Powered by Deep Web Technologies
Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Biomass Anaerobic Digestion Facilities and Biomass Gasification...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)...

2

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Performance Data For Anaerobic Digestion of Various Types ofMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OFMARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF

Haven, Kendall F.

2011-01-01T23:59:59.000Z

3

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Indiana Department of Environmental Management requires permits before the construction or expansion of biomass anaerobic digestion or gasification facilities.

4

Energy Basics: Anaerobic Digestion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Biofuels Biopower Anaerobic Digestion Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Anaerobic Digestion Anaerobic digestion is a...

5

Anaerobic Digestion  

Energy.gov (U.S. Department of Energy (DOE))

Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases,...

6

Decomposition of Fresh and Anaerobically Digested Plant Biomass in Soil1 K. K. MOORHEAD, D. A, GRAETZ, AND K. R. REDDY2  

E-Print Network (OSTI)

Decomposition of Fresh and Anaerobically Digested Plant Biomass in Soil1 K. K. MOORHEAD, D. A to produce CH4 or added to soil directly as an amendment.In this study, fresh and anaerobically digested digested plant biomass in soil. J. En- viron. Qual. 16:25-28. Anaerobic digestion of organic materials

Florida, University of

7

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

Design Parameters Marine Biomass Production Sea Farmof Various Types of Biomass . Biomethanation Parameters.Proceedings, Fuels from Biomass Symposium. University of

Haven, Kendall F.

2011-01-01T23:59:59.000Z

8

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

synthetic natural gas (SNG) via anaerobic decomposition byof algal substrate for an SNG process involves increasingof characteristics for SNG production. Limiting factors in

Haven, Kendall F.

2011-01-01T23:59:59.000Z

9

Anaerobic digestion process  

SciTech Connect

An algae culture grown on the water from the digested slurry of a biogasification plant serves as a means of removing CO/sub 2/ from the methane stream while purifying the wastewater and providing more biomass for the anaerobic digestion plant. Tested on a sewage-sludge digestion system, the proposed process improved the methane yield by 32% and methane concentration by 53-98 vol % while lowering the concentration of nitrogen and phosphorus in the final water.

Ishida, M.; Haga, R.; Odawara, Y.

1982-10-19T23:59:59.000Z

10

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase I - A Survey of U concrete steps to install an anaerobic digestion (AD) facility and documentation of the factors technology. Keywords Anaerobic digester, biogas, electricity production, manure management #12;4 Table

11

Arnold Schwarzenegger ANAEROBIC DIGESTER  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor ANAEROBIC DIGESTER IMPLEMENTATION ISSUES Phase II - A Survey who took concrete steps to install an anaerobic digestion (AD) facility and documentation samples are overwhelmingly in favor of AD technology. Keywords Anaerobic digester, biogas, electricity

12

Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Microalgae are currently considered as a renewable source of liquid and gaseous biofuels and  

E-Print Network (OSTI)

#12;1 Anaerobic Digestion of Algal Biomass Residues with Nutrient Recycle Background Microalgae a lower- value use and simpler processing approach representative of anaerobic digestion (AD) (Sialve et-in replacements of gasoline, diesel, and jet fuel (Jones & Mayfield, 2012; Regalbuto, 2009), and anaerobically

Collins, Gary S.

13

Anaerobic Digestion | Open Energy Information  

Open Energy Info (EERE)

(Redirected from - Anaerobic Digestion) Jump to: navigation, search TODO: Add description List of Anaerobic Digestion Incentives Retrieved from "http:en.openei.orgw...

14

Anaerobic Digestion | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search TODO: Add description List of Anaerobic Digestion Incentives Retrieved from "http:en.openei.orgwindex.php?titleAnaerobicDigestion&oldid267145"...

15

Biomass Gasification and Methane Digester Property Tax Exemption...  

Open Energy Info (EERE)

Tax Incentive Applicable Sector Agricultural Eligible Technologies Anaerobic Digestion, Biomass, Thermal polyerization Active Incentive Yes Implementing Sector StateTerritory...

16

Anaerobic Digestion Technology  

Science Conference Proceedings (OSTI)

As fuel resources become scarcer, it has become more important to identify and harness alternative energy sources. Currently, 24 states have renewable portfolio standards (RPS), requiring electricity providers to obtain a minimum percentage of their power from renewable energy sources, with the purpose of becoming less dependent on fossil fuels, reducing waste and greenhouse gas emissions, and decreasing costs as fuel prices increase. Anaerobic digestion (AD) has proven itself a viable alternative techno...

2007-12-21T23:59:59.000Z

17

Anaerobic digestion of equine waste.  

E-Print Network (OSTI)

??The goals of this project were to determine the methane production potential of horse manure during anaerobic digestion; to examine the effect of softwood chip… (more)

Wartell, Brian A., 1984-

2009-01-01T23:59:59.000Z

18

List of Anaerobic Digestion Incentives | Open Energy Information  

Open Energy Info (EERE)

Anaerobic Digestion Incentives Anaerobic Digestion Incentives Jump to: navigation, search The following contains the list of 285 Anaerobic Digestion Incentives. CSV (rows 1 - 285) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Advanced Energy Job Stimulus Program (Ohio) Industry Recruitment/Support Ohio Commercial Fed. Government Industrial Institutional Local Government Nonprofit State Government

19

Pilot-scale anaerobic co-digestion of municipal biomass waste and waste activated sludge in China: Effect of organic loading rate  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) was examined on a pilot-scale reactor. Black-Right-Pointing-Pointer System performance and stability under OLR of 1.2, 2.4, 3.6, 4.8, 6.0 and 8.0 kg VS (m{sup 3} d){sup -1} were analyzed. Black-Right-Pointing-Pointer A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and HRT of 15d. Black-Right-Pointing-Pointer With the increasing OLRs, pH values, VS removal rate and methane concentration decreased and VFA increased. Black-Right-Pointing-Pointer The changing of biogas production rate can be a practical approach to monitor and control anaerobic digestion system. - Abstract: The effects of organic loading rate on the performance and stability of anaerobic co-digestion of municipal biomass waste (MBW) and waste activated sludge (WAS) were investigated on a pilot-scale reactor. The results showed that stable operation was achieved with organic loading rates (OLR) of 1.2-8.0 kg volatile solid (VS) (m{sup 3} d){sup -1}, with VS reduction rates of 61.7-69.9%, and volumetric biogas production of 0.89-5.28 m{sup 3} (m{sup 3} d){sup -1}. A maximum methane production rate of 2.94 m{sup 3} (m{sup 3} d){sup -1} was achieved at OLR of 8.0 kg VS (m{sup 3} d){sup -1} and hydraulic retention time of 15 days. With increasing OLRs, the anaerobic reactor showed a decrease in VS removal rate, average pH value and methane concentration, and a increase of volatile fatty acid concentration. By monitoring the biogas production rate (BPR), the anaerobic digestion system has a higher acidification risk under an OLR of 8.0 kg VS (m{sup 3} d){sup -1}. This result remarks the possibility of relating bioreactor performance with BPR in order to better understand and monitor anaerobic digestion process.

Liu Xiao, E-mail: liuxiao07@mails.tsinghua.edu.cn [School of Environment, Tsinghua University, Beijing 100084 (China); Wang Wei; Shi Yunchun; Zheng Lei [School of Environment, Tsinghua University, Beijing 100084 (China); Gao Xingbao [Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Qiao Wei [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249 (China); Zhou Yingjun [Department of Urban and Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540 (Japan)

2012-11-15T23:59:59.000Z

20

Anaerobic Digesters Design and Operation  

E-Print Network (OSTI)

Public awar'eness of the need to develop systems for producing energy from readilyrenewable sources, as an alternative to energy from expensive and diminishing supplies of fossil fuels, led to research at The Pennsylvania State University on systems for methane production by anaerobic digestion of animal manures. Experiences with design, construction, and operation of a two-stage heated continuous-feed digester for a herd of 100 dairy cows are reported in this Bulletin. The publication contains discussions of the microbiological processes involved in the anaerobic digestion of organic materials;

S. P. E. Persson; R. W. Regan

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Research review paper1 Anaerobic digestion of microalgae as a necessary step to make3  

E-Print Network (OSTI)

1 Research review paper1 2 Anaerobic digestion of microalgae as a necessary step to make3 of residual biomass and the17 high amounts of fertilizers must be considered. Anaerobic digestion is a key and concentrate methane is discussed.31 32 33 Keywords: anaerobic digestion, microalgae, biochemical methane

22

Energy Basics: Anaerobic Digestion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic decomposition of organic materials. It is...

23

Can we assess the model complexity for a bioprocess ? Theory and example of the anaerobic digestion process  

E-Print Network (OSTI)

Can we assess the model complexity for a bioprocess ? Theory and example of the anaerobic digestion the bioreactor. This provides the dimension of K. The method is applied to data from an anaerobic digestion can be obtained with 2 biomasses. Keywords Anaerobic digestion; Bioreactors; Modelling; Nonlinear

Paris-Sud XI, Université de

24

A Design-Builder's Perspective: Anaerobic Digestion, Forest County...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi...

25

Anaerobic Digestion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digestion Basics Anaerobic Digestion Basics Anaerobic Digestion Basics August 14, 2013 - 1:07pm Addthis Anaerobic digestion is a common technology in today's agriculture, municipal waste, and brewing industries. It uses bacteria to break down waste organic materials into methane and other gases, which can be used to produce electricity or heat. Methane and Anaerobic Bacteria Methane is a gas that contains molecules of methane with one atom of carbon and four atoms of hydrogen (CH4). It is the major component of the natural gas used in many homes for cooking and heating. It is odorless, colorless, and yields about 1,000 British thermal units (Btu) [252 kilocalories (kcal)] of heat energy per cubic foot (0.028 cubic meters) when burned. Natural gas is a fossil fuel that was created eons ago by the anaerobic

26

Anaerobic Co-Digestion on Dairies in Washington State  

E-Print Network (OSTI)

1 Anaerobic Co-Digestion on Dairies in Washington State The solid waste handling permit exemption W This factsheet briefly reviews the role of co-digestion within anaerobic digestion (AD), explains the potential Digestion and the Role of Co-Digestion Anaerobic digestion is increasingly used to treat livestock manure

Collins, Gary S.

27

Sustainable use of California biomass resources can help meet state and national bioenergy targets  

E-Print Network (OSTI)

methane derived from anaerobic digestion of biomass. † TWh =is often considered for anaerobic digestion, ethanol fermen-as a feedstock for anaerobic digestion to produce biogas (

Jenkins, Bryan M; Williams, Robert B; Gildart, Martha C; Kaffka, Stephen R.; Hartsough, Bruce; Dempster, Peter G

2009-01-01T23:59:59.000Z

28

Anaerobic Digestion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

bacteria break down or "digest" organic material in the absence of oxygen and produce biogas as a waste product. (Aerobic decomposition, or composting, requires large amounts of...

29

Anaerobic digestion of industrial activated aerobic sludge  

Science Conference Proceedings (OSTI)

The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge.

Goodloe, J.G.; Roberts, R.S.

1990-04-01T23:59:59.000Z

30

Community-Scale Anaerobic Digesters Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Scale Anaerobic Digesters Webinar Community-Scale Anaerobic Digesters Webinar Community-Scale Anaerobic Digesters Webinar April 16, 2013 1:00PM MDT Webinar This free webinar will be held on April 16, 2013, from 1-2:15 p.m. Mountain Daylight Time. It will provide information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's anaerobic digester project. Implementing Anaerobic Digestion in San Jose's Integrated Processing Infrastructure This presentation will provide background on San Jose, California's, leading-edge program using the nation's first commercial-scale, high solids dry fermentation anaerobic digestion system to process commercial organics from more than 8,000 businesses in the city. Phase one of the Zero Waste

31

Photoenhanced anaerobic digestion of organic acids  

DOE Patents (OSTI)

A process is described for rapid conversion of organic acids and alcohols in anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion of organic acids and alcohols into methane with low levels of light energy input. 8 figs.

Weaver, P.F.

1989-08-25T23:59:59.000Z

32

Photoenhanced anaerobic digestion of organic acids  

DOE Patents (OSTI)

A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

Weaver, Paul F. (Golden, CO)

1990-01-01T23:59:59.000Z

33

Deploying anaerobic digesters: Current status and future possibilities  

DOE Green Energy (OSTI)

Unmanaged pollutants from putrescible farm, industrial, and municipal wastes degrade in the environment, and methane emitted from their decomposition may contribute to global climate change. Under modern environmental regulations, these wastes are becoming difficult to dispose of using traditional means. One waste management system, anaerobic digestion or AD, not only provides pollution prevention but can also convert a disposal problem into a new profit center. This report is drawn from a special session of the Second Biomass Conference of the Americas. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

Lusk, P. [International Energy Agency, Paris (France); Wheeler, P. [ETSU (United Kingdom); Rivard, C. [National Renewable Energy Lab., Golden, CO (United States)

1996-01-01T23:59:59.000Z

34

Biomass Equipment & Materials Compensating Tax Deduction (New...  

Open Energy Info (EERE)

Sector Commercial, Industrial Eligible Technologies Anaerobic Digestion, Biodiesel, Biomass, CHPCogeneration, Ethanol, Hydrogen, Landfill Gas, Methanol, Microturbines,...

35

Apparatus for the anaerobic digestion of natural organic waste  

Science Conference Proceedings (OSTI)

The title system consists of a feed tank, from which sewage is provided to a digester tank at an adjustable continuous weight, in which the sewage is anaerobically digested. The gas produced in the anaerobic digester is collected at the top and pumped to a diffuser at the bottom of the digester. The supernatent from the treated sewage is transferred to an outlet tank, and sludge is removed from the bottom of the digester tank.

Hawkes, D.L.; Horton, R.; Stafford, D.A.

1980-11-11T23:59:59.000Z

36

Anaerobic Digester Gas-to-Electricity Rebate and Performance...  

Open Energy Info (EERE)

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive Incentive Type State Rebate Program Applicable Sector Agricultural, Commercial, Industrial, Institutional,...

37

On a Three Step Model of Anaerobic Digestion Including the Hydrolysis of  

E-Print Network (OSTI)

On a Three Step Model of Anaerobic Digestion Including the Hydrolysis of Particulate Matter R degradation, chemostat, models, growth rate, equilibrium, bistability. 1. INTRODUCTION Anaerobic digestion, the anaerobic digestion is generally considered as a three step process: hydrolysis and liquefaction

Paris-Sud XI, Université de

38

Anaerobic Digestion Process Identification Using Recurrent Neural Network Model  

Science Conference Proceedings (OSTI)

This paper proposes the use of a Recurrent Neural Network Model (RNNM) for decentralized and centralized identification of an aerobic digestion process, carried out in a fixed bed and a recirculation tank anaerobic wastewater treatment system. The analytical ... Keywords: Recurrent neural network model, backpropagation learning, decentralized model, centralized model, system identification, anaerobic digestion bioprocess

Rosalba Galvan-Guerra; Ieroham S. Baruch

2007-11-01T23:59:59.000Z

39

A Study on Biogas from Anaerobic Digestion with the Distiller's Grains via Lactic Acid Fermentation  

Science Conference Proceedings (OSTI)

The methane production of the distiller’s grains via lactic acid fermentation (shorter for the fermentation residue) was investigated, and the variable trend of pH values, alkali concentration and volatile fatty acids were examined. The results ... Keywords: the residue of distillers' grains via lactic acid fermentation, biomass wastes, anaerobic digestion, volatile fatty acids, biogas production

Li-Hong Wang; Wang Qunhui; Sun Xiaohong; Xin Zhao

2010-12-01T23:59:59.000Z

40

Experimental study on rheological characteristics of high solid content sludge and it is mesophilic anaerobic digestion  

Science Conference Proceedings (OSTI)

Compared to conventional low solid content anaerobic digestion high solid content anaerobic digestion can offer attractive advantages such as higher biogas generation and smaller reactor volume demand. However

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Effect of Trace Elements on Anaerobic Digestion of Coking Wastewater  

Science Conference Proceedings (OSTI)

The pretreatment of coking wastewater using ASBR was conducted at 35? in this paper. The addition of trace elements to the anaerobic reactor has positive effect on the anaerobic treatment of coking wastewater, but too much or too little of it will ... Keywords: trace elements, anaerobic digestion, coking wastewater

Yu-ying Li; Bing Li

2009-10-01T23:59:59.000Z

42

EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

907: Biogas Anaerobic Digester Facility, Oakley, Kansas 907: Biogas Anaerobic Digester Facility, Oakley, Kansas EA-1907: Biogas Anaerobic Digester Facility, Oakley, Kansas Summary This EA evaluates the environmental impacts of a proposal by DOE and USDA to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester, and related infrastructure. Based on the analysis in USDA's Final EA and FONSI, DOE has determined that DOE's proposed action does not constitute a major Federal action that would significantly affect the quality of the human or natural environment.

43

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Waste-to-Energy Biomass Digester with Decreased Water Consumption ... Able to digest multiple types of waste, including bovine, equine, and poultry manure

44

DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES  

E-Print Network (OSTI)

DESIGN OF SOFTWARE SENSORS FOR UNMEASURABLE VARIABLES OF ANAEROBIC DIGESTION PROCESSES Simeonov, I variables of anaerobic digestion processes. For this purpose, different mathematical models of anaerobic on a pilot-scale anaerobic bioreactor with computer monitoring system. Key words: Anaerobic digestion

Paris-Sud XI, Université de

45

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production  

E-Print Network (OSTI)

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen Anaerobic digestion-bioammonia to hydrogen (ADBH) a b s t r a c t During anaerobic digestion, organic matter

46

Anaerobic Digestion and Combined Heat and Power Study  

DOE Green Energy (OSTI)

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz

2011-12-30T23:59:59.000Z

47

Bio-Terre Cook Farm Anaerobic Digester Project  

Science Conference Proceedings (OSTI)

This report details the preliminary research and construction of a novel low temperature earthen cell for anaerobic digestion and biogas production facility at Cook Feeders Ltd., a 6,000 head swine finisher operation, located in central Manitoba, Canada.

2005-09-07T23:59:59.000Z

48

Cascade Fuzzy Logic Controller for an Anaerobic Digester  

Science Conference Proceedings (OSTI)

A cascade controller is introduced for operating Up flow Anaerobic Sludge Blanket (UASB) digesters efficiently. The Upper-level controller is a Fuzzy Logic Controller (FLC) and the Lower-level controller is a conventional PI controller. The inner loop ...

Albino Martinez-Sibaja; Ruben Posada-Gomez; Alejandro Alvarado-Lassman; Angel Sebastia-Cortes

2007-09-01T23:59:59.000Z

49

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Waste-to-Energy Biomass Digester with Decreased Water Consumption Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

50

Waste-to-Energy Biomass Digester with Decreased Water ...  

Waste-to-Energy Biomass Digester with Decreased Water Consumption Contact Information: Jeremy Nelson Phone: 970.491.7100 Email: ...

51

Anaerobic Digestion of Food Waste?recycling Wastewater  

Science Conference Proceedings (OSTI)

Food waste?recycling (FWR) wastewater was evaluated as feedstock for two?stage anaerobic digestion at different hydraulic retention times (HRTs). The FWR wastewater tested contained high concentrations of organic materials and had chemical oxygen demand (COD) >130 g/L and volatile solids (VS) >55 g/L. Two identical two?stage anaerobic digesters were operated to investigate the performance at six HRTs ranging from 10–25 days. In the acidogenic reactor

Gyuseong Han; Seung Gu Shin; Juntaek Lim; Minho Jo; Seokhwan Hwang

2010-01-01T23:59:59.000Z

52

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

energy costs. Anaerobic digesters work by allowing bacteria to break down the ... water is scarce, and helps to reduce the environmental impact of ...

53

A mixed plug flow anaerobic digester for dairy manure  

SciTech Connect

In 1982, a ''mixed plug-flow'' anaerobic digester has been built to produce biogas from the manure of 350 dairy cows and, subsequently, to produce electricity for on-farm use only. This paper describes the digester and presents the main results of one year of technical follow-up.

Cournoyer, M.S.; Delisle, U.; Ferland, D.; Chagnon, R.

1985-01-01T23:59:59.000Z

54

Effect of alkaline pretreatment on anaerobic digestion of solid wastes  

Science Conference Proceedings (OSTI)

The introduction of the anaerobic digestion for the treatment of the organic fraction of municipal solid waste (OFMSW) is currently of special interest. The main difficulty in the treatment of this waste fraction is its biotransformation, due to the complexity of organic material. Therefore, the first step must be its physical, chemical and biological pretreatment for breaking complex molecules into simple monomers, to increase solubilization of organic material and improve the efficiency of the anaerobic treatment in the second step. This paper describes chemical pretreatment based on lime addition (Ca(OH){sub 2}), in order to enhance chemical oxygen demand (COD) solubilization, followed by anaerobic digestion of the OFMSW. Laboratory-scale experiments were carried out in completely mixed reactors, 1 L capacity. Optimal conditions for COD solubilization in the first step of pretreatment were 62.0 mEq Ca(OH){sub 2}/L for 6.0 h. Under these conditions, 11.5% of the COD was solubilized. The anaerobic digestion efficiency of the OFMSW, with and without pretreatment, was evaluated. The highest methane yield under anaerobic digestion of the pretreated waste was 0.15 m{sup 3} CH{sub 4}/kg volatile solids (VS), 172.0% of the control. Under that condition the soluble COD and VS removal were 93.0% and 94.0%, respectively. The results have shown that chemical pretreatment with lime, followed by anaerobic digestion, provides the best results for stabilizing the OFMSW.

Lopez Torres, M. [National Center for Scientific Researcher (CNIC), Environmental Pollution Department (DECA), Ave. 25 y 158, Cubanacan, Playa, Havana City (Cuba)], E-mail: matilde.lopez@cnic.edu.cu; Espinosa Llorens, Ma. del C. [National Center for Scientific Researcher (CNIC), Environmental Pollution Department (DECA), Ave. 25 y 158, Cubanacan, Playa, Havana City (Cuba)

2008-11-15T23:59:59.000Z

55

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Anaerobic Digester Gas-to-Electricity Rebate and Performance Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Tribal Government Savings Category Bioenergy Maximum Rebate Total Incentive: $2 million (combined production and capacity incentives) Fixed Base + Capacity Incentive: varies, limited to the total maximum incentive of $2 million minus the applicable performance incentive Program Info Funding Source RPS surcharge; NYPA Expiration Date 01/31/2013 State New York Program Type State Rebate Program Rebate Amount Fixed Base Incentive: varies Capacity Incentive: varies Production Incentive: $0.025/kWh production payment for new systems for up

56

Anaerobic digestion as a waste disposal option for American Samoa  

DOE Green Energy (OSTI)

Tuna sludge and municipal solid waste (MSW) generated on Tutuila Island, American Samoa, represent an ongoing disposal problem as well as an emerging opportunity for use in renewable fuel production. This research project focuses on the biological conversion of the organic fraction of these wastes to useful products including methane and fertilizer-grade residue through anaerobic high solids digestion. In this preliminary study, the anaerobic bioconversion of tuna sludge with MSW appears promising.

Rivard, C

1993-01-01T23:59:59.000Z

57

Single stage anaerobic digester at Tarleton State University. Final report  

DOE Green Energy (OSTI)

The design and operation of the demonstration plant facilities at Tarleton State University to produce methane in a single stage anaerobic digester are described. A combination of manures from hogs and poultry are used as feedstock. Uses for the methane, cost of the digester, and value of the energy produced are discussed. During the 21 months of operation, 310 people have visited the project. (DMC)

Not Available

1980-01-01T23:59:59.000Z

58

QUALITATIVE PROPERTIES OF A 3-STEPS MODEL OF ANAEROBIC DIGESTION INCLUDING HYDROLYSIS OF PARTICULATE MATTER  

E-Print Network (OSTI)

QUALITATIVE PROPERTIES OF A 3-STEPS MODEL OF ANAEROBIC DIGESTION INCLUDING HYDROLYSIS-SupAgro MISTEA, 2 p. Viala 34060 Montpellier, France, fekih@supagro.inra.fr Introduction. Anaerobic digestion, the anaerobic digestion is generally considered as a three step process: hydrolysis and liquefaction

Paris-Sud XI, Université de

59

Reduction of Antibiotic-Resistant Bacteria Present in Food Animal Manures by Composting and Anaerobic Digestion  

E-Print Network (OSTI)

and Anaerobic Digestion Frederick C. Michel, Food, Agricultural, and Biological Engineering Zhongtang Yu, Animal concluded that both anaerobic digestion and composting--especially at elevated temperatures--are effective effectiveness of anaerobic digestion and composting at high temperatures is of interest to industry

Jones, Michelle

60

Optimizing the anaerobic digestion of microalgae in a coupled Terence Bayen  

E-Print Network (OSTI)

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen , Francis by light and an anaerobic digester. The mathematical model for the dynamics of the reactors takes for sustainable energy production [2]. Anaerobic digestion can be applied to recover the energy stored

Recanati, Catherine

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 2 Abstract The Anaerobic Digestion Model N°1 (ADM1., 2005). Anaerobic digestion process involves many interactions between species that may not all have

62

Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes$  

E-Print Network (OSTI)

Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes in simulation. Keywords: Anaerobic digestion, biotechnology, steady state analysis, $ This work was supported the phenomenologic behavior of anaerobic digestion systems following the idea that all the available information

Paris-Sud XI, Université de

63

Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery  

E-Print Network (OSTI)

LIM J.W. Anaerobic Co-digestion of Brown Water and Food Waste for Energy Recovery Jun Wei LIM, Singapore 639798 (E-mail: jwlim3@e.ntu.edu.sg) Abstract The anaerobic digestion of brown water (BW), food in a decentralized reactor via anaerobic digestion. The bio-methane potential of these substrates at different feed

Paris-Sud XI, Université de

64

Anaerobic digestion of the liquid fraction of dairy manure  

Science Conference Proceedings (OSTI)

The authors tested several solid liquid separation systems suitable for processing dairy manure prior to anaerobic digestion. None of the systems tried have completely satisfied the requirements. Evaluated effects of separation on biogas production. Unseparated dairy manure produced more biogas than the liquid fraction.

Haugen, V.; Dahlberg, S.; Lindley, J.A.

1983-06-01T23:59:59.000Z

65

Report on the design and operation of a full-scale anaerobic dairy manure digester. Final report  

DOE Green Energy (OSTI)

A full-scale anaerobic digester on the Monroe State Dairy Farm was operated and monitored for 24 months with funding provided by the United States Department of Energy, Fuels from Biomass Systems Branch. During the period of operation, operating parameters were varied and the impact of those changes is described. Operational experiences and system component performance are discussed. Internal digester mixing equipment was found to be unnecessary, and data supporting this conclusion are given. An influent/effluent heat exchanger was installed and tested, and results of the tests are included. Recommendations for digester design and operation are presented. Biological stability was monitored, and test results are given. Gas production rates and system net energy are analyzed. The economics of anaerobic digestion are evaluated based on various financing options, design scales, and expected benefits. Under many circumstances digesters are feasible today, and a means of analysis is given.

Coppinger, E.; Brautigam, J.; Lenart, J.; Baylon, D.

1979-12-01T23:59:59.000Z

66

Factors controlling pathogen destruction during anaerobic digestion of biowastes  

SciTech Connect

Anaerobic digestion is the principal method of stabilising biosolids from urban wastewater treatment in the UK, and it also has application for the treatment of other types of biowaste. Increasing awareness of the potential risks to human and animal health from environmental sources of pathogens has focused attention on the efficacy of waste treatment processes at destroying pathogenic microorganisms in biowastes recycled to agricultural land. The degree of disinfection achieved by a particular anaerobic digester is influenced by a variety of interacting operational variables and conditions, which can often deviate from the ideal. Experimental investigations demonstrate that Escherichia coli and Salmonella spp. are not damaged by mesophilic temperatures, whereas rapid inactivation occurs by thermophilic digestion. A hydraulic, biokinetic and thermodynamic model of pathogen inactivation during anaerobic digestion showed that a 2 log{sub 10} reduction in E. coli (the minimum removal required for agricultural use of conventionally treated biosolids) is likely to challenge most conventional mesophilic digesters, unless strict maintenance and management practices are adopted to minimise dead zones and by-pass flow. Efficient mixing and organic matter stabilisation are the main factors controlling the rate of inactivation under mesophilic conditions and not a direct effect of temperature per se on pathogenic organisms.

Smith, S.R. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)]. E-mail: s.r.smith@imperial.ac.uk; Lang, N.L. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Cheung, K.H.M. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Spanoudaki, K. [Centre for Environmental Control and Waste Management, Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

2005-07-01T23:59:59.000Z

67

Economic implications of anaerobic digesters on dairy farms in Texas  

E-Print Network (OSTI)

Historically, air and water have been considered common property resources and, therefore, over utilized as waste receptors. Dairy waste is a leading environmental concern in the North Bosque River watershed in Texas. Changing societal attitudes are forcing dairies and policymakers to balance environmental concerns with farm profitability. Dairies are entering a realm filled with technologies to combat waste concerns. Anaerobic digester technology may play a role in helping dairies balance profit and the environment. Digesters capture methane from livestock waste and transform it into electricity which can be sold to utilities or used on-farm. Because a digester facility is confined, air and water pollution can be reduced. Technological advancement and institutional factor changes allowing the sale of on-farm produced electricity and green power requirements have increased the economic feasibility of digesters. The study of the economic implications of anaerobic digesters for Texas dairies provides producers and policymakers with information to make good decisions concerning adoption and subsidization of this technology. At the beginning of this study, no digesters were operating in Texas. Dairies operating digesters in four states, therefore, were interviewed on-site to provide necessary data. The expected net present value, E(NPV), of a plug-flow digester is negative with and without selling electricity, indicating it should not be constructed based strictly on its financial contribution. At the current electricity-selling price, digesters are less economically feasible than current waste management strategies, lagoons, even after considering potential environmental penalties. However, selling electricity and capturing by-product heat for cost savings makes the digester's E(NPV) less negative than lagoons. The E(NPV) of a covered lagoon digester is positive. This indicates digesters are a potentially feasible waste management strategy. For plug-flow digesters to show a positive E(NPV), the selling price needs to be approximately 82.38% higher than the current price. The breakeven selling price is 12% higher than the current price. Below the breakeven price, lagoons have a larger E(NPV) than plug-flow digesters, therefore making lagoons the preferred waste management strategy. Results suggest changes in rules and technology efficiency make digesters economically competitive with current waste management systems.

Jackson, Randy Scott, Jr.

2003-05-01T23:59:59.000Z

68

A mass transfer model of ammonia volatilisation from anaerobic digestate  

SciTech Connect

Anaerobic digestion (AD) is becoming increasingly popular for treating organic waste. The methane produced can be burned to generate electricity and the digestate, which is high in mineral nitrogen, can be used as a fertiliser. In this paper we evaluate potential losses of ammonia via volatilisation from food waste anaerobic digestate using a closed chamber system equipped with a sulphuric acid trap. Ammonia losses represent a pollution source and, over long periods could reduce the agronomic value of the digestate. Observed ammonia losses from the experimental system were linear with time. A simple non-steady-state partitioning model was developed to represent the process. After calibration, the model was able to describe the behaviour of ammonia in the digestate and in the trap very well. The average rate of volatilisation was approximately 5.2 g N m{sup -2} week{sup -1}. The model was used to extrapolate the findings of the laboratory study to a number of AD storage scenarios. The simulations highlight that open storage of digestate could result in significant losses of ammonia to the atmosphere. Losses are predicted to be relatively minor from covered facilities, particularly if depth to surface area ratio is high.

Whelan, M.J., E-mail: m.j.whelan@cranfield.ac.u [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Everitt, T.; Villa, R. [School of Applied Sciences, Cranfield University, College Road, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)

2010-10-15T23:59:59.000Z

69

April 16, 2013 Webinar: Community-Scale Anaerobic Digesters | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 16, 2013 Webinar: Community-Scale Anaerobic Digesters April 16, 2013 Webinar: Community-Scale Anaerobic Digesters April 16, 2013 Webinar: Community-Scale Anaerobic Digesters This webinar was held April 16, 2013, and provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's (FCPC) anaerobic digester project. Download the presentations below, watch the webinar (WMV 125 MB), or view the text version. Find more CommRE webinars. Implementing Anaerobic Digestion in San Jose's Integrated Processing Infrastructure This presentation provided background on San Jose, California's, leading-edge program using the nation's first commercial-scale, high solids dry fermentation anaerobic digestion system to process commercial organics

70

Thermochemical Pretreatment for Anaerobic Digestion of Sorted Waste  

Science Conference Proceedings (OSTI)

The effect of alkaline hydrothermal pre?treatment for anaerobic digestion of mechanically?sorted municipal solid waste (MSW) and source?sorted waste was studied. Waste was hydrothermally pre?treated in dilute alkali solution. Hydrolysis product was incubated in 500 ml saline bottle to determine methane potential (MP) under mesospheric anaerobic conditions. Optimum reaction condition obtained in the study is 170?°C at the dose of 4 g NaOH/100 g solid for one hour. Soluble COD was 13936 mg/L and methane yield was 164 ml/g VS for 6 days incubation at optimum conditions. More than 50% biogas increase was achieved over the control

W. Hao; W. Hongtao

2008-01-01T23:59:59.000Z

71

Anaerobic digestion of livestock manures: A current opportunities casebook  

DOE Green Energy (OSTI)

Growth and concentration of the livestock industry creates new opportunities for proper disposal of the large quantities of manures generated at dairy, swine, and poultry farms. One manure management system provides not only pollution prevention but also converts a problem into a new profit center. Economic evaluations and case studies of operating systems indicate that the anaerobic digestion of livestock manures is a commercially-available bioconversion technology with considerable potential for providing profitable co-products, including a renewable fuel. An introduction to the engineering economies of these technologies is provided, based on estimates of digesters that generate electricity from the recovered methane. Regression models used to estimate digester cost and internal rate of return are developed from the evaluations. Case studies of operating digesters, including project and maintenance histories, and the operator`s {open_quotes}lessons learned{close_quotes}, are provided as a reality check.

Lusk, P.D.

1995-08-01T23:59:59.000Z

72

Biomass Energy Tax Credit (Personal)(South Carolina) | Open Energy...  

Open Energy Info (EERE)

Tax Credit Applicable Sector Industrial Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Landfill Gas Active Incentive Yes Implementing Sector State...

