. Index Terms - SUGAR, modified nodal analysis, static, steady state, transient, accelerating frames, sensitivity. 1 INTRODUCTION

California at Berkeley, University of

413

Modeling fuzzy state space of reheater system for simulation and analysis  

Science Journals Connector (OSTI)

Reheater is one of the important heat exchange components in a high capacity power plant of a boiler system. The aim of this study is to improve heat transfer of a reheater system. The method is to maximize steam production and at the same time keeping variables within constraints. Fuzzy arithmetic is a powerful tool used to solve engineering problems with uncertain parameters. Therefore in order to determine heat transfer efficiency the state space of reheater is simulated using fuzzy arithmetic by taking into account the uncertainties in the reheater system. The uncertain model parameters and the model inputs are represented by fuzzy numbers with their shape derived from quasi-Gaussian function. Finally this paper discusses how the mathematical model can be manipulated in order to produce maximum heat transfer with least loss of energy. Furthermore the improvement of the reheater efficiency and the quantification of the heat supplied parameters are presented in this paper.

2014-01-01T23:59:59.000Z

414

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Office of Environmental Management (EM)

Vehicle Technologies Office: 2009 Advanced Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle...

415

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin)  

SciTech Connect

The objective of this Class III project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover a higher percentage of the original oil in place through geologically based field development. This year the project focused on reservoir characterization of the East Ford unit, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey Sandstone). The field, discovered in 1960, is operated by Orla Petco, Inc., as the East Ford unit; it contained an estimated 19.8 million barrels (MMbbl) of original oil in place. Petrophysical characterization of the East Ford unit was accomplished by integrating core and log data and quantifying petrophysical properties from wireline logs. Most methods of petrophysical analysis that had been developed during an earlier study of the Ford Geraldine unit were successfully transferred to the East Ford unit. The approach that was used to interpret water saturation from resistivity logs, however, had to be modified because in some East Ford wells the log-calculated water saturation was too high and inconsistent with observations made during the actual production. Log-porosity to core-porosity transforms and core-porosity to core-permeability transforms were derived from the East Ford reservoir. The petrophysical data were used to map porosity, permeability, net pay, water saturation, mobil-oil saturation, and other reservoir properties.

Dutton, S.P.; Flanders, W.A.; Guzman, J.I.; Zirczy, H.

1999-06-08T23:59:59.000Z

416

Goal-oriented sensitivity analysis for lattice kinetic Monte Carlo simulations  

SciTech Connect

In this paper we propose a new class of coupling methods for the sensitivity analysis of high dimensional stochastic systems and in particular for lattice Kinetic Monte Carlo (KMC). Sensitivity analysis for stochastic systems is typically based on approximating continuous derivatives with respect to model parameters by the mean value of samples from a finite difference scheme. Instead of using independent samples the proposed algorithm reduces the variance of the estimator by developing a strongly correlated-“coupled”- stochastic process for both the perturbed and unperturbed stochastic processes, defined in a common state space. The novelty of our construction is that the new coupled process depends on the targeted observables, e.g., coverage, Hamiltonian, spatial correlations, surface roughness, etc., hence we refer to the proposed method as goal-oriented sensitivity analysis. In particular, the rates of the coupled Continuous Time Markov Chain are obtained as solutions to a goal-oriented optimization problem, depending on the observable of interest, by considering the minimization functional of the corresponding variance. We show that this functional can be used as a diagnostic tool for the design and evaluation of different classes of couplings. Furthermore, the resulting KMC sensitivity algorithm has an easy implementation that is based on the Bortz–Kalos–Lebowitz algorithm's philosophy, where events are divided in classes depending on level sets of the observable of interest. Finally, we demonstrate in several examples including adsorption, desorption, and diffusion Kinetic Monte Carlo that for the same confidence interval and observable, the proposed goal-oriented algorithm can be two orders of magnitude faster than existing coupling algorithms for spatial KMC such as the Common Random Number approach. We also provide a complete implementation of the proposed sensitivity analysis algorithms, including various spatial KMC examples, in a supplementary MATLAB source code.

