National Library of Energy BETA

Sample records for amulaire thermal technology

  1. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  2. Thermally Activated Technologies Technology Roadmap, May 2003...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a ...

  3. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  4. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  5. Solar Thermal Energy Technology; (USA)

    SciTech Connect (OSTI)

    Williams, L.E.; Hicks, S.C.

    1991-01-01

    Solar Thermal Energy Technology (STT) announces on a bimonthly basis the current worldwide research and development information that would expand the technology base required for the advancement of solar thermal systems as a significant energy source. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database (EDB) during the past two months. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency's Energy Technology Data Exchange or government-to-government agreements. The digests in STT and other citations to information on solar thermal energy date back to 1974.

  6. Conceptual Thermal Treatment Technologies Feasibility Study

    SciTech Connect (OSTI)

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  7. Supertruck technologies for 55% thermal efficiency and 68% freight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Discusses technological ...

  8. Non-thermal plasma based technologies for the aftertreatment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx Non-thermal plasma based technologies for the aftertreatment of diesel exhaust ...

  9. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  10. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal &...

  11. Flameless thermal oxidation. Innovative technology summary report

    SciTech Connect (OSTI)

    1995-09-01

    The Flameless Thermal Oxidizer (FTO) is a commercial technology offered by Thermatrix, Inc. The FTO has been demonstrated to be an effective destructive technology for process and waste stream off-gas treatment of volatile organic compounds (VOCs), and in the treatment of VOC and chlorinated volatile organic compounds (CVOCs) off-gases generated during site remediation using either baseline or innovative in situ environmental technologies. The FTO process efficiently converts VOCs and CVOCs to carbon dioxide, water, and hydrogen chloride. When FTO is coupled with a baseline technology, such as soil vapor extraction (SVE), an efficient in situ soil remediation system is produced. The innovation is in using a simple, reliable, scalable, and robust technology for the destruction of VOC and CVOC off-gases based on a design that generates a uniform thermal reaction zone that prevents flame propagation and efficiently oxidizes off-gases without forming products of incomplete combustion (PICs).

  12. Review of Thermally Activated Technologies, July 2004 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thermally Activated Technologies, July 2004 Review of Thermally Activated Technologies, July 2004 At the request of the U.S. Department of Energy and Oak Ridge National Laboratory, TIAX reviewed the status of various Thermally Activated Technologies (TATs). This 2004 review includes both fuel-fired and waste-heat-fired applications of thermally-driven cooling systems, thermally-driven heat pumps, and thermally-driven bottoming cycles, primarily for use in commercial buildings.

  13. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Energy Savers [EERE]

    Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 ...

  14. Vehicle Technologies Office Merit Review 2014: Thermal Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of ...

  15. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A prototype heliostat which could take solar technology a step into the future is being tested at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). It was developed by Science Applications International Corporations (SAIC) Golden office. The heliostat is a large tracking mirror for use in solar thermal power plants. SAIC's prototype heliostat incorporates a number of design and manufacturing modifications that could lead to significant cost reductions. The major

  16. Beijing Shenwu Thermal Energy Technology Co Ltd BSTET | Open...

    Open Energy Info (EERE)

    highly efficient, energy saving and low pollution combustion technology, such as WDH serial gas atomization burners. References: Beijing Shenwu Thermal Energy Technology Co Ltd...

  17. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh ...

  18. Thermal-Mechanical Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of thermal-mechanical research includes: Single and two phase heat transfer Nanomaterial synthesis Heat transfer fluids Engine and power electronics cooling Thermal energy...

  19. Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

  20. Vehicle Technologies Office Merit Review 2015: Thermal Performance Benchmarking

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal...

  1. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  2. Modeling The Potential For Thermal Concentrating Solar Power Technologies

    SciTech Connect (OSTI)

    Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

    2010-10-25

    In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

  3. Supertruck technologies for 55% thermal efficiency and 68% freight

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efficiency | Department of Energy Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Discusses technological pathways to achieving engine and freight efficiency goals deer12_koeberlein.pdf (1.92 MB) More Documents & Publications Cummins SuperTruck Program - Technology Demonstration of Highly Efficient Clean, Diesel Powered Class 8 Trucks High Efficient Clean Combustion for SuperTruck

  4. Development of Advanced Combustion Technologies for Increased Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency | Department of Energy Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on low-temperature combustion, particularly HCCI / PCCI combustion deer09_gehrke.pdf (669.71 KB) More Documents & Publications The Role of Advanced Combustion in Improving Thermal Efficiency Heavy-Duty Low Temperature Combustion Development Activities at Caterpillar Diesel HCCI

  5. Project Profile: Novel Thermal Storage Technologies for Concentrating Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation | Department of Energy Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh University, under the Thermal Storage FOA, is working to establish the technical feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage systems. Approach A

  6. Thermal Imaging Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  7. Solar Thermal Technologies Available for Licensing - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Thermal Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Marketing Summaries (40) Success Stories (1) Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Solar Thermal

  8. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems;

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Volume 6 Building America Best Practices Series | Department of Energy Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series The sixth volume of the Building America Best Practices Series presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific

  9. Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool | Department of Energy Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Vehicle Technologies Office Merit Review 2016: Commercial Vehicle Thermal Load Reduction and VTCab -- Rapid HVAC Load Estimation Tool Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation

  10. Photovoltaic-Thermal New Technology Demonstration

    SciTech Connect (OSTI)

    Dean, Jesse; McNutt, Peter; Lisell, Lars; Burch, Jay; Jones, Dennis; Heinicke, David

    2015-01-01

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  11. Thermal Imaging Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Butterfly-Inspired Design Enables Advanced Thermal Imaging Bryan Whalen in the Electronics Cooling Lab at GE Global Research recorded this thermo graphic video of a Morpho butterfly structure in response to heat pulses produced by breathing onto

  12. Thermal batteries: A technology review and future directions

    SciTech Connect (OSTI)

    Guidotti, R.A.

    1995-07-01

    Thermally activated (``thermal``) batteries have been used for ordnance applications (e.g., proximity fuzes) since World War II and, subsequent to that, in nuclear weapons. This technology was developed by the Germans as a power source for their V2 rockets. It was obtained by the Allies by interrogation of captured German scientists after the war. The technology developed rapidly from the initial primitive systems used by the Germans to one based on Ca/CaCrO{sub 4}. This system was used very successfully into the late 1970s, when it was replaced by the Li-alloy/FeS{sub 2} electrochemical system. This paper describes the predominant electrochemical couples that have been used in thermal batteries over the years. Major emphasis is placed on the chemistry and electrochemistry of the Ca/CaCrO{sub 4} and Li-alloy/FeS{sub 2} systems. The reason for this is to give the reader a better appreciation for the advances in thermal-battery technology for which these two systems are directly responsible. Improvements to date in the current Li-alloy/FeS{sub 2} and related systems are discussed and areas for possible future research and development involving anodes, cathodes, electrolytes, and insulations are outlined. New areas where thermal-battery technology has potential applications are also examined.

  13. Thermal Management of Power Semiconductor Packages - Matching Cooling Technologies with Packaging Technologies (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.; Moreno, G.

    2010-04-27

    Heat removal for power semiconductor devices is critical for robust operation. Because there are different packaging options, different thermal management technologies, and a range of applications, there is a need for a methodology to match cooling technologies and package configurations to target applications. To meet this need, a methodology was developed to compare the sensitivity of cooling technologies on the overall package thermal performance over a range of power semiconductor packaging configurations. The results provide insight into the trade-offs associated with cooling technologies and package configurations. The approach provides a method for comparing new developments in power semiconductor packages and identifying potential thermal control technologies for the package. The results can help users select the appropriate combination of packaging configuration and cooling technology for the desired application.

  14. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  15. Thermal treatment technology at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Hillary, J.M.

    1994-12-31

    Recent surveys of mixed wastes in interim storage throughout the 30-site Department of Energy complex indicate that only 12 of those sites account for 98% of such wastes by volume. Current inventories at the Idaho National Engineering Laboratory (INEL) account for 38% of total DOE wastes in interim storage, the largest of any single site. For a large percentage of these waste volumes, as well as the substantial amounts of buried and currently generated wastes, thermal treatment processes have been designated as the technologies of choice. Current facilities and a number of proposed strategies exist for thermal treatment of wastes of this nature at the INEL. High-level radioactive waste is solidified in the Waste Calciner Facility at the Idaho Central Processing Plant. Low-level solid wastes until recently have been processed at the Waste Experimental Reduction Facility (WERF), a compaction, size reduction, and controlled air incineration facility. WERF is currently undergoing process upgrading and RCRA Part B permitting. Recent systems studies have defined effective strategies, in the form of thermal process sequences, for treatment of wastes of the complex and heterogeneous nature in the INEL inventory. This presentation reviews the current status of operating facilities, active studies in this area, and proposed strategies for thermal treatment of INEL wastes.

  16. High temperature solar thermal technology: The North Africa Market

    SciTech Connect (OSTI)

    Not Available

    1990-12-01

    High temperature solar thermal (HTST) technology offers an attractive option for both industrialized and non-industrialized countries to generate electricity and industrial process steam. The purpose of this report is to assess the potential market for solar thermal applications in the North African countries of Algeria, Egypt, Morocco and Tunisia. North Africa was selected because of its outstanding solar resource base and the variety of applications to be found there. Diminishing oil and gas resources, coupled with expanding energy needs, opens a large potential market for the US industry. The US high temperature solar trough industry has little competition globally and could build a large market in these areas. The US is already familiar with certain solar markets in North Africa due to the supplying of substantial quantities of US-manufactured flat plate collectors to this region.

  17. Applications of cogeneration with thermal energy storage technologies

    SciTech Connect (OSTI)

    Somasundaram, S.; Katipamula, S.; Williams, H.R.