73

Biomass Energy Tax Credit (Corporate) (South Carolina) | Open...  

Open Energy Info (EERE)

Tax Credit Applicable Sector Industrial Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Landfill Gas Active Incentive Yes Implementing Sector State...

74

Biomass Energy Production Incentive (South Carolina) | Open Energy...  

Open Energy Info (EERE)

Sector Agricultural, Commercial, Industrial Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Landfill Gas Active Incentive Yes Implementing Sector State...

75

Department of Agricultural and Biological Engineering Fall 2011 Small Scale Anaerobic Digestion by PENERGY Solutions  

E-Print Network (OSTI)

by wood-fired boilers. By generating biogas through anaerobic digestion of swine manure, fuel can: A mechanical anaerobic digester to handle organic farm waste. A complete biogas collection system with hookPENNSTATE Department of Agricultural and Biological Engineering Fall 2011 Small Scale Anaerobic

Demirel, Melik C.

76

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

E-Print Network (OSTI)

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns

Columbia University

77

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

The enormous amount of biomass waste created by animal feeding operations releases methane, a valuable fuel but also a greenhouse gas, and other pollutants into the environment. Waste digesters reduce this pollution by converting the waste into ...

78

Anaerobic Digesters in the Agricultural Sector: A Distributed Energy Resources Market Assessment  

Science Conference Proceedings (OSTI)

Regulatory pressure is creating a need for agricultural animal operations to better handle animal organic waste products. One option available to dairies, hog farms, and other operations to address these challenges is to develop anaerobic digesters. A by-product of anaerobic digesters is a methane rich gas that can be used for electric power generation and/or meeting thermal needs. This report explores the market potential for anaerobic digesters in the agricultural sector, and the role that electric pow...

2004-12-15T23:59:59.000Z

79

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community- A Case Study  

Energy.gov (U.S. Department of Energy (DOE))

Presented by Jason Rieth, Industrial Construction Executive at Miron Construction at the April 16, 2013, Community-Scale Anaerobic Digesters CommRE Webinar.

80

Pretreatment of Pulp Mill Wastewater Treatment Residues to Improve Their Anaerobic Digestion.  

E-Print Network (OSTI)

??Anaerobic digestion of excess biological wastewater treatment sludge (WAS) from pulp mills has the potential to reduce disposal costs and to generate energy through biogas… (more)

Wood, Nicholas

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Modeling Hydrogen Sulfide Adsorption by Activated Carbon made from Anaerobic Digestion By-product.  

E-Print Network (OSTI)

??Biogas, produced from anaerobic digestion of cattle manure, is an attractive alternative energy source as it is rich in methane. However, it is necessary to… (more)

Ho, Natalie

2012-01-01T23:59:59.000Z

82

Treatment program of organic matter by anaerobic digestion and composting (PTMOBC) (Quebec, Canada)  

Energy.gov (U.S. Department of Energy (DOE))

The Program for processing of organic matter by anaerobic digestion and composting (PTMOBC) provides financial assistance to municipalities and the private sector for the installation of...

83

Anaerobic digestion analysis model: User`s manual  

DOE Green Energy (OSTI)

The Anaerobic Digestion Analysis Model (ADAM) has been developed to assist investigators in performing preliminary economic analyses of anaerobic digestion processes. The model, which runs under Microsoft Excel{trademark}, is capable of estimating the economic performance of several different waste digestion process configurations that are defined by the user through a series of option selections. The model can be used to predict required feedstock tipping fees, product selling prices, utility rates, and raw material unit costs. The model is intended to be used as a tool to perform preliminary economic estimates that could be used to carry out simple screening analyses. The model`s current parameters are based on engineering judgments and are not reflective of any existing process; therefore, they should be carefully evaluated and modified if necessary to reflect the process under consideration. The accuracy and level of uncertainty of the estimated capital investment and operating costs are dependent on the accuracy and level of uncertainty of the model`s input parameters. The underlying methodology is capable of producing results accurate to within {+-} 30% of actual costs.

Ruth, M.; Landucci, R.

1994-08-01T23:59:59.000Z

84

Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor  

SciTech Connect

A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200 l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 deg. C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50 mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.

Nopharatana, Annop [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia); Pilot Plant Development and Training Institute, King Mongkut's University of Technology, Thonburi, Bangkok 10150 (Thailand); Pullammanappallil, Pratap C. [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia); Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611 (United States); Clarke, William P. [Division of Environmental of Engineering, The University of Queensland, Brisbane, Qld. 4072 (Australia)], E-mail: billc@cheque.uq.edu.au

2007-07-01T23:59:59.000Z

85

Tumble-mix anaerobic digestion of dry beef manure  

SciTech Connect

Anaerobic digestion of beef manure at an influent total solids concentration of 26% was demonstrated using an innovative tumble-mix fermenter. At an organic loading rate of 4.7 kg VS m-/sup 3/ d-/sup 1/ and a 23% VS influent concentration, a 54% volatile solids reduction was achieved. The average biogas production was 1.37 m/sup 3/ m-/sup 3/ d-/sup 1/ with a gas quality of 54% CH/sub 4/.

Kottwitz, D.; Schulte, D.D.

1982-12-01T23:59:59.000Z

86

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Conversion Biomass Energy Forestry Biochemical Biopower - Logging - Anaerobic digestion - Heat - Wood, paper mills - Hydrolysis/ Fermentation - Electricity Agricultural Thermal/chemical

FAN, XIN

2012-01-01T23:59:59.000Z

87

On differential algebraic decision methods for the estimation of anaerobic digestion models  

Science Conference Proceedings (OSTI)

Monitoring and control of anaerobic digestion of organic wastes by microorganisms are parts of actual world efforts to preserve environment. The anaerobic digestion is a biochemical process in which microorganisms (or bacteria) biodegrade organic matters ... Keywords: characteristic set, differential algebra, differential algebraic decision methods, dynamic systems, observability, software sensors

Elena Chorukova; Sette Diop; Ivan Simeonov

2007-07-01T23:59:59.000Z

88

A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design-Builder's Perspective: Anaerobic Digestion Design-Builder's Perspective: Anaerobic Digestion Forest County Potawatomi Community - A Case Study Presented by Jason Rieth, P.E., LEED AP BD + C Industrial Construction Executive Miron Construction Co., Inc. 715.841.4029 | jason.rieth@miron-construction.com * Overview of the FCPC Renewable Generation Facility

89

PRODUCTION OF VOLATILE FATTY ACIDS BY STRICTLY ANAEROBIC BACTERIA IN THE DIGESTIVE TRACT OF GNOTOXENIC MICE.  

E-Print Network (OSTI)

SUMMARY PRODUCTION OF VOLATILE FATTY ACIDS BY STRICTLY ANAEROBIC BACTERIA IN THE DIGESTIVE TRACT OF « GNOTOXENIC » MICE. INHIBITORY EFFECT ON SHIGELLA FLEXNERI Various strains of strictly anaerobic bacteria of holoxenic animals, were implanted in the digestive tract of axenic mice. The in vivo production of VFA

Recanati, Catherine

90

Dynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion  

E-Print Network (OSTI)

of the estimator performance. I. Introduction Anaerobic digestion is a biotechnological process with a promisingDynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic digestion S. Diop1 and I. Simeonov2 Abstract-- The paper proposes an observability anal- ysis and estimation

91

Centralized Indirect Control of an Anaerobic Digestion Bioprocess Using Recurrent Neural Identifier  

Science Conference Proceedings (OSTI)

The paper proposed to use a Recurrent Neural Network Model (RNNM) and a dynamic Backpropagation learning for centralized identification of an anaerobic digestion bioprocess, carried out in a fixed bed and a recirculation tank of a wastewater treatment ... Keywords: Recurrent neural network model, anaerobic digestion bioprocess, backpropagation learning, distributed parameter system, sliding mode control, systems identification, wastewater treatment bioprocess

Ieroham S. Baruch; Rosalba Galvan-Guerra; Boyka Nenkova

2008-09-01T23:59:59.000Z

92

High Solid Anaerobic Co-digestion Pilot Scale Experiment of Kitchen Waste and Cow-dung  

Science Conference Proceedings (OSTI)

Under mesophilic condition (37°C), a bench-scale experiment based on high solid anaerobic digestion process was conducted in a fed-batch single phase reactor. The result shows: (1) According to gas production and ph value change, there are mainly ... Keywords: Kitchen waste, Cow-dung, High solid, Anaerobic co-digestion, Pilotsate

Lei Feng; Yan Chen; Rundong Li; Jie Xu

2012-05-01T23:59:59.000Z

93

Enhanced Biomass Digestion with Wood Wasp Bacteria ...  

Plant biomass represents a vast and renewable source of energy. However, harnessing this energy requires breaking down tough lignin and cellulose cell ...

94

Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone powder: High shear Wet Granulation  

E-Print Network (OSTI)

Ã?Ã? Ã? Ã?Ã?Ã? Ã? Ã?Ã? Alternative method for producing organic fertiliser from anaerobic digestion liquor.M. Walker, Alternative method for producing organic fertiliser from anaerobic digestion liquor and limestone method for producing organic fertiliser from Anaerobic Digestion liquor and limestone powder: High Shear

Paxton, Anthony T.

95

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED MANURE AS NUTRIENT AND WATER SUPPLY  

E-Print Network (OSTI)

ETHANOL PRODUCTION FROM DIFFERENT CARBON SOURCES USING ANAEROBICALLY DIGESTED AND WETOXIDISED. The nutrients in anaerobically digested manure are sufficient for yeast fermentation, which means that the cost at 121o C was chosen as the most suitable method for pretreating anaerobically digested manure. Moreover

96

Enhanced Biomass Digestion with Wood Wasp Bacteria  

source of energy. However, harnessing this energy requires breaking down tough lignin and cellulose cell walls. In nature, certain microbes can deconstruct biomass into simple sugars by secreting combinations of enzymes. Two organisms that utilize ...

97

Kinetics and advanced digester design for anaerobic digestion of water hyacinth and primary sludge  

Science Conference Proceedings (OSTI)

A research program centered around a facility located at Walt Disney World (WDW) is in progress to evaluate the use of water hyacinth (WH) for secondary and tertiary wastewater treatment, to optimize growth of WH under these conditions, and to convert the resultant primary sludge (PS) and WH to methane via anaerobic digestion. This article describes the status of the biogasification component of this program, which includes baseline and advanced digestion experiments with individual feeds and blends and the design of an experimental test unit (ETU) to be installed at WDW. Experiments with several blends demonstrated that methane yields can be predicted from the fractional content and methane yield of each component. The process was found to adhere to the Monod kinetic model for microbial growth, and associated kinetic parameters were developed for various feed combinations. A novel upflow digester is achieving significantly higher conversion than a stirred-tank digester. Of several pretreatment techniques used, only alkaline treatment resulted in increased biodegradability. A larger scale (4.5 m/sup 3/) experimental test unit is being designed for installation at WDW in 1982. 13 figures, 4 tables.

Chynoweth, D.P.; Dolenc, D.A.; Ghosh, S.; Henry, M.P.; Jerger, D.E.; Srivastava, V.J.

1982-01-01T23:59:59.000Z

98

Simulation of chemical reaction fronts in anaerobic digestion of solid waste  

Science Conference Proceedings (OSTI)

A case study for parallelisation of a code for a nonlinear system of evolution equations is presented. It describes the propagation of reaction fronts in anaerobic waste digestion. These occur as a consequence of heterogeneous initial distributions of ...

Hermann J. Eberl

2003-05-01T23:59:59.000Z

99

Effects of corn stover as carbon supplement on an integrated anaerobic digestion and ethanol fermentation process  

Science Conference Proceedings (OSTI)

An integrated anaerobic digestion (AD) and ethanol fermentation process on a mixed feedstock of dairy manure and corn stover was performed to investigate the influence of corn stover on biogas production

2013-01-01T23:59:59.000Z

100

Contribution of Anaerobic Digesters to Emissions Mitigation and Electricity Generation Under U.S. Climate Policy  

E-Print Network (OSTI)

Livestock husbandry in the U.S. significantly contributes to many environmental problems, including the release of methane, a potent greenhouse gas (GHG). Anaerobic digesters (ADs) break down organic wastes using bacteria ...

Zaks, David P. M.

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal for a mid-size city  

E-Print Network (OSTI)

Review of composting and anaerobic digestion of municipal solid waste and a methodological proposal and processes on composting and anaerobic digestion are compiled, showing the versatility and multivariable of the compost. In addition, anaerobic decomposition followed by vermicomposting is pointed as one of the best

Wisconsin-Milwaukee, University of

102

Effects of Fe2+ on the Anaerobic Digestion of Chicken Manure: A Batch Study  

Science Conference Proceedings (OSTI)

Trace elements are considered to be essential for anaerobic process. Laboratory-scale batch studies were undertaken to evaluate the effect of Fe2+on the biogas production from chicken manure at mesophilic condition (37 ±1°C). The biogas production ... Keywords: anaerobic digestion, chicken manure, dynamics, iron, stimulation and inhibition

Zhang Wanqin; Guo Jianbin; Wu Shubiao; Dong Renjie; Zhou Jie; Lang Qianqian; Li Xin; Lv Tao; Pang Changle; Chen Li; Wang Baozhi

2012-07-01T23:59:59.000Z

103

Analysis of the Changing Microbial Phase in an Underground River Anaerobic Digestion Reactor  

Science Conference Proceedings (OSTI)

The underground river anaerobic fermentation system was adopted in this experiment was that a pipeline buried underground just like an underground river. The hydrolysis, acidification and degradation of initial fermentation were carried out when raw ... Keywords: underground river anaerobic digestion reactor, microbial phase, methane-producing bacteria, dominant bacteria

Bingbing Li; Xiao Bo; Zhiquan Hu

2009-10-01T23:59:59.000Z

104

1190 J. ENVIRON. QUAL., VOL. 26, JULY-AUGUST 1997 Proc. lnt. Symp. on Anaerobic Digestion of Soild Waste, Venice,  

E-Print Network (OSTI)

1190 J. ENVIRON. QUAL., VOL. 26, JULY-AUGUST 1997 Proc. lnt. Symp. on Anaerobic Digestion of Soild USSR. Chemosphere 26:401-417. Orlygsson, J., F.P. Houwen, and B.H. Svensson. 1993. Anaerobic

Fischlin, Andreas

105

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor .  

E-Print Network (OSTI)

??Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected… (more)

Wilkinson, Andrea

2011-01-01T23:59:59.000Z

106

Long-term anaerobic digestion of food waste stabilized by trace elements  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Korean food waste was found to contain low level of trace elements. Black-Right-Pointing-Pointer Stable anaerobic digestion of food waste was achieved by adding trace elements. Black-Right-Pointing-Pointer Iron played an important role in anaerobic digestion of food waste. Black-Right-Pointing-Pointer Cobalt addition further enhanced the process performance in the presence of iron. - Abstract: The purpose of this study was to examine if long-term anaerobic digestion of food waste in a semi-continuous single-stage reactor could be stabilized by supplementing trace elements. Contrary to the failure of anaerobic digestion of food waste alone, stable anaerobic digestion of food waste was achieved for 368 days by supplementing trace elements. Under the conditions of OLR (organic loading rates) of 2.19-6.64 g VS (volatile solid)/L day and 20-30 days of HRT (hydraulic retention time), a high methane yield (352-450 mL CH{sub 4}/g VS{sub added}) was obtained, and no significant accumulation of volatile fatty acids was observed. The subsequent investigation on effects of individual trace elements (Co, Fe, Mo and Ni) showed that iron was essential for maintaining stable methane production. These results proved that the food waste used in this study was deficient in trace elements.

Zhang Lei, E-mail: wxzyfx@yahoo.com [Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024 (China); Jahng, Deokjin, E-mail: djahng@mju.ac.kr [Department of Environmental Engineering and Biotechnology, Myongji University, San 38-2, Namdong, Cheoin-Gu, Yongin, Gyeonggi-Do 449-728 (Korea, Republic of)

2012-08-15T23:59:59.000Z

107

Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system  

Science Conference Proceedings (OSTI)

The main objective of this study was to assess the feasibility of treating sanitary landfill leachate using a combined anaerobic and activated sludge system. A high-strength leachate from Shiraz municipal landfill site was treated using this system. A two-stage laboratory-scale anaerobic digester under mesophilic conditions and an activated sludge unit were used. Landfill leachate composition and characteristics varied considerably during 8 months experiment (COD concentrations of 48,552-62,150 mg/L). It was found that the system could reduce the COD of the leachate by 94% at a loading rate of 2.25 g COD/L/d and 93% at loading rate of 3.37 g COD/L/d. The anaerobic digester treatment was quite effective in removing Fe, Cu, Mn, and Ni. However, in the case of Zn, removal efficiency was about 50%. For the rest of the HMs the removal efficiencies were in the range 88.8-99.9%. Ammonia reduction did not occur in anaerobic digesters. Anaerobic reactors increased alkalinity about 3.2-4.8% in the 1st digester and 1.8-7.9% in the 2nd digester. In activated sludge unit, alkalinity and ammonia removal efficiency were 49-60% and 48.6-64.7%, respectively. Methane production rate was in the range of 0.02-0.04, 0.04-0.07, and 0.02-0.04 L/g COD{sub rem} for the 1st digester, the 2nd digester, and combination of both digesters, respectively; the methane content of the biogas varied between 60% and 63%.

Kheradmand, S. [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Karimi-Jashni, A., E-mail: akarimi@shirazu.ac.i [Department of Civil and Environmental Engineering, University of Shiraz, Shiraz 7134851156 (Iran, Islamic Republic of); Sartaj, M. [Department of Civil Engineering, Isfahan University of Technology, Isfahan 841568311 (Iran, Islamic Republic of)

2010-06-15T23:59:59.000Z

108

Correlation between Organic Matter Degradation and the Rheological Performance of Waste Sludge During Anaerobic Digestion  

Science Conference Proceedings (OSTI)

Anaerobic digestion has demonstrated to be a good possibility to reduce the organic matter contents in waste activated sludge resulting in the effluents treatment. An anaerobic digestion was carried out in a 3.5 L reactor at 35?°C for a period of 20 days. An electronic thermostat controlled the temperature. The reactor was agitated at a rate of 200 rpm. The study of the rheological behavior of the waste activated sludge was done with an Anton Paar™ rheometer model MCR301 with a peltier plate for temperature control. Four?blade vane geometry was used with samples of 37 mL for determining rheological properties. Sampling (two samples) was taken every four days of anaerobic digestion through a peristaltic pump. The samples behavior was characterized by the Herschel?Bulkley model

Evangelina S. Morel; José A. Hernández?Hernándes; Juan M. Méndez?Contreras; Denis Cantú?Lozano

2008-01-01T23:59:59.000Z

109

Two-phase anaerobic digestion within a solid waste/wastewater integrated management system  

SciTech Connect

A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.

De Gioannis, G. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy); Diaz, L.F. [CalRecovery, Inc., 2454 Stanwell Drive, Concord, California 94520 (United States); Muntoni, A. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy)], E-mail: amuntoni@unica.it; Pisanu, A. [DIGITA, Department of Geoengineering and Environmental Technologies, University of Cagliari, Piazza D'Armi 09123 Cagliari (Italy)

2008-07-01T23:59:59.000Z

110

An environmental assessment of recovering methane from municipal solid waste by anaerobic digestion  

Science Conference Proceedings (OSTI)

The development of an experimental process which produces synthetic natural gas (SNG) or biogas by anaerobic digestion of municipal solid waste (MSW) is evaluated. This technology, if implemented, would be utilized in lieu of incineration or directly landfilling waste. An environmental assessment describing the principal impacts associated with operating the MSW anaerobic digestion process is presented. Variations in process configurations provide for SNG or electricity production and digester residue incineration, composting, or landfilling. Four process configuration are compared to the conventional solid waste disposal alternative of mass burn incineration and landfilling. Emissions are characterized, effluents quantified, and landfill areas predicted. The quantity of SNG and electricity recovered, and aluminum and ferrous metals recycled is predicted along with the emissions and effluents avoided by recovering energy and recycling metals. Air emissions are the primary on-site concern with the anaerobic digestion process. However, when compared to mass burn incineration, the projected particulate emissions for the anaerobic digestion process range from 2.9 {times} 10{sup {minus}6} to 2.6 {times} {sup 10{minus}5} pounds per ton of waste vs. 3.3 {times} 10{sup {minus}5} pounds per ton for mass burn. SO{sub 2}, NO{sub x}, and PCCD emissions have a similar relationship.

O'Leary, P.R.

1989-01-01T23:59:59.000Z

111

Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

2013-01-15T23:59:59.000Z

112

Intermediate-scale high-solids anaerobic digestion system operational development  

DOE Green Energy (OSTI)

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. Operation of the anaerobic digestion process at high solids reduces the level of process water and thereby the size and capital costs for the digester system. In addition, by virtue of the lack of available water, the microbial catalysts are more productive in feedstock polymer hydrolysis. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. Information gained from laboratory-scale digester research was used to develop die intermediate-scale digester system. This system represents a 50-fold scale-up of the original digester system and includes continuous feed addition and computer monitoring and control. During the first 1.15 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements -- which may be critical in further scale-up efforts using the NREL high-solids digester design -- are detailed in this report.

Rivard, C.J.

1995-02-01T23:59:59.000Z

113

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis Mairet2 and Pierre Martinon3 and Matthieu Sebbah4  

E-Print Network (OSTI)

Optimizing the anaerobic digestion of microalgae in a coupled process Terence Bayen1,4 and Francis the production of methane in a bioreactor coupling an anaerobic digester and a culture of micro-algae limited as an attractive alternative for sustainable energy production [2]. Anaerobic digestion can be applied to convert

Paris-Sud XI, Université de

114

Operational characteristics of anaerobic digesters at selected municipal wastewater treatment facilities in the United States  

DOE Green Energy (OSTI)

Bench-scale and pilot plant studies at PNL have shown that powdered activated carbon is effective in improving volatile solids destruction and gas production in anaerobic digesters that are operating at less than normally expected levels of efficiency. To evaluate the applicability of this technology to digesters in the United States, digester operating characteristics at 60 facilities were surveyed and the number of stressed digesters estimated. The results show that although median values of the operating parameters conformed with those of a well-operated digester, 30% of the digesters surveyed were stressed with regard to at least one important parameter. Of the 30 largest treatment plants in the U.S., 7 fell into this category. Digester gas production and usage were then examined to determine the importance of methane off-gas as an energy source. A conservative estimate is that the gas produced nationally represents a heating value of about 2.36 x 10/sup 13/ Btu/year with a present value of $40 million. Of this amount, an estimated 75% is used either onsite or sold. Onsite uses include heating digesters and buildings, incinerating sludge, operating equipment, and generating electricity. The other 25% is flared and the energy value lost. The present value of the flared gas is about $10 million/year. Natural gas prices are projected to increase 150% over the next 7 years. If the present utilization ratio continues, the flared gas will be worth approximately $27 million in 1985. Presently, digester gas is mainly used for process heating and operating equipment. The technical and economic feasibility of recovering digester gas for electrical power generation, onsite equipment operation, and sales to other consumers (utilities, private companies) should be thoroughly investigated. If fuel gas recovery and utilization are found to be desirable, consideration should be given to expanding and upgrading anaerobic digester facilities in the U.S.

Spencer, R.R.; Wong, A.L.; Coates, J.A.; Ahlstrom, S.B.

1978-12-01T23:59:59.000Z

115

Compost filters for H/sub 2/S removal from anaerobic digestion and rendering exhausts  

Science Conference Proceedings (OSTI)

A system for the disposal of anaerobic digester gas from meat waste treatment plants has been developed as an alternative to atmospheric disposal. Hydrogen sulfide waste gases are filtered through by-product compost. Operation and effectiveness of such a treatment process are detailed. (2 diagrams, 5 references, 4 tables)

Rands, M.B.; Cooper, D.E.; Woo, C.; Fletcher, G.C.; Rolfe, K.A.

1981-02-01T23:59:59.000Z

116

Manual of procedures for the operation of bench-scale anaerobic digesters  

DOE Green Energy (OSTI)

The successful operation of any laboratory-scale biological system is often a difficult and frustrating experience. This is especially true when dealing with the anaerobic digestion process. Because of the stringent environmental requirements associated with anaerobic digesters, efficient operation of bench-scale units requires rigid monitoring and control. The purpose of this manual is to present the methods and procedures which are followed in bench-scale anaerobic digestion studies at Pacific Northwest Laboratory (PNL). Among the topics discussed are operating parameters, a description of the experimental system, typical digestion substrates, operational procedures, analytical techniques, and safety considerations. The document serves as a technical guide to PNL personnel assigned to a U.S. Department of Energy sponsored program evaluating the effect of powdered activated carbon on the anaerobic digestio of sewage sludge. It should be noted that the methods described in this manual do not necessarily represent the best or only means of conducting the research. They are merely procedures that have been found to be successful at PNL. It is hoped that this information may be useful to other researchers who are contemplating or pursuing bench-scale studies of their own.

Spencer, R.R.

1978-12-01T23:59:59.000Z

117

Water as a leaching medium for hydrolysis of sorghum in anaerobic digestion systems  

Science Conference Proceedings (OSTI)

Laboratory experiments were conducted to determine the effect of using water to leach hydrolysis products from sorghum used as an anaerobic digestion feedstock. The pH of the leachate had no effect on the cumulative COD measured in the leachate. Milling the sorghum with a three roll mill prior to leaching appeared to slightly increase the hydrolysis of structural carbohydrates in the sorghum.

Egg, R.; Coble, C.G.

1986-01-01T23:59:59.000Z

118

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

The basic energy conversion system being considered in thisEnergy Fixation and Conversion with Algal Bacterial Systems/energy producer based on current methane prices. bility of a kelp to methane conversion system

Haven, Kendall F.

2011-01-01T23:59:59.000Z

119

Marine biomass system: anaerobic digestion and production of methane  

DOE Green Energy (OSTI)

Two approaches to kelp conversion to methane are described. First, a large (10.56 mi/sup 2/) oceanic farm using an artificial substrate and an upwelling system to deliver nutrient-rich deep ocean water to the kelp bed is described. This system can yield as much as 50 tons of kelp (dry ash free - DAF) per acre-year. Kelp are harvested by a specially designed 30,000 DWT ship and delivered to an onshore processing plant as a ground kelp slurry. The second system involves the use of a natrual coastal kelp bed. Growth rates in this bed are stimulated by a nutrient rich sewer outfall. A conceptual model is presented for calculation of the growth rate of kelp in this natural bed which can reach 15 tons (DAF) per acre-year. The harvest activity and processing plant are similar to those for oceanic farm system. In the next section of this report, the overall concept of kelp production and conversion to methane is discussed. In Section III the general design of the ocean farm system is presented and discussed while Section IV contains a similar description for the natural bed system. Section V presents the capital requirements and operational labor, resources and material requirements. Section VI describes the environmental residuals created by the operation of either system and, to the extent possible, quantifies the rate at which these residuals are generated. In addition to the technical data reported herein, cost data have been generated for the various processes and components utilized in each solar technology. The requirements for costing information basically arise from the need to compute parameters such as investment demands, employment patterns, material demands and residual levels associated with each technology for each of several national and regional scenarios.

Haven, K.F.; Henriquez, M.; Ritschard, R.L.

1979-04-01T23:59:59.000Z

120

Biomass Program Perspectives on Anaerobic Digestion and Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Recycling and Renewable Energy Facility And Recycles the Organics Quality Compost Effluent Liquid Fertilizer Landfill Daily Cover Retail Products Bio- remediation And...

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

MARINE BIOMASS SYSTEM: ANAEROBIC DIGESTION AND PRODUCTION OF METHANE  

E-Print Network (OSTI)

flow from an on-site steam turbine to raise the kelp to 45°Ca 1200 Kw electric steam turbine/generator system. CapitalFinally, the waste steam stream from the turbine is used to

Haven, Kendall F.

2011-01-01T23:59:59.000Z

122

Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden); Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa [Department of Biotechnology, Lund University, P.O. Box 124, SE 221 00 Lund (Sweden)

2012-01-15T23:59:59.000Z

123

Methanogenic Population Dynamics during Start-Up of Anaerobic Digesters Treating Municipal Solid Waste  

E-Print Network (OSTI)

Abstract: An aggressive start-up strategy was used to initiate codigestion in two anaerobic, continuously mixed bench-top reactors at mesophilic (37°C) and thermophilic (55°C) conditions. The digesters were inoculated with mesophilic anaerobic sewage sludge and cattle manure and were fed a mixture of simulated municipal solid waste and biosolids in proportions that reflect U.S. production rates. The design organic loading rate was 3.1 kg volatile solids/m 3 /day and the retention time was 20 days. Ribosomal RNA-targeted oligonucleotide probes were used to determine the methanogenic community structure in the inocula and the digesters. Chemical analyses were performed to evaluate digester performance. The aggressive start-up strategy was successful for the thermophilic reactor, despite the use of a

Biosolids; Matt E. Griffin; Katherine D. Mcmahon; Roderick I. Mackie; Lutgarde Raskin

1997-01-01T23:59:59.000Z

124

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

derived from biomass, including biogas, biodiesel, ethanol,in the absence of oxygen environment to produce biogas.The biogas generated from anaerobic digestion of biosolids

FAN, XIN

2012-01-01T23:59:59.000Z

125

Enhancement of methane production in the anaerobic digestion of sewage sludges  

DOE Green Energy (OSTI)

The effect of powdered activated carbon on stressed anaerobic digesters utilizing a sewage sludge substrate was evaluated. The addition of carbon resulted in increased methanee production and greater process stability. The degree of enhancement appeared to be proportional to carbon concentration over the dose range studied (500-10,000 mg/l). A maximum increase in methane production of about 150% was observed at the highest carbon dose. The effect of 1500 mg/l carbon, 4000 mg/l coal, and 4000 mg/l flyash on relatively unstressed digesters was also examined. Units using a sewage sludge substrate were operated at 10 and 20 day SRT's. A 12% increase in methane production was observed in a carbon dosed digester functioning at a 10 day detention time. Enhancement was not evident with carbon at a 20 day SRT. No significant improvement in methane production was obtained in any of the digesters using coal or flyash as additives. Using the experimental data, a technique was developed for estimating the efficiencies of the methane forming and acid forming steps in the anaerobic digestion process. The results indicated that in stressed systems both stages of the digestion process were enhanced by the addition of powdered carbon. In the relatively unstressed systems, when enhancement did occur, only the scid forming step was affected. This information will supplement current research at determining the mechanism(s) by which carbon enhances the digestion process.Based on the results of this study, it appears that the benefits of carbon addition are greatest in stressed systems. Only very moderate increases in methane production would probably be attainable in well operating digesters. Coal and flyash do not seem to be effective in enhancing gas production in unstressed systems. However, their effectiveness has not been tested in stressed situations.

Spencer, R.R.

1978-05-10T23:59:59.000Z

126

Study of the operational conditions for anaerobic digestion of urban solid wastes  

SciTech Connect

This paper describes an experimental evaluation of anaerobic digestion technology as an option for the management of organic solid waste in developing countries. As raw material, a real and heterogeneous organic waste from urban solid wastes was used. In the first experimental phase, seed selection was achieved through an evaluation of three different anaerobic sludges coming from wastewater treatment plants. The methanization potential of these sludges was assessed in three different batch digesters of 500 mL, at two temperature levels. The results showed that by increasing the temperature to 15 deg. C above room temperature, the methane production increases to three times. So, the best results were obtained in the digester fed with a mixed sludge, working at mesophilic conditions (38-40 deg. C). Then, this selected seed was used at the next experimental phase, testing at different digestion times (DT) of 25, 20 and 18 days in a bigger batch digester of 20 L with a reaction volume of 13 L. The conversion rates were registered at the lowest DT (18 days), reaching 44.9 L/kg{sup -1} of wet waste day{sup -1}. Moreover, DT also has a strong influence over COD removal, because there is a direct relationship between solids removal inside the reactor and DT.

Castillo M, Edgar Fernando [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia)]. E-mail: efcastil@uis.edu.co; Cristancho, Diego Edison [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia); Victor Arellano, A. [Centro de Estudios e Investigaciones Ambientales, Universidad Industrial de Santander, Calle 9a Carrera 27, Aptdo. Aereo 678, Bucaramanga (Colombia)

2006-07-01T23:59:59.000Z

127

Enhanced biogas production by increasing organic load rate in mesophilic anaerobic digestion with sludge recirculation.  

E-Print Network (OSTI)

?? For enhancing anaerobic sludge digestion and biogas recovery, an increase in organic load rate (OLR) from 1.0 to 3.0kgVS/(m3·day) was imposed upon a new… (more)

Huang, Zhanzhao

2012-01-01T23:59:59.000Z

128

Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Annual report  

DOE Green Energy (OSTI)

Municipal solid wastes contain numerous substances of potential environmental concern. While some understanding of the composition of raw municipal waste and its leachate products is available, no information regarding characteristics of solid, liquid and gaseous outputs from anaerobic digestion exists. If centralized anaerobic digestion plants are to be environmentally viable, the characteristics and environmental effects of effluents from these plants must be acceptable. The environmental concerns are particularly acute where ground water supplies are precariously low and the water table is high, South Florida is such a location. A characterization and environmental study was initiated by the Resource Recovery Group on August 1978. The specific objectives are: (1) systematic characterization of solid, liquid and gaseous inputs and outputs; (2) investigations of leaching characteristic of output solid and liquid effluents, and the transport of pollutants to and through ground water systems; and (3) analysis of environmental and process parameters to obtain causal relationships.

