Sample records for anaerobic digestion biomass

  1. Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)

    Broader source: Energy.gov [DOE]

    The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

  2. Labscale Evaluation of Biomass-Derived Elements Used in Anaerobic Digestion

    E-Print Network [OSTI]

    Labscale Evaluation of Biomass-Derived Elements Used in Anaerobic Digestion This report presents performance data for an anaerobic digestion system (at a 10-liter scale) utilizing corncob biochar as biofilm support. The system operated on grease-trap wastewater and high-rate anaerobic digestion of this material

  3. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

  4. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    AND PRODUCTION OF METHANE Lawrence Berkeley LaboratoryDIGESTION AND PRODUCTION OF METHANE Kendall F. Haven MarkArrangement Kelp to Methane Processing Plant Schematic.

  5. Biomass Program Perspectives on Anaerobic Digestion and Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    at biorefineries. Presented by Brian Duff, DOE Biomass Program, at the NRELDOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado....

  6. Arnold Schwarzenegger ANAEROBIC DIGESTER

    E-Print Network [OSTI]

    samples are overwhelmingly in favor of AD technology. Keywords Anaerobic digester, biogas, electricityArnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase II - A Survey who took concrete steps to install an anaerobic digestion (AD) facility and documentation

  7. Arnold Schwarzenegger ANAEROBIC DIGESTER

    E-Print Network [OSTI]

    technology. Keywords Anaerobic digester, biogas, electricity production, manure management #12;4 TableArnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase I - A Survey of U concrete steps to install an anaerobic digestion (AD) facility and documentation of the factors

  8. Decomposition of Fresh and Anaerobically Digested Plant Biomass in Soil1 K. K. MOORHEAD, D. A, GRAETZ, AND K. R. REDDY2

    E-Print Network [OSTI]

    Florida, University of

    information deals with land ap- plication of anaerobically digested sewage sludge, and on- ly limited data such as plant biomass, sewage sludge, or animal wastes is used to generate CH4 and stabilized organic waste, or preferably utilized, in an environmentally safe manner. Disposal of the anaerobically digested sludge by land

  9. Bibliography on anaerobic digestion

    SciTech Connect (OSTI)

    Ramakrishna, J.; Pruett, D.M.; Santerre, M.T.; Toyoshiba, T.S.

    1980-09-01T23:59:59.000Z

    The priority assigned to biogas systems by participants in A.I.D's Energy for Rural Development Program spurred the compilation of this 373-item bibliography on anaerobic digestion. The materials focus on energy technologies that are especially suited to the social, economic, and institutional concerns of rural Asia and the Pacific. Entries are presented in two sections. The first presents largely non-technical reports on anaerobic digesters in South and Southeast Asia, for the years 1956-80, with emphasis on the period 1970-80. The second section, which includes both technical and non-technical references, is a condensation of a computerized search of the U.S. Department of Energy's Energy Research Abstracts published during the period 1977-80. The search revealed a lack of reliable data, pointing to the need for further research on the technology and potential of anaerobic digestion.

  10. The Anaerobic Digestion of Organic

    E-Print Network [OSTI]

    Iglesia, Enrique

    and commercialization. Anaerobic digestion (AD) of organic municipal solid waste and subsequent biogas and methaneThe Anaerobic Digestion of Organic Municipal Solid Waste in California. Anaerobic Digestion Technology 2.1. Feedstock Characterization 2.2. Collection & Sorting 2.2.1. Waste

  11. Batch load anaerobic digestion of dairy manure

    E-Print Network [OSTI]

    Egg, Richard P

    1979-01-01T23:59:59.000Z

    and resource recovery. Anaerobic digestion of manure has re- ceived much attention as a method to reduce the pollution threat to the environment while reclaiming energy in the form of methane gas from the biomass. Currently there is one commercial anaerobic... production than the conventional process used in most studies to date. The objective of this research was to evaluate a batch load digestion process for methane production from dairy manure to determine the optimum influent total solids concentration...

  12. Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09Biomass Program

  13. Anaerobic Digestion of Primary Sewage Effluent

    E-Print Network [OSTI]

    Anaerobic Digestion of Primary Sewage Effluent: Significant Energy Savings over Traditional Activated Sludge Treatment This report presents results for an anaerobic digestion system operated;Anaerobic Digestion of Primary Sewage Effluent Prepared for the U.S. Department of Energy Office

  14. Kinetic modeling and experimentation of anaerobic digestion

    E-Print Network [OSTI]

    Rea, Jonathan (Jonathan E.)

    2014-01-01T23:59:59.000Z

    Anaerobic digesters convert organic waste (agricultural and food waste, animal or human manure, and other organic waste), into energy (in the form of biogas or electricity). An added benefit to bio-digestion is a leftover ...

  15. A Design-Builder's Perspective: Anaerobic Digestion, Forest County...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

  16. Photoenhanced anaerobic digestion of organic acids

    DOE Patents [OSTI]

    Weaver, Paul F. (Golden, CO)

    1990-01-01T23:59:59.000Z

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  17. Ozone treatment of biomass to enhance digestibility

    E-Print Network [OSTI]

    Almendarez, Maria Elena

    2000-01-01T23:59:59.000Z

    is very resistant to enzymatic degradation. Lignocellulosic materials require pretreatment to enhance their digestibility. The main objective of this research was to further enhance the digestibility of biomass (bagasse) with ozonation as a follow...

  18. Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lagoons. Abstract: This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was...

  19. DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES

    E-Print Network [OSTI]

    Boyer, Edmond

    DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES Simeonov, I variables of anaerobic digestion processes. For this purpose, different mathematical models of anaerobic digestion and different theoretical approaches (differential algebraic approach, Kalman filter modifications

  20. E-Print Network 3.0 - anaerobic digestion Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  1. E-Print Network 3.0 - anaerobic digestion analysis Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  2. E-Print Network 3.0 - anaerobic digesters current Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  3. E-Print Network 3.0 - anaerobic digestion usa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  4. E-Print Network 3.0 - anaerobic digestion final Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  5. E-Print Network 3.0 - anaerobic digestion performance Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  6. E-Print Network 3.0 - anaerobically digested cattle Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  7. E-Print Network 3.0 - anaerobic digestion heat Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  8. E-Print Network 3.0 - anaerobic digesters treating Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  9. E-Print Network 3.0 - anaerobic digester treating Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  10. E-Print Network 3.0 - anaerobic thermophilic digestion Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  11. E-Print Network 3.0 - anaerobic digester performance Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  12. E-Print Network 3.0 - anaerobic digestion model Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management of the anaerobic digestion...

  13. April 16, 2013 Webinar: Community-Scale Anaerobic Digesters

    Broader source: Energy.gov [DOE]

    This webinar was held April 16, 2013, and provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi...

  14. Design of an anaerobic digester in Quebec, Canada

    E-Print Network [OSTI]

    Bouaziz, Alexandre N. (Alexandre Nathanel)

    2014-01-01T23:59:59.000Z

    .In response to the future Quebec, Canada regulations prohibiting landfilling of organic matter by 2020, EBI, a waste management company located near Montreal is considering constructing an anaerobic digester. This thesis ...

  15. Anaerobic Digestion and Combined Heat and Power Study

    SciTech Connect (OSTI)

    Frank J. Hartz; Rob Taylor; Grant Davies

    2011-12-30T23:59:59.000Z

    One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

  16. E-Print Network 3.0 - anaerobic digestion technology Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology on livestock farms... dioxide (EPA AgStar 2006). Benefits and Challenges of Biogas Technology Anaerobic digestion can convert... digester. Resources which ... Source:...

  17. Community Renewable Energy Success Stories: Community-Scale Anaerobic Digesters (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "Community-Scale Anaerobic Digesters," originally presented on April 16, 2013.

  18. Anaerobic Co-Digestion on Dairies in Washington State

    E-Print Network [OSTI]

    Collins, Gary S.

    as food-processing wastes) to increase biogas productivity, improve digester performance, and increase in manure and other feedstock to methane-rich biogas, a source of renewable energy (US-EPA 2006) (Figure 1-EPA 2005; US-EPA 2008). In addition to biogas, AD generates fiber and Figure 1. Overview of anaerobic

  19. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION-cal/m3 , biogas has been widely used in heating digesters and gas engines (Wang et al., 2007LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM

  20. Anaerobic digestion for methane generation and ammonia reforming for hydrogen production

    E-Print Network [OSTI]

    ,000,000 digesters, 2000 [14]), among other places [15,16]. These digesters operate to generate biogas, comprisingAnaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen

  1. Biomass Gasification and Methane Digester Property Tax Exemption

    Broader source: Energy.gov [DOE]

    Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among exempted property are certain methane digesters, biomass gasification equipment,...

  2. EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by DOE and USDA to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester, and related infrastructure. Based on the analysis in USDA's Final EA and FONSI, DOE has determined that DOE's proposed action does not constitute a major Federal action that would significantly affect the quality of the human or natural environment.

  3. E-Print Network 3.0 - anaerobic acidification broth Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broth produced in the biomass... is expected to undergo anaerobic digestion to produce biogas. This biogas will serve as the primary source... be produced during the anaerobic...

  4. Department of Agricultural and Biological Engineering Fall 2011 Small Scale Anaerobic Digestion by PENERGY Solutions

    E-Print Network [OSTI]

    Demirel, Melik C.

    by wood-fired boilers. By generating biogas through anaerobic digestion of swine manure, fuel can: A mechanical anaerobic digester to handle organic farm waste. A complete biogas collection system with hook Digestion by PENERGY Solutions Overview For most farmers in Pennsylvania, the growing season ends

  5. Optimizing the anaerobic digestion of microalgae in a coupled Terence Bayen

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    substrate) are digested and converted into biogas. One essential feature of the model is that the evolutionOptimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen , Francis by light and an anaerobic digester. The mathematical model for the dynamics of the reactors takes

  6. Reduction of Antibiotic-Resistant Bacteria Present in Food Animal Manures by Composting and Anaerobic Digestion

    E-Print Network [OSTI]

    Jones, Michelle

    and Anaerobic Digestion Frederick C. Michel, Food, Agricultural, and Biological Engineering Zhongtang Yu, Animal digestion and composting at mesophilic or moderate temperature significantly reduced the antimicrobial concluded that both anaerobic digestion and composting--especially at elevated temperatures--are effective

  7. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    SciTech Connect (OSTI)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15T23:59:59.000Z

    Highlights: Nitrogen release in digestate-amended soil depends on the digestate type. Overall N release is modulated by digestate mineral and mineralisable N contents. Microbial immobilisation does not influence overall release of digestate N in soil. Digestate physical properties and soil type interact to affect overall N recovery. High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application, indicating greater microbial activity in amended soil and reflecting the lower stability of this OM source, compared to the other, anaerobic digestate types, which showed no consistent effects on MBN compared to the control. Thus, the overall net release of digestate N in different soil types was not regulated by N transfer into the soil microbial biomass, but was determined primarily by digestate properties and the capacity of the soil type to process and turnover digestate N. In contrast to the sandy soil types, where nitrate (NO{sub 3}{sup -}) concentrations increased during incubation, there was an absence of NO{sub 3}{sup -} accumulation in the silty clay soil amended with LTAD and DMADMSW. This provided indirect evidence for denitrification activity and the gaseous loss of N, and the associated increased risk of greenhouse gas emissions under certain conditions of labile C supply and/or digestate physical structure in fine-textured soil types. The significance and influence of the interaction between soil type and digestate stability and physical properties on denitrification processes in digestate-amended soils require urgent investigation to ensure management practices are appropriate to minimise greenhouse gas emissions from land applied biowastes.

  8. Treatment program of organic matter by anaerobic digestion and composting (PTMOBC) (Quebec, Canada)

    Broader source: Energy.gov [DOE]

    The Program for processing of organic matter by anaerobic digestion and composting (PTMOBC) provides financial assistance to municipalities and the private sector for the installation of...

  9. E-Print Network 3.0 - anaerobic digestion concept Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to methane. The anaerobic digestion consortium was introduced to high... M, and a biogas composition of 55%-60% methane. INTRODUCTION Economic evaluations of ... Source:...

  10. E-Print Network 3.0 - anaerobic digestion program Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic matter and the management ... Source: Liskiewicz,...

  11. E-Print Network 3.0 - anaerobic closed digester Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to methane. The anaerobic digestion consortium was introduced to high... M, and a biogas composition of 55%-60% methane. INTRODUCTION Economic evaluations of ... Source:...

  12. E-Print Network 3.0 - anaerobically digested sludge Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic ... Source: Liskiewicz, Maciej - Institut fr...

  13. E-Print Network 3.0 - anaerobic digestion role Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation of Summary: ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  14. E-Print Network 3.0 - anaerobic digester sludge Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... on the source of the organic ... Source: Liskiewicz, Maciej - Institut fr...

  15. E-Print Network 3.0 - anaerobically digested municipal Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This publication provides a general overview of anaero- Summary: . Scrubbing the biogas with iron-impregnated wood chips has been used in anaerobic digesters in municipal......

  16. Video Article Continuously-Stirred Anaerobic Digester to Convert Organic Wastes into

    E-Print Network [OSTI]

    Angenent, Lars T.

    Video Article Continuously-Stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System@cornell.edu URL: http://www.jove.com/video/3978/ DOI: 10.3791/3978 Keywords: Anaerobic Digestion, Bioenergy, Biogas, Methane, Organic Waste, Methanogenesis, Energy Crops, Date Published: // Citation: Usack

  17. Simulation of low temperature anaerobic digestion of dairy and swine manure q

    E-Print Network [OSTI]

    the primary biogas component at approximately 10°C. Thus, digestion Bioresource Technology 78 (2001) 127±131 qSimulation of low temperature anaerobic digestion of dairy and swine manure q D.T. Hill *, S performance data from digesters using animal waste in this temperature range have been lacking, thus allowing

  18. Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel

    E-Print Network [OSTI]

    Foucault, Lucas Jose

    2011-10-21T23:59:59.000Z

    The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors...

  19. E-Print Network 3.0 - anaerobic digestion held Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anaerobic digestion held Page: << < 1 2 3 4 5 > >> 1 www.manuremanagement.cornell.edu Biogas Casebook Summary: 1 www.manuremanagement.cornell.edu Biogas Casebook: NYS On-farm...

  20. Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy

    E-Print Network [OSTI]

    Zaks, David P. M.

    Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria ...

  1. Anaerobic digestion of organic solid waste for energy production.

    E-Print Network [OSTI]

    Nayono, Satoto Endar

    2009-01-01T23:59:59.000Z

    ??This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms (more)

  2. Economic implications of anaerobic digesters on dairy farms in Texas

    E-Print Network [OSTI]

    Jackson, Randy Scott, Jr.

    2007-09-17T23:59:59.000Z

    and the environment. Digesters capture methane from livestock waste and transform it into electricity which can be sold to utilities or used on-farm. Because a digester facility is confined, air and water pollution can be reduced. Technological advancement...

  3. Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste

    E-Print Network [OSTI]

    Columbia University

    Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid the inlet of a function- ing plug-flow biogas fermentor. These were removed at periodic intervals cab- bage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor

  4. Testing the profitability of Anaerobic Digestion in a large-scale UK dairy farm

    E-Print Network [OSTI]

    Coz Leniz, Luis Fernando

    2011-11-24T23:59:59.000Z

    Anaerobic Digestion (AD) consists in the transformation of any organic non-woody material by micro-organisms into biogas. This biogas, composed of approximately 60 per cent methane can be further burnt and converted into electricity and heat. The UK...

  5. Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant

    E-Print Network [OSTI]

    Boyer, Edmond

    the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos García-Diéguez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC ­ PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

  6. The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft-glassy materials

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 The viscoelastic behaviour of raw and anaerobic digested sludge: strong similarities with soft confronted with a dramatically increasing flow of sewage sludge. To improve treatment efficiency, process reliable flow properties to simulate the process, this work is an attempt to approach sludge rheological

  7. E-Print Network 3.0 - acidogenic anaerobic reactor Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: anaerobic digestion in the inlet of the pre-treatment zone of a plug-flow biogas reactor for biomass... -flow anaerobic reactor for domestic organic waste treatment...