Arampatzis, Georgios, E-mail: garab@math.uoc.gr [Department of Applied Mathematics, University of Crete (Greece) [Department of Applied Mathematics, University of Crete (Greece); Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States); Katsoulakis, Markos A., E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts, Amherst, Massachusetts 01003 (United States)

2014-03-28T23:59:59.000Z

417

Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications Advanced Search Most publications by Environmental Energy Technologies Division authors are searchable from this page, including peer-reviewed publications, book chapters, conference proceedings and LBNL reports. Filter Advanced Search Publications list This publications database is an ongoing project, and not all Division publications are represented here yet. For additional help see the bottom of this page. Documents Found: 4418 Title Keyword LBNL Number Author - Any - Abadie, Marc O Abbey, Chad Abdolrazaghi, Mohamad Aberg, Annika Abhyankar, Nikit Abraham, Marvin M Abshire, James B Abushakra, Bass Acevedo-Ruiz, Manuel Aceves, Salvador Ache, Hans J Ackerly, David D Ackerman, Andrew S Adamkiewicz, Gary Adams, J W Adams, Carl Adamson, Bo Addy, Nathan Addy, Susan E Aden, Nathaniel T Adesola, Bunmi Adhikari,

418

Advanced Combustion  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Systems Advanced Combustion Background Conventional coal-fired power plants utilize steam turbines to generate electricity, which operate at efficiencies of 35-37 percent. Operation at higher temperatures and pressures can lead to higher efficiencies, resulting in reduced fuel consumption and lower greenhouse gas emissions. Higher efficiency also reduces CO2 production for the same amount of energy produced, thereby facilitating a reduction in greenhouse gas emissions. When combined, oxy-combustion comes with an efficiency hit, so it will actually increase the amount of CO2 to be captured. But without so much N2 in the flue gas, it will be easier and perhaps more efficient to capture, utilize and sequester. NETL's Advanced Combustion Project and members of the NETL-Regional University

419

Lger A., Duval C., Weber P., Levrat E., Farret R. "BAYESIAN NETWORK MODELLING THE RISK ANALYSIS OF COMPLEX SOCIO TECHNICAL SYSTEMS". Submitted to: 4th Workshop on Advanced Control and Diagnosis, Nancy -France, 16 et 17 nov., 2006.  

E-Print Network (OSTI)

, Probabilistic risk assessment. 1. INTRODUCTION In classified installations1 (nuclear power plants, chemical OF COMPLEX SOCIO TECHNICAL SYSTEMS". Submitted to: 4th Workshop on Advanced Control and Diagnosis, Nancy - France, 16 et 17 nov., 2006. BAYESIAN NETWORK MODELLING THE RISK ANALYSIS OF COMPLEX SOCIO TECHNICAL

Boyer, Edmond

420

2014 Building America House Simulation Protocols  

SciTech Connect

As BA has grown to include a large and diverse cross-section of the home building and retrofit industries, it has become more important to develop accurate, consistent analysis techniques to measure progress towards the program's goals. The House Simulation Protocol (HSP) document provides guidance to program partners and managers so they can compare energy savings for new construction and retrofit projects. The HSP provides the program with analysis methods that are proven to be effective and reliable in investigating the energy use of advanced energy systems and of entire houses.

Wilson, E.; Engebrecht-Metzger, C.; Horowitz, S.; Hendron, R.

2014-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Ultrafast Carrier RelaxationProcesses in Advanced Concept Solar Cells  

Science Journals Connector (OSTI)

We discuss short time carrier relaxation in advanced concept solar cells conditions using ensemble Monte Carlo (EMC) simulation coupled with rate equation and thermodynamic models, to...

Goodnick, Stephen M; Honsberg, Christiana; Zou, Yongjie

422

Analysis of electron energy distribution of an arc-discharge H{sup -} ion source with Monte Carlo simulation  

SciTech Connect

For optimization and accurate prediction of the amount of H{sup -} ion production in negative ion sources, analysis of electron energy distribution function (EEDF) is necessary. We developed a numerical code which analyzes EEDF in the tandem-type arc-discharge source. It is a three-dimensional Monte Carlo simulation code with the effects of cusp, filter, and extraction magnets. Coulomb collision between electrons is treated with Takizuka's model and several inelastic collisions are treated with null-collision method. We applied this code to the JAEA 10 ampere negative ion source. The numerical result shows that the order of electron density is in good agreement with experimental results. In addition, the obtained EEDF is qualitatively in good agreement with experimental results.