Sengupta, S; Gerrish, H P; Wong, K F; Nemerow, N; Daly, Jr, E L; Farooq, S; Chriswell, C

1980-08-01T23:59:59.000Z

129

DOE/EA-1624: Environmental Assessment for Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities (December 2008)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Auburn Landfill Gas Electric Generators and Auburn Landfill Gas Electric Generators and Anaerobic Digester Energy Facilities Auburn, New York Final Environmental Assessment DOE/EA-1624 Prepared for: U.S. Department of Energy National Energy Technology Laboratory January 2009 INTENTIONALLY LEFT BLANK AUBURN LANDFILL GAS ELECTRIC GENERATORS AND ANAEROBIC DIGESTER ELECTRIC FACILITIES FINAL EA DOE/EA-1624 i Table of Contents 1.0 INTRODUCTION .......................................................................................................................................... 1 1.1 BACKGROUND............................................................................................................................................... 2 1.2 PURPOSE AND NEED ...................................................................................................................................... 4

130

Microwave Thermal Hydrolysis Of Sewage Sludge As A Pretreatment Stage For Anaerobic Digestion  

Science Conference Proceedings (OSTI)

This article focuses on the effects of microwave thermal hydrolysis on sewage sludge anaerobic digestion. Volatile suspended solid (VSS) and COD solubilization of treated sludge were investigated. It was found that the microwave hydrolysis provided a rapid and efficient process to release organics from sludge. The increase of organic dissolution ratio was not obvious when holding time was over 5 min. The effect of the VSS solubilization was mainly dependent on temperature. The highest value of VSS dissolving ratio

W. Qiao; W. Wang; R. Xun

2008-01-01T23:59:59.000Z

131

Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano  

SciTech Connect

Quinoa stalk (Chenopodium quinoa Willd.) from agricultural crop residue, totora (Schoenoplectus tatora) and o-macrophytes (aquatic flora) from Lake Titicaca (on the Bolivian Altiplano) were studied in a wet anaerobic co-digestion process together with manure from llama, cow and sheep. Anaerobic semi-continuous experiments were performed in (10) 2-l reactors at a temperature of 25 deg. C with 30 days of hydraulic retention time (HRT) and an organic loading rate (OLR) of 1.8 kg VS m{sup -3} d{sup -1}. Totora was found to be the best co-substrate. In mixture ratios of 1:1 (VS basis), it increased the biogas productivity by 130% for llama manure, 60% for cow manure, and 40% for sheep manure. It was possible to use up to 58% (VS basis) of totora in the substrate. Higher concentrations (including pure totora) could not be digested, as that caused acidification problems similar to those caused by other lignocellulosic materials. When quinoa and o-macrophytes were used as co-substrates, the increase in biogas productivity was slightly less. However, these co-substrates did not cause any operational problems. An additional advantage of quinoa and o-macrophytes was that they could be used in any proportion (even in pure form) without causing any destabilization problems in the anaerobic digestion process.

Alvarez, Rene [IIDEPROQ, UMSA, Plaza del Obelisco 1175, La Paz (Bolivia)], E-mail: Rene.alvarez@iideproq.org; Liden, Gunnar [Department of Chemical Engineering, Lund University, P.O. Box 124, 221 00 Lund (Sweden)

2008-07-01T23:59:59.000Z

132

Anaerobic Co-digestion of Chicken Processing Wastewater and Crude Glycerol from Biodiesel  

E-Print Network (OSTI)

The main objective of this thesis was to study the anaerobic digestion (AD) of wastewater from a chicken processing facility and of crude glycerol from local biodiesel operations. The AD of these substrates was conducted in bench-scale reactors operated in the batch mode at 35°C. The secondary objective was to evaluate two sources of glycerol as co-substrates for AD to determine if different processing methods for the glycerol had an effect on CH? production. The biogas yields were higher for co-digestion than for digestion of wastewater alone, with average yields at 1 atmosphere and 0°C of 0.555 and 0.540 L (g VS added)?¹, respectively. Another set of results showed that the glycerol from an on-farm biodiesel operation had a CH? yield of 0.702 L (g VS added)?¹, and the glycerol from an industrial/commercial biodiesel operation had a CH? yield of 0.375 L (g VS added)?¹. Therefore, the farm glycerol likely had more carbon content than industrial glycerol. It was believed that the farm glycerol had more impurities, such as free fatty acids, biodiesel and methanol. In conclusion, anaerobic co-digestion of chicken processing wastewater and crude glycerol was successfully applied to produce biogas rich in CH?.

Foucault, Lucas Jose

2011-08-01T23:59:59.000Z

133

Intermediate-Scale High-Solids Anaerobic Digestion System Operational Development  

SciTech Connect

Anaerobic bioconversion of solid organic wastes represents a disposal option in which two useful products may be produced, including a medium Btu fuel gas (biogas) and a compost-quality organic residue. The application of high-solids technology may offer several advantages over conventional low-solids digester technology. The National Renewable Energy Laboratory (NREL) has developed a unique digester system capable of uniformly mixing high-solids materials at low cost. During the first 1.5 years of operation, a variety of modifications and improvements were instituted to increase the safety, reliability, and performance of the system. Those improvements, which may be critical in further scale-up efforts using ,the NREL high-solids digester design are detailed in this report.

Rivard, C. J.

1995-02-01T23:59:59.000Z

134

Study on the Methane Production Capacity and Energy Output of Different Temperatures during Anaerobic Digestion of Swine Manure  

Science Conference Proceedings (OSTI)

This study was carried out by experimenting with the self-manufactured digestion devices which were fed with swine manure as material with a domesticated inoculums added as yeast. The experiment was on the condition of 6.6% mass fraction of total solid, ... Keywords: anaerobic digestion, methane production capacity, temperature, energy, swine manure

Rong-rong Wei; Guan-wen Cheng; Jie-jun Luo; Liang Ling; Zong-qiang Zhu; Xu Shan; Wen-yuan Wei

2009-10-01T23:59:59.000Z

135

Digestion of frozen/thawed food waste in the hybrid anaerobic solid-liquid system  

SciTech Connect

The hybrid anaerobic solid-liquid (HASL) system, which is a modified two-phase anaerobic digester, is to be used in an industrial scale operation to minimize disposal of food waste at incineration plants in Singapore. The aim of the present research was to evaluate freezing/thawing of food waste as a pre-treatment for its anaerobic digestion in the HASL system. The hydrolytic and fermentation processes in the acidogenic reactor were enhanced when food waste was frozen for 24 h at -20 deg. C and then thawed for 12 h at 25 deg. C (experiment) in comparison with fresh food waste (control). The highest dissolved COD concentrations in the leachate from the acidogenic reactors were 16.9 g/l on day 3 in the control and 18.9 g/l on day 1 in the experiment. The highest VFA concentrations in the leachate from the acidogenic reactors were 11.7 g/l on day 3 in the control and 17.0 g/l on day 1 in the experiment. The same volume of methane was produced during 12 days in the control and 7 days in the experiment. It gave the opportunity to diminish operational time of batch process by 42%. The effect of freezing/thawing of food waste as pre-treatment for its anaerobic digestion in the HASL system was comparable with that of thermal pre-treatment of food waste at 150 deg. C for 1 h. However, estimation of energy required either to heat the suspended food waste to 150 deg. C or to freeze the same quantity of food waste to -20 deg. C showed that freezing pre-treatment consumes about 3 times less energy than thermal pre-treatment.

Stabnikova, O. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)], E-mail: costab@ntu.edu.sg; Liu, X.Y.; Wang, J.Y. [School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

2008-07-01T23:59:59.000Z

136

Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure: The effect of ammonia inhibition  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Enhanced anaerobic treatment of CSTR-digested effluent from chicken manure. Black-Right-Pointing-Pointer The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was key controlling factor. Black-Right-Pointing-Pointer The threshold of the SCOD/TAN ratio was 2.4 at an influent pH of 8.5-9. - Abstract: The effect of ammonia inhibition was evaluated during the enhanced anaerobic treatment of digested effluent from a 700 m{sup 3} chicken-manure continuous stirred tank reactor (CSTR). A 12.3 L internal circulation (IC) reactor inoculated with an anaerobic granular sludge and operated at 35 {+-} 1 Degree-Sign C was employed for the investigation. With a corresponding organic loading rate of 1.5-3.5 kg-COD/m{sup 3} d over a hydraulic retention time of 1.5 d, a maximum volumetric biogas production rate of 1.2 m{sup 3}/m{sup 3} d and TCOD (total COD) removal efficiency ranging from 70% to 80% was achieved. However, the continual increase in the influent TAN content led to ammonia inhibition in the methanogenesis system. The SCOD/TAN (soluble COD/total ammonia nitrogen) ratio was presented to be the key controlling factor for the anaerobic treatment of semi-digested chicken manure, and further validation through shock loading and ammonia inhibition experiments was conducted. The threshold value of the SCOD/TAN ratio was determined to be 2.4 (corresponding to a TAN of 1250 mg/L) at an influent pH of 8.5-9.

Liu Zhanguang; Zhou Xuefei [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhang Yalei, E-mail: zhangyalei2003@163.com [Key Laboratory of Yangtze Water Environment of Ministry of Education, State Key Laboratory of Pollution and Resource Reuse, Tongji University, Shanghai 200092 (China); Zhu Hongguang [Institute of Modern Agricultural Science and Engineering, National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092 (China)

2012-01-15T23:59:59.000Z

137

Characterization and environmental studies of Pompano Beach anaerobic digestion facility. Semi-annual report  

DOE Green Energy (OSTI)

Anaerobic digestion of municipal waste has been demonstrated to be feasible in bench scale experiments by Pfeffer (1974). Approximately, 50% reduction in mass and production of 6000 ft/sup 3/ of gas/ton have been estimated. The gas composition is estimated to be 50% methane and 50% carbon monoxide. The technical and economic feasibility of anaerobic digestion with an ultimate objective of commercialization are discussed. A plant has been built at Pompano Beach, Florida on an existing shredding and landfill operation site. The plant design capacity is 100 tons/day. Two digesters have been constructed to be used in parallel. The process consists of primary shredding, metal separation, secondary shredding, air classification and digestion of light fraction. Sewage sludge was used to seed the initial mixture in the digester. The output slurry is vacuum filtered and the filter cake disposed on an existing landfill. The filtrate is recycled. Excess filtrate is sprayed on the landfill. At present the output gas is being flared. A flow chart for the plant is presented. It is imperative that environmental investigations be conducted on new energy technology prior to commercialization. A project was initiated to characterize all input and output streams and to assess the potential for ground water contamination by landfill disposal of effluents. Detailed chemical, biological and physical characterization efforts supported by leaching and modelling studies are being conducted to achieve the stated objectives. Some mutagenic studies were also conducted. The environmental investigations were started in August 1978. Sengupta et al (1979a) reported the first year's efforts.

Sengupta, S; Farooq, S; Gerrish, H P; Wong, K F; Daly, Jr, E L; Chriswell, C

1980-02-01T23:59:59.000Z

138

Biochar Produced from Anaerobically Digested Fiber Reduces Phosphorus in Dairy Lagoons  

Science Conference Proceedings (OSTI)

This study evaluated the use of biochar produced from anaerobic digester dairy fiber (ADF) to sequester phosphorus (P) from dairy lagoons. The ADF was collected from a plugged flow digester, air-dried to Biochar was produced by slow pyrolysis in a barrel retort. The potential of biochar to reduce P in the anaerobic digester effluent (ADE) was assessed in small-scale filter systems through which the effluent was circulated. Biochar sequestered an average of 381 mg L?1 P from the ADE, and 4 g L?1 ADF was captured as a coating on the biochar. There was an increase of total (1.9 g kg?1), Olsen (763 mg kg?1), and water-extractable P (914 mg kg?1) bound to the biochar after 15 d of filtration. This accounted for a recovery of 32% of the P in the ADE. The recovered P on the biochar was analyzed using 31P nuclear magnetic resonance for P speciation, which confirmed the recovery of inorganic orthophosphate after liquid extraction of the biochar and the presence of inextractable Ca-P in the solid state. The inorganic phosphate was sequestered on the biochar through physical and weak chemical bonding. Results indicate that biochar could be a beneficial component to P reduction in the dairy system.

Streubel, Jason D.; Collins, Harold P.; Tarara, Julie M.; Cochran, Rebecca L.

2012-07-01T23:59:59.000Z

139

Investigation of the Effect of In-Situ Catalyst on the Steam Hydrogasification of Biomass  

E-Print Network (OSTI)

Biopower - Logging - Anaerobic digestion - Heat - Wood,offensive odors. Anaerobic digestion is widely usedstabilization. Anaerobic digestion uses microorganisms to

FAN, XIN

2012-01-01T23:59:59.000Z

140

Biogas generation by two-phase anaerobic digestion of organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

The organic fraction of municipal solid waste can be a significant energy source for renewable energy generation. The total production of municipal solid waste in Turkey was 25?×?106 tones per year. Anaerobic digestion (AD) process may be a solution to the problems of energy demand and waste management since it provides biomethanation along with waste stabilization. AD can be operated in single or two phase configurations. Two-phase processes have some advantages over one phase systems in terms of selection of microorganisms

Eylem Dogan; Göksel N. Demirer

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Continuous high-solids anaerobic co-digestion of organic solid wastes under mesophilic conditions  

SciTech Connect

Highlights: > High-solids (dry) anaerobic digestion is attracting a lot of attention these days. > One reactor was fed with food waste (FW) and paper waste. > Maximum biogas production rate of 5.0 m{sup 3}/m{sup 3}/d was achieved at HRT 40 d and 40% TS. > The other reactor was fed with FW and livestock waste (LW). > Until a 40% LW content increase, the reactor exhibited a stable performance. - Abstract: With increasing concerns over the limited capacity of landfills, conservation of resources, and reduction of CO{sub 2} emissions, high-solids (dry) anaerobic digestion of organic solid waste (OSW) is attracting a great deal of attention these days. In the present work, two dry anaerobic co-digestion systems fed with different mixtures of OSW were continuously operated under mesophilic conditions. Dewatered sludge cake was used as a main seeding source. In reactor (I), which was fed with food waste (FW) and paper waste (PW), hydraulic retention time (HRT) and solid content were controlled to find the maximum treatability. At a fixed solid content of 30% total solids (TS), stable performance was maintained up to an HRT decrease to 40 d. However, the stable performance was not sustained at 30 d HRT, and hence, HRT was increased to 40 d again. In further operation, instead of decreasing HRT, solid content was increased to 40% TS, which was found to be a better option to increase the treatability. The biogas production rate (BPR), CH{sub 4} production yield (MPY) and VS reduction achieved in this condition were 5.0 m{sup 3}/m{sup 3}/d, 0.25 m{sup 3} CH{sub 4}/g COD{sub added}, and 80%, respectively. Reactor (II) was fed with FW and livestock waste (LW), and LW content was increased during the operation. Until a 40% LW content increase, reactor (II) exhibited a stable performance. A BPR of 1.7 m{sup 3}/m{sup 3}/d, MPY of 0.26 m{sup 3} CH{sub 4}/g COD{sub added}, and VS reduction of 72% was achieved at 40% LW content. However, when the LW content was increased to 60%, there was a significant performance drop, which was attributed to free ammonia inhibition. The performances in these two reactors were comparable to the ones achieved in the conventional wet digestion and thermophilic dry digestion processes.

Kim, Dong-Hoon [Wastes Energy Research Center, Korea Institute of Energy Research, 102, Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Oh, Sae-Eun, E-mail: saeun@hanbat.ac.kr [Department of Environmental Engineering, Hanbat National University, San 16-1, Duckmyoung-dong, Yuseong-gu, Daejeon (Korea, Republic of)

2011-09-15T23:59:59.000Z

142

Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge  

E-Print Network (OSTI)

Abstract: Supercritical fluid extraction (SFE) was used in the analysis of bacterial respiratory quinone (RQ), bacterial phospholipid fatty acid (PLFA), and archaeal phospholipid ether lipid (PLEL) from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC). Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS). The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6 % (v/v) of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile. Int. J. Mol. Sci. 2012, 13 3023

Muhammad Hanif; Yoichi Atsuta; Koichi Fujie; Hiroyuki Daimon

2012-01-01T23:59:59.000Z

143

How to convert biomass to SNG  

Science Conference Proceedings (OSTI)

The conversion of biomass to methane by thermal gasification and by anaerobic digestion is described. The problems common to most digester designs such as long start-up times and rates of formation of organic acids are mentioned and current research on kelp digestion is reviewed.

Frank, J.R.

1980-04-01T23:59:59.000Z

144

Anaerobic digestion of pressed off leachate from the organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

A highly polluted liquid ('press water') was obtained from the pressing facility for the organic fraction of municipal solid waste in a composting plant. Methane productivity of the squeezed-off leachate was investigated in batch assays. To assess the technical feasibility of 'press water' as a substrate for anaerobic digestion, a laboratory-scale glass column reactor was operated semi-continuously at 37 {sup o}C. A high methane productivity of 270 m{sup -3} CH{sub 4} ton{sup -1} COD{sub added} or 490 m{sup -3} CH{sub 4} ton{sup -1} VS{sub added} was achieved in the batch experiment. The semi-continuously run laboratory-scale reactor was initially operated at an organic loading rate of 10.7 kg COD m{sup -3} d{sup -1}. The loading was increased to finally 27.7 kg COD m{sup -3} d{sup -1}, corresponding to a reduction of the hydraulic retention time from initially 20 to finally 7.7 days. During the digestion, a stable elimination of organic material (measured as COD elimination) of approximately 60% was achieved. Linearly with the increment of the OLR, the volumetric methane production of the reactor increased from 2.6 m{sup 3} m{sub reactor}{sup -3} d{sup -1} to 7.1 m{sup 3} m{sub reactor}{sup -3} d{sup -1}. The results indicated that 'press water' from the organic fraction of municipal solid waste was a suitable substrate for anaerobic digestion which gave a high biogas yield even at very high loading rates.

Nayono, Satoto E. [Department of Civil Engineering, Yogyakarta State University, Campus UNY Karangmalang Yogyakarta 55281 (Indonesia); Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Winter, Josef, E-mail: josef.winter@iba.uka.d [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany); Gallert, Claudia [Institute of Biology for Engineers and Biotechnology of Wastewater, University of Karlsruhe, Am Fasanengarten, 76131 Karlsruhe (Germany)

2010-10-15T23:59:59.000Z

145

Effect of seasonal changes in quantities of biowaste on full scale anaerobic digester performance  

Science Conference Proceedings (OSTI)

A 750,000 l digester located in Roppen/Austria was studied over a 2-year period. The concentrations and amounts of CH{sub 4}, H{sub 2}, CO{sub 2} and H{sub 2}S and several other process parameters like temperature, retention time, dry weight and input of substrate were registered continuously. On a weekly scale the pH and the concentrations of NH{sub 4}{sup +}-N and volatile fatty acids (acetic, butyric, iso-butyric, propionic, valeric and iso-valeric acid) were measured. The data show a similar pattern of seasonal gas production over 2 years of monitoring. The consumption of VFA and not the hydrogenotrophic CH{sub 4} production appeared to be the limiting factor for the investigated digestion process. Whereas the changes in pH and the concentrations of most VFA did not correspond with changes in biogas production, the ratio of acetic to propionic acid and the concentration of H{sub 2} appeared to be useful indicators for reactor performance. However, the most influential factors for the anaerobic digestion process were the amount and the quality of input material, which distinctly changed throughout the year.

Illmer, P. [University of Innsbruck, Institute of Microbiology, Technikerstr. 25, A-6020 Innsbruck (Austria)], E-mail: Paul.Illmer@uibk.ac.at; Gstraunthaler, G. [Abfallbeseitigungsverband Westtirol, Breite Mure, A-6426 Roppen (Austria)

2009-01-15T23:59:59.000Z

146

Estimation dynamical model of an anaerobic digestion of shrimp culture pond sediment in a biogas process using genetic algorithm  

Science Conference Proceedings (OSTI)

Biogas is one type of renewable energy which is important to the energy and environmental planning of Thailand. The study and analysis of the dynamical model of the biogas process can be explained the variables that affect biogas process and optimization. ... Keywords: anaerobic digestion, artificial intelligence, biogas process, mass balance equation, system identification

Jiraphon Srisertpol; Prasit Srinakorn; Adtavirod Kheawnak; Kontorn Chamniprasart; Arthit Srikaew

2010-10-01T23:59:59.000Z

147

Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease  

SciTech Connect

Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

Wan Caixia; Zhou Quancheng; Fu Guiming [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States)

2011-08-15T23:59:59.000Z

148

RECIPIENT:WA Department of Commerce STATE: WA PROJECT Van Dyk Dairy Anaerobic Digester  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of5 of5 RECIPIENT:WA Department of Commerce STATE: WA PROJECT Van Dyk Dairy Anaerobic Digester TITLE: Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number cm Number DE-EE0000139 GF0-10-604 Based on my review oftbe information concerning the proposed action, as NEPA CompUance Officer (authorized under DOE Order 451.1A), I have made the foUowing determination: cx, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution;

149

Processing high solids concentration of municipal solid waste by anaerobic digester for methane production  

SciTech Connect

Cellulosic solids are pretreated by calcium hydroxide to produce salts of volatile orangic acids and other water-soluble substances. Pure cellulose, sawdust, and waste paper are used as model substances for the study of alkaline degradation. It is found that sawdust is more difficult to degrade than the other two substances. The cooking conditions for high conversion of model substances and high yeild of orangic acids are found to be 275/degree/C to 300/degree/C with the corresponding reaction time from 30 minutes to 15 minutes. The cooking liquor can be readily fermented in an anaerobic fluidized-bed digester for methane production. The cooking liquor from different reaction conditions can all be digested by the methanogens. Higher than 90% of COD can be removed under the conditions of low organic loading rate (<2.0 g COD/1/day) and low hydraulic retention time (1.5 to 2.0 days). 14 refs., 10 figs., 2 tabs.

Tsao, G.T.

1988-01-01T23:59:59.000Z

150

Anaerobic High-Throughput Cultivation Method for Isolation of Thermophiles Using Biomass-Derived Substrates  

Science Conference Proceedings (OSTI)

Flow cytometry (FCM) techniques have been developed for sorting mesophilic organisms, but the difficulty increases if the target microbes are thermophilic anaerobes. We demonstrate a reliable, high-throughput method of screening thermophilic anaerobic organisms using FCM and 96-well plates for growth on biomass-relevant substrates. The method was tested using the cellulolytic thermophiles Clostridium ther- mocellum (Topt = 55 C), Caldicellulosiruptor obsidiansis (Topt = 78 C) and the fermentative hyperthermo- philes, Pyrococcus furiosus (Topt = 100 C) and Thermotoga maritima (Topt = 80 C). Multi-well plates were incubated at various temperatures for approximately 72 120 h and then tested for growth. Positive growth resulting from single cells sorted into individual wells containing an anaerobic medium was verified by OD600. Depending on the growth substrate, up to 80 % of the wells contained viable cultures, which could be transferred to fresh media. This method was used to isolate thermophilic microbes from Rabbit Creek, Yellowstone National Park (YNP), Wyoming. Substrates for enrichment cultures including crystalline cellulose (Avicel), xylan (from Birchwood), pretreated switchgrass and Populus were used to cultivate organisms that may be of interest to lignocellulosic biofuel production.

Hamilton-Brehm, Scott [ORNL; Vishnivetskaya, Tatiana A [ORNL; Allman, Steve L [ORNL; Mielenz, Jonathan R [ORNL; Elkins, James G [ORNL

2012-01-01T23:59:59.000Z

151

ANAEROBIC BIOLOGICAL TREATMENT OF IN-SITU RETORT WATER  

E-Print Network (OSTI)

to conventional anaerobic digestion systems used forly, was treated by anaerobic digestion to remove from 65 to

Ossio, Edmundo

2012-01-01T23:59:59.000Z

152

Feasibility Study of Anaerobic Digestion of Food Waste in St. Bernard, Louisiana. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA) developed the RE-Powering America's Land initiative to re-use contaminated sites for renewable energy generation when aligned with the community's vision for the site. The former Kaiser Aluminum Landfill in St. Bernard Parish, Louisiana, was selected for a feasibility study under the program. Preliminary work focused on selecting a biomass feedstock. Discussions with area experts, universities, and the project team identified food wastes as the feedstock and anaerobic digestion (AD) as the technology.

Moriarty, K.

2013-01-01T23:59:59.000Z

153

Trichloroethene Removal From Waste Gases in Anaerobic Biotrickling Filters Through Reductive Dechlorination  

E-Print Network (OSTI)

1) during thermophilic anaerobic digestion for production ofa keen interest in anaerobic digestion as well, and it wasfor thermophilic anaerobic digestion, and should stimulate

Popat, Sudeep Chandrakant

2010-01-01T23:59:59.000Z

154

SERI Biomass Program. FY 1983 annual report  

DOE Green Energy (OSTI)

This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1983. The SERI Biomass Program consists of three elements: Aquatic Species, Anaerobic Digestion, and Photo/Biological Hydrogen. Each element has been indexed separately. 2 references, 44 figures, 22 tables.

Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.; McIntosh, R.P.

1984-02-01T23:59:59.000Z

155

Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use  

Science Conference Proceedings (OSTI)

In the present study, three full-scale biogas plants (BGP) were investigated for the concentration of heavy metals, organic pollutants, pesticides and the pathogenic bacteria Bacillus cereus and Escherichia coli in the anaerobically digested residues (ADR). The BGPs mainly utilize source-separated organic wastes and industrial food waste as energy sources and separate the ADR into an ADR-liquid and an ADR-solid fraction by centrifugation at the BGP. According to the Norwegian standard for organic fertilizers, the ADR were classified as quality 1 mainly because of high zinc (132-422 mg kg{sup -1} DM) and copper (23-93 mg kg{sup -1} DM) concentrations, but also because of high cadmium (0.21-0.60 mg kg{sup -1} DM) concentrations in the liquid-ADR. In the screening of organic pollutants, only DEHP (9.7-62.1 mg kg{sup -1}) and {Sigma} PAH 16 (0.2-1.98 mg kg{sup -1} DM) were detected in high concentrations according to international regulations. Of the 250 pesticides analyzed, 11 were detected, but only imazalil (<0.30-5.77 mg kg{sup -1} DM) and thiabendazol (<0.14-0.73 mg kg{sup -1} DM) were frequently detected in the ADR-fiber. Concentrations of imazalil and thiabendazol were highest during the winter months, due to a high consumption of citrus fruits in Norway in this period. Ten percent of the ADR-liquid samples contained cereulide-producing B. cereus, whereas no verotoxigenic E. coli was detected. The authors conclude that the risk of chemical and bacterial contamination of the food chain or the environment from agricultural use of ADR seems low.

Govasmark, Espen, E-mail: espen.govasmark@bioforsk.no [Norwegian Institute for Agricultural and Environmental Research - Soil and Environment, Fredrik A. Dahlsvei 20, NO-1432 Aas (Norway); Staeb, Jessica [Universitaet Stuttgart, Institut fuer Siedlungswasserbau, Wasserguete- und Abfallwirtschaft, Abteilung Hydrochemie, Bandtaele 2, D-70569 Stuttgart (Buesnau) (Germany); Holen, Borge [Norwegian Institute for Agricultural and Environmental Research - Plant Health, Hogskoleveien 7, NO-1432 Aas (Norway); Hoornstra, Douwe [University of Helsinki, Department of Applied Chemistry and Microbiology, Faculty of Agriculture and Forestry, Biocenter, Viikinkaari 9, FIN-00014 (Finland); Nesbakk, Tommy [Mjosanlegget AS, Roverudmyra Miljostasjon, Asmarkveien 301, NO-2600 Lillehammer (Norway); Salkinoja-Salonen, Mirja [University of Helsinki, Department of Applied Chemistry and Microbiology, Faculty of Agriculture and Forestry, Biocenter, Viikinkaari 9, FIN-00014 (Finland)

2011-12-15T23:59:59.000Z

156

Archaeal community composition affects the function of anaerobic co-digesters in response to organic overload  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Two types of methanogens are necessary to respond successfully to perturbation. Black-Right-Pointing-Pointer Diversity of methanogens correlates with the VFA concentration and methane yield. Black-Right-Pointing-Pointer Aggregates indicate tight spatial relationship between minerals and microorganisms. - Abstract: Microbial community diversity in two thermophilic laboratory-scale and three full-scale anaerobic co-digesters was analysed by genetic profiling based on PCR-amplified partial 16S rRNA genes. In parallel operated laboratory reactors a stepwise increase of the organic loading rate (OLR) resulted in a decrease of methane production and an accumulation of volatile fatty acids (VFAs). However, almost threefold different OLRs were necessary to inhibit the gas production in the reactors. During stable reactor performance, no significant differences in the bacterial community structures were detected, except for in the archaeal communities. Sequencing of archaeal PCR products revealed a dominance of the acetoclastic methanogen Methanosarcina thermophila, while hydrogenotrophic methanogens were of minor importance and differed additionally in their abundance between reactors. As a consequence of the perturbation, changes in bacterial and archaeal populations were observed. After organic overload, hydrogenotrophic methanogens (Methanospirillum hungatei and Methanoculleus receptaculi) became more dominant, especially in the reactor attributed by a higher OLR capacity. In addition, aggregates composed of mineral and organic layers formed during organic overload and indicated tight spatial relationships between minerals and microbial processes that may support de-acidification processes in over-acidified sludge. Comparative analyses of mesophilic stationary phase full-scale reactors additionally indicated a correlation between the diversity of methanogens and the VFA concentration combined with the methane yield. This study demonstrates that the coexistence of two types of methanogens, i.e. hydrogenotrophic and acetoclastic methanogens is necessary to respond successfully to perturbation and leads to stable process performance.

Lerm, S.; Kleyboecker, A. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Miethling-Graff, R. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Johann Heinrich von Thuenen Institut, Bundesforschungsinstitut fuer Laendliche Raeume, Wald und Fischerei Institut fuer Biodiversitaet, 38116 Braunschweig (Germany); Alawi, M.; Kasina, M.; Liebrich, M. [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany); Wuerdemann, H., E-mail: wuerdemann@gfz-potsdam.de [International Centre for Geothermal Research (ICGR), GFZ German Research Centre for Geosciences, 14473 Potsdam (Germany)

2012-03-15T23:59:59.000Z

157

Specific Effects of Fiber Size and Fiber Swelling on Biomass Substrate Surface Area and Enzymatic Digestibility  

SciTech Connect

To clarify the specific effect of biomass substrate surface area on its enzymatic digestibility, factors of fiber size reduction and swelling changes were investigated by using poplar substrates with controlled morphological and chemical properties after modified chemical pulping. Results showed that fiber size changes had insignificant influence on enzymatic hydrolysis, although the external surface area increased up to 41% with the reduction of fiber size. Swelling changes caused by increased biomass fiber porosities after PFI refining showed a significant influence on the efficiency of enzymatic hydrolysis. It is also found that chemical properties such as xylan and lignin content can influence the swelling effect. Xylan is confirmed to facilitate substrate hydrolysability by swelling, while lignin restricts swelling effect and thus minimizes the enzyme accessibility to substrates.

Ju, Xiaohui; Grego, Courtnee; Zhang, Xiao

2013-09-01T23:59:59.000Z

158

Methane Digesters and Biogas Recovery - Masking the Environmental Consequences of Industrial Concentrated Livestock Production  

E-Print Network (OSTI)

re- 35. John Paul, Anaerobic Digestion A Feel Good StrategyFACING VILOPMENT OF ANAEROBIC DIGESTION OF ANIMAl. WASTE INthan $40 million for anaerobic digestion systems." 19 The

Di Camillo, Nicole G.

2011-01-01T23:59:59.000Z

159

Controlling the pH of acid cheese whey in a two-stage anaerobic digester with sodium hydroxide  

Science Conference Proceedings (OSTI)

Anaerobic digestion of cheese whey offers a two-fold benefit: pollution potential reduction and biogas production. The biogas, as an energy source, could be used to reduce the consumption of traditional fuels in the cheese plant. However, as a result of little or no buffering capacity of whey, the pH of the anaerobic digester drops drastically and the process is inhibited. In this study, the effect of controlling the pH of the second chamber of a two-stage, 150 L anaerobic digester operating on cheese whey on the quality and quantity of biogas and the pollution potential reduction, was investigated using sodium hydroxide. The digester was operated at a temperature of 35 C and a hydraulic retention time of 15 days for three runs (no pH control, pH control with no reseeding, and ph control with reseeding) each lasting 50 days. The results indicated that operating the digester without pH control resulted in a low pH (3.3) which inhibited the methanogenic bacteria. The inhibition was irreversible and the digester did not recover (no methane production) when the pH was restored to 7.0 without reseeding, as the observed increased gas production was a false indication of recovery because the gas was mainly carbon dioxide. The addition of base resulted in a total alkalinity of 12,000 mg/L as CaCO{sub 3}. When the system was reseeded and the pH controlled, the total volatile acid concentration was 15,100 mg/L (as acetic acid), with acetic (28%), propionic (21%), butyric (25%), valeric (8%), and caproic (15%) acids as the major constituents. The biogas production was 62.6 L/d (0.84 m{sup 3}/m{sup 3}/d) and the methane content was 60.7%. Reductions of 27.3, 30.4 and 23.3% in the total solids, chemical oxygen demand and total kjeldahl nitrogen were obtained, respectively. The ammonium nitrogen content increased significantly (140%).

Ghaly, A.E.; Ramkumar, D.R. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Biological Engineering Dept.

1999-07-01T23:59:59.000Z

160

Dry-thermophilic anaerobic digestion of organic fraction of municipal solid waste: Methane production modeling  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Methane generation may be modeled by means of modified product generation model of Romero Garcia (1991). Black-Right-Pointing-Pointer Organic matter content and particle size influence the kinetic parameters. Black-Right-Pointing-Pointer Higher organic matter content and lower particle size enhance the biomethanization. - Abstract: The influence of particle size and organic matter content of organic fraction of municipal solid waste (OFMSW) in the overall kinetics of dry (30% total solids) thermophilic (55 Degree-Sign C) anaerobic digestion have been studied in a semi-continuous stirred tank reactor (SSTR). Two types of wastes were used: synthetic OFMSW (average particle size of 1 mm; 0.71 g Volatile Solids/g waste), and OFMSW coming from a composting full scale plant (average particle size of 30 mm; 0.16 g Volatile Solids/g waste). A modification of a widely-validated product-generation kinetic model has been proposed. Results obtained from the modified-model parameterization at steady-state (that include new kinetic parameters as K, Y{sub pMAX} and {theta}{sub MIN}) indicate that the features of the feedstock strongly influence the kinetics of the process. The overall specific growth rate of microorganisms ({mu}{sub max}) with synthetic OFMSW is 43% higher compared to OFMSW coming from a composting full scale plant: 0.238 d{sup -1} (K = 1.391 d{sup -1}; Y{sub pMAX} = 1.167 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 7.924 days) vs. 0.135 d{sup -1} (K = 1.282 d{sup -1}; Y{sub pMAX} = 1.150 L CH{sub 4}/gDOC{sub c}; {theta}{sub MIN} = 9.997 days) respectively. Finally, it could be emphasized that the validation of proposed modified-model has been performed successfully by means of the simulation of non-steady state data for the different SRTs tested with each waste.