    1995-03-01

    The Pacific Northwest Laboratory (PNL) leads the U.S. Department of Energy`s Thermal Energy Storage (TES) Program. The program focuses on developing TES for daily cycling (diurnal storage), annual cycling (seasonal storage), and utility-scale applications [utility thermal energy storage (UTES)]. Several of these storage technologies can be used in a new or an existing power generation facility to increase its efficiency and promote the use of the TES technology within the utility and the industrial sectors. The UTES project has included a study of both heat storage and cool storage systems for different utility-scale applications. The study reported here has shown that an oil/rock diurnal TES system, when integrated with a simple gas turbine cogeneration system, can produce on-peak power for $0.045 to $0.06 /kWh, while supplying a 24-hour process steam load. The molten salt storage system was found to be less suitable for simple as well as combined-cycle cogeneration applications. However, certain advanced TES concepts and storage media could substantially improve the performance and economic benefits. In related study of a chill TES system was evaluated for precooling gas turbine inlet air, which showed that an ice storage system could be used to effectively increase the peak generating capacity of gas turbines when operating in hot ambient conditions.

  18. Sustainable solar thermal power generation (STPG) technologies in Indian context

    SciTech Connect (OSTI)

    Sharma, R.S.

    1996-12-31

    India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

  19. Modeling of thermal plasma arc technology FY 1994 report

    SciTech Connect (OSTI)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces.

  20. Non-thermal plasma based technologies for the aftertreatment of diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    exhaust particulates and NOx | Department of Energy thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx Non-thermal plasma based technologies for the aftertreatment of diesel exhaust particulates and NOx 2003 DEER Conference Presentation: Accentus 2003_deer_mcadams.pdf (445.66 KB) More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3 MPS213 - A Non-Thermal Plasma Application for the Royal Navy -

  1. The DOE Solar Thermal Electric Program Concentrator Technology Project

    SciTech Connect (OSTI)

    Mancini, T.R.

    1991-01-01

    The project comprises the development of concentrating solar collectors, heliostats and dishes, and the development of optical materials. Because the solar concentrator represents from 40 to 60% of the cost of a solar thermal electric system, the continued development of high-performance concentrators is very important to the commercial viability of these systems. The project is currently testing two large area heliostats, the SPECO 200 m{sup 2} heliostat and the ATS 150 m{sup 2} heliostat and also trying to reduce the cost of the heliostats through the development of stretched-membrane heliostats. Stretched-membrane heliostats are made by attaching thin metal membranes to the two sides of a circular, metal ring. A slight vacuum in the plenum between the two membranes is used to focus the heliostat. The optical surface is provided by a silver-acrylic film, ECP 305. A prototype 100 m{sup 2} commercial unit has been built and is currently being tested. Parabolic dish concentrators are under development for use on dish-Stirling electric systems. The state-of-the-art dish is the McDAC/SCE faceted glass concentrator. Because of the success of stretched-membrane technology for heliostats, the project applied the technology to parabolic dish development and is currently designing a near-term, faceted, stretched-membrane dish. The current thrust of the program in optical materials development is the development of a low-cost, high-performance, silver-acrylic film. 3M's ECP 305 has demonstrated substantial improvement over previous films in its resistance to corrosion, longer life. An experimental film, developed at SERI, has promise for further improving the lifetime of the ECP 305. The project is currently investigating solutions to the problem of separation between the silver and acrylic layers of the film in the presence of water.

  2. Status of thermal imaging technology as applied to conservation-update 1

    SciTech Connect (OSTI)

    Snow, F.J.; Wood, J.T.; Barthle, R.C.

    1980-07-01

    This document updates the 1978 report on the status of thermal imaging technology as applied to energy conservation in buildings. Thermal imaging technology is discussed in terms of airborne surveys, ground survey programs, and application needs such as standards development and lower cost equipment. Information on the various thermal imaging devices was obtained from manufacturer's standard product literature. Listings are provided of infrared projects of the DOE building diagnostics program, of aerial thermographic firms, and of aerial survey programs. (LCL)

  3. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  4. Air Cooling Technology for Power Electronic Thermal Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Vehicle Technologies Office Merit Review 2014: Thermally Stable Ultra-Low Temperature Oxidation Catalysts

    Broader source: Energy.gov [DOE]

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermally stable ultra-low...

  6. Vehicle Technologies Office Merit Review 2016: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  7. Vehicle Technologies Office Merit Review 2015: Battery Thermal Characterization

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery...

  8. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  9. Vehicle Technologies Office Merit Review 2016: Thermal Performance Benchmarking

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  10. Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Regulations | Department of Energy Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Heavy-Duty Engine Technology for High Thermal Efficiency at EPA 2010 Emissions Regulations Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_aneja.pdf (1.56 MB) More Documents & Publications NAFTA Heavy Duty Engine and Aftertreatment

  11. High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, M.; Gilbride, T.; Ruiz, K.; Steward, H.; Love, P.

    2007-06-01

    This document is the sixth volume of the Building America Best Practices Series. It presents information that is useful throughout the United States for enhancing the energy efficiency practices in the specific climate zones that are presented in the first five Best Practices volumes. It provides an introduction to current photovoltaic and solar thermal building practices. Information about window selection and shading is included.

  12. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Direct Thermal Energy Conversion Materials, Devices, and Systems Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Modeling for Manufacturing Combined Heat and Power Systems Composite Materials Critical Materials Direct Thermal Energy Conversion Materials, Devices, and Systems Materials for Harsh Service Conditions Process Heating Process Intensification Roll-to-Roll Processing Sustainable Manufacturing - Flow of Materials through Industry Waste Heat Recovery Systems Wide Bandgap Semiconductors for Power Electronics ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology

  13. Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    1995-03-01

    This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

  14. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  15. (Thermal energy storage technologies for heating and cooling applications)

    SciTech Connect (OSTI)

    Tomlinson, J.J.

    1990-12-19

    Recent results from selected TES research activities in Germany and Sweden under an associated IEA annex are discussed. In addition, several new technologies for heating and cooling of buildings and automobiles were reviewed and found to benefit similar efforts in the United states. Details of a meeting with Didier-Werke AG, a leading German ceramics manufacturer who will provide TES media necessary for the United States to complete field tests of an advanced high temperature latent heat storage material, are presented. Finally, an overview of the December 1990 IEA Executive Committee deliberations on TES is presented.

  16. Supporting technology for enhanced oil recovery for thermal processes

    SciTech Connect (OSTI)

    Reid, T.B.; Bolivar, J.

    1997-12-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

  17. Thermal oxidation technology ready for tougher paint finishing regs

    SciTech Connect (OSTI)

    Brooks, J.

    1995-04-01

    There is good news and bad news in the air for commercial paint finishers. The bad news is that future local and federal clean-air regulations are almost certain to require control of volatile organic compound emissions from spray booths and drying ovens. The good news is that one of the most effective systems for meeting such requirements also can help cut operations and maintenance costs. There are as many solutions to VOC emissions problems in paint finishing as there are types of paint-spraying facilities. However, despite the range of choices, regenerative thermal oxidation systems are gaining favor among plant managers, for whom performance and maximum application flexibility are key considerations. Compared to other VOC-destruction approaches, RTO systems are more forgiving and reliable. Although RTO systems involve somewhat higher capital investments than alternative approaches, such costs typically are offset by lower long-term fuel and maintenance requirements. In addition, RTO systems can convert pollutants into usable energy sources, helping minimize operating costs of abatement equipment.

  18. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

  19. Thermal reclamation of used blast grit. Technology spotlight report

    SciTech Connect (OSTI)

    1995-08-01

    Naval shipyards and other domestic port facilities generate thousands of tons of used blast grit annually. There are also thousands of steel bridges in the United States on a repaint schedule that requires grit blasting for surface preparation. All the used grit, along with the paint residue it contains, is currently disposed of in landfills. Cleaning and recycling used blast grit is an attractive alternative. Institute of Gas Technology (IGT) has developed a fluidized-bed sand calciner that is well suited for cleaning and recycling used blast grit. Essentially, IGT researchers applied a transfer/adaptation of fluidized-bed calcination originally developed for the reclamation of foundry sand. The calciner has a patented sloped-grid design that enhances the combustion of paint residues and promotes the isolation of reusable material.

  20. Vehicle Technologies Office Merit Review 2015: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal control...

  1. Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal control...

  2. Dumping pump and treat: rapid cleanups using thermal technology

    SciTech Connect (OSTI)

    Newmark, R.L.; Aines, R.D.

    1997-03-11

    Underground spills of volatile hydrocarbons are often difficult to clean up, especially if the contaminants are present in or below the water table as a separate liquid-organic phase. Excavating and treating the contaminated soil may not be practical or even possible if the affected zone is relatively deep. Merely pumping groundwater has proven to be ineffective because huge amounts of water must be flushed through the contaminated area to clean it; even then the contaminants may not be completely removed. Due to the low solubility of most common contaminants, such pump and treat systems can be expected to take decades to centuries to actually clean a site. Today, many sites are required to pump and treat contaminated groundwater even though there is no expectation that the site will be cleaned. In these cases, the pumps simply control the spread of the contaminant, while requiring a continuous flow of money, paperwork, and management attention. Although pump and treat systems are relatively inexpensive to operate, they represent along term cost. Most importantly, they rarely remove enough contaminant to change the property`s status. Although a pump and treat system can offer compliance in a regulatory sense, it doesn`t solve the site`s liability problem. Thermal methods promise to solve this dilemma by actually cleaning a property in a short time period, thus limiting the period of liability. This may involve cleaning a site to closure during the initial contaminant-removal phase, or removal of the majority of the contaminant so that natural processes such as bioremediation can return the site to pristine condition over a period of years, without further owner intervention. Today`s regulatory environment encourages this approach through efforts such as the brownfields initiatives. In either case, this requires a strong commitment on the part of the site owner. Most if not all the cleanup occurs within the first year or so, and nearly all the cost. In our

  3. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  4. Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel displacement...

  5. Limiting factors to advancing thermal-battery technology for naval applications

    SciTech Connect (OSTI)

    Davis, P.B.; Winchester, C.S.