  8. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    III t> IV Natural Kelp Bed System Introduction. . . . .Natural Kelp Bed System Constraints . . . . . . v CapitalIntroduction . . . . . . Natural Kelp Bed System Harvest

  9. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    that the use of sewage as a kelp nutrient source can, in theused to enrich the kelp with nutrient rich deep ocean water.Supplements Marine Kelp C0 2 Water/ Nutrients Production

  10. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Thermal Energy Conversion (OTEC). by Division of Technologyocean thermal energy conversion (OTEC) operations (Debok and

  11. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    time constant algal heat of combustion (6 Kcal/gm) dilutionSource: temperature, heat of combustion, and the depth at

  12. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    C0 2 Water/ Nutrients Production System Harvesting Systemwater and grinding) could be accomplished on the harvestingdiesel-powered harvesting vessels. The waste water generated

  13. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    1976. Engineering Aspects of Microalgae. Univer- sity ofreports as an average for microalgae. It is helpful to knowsalinity gradients. use of microalgae growth equations have

  14. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Municipal Solid Waste-Sewage Sludge. b 4.15 SCF CH 4 / cu ftUP I j methane 31.5 scf sludge 18.61b water 161b Btu/scfsewer 65.3 lb ( 7.9 gal) sludge ash 1.74 lb stack emissions

  15. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    University, School of Engineering, Ocean .. Engineel'ing-and nutrition, ocean engineering and methane generation. In

  16. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Document - Ocean Thermal Energy Conversion (OTEC). byassociated with ocean thermal energy conversion (OTEC)

  17. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Document - Ocean Thermal Energy Conversion (OTEC). bywith ocean thermal energy conversion (OTEC) operations (

  18. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    distribution of heavy metals and other toxicants betweenaccumulation and toxicity resulting from heavy metals suchthe marine algae. Toxicity resulting from heavy metal uptake

  19. Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas andManaged by UT-Battelle for

  20. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    flow from an on-site steam turbine to raise the kelp to 45Ca 1200 Kw electric steam turbine/generator system. CapitalFinally, the waste steam stream from the turbine is used to

  1. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    Readiness Document - Ocean Thermal Energy Conversion (OTEC).associated with ocean thermal energy conversion (OTEC)

  2. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    wind, and bottom conditions that repre- sent a potential large farm site, but do not reach the extremes

  3. MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE

    E-Print Network [OSTI]

    Haven, Kendall F.

    2011-01-01T23:59:59.000Z

    lb process heat: 1. 23 X 10 4 BTU electricity 5500 BTUe CaC1scf sludge 18.61b water 161b Btu/scf WASTE PROCESSING sewer~l9ZZ X 10 DEELAIQB BTU/yr) I MATERIALS TRANSPORTATION 3.

  4. Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass

    E-Print Network [OSTI]

    FAN, XIN

    2012-01-01T23:59:59.000Z

    derived from biomass, including biogas, biodiesel, ethanol,in the absence of oxygen environment to produce biogas.The biogas generated from anaerobic digestion of biosolids

  5. Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Annual report

    SciTech Connect (OSTI)

    Sengupta, S; Gerrish, H P; Wong, K F; Nemerow, N; Daly, Jr, E L; Farooq, S; Chriswell, C

    1980-08-01T23:59:59.000Z

    Municipal solid wastes contain numerous substances of potential environmental concern. While some understanding of the composition of raw municipal waste and its leachate products is available, no information regarding characteristics of solid, liquid and gaseous outputs from anaerobic digestion exists. If centralized anaerobic digestion plants are to be environmentally viable, the characteristics and environmental effects of effluents from these plants must be acceptable. The environmental concerns are particularly acute where ground water supplies are precariously low and the water table is high, South Florida is such a location. A characterization and environmental study was initiated by the Resource Recovery Group on August 1978. The specific objectives are: (1) systematic characterization of solid, liquid and gaseous inputs and outputs; (2) investigations of leaching characteristic of output solid and liquid effluents, and the transport of pollutants to and through ground water systems; and (3) analysis of environmental and process parameters to obtain causal relationships.

  6. Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system

    SciTech Connect (OSTI)

    Stabnikova, O. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: costab@ntu.edu.sg; Liu, X.Y.; Wang, J.Y. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2008-07-01T23:59:59.000Z

    The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

  7. Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis Mairet2 and Pierre Martinon3 and Matthieu Sebbah4

    E-Print Network [OSTI]

    Boyer, Edmond

    Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis the production of methane in a bioreactor coupling an anaerobic digester and a culture of micro-algae limited-dimensional system taking into account a day-night model of the light in the culture of micro-algae. Applying

  8. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  9. A model of anaerobic digestion for biogas production using Abel equations

    E-Print Network [OSTI]

    Primitivo B. Acosta-Humnez; Maximiliano Machado-Higuera; Alexander V. Sinitsyn

    2014-11-27T23:59:59.000Z

    We consider a nonlinear mathematical model for the study of anaerobic digestion processes. We decompose the original system of nonlinear ordinary differential equations into subsystems. For these subsystems we prove existence of lower and upper solutions in reverse order for one of the va\\-ria\\-bles. The upper and lower solutions are constructed in analytical form. Furthermore, the upper solutions of subsystem for feeding bacteria are related with solutions of Abel equations of the first kind. Using numerical and theoretical arguments we examine how to obtain upper and lower solutions approximated to the numerical solution of the system. In this work we establish special techniques of lower-upper solution, which includes reverse order for non monotone systems, in contrast to the techniques used by H.L. Smith and P. Waltman on their monograph.

  10. Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Moriarty, K.

    2013-01-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

  11. Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergyInnovation Portal BiomassUsing Anhydrous Liquid

  12. E-Print Network 3.0 - anaerobic immobilized biomass Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. W., Samani... of the above MSW fractions for their suitability to be converted to biogas and anaerobic compost using... of anaerobic compost (fermentation residue) and has the...

  13. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use

    SciTech Connect (OSTI)

    Govasmark, Espen, E-mail: espen.govasmark@bioforsk.no [Norwegian Institute for Agricultural and Environmental Research - Soil and Environment, Fredrik A. Dahlsvei 20, NO-1432 Aas (Norway); Staeb, Jessica [Universitaet Stuttgart, Institut fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft, Abteilung Hydrochemie, Bandtaele 2, D-70569 Stuttgart (Buesnau) (Germany); Holen, Borge [Norwegian Institute for Agricultural and Environmental Research - Plant Health, Hogskoleveien 7, NO-1432 Aas (Norway); Hoornstra, Douwe [University of Helsinki, Department of Applied Chemistry and Microbiology, Faculty of Agriculture and Forestry, Biocenter, Viikinkaari 9, FIN-00014 (Finland); Nesbakk, Tommy [Mjosanlegget AS, Roverudmyra Miljostasjon, Asmarkveien 301, NO-2600 Lillehammer (Norway); Salkinoja-Salonen, Mirja [University of Helsinki, Department of Applied Chemistry and Microbiology, Faculty of Agriculture and Forestry, Biocenter, Viikinkaari 9, FIN-00014 (Finland)

    2011-12-15T23:59:59.000Z

    In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

  14. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility

    SciTech Connect (OSTI)

    Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

    2013-09-01T23:59:59.000Z

    To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

  15. Dynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion

    E-Print Network [OSTI]

    Boyer, Edmond

    by microorganisms into biogas (methane and carbon dioxide) and digestate (natural manure) in the absence of oxygen digestion S. Diop1 and I. Simeonov2 Abstract-- The paper proposes an observability anal- ysis and estimation measured quantities ­ the dilution rate and the flow rates of methane and carbon dioxide in the biogas

  16. Methane Digester Loan Program

    Broader source: Energy.gov [DOE]

    Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by...

  17. Research review paper1 Anaerobic digestion of microalgae as a necessary step to make3

    E-Print Network [OSTI]

    Boyer, Edmond

    for the energetic recovery of cell biomass. Lastly, the ability of these CO2 consuming30 microalgae to purify biogas potential, codigestion,34 pretreatment, biogas, CO2 mitigation, biofuel35 36 Contents37 38 1 Introduction....................................................................................... 545 2.3.3 Biogas quality

  18. Fiscalini Farms Biomass Energy Project

    SciTech Connect (OSTI)

    William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

    2011-09-30T23:59:59.000Z

    In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

  19. Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.

    SciTech Connect (OSTI)

    Han, J.; Mintz, M.; Wang, M. (Energy Systems)

    2011-12-14T23:59:59.000Z

    In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

  20. Anaerobic codigestion of dairy manure and food manufacturing waste for renewable energy generation in New York State.

    E-Print Network [OSTI]

    Wu, Yen-Chin

    2013-01-01T23:59:59.000Z

    ??Anaerobic digestion is a microbiological process that converts biodegradable organic material into biogas, consisting primarily of methane and carbon dioxide. Anaerobic digestion technologies have been (more)

  1. Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    with wastewater sludge, wood ash, coal ash, lime-kiln dust, and/or limestone quarry dust to improve the profile systems [Block & Goldstein 2000]. Anaerobic composting is not well used in the U.S until now [Goldstein of the process, the methane gas ("cleaner energy") and harvesting materials from MSW to #12;either recycle

  2. ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED MANURE AS NUTRIENT AND WATER SUPPLY

    E-Print Network [OSTI]

    gasses, great interest has arisen in production of biofuels. The idea of combining biogas and bioethanol and water in industry is a rather expensive medium. The remaining liquid after the biogas process is waste to pollution of ground waters. Furthermore the biogas process does not kill all pathogens. Anaerobically

  3. IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING

    SciTech Connect (OSTI)

    Washington University- St. Louis:; ,; Muthanna Al-Dahhan (Principal Investigator); E-mail: muthanna@wustl.edu; ,; Rajneesh Varma; Khursheed Karim; Mehul Vesvikar; Rebecca Hoffman; ,; Oak Ridge National Laboratory:; ,; David Depaoli, (Co-principal investigator); Email: depaolidw@ornl.gov; ,; Thomas Klasson; Alan L. Wintenberg; Charles W Alexander; Lloyd Clonts; ,; Iowa Energy Center; ,; ,; Norm Olson; Email: nolson@energy.iastate.edu

    2007-03-26T23:59:59.000Z

    The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dyn

  4. E-Print Network 3.0 - anaerobic 2-methylnaphthalene degradation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provides a general overview of anaero- Summary: that can be degraded by bacteria. Biogas: the gas produced by anaerobic bacteria in the anaerobic digestion... at Virginia...

  5. GMP- Biomass Electricity Production Incentive

    Broader source: Energy.gov [DOE]

    Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products,...

  6. E-Print Network 3.0 - anaerobic work capacity Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This publication provides a general overview of anaero- Summary: lost some of its biogas production potential. Anaerobic digesters work best when the digestion pro... at...

  7. E-Print Network 3.0 - anaerobic waste water Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recovery Jun Wei LIM... waste. Keywords Anaerobic digestion; food waste; brown water; biogas; co-digestion INTRODUCTION... of brown water and food ... Source: Ecole Polytechnique,...

  8. Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry

    E-Print Network [OSTI]

    Scampini, Amanda C

    2010-01-01T23:59:59.000Z

    Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

  9. E-Print Network 3.0 - anaerobic biosurfactant production Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1990) Received 25th January Summary: ). High Solids Anaerobic Fermentation for Biogas and Compost Production. Biomass 16, 173-182. Owen, W... Reactor for Anaerobic...

  10. E-Print Network 3.0 - anaerobic feiii-reducer rhodoferax Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and agricultural wastewater, includ- ing methanogenic anaerobic digestion, biological hydro- gen production... material in industrial and agricultural wastewater Methanogenic...

  11. anaerobic odontogenic infections: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    producers to operate an anaerobic digester with minimum technological knowhow and for the cost of a conventional (more) Giard, David 2011-01-01 13 ANAEROBIC CULTURE METHODS IN A...

  12. Anaerobic Digestion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-EnergyAmbeneExisting Windoperations at

  13. Anaerobic Digestion | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | Open Energy

  14. E-Print Network 3.0 - artificial digestion methods Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... (oxygen free) digestion of organic matter whereby the organic matter is converted...

  15. E-Print Network 3.0 - animal manure digestion Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with other organic wastes. Co-digestion has the primary advan- tage... to generate biogas from animal manure. Some com- mon anaerobic digester configurations used on farms...

  16. anaerobic enrichment culture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    producers to operate an anaerobic digester with minimum technological knowhow and for the cost of a conventional (more) Giard, David 2011-01-01 34 Parameter identification in...

  17. E-Print Network 3.0 - anaerobic betaproteobacterium georgfuchsia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  18. anaerobic extreme thermophilic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for methane production by anaerobic digestion of animal manures. Experiences with design, construction, and operation of a two-stage heated continuous-feed digester for a herd of...

  19. NSERC-Laflche Industrial Research Chair Advanced Anaerobic Treatment

    E-Print Network [OSTI]

    Petriu, Emil M.

    O + a. b. Enhanced digestion and biogas production of solid residue via (i) MW and (ii) ultrasound. LANDFILL BIOREACTORS EXSITU ANAEROBIC DIGESTION Apply stand alone reactor technology to digest solid 6133. 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Digestion Time

  20. aerobic sludge digestion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of organic wastes) and digestion (anaerobic treatment of organic wastes combined with biogas production) are important waste management strategies with increasing significance...

  1. NREL: Biomass Research - Michael Resch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improve the hydrolysis efficiency of cellulase and hemicellulase enzyme digestion of biomass. This work will help NREL lower the industrial cost of lignocellulosic enzyme...

  2. E-Print Network 3.0 - anaerobic biogas reactors Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    biogas reactors Search Powered by Explorit Topic List Advanced Search Sample search results for: anaerobic biogas reactors Page: << < 1 2 3 4 5 > >> 1 Anaerobic Co-digestion of...

  3. Specific Effects of Fiber Size and Fiber Swelling on Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility. Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate...

  4. Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and

    E-Print Network [OSTI]

    Collins, Gary S.

    , and their entrained lipids, can offer several different types of biofuel and bioenergy production options including as well as suitably large and viable markets (Chakraborty et al., 2012; Miao et al., 2012). Both

  5. E-Print Network 3.0 - anaerobic contact filter Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clarifier 1 Clarifier Sludge1 Clarifier Sludge FinalFinal FilterUVFilterUV Sludge... Supernatant 2 Clarifier Anaerobic Digested Sludge 1 Sludge Bar Screen...

  6. E-Print Network 3.0 - anaerobic filter ufaf-subsurface Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clarifier 1 Clarifier Sludge1 Clarifier Sludge FinalFinal FilterUVFilterUV Sludge... Supernatant 2 Clarifier Anaerobic Digested Sludge 1 Sludge Bar Screen...

  7. E-Print Network 3.0 - anaerobic upflow column Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were hermetically sealed. Only the filter was heated... , pyrolysis, and biological gaSification by anaerobic digestion have been in vestigated. Due to the very... heterogeneous...

  8. E-Print Network 3.0 - anaerobic conditions Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical treatment steps on the waste streams produced... incineration or co-frring), pyrolysis, anaerobic digestion, or methanation. From a water pollution control... , centrate...

  9. E-Print Network 3.0 - anaerobic sewage sludge Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Process, " Symposium on Clean Fuels From Biomas... , pyrolysis, and biological gaSification by anaerobic digestion ... Source: Columbia University - Waste-to-Energy Research...

  10. E-Print Network 3.0 - anaerobically induced small Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical treatment steps on the waste streams produced... incineration or co-frring), pyrolysis, anaerobic digestion, or methanation. From a water pollution control... , centrate...

  11. E-Print Network 3.0 - anaerobic potency test Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical treatment steps on the waste streams produced... incineration or co-frring), pyrolysis, anaerobic digestion, or methanation. From a water pollution control... , centrate...

  12. E-Print Network 3.0 - anaerobic benzene communities Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical treatment steps on the waste streams produced... incineration or co-frring), pyrolysis, anaerobic digestion, or methanation. From a water pollution control... , centrate...

  13. E-Print Network 3.0 - anaerobic ammonia oxidation Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical treatment steps on the waste streams produced... incineration or co-frring), pyrolysis, anaerobic digestion, or methanation. From a water pollution control... , centrate...

  14. E-Print Network 3.0 - anaerobic mixed microflora Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  15. E-Print Network 3.0 - anaerobic chloroethene-dehalogenating activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  16. E-Print Network 3.0 - anaerobic continuously stirred Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or thermophilic... ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  17. E-Print Network 3.0 - anaerobic process effects Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on headspace gas chromatography. Submitted. Paper III Boe... . 12;12;4 2. The biogas process Anaerobic digestion is a multi-step biological process where... . The...

  18. E-Print Network 3.0 - anaerobic psychrophilic enrichment Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  19. E-Print Network 3.0 - anaerobic reactor systems Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of organic matter... -processing wastes, and industrial wastes. A typical biogas system consists of manure collection, anaerobic digestion... and carbon credits. The...

  20. E-Print Network 3.0 - anaerobic stirred sequencing-batch Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation of Summary: ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  1. E-Print Network 3.0 - anaerobic fitness markers Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation of Summary: ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  2. E-Print Network 3.0 - anaerobically corroding iron Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This publication provides a general overview of anaero- Summary: . Scrubbing the biogas with iron-impregnated wood chips has been used in anaerobic digesters in municipal......

  3. E-Print Network 3.0 - anaerobic mesophilic granular Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  4. E-Print Network 3.0 - anaerobic chlorophenol-degrading community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  5. E-Print Network 3.0 - anaerobic conditions model Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  6. E-Print Network 3.0 - anaerobic interval training Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  7. E-Print Network 3.0 - anaerobic soil slurry Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aberystwyth Collection: Environmental Sciences and Ecology 2 Life Cycle Assessment of Biogas from Separated slurry Summary: scenarios. In fact, anaerobic digestion of animal...