Fdez-Gueelfo, L.A., E-mail: alberto.fdezguelfo@uca.es [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Alvarez-Gallego, C. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Sales, D. [Department of Environmental Technologies, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Cadiz (Spain); Romero Garcia, L.I. [Department of Chemical Engineering and Food Technology, Faculty of Science, University of Cadiz, 11510 Puerto Real, Cadiz (Spain)

2012-03-15T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge  

Science Conference Proceedings (OSTI)

The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G. (U. South Australia); (EPA); (Monash)

2013-01-14T23:59:59.000Z

162

Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer Biochemical methane potential decreased by 83% during the two-stage operation. Black-Right-Pointing-Pointer Net energy produced was 84.3 MWh or 46 kWh per million metric tons (Mg). Black-Right-Pointing-Pointer The average removal efficiency of volatile organic compounds (VOCs) was 96-99%. Black-Right-Pointing-Pointer The average removal efficiency of non-methane organic compounds (NMOCs) was 68-99%. Black-Right-Pointing-Pointer The two-stage batch digester proved to be simple to operate and cost-effective. - Abstract: The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3 MWh, or 46 kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

Yazdani, Ramin, E-mail: ryazdani@sbcglobal.net [Yolo County Planning and Public Works Department, Division of Integrated Waste Management, Woodland, CA 95776 (United States); Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Barlaz, Morton A., E-mail: barlaz@eos.ncsu.edu [Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Augenstein, Don, E-mail: iemdon@aol.com [Institute for Environmental Management, Inc., Palo Alto, CA 94306 (United States); Kayhanian, Masoud, E-mail: mdkayhanian@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States); Tchobanoglous, George, E-mail: gtchobanoglous@ucdavis.edu [Civil and Environmental Engineering, University of California, One Shields Avenue, Ghausi Hall, Davis, CA 95616 (United States)

2012-05-15T23:59:59.000Z

163

Optimization criteria for the stabilization of sewage sludge and biogas production through anaerobic digestion: an example of an environmental biotechnology application  

SciTech Connect

According to environmental protection and energy conservation principles, anaerobic digestion of activated sludges should have two main purposes: to stabilize the sludge within allowable limits and to increase biogas production as much as possible, in order to meet ecological requirement without neglecting a particular energy source. This implies optimization procedures for the design of the process, based upon its actual kinetics. This optimization has been developed in the present paper on the basis of experimental results on anaerobic digestion kinetics achieved in previous research.

Ferraiolo, G.; Del Borghi, M.; Gardi, R.; Solisio, C.

1983-03-01T23:59:59.000Z

164

High rate mesophilic, thermophilic, and temperature phased anaerobic digestion of waste activated sludge: A pilot scale study  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer High temperatures were tested in single and two-stage anaerobic digestion of waste activated sludge. Black-Right-Pointing-Pointer The increased temperature demonstrated the possibility of improving typical yields of the conventional mesophilic process. Black-Right-Pointing-Pointer The temperature phased anaerobic digestion process (65 + 55 Degree-Sign C) showed the best performances with yields of 0.49 m{sup 3}/kgVS{sub fed}. Black-Right-Pointing-Pointer Ammonia and phosphate released from solids destruction determined the precipitation of struvite in the reactor. - Abstract: The paper reports the findings of a two-year pilot scale experimental trial for the mesophilic (35 Degree-Sign C), thermophilic (55 Degree-Sign C) and temperature phased (65 + 55 Degree-Sign C) anaerobic digestion of waste activated sludge. During the mesophilic and thermophilic runs, the reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 20 days. In the temperature phased run, the first reactor operated at an organic loading rate of 15 kgVS/m{sup 3}d and a hydraulic retention time of 2 days while the second reactor operated at an organic loading rate of 2.2 kgVS/m{sup 3}d and a hydraulic retention time of 18 days (20 days for the whole temperature phased system). The performance of the reactor improved with increases in temperature. The COD removal increased from 35% in mesophilic conditions, to 45% in thermophilic conditions, and 55% in the two stage temperature phased system. As a consequence, the specific biogas production increased from 0.33 to 0.45 and to 0.49 m{sup 3}/kgVS{sub fed} at 35, 55, and 65 + 55 Degree-Sign C, respectively. The extreme thermophilic reactor working at 65 Degree-Sign C showed a high hydrolytic capability and a specific yield of 0.33 gCOD (soluble) per gVS{sub fed}. The effluent of the extreme thermophilic reactor showed an average concentration of soluble COD and volatile fatty acids of 20 and 9 g/l, respectively. Acetic and propionic acids were the main compounds found in the acids mixture. Because of the improved digestion efficiency, organic nitrogen and phosphorus were solubilised in the bulk. Their concentration, however, did not increase as expected because of the formation of salts of hydroxyapatite and struvite inside the reactor.

Bolzonella, David, E-mail: david.bolzonella@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Cavinato, Cristina, E-mail: cavinato@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Fatone, Francesco, E-mail: francesco.fatone@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy); Pavan, Paolo, E-mail: pavan@unive.it [University of Venice, Department of Environmental Sciences, Computer Science and Statistics, Dorsoduro 2137, 30123 Venice (Italy); Cecchi, Franco, E-mail: franco.cecchi@univr.it [University of Verona, Department of Biotechnology, Strada Le Grazie, 15, 37134 Verona (Italy)

2012-06-15T23:59:59.000Z

165

Feasibility study for anaerobic digestion of agricultural crop residues. Final report  

DOE Green Energy (OSTI)

This study provides cost estimates for the pretreatment/digestion of crop residues to fuel gas. Agricultural statistics indicate that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of sheat straw, corn stover, and rice straw for small farm, cooperative, and industrial scales. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low-cost chemicals can be utilized. Use of low-cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low-cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-10-01T23:59:59.000Z

166

Feasibility study for anaerobic digestion of agricultural crop residues. Dynatech report No. 1935  

DOE Green Energy (OSTI)

The objective of this study was to provide cost estimates for the pretreatment/digestion of crop residues to fuel gas. A review of agricultural statistics indicated that the crop residues wheat straw, corn stover, and rice straw are available in sufficient quantity to provide meaningful supplies of gas. Engineering economic analyses were performed for digestion of wheat straw, corn stover, and rice straw for small farm-, cooperative-, and industrial scales. The small farm scale processed the residue from an average size US farm (400 acres), and the other sizes were two and three orders of magnitude greater. The results of the analyses indicate that the production of fuel gas from these residues is, at best, economically marginal, unless a credit can be obtained for digester effluent. The use of pretreatment can double the fuel gas output but will not be economically justifiable unless low chemical requirements or low cost chemicals can be utilized. Additional development is necessary in this area. Use of low cost hole-in-the-ground batch digestion results in improved economics for the small farm size digestion system, but not for the cooperative and industrial size systems. Recommendations arising from this study are continued development of autohydrolysis and chemical pretreatment of agricultural crop residues to improve fuel gas yields in an economically feasible manner; development of a low cost controlled landfill batch digestion process for small farm applications; and determination of crop residue digestion by-product values for fertilizer and refeed.

Ashare, E.; Buivid, M. G.; Wilson, E. H.

1979-07-31T23:59:59.000Z

167

Efficient degradation of lignocellulosic plant biomass without pretreatment by the 9 thermophilic anaerobe, Anaerocellum thermophilum DSM 6725  

SciTech Connect

Very few cultivated microorganisms can degrade lignocellulosic biomass without chemical pretreatment. We show here that 'Anaerocellum thermophilum' DSM 6725, an anaerobic bacterium that grows optimally at 75 C, efficiently utilizes various types of untreated plant biomass, as well as crystalline cellulose and xylan. These include hardwoods such as poplar, low-lignin grasses such as napier and Bermuda grasses, and high-lignin grasses such as switchgrass. The organism did not utilize only the soluble fraction of the untreated biomass, since insoluble plant biomass (as well as cellulose and xylan) obtained after washing at 75 C for 18 h also served as a growth substrate. The predominant end products from all growth substrates were hydrogen, acetate, and lactate. Glucose and cellobiose (on crystalline cellulose) and xylose and xylobiose (on xylan) also accumulated in the growth media during growth on the defined substrates but not during growth on the plant biomass. A. thermophilum DSM 6725 grew well on first- and second-spent biomass derived from poplar and switchgrass, where spent biomass is defined as the insoluble growth substrate recovered after the organism has reached late stationary phase. No evidence was found for the direct attachment of A. thermophilum DSM 6725 to the plant biomass. This organism differs from the closely related strain A. thermophilum Z-1320 in its ability to grow on xylose and pectin. Caldicellulosiruptor saccharolyticus DSM 8903 (optimum growth temperature, 70 C), a close relative of A. thermophilum DSM 6725, grew well on switchgrass but not on poplar, indicating a significant difference in the biomass-degrading abilities of these two otherwise very similar organisms.

Yang, Sung-Jae [University of Georgia, Athens, GA; Kataeva, Irina [University of Georgia, Athens, GA; Hamilton-Brehm, Scott [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Doeppke, Crissa [National Renewable Energy Laboratory (NREL); Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Westpheling, Janet [University of Georgia, Athens, GA; Adams, Michael W. W. [University of Georgia, Athens, GA

2009-01-01T23:59:59.000Z

168

Analysis of microbial diversity and optimal conditions for enhanced biogas production from swine waste anaerobic digestion  

Science Conference Proceedings (OSTI)

Swine wastewater pretreated by solid–liquid separation was optimized for biogas production and water purification. Dynamic diversity of the bacterial community in the anaerobic plug flow reactor was investigated under various temperatures and hydraulic retention times (HRT). Results of batch experiments indicated that under optimal operating conditions

Hsiao-Hsien Lin

2013-01-01T23:59:59.000Z

169

Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester  

Science Conference Proceedings (OSTI)

In this paper, the development of a computational fluid dynamics (CFD) model to simulate the mechanical mixing of sewage sludge at laboratory scale is reported. The paper recommends a strategy for modelling mechanically mixed sewage sludge at laboratory ... Keywords: Biogas, CFD, Digestion, Energy, Non-Newtonian fluid, Sewage sludge, Turbulence

J. Bridgeman

2012-02-01T23:59:59.000Z

170

Developing a fundamental understanding of biomass structural features responsible for enzymatic digestibility.  

E-Print Network (OSTI)

??Lignocellulosic biomass is one of the most valuable alternative energy sources because it is renewable, widely available, and environmentally friendly. Unfortunately, enzymatic hydrolysis of biomass… (more)

O'Dwyer, Jonathan Patrick

2006-01-01T23:59:59.000Z

171

Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Microwave and H{sub 2}O{sub 2} pretreatment were studied to enhance anaerobic digestion of organic waste. Black-Right-Pointing-Pointer The whole waste pretreated at 115 Degree-Sign C or 145 Degree-Sign C had the highest biogas production. Black-Right-Pointing-Pointer Biogas production of the whole waste decreased at 175 Degree-Sign C due to formation of refractory compounds. Black-Right-Pointing-Pointer Pretreatment to 145 Degree-Sign C and 175 Degree-Sign C were the best when considering only the free liquid fraction. Black-Right-Pointing-Pointer H{sub 2}O{sub 2} pretreatment had a lag phase and the biogas production was not higher than MW pretreated samples. - Abstract: In order to enhance anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW), pretreatment combining two modalities, microwave (MW) heating in presence or absence of hydrogen peroxide (H{sub 2}O{sub 2}) were investigated. The main pretreatment variables affecting the characteristics of the OFMSW were temperature (T) via MW irradiation and supplemental water additions of 20% and 30% (SWA20 and SW30). Subsequently, the focus of this study was to evaluate mesophilic batch AD performance in terms of biogas production, as well as changes in the characteristics of the OFMSW post digestion. A high MW induced temperature range (115-175 Degree-Sign C) was applied, using sealed vessels and a bench scale MW unit equipped with temperature and pressure controls. Biochemical methane potential (BMP) tests were conducted on the whole OFMSW as well as the liquid fractions. The whole OFMSW pretreated at 115 Degree-Sign C and 145 Degree-Sign C showed 4-7% improvement in biogas production over untreated OFMSW (control). When pretreated at 175 Degree-Sign C, biogas production decreased due to formation of refractory compounds, inhibiting the digestion. For the liquid fraction of OFMSW, the effect of pretreatment on the cumulative biogas production (CBP) was more pronounced for SWA20 at 145 Degree-Sign C, with a 26% increase in biogas production after 8 days of digestion, compared to the control. When considering the increased substrate availability in the liquid fraction after MW pretreatment, a 78% improvement in biogas production vs. the control was achieved. Combining MW and H{sub 2}O{sub 2} modalities did not have a positive impact on OFMSW stabilization and enhanced biogas production. In general, all samples pretreated with H{sub 2}O{sub 2} displayed a long lag phase and the CBP was usually lower than MW irradiated only samples. First order rate constant was calculated.

Shahriari, Haleh, E-mail: haleh.shahriari@gmail.com [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada); Warith, Mostafa [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada); Hamoda, Mohamed [Department of Environmental Technology and Management, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Kennedy, Kevin J. [Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur St., P.O. Box 450, Stn. A, Ottawa, ON, K1N 6N5 (Canada)

2012-01-15T23:59:59.000Z

172

Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste  

SciTech Connect

This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 {sup o}C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO{sub 2} g VS{sup -1} day{sup -1}. Sanitization of the digestate at 65 {sup o}C for 7 days allowed a mature digestate to be obtained. At 4 g VS L{sup -1} d{sup -1} and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO{sub 2} at a rate lower than 25 mg CO{sub 2} g VS{sup -1} d{sup -1} after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO{sub 2} g VS{sup -1} d{sup -1}. The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

Trzcinski, Antoine P., E-mail: a.trzcinski05@ic.ac.uk [Department of Chemical Engineering, Imperial College of Science and Technology and Medicine, Prince Consort Road, London SW7 2AZ (United Kingdom); Stuckey, David C., E-mail: d.stuckey@ic.ac.uk [Department of Chemical Engineering, Imperial College of Science and Technology and Medicine, Prince Consort Road, London SW7 2AZ (United Kingdom)

2011-07-15T23:59:59.000Z

173

Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report  

E-Print Network (OSTI)

Commission. (2008). "Anaerobic Digestion." Retrieved AugustRENEWABLE / BIOMASS / ANAEROBIC DIGESTION /. CaliforniaResearch: Biomass - Anaerobic Digestion." Retrieved December

Lekov, Alex

2010-01-01T23:59:59.000Z

174

Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste  

Science Conference Proceedings (OSTI)

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2-5%). Teak and bamboo leaves and newsprint decomposed only to 25-50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR's inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Chanakya, H.N. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India)], E-mail: chanakya@astra.iisc.ernet.in; Sharma, Isha [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Ramachandra, T.V. [Centre for Sustainable Technologies, (formerly ASTRA), Indian Institute of Science, Bangalore 560 012 (India); Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

2009-04-15T23:59:59.000Z

175

Fiscalini Farms Biomass Energy Project  

SciTech Connect

In this final report describes and documents research that was conducted by the Ecological Engineering Research Program (EERP) at the University of the Pacific (Stockton, CA) under subcontract to Fiscalini Farms LP for work under the Assistance Agreement DE-EE0001895 'Measurement and Evaluation of a Dairy Anaerobic Digestion/Power Generation System' from the United States Department of Energy, National Energy Technology Laboratory. Fiscalini Farms is operating a 710 kW biomass-energy power plant that uses bio-methane, generated from plant biomass, cheese whey, and cattle manure via mesophilic anaerobic digestion, to produce electricity using an internal combustion engine. The primary objectives of the project were to document baseline conditions for the anaerobic digester and the combined heat and power (CHP) system used for the dairy-based biomass-energy production. The baseline condition of the plant was evaluated in the context of regulatory and economic constraints. In this final report, the operation of the plant between start-up in 2009 and operation in 2010 are documented and an interpretation of the technical data is provided. An economic analysis of the biomass energy system was previously completed (Appendix A) and the results from that study are discussed briefly in this report. Results from the start-up and first year of operation indicate that mesophilic anaerobic digestion of agricultural biomass, combined with an internal combustion engine, is a reliable source of alternative electrical production. A major advantage of biomass energy facilities located on dairy farms appears to be their inherent stability and ability to produce a consistent, 24 hour supply of electricity. However, technical analysis indicated that the Fiscalini Farms system was operating below capacity and that economic sustainability would be improved by increasing loading of feedstocks to the digester. Additional operational modifications, such as increased utilization of waste heat and better documentation of potential of carbon credits, would also improve the economic outlook. Analysis of baseline operational conditions indicated that a reduction in methane emissions and other greenhouse gas savings resulted from implementation of the project. The project results indicate that using anaerobic digestion to produce bio-methane from agricultural biomass is a promising source of electricity, but that significant challenges need to be addressed before dairy-based biomass energy production can be fully integrated into an alternative energy economy. The biomass energy facility was found to be operating undercapacity. Economic analysis indicated a positive economic sustainability, even at the reduced power production levels demonstrated during the baseline period. However, increasing methane generation capacity (via the importation of biomass codigestate) will be critical for increasing electricity output and improving the long-term economic sustainability of the operation. Dairy-based biomass energy plants are operating under strict environmental regulations applicable to both power-production and confined animal facilities and novel approached are being applied to maintain minimal environmental impacts. The use of selective catalytic reduction (SCR) for nitrous oxide control and a biological hydrogen sulfide control system were tested at this facility. Results from this study suggest that biomass energy systems can be compliant with reasonable scientifically based air and water pollution control regulations. The most significant challenge for the development of biomass energy as a viable component of power production on a regional scale is likely to be the availability of energy-rich organic feedstocks. Additionally, there needs to be further development of regional expertise in digester and power plant operations. At the Fiscalini facility, power production was limited by the availability of biomass for methane generation, not the designed system capacity. During the baseline study period, feedstocks included manure, sudan grass silage, and

William Stringfellow; Mary Kay Camarillo; Jeremy Hanlon; Michael Jue; Chelsea Spier

2011-09-30T23:59:59.000Z

176

Waste-to-wheel analysis of anaerobic-digestion-based renewable natural gas pathways with the GREET model.  

SciTech Connect

In 2009, manure management accounted for 2,356 Gg or 107 billion standard cubic ft of methane (CH{sub 4}) emissions in the United States, equivalent to 0.5% of U.S. natural gas (NG) consumption. Owing to the high global warming potential of methane, capturing and utilizing this methane source could reduce greenhouse gas (GHG) emissions. The extent of that reduction depends on several factors - most notably, how much of this manure-based methane can be captured, how much GHG is produced in the course of converting it to vehicular fuel, and how much GHG was produced by the fossil fuel it might displace. A life-cycle analysis was conducted to quantify these factors and, in so doing, assess the impact of converting methane from animal manure into renewable NG (RNG) and utilizing the gas in vehicles. Several manure-based RNG pathways were characterized in the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model, and their fuel-cycle energy use and GHG emissions were compared to petroleum-based pathways as well as to conventional fossil NG pathways. Results show that despite increased total energy use, both fossil fuel use and GHG emissions decline for most RNG pathways as compared with fossil NG and petroleum. However, GHG emissions for RNG pathways are highly dependent on the specifics of the reference case, as well as on the process energy emissions and methane conversion factors assumed for the RNG pathways. The most critical factors are the share of flared controllable CH{sub 4} and the quantity of CH{sub 4} lost during NG extraction in the reference case, the magnitude of N{sub 2}O lost in the anaerobic digestion (AD) process and in AD residue, and the amount of carbon sequestered in AD residue. In many cases, data for these parameters are limited and uncertain. Therefore, more research is needed to gain a better understanding of the range and magnitude of environmental benefits from converting animal manure to RNG via AD.

Han, J.; Mintz, M.; Wang, M. (Energy Systems)

2011-12-14T23:59:59.000Z

177

List of Biomass Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 757 Biomass Incentives. CSV (rows 1-500) CSV (rows 501-757) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

178

Managing R&D Risk in Renewable Energy  

E-Print Network (OSTI)

from biomass using anaerobic digestion or fermentativegas electricity anaerobic digestion electricity hydrogenproduced from anaerobic digestion. Landfill gas electricity

Rausser, Gordon C.; Papineau, Maya

2008-01-01T23:59:59.000Z

179

Anaerobic co-digestion of the organic fraction of municipal solid waste with FOG waste from a sewage treatment plant: Recovering a wasted methane potential and enhancing the biogas yield  

SciTech Connect

Anaerobic digestion is applied widely to treat the source collected organic fraction of municipal solid wastes (SC-OFMSW). Lipid-rich wastes are a valuable substrate for anaerobic digestion due to their high theoretical methane potential. Nevertheless, although fat, oil and grease waste from sewage treatment plants (STP-FOGW) are commonly disposed of in landfill, European legislation is aimed at encouraging more effective forms of treatment. Co-digestion of the above wastes may enhance valorisation of STP-FOGW and lead to a higher biogas yield throughout the anaerobic digestion process. In the present study, STP-FOGW was evaluated as a co-substrate in wet anaerobic digestion of SC-OFMSW under mesophilic conditions (37 {sup o}C). Batch experiments carried out at different co-digestion ratios showed an improvement in methane production related to STP-FOGW addition. A 1:7 (VS/VS) STP-FOGW:SC-OFMSW feed ratio was selected for use in performing further lab-scale studies in a 5 L continuous reactor. Biogas yield increased from 0.38 {+-} 0.02 L g VS{sub feed}{sup -1} to 0.55 {+-} 0.05 L g VS{sub feed}{sup -1} as a result of adding STP-FOGW to reactor feed. Both VS reduction values and biogas methane content were maintained and inhibition produced by long chain fatty acid (LCFA) accumulation was not observed. Recovery of a currently wasted methane potential from STP-FOGW was achieved in a co-digestion process with SC-OFMSW.

Martin-Gonzalez, L., E-mail: lucia.martin@uab.ca [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Colturato, L.F. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Font, X.; Vicent, T. [Departament d'Enginyeria Quimica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain); Institut de Ciencia i Tecnologia Ambiental (ICTA) Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

2010-10-15T23:59:59.000Z

180

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network (OSTI)

7.4% and sent to the anaerobic digestion system for methaneSoln. O.I~ and ANAEROBIC DIGESTION Yeast-~ 8.1 Processrum Jistillery slops by anaerobic digestion (9). In spite of

Wilke, C.R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

IMPROVED BIOMASS UTILIZATION THROUGH REMOTE FLOW SENSING  

DOE Green Energy (OSTI)

The growth of the livestock industry provides a valuable source of affordable, sustainable, and renewable bioenergy, while also requiring the safe disposal of the large quantities of animal wastes (manure) generated at dairy, swine, and poultry farms. If these biomass resources are mishandled and underutilized, major environmental problems will be created, such as surface and ground water contamination, odors, dust, ammonia leaching, and methane emission. Anaerobic digestion of animal wastes, in which microorganisms break down organic materials in the absence of oxygen, is one of the most promising waste treatment technologies. This process produces biogas typically containing {approx}65% methane and {approx}35% carbon dioxide. The production of biogas through anaerobic digestion from animal wastes, landfills, and municipal waste water treatment plants represents a large source of renewable and sustainable bio-fuel. Such bio-fuel can be combusted directly, used in internal combustion engines, converted into methanol, or partially oxidized to produce synthesis gas (a mixture of hydrogen and carbon monoxide) that can be converted to clean liquid fuels and chemicals via Fischer-Tropsch synthesis. Different design and mixing configurations of anaerobic digesters for treating cow manure have been utilized commercially and/or tested on a laboratory scale. These digesters include mechanically mixed, gas recirculation mixed, and slurry recirculation mixed designs, as well as covered lagoon digesters. Mixing is an important parameter for successful performance of anaerobic digesters. It enhances substrate contact with the microbial community; improves pH, temperature and substrate/microorganism uniformity; prevents stratification and scum accumulation; facilitates the removal of biogas from the digester; reduces or eliminates the formation of inactive zones (dead zones); prevents settling of biomass and inert solids; and aids in particle size reduction. Unfortunately, information and findings in the literature on the effect of mixing on anaerobic digestion are contradictory. One reason is the lack of measurement techniques for opaque systems such as digesters. Better understanding of the mixing and hydrodynamics of digesters will result in appropriate design, configuration selection, scale-up, and performance, which will ultimately enable avoiding digester failures. Accordingly, this project sought to advance the fundamental knowledge and understanding of the design, scale up, operation, and performance of cow manure anaerobic digesters with high solids loading. The project systematically studied parameters affecting cow manure anaerobic digestion performance, in different configurations and sizes by implementing computer automated radioactive particle tracking (CARPT), computed tomography (CT), and computational fluid dynamics (CFD), and by developing novel multiple-particle CARPT (MP-CARPT) and dual source CT (DSCT) techniques. The accomplishments of the project were achieved in a collaborative effort among Washington University, the Oak Ridge National Laboratory, and the Iowa Energy Center teams. The following investigations and achievements were accomplished: Systematic studies of anaerobic digesters performance and kinetics using various configurations, modes of mixing, and scales (laboratory, pilot plant, and commercial sizes) were conducted and are discussed in Chapter 2. It was found that mixing significantly affected the performance of the pilot plant scale digester ({approx}97 liter). The detailed mixing and hydrodynamics were investigated using computer automated radioactive particle tracking (CARPT) techniques, and are discussed in Chapter 3. A novel multiple particle tracking technique (MP-CARPT) technique that can track simultaneously up to 8 particles was developed, tested, validated, and implemented. Phase distribution was investigated using gamma ray computer tomography (CT) techniques, which are discussed in Chapter 4. A novel dual source CT (DSCT) technique was developed to measure the phase distribution of dyn

Washington University- St. Louis: Muthanna Al-Dahhan (Principal Investigator)

2007-03-26T23:59:59.000Z

182

Early-warning process/control for anaerobic digestion and biological nitrogen transformation processes: Batch, semi-continuous, and/or chemostat experiments. Final report  

DOE Green Energy (OSTI)

The objective of this project was to develop and test an early-warning/process control model for anaerobic sludge digestion (AD). The approach was to use batch and semi-continuously fed systems and to assemble system parameter data on a real-time basis. Specific goals were to produce a real-time early warning control model and computer code, tested for internal and external validity; to determine the minimum rate of data collection for maximum lag time to predict failure with a prescribed accuracy and confidence in the prediction; and to determine and characterize any trends in the real-time data collected in response to particular perturbations to feedstock quality. Trends in the response of trace gases carbon monoxide and hydrogen in batch experiments, were found to depend on toxicant type. For example, these trace gases respond differently for organic substances vs. heavy metals. In both batch and semi-continuously feed experiments, increased organic loading lead to proportionate increases in gas production rates as well as increases in CO and H{sub 2} concentration. An analysis of variance of gas parameters confirmed that CO was the most sensitive indicator variable by virtue of its relatively larger variance compared to the others. The other parameters evaluated including gas production, methane production, hydrogen, carbon monoxide, carbon dioxide and methane concentration. In addition, a relationship was hypothesized between gaseous CO concentration and acetate concentrations in the digester. The data from semicontinuous feed experiments were supportive.

Hickey, R. [Science Applications International Corp., McLean, VA (United States)

1992-09-01T23:59:59.000Z

183

SERI biomass program annual technical report: 1982  

DOE Green Energy (OSTI)

The biomass with which this report is concerned includes aquatic plants, which can be converted into liquid fuels and chemicals; organic wastes (crop residues as well as animal and municipal wastes), from which biogas can be produced via anerobic digestion; and organic or inorganic waste streams, from which hydrogen can be produced by photobiological processes. The Biomass Program Office supports research in three areas which, although distinct, all use living organisms to create the desired products. The Aquatic Species Program (ASP) supports research on organisms that are themselves processed into the final products, while the Anaerobic Digestion (ADP) and Photo/Biological Hydrogen Program (P/BHP) deals with organisms that transform waste streams into energy products. The P/BHP is also investigating systems using water as a feedstock and cell-free systems which do not utilize living organisms. This report summarizes the progress and research accomplishments of the SERI Biomass Program during FY 1982.

Bergeron, P.W.; Corder, R.E.; Hill, A.M.; Lindsey, H.; Lowenstein, M.Z.

1983-02-01T23:59:59.000Z

184

Investigation of EPS Characteristics and their Effects on Waste Activated Sludge Digestion  

E-Print Network (OSTI)

be accomplished through use of aerobic or anaerobic self digestion, but choice of digestion type in practice to predict aerobic and anaerobic digestion potential. Future Work: · The anaerobic reactors are still running sludge. It performs only slightly better than the unsonicated sludge in anaerobic digestion

Mountziaris, T. J.

185

Biomass Producer or Collector Tax Credit (Oregon) | Open Energy...  

Open Energy Info (EERE)

or collectors of biomass. The credit can be used for eligible biomass used to produce biofuel; biomass used in facilities such as those producing electricity from anaerobic...

186

ENERGY ANALYSIS PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

Marine Biomass System: Anaerobic Digestion and Production ofMarine Biomass System: Anaerobic Digestion and Production ofS. Ghosh, "The Anaerobic Digestion of Macrocystic pyrifera

Various, Various,

2011-01-01T23:59:59.000Z

187

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

Marine Biomass System: Anaerobic Digestion and Production ofS. Ghosh, "The Anaerobic Digestion of Macrocystic plelferaMarine Biomass System: Anaerobic Digestion and Production of

Cairns, E.L.

2011-01-01T23:59:59.000Z

188

Method to Produce Highly Digestible, Pretreated ...  

Method to Produce Highly Digestible, Pretreated Lignocellulosic Biomass Using Anhydrous Liquid Ammonia Inventors: Shishir Chundawat, Leonardo Sousa, ...

189

Organic pollutants in Swiss compost and digestate.  

E-Print Network (OSTI)

??Composting (aerobic treatment of organic wastes) and digestion (anaerobic treatment of organic wastes combined with biogas production) are important waste management strategies with increasing significance… (more)

Brändli, Rahel Christine

190

Organic pollutants in Swiss compost and digestate.  

E-Print Network (OSTI)

??Composting (aerobic treatment of organic wastes) and digestion (anaerobic treatment of organic wastes combined with biogas production) are important waste management strategies with increasing significance… (more)

Brändli, Rahel Christine

2006-01-01T23:59:59.000Z

191

Distribution of microbial biomass and the potential for anaerobic respiration in Hanford Site 300 Area subsurface sediment  

Science Conference Proceedings (OSTI)

Subsurface sediments were recovered from a 52 m deep borehole cored in the 300 Area of the Hanford Site in southeastern Washington State to assess the potential for biogeochemical transformation of radionuclide contaminants. Microbial analyses were made on 17 sediment samples traversing multiple geological units: the oxic coarse-grained Hanford formation (9-17.4 m), the oxic fine-grained upper Ringold Formation (17.7-18.1 m), and the reduced Ringold Formation (18.3-52m). Microbial biomass (measured as phospholipid) ranged from 7-974 pmols per g in discrete samples, with the highest numbers found in the Hanford formation. On average, strata below 17.4 m had 13-fold less biomass than those from shallower strata. The nosZ gene encoding nitrous oxide reductase had an abundance of 5-17% relative to total 16S rRNA genes below 18.3 m and Hanford-Ringold formation contact and the Ringold oxic-anoxic interface. Within this zone, copies of the dsrA gene and Geobacteraceae had the highest relative abundance. The majority of dsrA genes detected near the interface were related to Desulfotomaculum sp.. These analyses indicate that the region just below the contact between the Hanford and Ringold formations is a zone of active biogeochemical redox cycling.

Lin, Xueju; Kennedy, David W.; Peacock, Aaron D.; McKinley, James P.; Resch, Charles T.; Fredrickson, Jim K.; Konopka, Allan

2012-02-01T23:59:59.000Z

192

Effect of biomass feedstock chemical and physical properties on energy conversion processes: Volume 1, Overview  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory has completed an initial investigation of the effects of physical and chemical properties of biomass feedstocks relative to their performance in biomass energy conversion systems. Both biochemical conversion routes (anaerobic digestion and ethanol fermentation) and thermochemical routes (combustion, pyrolysis, and gasification) were included in the study. Related processes including chemical and physical pretreatment to improve digestibility, and size and density modification processes such as milling and pelletizing were also examined. This overview report provides background and discussion of feedstock and conversion relationships, along with recommendations for future research. The recommendations include (1) coordinate production and conversion research programs; (2) quantify the relationship between feedstock properties and conversion priorities; (3) develop a common framework for evaluating and characterizing biomass feedstocks; (4) include conversion effects as part of the criteria for selecting feedstock breeding programs; and (5) continue emphasis on multiple feedstock/conversion options for biomass energy systems. 9 refs., 3 figs., 2 tabs.

Butner, R.S.; Elliott, D.C.; Sealock, L.J. Jr.; Pyne, J.W.

1988-12-01T23:59:59.000Z

193

Upflow anaerobic sludge blanket reactors for treatment of wastewater from the brewery industry  

E-Print Network (OSTI)

Anaerobic digestion can be utilized to convert industrial wastewater into clean water and energy. The goal of this project was to set up lab-scale anaerobic digesters to collect data that will be used to develop and validate ...

Scampini, Amanda C

2010-01-01T23:59:59.000Z

194

Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge  

E-Print Network (OSTI)

]. However, anaerobic digestion is not effective for nutrient removal and should be followed by a processLocation and chemical composition of microbially induced phosphorus precipitates in anaerobic different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic

Paris-Sud XI, Université de

195

NSERC-Laflche Industrial Research Chair Advanced Anaerobic Treatment  

E-Print Network (OSTI)

. LANDFILL BIOREACTORS EXSITU ANAEROBIC DIGESTION Apply stand alone reactor technology to digest solidNSERC- Laflèche Industrial Research Chair Advanced Anaerobic Treatment Residuals to Energy R2E 6133. 0 100 200 300 400 500 600 700 800 900 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Digestion Time

Petriu, Emil M.