    1991-10-01

    Thermal batteries are primary reserve electrochemical power sources using molten salt electrolyte which experience little effective aging while in storage or dormant deployment. Thermal batteries are primarily used in military applications, and are currently used in a wide variety of Navy devices such as missiles, torpedoes, decays, and training targets, usually as power supplies in guidance, propulsion, and Safe/Arm applications. Technology developments have increased the available energy and power density ratings by an order of magnitude in the last ten years. Present thermal batteries, using lithium anodes and metal sulfide cathodes, are capable of performing applications where only less rugged and more expensive silver oxide/zinc or silver/magnesium chloride seawater batteries could serve previously. Additionally, these batteries are capable of supplanting lithium/thionyl chloride reserve batteries in a variety of specifically optimized designs. Increases in thermal battery energy and power density capabilities are not projected to continue with the current available technology. Several battery designs are now at the edge of feasibility and safety. Since future naval systems are likely to require continued growth of battery energy and Power densities, there must be significant advances in battery technology. Specifically, anode alloy composition and new cathode materials must be investigated to allow for safe development and deployment of these high power, higher energy density batteries.

  6. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation

  7. Advanced regenerative thermal oxidation (RTO) technology for air toxics control - selected case histories

    SciTech Connect (OSTI)

    Seiwert, J.J. Jr.

    1997-12-31

    Advanced design regenerative thermal oxidation (RTO) systems have been developed and are in commercial scale use for control of process emissions containing air toxics (HAPs) and VOCs. High operating temperatures coupled with high thermal energy recovery efficiencies inherent with RTO technology provide for high destruction efficiencies while minimizing formation of objectionable combustion byproducts. These results are achieved with low system operating costs. This paper covers development of advanced design commercial RTO systems for control of air emissions from several important commercial processes: total reduced sulfur (TRS) and other HAPs/VOC emissions from pulp mill processes. Chlorinated organics and other HAPs/VOC emissions from pharmaceutical manufacturing operations. The data presented represent the first commercial scale application of RTO technology to abate emissions from these processes. Particular design features required for each specific process, in order to provide reliable, safe and effective systems, are reviewed. Emissions abatement performance, as well as operational data, are presented for the systems.

  8. A long-term strategic plan for development of solar thermal electric technology

    SciTech Connect (OSTI)

    Williams, T.A.; Burch, G.; Chavez, J.M.; Mancini, T.R.; Tyner, C.E.

    1997-06-01

    Solar thermal electric (STE) technologies--parabolic troughs, power towers, and dish/engine systems--can convert sunlight into electricity efficiently and with minimum effect on the environment. These technologies currently range from developmental to early commercial stages of maturity. This paper summarizes the results of a recent strategic planning effort conducted by the US department of Energy (DOE) to develop a long-term strategy for the development of STE technologies. The planning team led by DOE included representatives from the solar thermal industry, domestic utilities, state energy offices, and Sun{center_dot}Lab (the cooperative Sandia National laboratories/National Renewable Energy Laboratory partnership that supports the STE Program) as well as project developers. The plan was aimed at identifying specific activities necessary to achieve the DOE vision of 20 gigawatts of installed STE capability by the year 2020. The planning team developed five strategies that both build on the strengths of, and opportunities for, STE technology and address weaknesses and threats. These strategies are to: support future commercial opportunities for STE technologies; demonstrate improved performance and reliability of STE components and systems; reduce STE energy costs; develop advanced STE systems and applications; and address nontechnical barriers and champion STE power. The details of each of these strategies are discussed.

  9. Recent developments in Li(Si)/FeS/sub 2/ thermal battery technology

    SciTech Connect (OSTI)

    Searcy, J.Q.; Quinn, R.K.; Saxton, H.J.

    1982-01-01

    The Li(Si)/FeS/sub 2/ electrochemical system has been under development for thermal battery applications as an alternative to Ca/CaCrO/sub 4/ for several years at Sandia National Laboratories (SNL). The new technology differs from the old in that the anode is a pressed powder (44 wt % lithium in Li(Si) alloy) as opposed to sheet calcium or bimetal; and a separator composed of LiCl.KCl eutectic electrolyte and MgO binder is required with a separate cathode pellet composed of FeS/sub 2/ and electrolyte to replace the DEB pellet; and current collectors which may actually function as temperature moderators are always used. The applications require high reliability (typically, a success probability of 0.995) and a twenty-five year shelf-life. Consequently, a substantial materials effort has been necessary to assess degradation and deleterious reactions during storage and to determine necessary production specifications and controls. Experience with several applications has indicated that Li(Si)/FeS/sub 2/ thermal batteries are easier to develop and produce than those which use Ca/CaCrO/sub 4/. Furthermore, the new system is more capable and more forgiving. Therefore, an effort has been initiated to develop the new technology for all SNL thermal battery applications. This paper reviews both the materials-related development and the progress toward utilization of Li(Si)/FeS/sub 2/ for all SNL thermal battery applications.

  10. Technology Potential of Thermal Energy Storage (TES) Systems in Federal Facilities

    SciTech Connect (OSTI)

    Chvala, William D.

    2001-07-31

    This document presents the findings of a technology market assessment for thermal energy storage (TES) in space cooling applications. The potential impact of TES in Federal facilities is modeled using the Federal building inventory with the appropriate climatic and energy cost data. In addition, this assessment identified acceptance issues and major obstacles through interviews with energy services companies (ESCOs), TES manufacturers, and Federal facility staff.

  11. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect (OSTI)

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  12. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water. Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed

  13. Dish/Stirling systems: Overview of an emerging commercial solar thermal electric technology

    SciTech Connect (OSTI)

    Strachan, J.W.; Diver, R.B.; Estrada, C.

    1995-11-01

    Dish/Stirling is a solar thermal electric technology which couples parabolic, point-focusing solar collectors and heat engines which employ the Stirling thermodynamic cycle. Since the late 1970s, the development of Dish/Stirling systems intended for commercial use has been in progress in Germany, Japan, and the US. In the next several years it is expected that one or more commercial systems will enter the market place. This paper provides a general overview of this emerging technology, including: a description of the fundamental principles of operation of Dish/Stirling systems; a presentation of the major components of the systems (concentrator, receiver, engine/alternator, and controls); an overview of the actual systems under development around the world, with a discussion of some of the technical issues and challenges facing the Dish/Stirling developers. A brief discussion is also presented of potential applications for small Dish/Stirling systems in northern Mexico.

  14. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    SciTech Connect (OSTI)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  15. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  16. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  17. Proceedings of the 31. intersociety energy conversion engineering conference. Volume 2: Conversion technologies, electro-chemical technologies, Stirling engines, thermal management

    SciTech Connect (OSTI)

    Chetty, P.R.K.; Jackson, W.D.; Dicks, E.B.

    1996-12-31

    The 148 papers contained in Volume 2 are arranged topically as follows -- (A) Conversion Technologies: Superconductivity applications; Advanced cycles; Heat engines; Heat pumps; Combustion and cogeneration; Advanced nuclear reactors; Fusion Power reactors; Magnetohydrodynamics; Alkali metal thermal to electric conversion; Thermoelectrics; Thermionic conversion; Thermophotovoltaics; Advances in electric machinery; and Sorption technologies; (B) Electrochemical Technologies: Terrestrial fuel cell technology; and Batteries for terrestrial power; (C) Stirling Engines: Stirling machine analysis; Stirling machine development and testing; and Stirling component analysis and testing; (D) Thermal Management: Cryogenic heat transfer; Electronic components and power systems; Environmental control systems; Heat pipes; Numeric analysis and code verification; and Two phase heat and mass transfer. Papers within the scope of the data base have been processed separately.

  18. Building America Best Practices Series, Volume 6: High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems

    SciTech Connect (OSTI)

    Baechler, Michael C.; Gilbride, Theresa L.; Ruiz, Kathleen A.; Steward, Heidi E.; Love, Pat M.

    2007-06-04

    This guide is was written by PNNL for the US Department of Energy's Building America program to provide information for residential production builders interested in building near zero energy homes. The guide provides indepth descriptions of various roof-top photovoltaic power generating systems for homes. The guide also provides extensive information on various designs of solar thermal water heating systems for homes. The guide also provides construction company owners and managers with an understanding of how solar technologies can be added to their homes in a way that is cost effective, practical, and marketable. Twelve case studies provide examples of production builders across the United States who are building energy-efficient homes with photovoltaic or solar water heating systems.

  19. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  20. Pilot Testing of WRI'S Novel Mercury Control Technology by Pre-Combustion Thermal Treatment of Coal

    SciTech Connect (OSTI)

    Alan Bland; Jesse Newcomer; Kumar Sellakumar

    2008-08-17

    The challenges to the coal-fired power industry continue to focus on the emission control technologies, such as mercury, and plant efficiency improvements. An alternate approach to post-combustion control of mercury, while improving plant efficiency deals with Western Research Institute's (WRI)'s patented pre-combustion mercury removal and coal upgrading technology. WRI was awarded under the DOE's Phase III Mercury program, to evaluate the effectiveness of WRI's novel thermal pretreatment process to achieve >50% mercury removal, and at costs of <$30,000/lb of Hg removed. WRI has teamed with Etaa Energy, Energy and Environmental Research Center (EERC), Foster Wheeler North America Corp. (FWNA), and Washington Division of URS (WD-URS), and with project co-sponsors including Electric Power Research Institute (EPRI), Southern Company, Basin Electric Power Cooperative (BEPC), Montana-Dakota Utilities (MDU), North Dakota Industrial Commission (NDIC), Detroit Edison (DTE), and SaskPower to undertake this evaluation. The technical objectives of the project were structured in two phases: Phase I--coal selection and characterization, and bench-and PDU-scale WRI process testing and; and Phase II--pilot-scale pc combustion testing, design of an integrated boiler commercial configuration, its impacts on the boiler performance and the economics of the technology related to market applications. This report covers the results of the Phase I testing. The conclusion of the Phase I testing was that the WRI process is a technically viable technology for (1) removing essentially all of the moisture from low rank coals, thereby raising the heating value of the coal by about 30% for subbituminous coals and up to 40% for lignite coals, and (2) for removing volatile trace mercury species (up to 89%) from the coal prior to combustion. The results established that the process meets the goals of DOE of removing <50% of the mercury from the coals by pre-combustion methods. As such, further

  1. Improvements in Li(Si)/FeS/sub 2/ thermal battery technology

    SciTech Connect (OSTI)

    Searcy, J.Q.; Armijo, J.R.