  8. E-Print Network 3.0 - anaerobic fixed bed Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation of Summary: ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  9. E-Print Network 3.0 - anaerobic thermophiles annual Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation of Summary: ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  10. E-Print Network 3.0 - anaerobic reactor star Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview of anaero- Summary: dioxide (EPA AgStar 2006). Benefits and Challenges of Biogas Technology Anaerobic digestion can convert... at Virginia Tech. Most of the discussion...

  11. E-Print Network 3.0 - anaerobic contact reactor Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation of Summary: ;12;Abstract Anaerobic digestion of dairy manure produces biogas that can be captured and used for fuel while... offering environmental benefits. Dairy...

  12. E-Print Network 3.0 - anaerobically growing xylose-utilizing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  13. E-Print Network 3.0 - anaerobic bacterial community Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  14. E-Print Network 3.0 - anaerobic baffled reactor Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  15. E-Print Network 3.0 - anaerobic gac reactor Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources which provide more detailed infor- mation on anaerobic digesters are listed. Biogas... Technology Biomethane (biogas) is an alternative and renewable energy source...

  16. E-Print Network 3.0 - anaerobic thermophiles progress Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to various... returns from energy and byproduct sales. Keywords: Anaerobic digestion, biogas, cooperatives, carbon Source: Laughlin, Robert B. - Department of Physics, Stanford...

  17. u.s DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA...

    Broader source: Energy.gov (indexed) [DOE]

    harvested algae biomass would be transferred to tanks to be anaerobically digested. Biogas would be a by-product of the anaerobic digestion process. Per each digester tank,...

  18. Conversion of Waste Biomass into Useful Products

    E-Print Network [OSTI]

    Holtzapple, M.

    Waste biomass includes municipal solid waste (MSW), municipal sewage sludge (SS), industrial biosludge, manure, and agricultural residues. When treated with lime, biomass is highly digestible by a mixed culture of acid-forming microorganisms. Lime...

  19. E-Print Network 3.0 - aerobic digestion process Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies ; Environmental Sciences and Ecology 9 www.manuremanagement.cornell.edu Biogas Casebook Summary: of gas handling equipment for an anaerobic digester system....

  20. Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion Thomas be accomplished through use of aerobic or anaerobic self digestion, but choice of digestion type in practice on digestibility, especially in regards to the composition of extracellular polymeric substances (EPS). Samples

  1. Anaerobic Digestion (AD): not only methane

    Broader source: Energy.gov [DOE]

    Breakout Session 1: New Developments and Hot Topics Session 1-C: Beyond Biofuels Larry Baresi, Professor of Biology, California State University, Northridge

  2. Community-Scale Anaerobic Digesters Webinar

    Broader source: Energy.gov [DOE]

    This free webinar will be held on April 16, 2013, from 1-2:15 p.m. Mountain Daylight Time. It will provide information on San Jose, California's, commercial-scale, high solids dry fermentation...

  3. Anaerobic Digestion of Biowaste in Developing Countries

    E-Print Network [OSTI]

    Wehrli, Bernhard

    and maintenance 44 4. Utilisation of Biogas 49 4.1 Biogas storage 49 4.1.1 Low-pressure storage systems 49 4.1.2 Medium-pressure storage 52 4.1.3 High-pressure storage 52 4.2 Biogas flares 53 4.3 Conditioning of biogas 53 4.3.1 Dewatering 54 4.3.2 Desulphurisation (removal of H2 S) 55 4.3.3 Removal of CO2 57 4.4 Biogas

  4. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructuresHigh

  5. Anaerobic Digestion Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance|atp3.orgOfficeOctober 2010 |

  6. ENERGY RECOVERY COUNCIL WEEKLY UPDATE

    E-Print Network [OSTI]

    such as (but not limited to) pyrolysis, biomass gasification, and anaerobic digestion. Responses to the RFI

  7. Final Report: Feasibility Study of Biomass in Snohomish County, Washington

    SciTech Connect (OSTI)

    Daryl Williams (Tulalip Tribes); Ray Clark (Clark Group)

    2005-01-31T23:59:59.000Z

    This report and its attachments summarizes the results of a unique tribal-farmer cooperative study to evaluate the feasibility of building one or more regional anaerobic digestion systems in Snohomish County, Washington.

  8. E-Print Network 3.0 - anaerobic biological reactors Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Environment & Resources Online monitoring and control Summary: . 12;12;4 2. The biogas process Anaerobic digestion is a multi-step biological process where... H drop (<6)...

  9. Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul Park, Civil & Environmental Engineering Digestion by bacteria is a widely used method for organic is by either aerobic or anaerobic self-digestion, in which the bacteria consume their own mass. Currently

  10. Design and study of a risk management criterion for an unstable anaerobic wastewater

    E-Print Network [OSTI]

    Bernard, Olivier

    Design and study of a risk management criterion for an unstable anaerobic wastewater treatment an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have popular bioprocess (Angelidaki et al., 2003) that treats wastewater and at the same time produces energy

  11. Modeling for Anaerobic Fixed-Bed Biofilm Reactors

    SciTech Connect (OSTI)

    Liu, B. Y. M.; Pfeffer, J. T.

    1989-06-01T23:59:59.000Z

    The specific objectives of this research were: 1. to develop an equilibrium model for chemical aspects of anaerobic reactors; 2. to modify the equilibrium model for non-equilibrium conditions; 3. to incorporate the existing biofilm models into the models above to study the biological and chemical behavior of the fixed-film anaerobic reactors; 4. to experimentally verify the validity of these models; 5. to investigate the biomass-holding ability of difference packing materials for establishing reactor design criteria.

  12. A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION

    SciTech Connect (OSTI)

    JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

    2010-08-01T23:59:59.000Z

    The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical properties of the raw materials on the packed bed design 3) Design of packed bed torrefier of different capacities. 4) Development of an excel sheet for calculation of length and diameter of the packed bed column based on the design considerations.

  13. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

    1998-01-01T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

  14. Bioconversion of waste biomass to useful products

    DOE Patents [OSTI]

    Grady, J.L.; Chen, G.J.

    1998-10-13T23:59:59.000Z

    A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

  15. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect (OSTI)

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01T23:59:59.000Z

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  16. ANAEROBIC BIOLOGICAL TREATMENT OF PRODUCED WATER

    SciTech Connect (OSTI)

    John R. Gallagher

    2001-07-31T23:59:59.000Z

    During the production of oil and gas, large amounts of water are brought to the surface and must be disposed of in an environmentally sensitive manner. This is an especially difficult problem in offshore production facilities where space is a major constraint. The chief regulatory criterion for produced water is oil and grease. Most facilities have little trouble meeting this criterion using conventional oil-water separation technologies. However, some operations have significant amounts of naphthenic acids in the water that behave as oil and grease but are not well removed by conventional technologies. Aerobic biological treatment of naphthenic acids in simulated-produced water has been demonstrated by others; however, the system was easily overloaded by the large amounts of low-molecular-weight organic acids often found in produced waters. The objective of this research was to determine the ability of an anaerobic biological system to treat these organic acids in a simulated produced water and to examine the potential for biodegradation of the naphthenic acids in the anaerobic environment. A small fixed-film anaerobic biological reactor was constructed and adapted to treat a simulated produced water. The bioreactor was tubular, with a low-density porous glass packing material. The inocula to the reactor was sediment from a produced-water holding pond from a municipal anaerobic digester and two salt-loving methanogenic bacteria. During start-up, the feed to the reactor contained glucose as well as typical produced-water components. When glucose was used, rapid gas production was observed. However, when glucose was eliminated and the major organic component was acetate, little gas was generated. Methane production from acetate may have been inhibited by the high salt concentrations, by sulfide, or because of the lack, despite seeding, of microbes capable of converting acetate to methane. Toluene, a minor component of the produced water (0.1 g/L) was removed in the reactor. Batch tests were conducted to examine naphthenic acid biodegradability under several conditions. The conditions used were seed from the anaerobic reactor, wetland sediments under aerobic and anaerobic conditions, and a sterile control. The naphthenic acid was from a commercial source isolated from Gulf Coast petroleum as was dosed at 2 mg/mL. The incubations were for 30 days at 30 C. The results showed that the naphthenic acids were not biodegraded under anaerobic conditions, but were degraded under aerobic conditions. Despite poor performance of the anaerobic reactor, it remains likely that anaerobic treatment of acetate, toluene, and, potentially, other produced-water components is feasible.

  17. Federal Biomass Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Budget Federal Biomass Activities Federal Biomass Activities Biopower Biopower Biofuels Biofuels Bioproducts Bioproducts Federal Biomass Activities Federal Biomass...

  18. Optimization Online - Digest Archive

    E-Print Network [OSTI]

    Optimization Online Digest Archive. Subscribe to the digest. ... Online is supported by the Mathematical Optmization Society. Mathematical Optimization Society.

  19. Digestion Experiments.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1908-01-01T23:59:59.000Z

    , these determinations have much less value than those made with longer periods. It is important to emphasize the fact that the digestion period should not be too short. In period four with Steer No. 2 the ciry matter excreted varied from 1974 to 2558 grams per dnp...

  20. Biomass pretreatment

    DOE Patents [OSTI]

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21T23:59:59.000Z

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  1. Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips

    SciTech Connect (OSTI)

    van der Lelie, D.; Taghavi, S.; McCorkle, S. M.; Li, L. L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S. Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

    2012-05-01T23:59:59.000Z

    This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

  2. DATA DIGEST WEST LAFAYETTE

    E-Print Network [OSTI]

    Petriu, Emil M.

    DATA DIGEST 2009-2010 WEST LAFAYETTE PreparingTomorrow'sLeaders for a Changing World #12-mail: datadigest@purdue.edu URL: www.purdue.edu/DataDigest DATA DIGEST2009-2010 WEST LAFAYETTE #12;DATA DIGEST2009-2010 This tenth edition of the Purdue University Data Digest provides information on a variety of topics

  3. Barriers to Implementing Anaeribic Digestion on Dairy Farms in Scotland

    E-Print Network [OSTI]

    Graham, Leonie

    2011-11-23T23:59:59.000Z

    agricultural CH4 emissions, with liquid systems commonly used by the dairy industry contributing up to 74% of this. Anaerobic digestion (AD) is able to reduce emissions from the dairy industry by capturing CH4 emissions released from slurry and forming a biogas...

  4. Optimization Online - Digest

    E-Print Network [OSTI]

    Complete the form below to subscribe to the free Optimization Online Digest. ... Type your e-mail address to unsubscribe from the Optimization Online Digest.

  5. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

  6. Process for the treatment of lignocellulosic biomass

    DOE Patents [OSTI]

    Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

    2013-03-12T23:59:59.000Z

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  7. Process for the treatment of lignocellulosic biomass

    SciTech Connect (OSTI)

    Dale, Bruce E.

    2014-07-08T23:59:59.000Z

    A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

  8. AGCO Biomass Solutions: Biomass 2014 Presentation

    Broader source: Energy.gov [DOE]

    Plenary IV: Advances in Bioenergy FeedstocksFrom Field to Fuel AGCO Biomass Solutions: Biomass 2014 Presentation Glenn Farris, Marketing Manager Biomass, AGCO Corporation

  9. 5, 23052341, 2008 Anaerobic methane

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 5, 2305­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title of Biogeosciences Regulation of anaerobic methane oxidation in sediments of the Black Sea N. J. Knab1 , B. A. Cragg2­2341, 2008 Anaerobic methane oxidation in Black Sea sediments N. J. Knab et al. Title Page Abstract

  10. Anaerobic thermophilic culture system

    DOE Patents [OSTI]

    Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

    1981-01-01T23:59:59.000Z

    A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) The Indiana Department of Environmental Management requires permits before the construction or...

  12. Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive

    Broader source: Energy.gov [DOE]

    Note: This program is not currently accepting applications. Check back for updates regarding future solicitations.

  13. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion

    E-Print Network [OSTI]

    relationships are necessary. ª 2010 Elsevier Ltd. All rights reserved. 1. Introduction Land application the opportunity to put sewage sludge, which otherwise needs to be disposed of, towards beneficial use such as crop, enteric viruses and Salmonella spp. Land application of Class B biosolids, which require only reduction

  14. List of Anaerobic Digestion Incentives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) JumpEvent (2)Agricultural

  15. A Design-Builder's Perspective: Anaerobic Digestion, Forest County

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief FreedomServices » Program Management »A

  16. Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig Sol Big SolLSUBioassay LabelsDairy

  17. anaerobic digestion processes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  18. anaerobic sludge digestion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  19. anaerobic digestion process: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  20. anaerobic digestion systems: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  1. anaerobic digestion system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Korean food waste with high water contents (>80%). The hydrogen sulfide in the biogas was removed by a biological desulfurization equipment integrated in the horizontal...

  2. Biothermal gasification of biomass

    SciTech Connect (OSTI)

    Chynoweth, D.P.; Srivastava, V.J.; Henry, M.P.; Tarman, P.B.

    1980-01-01T23:59:59.000Z

    The BIOTHERMGAS Process is described for conversion of biomass, organic residues, and peat to substitute natural gas (SNG). This new process, under development at IGT, combines biological and thermal processes for total conversion of a broad variety of organic feeds (regardless of water or nutrient content). The process employs thermal gasification for conversion of refractory digester residues. Ammonia and other inorganic nutrients are recycled from the thermal process effluent to the bioconversion unit. Biomethanation and catalytic methanation are presented as alternative processes for methanation of thermal conversion product gases. Waste heat from the thermal component is used to supply the digester heat requirements of the bioconversion component. The results of a preliminary systems analysis of three possible applications of this process are presented: (1) 10,000 ton/day Bermuda grass plant with catalytic methanation; (2) 10,000 ton/day Bermuda grass plant with biomethanation; and (3) 1000 ton/day municipal solid waste (MSW) sewage sludge plant with biomethanation. The results indicate that for these examples, performance is superior to that expected for biological or thermal processes used separately. The results of laboratory studies presented suggest that effective conversion of thermal product gases can be accomplished by biomethanation.

  3. Biomass Surface Characterization Laboratory

    E-Print Network [OSTI]

    the recalcitrant nature of biomass feedstocks and the performance of techniques to deconstruct biomass NREL of biomass feedstocks. BSCL imaging capabilities include: · Confocal microscopy and Raman microscopy

  4. Biomass Feedstocks

    Broader source: Energy.gov [DOE]

    A feedstock is defined as any renewable, biological material that can be used directly as a fuel, or converted to another form of fuel or energy product. Biomass feedstocks are the plant and algal materials used to derive fuels like ethanol, butanol, biodiesel, and other hydrocarbon fuels. Examples of biomass feedstocks include corn starch, sugarcane juice, crop residues such as corn stover and sugarcane bagasse, purpose-grown grass crops, and woody plants. The Bioenergy Technologies Office works in partnership with the U.S. Department of Agriculture (USDA), national laboratories, universities, industry, and other key stakeholders to identify and develop economically, environmentally, and socially sustainable feedstocks for the production of energy, including transportation fuels, electrical power and heat, and other bioproducts. Efforts in this area will ultimately support the development of technologies that can provide a large and sustainable cellulosic biomass feedstock supply of acceptable quality and at a reasonable cost for use by the developing U.S. advanced biofuel industry.

  5. DANISHBIOETHANOLCONCEPT Biomass conversion for

    E-Print Network [OSTI]

    DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

  6. Biomass shock pretreatment

    SciTech Connect (OSTI)

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01T23:59:59.000Z

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  7. Countercurrent Enzymatic Saccharification of Lignocellulosic Biomass and Improvements Over Batch Operation

    E-Print Network [OSTI]

    Zentay, Agustin Nicholas

    2014-05-05T23:59:59.000Z

    of starchy biomass (e.g., corn), which competes with food. Using lignocellulose avoids competition with food; however, it is difficult to digest using traditional batch saccharification. This work investigates countercurrent saccharification as an alternative...

  8. The metagenome of an anaerobic microbial community decomposing poplar wood chips

    SciTech Connect (OSTI)

    van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Li, L.-L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S.-Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

    2012-05-01T23:59:59.000Z

    This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

  9. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system. Final report

    SciTech Connect (OSTI)

    Li, K.; Hunt, M.D.

    1995-02-01T23:59:59.000Z

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master`s theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  10. Autoheated thermophilic aerobic digestion

    SciTech Connect (OSTI)

    Deeny, K. (Junkins Engineering, Morgantown, PA (United States)); Hahn, H.; Leonhard, D. (Univ. Karlsruhe (West Germany)); Heidman, J. (Environmental Protection Agency, Cincinnati, OH (United States))

    1991-10-01T23:59:59.000Z

    Autothermal thermophilic aerobic digestion (ATAD) is first and foremost a digestion process, the primary purpose of which is to decompose a portion of the waste organic solids generated from wastewater treatment. As a result of the high operating temperature, digestion is expected to occur within a short time period (6 days) and accomplish a high degree of pathogen reduction. ATAD systems are two-stage aerobic digestion processes that operate under thermophilic temperature conditions (40 to 80C) without supplemental heat. Like composting, the systems rely on the conservation of heat released during digestion itself to attain and sustain the desired operating temperature. Typical ATAD systems operate at 55C and may reach temperatures of 60 to 65C in the second-stage reactor. Perhaps because of the high operating temperature, this process has been referred to as Liquid Composting.' Major advantages associated with thermophilic operation include high biological reaction rates and a substantial degree of pathogen reduction.