Fujino, I.; Hatayama, A.; Takado, N.; Inoue, T. [Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522 (Japan); Japan Atomic Energy Agency, 801-1 Mukouyama, Naka 311-0193 (Japan)

2008-02-15T23:59:59.000Z

423

High-resistance faults on a multi-terminal line: Analysis, simulated studies and an adaptive distance relaying scheme  

SciTech Connect

The presence of a T-connection to a third terminal can drastically affect the performance of a distance relay at the other terminals. Fault resistance, especially high fault resistance, makes this problem more severe and complicated. Detailed analysis of the apparent impedance for these cases as seen from the relaying point is derived and, based on extensive simulations of the infeed/outfeed and fault-resistance effects on the relay characteristics, an adaptive distance relaying scheme is proposed. A microprocessor based distance relay using this new technique can quickly respond to very-high-resistance faults with maximum coverage of the protected line. The validity of this new scheme has been confirmed by real-time testing on a prototype hardware scheme.

Xia, Y.Q. (Tianjin Univ. (China)); David, A.K.; Li, K.K. (Hong Kong Polytechnic, Kowloon (Hong Kong))

1994-01-01T23:59:59.000Z

424

New developments and prospects on COSI, the simulation software for fuel cycle analysis  

SciTech Connect

COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aim in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.

Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.; Tiphine, M.; Krivtchik, G.; Cany, C. [Atomic Energy and Alternative Energies Commission - CEA, CEA-Cadarache, DEN, DER, SPRC, F-13108 Saint-Paul-lez-Durance (France)

2013-07-01T23:59:59.000Z

425

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

426

Advanced light material interaction for direct volume rendering  

Science Journals Connector (OSTI)

In this paper we present a heuristic approach for simulating advanced light material interactions in the context of interactive volume rendering. In contrast to previous work, we are able to incorporate complex material functions, which allow to simulate ...

Florian Lindemann; Timo Ropinski

2010-05-01T23:59:59.000Z

427

NETL: Ion Advanced Solvent CO2 Capture Pilot Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Advanced Solvent CO2 Capture Pilot Project Ion Advanced Solvent CO2 Capture Pilot Project Project No.: DE-FE0013303 ION Engineering is conducting small pilot-scale (~ 0.7 MW) testing of an advanced CO2 capture solvent technology that has previously undergone bench-scale testing. The small pilot-scale testing will involve continuous long-term operation in order to gather the necessary data ultimately required for further scale-up. Activities will include the design and fabrication of the 0.5-0.7 MWe (equivalent) slipstream pilot plant; scale-up of solvent manufacturing; testing, data collection, and analysis of solvent performance; degradation and air emission analysis; modeling and simulation for the detailed preliminary and final techno-economic analyses; and decommissioning of pilot plant equipment upon completion of solvent testing. The advanced solvent is anticipated to have significant operating and capital cost advantages over other solvents currently in development. Advantages include significant reductions in parasitic load and liquid flow rates which directly translate to smaller more efficient CO2 capture processes. Make-up water and amine emissions rates will be examined during this project. There is the potential that additional solvent, system, and integration savings will be identified, which could result in further operating and capital cost reductions.

428

Empirical validation of building energy-analysis simulation programs: a status report  

SciTech Connect

Under the auspices of the DOE Passive/Hybrid Solar Division Class A Monitoring and Validation Program, SERI has engaged in several areas of research in fiscal year 1982. This research has included: (1) development of a validation methodology, (2) development of a performance monitoring methodology designed to meet the specific data needs for validation of analysis/design tools, (3) construction and monitoring of a 1000-ft/sup 2/ multizone skin-load-dominated test facility, (4) construction and monitoring of a two-zone test cell, and (5) sample validation studies using the DOE-2.1, BLAST-3.0, and SERIRES-1.0 computer programs. The status of these activities is reported and the validation methodology and the Class A data acquisition capabilities at SERI are described briefly.

Judkoff, R.; Wortman, D.; Burch, J.

1982-09-01T23:59:59.000Z

429

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Ductility EnhancEmEnt of molybDEnum Ductility EnhancEmEnt of molybDEnum PhasE by nano-sizED oxiDE DisPErsions Description Using computational modeling techniques, this research aims to develop predictive capabilities to facilitate the design and optimization of molybdenum (Mo), chromium (Cr), and other high-temperature structural materials to enable these materials to withstand the harsh environments of advanced power generation systems, such as gasification-based systems. These types of materials are essential to the development of highly efficient, clean energy technologies such as low-emission power systems that use coal or other fossil fuels.