    1982-06-01

    Potential improvements in Li(Si)/FeS/sub 2/ thermal battery technology were evaluated using as the test vehicle a 28 +- 4-V, 400-cm/sup 3/ battery discharged through a 28-..cap omega.. load. Successful improvements included incorporating a catholyte additive to improve voltage regulation during discharge, changing the catholyte composition and blending procedure to increase life and current carrying capability, changing the anode composition to obtain better voltage regulation, and optimizing the heat and mass input. One end-of-life mechanism for higher current drain batteries was determined to be electrolytic freeze-out at the anode at temperatures that increase as the current density increases. The increase in freezing temperature was caused by a change in the K/sup +//Li/sup +/ ratio in the electrolyte near the anode as the anode discharged. A balanced ratio of cathode to anode weight was determined for the two catholytes and anode powders considered. The balance was based on electrode polarization at various resistive loads.

  2. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  3. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  5. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Thermal Energy Storage

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Bonebrake, Christopher A.

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of energy storage technologies deployed in the SGIG projects.

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  7. Description of recommended non-thermal mixed waste treatment technologies: Version 1.0

    SciTech Connect (OSTI)

    1995-08-01

    This document contains description of the technologies selected for inclusions in the Integrated Nonthermal Treatment Systems (INTS) Study. The purpose of these descriptions is to provide a more complete description of the INTS technologies. It supplements the summary descriptions of candidate nonthermal technologies that were considered for the INTS.

  8. Application of Sleeper Cab Thermal Management Technologies to Reduce Idle Climate Control Loads in Long-Haul Trucks

    SciTech Connect (OSTI)

    Lustbader, J. A.; Venson, T.; Adelman, S.; Dehart, C.; Yeakel, S.; Castillo, M. S.

    2012-10-01

    Each intercity long-haul truck in the U.S. idles approximately 1,800 hrs per year, primarily for sleeper cab hotel loads. Including workday idling, over 2 billion gallons of fuel are used annually for truck idling. NREL's CoolCab project works closely with industry to design efficient thermal management systems for long-haul trucks that keep the cab comfortable with minimized engine idling and fuel use. The impact of thermal load reduction technologies on idle reduction systems were characterized by conducting thermal soak tests, overall heat transfer tests, and 10-hour rest period A/C tests. Technologies evaluated include advanced insulation packages, a solar reflective film applied to the vehicle's opaque exterior surfaces, a truck featuring both film and insulation, and a battery-powered A/C system. Opportunities were identified to reduce heating and cooling loads for long-haul truck idling by 36% and 34%, respectively, which yielded a 23% reduction in battery pack capacity of the idle-reduction system. Data were also collected for development and validation of a CoolCalc HVAC truck cab model. CoolCalc is an easy-to-use, simplified, physics-based HVAC load estimation tool that requires no meshing, has flexible geometry, excludes unnecessary detail, and is less time-intensive than more detailed computer-aided engineering modeling approaches.

  9. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  10. Vehicle Technologies Office Merit Review 2016: Vehicle Thermal System Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  11. Vehicle Technologies Office Merit Review 2016: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  12. Vehicle Technologies Office Merit Review 2016: Thermally Stable Ultra-Low Temperature Oxidation Catalysts

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory (PNNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  13. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  14. Vehicle Technologies Office Merit Review 2014: Electric PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric PCM assisted...

  15. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  16. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  17. Vehicle Technologies Office Merit Review 2016: Electric Motor Thermal Management R&D

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  18. Vehicle Technologies Office Merit Review 2015: Coupling Mechanical with Electrochemical-Thermal Models Batteries Under Abuse

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling...

  19. Vehicle Technologies Office Merit Review 2015: Unitary Thermal Energy Management for Propulsion Range Augmentation (UTEMPRA)

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive Systems, LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Unitary...

  20. Vehicle Technologies Office Merit Review 2014: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and Electrochemical Processes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by [company name] at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupled hierarchical models...

  1. Vehicle Technologies Office Merit Review 2015: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about power...

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  6. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  7. Vehicle Technologies Office Merit Review 2016: ePATHS- electrical PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Mahle Behr USA, LLc at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  8. Vehicle Technologies Office Merit Review 2016: Combined Aero and Underhood Thermal Analysis for Heavy Duty Trucks

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle...

  9. Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  10. Vehicle Technologies Office Merit Review 2015: ePATHS- electrical PCM Assisted Thermal Heating System

    Broader source: Energy.gov [DOE]

    Presentation given by Delphi Automotive at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ePATHS - electrical PCM...

  11. Vehicle Technologies Office Merit Review 2016: UTEMPRA- Unitary Thermal Energy Management for Propulsion Range Augmentation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Mahle Behr USA, LLc at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems

  12. Vehicle Technologies Office Merit Review 2014: Stand-Alone Battery Thermal Management System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by DENSO International America, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stand-alone...

  13. Vehicle Technologies Office Merit Review 2015: Stand-Alone Battery Thermal Management System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by DENSO International America at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about stand-alone...

  14. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    SciTech Connect (OSTI)

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration, gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of view, net

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross

  16. Hit the Road, Jack! New Thermal Window Technology Lessens Menace of Jack Frost

    Broader source: Energy.gov [DOE]

    Say what you want about the joys of Jack Frost nipping at your nose, but when it comes to winter wonderlands, I like mine outdoors. Etching icy messages on the insides of my windows is not exactly cozy. Therefore, I'm thankful for technology that provides an efficient and effective barrier from inclement weather.

  17. Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T B; Colonomos, P

    1993-02-01

    This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  19. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances ...

  20. Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12

    SciTech Connect (OSTI)

    Izequeido, Alexandor

    2001-04-01

    This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations

  4. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific

    SciTech Connect (OSTI)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT's. However, there appears to be potential for introduction of CCT's in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT's introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT's in a number of countries.

  5. POLICY ANALYSIS OF PRODUCED WATER ISSUES ASSOCIATED WITH IN-SITU THERMAL TECHNOLOGIES

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana

    2011-02-01

    Commercial scale oil shale and oil sands development will require water, the amount of which will depend on the technologies adopted and the scale of development that occurs. Water in oil shale and oil sands country is already in scarce supply, and because of the arid nature of the region and limitations on water consumption imposed by interstate compacts and the Endangered Species Act, the State of Utah normally does not issue new water rights in oil shale or oil sands rich areas. Prospective oil shale and oil sands developers that do not already hold adequate water rights can acquire water rights from willing sellers, but large and secure water supplies may be difficult and expensive to acquire, driving oil shale and oil sands developers to seek alternative sources of supply. Produced water is one such potential source of supply. When oil and gas are developed, operators often encounter ground water that must be removed and disposed of to facilitate hydrocarbon extraction. Water produced through mineral extraction was traditionally poor in quality and treated as a waste product rather than a valuable resource. However, the increase in produced water volume and the often-higher quality water associated with coalbed methane development have drawn attention to potential uses of produced water and its treatment under appropriations law. This growing interest in produced water has led to litigation and statutory changes that must be understood and evaluated if produced water is to be harnessed in the oil shale and oil sands development process. Conversely, if water is generated as a byproduct of oil shale and oil sands production, consideration must be given to how this water will be disposed of or utilized in the shale oil production process. This report explores the role produced water could play in commercial oil shale and oil sands production, explaining the evolving regulatory framework associated with produced water, Utah water law and produced water regulation

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are

  7. Impact of tax incentives on the commercialization of solar thermal electric technologies. Volume II. Federal revenue considerations

    SciTech Connect (OSTI)

    Bos, P.B.; Morris, G.P.

    1985-11-01

    The purpose of this study was to quantify the impact of the Solar Thermal Central Receiver (STCR) tax incentives and commercialization on the federal treasury revenues. The initial STCR market penetration was assumed to take place in California, because of favorable local conditions. The initial financing was assumed to be underwritten by intermediary partnerships under long-term avoided cost contracts with the local utility companies with subsequent sale of the plants to utilities at competitive prices. To estimate the impacts of these various tax incentives associated with the commercialization of the STCR technology, the tax revenues and costs for the STCR plants were compared with the tax revenues and costs for the displaced conventional power plants. This differential analysis takes into account the different operating expenses, as well as the different depreciation charges, financing costs, and tax credits associated with STCR and conventional plants. The study also evaluated the impact of both the previous (1983) and current (1984) proposed federal energy tax credits. The resulting total annual tax cash flows were subsequently cumulated to determine the aggregate tax revenues and costs throughout the 1985 to 2034 time period. The results of this analysis indicate that the initial federal tax revenues are negative. With increasing market penetration, the installed costs of the STCR plants decrease rapidly and the net present values of the tax revenue cash flows associated with plants constructed after 1995 are positive, and become significantly larger than those for the corresponding displaced conventional plants.

  8. Technology Development Plan: Geotechnical survey systems for OTEC (Ocean Thermal Energy Conversion) cold water pipes: Final subcontract report

    SciTech Connect (OSTI)

    Valent, P.J.; Riggins, M.

    1989-04-01

    This report provides an overview of current and developing technologies and techniques for performing geotechnical investigations for siting and designing Cold Water Pipes (CWP) for shelf-resting Ocean Thermal Energy Conversion (OTEC) power plants. The geotechnical in situ tools used to measure the required parameters and the equipment/systems used to deploy these tools are identified. The capabilities of these geotechnical tools and deployment systems are compared to the data requirements for the CWP foundation/anchor design, and shortfalls are identified. For the last phase of geotechnical data gathering for design, a drillship will be required to perform soil boring work, to obtain required high-quality sediment samples for laboratory dynamic testing, and to perform deep-penetration in situ tests. To remedy shortfalls and to reduce the future OTEC CWP geotechnical survey costs, it is recommended that a seafloor-resting machine be developed to advance the friction cone penetrometer, and also probably a pressuremeter, to provide geotechnical parameters to shallow subseafloor penetrations on slopes of 35/degree/ and in water depths to 1300 m. 74 refs., 19 figs., 6 tabs.