  11. Digestive System general organization throughout

    E-Print Network [OSTI]

    Houde, Peter

    Digestive System general organization throughout: mucosa, submucosa, muscularis externa, serosa digestive glands salivary pancreas liver (lobes: right, left, caudate, quadrate, diaphragmatic surface, bare

  12. CATALYTIC BIOMASS LIQUEFACTION

    E-Print Network [OSTI]

    Ergun, Sabri

    2013-01-01T23:59:59.000Z

    LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

  13. CATALYTIC LIQUEFACTION OF BIOMASS

    E-Print Network [OSTI]

    Seth, Manu

    2012-01-01T23:59:59.000Z

    liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

  14. Nutrition, digestive system and digestion specificity in phytophagous bats

    E-Print Network [OSTI]

    Boyer, Edmond

    Nutrition, digestive system and digestion specificity in phytophagous bats NF Zhukova Schmalhausen arisen as to how the feeding and digestion specificity is revealed in phytophagous bats, and how the entire order specificity affects these processes. To tackle these issues, the digestive system

  15. Development of Oxidative Lime Pretreatment and Shock Treatment to Produce Highly Digestible Lignocellulose for Biofuel and Ruminant Feed Applications

    E-Print Network [OSTI]

    Falls, Matthew David

    2011-10-21T23:59:59.000Z

    enhanced the 72-h glucan digestibility of several promising biomass feedstocks: bagasse (74.0), corn stover (92.0), poplar wood (94.0), sorghum (71.8), and switchgrass (89.0). Highly digestible lignocellulose can also be used as ruminant animal feed. Shock...

  16. Biomass pyrolysis for chemicals.

    E-Print Network [OSTI]

    Wild, Paul de

    2011-01-01T23:59:59.000Z

    ??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for (more)

  17. Biomass Densification Workshop Overview

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supply systems that ensure high- volume, reliable, and on-spec availability of biomass feedstocks. The United States has a diverse and abundant potential of biomass resources...

  18. Biomass Analytical Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diversity and performance, The chemical and physical properties of biomass and biomass feedstocks are characterized as they move through the supply chain to various conversion...

  19. Steam Digest 2001

    SciTech Connect (OSTI)

    Not Available

    2002-01-01T23:59:59.000Z

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  20. Biomass treatment method

    DOE Patents [OSTI]

    Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

    2010-10-26T23:59:59.000Z

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  1. Available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/watres

    E-Print Network [OSTI]

    are biogas and stabilized biomass. When the digested biomass is dewatered using a centrifuge, a biosolids for concentration of anaerobic digester centrate Ryan W. Hollowaya , Amy E. Childressb , Keith E. Dennettb , Tzahi Y Wastewater treatment Biosolids Anaerobic digestion Centrate a b s t r a c t The nutrient-rich liquid stream

  2. Mapping Biomass Distribution Potential

    E-Print Network [OSTI]

    Schaetzel, Michael

    2010-11-18T23:59:59.000Z

    Mapping Biomass Distribution Potential Michael Schaetzel Undergraduate ? Environmental Studies ? University of Kansas L O C A T S I O N BIOMASS ENERGY POTENTIAL o According to DOE, Biomass has the potential to provide 14% of... the nations power o Currently 1% of national power supply o Carbon neutral? combustion of biomass is part of the natural carbon cycle o Improved crop residue management has potential to benefit environment, producers, and economy Biomass Btu...

  3. Removal of polychlorinated phenols in sequential anaerobic-aerobic biofilm reactors packed with tire chips

    SciTech Connect (OSTI)

    Shin, H.S.; Yoo, K.S.; Park, J.K.

    1999-05-01T23:59:59.000Z

    Scrap vehicle tire chips were used as packing material for sequential anaerobic-aerobic biofilm reactors to remove persistent chlorinated hydrocarbons. Adsorption capacity of scrap tires was greater under acidic conditions than under basic conditions. However, it was only approximately 0.04 to 0.3% of that of activated carbon. The amount of biomass that attached to the surface of scrap tires was 3.16 and 3.72 mg volatile suspended solids/cm{sup 2} after 14 and 37 days, respectively. Two laboratory-scale, down-flow anaerobic-aerobic biofilm reactors packed with tire chips were operated to remove 2,4-dichlorophenol (DCP) and 4-chlorophenol (CP). More than 98% of DCP was dehalogenated to CP in the anaerobic reactor, 70 to 98% of which was subsequently degraded in the aerobic reactor. Scrap tires did not cause any operational problems when used as biofilter media.

  4. Thermochemical processing of digested sludge and its implications in the United States Jennifer Lawrence, Ruth Reed, Sara Tischhauser, Casey Zak

    E-Print Network [OSTI]

    Iglesia, Enrique

    Lawrence, Ruth Reed, Sara Tischhauser, Casey Zak ABSTRACT Currently, the majority of wastewater treatment, methane emissions from anaerobically digested sludge in landfills is a potential threat to climate change analyze the use of thermochemical processing as an addendum to current wastewater treatment plants using

  5. Pathway to Fuel Cell Deployment--The 3rd Party Transaction: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CA renewablehydrogenworkshopnov16damberger.pdf More Documents & Publications Biogas Markets and Federal Policy Biomass Program Perspectives on Anaerobic Digestion and...

  6. Alliant Energy Interstate Power and Light- Business and Farm Renewable Energy Rebates

    Broader source: Energy.gov [DOE]

    The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and farms that are Alliant Energy...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and farms that...

  8. Enabling a Transition to Low Carbon Economies in Developing Countries...

    Open Energy Info (EERE)

    Focus Area: Energy Efficiency, Biomass, - Waste to Energy, - Anaerobic Digestion, Solar, - Concentrating Solar Power, - Solar PV, Wind Topics: GHG inventory, Low emission...

  9. Conversion Technology and the San Jose Zero Waste Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Production Technologies Pathways for Algal Biofuels...

  10. PDF Document (12271k)

    Broader source: Energy.gov (indexed) [DOE]

    solid post-extracted residual biomass which will either be digested anaerobically to biogas to provide thermal energy required during processing or used as animal feed. The...

  11. Opportunities for CHP at Wastewater Treatment Facilities: Market...

    Broader source: Energy.gov (indexed) [DOE]

    2008 EPA CHP Partnership Update Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries Biogas Technologies and Integration with Fuel Cells...

  12. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    biomass, hydro (with exceptions), geothermal, LFGMSW, anaerobic digestion and other biogas, marine CHP, fuel cells Credit trading is allowed. Obligated providers may comply via...

  13. Enhanced Biomass Digestion with Wood Wasp Bacteria - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmart GrocerDepartment&Engineering

  14. Biomass Gasification | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen Production Biomass Gasification Biomass Gasification Photo of switchgrass being swathed. The Program anticipates that biomass gasification could be deployed in the...

  15. Sandia National Laboratories: Lignocellulosic Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProgramLignocellulosic Biomass Lignocellulosic Biomass It is estimated that there is over 1 billion tons of non-food lignocellulosic biomass currently available on a sustainable...

  16. BIOMASS ENERGY CONVERSION IN HAWAII

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

  17. Anaerobic microbial dissolution of lead and production of organic acids

    DOE Patents [OSTI]

    Francis, A.J.; Dodge, C.; Chendrayan, K.

    1986-02-28T23:59:59.000Z

    The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

  18. Optimization Online Digest -- July 2003

    E-Print Network [OSTI]

    Optimization Online Digest July 2003. Applications OR and Management Sciences Shunting Minimal Rail Car Allocation Marco E. Luebbecke, Uwe T.

  19. PalladianDigest Transportation

    E-Print Network [OSTI]

    Farritor, Shane

    PalladianDigest CONNECT. EMPOWER. GROW. Tackling Transportation Challenges Nebraska has been a vital link in the nation's transportation system since the days when carts, wagons to University of Nebraska­Lincoln research. That's fine with UNL transportation researchers, said Larry Rilett

  20. Original article Root biomass and biomass increment in a beech

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

  1. Pretreated densified biomass products

    SciTech Connect (OSTI)

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18T23:59:59.000Z

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  2. AVAILABLE NOW! Biomass Funding

    E-Print Network [OSTI]

    AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

  3. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  4. Understanding Biomass Feedstock Variability

    SciTech Connect (OSTI)

    Kevin L. Kenney; Garold L. Gresham; William A. Smith; Tyler L. Westover

    2013-01-01T23:59:59.000Z

    If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per-ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that, due to inherent species variabilities, production conditions and differing harvest, collection and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

  5. NREL: Biomass Research - Biomass Characterization Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white...

  6. Potential digestibilities and digestion kinetics of forage cell wall components

    E-Print Network [OSTI]

    Tauskey, William Henry

    1973-01-01T23:59:59.000Z

    LITERATURE REVIEW. EXPERIMENTAL PROCEDURES. Chemical Analysis Colorimetric Determinations Statistical Evaluation. 10 13 15 IV RESULTS AND DISCUSSION 16 V Characteristics of Forage Kinetics of Cell Wall Digestion SUMMARY AND CONCLUSIONS... and both of these variables appear to be the result of several dynamic processes. The amount of structural carbohydrates, the main constituents of the fibrous cell wall, ruminants can digest appears to be limited by the potential digestibility...

  7. anaerobic reactors treating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a destabilisation. Key words: Haldane model, Anaerobic Bernard, Olivier 20 HYDROGEN PRODUCTION BY ANAEROBIC MICROBIAL COMMUNITIES EXPOSED TO REPEATED HEAT TREATMENTS...

  8. anaerobic reactor treating: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of a destabilisation. Key words: Haldane model, Anaerobic Bernard, Olivier 20 HYDROGEN PRODUCTION BY ANAEROBIC MICROBIAL COMMUNITIES EXPOSED TO REPEATED HEAT TREATMENTS...

  9. Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China

    SciTech Connect (OSTI)

    Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2013-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

  10. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

    2007-12-25T23:59:59.000Z

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  11. Partial Restriction Digests Leslie Vosshall

    E-Print Network [OSTI]

    Partial Restriction Digests 4/18/2001 Leslie Vosshall Purpose: To generate DNA cut at a subset to the following schedule for digests [A] [F]: [A] 1.0 ul Enzyme [B] 0.1 ul Enzyme [C] 0.05 ul Enzyme [D] 0.01 ul Enzyme [E] 0.005 ul Enzyme [F] 0.001 ul Enzyme [A] add 1 ul of enzyme and mix well; place digest on wet

  12. Biomass Processing Photolibrary

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

  13. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

    2009-11-15T23:59:59.000Z

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  14. Biomass 2013 Attendee List | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Attendee List Biomass 2013 Attendee List This is a list of attendees for the Biomass 2013 conference. biomass2013attendeelist.pdf More Documents & Publications Biomass 2013...

  15. Digestive efficiency and dry-matter digestibility in Steller sea lions fed herring, pollock, squid, and

    E-Print Network [OSTI]

    Digestive efficiency and dry-matter digestibility in Steller sea lions fed herring, pollock, squid, and salmon D.A.S. Rosen and A.W. Trites Abstract: Dry-matter digestibility and energy digestive efficiency-matter digestibility (DMD) and digestive efficiency (DE) were measured using the energy and manganese concentration

  16. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31T23:59:59.000Z

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

  17. Biomass One Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(Redirected fromOne Biomass

  18. NREL: Biomass Research - Projects in Biomass Process and Sustainabilit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global...

  19. Biomass Research Program

    ScienceCinema (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2013-05-28T23:59:59.000Z

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  20. Biomass Research Program

    SciTech Connect (OSTI)

    Kenney, Kevin; Wright, Christopher; Shelton-Davis, Colleen

    2011-01-01T23:59:59.000Z

    INL's mission is to achieve DOE's vision of supplying high-quality raw biomass; preprocessing biomass into advanced bioenergy feedstocks; and delivering bioenergy commodities to biorefineries. You can learn more about research like this at the lab's facebook site http://www.facebook.com/idahonationallaboratory.

  1. Module Handbook Specialisation Biomass Energy

    E-Print Network [OSTI]

    Damm, Werner

    Module Handbook Specialisation Biomass Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 University of Zaragoza Specialisation Provider: Biomass Energy #12;Specialisation Biomass Energy, University of Zaragoza Modul: Introduction and Basic Concepts

  2. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

  3. Cayuga County Regional Digester - Vision Becomes Reality - Final Report

    SciTech Connect (OSTI)

    Kamyar V. Zadeh, Ph.D.; Blue Electron Technology Solutions International LLC

    2013-03-12T23:59:59.000Z

    With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: a) Nearly 34% of this manure is produced on smaller farms. b) Digesters are expensive pieces of equipment and require attention and care. c) The on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area. The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus an

  4. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

  5. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

  6. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

  7. NREL: Biomass Research - Thomas Foust

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels...

  8. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

  9. NREL: Biomass Research - Video Text

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common corn grain ethanol. Cellulosic ethanol is made from organic plant matter called biomass. The video shows different forms of biomass such as switchgrass, corn stalks, and...

  10. NREL: Biomass Research - Amie Sluiter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center in Golden, Colorado. Research Interests Amie Sluiter began research in the biomass-to-ethanol field in 1996. She joined the Biomass Analysis Technologies team to...

  11. Bioconversion of biomass to methane

    SciTech Connect (OSTI)

    Hashimoto, A.G. [Oregon State Univ., Corvallis, OR (United States)

    1995-12-01T23:59:59.000Z

    The conversion of biomass to methane is described. The biomethane potentials of various biomass feedstocks from our laboratory and literature is summarized.

  12. Biomass Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of biomass energy resources and technologies supplemented by specific information to apply biomass within the Federal sector.

  13. Siting Requirements for Anaerobic Lagoons (Iowa)

    Broader source: Energy.gov [DOE]

    This statute provides regulations for required distances between anaerobic lagoons and residences or public use areas. The separation distances may be waived or reduced with the agreement of the...

  14. WP 3 Report: Biomass Potentials Biomass production potentials

    E-Print Network [OSTI]

    WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

  15. Chemical Reactor Analysis and Optimal Digestion

    E-Print Network [OSTI]

    Jumars, Pete

    J 310 Chemical Reactor Analysis and Optimal Digestion An optimal digestion theory can be readily A . Jumars F oraging and digestion are two stages of a single process that determines an animal's net rate if digestion follows an optimal path constrained by the food items actually ingested . An animal feeding

  16. Article original Adaptation digestive du lapin

    E-Print Network [OSTI]

    Boyer, Edmond

    Article original Adaptation digestive du lapin la teneur en constituants paritaux du rgime ne diffre pas d'un rgime l'autre, du fait d'une rgulation de l'nergie digestible ingre. L le rgime B. lapin / digestion / fibre / adaptation / transit Summary Digestive adaptation

  17. Strategic Biomass Solutions (Mississippi)

    Broader source: Energy.gov [DOE]

    The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

  18. DOE 2014 Biomass Conference

    Broader source: Energy.gov [DOE]

    Breakout Session 1CFostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels DOE 2014 Biomass Conference Jim Williams, Senior Manager, American Petroleum Institute

  19. Biomass Energy Production Incentive

    Broader source: Energy.gov [DOE]

    In 2007 South Carolina enacted the ''Energy Freedom and Rural Development Act'', which provides production incentives for certain biomass-energy facilities. Eligible systems earn $0.01 per kilowatt...

  20. BIOMASS ACTION PLAN FOR SCOTLAND

    E-Print Network [OSTI]

    BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

  1. Biomass 2014 Poster Session

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energys Bioenergy Technologies Office (BETO) invites students, researchers, public and private organizations, and members of the general public to submit poster abstracts for consideration for the annual Biomass Conference Poster Session. The Biomass 2014 conference theme focuses on topics that are advancing the growth of the bioeconomy, such as improvements in feedstock logistics; promising, innovative pathways for advanced biofuels; and market-enabling co-products.

  2. Biomass | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER(RedirectedBiomass: Organic

  3. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01T23:59:59.000Z

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  4. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai

    2012-05-03T23:59:59.000Z

    ABSTRACT The Texas Panhandle is regarded as the ??Cattle Feeding Capital of the World?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco??the primary source of potable water for Waco??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 ?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 ?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

  5. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    Kalyan Annamalai, John M. Sweeten,

    2012-05-03T23:59:59.000Z

    The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

  6. RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION

    SciTech Connect (OSTI)

    John M. Sweeten, Kalyan Annamalai

    2012-05-02T23:59:59.000Z

    The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

  7. E-Print Network 3.0 - anaerobic acid-resistant bacterium Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantification of Methanogenic Groups in Anaerobic... February 1994 The microbial community structure of anaerobic biological reactors was evaluated by using... ,...

  8. E-Print Network 3.0 - anaerobic thermohalophilic bacterium Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantification of Methanogenic Groups in Anaerobic... February 1994 The microbial community structure of anaerobic biological reactors was evaluated by using... ,...