430

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Super HigH-TemperaTure alloyS and Super HigH-TemperaTure alloyS and CompoSiTeS From nb-W-Cr SySTemS Description The U.S. Department of Energy's Office of Fossil Energy (DOE-FE) has awarded a three-year grant to the University of Texas at El Paso (UTEP) and Argonne National Laboratory (ANL) to jointly explore the high-temperature properties of alloys composed of niobium (Nb), tungsten (W), and chromium (Cr). The grant is administered by the Advanced Research (AR) program of the National

431

Mission Advancing  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Accomplishments NETL Accomplishments - the lab 2 Mission Advancing energy options to fuel our economy, strengthen our security, and improve our environment. Renewed Prosperity Through Technological Innovation - Letter from the Director NETL: the ENERGY lab 4 6 3 Contents Technology Transfer Patents and Commercialization Sharing Our Expertise Noteworthy Publications 60 62 63 64 66 Environment, Economy, & Supply Carbon Capture and Storage Partnerships Work to Reduce Atmospheric CO 2 Demand-Side Efficiencies New NETL Facility Showcases Green Technologies Environment & Economy Materials Mercury Membranes NETL Education Program Produces Significant Achievement Monitoring Water Economy & Supply NETL's Natural Gas Prediction Tool Aids Hurricane Recovery Energy Infrastructure

432

Film Cooling Performance in a Transonic High-pressure Vane: Decoupled Simulation and Conjugate Heat Transfer Analysis  

Science Journals Connector (OSTI)

Abstract The continuous demand for increased performance and reliability of gas turbines leads to the improvement of prediction tools. Having regard to the effects of heat transfer on the residual life of gas turbine components, it is necessary to achieve a high level of accuracy in the evaluation of thermal loads. Computational fluid dynamics is able to provide reliable data in a limited lapse of time. In this paper, the numerical analysis of the cooled vane of the MT1 high-pressure turbine stage is presented. A grid dependence analysis based on the evaluation of the aero-thermal characteristics of the vane has been performed. Turbulence is modeled using the kT-kL-? method whose performance in this kind of configuration is rarely debated in the scientific literature. Model parameters have been tuned to match the experimental data. The final objective of the present activity is to assess the capability of numerical methods to deal with an annular, transonic high-pressure vane with a realistic film cooling configuration. Adiabatic effectiveness, heat transfer coefficient and net heat flux reduction distributions have been evaluated, the latter providing relevant information on the performance of the cooling system. The coupled fluid-solid simulation of the cooled configuration has also been performed to evaluate the impact of conjugate heat transfer on the prediction of thermal loads. Results show a non-negligible difference in the wall temperature evaluation between the decoupled and the coupled approach, mainly caused by the heat conduction in the solid.

Massimiliano Insinna; Duccio Griffini; Simone Salvadori; Francesco Martelli

2014-01-01T23:59:59.000Z

433

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

434

TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis  

SciTech Connect

The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

Liles, D.R.; Mahaffy, J.H.

1986-07-01T23:59:59.000Z

435

Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the Advanced Neutron Source Reactor at Oak Ridge National Laboratory  

SciTech Connect

This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effects of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.

1995-09-01T23:59:59.000Z

436

Advanced Vehicle Testing & Evaluation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

437

Advanced LIGO  

E-Print Network (OSTI)

The Advanced LIGO gravitational wave detectors are second generation instruments designed and built for the two LIGO observatories in Hanford, WA and Livingston, LA. The two instruments are identical in design, and are specialized versions of a Michelson interferometer with 4 km long arms. As in initial LIGO, Fabry-Perot cavities are used in the arms to increase the interaction time with a gravitational wave, and power recycling is used to increase the effective laser power. Signal recycling has been added in Advanced LIGO to improve the frequency response. In the most sensitive frequency region around 100 Hz, the design strain sensitivity is a factor of 10 better than initial LIGO. In addition, the low frequency end of the sensitivity band is moved from 40 Hz down to 10 Hz. All interferometer components have been replaced with improved technologies to achieve this sensitivity gain. Much better seismic isolation and test mass suspensions are responsible for the gains at lower frequencies. Higher laser power, larger test masses and improved mirror coatings lead to the improved sensitivity at mid- and high- frequencies. Data collecting runs with these new instruments are planned to begin in mid-2015.