196

Design and study of a risk management criterion for an unstable anaerobic wastewater  

E-Print Network (OSTI)

an unstable biological process used for wastewater treat- ment. This anaerobic digestion ecosystem can have steady-state to another. This is especially the case for the anaerobic digestion process: a more and more There exists numerous dynamical models for anaerobic digestion, from the basic ones considering only one

Bernard, Olivier

197

Long-term investigation of microbial fuel cells treating primary sludge or digested sludge  

E-Print Network (OSTI)

be comparable to anaerobic digesters. Direct electricity generation had a minor contribution to total energy potentially be used to polish the effluent from anaerobic digesters. Ã? 2013 Elsevier Ltd. All rights reserved, anaerobic digestion (AD) is generally preferred because of its cost- effectiveness and bioenergy production

198

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

hydro fuel cells, anaerobic digestion, and MSW incineration.Power Landfill Gas Anaerobic Digestion Biomass Gasificationlandfill gas, and anaerobic digestion. c - Study uses NEMS.

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

199

Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor  

E-Print Network (OSTI)

in the biological wastewater treatment performance and stability. Anaerobic digestion can be conducted., 2004). Earlier studies investigating effect of temperature on the anaerobic digestion process have of the mesophilic anaerobic digestion were re- cently studied (Chae et al., 2008). Some of the studies were only

Qin, Wensheng

200

Engine fuels from biomass  

SciTech Connect

Methods discussed for the conversion of biomass to engine fuels include the production of producer gas, anaerobic fermentation to give biogas, fermentation of sugars and starches to give EtOH, and the production of synthesis gas for conversion to MeOH or hydrocarbons. Also discussed are the suitability of these fuels for particular engines, biomass availability, and the economics of biomass-derived engine fuels.

Parker, H.W.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

A dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater treatment process  

E-Print Network (OSTI)

. The dynamics of this process are the ones of standard anaerobic digestion, and depend on the type of organic is devoted to the description of the model of the specific anaerobic digestion processA dynamic estimation scheme of specific growth rates of bacteria for an anaerobic wastewater

202

A survey of state clean energy fund support for biomass  

E-Print Network (OSTI)

to include bio-product gasification, combustion, co-firing,anaerobic digestion and gasification (“biogas”) electricityfeasibility of gasification of willow and agricultural

Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

2004-01-01T23:59:59.000Z

203

GMP - Biomass Electricity Production Incentive | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » GMP - Biomass Electricity Production Incentive GMP - Biomass Electricity Production Incentive < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate None Program Info Funding Source Cow Power tariff Start Date 10/2004 State Vermont Program Type Performance-Based Incentive Rebate Amount $0.04 per kWh Provider Green Mountain Power Corporation Green Mountain Power Corporation (GMP), Vermont's largest electric utility, offers a production incentive to farmers who own systems utilizing anaerobic digestion of agricultural products, byproducts or wastes to generate electricity. GMP purchases the renewable energy credits for up to $0.04 per kWh with full subscription of the GMP voluntary Cow Power tariff. Attributes associated with production in excess of voluntary customer

204

Complete genome sequences for the anaerobic, extremely thermophilic plant biomass-degrading bacteria Caldicellulosiruptor hydrothermalis, Caldicellulosiruptor kristjanssonii, Caldicellulosiruptor kronotskyensis, Caldicellulosiruptor owensenis, and Caldicellulosiruptor lactoaceticus  

Science Conference Proceedings (OSTI)

The genus Caldicellulosiruptor contains the most thermophilic, plant biomass-degrading bacteria isolated to date. Previously, genome sequences from three cellulolytic members of this genus were reported (C. saccharolyticus, C. bescii, and C. obsidiansis). To further explore the physiological and biochemical basis for polysaccharide degradation within this genus, five additional genomes were sequenced: C. hydrothermalis, C. kristjanssonii, C. kronotskyensis, C. lactoaceticus, and C. owensensis. Taken together, the seven completed and one draft-phase Caldicellulosiruptor genomes suggest that, while central metabolism is highly conserved, significant differences in glycoside hydrolase inventories and numbers of carbohydrate transporters exist, a finding which likely relates to variability observed in plant biomass degradation capacity.

Blumer-Schuette, Sara E. [North Carolina State University; Ozdemir, Inci [North Carolina State University; Mistry, Dhaval [North Carolina State University; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Walston Davenport, Karen [Los Alamos National Laboratory (LANL); Han, Cliff [Los Alamos National Laboratory (LANL); Adams, Michael W. W. [University of Georgia, Athens, GA; Kelly, Robert M [North Carolina State University

2011-01-01T23:59:59.000Z

205

Impact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian  

E-Print Network (OSTI)

is by either aerobic or anaerobic self-digestion, in which the bacteria consume their own mass. Currently are particular in their assistance of either aerobic or anaerobic digestion. Direct samples of activated sludgeImpact of EPS on Digestion of Waste Activate Sludge Thomas Gostanian Faculty Mentor: Professor Chul

Mountziaris, T. J.

206

Investigation of microalgae cultivation and anaerobic codigestion of algae and sewage sludge for wastewater treatment facilities.  

E-Print Network (OSTI)

??The main goals of this research are to investigate the anaerobic digestibility of algae and to investigate the effects of growth media on the growth… (more)

Wang, Meng

2013-01-01T23:59:59.000Z

207

State-of-the-art report on methane fermentation of biomass  

Science Conference Proceedings (OSTI)

Research and development on biogas have emphasized technologies for expediting natural methane generation from anaerobic digestion of biomass. This indepth study reviews the status of biogas technology in developing countries and assesses the feasibility and desirability of expanding biogas production. First, based on an extensive review of the literature, the principal technical, social, economic, and environmental issues associated with methane production from farm-and feedlot-scale biogas plants and from marine biomass, urban refuse, and landfill are delineated. The microbiological processes underlying anaerobic digestion and the influences of various environmental factors (e.g., mixing, heating, toxicity, pH, retention time, nutrients) on the digestion process are then described. Raw materials available for biogas, different biogas plant designs (e.g., Chinese, Indian, Philippine, and bag), and the maintenance, operation, and safety of biogas plants are discussed. Next, the composition, fuel value, and processing of biogas are examined; attention is also given to the uses of sludge by-products. The ecological, health, and sociocultural implications of constructing and operating biogas plants in developing countries are reviewed and the status of biogas technology is described. The authors conclude that in both developed and developing countries the energy value obtained through biogas generation is only slightly greater than the costs involved. Thus, a major factor in implementing biogas projects is reclamation of by-products for animal feed and fertilizer. In rural areas where kerosene is expensive and labor inexpensive, a very simple biogas system prod

Woods, S.L.; Vause, K.H.; Skrinde, R.T.

1980-09-01T23:59:59.000Z

208

Economic and kinetic studies of the production of chemicals and farm energy by fermentation of biomass  

DOE Green Energy (OSTI)

The farm energy system has been constructed in Drury, Missouri. The purpose of this unit is to demonstrate the feasibility of producing energy for farms (heat and electricity) from methane produced by anaerobic digestion of crop residues and other crop materials. The acid hydrolysis pre-treatment of corn stover studies utilize a two stage sulfuric acid contact. In the first stage, dilute sulfuric acid is used to hydrolyze the pentosan fraction of ground biomass. The second stage uses concentrated sulfuric acid for hexosan hydrolysis. The use of the two steps give high yields, possible with concentrated acid, without the problems of pentose decomposition.

Gaddy, J.L.

1979-01-01T23:59:59.000Z

209

Focus Area 2 - Biomass Deconstruction and Conversion : BioEnergy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deconstruction and Conversion BESC research in biomass deconstruction and conversion targets CBP by studying model organisms and thermophilic anaerobes to understand novel...

210

Ruminant digestion  

NLE Websites -- All DOE Office Websites (Extended Search)

Ruminant digestion Ruminant digestion Name: hignell Status: N/A Age: N/A Location: N/A Country: N/A Date: Around 1993 Question: How long it takes for the digestive process to work in a ruminant? With the various chambers and would digestion take longer than in other mammals? Replies: A friend in animal nutrition is looking up an exact figure, but as he does, here are a few guidelines: Time of digestion largely depends on the type of food an animal ingests: CARNIVORES: short, uncomplicated digestive systems. They eat very high on the food chain (other animals), which provide food stuff which is relatively easy to digest. Hence, rapid digestion. OMNIVORES: medium length, medium complex digestive systems. We eat at all levels of the food chain, and so need a balanced system. Medium time of digestion (roughly 2-10 hours per meal, depending on proportions of carbohydrates, fats, proteins).

211

Stabilization of a nonlinear anaerobic wastewater treatment model  

Science Conference Proceedings (OSTI)

A nonlinear anaerobic digester model of wastewater treatment plants is considered. The stabilizability of the dynamic system is studied and a continuous stabilizing feedback, depending only on an on-line measurable variable, is proposed. Computer simulations ...

Neli S. Dimitrova; Mikhail I. Krastanov

2005-06-01T23:59:59.000Z

212

Potential of biomass conversion in meeting the energy needs of the rural populations of developing countries: an overview  

DOE Green Energy (OSTI)

A preliminary assessment is presented of the contribution that biomass conversion could make in the context of the rural areas of six developing countries: India, Indonesia, Peru, Sudan, Tanzania, and Thailand. The technologies selected for analysis are: anaerobic digestion of wet biomass to produce methane and pyrolysis of dry biomass to produce charcoal, liquid fuels, and low-Btu gases. Preliminary estimates are made of the amounts of fuels that could be produced in each of the selected countries by a combination of these technologies. It was found that, with the exception of India, implementation of these technologies could potentially meet the future energy needs of their rural populations for both subsistence and development. (MHR)

Mubayi, V.; Lee, J.; Chatterjee, R.

1979-01-01T23:59:59.000Z

213

Casein whey as booster for anaerobic co-digestion of primary sludge : a thesis presented in partial fulfilment of the requirements for the degree of Master of Engineering in Environmental Engineering.  

E-Print Network (OSTI)

??Spare capacity found in many municipal primary sludge digesters could be used to improve the biogas production through the addition of other organic waste. This… (more)

Güttler, Johanna

2012-01-01T23:59:59.000Z

214

Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation  

E-Print Network (OSTI)

to reduce volume, remove pathogens, and to gain energy. Anaerobic digestion is by far the most commonRemoval of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation N treatment in a wastewater treatment plant. They therefore proceed directly to the anaerobic post treatment

215

An integrated system to remote monitor and control anaerobic wastewater treatment plants through the internet  

E-Print Network (OSTI)

and manages the problem. Keywords Anaerobic digestion, automation, control, fault detection and isolationAn integrated system to remote monitor and control anaerobic wastewater treatment plants through of the anaerobic wastewater treatment plants that do not benefit from a local expert in wastewater treatment

Bernard, Olivier

216

THE RUMEN ANAEROBIC FUNGI : COLONIZERS OF PLANT FIBRE Applied Biochemistry Division, DSIR, Palmerston North, New Zealand.  

E-Print Network (OSTI)

» fraction that the rumen anaerobic fungi are to be found. Digestion of cellulose and related plant fibrousTHE RUMEN ANAEROBIC FUNGI : COLONIZERS OF PLANT FIBRE T. BAUCHOP Applied Biochemistry Division, DSIR, Palmerston North, New Zealand. Large numbers of anaerobic phycomyce- tous fungi colonize plant

Recanati, Catherine

217

RCM Digesters | Open Energy Information  

Open Energy Info (EERE)

RCM Digesters RCM Digesters Jump to: navigation, search Name RCM Digesters Place Berkeley, California Zip CA 94704 Product Manufactures anaerobic manure digesters which process animal waste into biogas. Coordinates 38.748315°, -90.334929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.748315,"lon":-90.334929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

ENERGY RECOVERY COUNCIL WEEKLY UPDATE  

E-Print Network (OSTI)

such as (but not limited to) pyrolysis, biomass gasification, and anaerobic digestion. Responses to the RFI

219

http://www.hnei.hawaii.edu/ HAWAI`I NATURAL ENERGY INSTITUTE  

E-Print Network (OSTI)

-rate anaerobic digestion of liquid waste streams. Biochar from solid biomass waste with applications in co

220

BY BILL LONDON Building bridges. That summarizes David Lemak's  

E-Print Network (OSTI)

of underutilized dry biomass. Via anaerobic digestion and electri- cal generation of the collected biogas

Collins, Gary S.

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Net Metering (Utah) | Open Energy Information  

Open Energy Info (EERE)

Government, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration,...

222

NC GreenPower Production Incentive (North Carolina) | Open Energy...  

Open Energy Info (EERE)

Commercial, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, Hydroelectric,...

223

Net Metering (Arizona) | Open Energy Information  

Open Energy Info (EERE)

Commercial, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration,...

224

2003 Biomass Interest Group Annual Summary  

Science Conference Proceedings (OSTI)

The Biomass Interest Group (BIG) provides a special focus for biomass energy research through EPRI. This annual summary provides a description of BIG meetings and projects in 2003, research results on several key BIG topics (including gasification, digestion, and cofiring studies), and an overview of EPRI's biomass research program.

2004-03-25T23:59:59.000Z

225

Co-digestion of sewage sludge with glycerol to boost biogas production  

Science Conference Proceedings (OSTI)

The feasibility of adding crude glycerol from the biodiesel industry to the anaerobic digesters treating sewage sludge in wastewater treatment plants was studied in both batch and continuous experiments at 35 {sup o}C. Glycerol addition can boost biogas yields, if it does not exceed a limiting 1% (v/v) concentration in the feed. Any further increase of glycerol causes a high imbalance in the anaerobic digestion process. The reactor treating the sewage sludge produced 1106 {+-} 36 ml CH{sub 4}/d before the addition of glycerol and 2353 {+-} 94 ml CH{sub 4}/d after the addition of glycerol (1% v/v in the feed). The extra glycerol-COD added to the feed did not have a negative effect on reactor performance, but seemed to increase the active biomass (volatile solids) concentration in the system. Batch kinetic experiments showed that the maximum specific utilization rate ({mu}{sub max}) and the saturation constant (K{sub S}) of glycerol were 0.149 {+-} 0.015 h{sup -1} and 0.276 {+-} 0.095 g/l, respectively. Comparing the estimated values with the kinetics constants for propionate reported in the literature, it can be concluded that glycerol uptake is not the rate-limiting step during the process.

Fountoulakis, M.S., E-mail: mfountoul@steg.teiher.g [School of Agricultural Technology, Technological Educational Institute of Crete, Heraklion (Greece); Petousi, I.; Manios, T. [School of Agricultural Technology, Technological Educational Institute of Crete, Heraklion (Greece)

2010-10-15T23:59:59.000Z

226

Biogas-Fueled Distributed Generation: Three Manure Digester Case Studies  

Science Conference Proceedings (OSTI)

Biogas produced from the anaerobic digestion of livestock waste can provide electrical and thermal energy while solving environmental challenges, including waste management and greenhouse gas reduction. The three manure digester gas projects described in this report demonstrate the potential of such systems to provide co-generated power and heat.

2004-12-27T23:59:59.000Z

227

Operational experience from three full scale methane digesters  

Science Conference Proceedings (OSTI)

Three full scale anaerobic digesters are described and operational experience is discussed. The digesters are located in Monroe, Washington on a 200 head dairy; in Bartow, Florida on a 10,000 head feedlot; and in Bedford, Virginia on a 100 head dairy. 11 refs.

Coppinger, E.R.; Richter, M.

1981-01-01T23:59:59.000Z

228

Production and sale of energy and nutrients from a multi-farm digester  

Science Conference Proceedings (OSTI)

An investor-owned anaerobic digestion system was designed to process the wastes from several dairy farms totalling 900 cows. The resulting biogas will fuel a 97 KW engine-generator producing both electricity for sale to the utility, and waste heat for digester heating and supplemental greenhouse heating. The digested solids and liquids will be marketed as nursery soil and fertilizer, respectively.

Williams, D.W.; Howard, K.; Orrett, E.

1986-01-01T23:59:59.000Z

229

Final Report: Feasibility Study of Biomass in Snohomish County, Washington  

DOE Green Energy (OSTI)

This report and its attachments summarizes the results of a unique tribal-farmer cooperative study to evaluate the feasibility of building one or more regional anaerobic digestion systems in Snohomish County, Washington.

Daryl Williams (Tulalip Tribes); Ray Clark (Clark Group)

2005-01-31T23:59:59.000Z

230

Methane Digester Loan Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methane Digester Loan Program Methane Digester Loan Program Methane Digester Loan Program < Back Eligibility Agricultural Savings Category Bioenergy Maximum Rebate RFA can provide up to $250,000 of loan principal Program Info Funding Source Minnesota Rural Finance Authority (RFA) State Minnesota Program Type State Loan Program Rebate Amount RFA participation limited to 45% of loan principal Provider Minnesota Department of Agriculture Established in 1998, the Minnesota Dept. of Agriculture Methane Digester Loan Program helps livestock producers install on-farm anaerobic digesters used for the production of electricity by providing zero-interest loans to eligible borrowers. The loan program is part of the Rural Finance Authority (RFA) revolving loan fund, through which farmers can receive financial aid

231

Community Renewable Energy Success Stories: Community-Scale Anaerobic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community-Scale Community-Scale Anaerobic Digesters (text version) Community Renewable Energy Success Stories: Community-Scale Anaerobic Digesters (text version) Below is the text version of the webinar titled "Community-Scale Anaerobic Digesters," originally presented on April 16, 2013. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy. I'm Sarah Busche, and I'm here with Devin Egan, and we're broadcasting live from a very snowy National Renewable Energy Laboratory in Golden, Colorado. Thank you so much for joining us today. We're going to give folks a few minutes to call in and log on, but while we wait Devin will go over some logistics, and then we'll get started with

232

A REVIEW ON BIOMASS DENSIFICATION TECHNOLOGIE FOR ENERGY APPLICATION  

DOE Green Energy (OSTI)

The world is currently facing challenges to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is finding more uses as it is considered carbon neutral since the carbondioxide released during its use is already part of the carbon cycle (Arias et al., 2008). Increasing the utilization of biomass for energy can help to reduce the negative CO2 impact on the environment and help to meet the targets established in the Kyoto Protocol (UN, 1998). Energy from biomass can be produced from different processes like thermochemical (combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation) or chemical (esterification) where direct combustion can provide a direct near-term energy solution (Arias et al., 2008). Some of the inherent problems with raw biomass materials, like low bulk density, high moisture content, hydrophilic nature and low calorific value, limit the ease of use of biomass for energy purposes (Arias et al., 2008). In fact, due to its low energy density compared to fossil fuels, high volumes of biomass will be needed; adding to problems associated with storage, transportation and feed handling at a cogeneration plant. Furthermore, grinding biomass pulverizes, can be very costly and in some cases impractical. All of these drawbacks have given rise to the development of new technologies in order to increase the quality of biomass fuels. The purpose of the work is mainly in four areas 1) Overview of the torrefaction process and to do a literature review on i) Physical properties of torrefied raw material and torrefaction gas composition. 2) Basic principles in design of packed bed i) Equations governing the flow of material in packed bed ii) Equations governing the flow of the gases in packed bed iii) Effect of physical properties of the raw materials on the packed bed design 3) Design of packed bed torrefier of different capacities. 4) Development of an excel sheet for calculation of length and diameter of the packed bed column based on the design considerations.

JAYA SHANKAR TUMULURU; CHRISTOPHER T. WRIGHT

2010-08-01T23:59:59.000Z

233

Proceedings of the coordination meeting of contractors 'energy from biomass' (project E) (1st), held in Amsterdam on September 18-19, 1980 (Second Solar Energy R and D Programme, 1979-1983)  

Science Conference Proceedings (OSTI)

Experiments to produce energy by converting agricultural wastes and specially grown catch crops into methane and/or methanol are underway. Technical as well as economic aspects of the utilization of wood wastes and the application of short rotation forestry methods to provide material for energy production are being studied. Algae cultivated in offshore and land-based situations are being used for the production of hydrocarbon gases. Biological routes for the conversion of biomass through anaerobic digestion and a pilot-scale fermentation process for ethanol production are described. Thermochemical routes for converting biomass include combustion, gasification and catalytic processes. Participants concluded that Europe was among the leaders in biomass to methanol technology.

Not Available

1981-01-01T23:59:59.000Z

234

Digestion Simulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion Simulations Digestion Simulations Name: Lisa Location: N/A Country: N/A Date: N/A Question: My 5th grade students are beginning an experiment next week and their hypothesis involves edibility(edibleness?). Is there a way to replicate the stomach in, say, a bottle?? Are there ways to test for edibleness(?) without actually ingesting the experiment yourself? Replies: I would not recommend the idea of a bottle stomach. The stomach digests only proteins anyway with HCl [pH 1.0] which is very, very strong acid that will burn seriously if in contact with skin. The intestine is just as much responsible for digestion of lipids [bile], carbohydrates and remaining proteins using enzymes, many of these you do not want to be handling, let alone purchase. As a high school teacher, I have lab exercises dealing with digestion, but I can not recommend any of these unless you are set up with a functional science laboratory and all the safety equipment necessary.

235

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, bacillus smithii ATCC No. 55404.

Grady, James L. (Fayetteville, AR); Chen, Guang Jiong (Fayetteville, AR)

1998-01-01T23:59:59.000Z

236

Bioconversion of waste biomass to useful products  

DOE Patents (OSTI)

A process is provided for converting waste biomass to useful products by gasifying the biomass to produce synthesis gas and converting the synthesis gas substrate to one or more useful products. The present invention is directed to the conversion of biomass wastes including municipal solid waste, sewage sludge, plastic, tires, agricultural residues and the like, as well as coal, to useful products such as hydrogen, ethanol and acetic acid. The overall process includes the steps of gasifying the waste biomass to produce raw synthesis gas, cooling the synthesis gas, converting the synthesis gas to the desired product or products using anaerobic bioconversion, and then recovering the product or products. In accordance with a particular embodiment of the present invention, waste biomass is converted to synthesis gas containing carbon monoxide and, then, the carbon monoxide is converted to hydrogen by an anaerobic microorganism ERIH2, Bacillus smithii ATCC No. 55404. 82 figs.

Grady, J.L.; Chen, G.J.

1998-10-13T23:59:59.000Z

237

Avoiding the Haircut: Potential Ways to Enhance the Value of the USDA's Section 9006 Program  

E-Print Network (OSTI)

digesters at 33% and bioenergy projects at 11%. EfficiencyAnaerobic Digester Biomass – Bioenergy Geothermal – Directanaerobic digesters, and bioenergy, which together account

Bolinger, Mark

2006-01-01T23:59:59.000Z

238

Biomass Interest Group Meeting Summary, June 2004  

Science Conference Proceedings (OSTI)

EPRI's Biomass Interest Group (BIG) met June 29 and 30, 2004, at the offices of We Energies in Milwaukee, Wisconsin. This report summarizes the meeting, which included presentations on such topics as gasification, cofiring, waste digestion, and state legislation affecting the biomass energy industry. The BIG meets three times per year and its purpose is to evaluate, fund, discuss, and identify projects that produce power from biomass sources.

2004-09-29T23:59:59.000Z

239

Colonisation of the sheep rumen with polycentric anaerobic fungi isolated from cattle  

E-Print Network (OSTI)

Colonisation of the sheep rumen with polycentric anaerobic fungi isolated from cattle MW Phillips, GLR Gordon CSIRO Animal Production, Locked Bag 1, Blacktown, New South Wales 2148, Australia Anaerobic suggests that these organisms play an important role in the digestion of diets high in fibre (Gordon

Recanati, Catherine

240

Liquidization of dewatered organic sludge and anaerobic treatment  

SciTech Connect

Dewatered sewage sludge was thermochemically liquidized at 175 {degrees}C and the liquidized sludge was separated by centrifugation to 58% (w/w) supernatant and 42% precipitate. The amount of proteins in the liquidized sludge slightly decreased through the liquidization process, however, that of lipids increased. The supernatant separated from the sludge liquidized with dewatered sewage sludge was successfully anaerobically digested. Biogas yield from the supernatant from dewatered sewage sludge at organic loading concentrations of 1.9-2.2 g VS/l during 9 days incubation was 440 ml/g-added VS and digestion ratio was 66% (w/w). Biogas yield in the case of dewatered sewage sludge was 257 ml/g-added VS and digestion ratio was 45%. Similar results were obtained in the case of the anaerobically digested with sewage sludge and dewatered sludge. Anaerobic digestion of the supernatants from the liquidized sludges resulted in high biogas productivity and high digestion ratio compared with these of the original sludges. Moreover, the precipitates contained lower moisture, therefore, they can be incinerated easier than the respective original sludges.

Sawayama, Shigeki; Inoue, Seiichi; Ogi, Tomoko [National Institute for Resources and Environment, Tsukuba, Ibaraki (Japan)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

1988-10-01T23:59:59.000Z

242

High Throughput Pretreatment and Enzyme Hydrolysis of Biomass: Screening Recalcitrance in Large Sample Populations (Presentation)  

DOE Green Energy (OSTI)

Presentation on the execution of the first high-throughput thermochemical pretreatment/enzyme digestion pipeline for screening biomass for recalcitrance.

Decker, S. R.

2010-10-01T23:59:59.000Z

243

Biomass pretreatment  

SciTech Connect

A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

2013-05-21T23:59:59.000Z

244

Full scale field demonstration of unheated anaerobic contact stabilization. Project status report, October 1980-February 1981  

DOE Green Energy (OSTI)

The objective of the study reported here is to demonstrate that municipal sewage sludges can be anaerobically digested with little or no heating. To this end, two digesters at the Jackson Pike Wastewater Treatment Plant in Columbus, Ohio, have been converted to the anaerobic contact stabilization process. This, it is hoped, will permit positive and independent control of the solids retention time (SRT) in the system, so that solids may be retained long enough to ensure substantially complete digestion even at reduced temperatures. Digestion at a temperature of 71/sup 0/F and an SRT of 33 days produces results similar to digestion at a temperature of 91/sup 0/F and an SRT of 11 days. There is no evidence of impaired or unstable digestion at the lower temperature. (DMC)

Sykes, R.M.

1981-04-01T23:59:59.000Z

245

Compartmental anaerobic baffled reactor kinetic model for treatment of dilute aircraft deicing fluid  

Science Conference Proceedings (OSTI)

A four-compartment, anaerobic baffled reactor (ABR) incorporating granular sludge biomass (GSB) was operated at different hydraulic retention times (HRTs) in the range of 3 to 24 hours using dilute aircraft deicing fluid (ADF) with different chemical ... Keywords: anaerobic, baffled reactor, deicing fluid

Juan Marin; Kevin J. Kennedy; Cigdem Eskicioglu; Mohamed F. Hamoda

2007-08-01T23:59:59.000Z

246

Digestion time  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion time Digestion time Name: Don Mancosh Location: N/A Country: N/A Date: N/A Question: I have always given the rule of thumb in class that material we eat is with us for about 24 hours before exiting the body. The question arises about the time value of liquids. Getting a big coke prior to a 3 hour drive generally means that there will be a stop along the way. Is there a generalization made about liquids in the body similar to the one for solid food? Replies: A physician would give a better answer, but I hazard this: the only liquids which people consume (deliberately) in significant quantities are water, ethyl alcohol and various oils. Water and alcohol are absorbed on a time scale of seconds to minutes through the mouth, stomach and digestive tract. The oils are huge molecules, so I'd guess like any other greasy food they get absorbed in the upper digestive tract. Some of them, perhaps the longest and most nonpolar, are not absorbed at all --- cf. the old-time remedy of mineral oil for constipation --- so there should be some average time-before-what's-left-is-excreted such as you're looking for, and my (wild) guess is that it would not differ substantially from that for food. You can define an average lifetime in the body for alcohol, since the natural level is zero. Rough guidelines are widespread in the context of drunk driving laws. But this is not really possible for water. One's body is normally full up to the brim with water, and there's no way for the body to distinguish between water molecules recently absorbed and molecules that've been moping around since the Beatles split up. Thus the water entering the toilet bowl after the pit stop is not in general the same water as was in the big coke. If you were to consider for water just the average time between drinking and peeing, it would seem to depend strongly on how well hydrated the body was before the drink, and how much was drunk. During sustained heavy exertion in the sun and dry air one can easily drink a pint of water an hour without peeing at all. On the other hand, if one is willing to drink enough water fast enough, so as to establish a high excess of body water one can pee 8 ounces 15 minutes or less after drinking 8 ounces.

247

Sludge digester  

SciTech Connect

A ballasted, gas-holding, liquid sludge digester is described comprising: a main liquid sludge tank having a bottom wall and upwardly projecting sidewall; a cover having a top and depending side skirt structure which telescopes with respect to the upwardly projecting sidewall of the main tank; ballast supported near the lower edge of said side skirt; a ballast-engaging, liquid-containing well joined to said sidewall of said main tank such that said cover provides a gas-tight seal when said ballast interacts with liquid in said well so as to be partially emerged or fully submerged in the liquid; liquid fill means interacting with said well to maintain a predetermined liquid level in the well when said ballast is at least partially emerged from the liquid in said well; and overflow means interacting with said well to maintain a predetermined liquid level in the well when said ballast is submerged in the liquid in the well.

Wight, J.L.; Cook, L.W.

1993-08-24T23:59:59.000Z

248

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

Solvent Systems Catalystic Biomass Liquefaction Investigatereactor Product collection Biomass liquefaction process12-13, 1980 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,

Ergun, Sabri

2013-01-01T23:59:59.000Z

249

Biomass Technologies  

Energy.gov (U.S. Department of Energy (DOE))

There are many types of biomass—organic matter such as plants, residue from agriculture and forestry, and the organic component of municipal and industrial wastes—that can now be used to produce fuels, chemicals, and power. Wood has been used to provide heat for thousands of years. This flexibility has resulted in increased use of biomass technologies. According to the Energy Information Administration, 53% of all renewable energy consumed in the United States was biomass-based in 2007.

250

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

251

Treatment of Wine Distillery Wastewater Using an Anaerobic Moving Bed Biofilm Reactor with Low Density of Polyethylene Support  

Science Conference Proceedings (OSTI)

An anaerobic moving bed biofilm reactor filled with small and low density polyethylene support as biofilm carrier was operated to treat wine distillery wastewater for nearly 8 months. The support packed in the reactor is Bioflow 30 with density 0.92g/cm3 ... Keywords: Anaerobic digestion, moving bed biofilm reactor, low density polyethylene support, wine distillery wastewater

Chai Sheli; Rene Moletta

2010-03-01T23:59:59.000Z

252

Use of 18S-rRNA-targeted oligonucleotide probes for detection and quantification of anaerobic fungi  

E-Print Network (OSTI)

Use of 18S-rRNA-targeted oligonucleotide probes for detection and quantification of anaerobic fungi Clermont-Ferrand-Theix, 63122 Saint-Genès-Champanelle, France Strictly anaerobic fungi are natural the subject of numerous studies (Fonty and Joblin, 1991, in: Physio- logical aspects of digestion

Recanati, Catherine

253

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

254

Anaerobic thermophilic culture  

DOE Patents (OSTI)

A newly discovered thermophilic anaerobe is described that was isolated in a biologically pure culture and designated Thermoanaerobacter ethanolicus ATCC 3/550. T. Ethanolicus is cultured in aqueous nutrient medium under anaerobic, thermophilic conditions and is used in a novel process for producing ethanol by subjecting carbohydrates, particularly the saccharides, to fermentation action of the new microorganism in a biologically pure culture.

Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

1981-01-01T23:59:59.000Z

255

Hemicellulases from anaerobic thermophiles. Progress report  

DOE Green Energy (OSTI)

The longterm goal of this research effort is to obtain an anaerobic thermophilic bacterium that efficiently converts various hemicellulose-containing biomass to ethanol over a broad pH range. The strategy is to modify the outfit and regulation of the rate-limiting xylanases, glycosidases and xylan esterases in the ethanologenic, anaerobic thermophile Thermoanaerobacter ethanolicus, which grows between pH 4.5 and 9.5. Although it utilizes xylans, the xylanase, acetyl(xylan) esterase and O-methylglucuronidase activities in T. ethanolicus are barely measurable and regarded as the rate limiting steps in its xylan utilization. Thus, and also due to the presently limited knowledge of hemicellulases in anaerobic thermophiles, we characterize the hemicellulolytic enzymes from this and other anaerobic thermophiles as enzyme donors. Beside the active xylosidase/arabinosidase from T. ethanolicus, exhibiting the two different activities, we characterized 2 xylosidases, two acetyl(xylan) esterases, and an O-methylglucuronidase from Thermoanaerobacterium spec. We will continue with the characterization of xylanases from novel isolated slightly acidophilic, neutrophilic and slightly alkalophilic thermophiles. We have cloned, subcloned and partially sequenced the 165,000 Da (2 x 85,000) xylosidase/arabinosidase from T. ethanolicus and started with the cloning of the esterases from Thermoanaerobacterium spec. Consequently, we will develop a shuttle vector and continue to apply electroporation of autoplasts as a method for cloning into T. ethanolicus.

Wiegel, J.

1994-05-01T23:59:59.000Z

256

Edison Innovation Clean Energy Manufacturing Fund - Grants and...  

Open Energy Info (EERE)

Sector Commercial, Industrial Eligible Technologies Boilers, Central Air conditioners, Energy Mgmt. SystemsBuilding Controls, Furnaces, Lighting, Anaerobic Digestion, Biomass,...

257

New Jersey Renewable Energy Incentive Program (New Jersey) |...  

Open Energy Info (EERE)

Local Government, Multi-Family Residential, Nonprofit, Residential, Schools, State Government, Tribal Government Eligible Technologies Anaerobic Digestion, Biomass,...

258

Interconnection Guidelines (Alaska) | Open Energy Information  

Open Energy Info (EERE)

Fed. Government, Industrial, Institutional, Local Government, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, Geothermal Electric,...

259

Green Power Purchasing Commitment (Massachusetts) | Open Energy...  

Open Energy Info (EERE)

Green Power Purchasing Commitment Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration,...

260

Net Metering (New Hampshire) | Open Energy Information  

Open Energy Info (EERE)

Government, Industrial, Institutional, Local Government, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biodiesel, Biomass, CHP...

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MTC - Clean Energy Pre-Development Financing Initiative (Loans...  

Open Energy Info (EERE)

Government, State Government, Fed. Government Eligible Technologies Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion Active Incentive No Implementing Sector State...

262

Clean Cities: State of Maryland Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

purchasing 143 heavy duty hybrid trucks. His past projects include: anaerobic digestion, biomass combustiongasification, biodiesel consumptionproduction, ethanol consumption...