  9. E-Print Network 3.0 - anaerobic bacterium anaerocellum Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantification of Methanogenic Groups in Anaerobic... February 1994 The microbial community structure of anaerobic biological reactors was evaluated by using... ,...

  10. PAFC fed by biogas produced by the anaerobic fermentation of the waste waters of a beet-sugar refinery

    SciTech Connect (OSTI)

    Ascoli, A.; Elias, G. [Univ. Diegli Studi di Milano (Italy); Bigoni, L. [CISE Tecnologie Innovative S.p.A., Segrate (Italy); Giachero, R. [Du Pont Pharma Italia, Firenze (Italy)

    1996-10-01T23:59:59.000Z

    Beet-washing waters of a beet-sugar refinery carry a high COD (Chemical Oxygen Demand), and their conditioning to meet legal constraints before disposal considerably contributes to the operation costs of the refinery. Their fermentation in an anaerobic digestor could instead produce readily disposable non-polluting waters, fertilizers and biogas, useful to feed a phosphoric acid fuel cell (PAFC) heat and power generator system. A real refinery case is considered in this work, where the electrical characteristics V = V(I) of a laboratory PAFC stack, fueled with a dry simulated reforming gas (having the same H{sub 2} and CO{sub 2} content as the biogas obtainable by the above said anaerobic digestion), are determined. The encouraging results show that a possible market niche for fuel cells, in the food-industry waste partial recovery and residual disposal, deserves attention.

  11. NREL: Biomass Research - Biomass Characterization Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards and Honors(PPS)WebmasterBiomass

  12. Tracy Biomass Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area (Reed,Tracy Biomass

  13. November 2011 Model documentation for biomass,

    E-Print Network [OSTI]

    Noble, James S.

    1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

  14. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

  15. NREL: Biomass Research - David W. Templeton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W. Templeton Photo of David Templeton David Templeton is the senior biomass analyst on the Biomass Analysis team (Biomass Compositional Analysis Laboratory) within the National...

  16. UCSD Biomass to Power Economic Feasibility Study

    E-Print Network [OSTI]

    Cattolica, Robert

    2009-01-01T23:59:59.000Z

    Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

  17. Transcript: Biomass Clean Cities Webinar - Workforce Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript: Biomass Clean Cities Webinar - Workforce Development Transcript of the BiomassClean Cities Workforce...

  18. Biochemistry and physiology of anaerobic bacteria

    SciTech Connect (OSTI)

    NONE

    2000-05-18T23:59:59.000Z

    We welcome you to The Power of Anaerobes. This conference serves two purposes. One is to celebrate the life of Harry D. Peck, Jr.,who was born May 18, 1927 and would have celebrated his 73rd birthday at this conference. He died November 20, 1998. The second is to gather investigators to exchange views within the realm of anaerobic microbiology, an area in which tremendous progress has been seen during recent years. It is sufficient to mention discoveries of a new form of life (the archaea), hyper or extreme thermophiles, thermophilic alkaliphiles and anaerobic fungi. With these discoveries has come a new realization about physiological and metabolic properties of microorganisms, and this in turn has demonstrated their importance for the development, maintenance and sustenance of life on Earth.

  19. Sustainable Biomass Supply Systems

    SciTech Connect (OSTI)

    Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

    2009-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOEs ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

  20. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01T23:59:59.000Z

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

  1. anaerobic bacterial aggregates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems Setia, Sanjeev 73 Biogeochemistry of Isoprenoid Production and Anaerobic Hydrocarbon Biodgeradation. Open Access Theses and Dissertations Summary: ??This dissertation...

  2. Biomass Scenario Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09BiomassAct ofBiomass

  3. A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5ofA Boost forA

  4. E-Print Network 3.0 - anaerobic digester gas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Physics, Stanford University Collection: Physics 6 Managing Manure with Biogas Recovery Systems Summary: emissions and capture biogas--a useful source of energy....

  5. Alternative energy systems for Puerto Rico : analysis and comparison of anaerobic waste digestion

    E-Print Network [OSTI]

    Cuevas, Emil A. (Emil Andr Cuevas Melndez)

    2006-01-01T23:59:59.000Z

    Energy prices in Puerto Rico are increasing constantly, making evident the need for alternative energy sources. Several methods to produce power have been developed as alternatives to burning petroleum, such as solar energy ...

  6. Enhanced Anaerobic Digestion and Hydrocarbon Precursor Production Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12, 2004DepartmentWaste HeatStructuresHigh Project

  7. Floodplain Assessment for Installation of a Renewable Energy Anaerobic Digester Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdf Flash2008-50.pdf5.pdfTechnologies Program (VTP)

  8. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1BIntegration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  9. DIGESTER GAS - FUEL CELL - PROJECT

    SciTech Connect (OSTI)

    Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

    2002-03-01T23:59:59.000Z

    GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

  10. ENERGY FROM BIOMASS AND

    E-Print Network [OSTI]

    in aeroderivative gas turbines has beencommerciallyestablished for natural gas-fired cogeneration since 1980. Steam!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE of the gas turbine for cogeneration.applications(27) and the low unit capital cost of gas turbines comparedto

  11. Biomass 2014 Attendee List | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass 2014 Attendee List Biomass 2014 Attendee List This document is the attendee list for Biomass 2014, held July 29-July 30 in Washington, D.C. biomass2014attendeelist.pdf...

  12. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

  13. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

  14. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

  15. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

  16. Biomass Energy Crops: Massachusetts' Potential

    E-Print Network [OSTI]

    Schweik, Charles M.

    Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

  17. 13, 3226932289, 2013 Biomass burning

    E-Print Network [OSTI]

    Dong, Xiquan

    ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern Great Plains T (ACP). Please refer to the corresponding final paper in ACP if available. Biomass burning aerosol Geosciences Union. 32269 #12;ACPD 13, 32269­32289, 2013 Biomass burning aerosol properties over the Northern

  18. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

  19. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

  20. 7, 1733917366, 2007 Biomass burning

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

  1. Reburn system with feedlot biomass

    DOE Patents [OSTI]

    Annamalai, Kalyan; Sweeten, John M.

    2005-12-13T23:59:59.000Z

    The present invention pertains to the use of feedlot biomass as reburn fuel matter to reduce NO.sub.x emissions. According to one embodiment of the invention, feedlot biomass is used as the reburn fuel to reduce NO.sub.x. The invention also includes burners and boiler in which feedlot biomass serves a reburn fuel.

  2. Biological Hydrogen Production Measured in Batch Anaerobic

    E-Print Network [OSTI]

    of the energy balance of a global economy (1, 2). Low-cost hydrogen based fuel cells, which have been expensiveBiological Hydrogen Production Measured in Batch Anaerobic Respirometers B R U C E E . L O G A N The biological production of hydrogen from the fermentation of different substrates was examined in batch tests

  3. Quantitative Analyses of Anaerobic Wastewater Treatment Processes

    E-Print Network [OSTI]

    Timmer, Jens

    -knit community of bacteria cooperate to form a stable, self- regulating fermentation that transforms organic-chain fatty acids); fermentation of aminoacids and sugars; anaero- bic oxidation of long-chain fatty acids and alcohols; anaerobic oxidation of intermediary products such as volatile fatty acids; conversion of acetate

  4. NREL: Biomass Research - Microalgal Biofuels Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthesis. Learn about microalgal biofuels capabilities. Printable Version Biomass Research Home Capabilities Projects Biomass Characterization Biochemical Conversion...

  5. Federal Biomass Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Biomass Activities Federal Biomass Activities Statutory and executive order requirements for Bioproducts and Biofuels federalbiomassactivities.pdf More Documents &...

  6. Weekly Digest Guide The Weekly Digest is YSM's weekly events newsletter, distributed early

    E-Print Network [OSTI]

    Lee, Daeyeol

    Weekly Digest Guide The Weekly Digest is YSM's weekly events newsletter, distributed early each Friday morning to 9,000+ email recipients on the Yale campus. The Weekly Digest includes approximately. Timeline The Weekly Digest is published on Fridays for events taking place the following week. Lead time

  7. Lipid digestion and effects of diets rich in lipids on carbohydrate and nitrogen digestion. A review *

    E-Print Network [OSTI]

    Boyer, Edmond

    Lipid digestion and effects of diets rich in lipids on carbohydrate and nitrogen digestion-Gens-Champanelle, France This review deals with ruminal metabolism and intestinal digestion of lipids, and with the conse- quences of lipid supplementation on carbohy- drate and nitrogen digestion. Ruminal hydrolysis of lipids

  8. Molecular Biology Basics Planning Restriction Enzyme Digests

    E-Print Network [OSTI]

    Aris, John P.

    Molecular Biology Basics Planning Restriction Enzyme Digests A. Checklist: Buffer type Addition of BSA Optimum temperature Number of units of enzyme B. Plan to digest DNA with an "excess" of enzyme activity. Plan for the "excess" to be divided between time of digestion and number of units of enzyme

  9. Privacy Impact Assessment Chandra Digest Request

    E-Print Network [OSTI]

    Mathis, Wayne N.

    Privacy Impact Assessment Chandra Digest Request I. System Identification 1. IT System Name: Chandra EPO Digest (http://chandra.harvard.edu/chronicle/news_priv.html) 2. IT System Sponsor: Van Mc digest. 4. With whom the information will be shared. #12;Only the providers of the material (certain CXC

  10. Effects of caseinomacropeptide (CMP) on digestion regulation

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Effects of caseinomacropeptide (CMP) on digestion regulation M Yvon S Beucher P Guilloteau2 I Le sums up the knowledge concerning its effects on the digestive function. Part 1 recalls the origin to be defined accurately. Part 2 summarizes the effects of CMP on digestive secretions. The major effect

  11. Original article Variability of digestibility criteria

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Variability of digestibility criteria in maize elite hybrids submitted of various in vitro digestibility criteria used to estimate genotypic variation in silage maize elite hybrids and in vitro digestibility of whole-plant and cell-walls were pre- dicted by near infra-red reflectance

  12. Chemical Reactor Models of Digestion Modulation

    E-Print Network [OSTI]

    Logan, David

    Chemical Reactor Models of Digestion Modulation William Wolesensky & J. David Logan Department give an overview of the application of chemical reactor theory to models of digestion processes and indicate how those models extend to eco-physiological questions of modulation of digestion and feeding

  13. Sequence Assembly Validation by Restriction Digest Fingerprint

    E-Print Network [OSTI]

    Rouchka, Eric

    Sequence Assembly Validation by Restriction Digest Fingerprint Comparison Eric C. Rouchka and David examines the use of restriction digest analysis as a method for testing the fidelity of sequence assembly. Restriction digest fingerprint matching is an established technology for high resolution physical map

  14. Biomass Supply and Carbon Accounting for

    E-Print Network [OSTI]

    Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

  15. High-biomass sorghums for biomass biofuel production

    E-Print Network [OSTI]

    Packer, Daniel

    2011-05-09T23:59:59.000Z

    University; M.S., Texas A&M University Chair of Advisory Committee: Dr. William Rooney High-biomass sorghums provide structural carbohydrates for bioenergy production. Sorghum improvement is well established, but development of high- biomass sorghums... these goals and be economically viable, abundant and low-cost 3 biomass sources are needed. To provide this, dedicated bioenergy crops are necessary (Epplin et al., 2007). For a variety of reasons, the C4 grass sorghum (Sorghum bicolor L...

  16. Remotely sensed heat anomalies linked with Amazonian forest biomass declines

    E-Print Network [OSTI]

    Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

    2011-01-01T23:59:59.000Z

    with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

  17. Interactions of Lignin and Hemicellulose and Effects on Biomass Deconstruction

    E-Print Network [OSTI]

    Li, Hongjia

    2012-01-01T23:59:59.000Z

    such lignocellulosic biomass feedstocks into ethanol via atools. Different biomass feedstocks have different cell wallmajor lignocellulosic biomass feedstocks, except softwoods,

  18. Hydrothermal Liquefaction of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2010-12-10T23:59:59.000Z

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

  19. Science Activities in Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) Sr (2) CawithMicrofluidicJournalWhatActivities in Biomass

  20. Biomass 2013: Welcome

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09 ConferenceBiomass 2013

  1. Sandia National Laboratories: Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy Advanced NuclearBASF latentBiofuelsBiomass Renewable

  2. NREL: Biomass Research - Joseph Shekiro

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deacetylation and Mechanical (Disc) Refining Process for the Conversion of Renewable Biomass to Lower Cost Sugars." Biotechnology for Biofuels (7:7). Shekiro, J. ; Kuhn, E.M.;...

  3. NREL: Biomass Research - Josh Schaidle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of pyrolysis products to produce fungible transportation fuels. Research Interests Biomass conversion to fuels and chemicals Environmentally-sustainable engineering practices...

  4. Biomass IBR Fact Sheet: POET

    Broader source: Energy.gov (indexed) [DOE]

    in the project, including POET Design and Construction, POET Research, POET Biomass, and POET Biorefining - Emmetsburg. LIBERTY is partnering with Novozymes to optimize...

  5. Biomass Rapid Analysis Network (BRAN)

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

  6. Biomass power for rural development

    SciTech Connect (OSTI)

    Shepherd, P.

    2000-06-02T23:59:59.000Z

    Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

  7. System and process for biomass treatment

    SciTech Connect (OSTI)

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20T23:59:59.000Z

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  8. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    DIGESTERS AND BIOGAS RECOVERY Digesters Do Not Address theMethane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE

  9. anaerobic processes occurring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a one of the essential parameter as it has significant adverse impacts on the environment. Anaerobic ammonia oxidation (ANAMMOX) is a novel process in which nitrite is used...

  10. anaerobic aquifer polluted: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a one of the essential parameter as it has significant adverse impacts on the environment. Anaerobic ammonia oxidation (ANAMMOX) is a novel process in which nitrite is used...

  11. Optimization of running strategies based on anaerobic energy and ...

    E-Print Network [OSTI]

    Amandine Aftalion

    2013-08-13T23:59:59.000Z

    Aug 13, 2013 ... We extend this analysis, based on the equation of motion and aerobic energy, to include a balance of anaerobic energy (or accumulated...

  12. E-Print Network 3.0 - anaerobic bacterium thermoanaerobacter...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1.5 Selection of thermophilic conditions 7 1.2 Microbiology of thermophilic anaerobic methanol conversion 7 1 Source: Groningen, Rijksuniversiteit - Centre for Ecological and...

  13. anaerobic mixed microbial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a one of the essential parameter as it has significant adverse impacts on the environment. Anaerobic ammonia oxidation (ANAMMOX) is a novel process in which nitrite is used...

  14. Biomass in the Deregulated Marketplace: Current Issues for Biomass Power

    SciTech Connect (OSTI)

    Not Available

    1998-12-01T23:59:59.000Z

    This issue brief provides readers with a monthly review and analysis of electric utility deregulation as it impacts biomass power production and distribution. The topical areas to be routinely covered will include Federal activities, State activities, Current challenges, and Current opportunities. Additionally, a monthly highlighted topic will provide more in-depth analysis of current issue impacting biomass power.

  15. Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic

    E-Print Network [OSTI]

    Zhao, Huimin

    Directed Evolution of a Cellodextrin Transporter for Improved Biofuel Production Under Anaerobic that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter: cellodextrin transporter; cellobiose utilization; cellulosic biofuel; anaerobic fermentation; directed

  16. On the construction of digest functions for manual authentication protocols

    E-Print Network [OSTI]

    Jeavons, Peter

    On the construction of digest functions for manual authentication protocols Abstract A digest. Frequently a digest function needs to have a very short output (e.g. 1632 bits) and no key is used to digest, notably message authentication codes or MACs. Short digests can be constructed directly or by "condensing

  17. Biofuels Digest | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarre BiomassTHIS PAGE IS UNDER CONSTRUCTIONBioethanolBiofuels

  18. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M. (Avondale, PA); Seapan, Mayis (Landenberg, PA); Elander, Richard T. (Evergreen, CO); Tucker, Melvin P. (Lakewood, CO)

    2010-10-05T23:59:59.000Z

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  19. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    and impact of Industrial Private Forestry (IPF) has been eliminated from most of the analyses that make up) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze the economic and environmental costs and benefits of using forest biomass to generate electricity while

  20. Biomass Producer or Collector Tax Credit (Oregon)

    Broader source: Energy.gov [DOE]

    The Oregon Department of Energy provides a tax credit for agricultural producers or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in...

  1. Treatment of biomass to obtain fermentable sugars

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Tucker, Melvin (Lakewood, CO); Elander, Richard (Evergreen, CO); Hennessey, Susan M. (Avondale, PA)

    2011-04-26T23:59:59.000Z

    Biomass is pretreated using a low concentration of aqueous ammonia at high biomass concentration. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.

  2. BIOMASS LIQUEFACTION EFFORTS IN THE UNITED STATES

    E-Print Network [OSTI]

    Ergun, Sabri

    2012-01-01T23:59:59.000Z

    icat ion Preheat zone Biomass liquefaction Tubular reactor (design is shown in Figure 7, C I Biomass ua efaction Fic LBL Process BiOMASS t NON-REVERS lNG CYCLONE CONDENSER (

  3. Mineral Transformation and Biomass Accumulation Associated With

    E-Print Network [OSTI]

    Hubbard, Susan

    Mineral Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation to understand the biogeochemical processes and to quantify the biomass and mineral transformation/ accumulation

  4. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect (OSTI)

    Elliott, Douglas C.