  9. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  10. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  11. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  12. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and

  14. A Novel, Safe, and Environmentally Friendly Technology for Water Production Through Recovery of Rejected Thermal Energy From Nuclear Power Plants

    SciTech Connect (OSTI)

    Khalil, Yehia F.; Elimelech, Menachem

    2006-07-01

    In this work, we describe a novel design that utilizes seawater and a portion of rejected heat from a nuclear plant's steam cycle to operate a water desalination system using forward osmosis technology. Water produced from this process is of sufficient quality to be readily used to supply plant demands for continuous makeup water. The proposed process minimizes the environmental concerns associated with thermal pollution of public waters and the resulting adverse impact on marine ecology. To demonstrate the technical feasibility of this conceptual design of a water treatment process, we discuss a case study as an example to describe how the proposed design can be implemented in a nuclear power station with a once--through cooling system that discharges rejected heat to an open sound seawater as its ultimate heat sink. In this case study, the station uses a leased (vendor owned and operated) onsite water treatment system that demineralizes and polishes up to 500-gpm of city water (at 100 ppm TDS) to supply high-quality makeup water (< 0.01 ppm TDS) to the plant steam system. The objectives of implementing the new design are three fold: 1) forego current practice of using city water as the source of plant makeup water, thereby reducing the nuclear station's impact on the region's potable water supply by roughly 100 million gallons/year, 2) minimize the adverse impact of discharging rejected heat into the open sound seawater and, hence, protect the marine ecology, and 3) eliminate the reliance on external vendor that owns and operates the onsite water treatment system, thereby saving an annual fixed cost of $600 K plus 6 cents per 1,000 gallons of pure water. The design will also eliminate the need for using two double-path reverse osmosis (RO) units that consume 425 kW/h of electric power to operate two RO pumps (480 V, 281.6 HP, and 317.4 amps). (authors)

  15. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  16. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer progress report for DOE (Department of Energy) Office of Buildings Energy Research

    SciTech Connect (OSTI)

    Burn, G.

    1990-08-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

  17. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  18. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management – Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  19. Vehicle Technologies Office Merit Review 2016: Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory (NREL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting...

  20. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  1. Vehicle Technologies Office Merit Review 2015: Design and Implementation of a Thermal Load Reduction System in a Hyundai PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  2. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  3. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    SciTech Connect (OSTI)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the cost and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.

  4. Electric Drive Dynamic Thermal System Model for Advanced Vehicle Propulsion Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-09-360

    SciTech Connect (OSTI)

    Bennion, K.

    2013-10-01

    Electric drive systems, which include electric machines and power electronics, are a key enabling technology for advanced vehicle propulsion systems that reduce the dependence of the U.S. transportation sector on petroleum. However, to penetrate the market, these electric drive technologies must enable vehicle solutions that are economically viable. The push to make critical electric drivesystems smaller, lighter, and more cost-effective brings respective challenges associated with heat removal and system efficiency. In addition, the wide application of electric drive systems to alternative propulsion technologies ranging from integrated starter generators, to hybrid electric vehicles, to full electric vehicles presents challenges in terms of sizing critical components andthermal management systems over a range of in-use operating conditions. This effort focused on developing a modular modeling methodology to enable multi-scale and multi-physics simulation capabilities leading to generic electric drive system models applicable to alternative vehicle propulsion configurations. The primary benefit for the National Renewable Energy Laboratory (NREL) is the abilityto define operating losses with the respective impact on component sizing, temperature, and thermal management at the component, subsystem, and system level. However, the flexible nature of the model also allows other uses related to evaluating the impacts of alternative component designs or control schemes depending on the interests of other parties.

  5. Supporting technology for enhanced oil recovery: Sixth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T.B. ); Rivas, O. )

    1991-10-01

    This report contains the results of efforts under the six tasks of the Sixth Amendment and Extension of Annex 4, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 44 through 49. Tasks are: DOE-SUPRI-laboratory research on steam foam, CAT-SCAN, and in-situ combustion; INTEVEP-laboratory research and field projects on steam foam; DOE-NIPER-laboratory research and field projects light oil steam flooding; INTEVEP-laboratory research and field studies on wellbore heat losses; DOE-LLNL-laboratory research and field projects on electromagnetic induction tomography; INTEVEP-laoboratory research on mechanistic studies.

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    Through December 1999, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone in order to focus the remaining time on using the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    Through March 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the second quarter 2000 writing the 1997-2000 Annual Report, completing research for the project on the subjects mentioned above, and operating the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam

  8. Development of Advanced Combustion Technologies for Increased...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion Technologies for Increased Thermal Efficiency Development of Advanced Combustion Technologies for Increased Thermal Efficiency Investigation of fuel effects on ...

  9. Future Diesel Engine Thermal Efficiency Improvement andn Emissions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel ...

  10. MERCURY REMOVAL IN A NON-THERMAL, PLASMA-BASED MULTI-POLLUTANT CONTROL TECHNOLOGY FOR UTILITY BOILERS

    SciTech Connect (OSTI)

    Christopher R. McLaron

    2004-12-01

    Powerspan has conducted pilot scale testing of a multi-pollutant control technology at FirstEnergy's Burger Power Plant under a cooperative agreement with the U.S. Department of Energy. The technology, Electro-Catalytic Oxidation (ECO), simultaneously removes sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), fine particulate matter (PM{sub 2.5}) and mercury (Hg) from the flue gas of coal-fired power plants. Powerspan's ECO{reg_sign} pilot test program focused on optimization of Hg removal in a 1-MWe slipstream pilot while maintaining greater than 90% removal of NO{sub x} and 98% removal of SO{sub 2}. This Final Technical Report discusses pilot operations, installation and maintenance of the Hg SCEMS instrumentation, and performance results including component and overall removal efficiencies of SO{sub 2}, NO{sub x}, PM and Hg from the flue gas and removal of captured Hg from the co-product fertilizer stream.

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-14

    Through June 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the third quarter 2000 revising the draft 1997-2000 Annual Report submitted last quarter, writing final reports on the research projects mentioned above, and operating the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to

  12. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  13. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  14. Supporting technology for enhanced oil recovery: Fifth amendment and extension to Annex IV enhanced oil recovery thermal processes

    SciTech Connect (OSTI)

    Reid, T.B. ); Rivas, O. )

    1989-12-01

    An Agreement between the Department of Energy of the United States of America and the Ministry of Energy and Mines of the Republic of Venezuela to cooperate in Energy Research and Development was signed March 6, 1980. The object of cooperation under this DOE/MEMV Agreement was to promote a balanced exchange of energy technologies and to conduct joint projects in the areas of Petroleum, Solar Energy, Geothermal Energy, Hydroelectric Energy and Coal. This report describes research projects in enhanced recovery. The following tasks are discussed: DOE-SUPRI Foam Diversion Research and Simulation Studies; INTEVEP Steam-Foam Laboratory Research -- High Pressure and High Temperature using 2-D Model; DOE-NIPER Light Oil Steamflooding Research; INTEVEP In-Situ Combustion Kinetics Research; DOE-LLNL Electromagnetic Cross borehole Scanning; and INTEVEP Mechanistic Studies for Heavy Oil.

  15. The path to clean energy: direct coupling of nuclear and renewable technologies for thermal and electrical applications

    SciTech Connect (OSTI)

    Bragg-Sitton, Shannon; Boardman, Richard; Ruth, Mark

    2015-07-01

    The U.S. Department of Energy (DOE) recognizes the need to transform the energy infrastructure of the U.S. and elsewhere to systems that can significantly reduce environmental impacts in an efficient and economically viable manner while utilizing both clean energy generation sources and hydrocarbon resources. Thus, DOE is supporting research and development that could lead to more efficient utilization of clean nuclear and renewable energy generation sources. A concept being advanced by the DOE Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of providing energy (thermal or electrical) where it is needed, when it is needed. For the purposes of this work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. This definition requires coupling of subsystems ‘‘behind’’ the electrical transmission bus, where energy flows are dynamically apportioned as necessary to meet demand and the system has a single connection to the grid that provides dispatchable electricity as required while capital intensive generation assets operate at full capacity. Development of integrated energy systems for an “energy park” must carefully consider the intended location and the associated regional resources, traditional industrial processes, energy delivery infrastructure, and markets to identify viable region-specific system configurations. This paper will provide an overview of the current status of regional hybrid energy system design, development and application of dynamic analysis tools to assess technical and economic performance, and

  16. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  17. Potential for thermal coal and Clean Coal Technology (CCT) in the Asia-Pacific. Final technical report

    SciTech Connect (OSTI)

    Johnson, C.J.; Long, S.

    1991-11-22

    The Coal Project was able to make considerable progress in understanding the evolving energy situation in Asia and the future role of coal and Clean Coal Technologies. It is clear that there will be major growth in consumption of coal in Asia over the next two decades -- we estimate an increase of 1.2 billion metric tons. Second, all governments are concerned about the environmental impacts of increased coal use, however enforcement of regulations appears to be quite variable among Asian countries. There is general caution of the part of Asian utilities with respect to the introduction of CCT`s. However, there appears to be potential for introduction of CCT`s in a few countries by the turn of the century. It is important to emphasize that it will be a long term effort to succeed in getting CCT`s introduced to Asia. The Coal Project recommends that the US CCT program be expanded to allow the early introduction of CCT`s in a number of countries.

  18. MHK Technologies/OTEC | Open Energy Information

    Open Energy Info (EERE)

    Center Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Readiness Level Click here TRL 56: System...

  19. Property:Technology Resource | Open Energy Information

    Open Energy Info (EERE)

    CurrentTidal MHK TechnologiesDeep Water Pipelines + Ocean Thermal Energy Conversion (OTEC) MHK TechnologiesDeltaStream + CurrentTidal MHK TechnologiesDenniss Auld Turbine +...

  20. Vehicle Technologies Office Merit Review 2014: Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters

    Broader source: Energy.gov [DOE]

    Presentation given by National Institute of Standards and Technology at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  1. MHK Technologies/Sea Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating...

  2. The design, construction, and monitoring of photovoltaic power system and solar thermal system on the Georgia Institute of Technology Aquatic Center. Volume 1

    SciTech Connect (OSTI)

    Long, R.C.

    1996-12-31

    This is a report on the feasibility study, design, and construction of a PV and solar thermal system for the Georgia Tech Aquatic Center. The topics of the report include a discussion of site selection and system selection, funding, design alternatives, PV module selection, final design, and project costs. Included are appendices describing the solar thermal system, the SAC entrance canopy PV mockup, and the PV feasibility study.