263

Clean Energy Procurement (Maryland) | Open Energy Information  

Open Energy Info (EERE)

Name Clean Energy Procurement Incentive Type Green Power Purchasing Applicable Sector State Government Eligible Technologies Anaerobic Digestion, Biomass, Landfill Gas,...

264

Commercial & Industrial Renewable Energy Grants (New Hampshire...  

Open Energy Info (EERE)

Institutional, Local Government, Multi-Family Residential, Nonprofit, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, Fuel Cells using...

265

Grid-Connected Renewables Program (New Jersey) | Open Energy...  

Open Energy Info (EERE)

Sector Commercial, Industrial, Institutional, Local Government, Nonprofit, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, Landfill Gas, Wind,...

266

Distributed Generation Standard Contracts | Open Energy Information  

Open Energy Info (EERE)

Local Government, Multi-Family Residential, Nonprofit, Residential, Schools, State Government Eligible Technologies Anaerobic Digestion, Biomass, Fuel Cells using...

267

Process for the treatment of lignocellulosic biomass  

Science Conference Proceedings (OSTI)

A process for the treatment of biomass to render structural carbohydrates more accessible and/or digestible using concentrated ammonium hydroxide with or without anhydrous ammonia addition, is described. The process preferably uses steam to strip ammonia from the biomass for recycling. The process yields of monosaccharides from the structural carbohydrates are good, particularly as measured by the enzymatic hydrolysis of the structural carbohydrates. The monosaccharides are used as animal feeds and energy sources for ethanol production.

Dale, Bruce E.; Lynd, Lee R.; Laser, Mark

2013-03-12T23:59:59.000Z

268

Metagenome of an Anaerobic Microbial Community Decomposing Poplar Wood Chips  

DOE Green Energy (OSTI)

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

van der Lelie, D.; Taghavi, S.; McCorkle, S. M.; Li, L. L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S. Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

2012-05-01T23:59:59.000Z

269

doi:10.1128/mBio.00159-11. mBio.Methanogenic Wastewater Digester Aggregates  

E-Print Network (OSTI)

portion of the TVS readily decomposes and forms biogas under anaerobic conditions. The remainder is gener solids content of the feedstock. Cow manure slurry at 5% solids content released up to 30% more biogas in a mesophilic anaerobic digester with an HRT of 28 d. Biogas yields ranged between 0.65 and 0.86 m3 kg-1 VS

Lovley, Derek

270

Anaerobic Digester Gas-to-Electricity Rebate and Performance Incentive  

Energy.gov (U.S. Department of Energy (DOE))

Note: This program is not currently accepting applications. Check back for updates regarding future solicitations.

271

Microbial Ecology of Thermophilic Anaerobic Digestion. Final Report  

DOE R&D Accomplishments (OSTI)

This grant supported research on methanogenic archaea. The two major areas that were supported were conversion of acetic acid to methane and nitrogen fixation by Methanosarcina. Among the achievements of this research were the isolation of novel methanogenic cultures, elucidation of the pathways from acetate to methane, description of a specific DNA-binding complex in nitrogen fixing methanogens, and demonstration of an alternative nitrogenase in Methanosarcina.

Zinder, Stephen H.

2000-04-15T23:59:59.000Z

272

Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion  

E-Print Network (OSTI)

in large amounts in coal and natural gas processing, petroleum industries, biogas production, and sewage

273

IMPROVING BIOGAS PRODUCTION BY ANAEROBIC DIGESTION OF DIFFERENT SUBSTRATES.  

E-Print Network (OSTI)

?? Global energy demand is rapidly increasing. In contrast, fossil fuel reserves are decreasing. Today, one of the major challenge is energy supply for the… (more)

Ertem, Funda Cansu

2011-01-01T23:59:59.000Z

274

Cost Analysis and Evaluation of Syngas Synthesis through Anaerobic Digestion.  

E-Print Network (OSTI)

??Synthetic fuel, which is generated from syngas via Fischer – Tropsch synthesis, provides the world with an alternative for conventional fossil energy resources. Generating syngas… (more)

Tong, Yun

2012-01-01T23:59:59.000Z

275

Russell Biomass | Open Energy Information  

Open Energy Info (EERE)

Russell Biomass Jump to: navigation, search Name Russell Biomass Place Massachusetts Sector Biomass Product Russell Biomass, LLC is developing a 50MW biomass to energy project at...

276

Star Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Jump to: navigation, search Name Star Biomass Place India Sector Biomass Product Plans to set up biomass projects in Rajasthan. References Star Biomass1 LinkedIn...

277

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Technologies Photo of a pair of hands...

278

Energy Basics: Biopower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Biofuels Biopower Anaerobic Digestion Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biopower Biopower is the production of...

279

Local Generation Limited | Open Energy Information  

Open Energy Info (EERE)

Limited Place United Kingdom Sector Biomass Product UK-based biomass firm developing anaerobic digestion plants. References Local Generation Limited1 LinkedIn Connections...

280

Insource Energy | Open Energy Information  

Open Energy Info (EERE)

search Name Insource Energy Place England, United Kingdom Sector Biomass Product The energy and waste management business provides biomass boilers and anaerobic digestion...

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Indiana | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Anaerobic Digestion Facilities and Biomass Gasification Facilities (Indiana) The Indiana Department of Environmental Management requires permits before the construction or...

282

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RISÃ? and DTU Anne Belinda Thomsen (RISÃ?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

283

Science Activities in Biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities in Biomass Curriculum: Biomass Power (organic chemistry, genetics, distillation, agriculture, chemicalcarbon cycles, climatology, plants and energy resources...

284

Anaerobic thermophilic culture system  

DOE Patents (OSTI)

A mixed culture system of the newly discovered microorganism Thermoanaerobacter ethanolicus ATCC31550 and the microorganism Clostridium thermocellum ATCC31549 is described. In a mixed nutrient culture medium that contains cellulose, these microorganisms have been coupled and cultivated to efficiently ferment cellulose to produce recoverable quantities of ethanol under anaerobic, thermophilic conditions.

Ljungdahl, Lars G. (Athens, GA); Wiegel, Jurgen K. W. (Gottingen, DE)

1981-01-01T23:59:59.000Z

285

RENEWABLE ENERGY SOURCES Antonia V. Herzog  

E-Print Network (OSTI)

Technologies and Applications 2.3.1. Combustion 2.3.2. Gasification 2.3.3. Anaerobic Digestion 2.3.4. Liquid. Anaerobic Digestion: Combustible gas called biogas produced from biomass through low temperature biological process of anaerobic (without air) digestion of organic material. Biomass: Organic, non-fossil material

Kammen, Daniel M.

286

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

E-Print Network (OSTI)

27 17. Anaerobic Digestion -29 18. Anaerobic Digestion - Municipal31 19. Anaerobic Digestion - Industrial

Bailey, Owen; Worrell, Ernst

2005-01-01T23:59:59.000Z

287

Schiller Biomass Con Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Schiller Biomass Con Biomass Facility Jump to: navigation, search Name Schiller Biomass Con Biomass...

288

Ware Biomass Cogen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Ware Biomass Cogen Biomass Facility Jump to: navigation, search Name Ware Biomass Cogen Biomass...

289

NREL: Biomass Research - Biomass Characterization Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Projects Biomass Characterization Projects A photo of a magnified image on a computer screen. Many blue specks and lines in different sizes and shapes are visible on top of a white background. A microscopic image of biomass particles. Through biomass characterization projects, NREL researchers are exploring the chemical composition of biomass samples before and after pretreatment and during processing. The characterization of biomass feedstocks, intermediates, and products is a critical step in optimizing biomass conversion processes. Among NREL's biomass characterization projects are: Feedstock/Process Interface NREL is working to understand the effects of feedstock and feedstock pre-processing on the conversion process and vice versa. The objective of the task is to understand the characteristics of biomass feedstocks

290

Full scale field demonstration of unheated anaerobic contact stabilization. Quarterly project status report, April-June 1980  

DOE Green Energy (OSTI)

The City of Columbus provided funds for the preliminary shakedown of the anaerobic contact stabilization system. During the shakedown period, the sludge recycle system was tested, and the temperature control system was refurbished. At temperatures as low as 82/sup 0/F there is no noticeable loss in gas production for SRT's over 14 days. Some of the preliminary data on the overflow and underflow liquors from unit 6E suggested that substantial amounts of VS were not settling in 6E and, consequently, were not being recycled. Therefore, an examination of the settleability of the transfer sludge (4E to 6E) is underway. Some typical preliminary results are shown. The occurence of gasification in the scum layer raises the issue of where the mathanogenic bacteria are to be found in the settler (6E). Some preliminary tests have been conducted to answer this question, and a typical set of results demonstrate the relative population densities of methanogens in scum and settled digested solids. It is clear that if scum is not retained in the system, significant losses of system biomass will occur via the settler overflow.

Sykes, R.M.

1980-08-01T23:59:59.000Z

291

CATALYTIC BIOMASS LIQUEFACTION  

E-Print Network (OSTI)

LBL-11 019 UC-61 CATALYTIC BIOMASS LIQUEFACTION Sabri Ergun,Catalytic Liquefaction of Biomass,n M, Seth, R. Djafar, G.of California. CATALYTIC BIOMASS LIQUEFACTION QUARTERLY

Ergun, Sabri

2013-01-01T23:59:59.000Z

292

CATALYTIC LIQUEFACTION OF BIOMASS  

E-Print Network (OSTI)

liquid Fuels from Biomass: "Catalyst Screening and KineticUC-61 (l, RCO osn CDL or BIOMASS CATALYTIC LIQUEFACTION ManuCATALYTIC LIQUEFACTION OF BIOMASS Manu Seth, Roger Djafar,

Seth, Manu

2012-01-01T23:59:59.000Z

293

Woody Biomass Supply Issues  

Science Conference Proceedings (OSTI)

Woody biomass is the feedstock for the majority of biomass power producers. Woody biomass consists of bark and wood and is generally obtained as a byproduct or waste product. Approximately 40% of timber biomass is left behind in the form of slash, consisting of tree tops, branches, and stems after a timber harvest. Collecting and processing this residue provides the feedstock for many utility biomass projects. Additional sources of woody biomass include urban forestry, right-of-way clearance, and trees k...

2011-03-31T23:59:59.000Z

294

NREL: Biomass Research - Biomass Characterization Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Characterization Capabilities Biomass Characterization Capabilities A photo of a man wearing a white lab coat and looking into a large microscope. A researcher uses an Atomic Force Microscope to image enzymes used in biochemical conversion. Through biomass characterization, NREL develops, refines, and validates rapid and cost-effective methods to determine the chemical composition of biomass samples before and after pretreatment, as well as during bioconversion processing. Detailed and accurate characterization of biomass feedstocks, intermediates, and products is a necessity for any biomass-to-biofuels conversion. Understanding how the individual biomass components and reaction products interact at each stage in the process is important for researchers. With a large inventory of standard biomass samples as reference materials,

295

Tracy Biomass Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Tracy Biomass Biomass Facility Tracy Biomass Biomass Facility Jump to: navigation, search Name Tracy Biomass Biomass Facility Facility Tracy Biomass Sector Biomass Location San Joaquin County, California Coordinates 37.9175935°, -121.1710389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9175935,"lon":-121.1710389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

296

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

297

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to… (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

298

Biomass pyrolysis for chemicals.  

E-Print Network (OSTI)

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

299

Biological conversion of biomass to methane. Quarterly progress report, September 1--November 30, 1978  

DOE Green Energy (OSTI)

The viability of wheat straw as a feedstock for methane production by anaerobic digestion was investigated and the results obtained compared with that obtained with corn stover. Poor conversion was obtained with the wheat straw under thermophilic conditions, but better than that obtained with corn. In addition the residue has no value as an animal feed. A mild thermochemical pretreatment of the corn prior to anaerobic digestion improved the conversion efficiency and the value of the residue as an animal feed. It is assumed that similar pretreatment of wheat straw would improve its conversion efficiency. Slurry and pumping characteristics of wheat straw particles were reported. (JSR)

Pfeffer, J T

1978-12-01T23:59:59.000Z

300

Turkey vs. human digestion  

NLE Websites -- All DOE Office Websites (Extended Search)

Turkey vs. human digestion Turkey vs. human digestion Name: wallyb Location: N/A Country: N/A Date: N/A Question: How is the digestive system of turkeys different from that of humans? Replies: Hmmm.. been a while since I had sophomore biology, so I can't completely answer this one, but I can say a few things. One, since turkeys are birds, and birds as a general rule have not had teeth for several million years at least, the turkey needs a way to mash up its food -- thus, the crop, which is essentially like another stomach: the turkey (and many other birds, for that matter) swallows small stones which serve in lieu of teeth, mashing up food via muscular action in the crop, from whence the "chewed" food moves on into the rest of the digestive tract. As for any other differences, I'll have to leave that to someone else with more ornithological experience...

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

2002-01-01T23:59:59.000Z

302

Steam Digest 2001  

SciTech Connect

Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

Not Available

2002-01-01T23:59:59.000Z

303

Anaerobic fermentation of simulated in-situ oil shale retort water  

DOE Green Energy (OSTI)

The feasibility of removing soluble organics from oil shale retort water by anaerobic digestion with methane production was experimentally investigated. The following conclusions were made. The retort water studied had to be pretreated to remove toxic and add deficient constituents before it could be successfully treated with the anaerobic fermentation process. Pretreatment included pH adjustment to 7, ammonia reduction, and nutrient addition. A digested sludge from a conventional municipal sewage treatment plant was successfully acclimated to the retort water studied. A major fraction of the organics in the retort water studied was stabilized by conversion to CH/sub 4/ and CO/sub 2/ using the anaerobic fermentation process. BOD/sub 5/ and COD removal efficiences were 76 to 80 percent. The effluent from anaerobic fermentation of the retort water studied (BOD/sub 5/ : 530 to 580 mg/l) may be suitable for treatment by conventional aerobic processes. The growth of the methane formers, which stabilize the organics, is nutrient limited in the retort water studied. The pretreatment of the retort water studied removed 49 percent of the BOD/sub 5/. This was probably due to the reduction in solubility of high molecular weight fatty acids at neutral pHs. A major component removed from the retort water studied during anaerobic fermentation was fatty acids. The long hydraulic residence time used in this study would not be used in practice.

Ossio, E.A.; Fox, J.P.; Thomas, J.F.; Poulson, R.E.

1977-11-01T23:59:59.000Z

304

Biomass treatment method  

DOE Patents (OSTI)

A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

Friend, Julie (Claymont, DE); Elander, Richard T. (Evergreen, CO); Tucker, III; Melvin P. (Lakewood, CO); Lyons, Robert C. (Arvada, CO)

2010-10-26T23:59:59.000Z

305

The metagenome of an anaerobic microbial community decomposing poplar wood chips  

DOE Green Energy (OSTI)

This study describes the composition and metabolic potential of a lignocellulosic biomass degrading community that decays poplar wood chips under anaerobic conditions. We examined the community that developed on poplar biomass in a non-aerated bioreactor over the course of a year, with no microbial inoculation other than the naturally occurring organisms on the woody material. The composition of this community contrasts in important ways with biomass-degrading communities associated with higher organisms, which have evolved over millions of years into a symbiotic relationship. Both mammalian and insect hosts provide partial size reduction, chemical treatments (low or high pH environments), and complex enzymatic 'secretomes' that improve microbial access to cell wall polymers. We hypothesized that in order to efficiently degrade coarse untreated biomass, a spontaneously assembled free-living community must both employ alternative strategies, such as enzymatic lignin depolymerization, for accessing hemicellulose and cellulose and have a much broader metabolic potential than host-associated communities. This would suggest that such a community would make a valuable resource for finding new catalytic functions involved in biomass decomposition and gaining new insight into the poorly understood process of anaerobic lignin depolymerization. Therefore, in addition to determining the major players in this community, our work specifically aimed at identifying functions potentially involved in the depolymerization of cellulose, hemicelluloses, and lignin, and to assign specific roles to the prevalent community members in the collaborative process of biomass decomposition. A bacterium similar to Magnetospirillum was identified among the dominant community members, which could play a key role in the anaerobic breakdown of aromatic compounds. We suggest that these compounds are released from the lignin fraction in poplar hardwood during the decay process, which would point to lignin-modification or depolymerization under anaerobic conditions.

van der Lelie D.; Taghavi, S.; McCorkle, S. M.; Li, L.-L.; Malfatti, S. A.; Monteleone, D.; Donohoe, B. S.; Ding, S.-Y.; Adney, W. S.; Himmel, M. E.; Tringe, S. G.

2012-05-01T23:59:59.000Z

306

Ionic-Liquid Induced Changes in Cellulose Structure Associated with Enhanced Biomass Hydrolysis  

DOE Green Energy (OSTI)

The effects of varying ionic liquid pretreatment parameters on various sources of lignocellulosic biomass have been studied using X-ray powder diffraction, X-ray fiber diffraction, and compositional analysis. Comparative enzymatic hydrolysis and sugar analysis were used to relate the observed changes in cellulose structure to biomass digestibility. In this study, the factor most clearly associated with enhanced biomass hydrolysis is the conversion of cellulose fibers from the cellulose I to the cellulose II crystal phase.

Samayam, Indira P.; Hanson, B. Leif; Langan, Paul; Schall, Constance A. (Toledo)

2011-11-07T23:59:59.000Z

307

Biomass Gasification and Methane Digester Property Tax Exemption...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amount 100% exemption from real and personal property taxes Michigan exempts certain energy production related farm facilities from real and personal property taxes. Among...

308

Waste-to-Energy Biomass Digester with Decreased Water Consumption  

Patent Informationreleases methane, a valuable fuel but also a greenhouse gas, and other pollu-Patent Pending; U. S. Provisional

309

Reading Comprehension - Digestion and Nutrition  

NLE Websites -- All DOE Office Websites (Extended Search)

Digestion and Nutrition Digestion and Nutrition 1. The pouchlike muscular organ that secretes acids and digestive enzymes is the _________ stomach esophagus intestines . 2. _________ saliva enzymes chime is the watery material that results form digestion in the stomach. 3. Iron, potassium, and iodine are _________ vitamins minerals amino acids . 4. The human body is about 60 percent _________ salt water nutrients . 5. The teeth break down food by _________ chemical digestion mechanical digestion . 6. _________ Teeth Your tongue Saliva in the mouth helps to chemically digest food. 7. _________ Mechanical digestion Chemical digestion takes place in the mouth, stomach, and small intestine with the help of chemicals called _________ amino acids vitamins enzymes . 8. Proteins are made up of smaller building blocks called _________

310

Woodland Biomass Power Ltd Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Woodland Biomass Power Ltd Biomass Facility Jump to: navigation, search Name Woodland Biomass Power...

311

Fibrominn Biomass Power Plant Biomass Facility | Open Energy...  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Fibrominn Biomass Power Plant Biomass Facility Jump to: navigation, search Name Fibrominn Biomass Power...

312

Anxiety and Digestion  

NLE Websites -- All DOE Office Websites (Extended Search)

Anxiety and Digestion Anxiety and Digestion Name: Donna Location: N/A Country: N/A Date: N/A Question: Explain how anxiety may be responsible for slowing down the process of digestion Replies: Your body really has 2 nervous systems. One is the peripheral nervous system that controls how you move and think etc. the other is called the autonomic (not automatic) nervous system It controls all of your everyday functions such as your heart, your blood vessel diameter and your digestive system, etc. There are 2 divisions of the ANS. One is called the parasympathetic and the other is the sympathetic. The parasympathetic is your everyday division, and is usually in control. When you come upon a stressful or dangerous situation, your sympathetic division takes over. It gets you ready to "fight or flee". Some parts of your body are put on alert. Your blood vessels constrict in some areas and dilate in others to get blood flowing to areas that will help you in a dangerous situation and to get glucose (fuel) to those areas quickly. Your heart starts to beat faster to send blood to those areas quicker, your pupils dilate. Other parts of your body are put on hold; those that aren't needed in a danger situation. Your digestive system is one that is put on hold. When you are under stress, your body doesn't know whether you are in danger or not but acts like it is. So if you are under constant stress, your digestive system is affected.

313

NREL: Biomass Research - Standard Biomass Analytical Procedures  

NLE Websites -- All DOE Office Websites (Extended Search)

in the pertinent LAPs. Workbooks are available for: Wood (hardwood or softwood) Corn stover (corn stover feedstock) Biomass hydrolyzate (liquid fraction produced from...

314

BIOMASS ENERGY CONVERSION IN HAWAII  

E-Print Network (OSTI)

Report, (unpublished, 1979). Biomass Project Progress 31.Operations, vol. 2 of Biomass Energy (Stanford: StanfordPhotosynthethic Pathway Biomass Energy Production," ~c:_! _

Ritschard, Ronald L.

2013-01-01T23:59:59.000Z

315

Optimization Online Digest -- August 2013  

E-Print Network (OSTI)

Optimization of running strategies based on anaerobic energy and variations of velocity. Amandine Aftalion, J. Frédéric Bonnans Convergence Analysis of DC ...

316

PalladianDigest Transportation  

E-Print Network (OSTI)

PalladianDigest CONNECT. EMPOWER. GROW. Tackling Transportation Challenges Nebraska has been a vital link in the nation's transportation system since the days when carts, wagons to University of Nebraska­Lincoln research. That's fine with UNL transportation researchers, said Larry Rilett

Farritor, Shane

317

Optimization Online Digest -- December 2012  

E-Print Network (OSTI)

Optimization Online Digest — December 2012. Applications ... Solving the integrated airline recovery problem using column-and-row generation. Stephen J  ...

318

Optimization Online Digest -- May 2013  

E-Print Network (OSTI)

Optimization Online Digest — May 2013. Applications — OR and Management Sciences Practical Multi-objective Programming Isaac Siwale Solution of ...

319

Optimization Online Digest -- September 2013  

E-Print Network (OSTI)

Optimization Online Digest — September 2013. Applications — OR and Management Sciences The Vehicle Platooning Problem: Computational Complexity and ...

320

Optimization Online Digest -- March 2013  

E-Print Network (OSTI)

Optimization Online Digest — March 2013. Applications — OR and Management Sciences Solution Methods for the Periodic Petrol Station Replenishment ...

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Optimization Online Digest -- April 2010  

E-Print Network (OSTI)

Optimization Online Digest — April 2010. Applications — OR and Management Sciences Scheduling Flexible Maintenance Activities subject to Job-Dependent ...

322

Biomass for Electricity Generation  

Reports and Publications (EIA)

This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

Zia Haq

2002-07-01T23:59:59.000Z

323

Biomass Energy Program  

Energy.gov (U.S. Department of Energy (DOE))

The Biomass Energy Program assists businesses in installing biomass energy systems. Program participants receive up to $75,000 in interest subsidy payments to help defray the interest expense on...

324

Small Modular Biomass Systems  

DOE Green Energy (OSTI)

Fact sheet that provides an introduction to small modular biomass systems. These systems can help supply electricity to rural areas, businesses, and people without power. They use locally available biomass fuels such as wood, crop waste, and animal manures.

Not Available

2002-12-01T23:59:59.000Z

325

TORREFACTION OF BIOMASS.  

E-Print Network (OSTI)

??Torrefaction is a thermo-chemical pre-treatment of biomass within a narrow temperature range from 200°C to 300°C, where mostly the hemicellulose components of a biomass depolymerise.… (more)

Dhungana, Alok

2011-01-01T23:59:59.000Z

326

Biomass One Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Facility Biomass One Sector Biomass Owner Biomass One LP Location White City, Oregon Coordinates 42.4333333°, -122.8338889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4333333,"lon":-122.8338889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

327

Biomass Cofiring Update 2002  

Science Conference Proceedings (OSTI)

Biomass is a renewable energy source. When cofired with coal in a plant that would normally fire 100% coal as the fuel, biomass becomes a renewable source of electricity—for that fraction of electricity that is generated from the biomass fraction of the heat in the fuel mix to the power plant. For electric power generation organizations that have coal-fired generation, cofiring biomass with coal will often be the lowest-cost form of renewable power.

2003-07-11T23:59:59.000Z

328

Original article Root biomass and biomass increment in a beech  

E-Print Network (OSTI)

Original article Root biomass and biomass increment in a beech (Fagus sylvatica L.) stand in North ­ This study is part of a larger project aimed at quantifying the biomass and biomass increment been developed to estimate the biomass and biomass increment of coarse, small and fine roots of trees

Recanati, Catherine

329

AVAILABLE NOW! Biomass Funding  

E-Print Network (OSTI)

AVAILABLE NOW! Biomass Funding Guide 2010 The Forestry Commission and the Humber Rural Partnership (co-ordinated by East Riding of Yorkshire Council) have jointly produced a biomass funding guide fuel prices continue to rise, and the emerging biomass sector is well-placed to make a significant

330

NREL: Biomass Research - Alexandre Chapeaux  

NLE Websites -- All DOE Office Websites (Extended Search)

biofuels with industrial partners. Alex's research areas of interest are: Integrated biomass processing High solids biomass conversion Fermentation development Separation...

331

DEVELOPMENT OF IMPROVED ANAEROBIC GROWTH OF BACILLUS MOJAVENSIS STRAIN JF-2 FOR THE PURPOSE OF IMPROVED ANAEROBIC BIOSURFACTANT PRODUCTION FOR ENHANCED OIL RECOVERY  

SciTech Connect

Our work focuses on the use of microorganisms to recover petroleum hydrocarbons that remain entrapped after current recovery technologies reach their economic limit. Capillary forces between the hydrocarbon and aqueous phases are largely responsible for trapping the hydrocarbons in the pores of the rock and large reductions in the interfacial tension between the hydrocarbon and aqueous phases are needed for hydrocarbon mobilization (1-3, 10, 11). Microorganisms produce a variety of biosurfactants (4), several of which generate the ultra low interfacial tensions needed for hydrocarbon mobilization (4, 5, 8). In particular, the lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 reduces the interfacial tension between hydrocarbon and aqueous phases to very low levels (<0.016 mN/m) (8) (9). B. mojavensis JF-2 grows under the environmental conditions found in many oil reservoirs, i. e., anaerobic, NaCl concentrations up to 80 g l{sup -1}, and temperatures up to 45 C (6, 7), making it ideally suited for in situ applications. However, anaerobic growth of B. mojavensis JF-2 was inconsistent and difficult to replicate, which limited its use for in situ applications. Our initial studies revealed that enzymatic digests, such as Proteose Peptone, were required for anaerobic growth of Bacillus mojavensis JF-2. Subsequent purification of the growth-enhancing factor in Proteose Peptone resulted in the identification of the growth-enhancing factor as DNA or deoxyribonucleosides. The addition of salmon sperm DNA, herring sperm DNA, E. coli DNA or synthetic DNA (single or double stranded) to Medium E all supported anaerobic growth of JF-2. Further, we found that JF-2 required all four deoxyribonucleosides (deoxyadeonosine, deoxyguanosine, deoxycytidine and thymidine) for growth under strict anaerobic conditions. The requirement for the deoxyribonucleosides did not occur under aerobic growth conditions. DNA was not used as a sole energy source; sucrose was required for anaerobic growth and biosurfactant production in DNA-supplemented Medium E. In addition to DNA or deoxyribonucleosides, nitrate, amino acids and vitamins were all required for anaerobic growth of JF-2. Bacillus mojavensisT (ABO21191), Bacillus mojavensis, strain ROB2 also required DNA or deoxyribonucleosides for anaerobic growth. The improved anaerobic growth of Bacillus mojavensis JF-2 was a prerequisite for studies that will lead to improved anaerobic biosurfactant production.

M.J. McInerney; M. Folmsbee; D. Nagle

2004-05-31T23:59:59.000Z

332

BNL | Biomass Burns  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Burn Observation Project (BBOP) Biomass Burn Observation Project (BBOP) Aerosols from biomass burning are recognized to perturb Earth's climate through the direct effect (both scattering and absorption of incoming shortwave radiation), the semi-direct effect (evaporation of cloud drops due to absorbing aerosols), and indirect effects (by influencing cloud formation and precipitation. Biomass burning is an important aerosol source, providing an estimated 40% of anthropogenically influenced fine carbonaceous particles (Bond, et al., 2004; Andrea and Rosenfeld, 2008). Primary organic aerosol (POA) from open biomass burns and biofuel comprises the largest component of primary organic aerosol mass emissions at northern temperate latitudes (de Gouw and Jimenez, 2009). Data from the IMPROVE

333

Refeeding biogas digester solids  

SciTech Connect

Biosolid, the digester residue from a biogas plant, must be of economical use to ensure the financial feasibility of biogas facilities. This paper sumarizes work performed for a Department of Energy study in the Imperial Valley of California. Feeding trials show that biosolid can only be used as a small proportion of feed rations. Apart from bacterial debris, biosolid is composed larely of non-nutritive residues. 5 refs.

Licht, L.A.

1981-01-01T23:59:59.000Z

334

Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass: Biomass: Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes. Other definitions:Wikipedia Reegle Traditional and Thermal Use of Biomass Traditional use of biomass, particularly burning wood, is one of the oldest manners in which biomass has been utilized for energy. Traditional use of biomass is 14% of world energy usage which is on the same level as worldwide electricity usage. Most of this consumption comes from developing countries where traditional use of biomass accounts for 35% of primary energy usage [1] and greater than 75% of primary energy use is in the residential sector. The general trend in developing countries has been a

335

Understanding Biomass Feedstock Variability  

SciTech Connect

If the singular goal of biomass logistics and the design of biomass feedstock supply systems is to reduce the per ton supply cost of biomass, these systems may very well develop with ultimate unintended consequences of highly variable and reduced quality biomass feedstocks. This paper demonstrates that due to inherent species variabilities, production conditions, and differing harvest, collection, and storage practices, this is a very real scenario that biomass producers and suppliers as well as conversion developers should be aware of. Biomass feedstock attributes of ash, carbohydrates, moisture, and particle morphology will be discussed. We will also discuss specifications for these attributes, inherent variability of these attributes in biomass feedstocks, and approaches and solutions for reducing variability for improving feedstock quality.

Kevin L. Kenney; William A. Smith; Garold L. Gresham; Tyler L. Westover

2013-01-01T23:59:59.000Z

336

Integrated Bioprocess for Carbon Dioxide Mitigation and Acidic ...  

Science Conference Proceedings (OSTI)

The process has versatility in that a portion of the harvested biomass can be anaerobically digested for energy rich biogas. Proceedings Inclusion? Definite: ...

337

DOE Green Energy (R&D Results) Data Service | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

technical reports, STI, OSTI, DOE, renewable energy, hydroelectricity, biomass, biogas, anaerobic digestion Dataset Ratings Overall 0 No votes yet Data Utility 0 No votes...

338

Industry  

E-Print Network (OSTI)

cycle Black liquor gasification combined cycle RecycledAnaerobic gas digestion, Gasification Do Not Cite or Quotesee Section 7.3.7), biomass gasification, or electrolysis of

Bernstein, Lenny

2008-01-01T23:59:59.000Z

339

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebates The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and...

340

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and farms that...

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alliant Energy Interstate Power and Light - Business and Farm...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of system cost The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and...

342

Enabling a Transition to Low Carbon Economies in Developing Countries...  

Open Energy Info (EERE)

Imperial College-London Sector: Energy, Climate Focus Area: Energy Efficiency, Biomass, - Waste to Energy, - Anaerobic Digestion, Solar, - Concentrating Solar Power, - Solar PV,...

343

Biofuel potential, nitrogen utilization, and growth rates of two green algae isolated from a wastewater treatment facility.  

E-Print Network (OSTI)

??Nitrogen removal from wastewater by algae provides the additional benefit of producing lipids for biofuel and biomass for anaerobic digestion. As ammonium is the renewable… (more)

Eustance, Everett O'Brien.

2011-01-01T23:59:59.000Z

344

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and farms that are...

345

Agricultural Improvement Loan Program (Minnesota) | Open Energy...  

Open Energy Info (EERE)

Loan Program Applicable Sector Agricultural Eligible Technologies Anaerobic Digestion, Biomass, Wind Active Incentive Yes Implementing Sector StateTerritory Energy Category...

346

Focus on Energy - Renewable Energy Incentives for Nonprofits...  

Open Energy Info (EERE)

Sector Commercial, Nonprofit Eligible Technologies Solar Water Heat, Photovoltaics, Wind, Biomass, Anaerobic Digestion Active Incentive No Implementing Sector StateTerritory...

347

Renewable Energy Grant Program (Alaska) | Open Energy Information  

Open Energy Info (EERE)

Sector Commercial, Local Government, Tribal Government, Utility, Only Available for In-State Projects Eligible Technologies Anaerobic Digestion, Biomass, CHPCogeneration, Fuel...

348

Alliant Energy Interstate Power and Light- Business and Farm Renewable Energy Rebates  

Energy.gov (U.S. Department of Energy (DOE))

The Alliant Energy Renewable Cash-Back Rewards program offers rebates for solar photovoltaics (PV), wind, renewable biomass, and anaerobic digesters. Businesses and farms that are Alliant Energy...

349

Removal of polychlorinated phenols in sequential anaerobic-aerobic biofilm reactors packed with tire chips  

Science Conference Proceedings (OSTI)

Scrap vehicle tire chips were used as packing material for sequential anaerobic-aerobic biofilm reactors to remove persistent chlorinated hydrocarbons. Adsorption capacity of scrap tires was greater under acidic conditions than under basic conditions. However, it was only approximately 0.04 to 0.3% of that of activated carbon. The amount of biomass that attached to the surface of scrap tires was 3.16 and 3.72 mg volatile suspended solids/cm{sup 2} after 14 and 37 days, respectively. Two laboratory-scale, down-flow anaerobic-aerobic biofilm reactors packed with tire chips were operated to remove 2,4-dichlorophenol (DCP) and 4-chlorophenol (CP). More than 98% of DCP was dehalogenated to CP in the anaerobic reactor, 70 to 98% of which was subsequently degraded in the aerobic reactor. Scrap tires did not cause any operational problems when used as biofilter media.

Shin, H.S.; Yoo, K.S.; Park, J.K.