    2008-05-06T23:59:59.000Z

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  5. E-Print Network 3.0 - alkaline anaerobic respiration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 3 4 5 > >> 1 The Effects of Benthic Organic Matter Quality on Aerobic and Anaerobic Sediment Metabolism in West Falmouth Harbor Summary: , respectively. Anaerobic respiration...

  6. E-Print Network 3.0 - anaerobic biodegradation potential Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Anaerobic Biodegradation of Plas- tic Materials in the Presence... of Municipal Sewage Sludge D 5210 17. Standard Test Method for Determining Anaerobic...

  7. E-Print Network 3.0 - anaerobic fungus neocallimastix Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    neocallimastix Page: << < 1 2 3 4 5 > >> 1 ANAEROBIC RUMEN FUNGI: POTENTIAL AND APPLICATIONS Summary: . Yarlett et al. (1986) reported cryopreservation of the anaerobic fungus...

  8. E-Print Network 3.0 - anaerobic filamentous fungus Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    filamentous fungus Page: << < 1 2 3 4 5 > >> 1 ANAEROBIC RUMEN FUNGI: POTENTIAL AND APPLICATIONS Summary: . Yarlett et al. (1986) reported cryopreservation of the anaerobic fungus...

  9. E-Print Network 3.0 - anaerobic digestor methanothrix Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The main factors that affect the economic viability of anaerobic digestors... of the biogas and the energy required to heat the digestor). Anaerobic digestors are normally...

  10. E-Print Network 3.0 - anaerobic ammonium-oxidizing bacteria Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic waste, converting... of anaerobic bacteria, these compounds decompose to yield a biogas that comprises of methane (CH.) and carbon... not processed anaerobically. The...

  11. E-Print Network 3.0 - anaerobic bacteria thermoanaerobacter Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic waste, converting... of anaerobic bacteria, these compounds decompose to yield a biogas that comprises of methane (CH.) and carbon... not processed anaerobically. The...

  12. E-Print Network 3.0 - anaerobic selenate-respiring bacteria Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic waste, converting... of anaerobic bacteria, these compounds decompose to yield a biogas that comprises of methane (CH.) and carbon... not processed anaerobically. The...

  13. Mobile Biomass Pelletizing System

    SciTech Connect (OSTI)

    Thomas Mason

    2009-04-16T23:59:59.000Z

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  14. NREL: Biomass Research - Biochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's projects in biochemical conversion involve three basic steps to convert biomass feedstocks to fuels: Converting biomass to sugar or other fermentation feedstock...

  15. Symbiosis: Addressing Biomass Production Challenges and Climate...

    Broader source: Energy.gov (indexed) [DOE]

    Symbiosis: Addressing Biomass Production Challenges and Climate Change Symbiosis: Addressing Biomass Production Challenges and Climate Change This presentation was the opening...

  16. NREL: Biomass Research - Robert M. Baldwin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MI. Dr. Baldwin has extensive experience and expertise in thermochemical conversion of biomass to gaseous and liquid fuels, including catalysis and reaction engineering of biomass...

  17. Tribal Renewable Energy Curriculum Foundational Course: Biomass...

    Broader source: Energy.gov (indexed) [DOE]

    Renewable Energy Curriculum Foundational Course: Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy...

  18. Molecular Characterization of Biomass Burning Aerosols Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Molecular Characterization of Biomass Burning Aerosols Using High Resolution Mass Spectrometry. Abstract: Chemical...

  19. NREL: Biomass Research - Daniel J. Schell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more than 30 years of research experience in bio-based conversion of lignocellulosic biomass and has extensive expertise in integrated biomass conversion operations at the bench...

  20. Biomass Compositional Analysis Laboratory (Fact Sheet), National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At the Biomass Compositional Analysis Laboratory, NREL scientists have more than 20 years of experience supporting the biomass conversion industry. They develop, refine, and...

  1. NREL: Biomass Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility (IBRF). June 2, 2011 Science & Industry Peers Turn to NREL for Biomass Solutions The biomass industry looks to the U.S. Department of Energy's National...

  2. Transcript: Biomass Clean Cities Webinar ? Workforce Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transcript: Biomass Clean Cities Webinar - Workforce Development Page 1 of 12 Alicia Lindauer: My name is Alicia Lindauer. I work for the Department of Energy's Biomass Program....

  3. High temperature, optically transparent plastics from biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature, optically transparent plastics from biomass At a Glance Rapid, selective catalytic system to produce vinyl plastics from renewable biomass Stereoregular...

  4. Supplying High-Quality, Raw Biomass

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supplying High-Quality, Raw Biomass The building blocks to supply high-quality raw biomass start with harvesting and collection practices, product storage and recommendations of...

  5. Converting Biomass to High-Value Feedstocks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Converting Biomass to High-Value Feedstocks Advanced feedstocks play an important role in economically and efficiently converting biomass into bioenergy products. Advanced...

  6. Biomass Guidelines (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    PEI Biomass Guidelines identify two major pathways that biomass projects may follow: No Public Investment, and Public Investment. Projects with Public Investment include any project that has:

  7. Hydrogen Production Cost Estimate Using Biomass Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Cost Estimate Using Biomass Gasification: Independent Review Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review This independent review is...

  8. The digestive adaptation of flying vertebrates: High intestinal paracellular absorption

    E-Print Network [OSTI]

    Mladenoff, David

    The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates analysis. Significantly greater amplification of digestive surface area by villi in small birds, also in actively flying vertebrates. digestion gut morphometrics nutrient absorption paracellular uptake Birds have

  9. Anaerobic Methane Oxidation in a Landfill-Leachate Plume

    E-Print Network [OSTI]

    Grossman, Ethan L.

    Anaerobic Methane Oxidation in a Landfill-Leachate Plume E T H A N L . G R O S S M A N , * , L U I, and methane, and (2) negligible oxygen, nitrate, and sulfate concentrations. Methane concentrations and stable carbon isotope (13C) values suggest anaerobic methane oxidation was occurring within the plume and at its

  10. Statistical Digest No. 70 Fishery Statistics of

    E-Print Network [OSTI]

    . These statistics include data on the volume and value of landed catches, employment, quantity of gear operatedStatistical Digest No. 70 Statistics of the United States 1976 Washington National Marine Fisheries Service #12;#12;Statistical Digest No. 70 Fishery Statistics of the United States

  11. T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let...

    Broader source: Energy.gov (indexed) [DOE]

    8: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let Remote Users Conduct Bypass Attacks T-728: Apache Tomcat HTTP DIGEST Authentication Weaknesses Let Remote Users Conduct...

  12. Genome-Enabled Advancement of Biomass to Biofuel Technology

    SciTech Connect (OSTI)

    Patrick O'Mullan, PhD

    2010-11-11T23:59:59.000Z

    Unlike Saccharomyces and even E. coli, the fundamental microbiology and biochemistry of Clostridium phytofermentans was largely unknown. The genus Clostridia is quite diverse and general methods to manipulate and characterize them often need to be developed. As anaerobes, they often donâ??t behave the way more classically studied microbes will in fermentation processes. The results from these studies have allowed: 1) A fundamental understanding of the fermentation cycle in C. phytofermentans 2) Requirements to maximize ethanol yield in a fermentation process 3) An understanding of the critical growth and nutritional parameters required to ferment biomass to ethanol 4) Identification of key targets or genes to modify in order increase or improve any of the key traits of C. phytofermentans 5) The development of a genetic system to transform and manipulate the microbe Without these achievements, an industrially significant process for biomass fermentation to ethanol would not be economically possible. The development of a fermentation process with economic return on investment can be successfully developed with the technical learning achieved

  13. Waste-to-Energy Road Mapping Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Liquefaction Heat, Char, Bio-oil, Syngas ANAEROBIC DIGESTION AND BIOGAS 7 * Biological, naturally occurring ANAEROBIC DIGESTION PROCESS 8 Anaerobic Digestion...

  14. A Digest of Nonproliferation Literature.

    SciTech Connect (OSTI)

    Duggan, Ruth A.

    2006-04-01T23:59:59.000Z

    In preparation for the 2005 US/Russian Weapons Laboratories Directors Meeting, the six laboratories participating in the meeting endeavored to develop a strategy for nonproliferation technology research and development. A literature review was conducted to identify possible areas of technical collaboration and technology opportunities associated with improving nonproliferation associated with the civilian nuclear fuel cycle. The issue of multinationalization of the nuclear fuel cycle was also researched. This digest is the compilation of one-page summaries used by management of the three US nuclear weapons laboratories in preparation for strategy development. Where possible, the Web site address of the complete paper is referenced.3 AcknowledgementsThe author wishes to thank Jessica Ruyle, Nancy Orlando-Gay, and Barbara Dry for their research assistance and contributions.4

  15. Ohio Biomass Energy Program (Ohio)

    Broader source: Energy.gov [DOE]

    Ohio is one of seven states participating in the Great Lakes Regional Biomass Energy Program which was established in 1983. The Regional Program is administered by the Council of Great Lakes...

  16. Arnold Schwarzenegger BIOMASS TO ENERGY

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Public Interest Energy Research Program Prepared By: USDA Forest Service Pacific Southwest Research PRODUCTION, AND OTHER BENEFITS PIERFINALPROJECTREPORT APPENDICES Prepared For: California Energy Commission

  17. Biomass Supply for a Bioenergy

    E-Print Network [OSTI]

    Hydrocarbon-based Biofuels; Zia Haq

    2012-01-01T23:59:59.000Z

    Resource assessment do we have enough biomass? Techno-economic analysis can biofuels be produced at competitive prices? Integrated biorefineries what is being funded at DOE and what are future plans?

  18. Washington State biomass data book

    SciTech Connect (OSTI)

    Deshaye, J.A.; Kerstetter, J.D.

    1991-07-01T23:59:59.000Z

    This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

  19. HYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION

    E-Print Network [OSTI]

    biomass, such as peanut shells, for urban transportation. The process involves pyrolysis of the biomassHYDROGEN FROM BIOMASS FOR URBAN TRANSPORTATION Collaborating Project Team Y. Yeboah (PI) and K and liquid fuels) · Potential sources of hydrogen include biomass, natural gas and other fossil fuels. #12

  20. Cadmium Biosorption Rate in Protonated Sargassum Biomass

    E-Print Network [OSTI]

    Volesky, Bohumil

    Cadmium Biosorption Rate in Protonated Sargassum Biomass J I N B A I Y A N G A N D B O H U M I L V Sargassum fluitans biomass was accompanied by the release of hydrogen protons from the biomass. The uptake the overall biosorption rate of cadmium ions in flat seaweed biomass particles. The overall biosorption

  1. Vanadium catalysts break down biomass for fuels

    E-Print Network [OSTI]

    - 1 - Vanadium catalysts break down biomass for fuels March 26, 2012 Vanadium catalysts break down biomass into useful components Due to diminishing petroleum reserves, non-food biomass (lignocellulose biomass into high-value commodity chemicals. The journal Angewandte Chemie International Edition published

  2. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  3. November 2011 Competition for biomass among

    E-Print Network [OSTI]

    Noble, James S.

    remain high, limiting the development of national or even regional markets for biomass feedstocks. We

  4. Global (International) Energy Policy and Biomass

    SciTech Connect (OSTI)

    Overend, R. P.

    2004-01-01T23:59:59.000Z

    Presentation to the California Biomass Collaboration--First Annual Forum, January 8th 2004, Sacramento, California

  5. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  6. Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities

    E-Print Network [OSTI]

    Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

  7. Enzymatic Hydrolysis of Cellulosic Biomass

    SciTech Connect (OSTI)

    Yang, Bin; Dai, Ziyu; Ding, Shi-You; Wyman, Charles E.

    2011-08-22T23:59:59.000Z

    Biological conversion of cellulosic biomass to fuels and chemicals offers the high yields to products vital to economic success and the potential for very low costs. Enzymatic hydrolysis that converts lignocellulosic biomass to fermentable sugars may be the most complex step in this process due to substrate-related and enzyme-related effects and their interactions. Although enzymatic hydrolysis offers the potential for higher yields, higher selectivity, lower energy costs, and milder operating conditions than chemical processes, the mechanism of enzymatic hydrolysis and the relationship between the substrate structure and function of various glycosyl hydrolase components are not well understood. Consequently, limited success has been realized in maximizing sugar yields at very low cost. This review highlights literature on the impact of key substrate and enzyme features that influence performance to better understand fundamental strategies to advance enzymatic hydrolysis of cellulosic biomass for biological conversion to fuels and chemicals. Topics are summarized from a practical point of view including characteristics of cellulose (e.g., crystallinity, degree of polymerization, and accessible surface area) and soluble and insoluble biomass components (e.g., oligomeric xylan, lignin, etc.) released in pretreatment, and their effects on the effectiveness of enzymatic hydrolysis. We further discuss the diversity, stability, and activity of individual enzymes and their synergistic effects in deconstructing complex lignocellulosic biomass. Advanced technologies to discover and characterize novel enzymes and to improve enzyme characteristics by mutagenesis, post-translational modification, and over-expression of selected enzymes and modifications in lignocellulosic biomass are also discussed.

  8. Bio-mass for biomass: biological mass spectrometry techniques for biomass fast pyrolysis oils.

    E-Print Network [OSTI]

    Dalluge, Erica A.

    2013-01-01T23:59:59.000Z

    ??Biomass fast pyrolysis oils, or bio-oils, are a promising renewable energy source to supplement or replace petroleum-based products and fuels. However, there is a current (more)

  9. The Simplified Partial Digest Problem: Hardness and a Probabilistic Analysis

    E-Print Network [OSTI]

    Pratt, Vaughan

    The Simplified Partial Digest Problem: Hardness and a Probabilistic Analysis Zo Abrams1 and Ho site locations of the enzyme. Two common approaches are the Double Digest Problem and the Partial Digest Problem. The Double Digest Problem is known to be NP-Complete[4], but the hardness of the Partial

  10. Original article Rumen digestion and intestinal nutrient flows

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Rumen digestion and intestinal nutrient flows in sheep consuming pea seeds of pea protein were evalu- ated by in situ and in vivo measurements of rumen and intestine digestion the apparent digestion of OM in the rumen but increased it in the small intestine. Total tract OM digestibility

  11. Thermal and digestive constraints to foraging behaviour in marine mammals

    E-Print Network [OSTI]

    Thermal and digestive constraints to foraging behaviour in marine mammals David A. S. Rosen1 digestive limitations to food intake and thermoregulation. The ability of an animal to consume sufficient by maximum digestion capacity and the time devoted to digestion). Failure to consume sufficient prey

  12. anaerobic energy metabolism: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    final steps of energy metabolism in a number of anaerobic eukaryotes. They produce hydrogen and ATP. Here we will review the data, which are relevant for the questions: how did...

  13. DNA digestion protocol & hints Overview: Although it is pretty standard to digest DNA with restriction enzymes, here

    E-Print Network [OSTI]

    Doering, Tamara

    Liu 4/2004 DNA digestion protocol & hints Overview: Although it is pretty standard to digest DNA in molecular biology (3.1.1-3.1.2) Materials: DNA sample in water or TE buffer 10x digestion buffer.1 to 4 g 10x Digestion buffer 2 l 5 l Enzyme ? ? Water Rest of volume Rest of volume 2. Add the enzyme

  14. COFIRING BIOMASS WITH LIGNITE COAL

    SciTech Connect (OSTI)

    Darren D. Schmidt

    2002-01-01T23:59:59.000Z

    The University of North Dakota Energy & Environmental Research Center, in support of the U.S. Department of Energy's (DOE) biomass cofiring program, completed a Phase 1 feasibility study investigating aspects of cofiring lignite coal with biomass relative to utility-scale systems, specifically focusing on a small stoker system located at the North Dakota State Penitentiary (NDSP) in Bismarck, North Dakota. A complete biomass resource assessment was completed, the stoker was redesigned to accept biomass, fuel characterization and fireside modeling tests were performed, and an engineering economic analysis was completed. In general, municipal wood residue was found to be the most viable fuel choice, and the modeling showed that fireside problems would be minimal. Experimental ash deposits from firing 50% biomass were found to be weaker and more friable compared to baseline lignite coal. Experimental sulfur and NO{sub x} emissions were reduced by up to 46%. The direct costs savings to NDSP, from cogeneration and fuel saving, results in a 15- to 20-year payback on a $1,680,000 investment, while the total benefits to the greater community would include reduced landfill burden, alleviation of fees for disposal by local businesses, and additional jobs created both for the stoker system as well as from the savings spread throughout the community.