  3. Vehicle Technologies Office Battery Research Partner Requests...

    Office of Environmental Management (EM)

    Battery Research Partner Requests Proposals for Thermal Management Systems Vehicle Technologies Office Battery Research Partner Requests Proposals for Thermal Management Systems ...

  4. TOPCAT Solar Cell Alignment & Energy Concentration Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This ...

  5. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  6. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Vehicle Technologies Office: 2009 ...

  7. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  8. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  9. Vehicle Technologies Office Merit Review 2016: Development and Validation of a Simulation tool to Predict the Combined Structural, Electrical, Electrochemical, and Thermal Responses of Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by Ford at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  10. Vehicle Technologies Office Merit Review 2015: Mechanistic Modeling Framework for Predicting Extreme Battery Response: Coupled Hierarchical Models for Thermal, Mechanical, Electrical and (Electro)chemical Processes

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about mechanistic...

  11. The Chemistry of the Thermal DeNOx Process: A Review of the Technology's Possible Application to control of NOx from Diesel Engines

    SciTech Connect (OSTI)

    Lyon, Richard

    2001-08-05

    This paper presents a review of the Thermal DeNOx process with respect to its application to control of NOx emissions from diesel engines. The chemistry of the process is discussed first in empirical and then theoretical terms. Based on this discussion the possibilities of applying the process to controlling NOx emissions from diesel engines is considered. Two options are examined, modifying the requirements of the chemistry of the Thermal DeNOx process to suit the conditions provided by diesel engines and modifying the engines to provide the conditions required by the process chemistry. While the former examination did not reveal any promising opportunities, the latter did. Turbocharged diesel engine systems in which the turbocharger is a net producer of power seem capable of providing the conditions necessary for NOx reduction via the Thermal DeNOx reaction.

  12. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured

  13. Tunable Thermal Link - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Thermal Link Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryThermal links are incorporated into everything from frying pans to internal combustion engine spark plugs and heat sinks on integrated circuit boards. Typically, the link's thermal resistance is fixed and cannot be tuned after manufacture. While the ability to tune electrical resistors is widespread, virtually no tunable thermal resistance link exists, which has held back the

  14. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the

  15. Vehicle Technologies Office Merit Review 2014: Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about coupling of mechanical behavior of cell...

  16. Sunborne Energy Technologies | Open Energy Information

    Open Energy Info (EERE)

    Technologies Jump to: navigation, search Name: Sunborne Energy Technologies Place: Cambridge, Massachusetts Zip: 2138 Sector: Solar Product: Massachusetts-based solar thermal...

  17. MHK Technologies/Deep Water Pipelines | Open Energy Information

    Open Energy Info (EERE)

    Makai Ocean Engineering Inc Project(s) where this technology is utilized *MHK ProjectsOTEC Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type...

  18. Integrated External Aerodynamic and Underhood Thermal Analysis...

    Broader source: Energy.gov (indexed) [DOE]

    Cooling Boiling in Head Region - PACCAR Integrated Underhood Thermal and External Aerodynamics- Cummins Cummins SuperTruck Program - Technology and System Level Demonstration of ...

  19. Thermal Management Using Carbon Nanotubes - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Management Using Carbon Nanotubes Oak Ridge National Laboratory Contact ORNL About This Technology Vertically Aligned Carbon Nanotubes Vertically Aligned Carbon Nanotubes...

  20. Continuous Processing of High Thermal Conductivity Polyethylene...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Continuous Processing of High Thermal Conductivity Polyethylene Fibers and Sheets Massachusetts Institute of Technology (MIT) - Cambridge, MA A new, continuous manufacturing ...

  1. Thermal tolerant avicelase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant (thermostable) cellulase that is a member of the...

  2. Thermal tolerant mannanase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant mannanase that is a member of the glycoside hydrolase...

  3. Thermal tolerant exoglucanase from acidothermus cellulolyticus...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  4. Thermal tolerant cellulase from acidothermus cellulolyticus ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Visit the NREL Commercialization and Technology Transfer Website Abstract: The invention provides a thermal tolerant cellulase that is a member of the glycoside hydrolase...

  5. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov ... Advanced simulation is viewed as critical in bringing fast reactor technology to fruition ...

  6. Distributed Energy Technology Characterization (Desiccant Technologies), January 2004

    Broader source: Energy.gov [DOE]

    Desiccant technology and applications, and designing them for utilization of available thermal energy in a combined heat and power (CHP) system.

  7. Plasma-Thermal Synthesis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Synthesis Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Thermal Synthesis process improves the conversion process for natural gas into liquid hydrocarbon fuels. Description This process provides a method and apparatus for increasing acetylene yield from the thermal conversion of natural gas. The reactants inserted into the reactor chamber are applied at a high temperature of ionized gas. At this time, the reactants are changed to

  8. Thermal Spray Coatings for Coastal Infrastructure

    SciTech Connect (OSTI)

    Holcomb, G.R.; Covino, BernardS. Jr.; Cramer, S.D.; Bullard, S.J.

    1997-11-01

    Several protection strategies for coastal infrastructure using thermal-spray technology are presented from research at the Albany Research Center. Thermal-sprayed zinc coatings for anodes in impressed current cathodic protection systems are used to extend the service lives of reinforced concrete bridges along the Oregon coast. Thermal-sprayed Ti is examined as an alternative to the consumable zinc anode. Sealed thermal-sprayed Al is examined as an alternative coating to zinc dust filled polyurethane paint for steel structures.

  9. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect (OSTI)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  10. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  11. Ocean Thermal Energy Conversion: An overview

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    Ocean thermal energy conversion, or OTEC is a technology that extracts power from the ocean's natural thermal gradient. This technology is being pursued by researchers from many nations; in the United States, OTEC research is funded by the US Department of Energy's Ocean Energy Technology program. The program's goal is to develop the technology so that industry can make a competent assessment of its potential -- either as an alternative or as a supplement to conventional energy sources. Federally funded research in components and systems will help OTEC to the threshold of commercialization. This publication provides an overview of the OTEC technology. 47 refs., 25 figs.

  12. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  13. The Future of Absorption Technology in America: A Critical Look...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Future of Absorption Technology in America: A Critical Look at the Impact of Building, ... for CHP Applications, April 2005 Review of Thermally Activated Technologies, July ...

  14. Cummins SuperTruck Program - Technology Demonstration of Highly...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck technologies for 55% thermal efficiency and 68% freight efficiency Technology and System Level Demonstration of Highly Efficient and Clean, ...

  15. Air Cooling Technology for Advanced Power Electronics and Electric...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Air Cooling Technology for Power Electronic Thermal Control Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D ...

  16. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth) Data Collection for Improved Cold Temperature Thermal Modeling Advanced Technology ...

  17. Technology Reviews | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Reviews Technology Reviews Selecting a distributed energy (DE) technology for a specific application depends on many factors. Considerations include the amount of power needed, the duty cycle, space constraints, thermal needs, emission regulations, fuel availability, utility prices, and interconnection issues. The following technology reviews include descriptions of a variety of DE and combined heat and power (CHP) technologies, providing (when available) such parameters as

  18. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  19. Thermal battery

    SciTech Connect (OSTI)

    Williams, M.T.; Winchester, C.S.; Jolson, J.D.

    1989-06-20

    A thermal battery is described comprising at least one electrochemical cell comprising an anode of alkali metal, alkaline earth metal or alloys thereof, a fusible salt electrolyte, a fluorocarbon polymer or fluorochlorocarbon polymer depolarizer, and means for heating the cell to melt the electrolyte.

  20. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  1. Industrial Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (356) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories

  2. Solar Thermal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Solar Glare Hazard Analysis Tool (SGHAT) With growing numbers of solar energy systems being proposed and installed throughout the United States, the potential ...

  3. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motorists who look north while driving on Interstate 70 may notice a large, alien-looking device on the mesa-top above the main research facilities of the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The 40-foot high, mirror-laden machine actually is a heliostat, a down-to-earth way of converting the sun's heat into electricity. Researchers at the lab are testing the prototype heliostat developed by Science Applications International Corporation's (SAIC) Golden

  4. Battelle Memorial Institute Technologies Available for Licensing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America...

  5. Geothermal Technologies Office At-A-Glance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Additionally, R&D of thermal desalination technologies will continue in collaboration with the Advanced Manufacturing Offce (AMO) Desalination Hub. * A Subsurface Engineering ...

  6. NREL: Transportation Research - Thermal Performance Benchmarking

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on state-of-the-art technologies used in electric-drive vehicle (EDV) systems. ... State-of-the-art power electronics and electric motor thermal management strategies used ...

  7. Three-Dimensional Thermal Tomography Advances Cancer Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast...

  8. Specific heat and thermal conductivity of explosives, mixtures...

    Office of Scientific and Technical Information (OSTI)

    Specific heat and thermal conductivity of explosives, mixtures, and plastic-bonded explosives determined experimentally Baytos, J.F. 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL...

  9. Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion...

    Office of Scientific and Technical Information (OSTI)

    the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing...

  10. NREL: Transportation Research - Power Electronics Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Electronics Thermal Management A photo of water boiling in liquid cooling lab equipment. Power electronics thermal management research aims to help lower the cost and improve the performance of electric-drive vehicles. Photo by Dennis Schroeder, NREL NREL investigates and develops thermal management strategies for power electronics systems that use wide-bandgap technology, which enables the development of devices that are smaller than those based on other materials, demonstrating

  11. The DOE Solar Thermal Electric Program

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  12. Retrieval/ex situ thermal treatment scoring interaction report

    SciTech Connect (OSTI)

    Raivo, B.D.; Richardson, J.G.

    1993-11-01

    A retrieval/ex situ thermal treatment technology process for the Idaho National Engineering Laboratory transuranic waste pits and trenches is present. A system performance score is calculated, and assumptions, requirements, and reference baseline technologies for all subelements are included.

  13. Cobol Technologies | Open Energy Information

    Open Energy Info (EERE)

    Name: Cobol Technologies Place: New Delhi, Delhi (NCT), India Product: New Delhi-based thermal power and electricity distributer. The company is setting up a 5MW PV plant in...