The LIGO Scientific Collaboration

2014-11-17T23:59:59.000Z

438

Processing experimental data and analysis of simulation codes from Nuclear Physics using distributed and parallel computing  

E-Print Network (OSTI)

In this thesis we tried to show the impact of new technologies on scientific work in the large field of heavy ion physics and as a case study, we present the implementation of the event plane method, on a highly parallel technology: the graphic processor. By the end of the thesis, a comparison of the analysis results with the elliptic flow published by ALICE is made. In Chapter 1 we presented the computing needs at the heavy ion physics experiment ALICE and showed the current state of software and technologies. The new technologies available for some time, Chapter 2, present new performance capabilities and generated a trend in preparing for the new wave of technologies and software, which most indicators show will dominate the future. This was not disregarded by the scientific community and in consequence section 2.2 shows the rising interest in the new technologies by the High Energy Physics community. A real case study was needed to better understand how the new technologies can be applied in HEP and aniso...

Niculescu, Mihai; Hristov, Peter

439

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

SciTech Connect

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

440

Advanced PHEV Engine Systems and Emissions Control Modeling and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PHEV Engine Systems and Emissions Control Modeling and Analysis Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis 2011 DOE Hydrogen and Fuel Cells Program,...

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: Advanced Simulation and Computing...  

NLE Websites -- All DOE Office Websites (Extended Search)

of physical and engineering processes that occur during the operation of a nuclear weapon. In addition to supporting the stockpile, a number of other national security missions...

442

Advanced Simulation Capability of Environmental Management |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The mission of ASCEM is to develop a modular and extensible open-source, high performance computing (HPC) modeling system for multiphase, multicomponent, multiscale subsurface...

443

Advanced Vadose Zone Simulations Using TOUGH  

E-Print Network (OSTI)

and P. Lichtner. 2002. Fluid Flow, Heat Transfer, and Solutemultiphase fluid flow, heat transfer, and deformation in

2008-01-01T23:59:59.000Z

444

Improved Solvers for Advanced Engine Combustion Simulation  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

445

ADVANCED WAVEFORM SIMULATION FOR SEISMIC MONITORING EVENTS  

SciTech Connect

Comprehensive test ban monitoring in terms of location and discrimination has progressed significantly in recent years. However, the characterization of sources and the estimation of low yields remains a particular challenge. As the recent Korean shot demonstrated, we can probably expect to have a small set of teleseismic, far-regional and high-frequency regional data to analyze in estimating the yield of an event. Since stacking helps to bring signals out of the noise, it becomes useful to conduct comparable analyses on neighboring events, earthquakes in this case. If these auxiliary events have accurate moments and source descriptions, we have a means of directly comparing effective source strengths. Although we will rely on modeling codes, 1D, 2D, and 3D, we will also apply a broadband calibration procedure to use longer periods (P>5s) waveform data to calibrate short-period (P between .5 to 2 Hz) and high-frequency (P between 2 to 10 Hz) as path specify station corrections from well-known regional sources. We have expanded our basic Cut-and-Paste (CAP) methodology to include not only timing shifts but also amplitude (f) corrections at recording sites. The name of this method was derived from source inversions that allow timing shifts between 'waveform segments' (or cutting the seismogram up and re-assembling) to correct for crustal variation. For convenience, we will refer to these f-dependent refinements as CAP+ for (SP) and CAP++ for still higher frequency. These methods allow the retrieval of source parameters using only P-waveforms where radiation patterns are obvious as demonstrated in this report and are well suited for explosion P-wave data. The method is easily extended to all distances because it uses Green's function although there may be some changes required in t* to adjust for offsets between local vs. teleseismic distances. In short, we use a mixture of model-dependent and empirical corrections to tackle the path effects. Although we reply on the large TriNet array as a testbed for refining methods, we will present some preliminary results on Korea and Iran.