  15. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect (OSTI)

    Chung, Daehwan [University of Georgia, Athens, GA; Cha, Minseok [University of Georgia, Athens, GA; Guss, Adam M [ORNL; Westpheling, Janet [University of Georgia, Athens, GA

    2014-01-01T23:59:59.000Z

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  16. Anaerobic fermentation of agricultural residue: potential for improvement and implementation. Final report, Volume II

    SciTech Connect (OSTI)

    Jewell, W. J.; Dell'orto, S.; Fanfoni, K. J.; Hayes, T. D.; Leuschner, A. P.; Sherman, D. F.

    1980-04-01T23:59:59.000Z

    Earlier studies have shown that although large quantities of agricultural residues are generated on small farms, it was difficult to economically justify use of conventional anaerobic digestion technology, such as used for sewage sludge digestion. A simple, unmixed, earthen-supported structure appeared to be capable of producing significant quantities of biogas at a cost that would make it competitive with many existing fuels. The goal of this study was to define and demonstrate a methane fermentation technology that could be practical and economically feasible on small farms. This study provides the first long term, large scale (reactor volumes of 34 m/sup 3/) parallel testing of the major theory, design, construction, and operation of a low cost approach to animal manure fermentation as compared to the more costly and complex designs. The main objectives were to define the lower limits for successful fermentor operation in terms of mixing, insulation, temperature, feed rate, and management requirements in a cold climate with both pilot scale and full scale fermentors. Over a period of four years, innovative fermentation processes for animal manures were developed from theoretical concept to successful full scale demonstration. Reactors were sized for 50 to 65 dairy animals, or for the one-family dairy size. The results show that a small farm biogas generation system that should be widely applicable and economically feasible was operated successfully for nearly two years. Although this low cost system out-performed the completely mixed unit throughout the study, perhaps the greatest advantage of this approach is its ease of modification, operation, and maintenance.

  17. ITP Energy Intensive Processes: Improved Heat Recovery in Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improved Heat Recovery in Biomass-Fired Boilers ITP Energy Intensive Processes: Improved Heat Recovery in Biomass-Fired Boilers biomass-firedboilers.pdf More Documents &...

  18. Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass IBR Fact Sheet: Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals....

  19. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    Making a Business from Biomass in Energy, Environment,2004. An assessment of biomass resources in California.methanol and hydrogen from biomass. Journal of Power Sources

  20. New process speeds conversion of biomass to fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conversion of Biomass to Fuels New process speeds conversion of biomass to fuels Scientists made a major step forward recently towards transforming biomass-derived molecules into...

  1. LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS ENGINEERING UNIT (PEU)

    E-Print Network [OSTI]

    Figueroa, Carlos

    2012-01-01T23:59:59.000Z

    0092 UC-61 ORNIA LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSLBL~l0092 LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESSof Energy LBL CONTINUOUS BIOMASS LIQUEFACTION PROCESS

  2. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    for the same quantity of biomass. Finally, the distanceto ?nd the quantity of hydrogen from biomass that is likelyhow the quantity of hydrogen available from biomass varies

  3. Biomass Resources Overview and Perspectives on Best Fits for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Biomass resources overview and...

  4. Tracking Hemicellulose and Lignin Deconstruction During Hydrothermal Pretreatment of Biomass

    E-Print Network [OSTI]

    McKenzie, Heather Lorelei

    2012-01-01T23:59:59.000Z

    less recalcitrant biomass feedstocks and improved enzymes.of less recalcitrant biomass feedstocks and improvedpotential of improved biomass feedstocks and enzymes for the

  5. Developing a fundamental understanding of biomass structural features responsible for enzymatic digestibility

    E-Print Network [OSTI]

    O'Dwyer, Jonathan Patrick

    2006-10-30T23:59:59.000Z

    neural network model in Matlab?®. The average difference between experimentally measured and network-predicted data were ?±12%, ?±18%, and ?±27% for 1-, 6-, and 72-h total sugar conversions, respectively. The neural network models that included...

  6. Waste-to-Energy Biomass Digester with Decreased Water Consumption - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and Materials Disposition Information Waste andInnovation

  7. Practical Considerations of Moisture in Baled Biomass Feedstocks

    SciTech Connect (OSTI)

    William A. Smith; Ian J. Bonner; Kevin L. Kenney; Lynn M. Wendt

    2013-01-01T23:59:59.000Z

    Agricultural residues make up a large portion of the immediately available biomass feedstock for renewable energy markets. Current collection and storage methods rely on existing feed and forage practices designed to preserve nutrients and properties of digestibility. Low-cost collection and storage practices that preserve carbohydrates across a range of inbound moisture contents are needed to assure the economic and technical success of the emerging biomass industry. This study examines the movement of moisture in storage and identifies patterns of migration resulting from several on-farm storage systems and their impacts on moisture measurement and dry matter recovery. Baled corn stover and energy sorghum were stored outdoors in uncovered, tarp-covered, or wrapped stacks and sampled periodically to measure moisture and dry matter losses. Interpolation between discrete sampling locations in the stack improved bulk moisture content estimates and showed clear patterns of accumulation and re-deposition. Atmospheric exposure, orientation, and contact with barriers (i.e., soil, tarp, and wrap surfaces) were found to cause the greatest amount of moisture heterogeneity within stacks. Although the bulk moisture content of many stacks remained in the range suitable for aerobic stability, regions of high moisture were sufficient to support microbial activity, thus support dry matter loss. Stack configuration, orientation, and coverage methods are discussed relative to impact on moisture management and dry matter preservation. Additionally, sample collection and data analysis are discussed relative to assessment at the biorefinery as it pertains to stability in storage, queuing, and moisture carried into processing.

  8. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THEA. Digesters Have Received Attention for Their Potential to

  9. Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production

    E-Print Network [OSTI]

    Di Camillo, Nicole G.

    2011-01-01T23:59:59.000Z

    Methane Digesters and Biogas Recovery-Masking theII. METHANE DIGESTERS AND BIOGAs RECOVERY- IN THE2011] METHANE DIGESTERS AND BIOGAS RECOVERY methane, and 64%

  10. Treatment of biomass to obtain ethanol

    DOE Patents [OSTI]

    Dunson, Jr., James B. (Newark, DE); Elander, Richard T. (Evergreen, CO); Tucker, III, Melvin P. (Lakewood, CO); Hennessey, Susan Marie (Avondale, PA)

    2011-08-16T23:59:59.000Z

    Ethanol was produced using biocatalysts that are able to ferment sugars derived from treated biomass. Sugars were obtained by pretreating biomass under conditions of high solids and low ammonia concentration, followed by saccharification.

  11. Biomass Sales and Use Tax Exemption

    Broader source: Energy.gov [DOE]

    Georgia enacted legislation in April 2006 (HB 1018) creating an exemption for biomass materials from the state's sales and use taxes. The term "biomass material" is defined as "organic matter,...

  12. Biomass Feedstock Composition and Property Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Office of Energy Efficiency and Renewable Energy's Biomass Program works with industry, academia and national laboratory partners on a balanced portfolio of research in biomass feedstocks and conversion technologies. Through research, development, and demonstration efforts geared at the development of integrated biorefineries, the Biomass Program is helping transform the nation's renewable and abundant biomass resources into cost competitive, high performance biofuels, bioproducts, and biopower.(From the Biomass Program's home page at http://www1.eere.energy.gov/biomass/) The Biomass Feedstock Composition and Property Database allows the user to choose from more than 150 types of biomass samples. The specialized interface then guides the user through choices within the sample (such as "Ash" as a choice in the "Hardwood" sample and displays tables based on choice of composition properties, structure properties, elemental properties, extractive properties, etc.

  13. Hydrogen Production Cost Estimate Using Biomass Gasification

    E-Print Network [OSTI]

    Hydrogen Production Cost Estimate Using Biomass Gasification National Renewable Energy Laboratory% postconsumer waste #12;i Independent Review Panel Summary Report September 28, 2011 From: Independent Review Panel, Hydrogen Production Cost Estimate Using Biomass Gasification To: Mr. Mark Ruth, NREL, DOE

  14. Biomass Equipment and Materials Compensating Tax Deduction

    Broader source: Energy.gov [DOE]

    In 2005 New Mexico adopted a policy to allow businesses to deduct the value of biomass equipment and biomass materials used for the processing of biopower, biofuels or biobased products in...

  15. Biomass energy systems program summary

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    Research programs in biomass which were funded by the US DOE during fiscal year 1978 are listed in this program summary. The conversion technologies and their applications have been grouped into program elements according to the time frame in which they are expected to enter the commercial market. (DMC)

  16. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-10-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

  17. Biomass from Combined Backseatter Modeling

    E-Print Network [OSTI]

    Weishampel, John F.

    and SAR back- scatter. In this article we discuss' the use of models to help develop a relationship to an airbomw SAR (AIB- SAB) image over a fi?rested area in Maine. A relationship derived totall!l from model results was fi?und to undervs- timate biomass. Calibrating the modeled backscatter with limited AIRSAB

  18. Dairy Biomass as a Renewable Fuel Source

    E-Print Network [OSTI]

    Mukhtar, Saqib; Goodrich, Barry; Engler, Cady; Capareda, Sergio

    2008-03-19T23:59:59.000Z

    biomass. This publication explains the properties of dairy manure that could make it an excellent source of fuel....

  19. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  20. Ris Energy Report 5 Biomass biomass is one of few non-fluctuating renewable energy

    E-Print Network [OSTI]

    Risø Energy Report 5 Biomass 6.2 biomass is one of few non-fluctuating renewable energy resources- tem. Alongside stored hydro and geothermal, this sets biomass apart from most other renewables such as wind power, which must be used when available. A proportion of biomass is therefore attractive

  1. Forest Biomass Supply for BioForest Biomass Supply for Bio--productionproduction in the Southeastern United Statesin the Southeastern United States

    E-Print Network [OSTI]

    Gray, Matthew

    Forest Biomass Supply for BioForest Biomass Supply for BioBio--production and biomass utilizationsproduction and biomass utilizations Industrial sector: for heat and steam Utility sector: for electricity Forest biomass: Agricultural biomass: Transportation sector: for biofuels

  2. 4, 52015260, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5201­5260, 2004 A review of biomass burning emissions part III J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions part III: intensive optical properties of biomass burning particles J. S. Reid1 , T. F. Eck2 , S. A. Christopher3 , R. Koppmann4 , O. Dubovik3 , D

  3. 4, 707745, 2007 Proxies of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 707­745, 2007 Proxies of biomass for primary production Y. Huot et al. Title Page Abstract the best index of phytoplankton biomass for primary productivity studies? Y. Huot 1,2 , M. Babin 1,2 , F of biomass for primary production Y. Huot et al. Title Page Abstract Introduction Conclusions References

  4. Biomass Gasification at The Evergreen State College

    E-Print Network [OSTI]

    Biomass Gasification at The Evergreen State College Written by Students of the Winter 2011 Program "Applied Research: Biomass, Energy, and Environmental Justice" At The Evergreen State College, Olympia://blogs.evergreen.edu/appliedresearch/ #12; i Table of Contents Chapter 1: Introduction to Biomass at the Evergreen State College by Dani

  5. THE BURNING OF BIOMASS Economy, Environment, Health

    E-Print Network [OSTI]

    THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

  6. Thermodynamics of Energy Production from Biomass

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Thermodynamics of Energy Production from Biomass Tad W. Patzek 1 and David Pimentel 2 1 Department #12;3 Biomass from Tropical Tree Plantations 14 3.1 Scope of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Environmental Impacts of Industrial Biomass Production . . . . . . . . . . . . . . . 16 3

  7. SEE ALSO SIDEBARS: RECOURCES SOLARRESOURCES BIOMASS & BIOFUELS

    E-Print Network [OSTI]

    Kammen, Daniel M.

    373 SEE ALSO SIDEBARS: RECOURCES · SOLARRESOURCES · BIOMASS & BIOFUELS Engineered and Artificial Biomass remains a key energy source for several billion people living in developing countries, and the production of liquid biofuels for transportation is growing rapidly. However, both traditional biomass energy

  8. Fermentable sugars by chemical hydrolysis of biomass

    E-Print Network [OSTI]

    Raines, Ronald T.

    Fermentable sugars by chemical hydrolysis of biomass Joseph B. Binder and Ronald T. Raines1 19, 2009) Abundant plant biomass has the potential to become a sustainable source of fuels of biomass into monosaccharides. Add- ing water gradually to a chloride ionic liquid-containing catalytic

  9. Energie-Cits 2001 BIOMASS -WOOD

    E-Print Network [OSTI]

    Energie-Cités 2001 BIOMASS - WOOD Gasification / Cogeneration ARMAGH United Kingdom Gasification is transferring the combustible matters in organic waste or biomass into gas and pure char by burning the fuel via it allows biomass in small-scaled engines and co-generation units ­ which with conventional technologies

  10. Also inside this issue: Bioengineering Better Biomass

    E-Print Network [OSTI]

    Also inside this issue: Bioengineering Better Biomass DOE JGI/EMSL Collaborative Science Projects and degrade carbon. This is an image of the Mn(II)-oxidizing fungus Stilbella aciculosa ­ the fungal biomass Better Biomass Feedstock Science Highlights 15 Clouds up Close Improving Catalysts Pore Challenge

  11. Woody Biomass Logistics Robert Keefe1

    E-Print Network [OSTI]

    14 Woody Biomass Logistics Robert Keefe1 , Nathaniel Anderson2 , John Hogland2 , and Ken Muhlenfeld The economics of using woody biomass as a fuel or feedstock for bioenergy applications is often driven by logistical considerations. Depending on the source of the woody biomass, the acquisition cost of the material

  12. 5, 1045510516, 2005 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 10455­10516, 2005 A review of biomass burning emissions, part I R. Koppmann et al. Title and Physics Discussions A review of biomass burning emissions, part I: gaseous emissions of carbon monoxide A review of biomass burning emissions, part I R. Koppmann et al. Title Page Abstract Introduction

  13. 4, 51355200, 2004 A review of biomass

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 4, 5135­5200, 2004 A review of biomass burning emissions, part II J. S. Reid et al. Title Page and Physics Discussions A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles J. S. Reid 1 , R. Koppmann 2 , T. F. Eck 3 , and D. P. Eleuterio 4 1 Marine

  14. Liquid Transportation Fuels from Coal and Biomass

    E-Print Network [OSTI]

    Liquid Transportation Fuels from Coal and Biomass Technological Status, Costs, and Environmental Katzer #12;CHARGE TO THE ALTF PANEL · Evaluate technologies for converting biomass and coal to liquid for liquid fuels produced from coal or biomass. · Evaluate environmental, economic, policy, and social

  15. Original article Micronutrients in biomass fractions

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Micronutrients in biomass fractions of holm oak, beech and fir forests biomass fractions in individual monospecific stands of holm oak (Quercus ilex L), beech (Fagus sylvatica L in different biomass fractions of the holm oak forest studied. This can be related to the low soil pH values

  16. Gasification reactivities of solid biomass fuels

    SciTech Connect (OSTI)

    Moilanen, A.; Kurkela, E.

    1995-12-31T23:59:59.000Z

    The design and operation of the biomass based gasification processes require knowledge about the biomass feedstocks characteristics and their typical gasification behaviour in the process. In this study, the gasification reactivities of various biomasses were investigated in laboratory scale Pressurized Thermogravimetric apparatus (PTG) and in the PDU-scale (Process Development Unit) Pressurized Fluidized-Bed (PFB) gasification test facility of VTT.

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-12-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. GTI received supplemental authorization A002 from DOE for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI assembles an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1. During this Performance Period work efforts focused on conducting tests of biomass feedstock samples on the 2 inch mini-bench gasifier.

  18. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-07-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts proceeded, and Carbona completed the gasifier island design package. Nexant has completed the balance of plant support systems design and the design for the biomass feed system. Work on the Technoeconomic Study is proceeding. Approximately 75% of the specified hardware quotations have been received at the end of the reporting period. A meeting is scheduled for July 23 rd and 24 th to review the preliminary cost estimates. GTI presented a status review update of the project at the DOE/NETL contractor's review meeting in Pittsburgh on June 21st.

  19. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Francis S. Lau

    2003-09-01T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Natural gas and waste coal fines were evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. A design was developed for a cofiring combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures in a power generation boiler, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. Following the preliminary design, GTI evaluated the gasification characteristics of selected feedstocks for the project. To conduct this work, GTI assembled an existing ''mini-bench'' unit to perform the gasification tests. The results of the test were used to confirm the process design completed in Phase Task 1. As a result of the testing and modeling effort, the selected biomass feedstocks gasified very well, with a carbon conversion of over 98% and individual gas component yields that matched the RENUGAS{reg_sign} model. As a result of this work, the facility appears very attractive from a commercial standpoint. Similar facilities can be profitable if they have access to low cost fuels and have attractive wholesale or retail electrical rates for electricity sales. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. Phase II has not been approved for construction at this time.