  14. Creation of an Enhanced Geothermal System through Hydraulic and Thermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review egs_009_rose.pdf (190.77 KB) More Documents & Publications Concept Testing and

  15. Electric Drive Vehicle Level Control Development Under Various Thermal

    Broader source: Energy.gov (indexed) [DOE]

    Conditions | Department of Energy vss070_kim_2012_o.pdf (1.63 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions Vehicle Technologies Office Merit Review 2015: Fuel Displacement Potential of Advanced Technologies under Different Thermal Conditions Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth)

  16. Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_puetz.pdf (742.3 KB) More Documents & Publications Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Model-Based Transient Calibration Optimization

  17. Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Wind Energy Wind Energy Industrial Technologies Industrial Technologies Advanced Materials Advanced Materials Find More Like This Return to Search Deposition of Graded Thermal Barrier Coatings for Gas Turbine Blades Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (825 KB) Technology Marketing SummarySandia has developed a method and apparatus for depositing thermal barrier coatings on gas turbine

  18. Vehicle Technologies Office: Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  19. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P.; Frye-Mason, Gregory C.

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  20. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOEs Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  1. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  2. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  3. Thermal conductivity of thermal-battery insulations

    SciTech Connect (OSTI)

    Guidotti, R.A.; Moss, M.

    1995-08-01

    The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

  4. National Energy Technology Laboratory Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal NETL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories National Energy Technology Laboratory

  5. The Role of Advanced Combustion in Improving Thermal Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy of Advanced Combustion in Improving Thermal Efficiency The Role of Advanced Combustion in Improving Thermal Efficiency Combustion plays an important role in enabling high thermal efficiencies. Technologies that deliver short combustion duration and low soot emissions are needed. deer08_gehrke.pdf (1.39 MB) More Documents & Publications Development of Enabling Technologies for High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

  6. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  7. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  8. Development of MEMS based pyroelectric thermal energy harvesters

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Development of MEMS based pyroelectric thermal energy harvesters Citation Details In-Document Search Title: Development of MEMS based pyroelectric thermal energy harvesters The efficient conversion of waste thermal energy into electrical energy is of considerable interest due to the huge sources of low-grade thermal energy available in technologically advanced societies. Our group at the Oak Ridge National Laboratory (ORNL) is developing a new type

  9. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more ...

  10. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    SciTech Connect (OSTI)

    Brevick, Jerald R.

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was

  11. Before the House Science and Technology Subcommittee on Energy and Environment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Subject: Biomass for Thermal Energy and Electricity By: Scott Klara, Director Strategic Center for Coal National Energy Technology Laboratory

  12. Thermal energy storage program description

    SciTech Connect (OSTI)

    Reimers, E.

    1989-03-01

    The U.S. Department of Energy (DOE) has sponsored applied research, development, and demonstration of technologies aimed at reducing energy consumption and encouraging replacement of premium fuels (notably oil) with renewable or abundant indigenous fuels. One of the technologies identified as being able to contribute to these goals is thermal energy storage (TES). Based on the potential for TES to contribute to the historic mission of the DOE and to address emerging energy issues related to the environment, a program to develop specific TES technologies for diurnal, industrial, and seasonal applications is underway. Currently, the program is directed toward three major application targets: (1) TES development for efficient off-peak building heating and cooling, (2) development of advanced TES building materials, and (3) TES development to reduce industrial energy consumption.

  13. Tracers and Exploration Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracers and Exploration Technologies Tracers and Exploration Technologies Below are the project presentations and respective peer review results for Tracers and Exploration Technologies. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs, Thomas Watson, Brookhaven National Laboratory; Paul W. Reimus, Los Alamos National Laboratory; Vince Vermeul, Pacific Northwest National

  14. Aquifer thermal energy (heat and chill) storage

    SciTech Connect (OSTI)

    Jenne, E.A.

    1992-11-01

    As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

  15. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  16. The Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety of applications. NGDS is an interoperable networked system of distributed data repositories, accessed through federated catalog nodes and built upon an open architecture using open source software practices. The system provides access to geo- thermal data from providers across the U.S., including all 50 state geological

  17. CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development 2010 DOE Vehicle Technologies and Hydrogen...

  18. Defining Real World Drive Cycles to Support APRF Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Improved Cold Temperature Thermal Modeling and Strategy Development Vehicle Technologies Office Merit Review 2014: Internal Combustion Engine Energy Retention (ICEER)

  19. Advanced Technology & Discovery at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing & Materials Technology develops high-performance components and manufacturing processes Aero-Thermal Mechanical Systems focuses on solving the world's...

  20. Before the House Science and Technology Subcommittee on Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scott Klara, Director Strategic Center for Coal National Energy Technology Laboratory Subject: Biomass for Thermal Energy and Electricity PDF icon 10-21-09FinalTestimony(Klara)...

  1. Characterization and Development of Advanced Heat Transfer Technologies (Presentation)

    SciTech Connect (OSTI)

    Kelly, K.

    2009-05-01

    This presentation gives an overview of the status and FY09 accomplishments for the NREL thermal management research project 'Characterization and Development of Advanced Heat Transfer Technologies'.

  2. Epoch Energy Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Zip: 311201 Sector: Solar Product: Distributor of PV outdoor lights and solar thermal water heating systems. References: Epoch Energy Technology Co Ltd1 This article is a...

  3. Overview of Thermoelectric Power Generation Technologies in Japan...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting kajikawa.pdf (4.47 MB) More ...

  4. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  5. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  6. Parallel Integrated Thermal Management - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Early Stage R&D Early Stage R&D Find More Like This Return to Search Parallel Integrated Thermal Management National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Many current cooling systems for hybrid electric vehicles (HEVs) with a high power electric drive system utilize a low temperature liquid cooling loop for cooling the power electronics system and electric machines associated with the electric

  7. Westinghouse thermal barrier coatings development

    SciTech Connect (OSTI)

    Goedjen, J.G.; Wagner, G.

    1995-10-01

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  8. Exploration Technologies Technology Needs Assessment

    Broader source: Energy.gov [DOE]

    The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

  9. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  10. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  11. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  12. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  13. Vehicle Technologies Office: Graduate Automotive Technology Education...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education & Workforce Development Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology ...

  14. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  15. Report of the Nuclear Reactor Technology Subcommittee

    Broader source: Energy.gov (indexed) [DOE]

    ... a particular reactor technology (fast or thermal, gas-cooled or sodium-cooled) could be used to reduce ... development of first-of-a-kind reactors within the NGNP have proved to ...

  16. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K; Cuppett, D; Dyer, D

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with Kalwall building panels. An added feature of the Kalwall system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  17. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  18. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  19. Assessment of selected furnace technologies for RWMC waste

    SciTech Connect (OSTI)

    Batdorf, J.; Gillins, R. ); Anderson, G.L. )

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste.

  20. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." ...

  1. Electric Motor Thermal Management R&D: Annual Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NREL Technical Report NRELTP- 5400-63887, June 2015. 5 K. Bennion. "Electric Motor Thermal Management R&D." 2015 DOE Vehicle Technologies Office (VTO) Annual Merit Review, June ...

  2. NREL: Concentrating Solar Power Research - Parabolic Trough Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar power Help reduce the cost of solar electricity. Parabolic trough technology currently has one thermal energy storage option-a two-tank, indirect, molten-salt system. ...

  3. Battery Thermal Modeling and Testing | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation es110smith2011p.pdf (852.63 KB) More Documents & Publications NREL Battery Thermal and Life Test ...

  4. Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Dish Stirling High Performance Thermal Storage FY15Q3 Quad Chart ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  5. Project Profile: High-Temperature Thermal Array for Next-Generation Solar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Power Production | Department of Energy Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos National Laboratory logo The Los Alamos National Laboratory (LANL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe-based technology designed to bridge the heliostat reflector field and the power cycle by

  6. CoolCab Truck Thermal Load Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck Thermal Load Reduction CoolCab Truck Thermal Load Reduction 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vssp_09_proc.pdf (2.28 MB) More Documents & Publications CoolCab Test and Evaluation CoolCab Thermal Load Reduction Project: CoolCalc HVAC Tool Development CoolCab Test and Evaluation and

  7. Passive Solar Building Design and Solar Thermal Space Heating Webinar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable Energy Laboratory (NREL) Senior Engineer Andy Walker's Nov. 30, 2010, presentation about passive solar building design, and solar thermal space heating technologies and applications. It's one in a series of Webinars to support state and local projects funded by Sustainable Energy Resources for

  8. NREL: Transportation Research - Light-Duty Vehicle Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light-Duty Vehicle Thermal Management Image of a semi-transparent car with parts of the engine highlighted in green. NREL evaluates technologies and methods such as advanced window glazing, cooling heat-pipe systems, parked car ventilation, and direct energy recovery. Illustration by Josh Bauer, NREL National Renewable Energy Laboratory (NREL) researchers are focused on improving the thermal efficiency of light-duty vehicles (LDVs) while maintaining the thermal comfort that drivers expect.

  9. Thermal Stress and Reliability for Advanced Power Electronics and Electric

    Broader source: Energy.gov (indexed) [DOE]

    Machines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_14_okeefe.pdf (969.92 KB) More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration Thermal Performance and Reliability of Bonded Interfaces

  10. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  11. Three-Dimensional Thermal Tomography Advances Cancer Treatment | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Three-Dimensional Thermal Tomography Advances Cancer Treatment Technology available for licensing: A 3D technique to detect early skin changes due to radiation treatment in breast cancer patients. Lowers medical costs due to lessened side effects Noninvasive, enhances healing and detects other conditions PDF icon thermal_tomography

  12. Pulse Thermal Processing of Functional Materials Using a Directed Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arc - Energy Innovation Portal Early Stage R&D Early Stage R&D Advanced Materials Advanced Materials Find More Like This Return to Search Pulse Thermal Processing of Functional Materials Using a Directed Plasma Arc Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryUsing pulses of high density infrared light from a directed plasma arc, ORNL researchers invented a method to thermally process thin films and other functional materials on

  13. Battery and Thermal Energy Storage | Energy Systems Integration | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Battery and Thermal Energy Storage Not long ago, the mantra among electric utilities was that "you can't store electricity"-instantaneous power production had to nearly equal demand. But NREL research is changing this belief, demonstrating the high performance of grid-integrated battery and thermal energy storage technologies. Photo of a battery energy storage system NREL examines how best to integrate these energy storage technologies into the electrical grid and potentially into

  14. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  15. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  16. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  17. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  18. Thermal performance of concrete masonry unit wall systems

    SciTech Connect (OSTI)

    Kosny, J.