Helmberger, D; Tromp, J; Rodgers, A

2007-07-16T23:59:59.000Z

446

Interoperable Technologies for Advanced Petascale Simulations (ITAPS)  

SciTech Connect

Efforts during the past year have contributed to the continued development of the ITAPS interfaces and services as well as specific efforts to support ITAPS applications. The ITAPS interface efforts have two components. The first is working with the ITAPS team on improving the ITAPS software infrastructure and level of compliance of our implementations of ITAPS interfaces (iMesh, iMeshP, iRel and iGeom). The second is being involved with the discussions on the design of the iField fields interface. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. Efforts to move the ITAPS technologies to petascale computers has identified a number of key technical developments that are required to effectively execute the ITAPS interfaces and services. Research to address these parallel method developments has been a major emphasis of the RPI’s team efforts over the past year. The development of parallel unstructured mesh methods has considered the need to scale unstructured mesh solves to massively parallel computers. These efforts, summarized in section 2.1 show that with the addition of the ITAPS procedures described in sections 2.2 and 2.3 we are able to obtain excellent strong scaling with our unstructured mesh CFD code on up to 294,912 cores of IBM Blue Gene/P which is the highest core count machine available. The ITAPS developments that have contributed to the scaling and performance of PHASTA include an iterative migration algorithm to improve the combined region and vertex balance of the mesh partition, which increases scalability, and mesh data reordering, which improves computational performance. The other developments are associated with the further development of the ITAPS parallel unstructured mesh adaptation procedures. Specific developments include: • Parallel boundary layer mesh adaptation integrated with parallel anisotropic mesh adaptation (section 2.4.1). • A new more scalable message packing library (section 2.4.2). • Support of periodic boundary conditions (section 2.4.3). We have continued to work closely with both the accelerator applications for COMPASS and fusion application for CEMM. For COMPASS, efforts have focused on providing specific unstructured mesh adaptation tools to deal with curved elements and mesh adaptation. For CEEM, we are working to provide the structures and methods needed for the M3D-C1 to go to full three dimensional configurations.

Shephard, Mark S

2010-02-05T23:59:59.000Z

447

Improved Solvers for Advanced Engine Combustion Simulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

costs found using HPCToolkit (Mellor-Crummey, Rice): * The transport and chemistry cost the same when there are 100-250 fluid cells per multizone reactor (+150 species). *...

448

Sandia National Laboratories: Advanced Modeling and Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Doppler Velocimeter EC Top Publications A Comparison of Platform Options for Deep-water Floating Offshore Vertical Axis Wind Turbines: An Initial Study Nonlinear Time-Domain...

449

Applying discrete event simulation and an automated bottleneck analysis as an aid to detect running production constraints  

Science Journals Connector (OSTI)

Discrete event simulation is an important decision support tool to evaluate changes in manufacturing, distribution or process facilities. The challenge arises when it comes to the integration of simulation as an effective tool to detect manufacturing ...

Patrick Faget; Ulf Eriksson; Frank Herrmann

2005-12-01T23:59:59.000Z

450

A Method for Simulating Heat Recovery Systems Using AirModel in Implementations of the ASHRAE Simplified Energy Analysis Procedure  

E-Print Network (OSTI)

exchanger to verify the return air ratio. In this comparison, the recovered energy from the return air was equalized with the heat transfer of the heat exchanger model. An example of this methodology was used to simulate the HVAC system with a heat... to be measured for further investigation to verify the AirModel simulation. This method can be applied in Energy Plus and other simulation tools/software to simulate the building exhaust energy recovery. Acknowledgements The work of this paper...

Liu, C.; Zeig, M.; Claridge, D. E.; Wei, G.; Bruner, H.; Turner, W. D.

2005-01-01T23:59:59.000Z

451

Advanced Research  

NLE Websites -- All DOE Office Websites (Extended Search)

05/2007 05/2007 NitrogeN evolutioN aNd CorrosioN MeChaNisMs With oxyCoMbustioN of Coal Description Under a grant from the University Coal Research (UCR) program, Brigham Young University (BYU) is leading a three-year research effort to investigate the physical processes that several common types of coal undergo during oxy-fuel combustion. Specifically, research addresses the mixture of gases emitted from burning, particularly such pollutants as nitrogen oxides (NO X ) and carbon dioxide (CO 2 ), and the potential for corrosion at the various stages of combustion. The UCR program is administered by the Advanced Research Program at the National Energy Technology Laboratory (NETL), under the U.S. Department of Energy's Office of

452

Presented by CASL: The Consortium for Advanced  

E-Print Network (OSTI)

against 60% of existing U.S. reactor fleet (PWRs), using data from TVA reactors · Base M&S LWR capabilityPresented by Nuclear Energy CASL: The Consortium for Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub for Modeling and Simulation of Nuclear Reactors Doug Kothe Director, CASL