  20. The role of biomass in California's hydrogen economy

    E-Print Network [OSTI]

    Parker, Nathan C; Ogden, Joan; Fan, Yueyue

    2009-01-01T23:59:59.000Z

    hydrogen from dry biomass feedstocks (i.e. straws, stovers,be produced from the wet biomass feedstocks (manures, urban

  1. Nuclear Regulatory Commission Information Digest, 1991 edition

    SciTech Connect (OSTI)

    Olive, K L

    1991-03-01T23:59:59.000Z

    The Nuclear Regulatory Commission Information Digest provides a summary of information about the US Nuclear Regulatory Commission (NRC), NRC's regulatory responsibilities, and the areas NRC licenses. This digest is a compilation of NRC-related data and is designed to provide a quick reference to major facts about the agency and the industry it regulates. In general, the data cover 1975 through 1990, with exceptions noted. For operating US commercial nuclear power reactors, information on generating capacity and average capacity factor is obtained from Monthly Operating Reports submitted to the NRC directly by the licensee. This information is reviewed for consistency only. No independent validation and/or verification is performed by the NRC. For detailed and complete information about tables and figures, refer to the source publications. This digest is published annually for the general use of the NRC staff and is available to the public. 30 figs., 12 tabs.

  2. BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS

    E-Print Network [OSTI]

    BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

  3. Kinetics of digestion f forage fiber components

    E-Print Network [OSTI]

    Van Hellen, Russell William

    1974-01-01T23:59:59.000Z

    . Herzudagrass Katurity Cuttings . . 69 INTHODUCTIOii Fiber is cell wall material composed chiefly of structural carbohydrates wnich are digested by the rumin- ant at one site, the reticulo-rumen, via microbial degra. ? dation and fermen ation to metabolitee... was thought to be involved when whole plant structure was digested in vitro or in situ in contrast to finely ground samples as used in foregoing experiments The forage entering the reticulo-rumen does so in a coarser physical form than that of a sample...

  4. Digestion Experiments on Men with Cottonseed Meal.

    E-Print Network [OSTI]

    Rather, J. B. (James Burness)

    1913-01-01T23:59:59.000Z

    in Charge W . Z. M i l l e r , B . S., Scientific Assistant , Animal Husbandman SUBSTATION NO . 6 : Krum, Denton County D IV ISION OF EN TOM OLOGY T - W - B u e l l , B . S., Superintendent W ilm on N ew e ll , M . S., Entomologist in SUBSTATION... beings. Mendel and Fine (J . Biol. Chem. I I , I ) fed cottonseed flour to dogs and found that 71.6 per cent of the proteins were digested, on an average, and when meat was fed to the same animals that 91.0 per cent protein was digested. Since...

  5. Greenhouse and laboratory studies on the effects of an anaerobic digester sludge on growth and nutrient uptake of sorghum

    E-Print Network [OSTI]

    Vincent, John Cooper

    1989-01-01T23:59:59.000Z

    , however, should have the same impact on the soil environment as other organic wastes that are currently being disposed of by land application, such as composts, sewage sludge, and animal manures. Trace metals contained in municipal sludge may also be a... sewage sludge and sewage compost have also been noted (Epstein et al. , 1978). Mineralization of N from more stable compost was likened to soil organic matter. Other authors have also noted inorganic N accumulations in response to sludge and manure...

  6. VOLUME 15 Summer 2012 SMALL FARM DIGESTSMALL FARM DIGEST

    E-Print Network [OSTI]

    Duffy, Michael D.

    VOLUME 15 Summer 2012 SMALL FARM DIGESTSMALL FARM DIGEST Farm Beginnings Introduction to Grazing a great deal of thought and planning. This edition of the Small Farm Digest lays out key issues that must

  7. Canada's top-ranked digestive health research institute opens

    E-Print Network [OSTI]

    Thompson, Michael

    network Canada's top-ranked digestive health research institute opens McMaster innovates the grand opening of the Farncombe Family Digestive Health Research Institute. The creation of this unique

  8. How Markets Slowly Digest Changes in Supply and Demand

    E-Print Network [OSTI]

    CHAPTER 2 How Markets Slowly Digest Changes in Supply and Demand Jean-Philippe Bouchaud Science-Holland, Elsevier, Inc. All rights reserved. 57 #12;58 Chapter 2 How Markets Slowly Digest Changes in Supply

  9. NREL: News - NREL Finds a New Cellulose Digestion Mechanism by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    114 NREL Finds a New Cellulose Digestion Mechanism by a Fast-eating Enzyme CelA digests cellulose faster than enzymes from commercial preparations January 2, 2014 Researchers at...

  10. E-Print Network 3.0 - aerobe und anaerobe Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of GI, tissue, cavity or wound anaerobes. Aerobic and fungal... to avoid loss of oxygen-excluding gas cap. Blood Culture Bottles for Aerobic and Anaerobic Culture... are used...

  11. E-Print Network 3.0 - anaerobic bacteria adapted Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    yield a b s t r a c t Four anaerobic sequencing batch reactors... , and their interconnectivity on the methane yield of anaerobic processes for animal waste treatment. During...

  12. Anaerobic Biotransformation and Mobility of Pu and PuEDTA

    SciTech Connect (OSTI)

    Xun, Luying

    2005-06-01T23:59:59.000Z

    Although our goal is to isolate anaerobic EDTA degraders, we initiated the experiments to include nitrilotriacetate (NTA), which is a structure homologue of EDTA. All the aerobic EDTA degraders can degrade NTA, but the isolated NTA degraders cannot degrade EDTA. Since NTA is a simpler structure homologue, it is likely that EDTA-degrading ability is evolved from NTA degradation. This hypothesis is further supported from our characterization of EDTA and NTA-degrading enzymes and genes (J. Bact. 179:1112-1116; and Appl. Environ. Microbiol. 67:688-695). The EDTA monooxygenase and NTA monooxygenase are highly homologous. EDTA monooxygenase can use both EDTA and NTA as substrates, but NTA monooxygenase can only use NTA as a substrate. Thus, we put our effort to isolate both NTA and EDTA degraders. In case, an anaerobic EDTA degrader is not immediately enriched, we will try to evolve the NTA degraders to use EDTA. Both aerobic and anaerobic enrichment cultures were set.

  13. E-Print Network 3.0 - anaerobic degradation pathways Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering ; Biotechnology 22 Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation Summary: Removal of polycyclic aromatic...

  14. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-09-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  15. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2001-12-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of 2002. GTI worked with DOE to develop the Statement of Work for the supplemental activities. DOE granted an interim extension of the project until the end of January 2002 to complete the contract paperwork. GTI worked with Calla Energy to develop request for continued funding to proceed with Phase II, submitted to DOE on November 1, 2001.

  16. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-06-30T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  17. CALLA ENERGY BIOMASS COFIRING PROJECT

    SciTech Connect (OSTI)

    Unknown

    2002-03-31T23:59:59.000Z

    The Calla Energy Biomass Project, to be located in Estill County, Kentucky is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications. During this Performance Period work efforts focused on completion of the Topical Report, summarizing the design and techno-economic study of the project's feasibility. GTI received supplemental authorization A002 from DOE contracts for additional work to be performed under Phase I that will further extend the performance period until the end of February 2003. The additional scope of work is for GTI to develop the gasification characteristics of selected feedstock for the project. To conduct this work, GTI will assemble an existing ''mini-bench'' unit to perform the gasification tests. The results of the test will be used to confirm or if necessary update the process design completed in Phase Task 1.

  18. Biomass Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas and Fuel Cells2008:Biomass

  19. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    DOE Patents [OSTI]

    Buelter, Thomas (Denver, CO); Meinhold, Peter (Denver, CO); Feldman, Reid M. Renny (San Francisco, CA); Hawkins, Andrew C. (Parker, CO); Urano, Jun (Irvine, CA); Bastian, Sabine (Pasadena, CA); Arnold, Frances (La Canada, CA)

    2012-01-17T23:59:59.000Z

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  20. Digestion des glucides chez le monogastrique Martine CHAMP

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Digestion des glucides chez le monogastrique Martine CHAMP Laboratoire de Techno%gie des Aliments des Animaux, /. N. R.A., Rue de la Graudire, 44072 Nantes Cedex. Summary. Carbohydrate digestion digested in the small intestine of monogastric animals by enzymes of the salivary glands, pancreas

  1. Video Digests: A Browsable, Skimmable Format for Informational Lecture Videos

    E-Print Network [OSTI]

    O'Brien, James F.

    Video Digests: A Browsable, Skimmable Format for Informational Lecture Videos Amy Pavel, Colorado- ing current timeline-based video players. Video digests are a new format for informational videos authors create such digests using transcript-based interactions. With our tools, authors can manually

  2. SHORT COMMUNICATION Gas-Phase Separations of Protease Digests

    E-Print Network [OSTI]

    Clemmer, David E.

    SHORT COMMUNICATION Gas-Phase Separations of Protease Digests Stephen J. Valentine, Anne E University, Bloomington, Indiana, USA A mixture of peptides from a complete tryptic digest of ubiquitin has and identify peptides from a tryptic digest of ubiquitin. The mixture was electrosprayed into the gas phase

  3. Using digest pages to increase user result space: Preliminary designs

    E-Print Network [OSTI]

    Lalmas, Mounia

    Using digest pages to increase user result space: Preliminary designs Shanu Sushmita Queen Mary. In this paper, we introduce the concept of a digest page, which is a fictitious document built from its documents summarized into the digest page. This paper presents preliminary designs regarding

  4. Original article Quantitative review of ruminal and total tract digestion

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Original article Quantitative review of ruminal and total tract digestion of mixed diet organic reviewed using a data base involving 157 papers. The ruminal digestion (mean SE%) of organic matter, cell), respectively and the proportion of each component digested in the rumen in relation to total tract

  5. Original article Digestion and fermentation of proteins in rats fed

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Digestion and fermentation of proteins in rats fed keratin, albumin, cooked casein the hypothesis that cooking reduces the digestibility of casein, and increases the yield of bacterial me transfer and fermentation in the caecum. The caecal digestion of casein (cooked or not), ker- atin

  6. Original article Development of the rumen digestive functions

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Original article Development of the rumen digestive functions in lambs placed in a sterile isolator Digestion Microbienne, 63122 Saint-Gens-Champanelle; 3 CNRS, Laboratoire de Biologie Compare des Protistes 1991 ) Summary ― The development of the rumen digestive functions was studied in lambs placed

  7. Current Search: selected In: Book Review Digest Plus

    E-Print Network [OSTI]

    Bardsley, John

    Current Search: selected Records: 4 In: Book Review Digest Plus 60% 1 of 4 Book Review Digest Plus Library Owns? Link to Article Title: Mathematics as a constructive activity: learners and Learning v. 8 no. 4 (2006). Sriraman, Bharath, reviewer 60% 2 of 4 Book Review Digest Plus Link

  8. Yeast Genomic Library Genomic DNA Sau3AI partial digestion

    E-Print Network [OSTI]

    Odorizzi, Greg

    Yeast Genomic Library Concept: Genomic DNA Sau3AI partial digestion Vector DNA BamHI full digestion partial Ligate and transform above products Vector Information: use centromeric plasmid to avoid of the mcs Preparing Vector: 1) digest 3-4ug of library vector with BamHI for 2-4hrs in a total volume of 20

  9. Digestion Modelling in the Small Intestine : Impact of Dietary Fibre

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Digestion Modelling in the Small Intestine : Impact of Dietary Fibre M. Taghipoor , G. Barles , C. Georgelin , J.R. Licois & Ph. Lescoat Abstract In this work, we continue the modelling of the digestion the role of dietary fibre on digestion, we model their two principal physiochemical characteristics which

  10. Original article Comparative study of forestomach digestion in llamas

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article Comparative study of forestomach digestion in llamas and sheep JP Dulphy C-Gens-Champanelle, France (Received 3 June 1997; accepted 30 October 1997) Summary ― To compare digestion, the digestibilities of DM, OM and NDF were significantly higher in llamas: respectively, + 2.7, 3.6 and 5

  11. Intake and digestibility of four forages by Ilamas and sheep

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Intake and digestibility of four forages by Ilamas and sheep R Cordesse M Inesta, JL Gaubert ENSA of llamas to ingest and digest forages. We measured these capacities on 4 forages in comparison with sheep. The digestibility was measured by total col- lection of feces on the last 10 days of each period. Sheep had

  12. Original article Age-related changes in apparent digestibility

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Original article Age-related changes in apparent digestibility in growing kittens E. Jean HARPER kitten to digest protein, fat, carbohydrate, dry-matter and energy were assessed. Kittens were divided access to food. Apparent digestibility of the two diets, and kitten bodyweights were measured over a 24

  13. Bayesian hierarchical reconstruction of protein profiles including a digestion model

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Bayesian hierarchical reconstruction of protein profiles including a digestion model Pierre to recover the protein biomarkers content in a robust way. We will focus on the digestion step since and each branch to a molecular processing such as digestion, ionisation and LC-MS separation

  14. Original article An evaluation of the method used in digestibility

    E-Print Network [OSTI]

    Boyer, Edmond

    Original article An evaluation of the method used in digestibility estimations of a dietary ingredient and comparisons on external and internal markers, and time of faeces collection in digestibility digestibilities of an ingredient, together with validity of estimations based on day and night collection

  15. Autocatalytic models describing ruminal in situ digestion J Van Milgen

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Autocatalytic models describing ruminal in situ digestion J Van Milgen INRA, Station de Recherche sur la Nutrition des Herbivores, Theix, 63122 Saint-Gens-Champanelle, France Digestion of particulate avail- ability. Although microbes can be considered the cause of digestion, they are also the result

  16. Chemistry & Biology Hemoglobin Digestion in Blood-Feeding Ticks

    E-Print Network [OSTI]

    Bogyo, Matthew

    Chemistry & Biology Article Hemoglobin Digestion in Blood-Feeding Ticks: Mapping a Multipeptidase: mares@uochb.cas.cz DOI 10.1016/j.chembiol.2009.09.009 SUMMARY Hemoglobin digestion is an essential transmission is linked to the physiology of blood feeding and digestion. Blood provides a rich source

  17. Engineered plant biomass feedstock particles

    DOE Patents [OSTI]

    Dooley, James H. (Federal Way, WA); Lanning, David N. (Federal Way, WA); Broderick, Thomas F. (Lake Forest Park, WA)

    2012-04-17T23:59:59.000Z

    A new class of plant biomass feedstock particles characterized by consistent piece size and shape uniformity, high skeletal surface area, and good flow properties. The particles of plant biomass material having fibers aligned in a grain are characterized by a length dimension (L) aligned substantially parallel to the grain and defining a substantially uniform distance along the grain, a width dimension (W) normal to L and aligned cross grain, and a height dimension (H) normal to W and L. In particular, the L.times.H dimensions define a pair of substantially parallel side surfaces characterized by substantially intact longitudinally arrayed fibers, the W.times.H dimensions define a pair of substantially parallel end surfaces characterized by crosscut fibers and end checking between fibers, and the L.times.W dimensions define a pair of substantially parallel top and bottom surfaces. The L.times.W surfaces of particles with L/H dimension ratios of 4:1 or less are further elaborated by surface checking between longitudinally arrayed fibers. The length dimension L is preferably aligned within 30.degree. parallel to the grain, and more preferably within 10.degree. parallel to the grain. The plant biomass material is preferably selected from among wood, agricultural crop residues, plantation grasses, hemp, bagasse, and bamboo.

  18. ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER

    E-Print Network [OSTI]

    Ossio, Edmundo

    2012-01-01T23:59:59.000Z

    29,000 mg/1 nil a Source of sludge: City of Richmond WaterYen assessed the activated sludge process for the treatmentstudies using a digested sludge seed from a municipal

  19. Biomass Energy Data Book: Edition 2

    SciTech Connect (OSTI)

    Wright, Lynn L [ORNL; Boundy, Robert Gary [ORNL; Badger, Philip C [ORNL; Perlack, Robert D [ORNL; Davis, Stacy Cagle [ORNL

    2009-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the second edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also four appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, assumptions for selected tables and figures, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.

  20. Biomass Energy Data Book: Edition 4

    SciTech Connect (OSTI)

    Boundy, Robert Gary [ORNL; Diegel, Susan W [ORNL; Wright, Lynn L [ORNL; Davis, Stacy Cagle [ORNL

    2011-12-01T23:59:59.000Z

    The Biomass Energy Data Book is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the Biomass Program in the Energy Efficiency and Renewable Energy (EERE) program of the Department of Energy (DOE). Designed for use as a convenient reference, the book represents an assembly and display of statistics and information that characterize the biomass industry, from the production of biomass feedstocks to their end use, including discussions on sustainability. This is the fourth edition of the Biomass Energy Data Book which is only available online in electronic format. There are five main sections to this book. The first section is an introduction which provides an overview of biomass resources and consumption. Following the introduction to biomass, is a section on biofuels which covers ethanol, biodiesel and bio-oil. The biopower section focuses on the use of biomass for electrical power generation and heating. The fourth section is on the developing area of biorefineries, and the fifth section covers feedstocks that are produced and used in the biomass industry. The sources used represent the latest available data. There are also two appendices which include frequently needed conversion factors, a table of selected biomass feedstock characteristics, and discussions on sustainability. A glossary of terms and a list of acronyms are also included for the reader's convenience.