1999-05-01T23:59:59.000Z

350

Experimental co-digestion of corn stalk and vermicompost to improve biogas production  

SciTech Connect

Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

Chen Guangyin [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Zheng Zheng, E-mail: zzhenghj@fudan.edu.c [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China); Department of Environmental Science and Engineering, Fudan University, Shanghai 200433 (China); Yang Shiguan [National Engineering Laboratory of Biomass Power Generation Equipment, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Fang Caixia; Zou Xingxing; Luo Yan [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093 (China)

2010-10-15T23:59:59.000Z

351

NREL: Biomass Research - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities Capabilities A photo of a series of large metal tanks connected by a network of pipes. Only the top portion of the tanks is visible above the metal floor grate. Each tank has a round porthole on the top. Two men examine one of the tanks at the far end of the floor. Sugars are converted into ethanol in fermentation tanks. This ethanol is then separated, purified, and recovered for use as a transportation fuel. NREL biomass researchers and scientists have strong capabilities in many facets of biomass technology that support the cost-effective conversion of biomass to biofuels-capabilities that are in demand. The NREL biomass staff partners with other national laboratories, academic institutions, and commercial entities at every stage of the biomass-to-biofuels conversion process. For these partners, our biomass

352

Complex pendulum biomass sensor  

DOE Patents (OSTI)

A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

2007-12-25T23:59:59.000Z

353

Biomass for Electricity Generation - Table 9  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 9. Biomass-Fired Electricity Generation ...

354

Biomass for Electricity Generation - Table 3  

U.S. Energy Information Administration (EIA)

Modeling and Analysis Papers> Biomass for Electricity Generation : Biomass for Electricity Generation. Table 3. Biomass Resources by Price: Quantities ...

355

Optimization Online Digest -- June 2012  

E-Print Network (OSTI)

Optimization Online Digest — June 2012. Applications — OR and ... A new warmstarting strategy for the primal-dual column generation method. Jacek Gondzio ...

356

Optimization Online Digest -- January 2013  

E-Print Network (OSTI)

Optimization Online Digest — January 2013. Applications — OR and Management Sciences A two-step optimization approach for job shop scheduling problem ...

357

Biomass Cofiring Handbook  

Science Conference Proceedings (OSTI)

This handbook has been prepared as a 147how tomanual for those interested in biomass cofiring in cyclone- or pulverized-coal-fired boilers. It contains information regarding all aspects of biomass cofiring, including biomass materials and procurement, handling, storage, pulverizing, feeding, gaseous emissions, ash handling, and general economics. It relies on actual utility experience over the past many years from plants mainly in the United States, but some experience also in Europe and Australia. Many ...

2009-11-05T23:59:59.000Z

358

Biomass Gasification Syngas Cleanup  

Science Conference Proceedings (OSTI)

In December 2012, the Electric Power Research Institute (EPRI) published report 1023994, Engineering and Economic Evaluation of Biomass Gasification, prepared by CH2M HILL Engineers, Inc. (CH2M HILL). It provided a global overview of commercially available biomass gasification technologies that can be used for power production in the 25- to 50-MWe range. The report provided detailed descriptions of biomass gasification technologies, typical operational parameters, emissions information, and ...

2013-12-23T23:59:59.000Z

359

Biomass Cofiring Guidelines  

Science Conference Proceedings (OSTI)

Biomass, primarily wood waste such as sawdust, has been cofired in over twenty utility coal-fired boilers in the United States at cofiring levels where the biomass provides from 1% to 10% of the heat input to the boiler. These guidelines present insights and conclusions from five years of EPRI assessment and testing of biomass cofiring and will enable utility engineers and power plant managers to evaluate their own options and plan their own tests.

1997-10-09T23:59:59.000Z

360

Advanced Biomass Gasification Projects  

DOE Green Energy (OSTI)

DOE has a major initiative under way to demonstrate two high-efficiency gasification systems for converting biomass into electricity. As this fact sheet explains, the Biomass Power Program is cost-sharing two scale-up projects with industry in Hawaii and Vermont that, if successful, will provide substantial market pull for U.S. biomass technologies, and provide a significant market edge over competing foreign technologies.

Not Available

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Biomass Gasification Technology Commercialization  

Science Conference Proceedings (OSTI)

Reliable cost and performance data on biomass gasification technology is scarce because of limited experience with utility-scale gasification projects and the reluctance of vendors to share proprietary information. The lack of this information is a major obstacle to the implementation of biomass gasification-based power projects in the U.S. market. To address this problem, this report presents four case studies for bioenergy projects involving biomass gasification technologies: A utility-scale indirect c...

2010-12-10T23:59:59.000Z

362

Hydrogen production from biomass .  

E-Print Network (OSTI)

??Biomass energy encompasses a broad category of energy derived from plants and animals as well as the residual materials from each. Hydrogen gas is an… (more)

Hahn, John J.

2006-01-01T23:59:59.000Z

363

NREL: Biomass Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Spectrometer analyzes vapors during the gasification and pyrolysis processes. NREL's biomass projects are designed to advance the production of liquid transportation fuels from...

364

Co-firing biomass  

SciTech Connect

Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

2009-11-15T23:59:59.000Z

365

Biomass Processing Photolibrary  

DOE Data Explorer (OSTI)

Research related to bioenergy is a major focus in the U.S. as science agencies, universities, and commercial labs seek to create new energy-efficient fuels. The Biomass Processing Project is one of the funded projects of the joint USDA-DOE Biomass Research and Development Initiative. The Biomass Processing Photolibrary has numerous images, but there are no accompanying abstracts to explain what you are seeing. The project website, however, makes available the full text of presentations and publications and also includes an exhaustive biomass glossary that is being developed into an ASAE Standard.

366

Florida Biomass Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Florida Biomass Energy, LLC Place Florida Sector Biomass Product Florida-based biomass project developer. References Florida Biomass Energy, LLC1 LinkedIn Connections CrunchBase...

367

Anaerobic microbial dissolution of lead and production of organic acids  

DOE Patents (OSTI)

The present invention relates to a method of solubilizing lead, in the form of lead oxide, found in industrial wastes, before these wastes are dumped into the environment. The lead is solubilized by dissolving the lead oxide in the wastes through contact with an anaerobic bacterial culture containing the bacterium ATCC No. 53464. The solubilized lead can then be removed from the wastes by chemical separation. It could also be removed by extending the contact period with the bacterial culture. As the culture grows, the solubilized lead is removed from the wastes by bioaccumulation by the microorganism or by immobilization by a polymer-like material produced by the microorganism. At this point, the lead is then removed from the wastes when the waste material is separated from the bacterial culture. If desired, the bacterial culture could be digested at this point to yield relatively pure lead for further industrial use.

Francis, A.J.; Dodge, C.; Chendrayan, K.

1986-02-28T23:59:59.000Z

368

Original article Digestibility, blood levels of nutrients  

E-Print Network (OSTI)

abomasal emptying of fat and probably protein. Apparent faecal nitrogen digestibility was lower ( P5 0 and render them very digestible. digestion / skin response / preruminant calf / soyabean / lupin Résumé

Recanati, Catherine

369

The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative  

DOE Green Energy (OSTI)

The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem

Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

2009-03-31T23:59:59.000Z

370

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY) .......................................................................... 91 Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass) ......................................................................................................................... 111 Appendix 12: Biomass to Energy Project Team, Committee Members, and Project Advisors

371

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY to treatment prescriptions and anticipated outputs of sawlogs and biomass fuel? How many individual operations biomass fuel removed. Typically in plantations. 50% No harvest treatment

372

biomass | OpenEI  

Open Energy Info (EERE)

biomass biomass Dataset Summary Description Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA). Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated August 01st, 2010 (4 years ago) Keywords 2008 biomass consumption industrial sector Data application/vnd.ms-excel icon industrial_biomass_energy_consumption_and_electricity_2008.xls (xls, 27.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

373

Greenhouse gases emissions accounting for typical sewage sludge digestion with energy utilization and residue land application in China  

Science Conference Proceedings (OSTI)

Highlights: Black-Right-Pointing-Pointer GHGs emissions from sludge digestion + residue land use in China were calculated. Black-Right-Pointing-Pointer The AD unit contributes more than 97% of total biogenic GHGs emissions. Black-Right-Pointing-Pointer AD with methane recovery is attractive for sludge GHGs emissions reduction. - Abstract: About 20 million tonnes of sludge (with 80% moisture content) is discharged by the sewage treatment plants per year in China, which, if not treated properly, can be a significant source of greenhouse gases (GHGs) emissions. Anaerobic digestion is a conventional sewage sludge treatment method and will continue to be one of the main technologies in the following years. This research has taken into consideration GHGs emissions from typical processes of sludge thickening + anaerobic digestion + dewatering + residue land application in China. Fossil CO{sub 2}, biogenic CO{sub 2}, CH{sub 4,} and avoided CO{sub 2} as the main objects is discussed respectively. The results show that the total CO{sub 2}-eq is about 1133 kg/t DM (including the biogenic CO{sub 2}), while the net CO{sub 2}-eq is about 372 kg/t DM (excluding the biogenic CO{sub 2}). An anaerobic digestion unit as the main GHGs emission source occupies more than 91% CO{sub 2}-eq of the whole process. The use of biogas is important for achieving carbon dioxide emission reductions, which could reach about 24% of the total CO{sub 2}-eq reduction.

Niu Dongjie, E-mail: niudongjie@tongji.edu.cn [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); UNEP-Tongji Institute of Environment for Sustainable Development, 1239 Siping Road, Shanghai 200092 (China); Huang Hui [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); Dai Xiaohu [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China); National Engineering Research Center for Urban Pollution Control, Shanghai 200092 (China); Zhao Youcai [Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering of Tongji University, 1239 Siping Road, Shanghai 200092 (China)

2013-01-15T23:59:59.000Z

374

Anaerobic treatment of sludge from a nitrification-denitrification landfill leachate plant  

Science Conference Proceedings (OSTI)

The viability of anaerobic digestion of sludge from a MSW landfill leachate treatment plant, with COD values ranging between 15,000 and 19,400 mg O{sub 2} dm{sup -3}, in an upflow anaerobic sludge blanket reactor was studied. The reactor employed had a useful capacity of 9 l, operating at mesophilic temperature. Start-up of the reactor was carried out in different steps, beginning with diluted sludge and progressively increasing the amount of sludge fed into the reactor. The study was carried out over a period of 7 months. Different amounts of methanol were added to the feed, ranging between 6.75 and 1 cm{sup 3} dm{sup -3} of feed in order to favour the growth of methanogenic flora. The achieved biodegradation of the sludge using an upflow anaerobic sludge blanket Reactor was very high for an HRT of 9 days, obtaining decreases in COD of 84-87% by the end of the process. Purging of the digested sludge represented {approx}16% of the volume of the treated sludge.

Maranon, E. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain)]. E-mail: emara@uniovi.es; Castrillon, L. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, Y. [Chemical and Environmental Engineering Department, Higher Polytechnic School of Engineering, University of Oviedo, Campus of Viesques, 33204 Gijon (Spain); Fernandez, E. [COGERSA, 33697 Serin, Gijon (Spain)

2006-07-01T23:59:59.000Z

375

NREL: Biomass Research Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

and green algae and gas bubbles can be seen floating in the liquid. Through biomass research, NREL is developing technologies to convert biomass-plant matter such as...

376

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY study. The Biomass to Energy (B2E) Project is exploring the ecological and economic consequences

377

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY Citation: USDA Forest Service, Pacific Southwest Research Station. 2009. Biomass to Energy: Forest

378

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and continuously between the earth's biomass and atmosphere. From a greenhouse gas perspective, forest treatments

379

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY .................................................................................... 33 3.3 BIOMASS POWER PLANT OPERATION MODELS AND DATA

380

Multi-functional biomass systems.  

E-Print Network (OSTI)

??Biomass can play a role in mitigating greenhouse gas emissions by substituting conventional materials and supplying biomass based fuels. Main reason for the low share… (more)

Dornburg, Veronika

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Optimization Online Digest -- April 2007  

E-Print Network (OSTI)

Modeling and Simulation of Metabolic Networks for Estimation of Biomass ... A Robust Branch-Cut-and-Price Algorithm for the Heterogeneous Fleet Vehicle ...

382

Hydropyrolysis of biomass  

DOE Green Energy (OSTI)

The pyrolysis and hydropyrolysis of biomass was investigated. Experimental runs using the biomass (Poplar wood sawdust) were performed using a tubular reactor of dimensions 1 inch inside diameter and 8 feet long heated at a temperature of 800 C and pressures between 450 and 750 psig. At low heat-up rate the reaction precedes in two steps. First pyrolysis takes place at temperatures of 300 to 400 c and subsequent hydropyrolysis takes place at 700 C and above. This is also confirmed by pressurized thermogravimetric analysis (PTGA). Under conditions of rapid heat-up at higher temperatures and higher hydrogen pressure gasification and hydrogasification of biomass is especially effective in producing carbon monoxide and methane. An overall conversion of 88 to 90 wt % of biomass was obtained. This value is in agreement with the previous work of flash pyrolysis and hydropyrolysis of biomass for rapid heat-up and short residence time. Initial rates of biomass conversion indicate that the rate increases significantly with increase in hydrogen pressure. At 800 C and 755 psig the initial rate of biomass conversion to gases is 0.92 1/min.

Kobayashi, Atsushi; Steinberg, M.

1992-01-01T23:59:59.000Z

383

Model calibration and validation for OFMSW and sewage sludge co-digestion reactors  

SciTech Connect

Highlights: > Disintegration is the limiting step of the anaerobic co-digestion process. > Disintegration kinetic constant does not depend on the waste particle size. > Disintegration kinetic constant depends only on the waste nature and composition. > The model calibration can be performed on organic waste of any particle size. - Abstract: A mathematical model has recently been proposed by the authors to simulate the biochemical processes that prevail in a co-digestion reactor fed with sewage sludge and the organic fraction of municipal solid waste. This model is based on the Anaerobic Digestion Model no. 1 of the International Water Association, which has been extended to include the co-digestion processes, using surface-based kinetics to model the organic waste disintegration and conversion to carbohydrates, proteins and lipids. When organic waste solids are present in the reactor influent, the disintegration process is the rate-limiting step of the overall co-digestion process. The main advantage of the proposed modeling approach is that the kinetic constant of such a process does not depend on the waste particle size distribution (PSD) and rather depends only on the nature and composition of the waste particles. The model calibration aimed to assess the kinetic constant of the disintegration process can therefore be conducted using organic waste samples of any PSD, and the resulting value will be suitable for all the organic wastes of the same nature as the investigated samples, independently of their PSD. This assumption was proven in this study by biomethane potential experiments that were conducted on organic waste samples with different particle sizes. The results of these experiments were used to calibrate and validate the mathematical model, resulting in a good agreement between the simulated and observed data for any investigated particle size of the solid waste. This study confirms the strength of the proposed model and calibration procedure, which can thus be used to assess the treatment efficiency and predict the methane production of full-scale digesters.

Esposito, G., E-mail: giovanni.esposito@unicas.it [Department of Mechanics, Structures and Environmental Engineering, University of Cassino, via Di Biasio 43, 03043 Cassino (Italy); Frunzo, L., E-mail: luigi.frunzo@unina.it [Department of Mathematics and Applications Renato Caccioppoli, University of Naples Federico II, via Cintia, Monte S. Angelo, I-80126 Naples (Italy); Panico, A., E-mail: anpanico@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy); Pirozzi, F., E-mail: francesco.pirozzi@unina.it [Department of Hydraulic, Geotechnical and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125 Naples (Italy)

2011-12-15T23:59:59.000Z

384

Cayuga County Regional Digester - Vision Becomes Reality - Final Report  

Science Conference Proceedings (OSTI)

With an average herd size of 113 mature cows, Cayuga County is home to 280 dairy farms and 31,500 dairy milking cows producing approximately 855 million gallons of milk per year. The Cayuga Dairy industry is a major contributor to the countys economy, employing nearly 1200 people, while generating $140,000,000 of revenue from sale of milk alone. At the same time, the Cayuga County dairy industry also produces 5.7 million gallons of manure daily: a) Nearly 34% of this manure is produced on smaller farms. b) Digesters are expensive pieces of equipment and require attention and care. c) The on-farm digester systems have fairly long payback (>10 years) even for larger CAFO farms (>1000 milking cows). In 2005, Cayuga County Soil and Water Conservation District (The District), a Public Agency under Cayuga County, decided to undertake a centralized community digester project. The primary goal of the project was to develop an economically sustainable model, under the auspices of The District to address manure management issues facing the smaller dairies, improve the water quality and improve the quality of life for Cayuga County residents. It is believed that the District has accomplished this goal by completing construction of Cayuga County Regional Digester on a parcel of land behind the Cayuga County Natural Resource Center located at 7413 County House Road in the Town of Sennett in Cayuga County, New York. The digester facility consists of the following major components. 1. Transfer Station: This an indoor truck bay, where 35,000 gallons of manure from three local farms, 8,500 gallons of liquid organic food-processor waste, and 1,200 gallons of brown grease are unloaded from tanker trucks and the digested slurry is loaded onto the tanker trucks for delivery back to the participating farms. 2. Anaerobic Digester: The project utilizes a hydraulic mix anaerobic digester, a unique design that has no internal moving parts for mixing. The digester, which operates at mesophilic temperatures, is designed to process the daily feedstock and produce 220,000 SCF2 of biogas per day. The digester also produces 44,000 gallons of digested slurry per day. 3. Biogas Conditioning System: The plant employs a biological biogas conditioning system to remove the H2S and moisture contents of the biogas and prepare it to be used by the plant generation system. 4. Combined Heat and Power System (CHP): This is a 633kW high efficiency biogas-fired GE-Jenbacher model JMS-312 GS-NL reciprocating engine cogeneration system. The heat recovery system incorporated into the package is designed to capture the waste heat from the engine exhaust, the jacket cooling water and the engine oil circuit. 5. Electrical Substation and Power Distribution Systems: An electrical distribution system has been constructed on-site that aggregates the electrical service of the different county buildings on the District campus into a county owned electric distribution system that is interconnected with the CHP and the local electric grid. The electrical system is designed, in accordance with the utility guidelines, to allow grid-parallel operation of CHP and provide for import and export of electric power. 6. Thermal Energy Distribution System: The heat recovery system has been integrated into a high temperature water distribution system that distributes the heat to the thermal circuits for the anaerobic digester facility. Additional piping has also been installed to transfer the remaining thermal energy to other county buildings on the campus. On a daily basis, the plant will co-process 35,000 gallons of manure from local dairy farms, 8,500 gallons of food-processor waste and 1,200 gallons of brown grease to produce 200,000 ft3/d of biogas and 44,000 gallons of pathogen-free nutrient-rich digested slurry for agricultural use by farms and in the local area. The biogas fueled CHP produces 5,157,000 kWh of electricity and 19,506 dekatherms of thermal energy per year. Electrical power generated by the cogeneration system powers all the buildings on the Cayuga County campus an

Kamyar V. Zadeh, Ph.D.; Blue Electron Technology Solutions International LLC

2013-03-12T23:59:59.000Z

385

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

386

OpenEI - biomass  

Open Energy Info (EERE)

Industrial Biomass Industrial Biomass Energy Consumption and Electricity Net Generation by Industry and Energy Source, 2008 http://en.openei.org/datasets/node/827 Biomass energy consumption and electricity net generation in the industrial sector by industry and energy source in 2008. This data is published and compiled by the U.S. Energy Information Administration (EIA).

License
Type of License: 

387

Development and Application of Advanced Models for Steam Hydrogasification: Process Design and Economic Evaluation  

E-Print Network (OSTI)

of carbohydrates (anaerobic digestion) and liquefaction ofvia combustion or anaerobic digestion. The geographicmethane produced by anaerobic digestion and biodiesel

Lu, Xiaoming

2012-01-01T23:59:59.000Z

388

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions Control Science & Technology Hangzhou, China May 28-30, 2008 Overview  Introduction  Technical approach  Experiments on chemical looping combustion of biomass  Conclusions Climate change is a result of burning too much coal, oil and gas.... We need to capture CO 2 in any way ! Introduction CCS is the world's best chance to have a major & immediate impact on CO 2 emission reduction Introduction Introduction  Biomass is renewable energy with zero CO 2 emission  A way to capture CO 2 from biomass ?  If so, a quick way to reduce CO 2 content in the atmosphere Normal combustion

389

Biomass | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy » Energy » Biomass Biomass Learn how the Energy Department is working to sustainably transform the nation's abundant renewable resources into biomass energy. Featured Energy 101 | Algae-to-Fuel A behind-the-scenes video of how oil from algae is extracted and refined to create clean, renewable transportation fuel. Oregon Hospital Heats Up with a Biomass Boiler Using money from the Recovery Act, Blue Mountain Hospital replaced one of its 1950s crude oil boilers with a wood-pellet boiler -- saving the hospital about $100,000 a year in heating costs. | Photo courtesy of the Oregon Department of Energy. Highlighting how a rural Oregon hospital was able to cut its heating bills while stimulating the local economy. Ceres: Making Biofuels Bigger and Better A Ceres researcher evaluates the performance of biofuel crops. | Photo courtesy of Ceres, Inc.

390

Energy Basics: Biomass Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic matter such as plants, residue from...

391

CLC of biomass  

NLE Websites -- All DOE Office Websites (Extended Search)

Developments on Chemical Looping Combustion of Biomass Laihong Shen Jiahua Wu Jun Xiao Rui Xiao Southeast University Nanjing, China 2 th U.S. - China Symposium on CO 2 Emissions...

392

BIOMASS ACTION PLAN FOR SCOTLAND  

E-Print Network (OSTI)

BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

393

Flash hydrogenation of biomass  

DOE Green Energy (OSTI)

It is proposed to obtain process chemistry information on the rapid hydrogenation of biomass (wood and other agricultural products) to produce light liquid and gaseous hydrocarbon fuels and feedstocks. The process is referred to as Flash Hydropyrolysis. The information will be of use in the design and evaluation of processes for the conversion of biomass to synthetic fuels and petrochemical feedstocks. Results obtained in an initial experiment are discussed.

Steinberg, M

1980-01-01T23:59:59.000Z

394

Biomass cogeneration. A business assessment  

DOE Green Energy (OSTI)

This guide serves as an overview of the biomass cogeneration area and provides direction for more detailed analysis. The business assessment is based in part on discussions with key officials from firms that have adopted biomass cogeneration systems and from organizations such as utilities, state and federal agencies, and banks that would be directly involved in a biomass cogeneration project. The guide is organized into five chapters: biomass cogeneration systems, biomass cogeneration business considerations, biomass cogeneration economics, biomass cogeneration project planning, and case studies.

Skelton, J.C.

1981-11-01T23:59:59.000Z

395

Dynamic estimation of specific growth rates and concentrations of bacteria for the  

E-Print Network (OSTI)

for specific growth rates and biomass concentrations of the anaerobic digestion process. A 3-stage model of 5. INTRODUCTION Anaerobic digestion is a biotechnological process with a promising capabilities for solving someDynamic estimation of specific growth rates and concentrations of bacteria for the anaerobic

Paris-Sud XI, Université de

396

Biomass Power Association (BPA) | Open Energy Information  

Open Energy Info (EERE)

Biomass Power Association (BPA) Biomass Power Association (BPA) Jump to: navigation, search Tool Summary Name: Biomass Power Association (BPA) Agency/Company /Organization: Biomass Power Association Sector: Energy Focus Area: Biomass, - Biomass Combustion, - Biomass Gasification, - Biomass Pyrolysis, - Biofuels Phase: Determine Baseline, Evaluate Options, Develop Goals Resource Type: Guide/manual User Interface: Website Website: www.usabiomass.org Cost: Free References: Biomass Power Association[1] The website includes information on biomass power basics, renewable electricity standards, and updates on legislation affecting biomass power plants. Overview "The Biomass Power Association is the nation's leading organization working to expand and advance the use of clean, renewable biomass

397

Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Resources Overview Biomass Resources Overview and Perspectives on Best Fits for Fuel Cells Darlene Steward, NREL Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012 2 Objective * Identify the primary opportunities and challenges for producing and utilizing methane from renewable resources o Biogas from digestion of: - Manure Management - Wastewater Treatment - Food Processing o Landfill gas 3 Bio-energy Pathways; Three Broad Categories of Products Biomass to liquid fuels pathways Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009 Biomass to bioproducts pathways 4 Energy Product Pathway is the Focus of this Workshop Biomass to electricity and/or heat pathways Focus on * Landfill gas * Wastewater treatment sludge * Animal manure * Food processing Source; EPA, NREL, State Bioenergy Primer, Sept. 15, 2009

398

Browse wiki | Open Energy Information  

Open Energy Info (EERE)

http:www.in.govlegislativeiccodetitle13ar20ch10.5.html + IncentiveImplSector StateProvince + IncentiveName Biomass Anaerobic Digestion Facilities and Biomass...

399

NREL: Biomass Research - Projects in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects in Biomass Process and Sustainability Analyses Projects in Biomass Process and Sustainability Analyses Researchers at NREL use biomass process and sustainability analyses to understand the economic, technical, and global impacts of biomass conversion technologies. These analyses reveal the economic feasibility and environmental benefits of biomass technologies and are useful for government, regulators, and the private sector. NREL's Energy Analysis Office integrates and supports the energy analysis functions at NREL. Among NREL's projects in biomass process and sustainability analyses are: Life Cycle Assessment of Energy Independence and Security Act for Ethanol NREL is determining the life cycle environmental impacts of the ethanol portion of the Energy Independence and Security Act (EISA). EISA mandates

400

November 2011 Model documentation for biomass,  

E-Print Network (OSTI)

1 November 2011 Model documentation for biomass, cellulosic biofuels, renewable of Education, Office of Civil Rights. #12;3 Contents Biomass.....................................................................................................................................................4 Variables in the biomass module

Noble, James S.

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Successful biomass (wood pellets ) implementation in  

E-Print Network (OSTI)

Successful biomass (wood pellets ) implementation in Estonia Biomass Utilisation of Local in Estonia in 1995 - 2002 Regional Energy Centres in Estonia http://www.managenergy.net/conference/biomass

402

Florida Biomass Energy Consortium | Open Energy Information  

Open Energy Info (EERE)

Consortium Jump to: navigation, search Name Florida Biomass Energy Consortium Place Florida Sector Biomass Product Association of biomass energy companies. References Florida...

403

Haryana Biomass Power Ltd | Open Energy Information  

Open Energy Info (EERE)

Haryana Biomass Power Ltd Jump to: navigation, search Name Haryana Biomass Power Ltd. Place Mumbai, Haryana, India Zip 400025 Sector Biomass Product This is a JV consortium between...

404

Algae Biomass Summit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Algae Biomass Summit Algae Biomass Summit September 30, 2013 12:00PM EDT to October 3, 2013 12:00PM EDT Algae Biomass Summit...

405

PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION  

E-Print Network (OSTI)

UC-61 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.10093 PRETREATMENT OF BIOMASS PRIOR TO LIQUEFACTION Larry L.hydrolytic pretreatment to biomass feedstocks, higher acid

Schaleger, Larry L.

2012-01-01T23:59:59.000Z

406

Category:Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass category. Pages in category "Biomass" This category contains only the following page. B Biomass Scenario Model Retrieved from "http:en.openei.orgwindex.php?titleCatego...

407

Tribal Renewable Energy Curriculum Foundational Course: Biomass...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Tribal Renewable Energy Curriculum Foundational Course: Biomass Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar on biomass renewable...

408

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network (OSTI)

Biofuels, LLC  UCSD Biomass to Power  Economic Feasibility Figure 1: West Biofuels Biomass Gasification to Power rates..……………………. ……31  UCSD Biomass to Power ? Feasibility 

Cattolica, Robert

2009-01-01T23:59:59.000Z

409

Hebei Jiantou Biomass Power | Open Energy Information  

Open Energy Info (EERE)

Jiantou Biomass Power Jump to: navigation, search Name Hebei Jiantou Biomass Power Place Jinzhou, Hebei Province, China Zip 50000 Sector Biomass Product A company engages in...

410

Chowchilla Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Chowchilla Biomass Facility Jump to: navigation, search Name Chowchilla Biomass Facility Facility Chowchilla Sector Biomass Owner London Economics Location Chowchilla, California...

411

Wheelabrator Saugus Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Saugus Biomass Facility Jump to: navigation, search Name Wheelabrator Saugus Biomass Facility Facility Wheelabrator Saugus Sector Biomass Facility Type Municipal Solid...

412

Benchmarking Biomass Gasification Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Gasification Technologies for Biomass Gasification Technologies for Fuels, Chemicals and Hydrogen Production Prepared for U.S. Department of Energy National Energy Technology Laboratory Prepared by Jared P. Ciferno John J. Marano June 2002 i ACKNOWLEDGEMENTS The authors would like to express their appreciation to all individuals who contributed to the successful completion of this project and the preparation of this report. This includes Dr. Phillip Goldberg of the U.S. DOE, Dr. Howard McIlvried of SAIC, and Ms. Pamela Spath of NREL who provided data used in the analysis and peer review. Financial support for this project was cost shared between the Gasification Program at the National Energy Technology Laboratory and the Biomass Power Program within the DOE's Office of Energy Efficiency and Renewable Energy.

413

YEAR 2 BIOMASS UTILIZATION  

DOE Green Energy (OSTI)

This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from cofiring coal with waste paper, sunflower hulls, and wood waste showed a broad spectrum of chemical and physical characteristics, according to American Society for Testing and Materials (ASTM) C618 procedures. Higher-than-normal levels of magnesium, sodium, and potassium oxide were observed for the biomass-coal fly ash, which may impact utilization in cement replacement in concrete under ASTM requirements. Other niche markets for biomass-derived fly ash were explored. Research was conducted to develop/optimize a catalytic partial oxidation-based concept for a simple, low-cost fuel processor (reformer). Work progressed to evaluate the effects of temperature and denaturant on ethanol catalytic partial oxidation. A catalyst was isolated that had a yield of 24 mole percent, with catalyst coking limited to less than 15% over a period of 2 hours. In biodiesel research, conversion of vegetable oils to biodiesel using an alternative alkaline catalyst was demonstrated without the need for subsequent water washing. In work related to biorefinery technologies, a continuous-flow reactor was used to react ethanol with lactic acid prepared from an ammonium lactate concentrate produced in fermentations conducted at the EERC. Good yields of ester were obtained even though the concentration of lactic acid in the feed was low with respect to the amount of water present. Esterification gave lower yields of ester, owing to the lowered lactic acid content of the feed. All lactic acid fermentation from amylose hydrolysate test trials was completed. Management activities included a decision to extend several projects to December 31, 2003, because of delays in receiving biomass feedstocks for testing and acquisition of commercial matching funds. In strategic studies, methods for producing acetate esters for high-value fibers, fuel additives, solvents, and chemical intermediates were discussed with several commercial entities. Commercial industries have an interest in efficient biomass gasification designs but are waiting for economic incentives. Utility, biorefinery, pulp and paper, or o

Christopher J. Zygarlicke

2004-11-01T23:59:59.000Z

414

Sustainable Biomass Supply Systems  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) aims to displace 30% of the 2004 gasoline use (60 billion gal/yr) with biofuels by 2030 as outlined in the Energy Independence and Security Act of 2007, which will require 700 million tons of biomass to be sustainably delivered to biorefineries annually. Lignocellulosic biomass will make an important contribution towards meeting DOE’s ethanol production goals. For the biofuels industry to be an economically viable enterprise, the feedstock supply system (i.e., moving the biomass from the field to the refinery) cannot contribute more that 30% of the total cost of the biofuel production. The Idaho National Laboratory in collaboration with Oak Ridge National Laboratory, University of California, Davis and Kansas State University are developing a set of tools for identifying economical, sustainable feedstocks on a regional basis based on biorefinery siting.

Erin Searcy; Dave Muth; Erin Wilkerson; Shahab Sokansanj; Bryan Jenkins; Peter Titman; Nathan Parker; Quinn Hart; Richard Nelson

2009-04-01T23:59:59.000Z

415

APS Biomass I Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

APS Biomass I Biomass Facility APS Biomass I Biomass Facility Jump to: navigation, search Name APS Biomass I Biomass Facility Facility APS Biomass I Sector Biomass Location Arizona Coordinates 34.0489281°, -111.0937311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0489281,"lon":-111.0937311,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Research on Common Biomass Pyrolysis Production of Biomass ...  

Science Conference Proceedings (OSTI)

Textural parameters analysis revealed the caloric value of biomass carbons between 32 MJ/kg and 34 MJ/kg. It also indicated that the surface of biomass carbon ...

417

Minimally refined biomass fuel  

DOE Patents (OSTI)

A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

Pearson, Richard K. (Pleasanton, CA); Hirschfeld, Tomas B. (Livermore, CA)

1984-01-01T23:59:59.000Z

418

Fixed Bed Biomass Gasifier  

DOE Green Energy (OSTI)

The report details work performed by Gazogen to develop a novel biomass gasifier for producimg electricity from commercially available hardwood chips. The research conducted by Gazogen under this grant was intended to demonstrate the technical and economic feasibility of a new means of producing electricity from wood chips and other biomass and carbonaceous fuels. The technical feasibility of the technology has been furthered as a result of the DOE grant, and work is expected to continue. The economic feasibility can only be shown when all operational problems have been overocme. The technology could eventually provide a means of producing electricity on a decentralized basis from sustainably cultivated plants or plant by-products.