453

Simulation of a continuous rotary dissolver  

SciTech Connect

This paper describes the simulation of a rotating, multistage chemical reactor that dissolves spent nuclear fuel for reprocessing in a breeder cycle. The continuous, time-dependent process model of a dissolver was developed using the Advanced Continuous Simulation Language (ACSL) to calculate various temperatures and the masses of the chemical constituents of the solution in each stage. The Gear integration algorithm (Gear 1971) was used to accommodate the stiff dynamics. An arrangement of interacting discrete sections was employed to cause fresh fuel to be added and dissolver rotations to occur at appropriate times. By changing various constants, the model can simulate the effect of different fuel compositions and operational scenarios. The model code is a valuable tool for analysis of the performance of the dissolution system and has been instrumental in its design. 5 refs., 7 figs.

Carnal, C.L.; Hardy, J.E.; Lewis, B.E.

1989-01-01T23:59:59.000Z

454

Cycle time versus throughput analysis: an overall framework for generating simulation-based cycle time-throughput curves  

Science Journals Connector (OSTI)

A simulation-based cycle time-throughput curve requires a large amount of simulation output data, and an experimentation framework is needed to enhance the precision and accuracy of a simulation-based cycle time-throughput curve. In this research, approaches ...

Sungmin Park; Gerald T. Mackulak; John W. Fowler

2001-12-01T23:59:59.000Z

455

A Traffic Density Analysis of Proposed Ferry Service Expansion in San Francisco Bay Using a Maritime Simulation Model  

E-Print Network (OSTI)

a Maritime Simulation Model Jason R. W. Merrick* Department of Statistical Sciences and Operations Research and their increases caused by three alternative expansion plans. The output of the simulation model is a geographic of congestion on the waterway and the effect this will have on the safety of vessels in the area. A simulation

van Dorp, Johan René

456

Independent component analysis: recent advances  

Science Journals Connector (OSTI)

...algorithmic viewpoint, the fundamental utility in using (7...true. Fortunately, it does not need to be strictly...and C Jutten. 2010 Handbook of blind source separation...V Stodden. 2004 When does non-negative matrix...Non-negative mixtures. Handbook of blind source separation...

2013-01-01T23:59:59.000Z

457

Modeling Molecular Dynamics from Simulations  

SciTech Connect

Many important processes in biology occur at the molecular scale. A detailed understanding of these processes can lead to significant advances in the medical and life sciences. For example, many diseases are caused by protein aggregation or misfolding. One approach to studying these systems is to use physically-based computational simulations to model the interactions and movement of the molecules. While molecular simulations are computationally expensive, it is now possible to simulate many independent molecular dynamics trajectories in a parallel fashion by using super- or distributed- computing methods such as Folding@Home or Blue Gene. The analysis of these large, high-dimensional data sets presents new computational challenges. In this seminar, I will discuss a novel approach to analyzing large ensembles of molecular dynamics trajectories to generate a compact model of the dynamics. This model groups conformations into discrete states and describes the dynamics as Markovian, or history-independent, transitions between the states. I will discuss why the Markovian state model (MSM) is suitable for macromolecular dynamics, and how it can be used to answer many interesting and relevant questions about the molecular system. I will also discuss many of the computational and statistical challenges in building such a model, such as how to appropriately cluster conformations, determine the statistical reliability, and efficiently design new simulations.

Hinrichs, Nina Singhal (University of Chicago) [University of Chicago

2009-01-28T23:59:59.000Z

458

Vehicle Modeling and Simulation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

* PHEV Simulations and Analysis - Travel Profile Database - PHEV Impact on Components - Integration with Renewable Fuels - PHEV Economics - PHEV Test Procedures * Route-Based...

459

A language for functional interpretation of model based simulation Jonathan Bell a  

E-Print Network (OSTI)

analysis, FMEA, Model based simulation. 1. Introduction The automation of the design analysis of engi and Effects Analysis (FMEA), Sneak Circuit Analysis (SCA), simulation explanation, Fault Tree Analysis

Snooke, Neal

460

E-Print Network 3.0 - advanced underground vehicle Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis shows that the advanced technologies strategy... energy, and modernized'' coal. By aggressively pursu- ing the advanced technology strategy now Source: Collection:...

Note: This page contains sample records for the topic "analysis advanced simulation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.