Carl Bielenberg

2006-03-31T23:59:59.000Z

419

Biofuels Digest | Open Energy Information  

Open Energy Info (EERE)

Digest Digest Jump to: navigation, search Name Biofuels Digest Address 801 Brickell Avenue Suite 900 Place Miami, Florida Zip 33131 Sector Services Product Information Year founded 2007 Number of employees 1-10 Phone number 786-393-8530 Website http://www.biofuelsdigest.com Coordinates 25.765653°, -80.190405° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25.765653,"lon":-80.190405,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

ABSTRACT The Texas Panhandle is regarded as the â??Cattle Feeding Capital of the Worldâ?, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFOâ??s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Wacoâ??the primary source of potable water for Wacoâ??s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 â?? Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 â?? Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and Califor

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

SciTech Connect

The Texas Panhandle is regarded as the 'Cattle Feeding Capital of the World', producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure/year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO's), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco - the primary source of potable water for Waco's 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 - Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 - Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological and Agricultural Engineering Department (BAEN) College Station; and West Texas A and M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass) and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys at 14 dairies in Texas and California, cofiring of low quality CB with high quality coal, emission results and ash fouling beh

Kalyan Annamalai, John M. Sweeten, Brent W. Auvermann, Saqib Mukhtar, Sergio Caperada Cady R. Engler, Wyatte Harman Reddy JN Robert Deotte

2012-05-03T23:59:59.000Z

422

RENEWABLE ENERGY AND ENVIRONMENTAL SUSTAINABILITY USING BIOMASS FROM DAIRY AND BEEF ANIMAL PRODUCTION  

Science Conference Proceedings (OSTI)

The Texas Panhandle is regarded as the �Cattle Feeding Capital of the World�, producing 42% of the fed beef cattle in the United States within a 200-mile radius of Amarillo generating more than 5 million tons of feedlot manure /year. Apart from feedlots, the Bosque River Region in Erath County, just north of Waco, Texas with about 110,000 dairy cattle in over 250 dairies, produces 1.8 million tons of manure biomass (excreted plus bedding) per year. While the feedlot manure has been used extensively for irrigated and dry land crop production, most dairies, as well as other concentrated animal feeding operations (CAFO�s), the dairy farms utilize large lagoon areas to store wet animal biomass. Water runoff from these lagoons has been held responsible for the increased concentration of phosphorus and other contaminates in the Bosque River which drains into Lake Waco�the primary source of potable water for Waco�s 108,500 people. The concentrated animal feeding operations may lead to land, water, and air pollution if waste handling systems and storage and treatment structures are not properly managed. Manure-based biomass (MBB) has the potential to be a source of green energy at large coal-fired power plants and on smaller-scale combustion systems at or near confined animal feeding operations. Although MBB particularly cattle biomass (CB) is a low quality fuel with an inferior heat value compared to coal and other fossil fuels, the concentration of it at large animal feeding operations can make it a viable source of fuel. The overall objective of this interdisciplinary proposal is to develop environmentally benign technologies to convert low-value inventories of dairy and beef cattle biomass into renewable energy. Current research expands the suite of technologies by which cattle biomass (CB: manure, and premature mortalities) could serve as a renewable alternative to fossil fuel. The work falls into two broad categories of research and development. Category 1 � Renewable Energy Conversion. This category addressed mostly in volume I involves developing. Thermo-chemical conversion technologies including cofiring with coal, reburn to reduce nitrogen oxide (NO, N2O, NOx, etc.) and Hg emissions and gasification to produce low-BTU gas for on-site power production in order to extract energy from waste streams or renewable resources. Category 2 � Biomass Resource Technology. This category, addressed mostly in Volume II, deals with the efficient and cost-effective use of CB as a renewable energy source (e.g. through and via aqueous-phase, anaerobic digestion or biological gasification). The investigators formed an industrial advisory panel consisting fuel producers (feedlots and dairy farms) and fuel users (utilities), periodically met with them, and presented the research results; apart from serving as dissemination forum, the PIs used their critique to red-direct the research within the scope of the tasks. The final report for the 5 to 7 year project performed by an interdisciplinary team of 9 professors is arranged in three volumes: Vol. I (edited by Kalyan Annamalai) addressing thermo-chemical conversion and direct combustion under Category 1 and Vol. II and Vol. III ( edited by J M Sweeten) addressing biomass resource Technology under Category 2. Various tasks and sub-tasks addressed in Volume I were performed by the Department of Mechanical Engineering (a part of TEES; see Volume I), while other tasks and sub-tasks addressed in Volume II and IIII were conducted by Texas AgriLife Research at Amarillo; the TAMU Biological & Agricultural Engineering Department (BAEN) College Station; and West Texas A&M University (WTAMU) (Volumes II and III). The three volume report covers the following results: fuel properties of low ash and high ash CB (particularly DB) and MB (mortality biomass and coals, non-intrusive visible infrared (NVIR) spectroscopy techniques for ash determination, dairy energy use surveys a

John M. Sweeten, Kalyan Annamalai Brent Auvermann Saqib Mukhtar Sergio C. Capareda Cady Engler Wyatte Harman J.N. Reddy, Robert DeOtte David B. Parker Dr. B.A. Stewart

2012-05-02T23:59:59.000Z

423

DIGESTER GAS - FUEL CELL - PROJECT  

DOE Green Energy (OSTI)

GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

2002-03-01T23:59:59.000Z

424

Biomass Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Technologies August 14, 2013 - 11:31am Addthis Photo of a pair of hands holding corn stover, the unused parts of harvested corn. There are many types of biomass-organic...

425

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY and dead vegetative material that have been removed from the landscape (either sent as biomass to the power

426

ENERGY FROM BIOMASS AND  

E-Print Network (OSTI)

integrated- gasifier steam-injected gasturbine (BIGISTIG) cogenerationsystemsis carried out here. A detailed!l!ledin a companionpaperprepared for this conference. 781 #12;BIOMASS-GASIFIER ~.INJECTED GAS TURBINE COGENERA110N FOR THE CANE). Biomassintegrated-gasifier/steam-injectedgas-turbine (BIG/STIG) cogenerationtechnologyand prospectsfor its use

427

3, 503539, 2006 Biomass OSSEs  

E-Print Network (OSTI)

OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al. Title Page Abstract Introduction Conclusions for biomass assimilation G. Crispi, M. Pacciaroni, and D. Viezzoli Istituto Nazionale di Oceanografia e di Correspondence to: G. Crispi (gcrispi@ogs.trieste.it) 503 #12;OSD 3, 503­539, 2006 Biomass OSSEs G. Crispi et al

Paris-Sud XI, Université de

428

5, 21032130, 2008 Biomass Pantanal  

E-Print Network (OSTI)

BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title Page Abstract Introduction dynamics in aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil J. Sch of the European Geosciences Union. 2103 #12;BGD 5, 2103­2130, 2008 Biomass Pantanal J. Sch¨ongart et al. Title

Paris-Sud XI, Université de

429

5, 27912831, 2005 Biomass burning  

E-Print Network (OSTI)

ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract Introduction measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia P. Guyon1 , G. Frank1. 2791 #12;ACPD 5, 2791­2831, 2005 Biomass burning emissions P. Guyon et al. Title Page Abstract

Paris-Sud XI, Université de

430

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY not substantively affect the findings or recommendations of the study. 2. Introduction The Biomass to Energy (B2E) Project is developing a comprehensive forest biomass-to- electricity model to identify and analyze

431

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;5-2 #12;APPENDIX 5: BIOMASS TO ENERGY PROJECT:WILDLIFE HABITAT EVALUATION 1. Authors: Patricia Manley Ross management scenarios. We evaluated the potential effects of biomass removal scenarios on biological diversity

432

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY as a result of emerging biomass opportunities on private industrial and public multiple-use lands (tracked in the vegetation domain) and the quantity of biomass consumed by the wildfire (tracked

433

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;12-2 #12;Appendix 12: Biomass to Energy Project Team, Committee Members and Project Advisors Research Team. Nechodom's background is in biomass energy policy development and public policy research. Peter Stine

434

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;10-2 #12;Appendix 10: Power Plant Analysis for Conversion of Forest Remediation Biomass to Renewable Fuels and Electricity 1. Report to the Biomass to Energy Project (B2E) Principal Authors: Dennis Schuetzle, TSS

435

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY;6-2 #12;APPENDIX 6: Cumulative Watershed Effects Analysis for the Biomass to Energy Project 1. Principal the findings or recommendations of the study. Cumulative watershed effects (CWE) of the Biomass to Energy (B2E

436

Arnold Schwarzenegger BIOMASS TO ENERGY  

E-Print Network (OSTI)

Arnold Schwarzenegger Governor BIOMASS TO ENERGY: FOREST MANAGEMENT FOR WILDFIRE REDUCTION, ENERGY or recommendations of the study. 1. INTRODUCTION 1.1 Domain Description The study area for the Biomass to Energy (B2 and environmental costs and benefits of using forest biomass to generate electrical power while changing fire

437

Biomass Energy and Agricultural Sustainability  

E-Print Network (OSTI)

Biomass Energy and Agricultural Sustainability Stephen Kaffka Department of Plant Sciences University of California, Davis & California Biomass Collaborative February 2008 #12;E x p e c t e d d u r 9 ) ---------Biomass era----------- --?????????? #12;By 2025, every source of energy

California at Davis, University of

438

7, 1733917366, 2007 Biomass burning  

E-Print Network (OSTI)

ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA wet season experiment C. H. Mari a Creative Commons License. Atmospheric Chemistry and Physics Discussions Tracing biomass burning plumes from. Mari (marc@aero.obs-mip.fr) 17339 #12;ACPD 7, 17339­17366, 2007 Biomass burning plumes during the AMMA

Paris-Sud XI, Université de

439

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

440

6, 60816124, 2006 Modeling biomass  

E-Print Network (OSTI)

ACPD 6, 6081­6124, 2006 Modeling biomass smoke injection into the LS (part II) G. Luderer et al Chemistry and Physics Discussions Modeling of biomass smoke injection into the lower stratosphere by a large Correspondence to: G. Luderer (gunnar@mpch-mainz.mpg.de) 6081 #12;ACPD 6, 6081­6124, 2006 Modeling biomass smoke

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Abundance,Biomass, and Production  

E-Print Network (OSTI)

Abundance,Biomass, and Production Daniel B.Hayes,James R.Bence,Thomas J.Kwak, and Bradley E, the proportion of fish present that are #12;Abundance,Biomass,and Production 329 detected (i.e., sightability; available at http://www.ruwpa.st-and.ac.uk/distance/). #12;Abundance,Biomass,and Production 331 Box 8

Kwak, Thomas J.

442

Biomass Equipment & Materials Compensating Tax Deduction | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Equipment & Materials Compensating Tax Deduction Biomass Equipment & Materials Compensating Tax Deduction Eligibility Commercial Industrial Savings For Bioenergy Biofuels...

443

Biomass and Biofuels Technologies - Energy Innovation Portal  

Biofuels produced from biomass provide a promising alternative to fossil fuels. Biomass is an inexpensive, readily available and renewable resource.

444

Biomass Guidelines (Prince Edward Island, Canada) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biomass Guidelines (Prince Edward Island, Canada) Biomass Guidelines (Prince Edward Island, Canada) Eligibility Agricultural Construction Developer Industrial Investor-Owned...

445

Siting Requirements for Anaerobic Lagoons (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

This statute provides regulations for required distances between anaerobic lagoons and residences or public use areas. The separation distances may be waived or reduced with the agreement of the...

446

Biomass Supply and Carbon Accounting for  

E-Print Network (OSTI)

Biomass Supply and Carbon Accounting for Southeastern Forests February 2012 #12;This Biomass Supply and Carbon Accounting for Southeastern Forests study was conducted by the Biomass Energy Resource Center Biomass Energy Resource Center Kamalesh Doshi Biomass Energy Resource Center Hillary Emick Biomass Energy

447

NREL: Biomass Research - Thomas Foust  

NLE Websites -- All DOE Office Websites (Extended Search)

Thomas Foust Thomas Foust Photo of Thomas Foust Dr. Thomas Foust is an internationally recognized expert in the biomass field. His areas of expertise include feedstock production, biomass-to-fuels conversion technologies, and environmental and societal sustainability issues associated with biofuels. He has more than 20 years of research and research management experience, specializing in biomass feedstocks and conversion technologies. As National Bioenergy Center Director, Dr. Foust guides and directs NREL's research efforts to develop biomass conversion technologies via biochemical and thermochemical routes, as well as critical research areas addressing the sustainability of biofuels. This research focuses on developing the necessary science and technology for converting biomass to biofuels,

448

Microcontroller-Based Fuzzy System to Optimize the Anaerobic Digestion in Biogas Reactors  

Science Conference Proceedings (OSTI)

This paper describes a fuzzy-system for the optimization of the yield of biogas at biogas plants. The algorithm introduced allows the transformation of a PC supported developed fuzzy-model to a microcontroller-system. This system can be utilised as a ...

Steffen Patzwahl; Thomas Nacke; Dieter Frense; Dieter Beckmann; Klaus-Dietrich Kramer; Tobias Tautz; Gerd-Rainer Vollmer

2001-10-01T23:59:59.000Z

449

Impact and abatement of siloxanes in the Bucklin Point WWTF anaerobic digestion process.  

E-Print Network (OSTI)

?? The biogas produced at the Bucklin Point Wastewater Treatment Facility contained a high concentration of siloxane compounds. A manufacturer of personal care products was… (more)

Wenskowicz, Barry

2011-01-01T23:59:59.000Z

450

Characterization of Biogas from Anaerobically Digested Dairy Waste for Energy Use .  

E-Print Network (OSTI)

??As the third largest dairy producer in the United States, New York is faced with the critical issue of agricultural waste management. The environmental impacts… (more)

Bothi, Kimberly L.

2007-01-01T23:59:59.000Z

451

The Potential of Anaerobic Digestion Technology to Treat Coffee Waste in Huatusco, Mexico.  

E-Print Network (OSTI)

??This research proposes a system that uses the waste generated by coffee processing to generate biogas and fertilizer, called AD-Coffee Waste System (AD-CWS). The biogas… (more)

Bombardiere, Ysabel Estrada

2006-01-01T23:59:59.000Z

452

REFUSE CONVERSION TO METHANE (RefCOM) : A Proof-of-Concept Anaerobic Digestion Facility  

E-Print Network (OSTI)

and SNG for electricity generation. Environmental Science and Technology 6290­6296. Jones, C., Kammen, D

Columbia University

453

REFUSE CONVERSION TO METHANE (RefCOM): A Proof-of-Concept Anaerobic Digestion Facility  

E-Print Network (OSTI)

a commercial plant can operate at a net energy gain. REFERENCES [11 Ghosh, S. and Klass, D. L., "SNG From

Columbia University

454

Alternative energy systems for Puerto Rico : analysis and comparison of anaerobic waste digestion.  

E-Print Network (OSTI)

??Energy prices in Puerto Rico are increasing constantly, making evident the need for alternative energy sources. Several methods to produce power have been developed as… (more)

Cuevas, Emil A. (Emil André Cuevas Meléndez)

2006-01-01T23:59:59.000Z

455

Alternative energy systems for Puerto Rico : analysis and comparison of anaerobic waste digestion  

E-Print Network (OSTI)

Energy prices in Puerto Rico are increasing constantly, making evident the need for alternative energy sources. Several methods to produce power have been developed as alternatives to burning petroleum, such as solar energy ...

Cuevas, Emil A. (Emil André Cuevas Meléndez)

2006-01-01T23:59:59.000Z

456

Definition: Biomass | Open Energy Information  

Open Energy Info (EERE)

Biomass Biomass Organic matter, including: agricultural and forestry residues, municipal solid wastes, industrial wastes, and terrestrial and aquatic crops grown solely for energy purposes.[1][2] View on Wikipedia Wikipedia Definition Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As a renewable energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Historically, humans have harnessed biomass-derived

457

Investigations of Biomass Pretreatment and Submerged Fixed-bed Fermentation  

E-Print Network (OSTI)

To improve the MixAlco process and biomass pretreatment, five studies were conducted. Three studies related to fermentation, whereas the other two investigated the effectiveness of shock tube pretreatment (STP) coupled with oxidative lime pretreatment (OLP). In the first study, the constant-selectivity assumption used in the continuum particle distribution model (CPDM) was determined to be invalid. During a 32-day batch fermentation, selectivity increased from 0.10 to 0.40 g acid/g non-acid volatile solid (NAVS) digested. Future revisions to CPDM should incorporate a non-constant selectivity term. In the second study, a revised procedure was developed to provide a more accurate determination of moisture content. Conventional drying at 105 degrees C allowed product acids to vaporize with water, which introduced errors. Using the revised procedure, calcium hydroxide or sodium hydroxide was added to samples at a concentration of 0.01 g base/g sample, which retained acids in the sample. The mass of additional retained material closely matched that of the additional retained acid. Three related studies involving biomass pretreatment were performed. In the first, recommended parameters for pretreating sugarcane bagasse with OLP and STP were determined. Recommended OLP parameters were 130 degrees C, 6.9-bar O2, and 2-h duration. The effects of solids concentration, liquid fill volume, particle size, type of shotgun shell, number of shocks, and pretreatment order were investigated. Liquid fill volume, particle size, type of shotgun shell, and pretreatment order were significant variables, whereas solids concentration and number of shocks were not. Recommended OLP parameters were used as a basis for an additional experiment. To simulate industrial-scale pile fermentation, fixed-bed batch fermentation of OLP + STP sugarcane bagasse was performed in 1-L PVC fermentors. Rubber mulch was used as a structural support material to prevent filter plugging, which had been reported in previous work. After 42 d, acid concentration reached 8 g/L with yield approximately 0.1 g acid/g NAVS fed. Poor fermentation performance was caused by short solid-liquid contact time and poor pH control. A third biomass pretreatment experiment investigated the potential of pretreated corn stover as a potential ruminant feed. Five samples (raw, OLP, STP, OLP + STP, and STP + OLP) were analyzed for composition and in vitro digestibility. STP followed by OLP increased neutral detergent fiber (NDF) digestibility from 49.3 to 79.0 g NDF digested/100 g NDF fed. On an organic matter basis, STP + OLP corn stover plus water-soluble extractives had a total digestible nutrients (TDN) of 74.9, nearly reaching corn grain at 88.1.

Meysing, Daniel

2011-12-01T23:59:59.000Z

458

Biomass: Potato Power  

NLE Websites -- All DOE Office Websites (Extended Search)

POTATO POWER POTATO POWER Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Grades 2 to 3 Small groups (3 to 4) Time: 30 to 40 minutes Summary: Students assemble a potato battery that will power a digital clock. This shows the connection between renewable energy from biomass and its application. Provided by the Department of Energy's National Renewable Energy Laboratory and BP America Inc. BIOPOWER - POTATO POWER Purpose: Can a potato power a clock? Materials:  A potato  A paper plate  Two pennies  Two galvanized nails  Three 8 inch insulated copper wire, with 2 inches of the insulation removed from the ends  A digital clock (with places for wire attachment)

459

Clean fractionation of biomass  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R & D) that uses `green` feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. New alternatives for American industry may lie in the nation`s forests and fields. The AF program is conducting ongoing research on a clean fractionation process. This project is designed to convert biomass into materials that can be used for chemical processes and products. Clean fractionation separates a single feedstock into individual components cellulose, hemicellulose, and lignin.

Not Available

1995-01-01T23:59:59.000Z

460

Catalyzed gasification of biomass  

DOE Green Energy (OSTI)

Catalyzed biomass gasification studies are being conducted by Battelle's Pacific Northwest Laboratories. Investigations are being carried out concurrently at the bench and process development unit scales. These studies are designed to test the technical and economic feasibility of producing specific gaseous products from biomass by enhancing its reactivity and product specificity through the use of specific catalysts. The program is directed at controlling the gasification reaction through the use of specific catalytic agents to produce desired products including synthetic natural gas, ammonia synthesis gas (H/sub 2//N/sub 2/), hydrogen, or syn gas (H/sub 2//CO). Such gaseous products are currently produced in tonnage quantities from non-renewable carbonaceous resources, e.g., natural gas and petroleum. The production of high yields of these specified gases from biomass is accomplished through optimization of gasification conditions and proper choice of catalytic agents. For instance, high yields of synthetic natural gas can be attained through gasification with steam in the presence of gasification catalyst such as trona (Na/sub 2/CO/sub 3/ . NaHCO/sub 3/ . 2H/sub 2/O) and a nickel methanation catalyst. The gasification catalyst enhances the steam-biomass reaction while the methanation catalyst converts gaseous intermediates from this reaction to methane, the most thermodynamically stable hydrocarbon product. This direct conversion to synthetic natural gas represents a significant advancement in the classical approach of producing synthetic natural gas from carbonaceous substrates through several unit operations. A status report, which includes experimental data and results of the program is presented.

Sealock, L.J. Jr.; Robertus, R.J.; Mudge, L.K.; Mitchell, D.H.; Cox, J.L.

1978-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Lyonsdale Biomass LLC Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name Lyonsdale Biomass LLC Biomass Facility Facility Lyonsdale Biomass LLC Sector Biomass Location Lewis County, New York Coordinates 43.840112°, -75.4344727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.840112,"lon":-75.4344727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Biomass One LP Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

LP Biomass Facility LP Biomass Facility Jump to: navigation, search Name Biomass One LP Biomass Facility Facility Biomass One LP Sector Biomass Location Jackson County, Oregon Coordinates 42.334535°, -122.7646577° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.334535,"lon":-122.7646577,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Anaerobic treatment in decentralised and source ... - Springer  

Science Conference Proceedings (OSTI)

and biogas production provide good biomass- wastewater contact. Reductions of total COD from sewage up to 80–90% are reported. At tem- peratures above ...

464

Thermo-chemical conversion of dairy waste based biomass through direct firing  

E-Print Network (OSTI)

Growing rates of manure produced from large dairies have increased concern for the environmental quality of nearby streams and watersheds. Typically the manure from the freestalls on these dairies is flushed with water to a mechanical separator. Here, flushed dairy biomass (DB) is parted into separated solids and separated liquid. The separated liquid is discharged into lagoons for treatment and eventual land application. This thesis proposes thermodynamic models for firing DB in small scale boiler systems that would eliminate land application and lagoons, which are being claimed to be the source of nutrient leaching and overloading. Fuel analysis of flushed DB from a dairy in central Texas show that it contains 93%moisture (%M), 3%ash (%A), and 4%combustibles (%Cb), while separated DB solids contain 81%M, 2%A, and 17%Cb. The dry, ash-free higher heating value of DB is approximately 20,000 kJ/kg. Using dry, ash-free results, computations can be made over ranges of %M and %A. For example, DB containing 70%M requires 9.74%Cb to vaporize all moisture and produce gaseous products of combustion at 373 K, but requires 17.82%Cb to burn in a regenerative combustor with a flame temperature of 1200 K. Separated solids that are pressed in an auger to 70%M (3%A and 27%Cb) can burn at 1200 K with exhaust temperatures of up to 1130 K and a minimum required heat exchanger effectiveness of 15%. Pressed solids can thus be fired in a boiler, where the remaining separated liquid can be used as feed water. The pressed solids only can release about 30% of the heat required to vaporize the remaining unclean feed water. However, pressed DB solids can be blended with drier fuels to vaporize almost all the unclean water. The low quality steam produced from the unclean water can be used in thermal processes on the farm. A similar system can be developed for vacuumed DB without the need to vaporize unclean feed water. As for large dairies with anaerobic digester systems already installed, directly firing the produced biogas in a small scale boiler system may be another way to similarly vaporize the remaining effluent.

Carlin, Nicholas Thomas

2005-12-01T23:59:59.000Z

465

Supercritical Water Gasification of Biomass & Biomass Model Compounds.  

E-Print Network (OSTI)

??Supercritical water gasification (SCWG) is an innovative, modern, and effective destruction process for the treatment of organic compounds. Hydrogen production using SCWG of biomass or… (more)

Youssef, Emhemmed A.E.A

2011-01-01T23:59:59.000Z

466

The Cultivar newsletter, Spring/Summer 2005  

E-Print Network (OSTI)

Jon Kersey Anaerobic Residue Digestion Offers Promise fora trial of the anaerobic residue digestion (“tarping”)

Brown, Martha

2005-01-01T23:59:59.000Z

467

Review of International Experience with Renewable Energy Obligation Support Mechanisms  

E-Print Network (OSTI)

gasification and anaerobic digestion of mixed waste isgasification and anaerobic digestion). • Energy crops,

Wiser, R.

2005-01-01T23:59:59.000Z

468

Polices for Controlling Groundwater Pollution from Concentrated Animal Feeding Operations  

E-Print Network (OSTI)

147, 2003. D. Simpkins. Anaerobic digestion faqs. Technicalwetland treatment, or anaerobic digestion [Morse et al. ,

Wang, Jingjing

2012-01-01T23:59:59.000Z

469

Remotely sensed heat anomalies linked with Amazonian forest biomass declines  

E-Print Network (OSTI)

with Amazonian forest biomass declines Michael Toomey, 1 Darof aboveground living biomass (p biomass declines, Geophys. Res.

Toomey, M.; Roberts, D. A.; Still, C.; Goulden, M. L.; McFadden, J. P.

2011-01-01T23:59:59.000Z

470

Fundamental study of structural features affecting enzymatic hydrolysis of lignocellulosic biomass  

E-Print Network (OSTI)

Lignocellulose is a promising and valuable alternative energy source. Native lignocellulosic biomass has limited accessibility to cellulase enzyme due to structural features; therefore, pretreatment is an essential prerequisite to make biomass accessible and reactive by altering its structural features. The effects of substrate concentration, addition of cellobiase, enzyme loading, and structural features on biomass digestibility were explored. The addition of supplemental cellobiase to the enzyme complex greatly increased the initial rate and ultimate extent of biomass hydrolysis by converting the strong inhibitor, cellobiose, to glucose. A low substrate concentration (10 g/L) was employed to prevent end-product inhibition by cellobiose and glucose. The rate and extent of biomass hydrolysis significantly depend on enzyme loading and structural features resulting from pretreatment, thus the hydrolysis and pretreatment processes are intimately coupled because of structural features. Model lignocelluloses with various structural features were hydrolyzed with a variety of cellulase loadings for 1, 6, and 72 h. Glucan, xylan, and total sugar conversions at 1, 6, and 72 h were linearly proportional to the logarithm of cellulase loadings from approximately 10% to 90% conversion, indicating that the simplified HCH-1 model is valid for predicting lignocellulose digestibility. Carbohydrate conversions at a given time versus the natural logarithm of cellulase loadings were plotted to obtain the slopes and intercepts which were correlated to structural features (lignin content, acetyl content, cellulose crystallinity, and carbohydrate content) by both parametric and nonparametric regression models. The predictive ability of the models was evaluated by a variety of biomass (corn stover, bagasse, and rice straw) treated with lime, dilute acid, ammonia fiber explosion (AFEX), and aqueous ammonia. The measured slopes, intercepts, and carbohydrate conversions at 1, 6, and 72 h were compared to the values predicted by the parametric and nonparametric models. The smaller mean square error (MSE) in the parametric models indicates more satisfactorily predictive ability than the nonparametric models. The agreement between the measured and predicted values shows that lignin content, acetyl content, and cellulose crystallinity are key factors that determine biomass digestibility, and that biomass digestibility can be predicted over a wide range of cellulase loadings using the simplified HCH-1 model.

Zhu, Li

2005-08-01T23:59:59.000Z

471

State and Regional Biomass Partnerships  

DOE Green Energy (OSTI)

The Northeast Regional Biomass Program successfully employed a three pronged approach to build the regional capacity, networks, and reliable information needed to advance biomass and bioenergy technologies and markets. The approach included support for state-based, multi-agency biomass working groups; direct technical assistance to states and private developers; and extensive networking and partnership-building activities to share objective information and best practices.

Handley, Rick; Stubbs, Anne D.

2008-12-29T23:59:59.000Z

472

Catalysis in biomass gasification  

DOE Green Energy (OSTI)

The objective of these studies is to evaluate the technical and economic feasibility of producing specific gas products by catalytic gasification of biomass. Catalyst performance is a key factor in the feasibility of catalytic gasification processes. The results of studies designed to gain a fundamental understanding of catalytic mechanisms and causes of deactivation, and discussion of the state-of-the-art of related catalytic processes are presented. Experiments with primary and secondary catalysts were conducted in a 5-cm-diameter, continuous-wood-feed, fixed-catalyst-bed reactor. The primary catalysts used in the experiments were alkali carbonates mixed with the biomass feed; the secondary catalysts included nickel or other transition metals on supports such as alumina, silica, or silica-alumina. The primary catalysts were found to influence wood pyrolysis as well as the char/steam reaction. Secondary catalysts were used in a fixed-bed configuration to direct gas phase reactions. Results of the performance of these catalysts are presented. Secondary catalysts were found to be highly effective for conversion of biomass to specific gas products: synthesis gases and methane-rich gas. With an active catalyst, equilibrium gas composition are obtained, and all liquid pyrolysis products are converted to gases. The major cause of catalyst deactivation was carbon deposition, or coking. Loss of surface area by sintering was also inportant. Catalyst deactivation by sulfur poisoning was observed when bagasse was used as the feedstock for catalytic gasification. Mechanisms of catalyst activity and deactivation are discussed. Model compounds (methane, ethylene, and phenol) were used to determine coking behavior of catalysts. Carbon deposition is more prevalent with ethylene and phenol than with methane. Catalyst formulations that are resistant to carbon deposition are presented. 60 references, 10 figures, 21 tables.

Baker, E.G.; Mudge, L.K.

1984-06-01T23:59:59.000Z

473

Hydrothermal Liquefaction of Biomass  

SciTech Connect

Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate structures as they have been further reacted to phenolic Aldol condensation products. The bio-oil

Elliott, Douglas C.

2010-12-10T23:59:59.000Z

474

Biomass power for rural development  

DOE Green Energy (OSTI)

Biomass is a proven option for electricity generation. A diverse range of biopower producers includes electric utilities, independent power producers, and the pulp and paper industry. To help expand opportunities for biomass power production, the U.S. Department of Energy established the Biopower Program and is sponsoring efforts to increase the productivity of dedicated energy crops. The Program aims to double biomass conversion efficiencies, thus reducing biomass power generation costs. These efforts will promote industrial and agricultural growth, improve the environment, create jobs, increase U.S. energy security, and provide new export markets.

Shepherd, P.

2000-06-02T23:59:59.000Z

475

Biomass Engineering Prize Competition Announced  

Science Conference Proceedings (OSTI)

Posted on: 7/30/2010 12:00:00 AM... The DownEast 2010 Biomass Engineering Prize Competition is seeking innovative solutions focused on revitalizing an ...

476

Biomass Pretreatment for Integrated Steelmaking  

Science Conference Proceedings (OSTI)

Presentation Title, Biomass Pretreatment for Integrated Steelmaking. Author(s), Shiju Thomas, Paul Cha, Steven J McKnight, Vincent A Bouma, Andrew L Petrik,

477

Biomass Databook ed4.pub  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Energy Data Book Center for Transportation Analysis 2360 Cherahala Boulevard Knoxville, TN 37932 For more information please contact: Stacy Davis (865) 946-1256...

478

NREL: Biomass Research - Daniel Inman  

NLE Websites -- All DOE Office Websites (Extended Search)

us to examine the feasibility of alternative process configurations. Learn more about Biomass Technology Analysis at NREL. System Dynamics I am also interested in dynamic modeling...

479

Biomass Rapid Analysis Network (BRAN)  

DOE Green Energy (OSTI)

Helping the emerging biotechnology industry develop new tools and methods for real-time analysis of biomass feedstocks, process intermediates and The Biomass Rapid Analysis Network is designed to fast track the development of modern tools and methods for biomass analysis to accelerate the development of the emerging industry. The network will be led by industry and organized and coordinated through the National Renewable Energy Lab. The network will provide training and other activities of interest to BRAN members. BRAN members will share the cost and work of rapid analysis method development, validate the new methods, and work together to develop the training for the future biomass conversion workforce.

Not Available

2003-10-01T23:59:59.000Z

480

System and process for biomass treatment  

DOE Patents (OSTI)

A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

2013-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "anaerobic digestion biomass" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Biomass Allocation Model - Comparing alternative uses of scarce...  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomass Allocation Model - Comparing alternative uses of scarce biomass energy resource through estimations of future biomass use for liquid fuels and electricity. Title Biomass...

482

Biomass for energy and materials Local technologies -  

E-Print Network (OSTI)

Biomass for energy and materials Local technologies - in a global perspective Erik Steen Jensen Bioenergy and biomass Biosystems Department Risø National Laboratory Denmark #12;Biomass - a local resource, slaughterhouse waste. #12;Biomass characteristics · Biomass is a storable energy carrier, unlike electricity

483

King County Carbonate Fuel Cell Demonstration Project: Case Study of a 1MW Fuel Cell Power Plant Fueled by Digester Gas  

Science Conference Proceedings (OSTI)

This case study documents the first-year demonstration experiences of a 1-MW carbonate fuel cell system operating on anaerobic digester gas at a wastewater treatment plant in King County, Washington. The case study is one of several fuel cell project case studies under research by the EPRI Distributed Energy Resources Program. This case study is designed to help utilities and other interested parties understand the early applications of fuel cell systems to help them in their resource planning efforts an...

2005-03-30T23:59:59.000Z

484

Anaerobic treatment of gasifier effluents. Quarterly report  

DOE Green Energy (OSTI)

This report summarizes the work performed during the quarter ending December 30, 1981. The major efforts have been directed toward the continued acclimation of two anaerobic treatment systems, start up of a third anaerobic treatment system, GC/MS characterization of the coal gasification wastewater, data acquisition for determination of distribution coefficients for the extraction of phenol from the wastewater using MIBK, and preliminary design of a solvent extraction system for wastewater pretreatment. The progress of these efforts are depicted in the Gannt Chart, along with project expenditures for the above contract, and are presented in detail in the following sections.

Cross, W.H.; Chian, E.S.K.; Pohland, F.G.; Giabbai, M.; Harper, S.R.; Kharkar, S.; Cheng, S.S.; Shuey, P.S.

1982-01-01T23:59:59.000Z

485

Digestion  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Particle Size Distribution Model for Leaching Kinetics of Alumina: Li Bao1; Ting- an Zhang2; Weimin Long1; Anh V Nguyen3; Guozhi Lv2; Jia ...

486

NREL: Biomass Research - Capabilities in Biomass Process and Sustainability  

NLE Websites -- All DOE Office Websites (Extended Search)

Capabilities in Biomass Process and Sustainability Analyses Capabilities in Biomass Process and Sustainability Analyses A photo of a woman and four men, all wearing hard hats and looking into a large square bin of dried corn stover. One man is using a white scoop to pick up some of the material and another man holds some in his hand. Members of Congress visit NREL's cellulosic ethanol pilot plant. A team of NREL researchers uses biomass process and sustainability analyses to bridge the gap between research and commercial operations, which is critical for the scale-up of biomass conversion technology. Among NREL's biomass analysis capabilities are: Life cycle assessments Technoeconomic analysis Sensitivity analysis Strategic analysis. Life Cycle Assessments Conducting full life cycle assessments is important for determining the

487

Revealing Nature's Cellulase Diversity: The Digestion Mechanism  

NLE Websites -- All DOE Office Websites (Extended Search)

the surface of the substrate. These results suggest that nature's repertoire of cellulose digestion paradigms remain only partially discovered and understood. I n nature, most...