    1995-12-31

    New materials, modern building wall technologies now available in the building marketplace, and unique, more accurate, methods of thermal analysis of wall systems create an opportunity to design and erect buildings where thermal envelopes that use masonry wall systems can be more efficient. Thermal performance of the six masonry wall systems is analyzed. Most existing masonry systems are modifications of technologies presented in this paper. Finite difference two-dimensional and three-dimensional computer modeling and unique methods of the clear wall and overall thermal analysis were used. In the design of thermally efficient masonry wall systems is t to know how effectively the insulation material is used and how the insulation shape and its location affect the wall thermal performance. Due to the incorrect shape of the insulation or structural components, hidden thermal shorts cause additional heat losses. In this study, the thermal analysis of the clear wall was enriched with the examination of the thermal properties of the wall details and the study of a quantity defined herein the Thermal Efficiency of the insulation material.

  19. Vehicle Technologies Office Battery Research Partner Requests Proposals for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Management Systems | Department of Energy Battery Research Partner Requests Proposals for Thermal Management Systems Vehicle Technologies Office Battery Research Partner Requests Proposals for Thermal Management Systems January 12, 2016 - 3:06pm Addthis The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently issued a request for proposal information. The request focuses on

  20. Technology Development for High Efficiency Clean Diesel Engines and a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathway to 50% Thermal Efficiency | Department of Energy High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50% Thermal Efficiency Cost reduction is a key area of emphasis for the Cummins 2nd Generation ORC WHR System. deer09_stanton.pdf (455.27 KB) More Documents & Publications High Efficient Clean Combustion for SuperTruck Advanced Diesel Engine Technology Development for HECC

  1. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  2. Solid state thermal rectifier

    DOE Patents [OSTI]

    None

    2016-07-05

    Thermal rectifiers using linear nanostructures as core thermal conductors have been fabricated. A high mass density material is added preferentially to one end of the nanostructures to produce an axially non-uniform mass distribution. The resulting nanoscale system conducts heat asymmetrically with greatest heat flow in the direction of decreasing mass density. Thermal rectification has been demonstrated for linear nanostructures that are electrical insulators, such as boron nitride nanotubes, and for nanostructures that are conductive, such as carbon nanotubes.

  3. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  4. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  5. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  6. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  7. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    1999-03-30

    A vendor was selected for the diamond wire technology demonstration scheduled for this summer at Princeton Plasma Physics Laboratory (PPPL). A team consisting of personnel from FIU-HCET, PPPL, and AEA Technology reviewed the submitted bids. FIU-HCET will contract this vendor. At the SRS Ninth ICT teleconference, the ICT team discussed the status of the following demonstrations: LRAD; x-ray, K-edge; Strippable Coatings; Thermal Spray Vitrification; Cutting/Shearing/Dismantlement/Size Reduction; and Electrets. The LRAD demo is complete, and the x-ray/K-edge, Strippable Coatings, and Electrets demos are ongoing. The Asbestos and Thermal Spray Vitrification demos require more laboratory testing. The Cutting/Shearing/Dismantlement/Size Reduction demo is undergoing procurement. Five FIU-HCET staff members took the 1S0 14000 environmental auditor training course February 22-26, 1999, given by ASC. The test plan for the Facility Dismantlement Technology Assessment is finished and ready for internal review.

  8. Energy Storage Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Storage » Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Marketing Summaries (134) Success Stories (3) Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  9. Advanced Materials Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Marketing Summaries (349) Success Stories (3) Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  10. Vehicles and Fuels Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Marketing Summaries (138) Success Stories (2) Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  11. Solar Photovoltaic Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (132) Success Stories (5) Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  12. Biomass and Biofuels Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Marketing Summaries (161) Success Stories (3) Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  13. Building Energy Efficiency Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Marketing Summaries (80) Success Stories (3) Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  14. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  15. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-01-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an acceptable'' nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  16. A development approach for nuclear thermal propulsion

    SciTech Connect (OSTI)

    Buden, D.

    1992-09-01

    The cost and time to develop nuclear thermal propulsion systems are very approach dependent. The objectives addressed are the development of an ``acceptable`` nuclear thermal propulsion system that can be used as part of the transportation system for people to explore Mars and the enhancement performance of other missions, within highly constrained budgets and schedules. To accomplish this, it was necessary to identify the cost drivers considering mission parameters, safety of the crew, mission success, facility availability and time and cost to construct new facilities, qualification criteria, status of technologies, management structure, and use of such system engineering techniques as concurrent engineering.

  17. Phase-change thermal energy storage: Final subcontract report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

  18. Evaluation of technology modifications required to apply clean coal technologies in Russian utilities. Final report

    SciTech Connect (OSTI)

    1995-12-01

    The report describes the following: overview of the Russian power industry; electric power equipment of Russia; power industry development forecast for Russia; clean coal technology demonstration program of the US Department of Energy; reduction of coal TPS (thermal power station) environmental impacts in Russia; and base options of advanced coal thermal power plants. Terms of the application of clean coal technology at Russian TPS are discussed in the Conclusions.

  19. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  20. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  1. Ceramic Technology Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    The Ceramic Technology Project was developed by the USDOE Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the USDOE and NASA advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. A five-year project plan was developed with extensive input from private industry. In July 1990 the original plan was updated through the estimated completion of development in 1993. The objective is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities.

  2. Technology Partnering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of 2000: It is

  3. Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology transfer Technology Transfer Since 1974, the Federal Laboratory Consortium (FLC) Award for Excellence in Technology Transfer has recognized scientists and engineers at federal government and research centers for their "uncommon creativity and initiative in conveying innovations from their facilities to industry and local government." Scientists and engineers from more than 650 federal government laboratories and research centers compete for the 30 awards presented each year.

  4. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  5. NREL: Technology Transfer - Agreements for Commercializing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-384-7353. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  6. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  7. Chlorofluorocarbon leak detection technology

    SciTech Connect (OSTI)

    Munday, E.B.

    1990-12-01

    There are about 590 large coolant systems located at the Portsmouth Gaseous Diffusion Plant (PORTS) and the Paducah Gaseous Diffusion Plant (PGDP) leaking nearly 800,000 lb of R-114 refrigerant annually (1989 estimate). A program is now under way to reduce the leakage to 325,000 lb/year -- an average loss of 551 lb/year (0.063 lb/h) per coolant system, some of which are as large as 800 ft. This report investigates leak detection technologies that can be used to locate leaks in the coolant systems. Included are descriptions, minimum leak detection rate levels, advantages, disadvantages, and vendor information on the following technologies: bubbling solutions; colorimetric leak testing; dyes; halogen leak detectors (coronea discharge detectors; halide torch detectors, and heated anode detectors); laser imaging; mass spectroscopy; organic vapor analyzers; odorants; pressure decay methods; solid-state electrolytic-cell gas sensors; thermal conductivity leak detectors; and ultrasonic leak detectors.

  8. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  9. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  10. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  11. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  12. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  13. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  14. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power

  16. Project Profile: CSP Energy Storage Solutions - Multiple Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compared | Department of Energy Concentrating Solar Power » Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared Project Profile: CSP Energy Storage Solutions - Multiple Technologies Compared US Solar Holdings logo US Solar Holdings, under the Thermal Storage FOA, is aiming to demonstrate commercial, utility-scale thermal energy storage technologies and provide a path to cost-effective energy storage for CSP plants >50 MW. Approach US Solar Holdings is

  17. Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-duty Emissions Regulations | Department of Energy Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations Integrated Engine and Aftertreatment Technology Roadmap for EPA 2010 Heavy-duty Emissions Regulations 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_aneja.pdf (810.94 KB) More Documents & Publications Future Diesel Engine Thermal Efficiency Improvement andn Emissions Control Technology Thermal

  18. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    SciTech Connect (OSTI)

    Not Available

    1983-02-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date, concentrator development and progress, economic analyses, and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  19. Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  20. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  1. Thermal denitration and mineralization of waste constituents

    SciTech Connect (OSTI)

    Nenni, J.A.; Boardman, R.D.

    1997-08-01

    In order to produce a quality grout from LLW using hydraulic cements, proper conditioning of the waste is essential for complete cement curing. Several technologies were investigated as options for conditions. Since the LLW is dilute, removal of all, or most, of the water will significantly reduce the final waste volume. Neutralization of the LLW is also desirable since acidic liquids to not allow cement to cure properly. The nitrate compounds are very soluble and easily leached from solid waste forms; therefore, denitration is desirable. Thermal and chemical denitration technologies have the advantages of water removal, neutralization, and denitration. The inclusion of additives during thermal treatment were investigated as a method of forming insoluable waste conditions.

  2. Using Wireless Technology to Reduce Facility Energy Usage | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Using Wireless Technology to Reduce Facility Energy Usage Using Wireless Technology to Reduce Facility Energy Usage This presentation details the U.S. Department of Energy's TEAM initiative's wireless technologies and their applications. Using Wireless Technology to Reduce Facility Energy Usage (December 4, 2009) (2.57 MB) More Documents & Publications New and Emerging Technologies Figure 1: Chamber experiment to study impact of air movement on thermal comfort using personally

  3. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  4. Thermal Regenerator Testing | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regenerator Testing Thermal Regenerator Testing Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_crane.pdf (64.03 KB) More Documents & Publications Phase 1 of the Advanced Collaborative Emissions Study (ACES): Highlights of Project Finding Engine Tests of an Active PM Filter

  5. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  9. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  10. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink Pratt Whitney Rocketdyne Testing Concentrating Solar Power, EC, Energy, Facilities, ...

  11. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  12. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  13. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  14. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  15. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  16. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  17. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by source, 2000 - 2009 Imports Domestically ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  18. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  19. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  20. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment ... Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Import shipments of solar thermal collectors by country, 2008 and 2009 (square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  2. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    7 Import shipments of solar thermal collectors by type, 2000 - 2009 (thousand square feet) ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal ...

  3. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  4. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags

    technology<...

  5. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  6. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  7. Embedded Optical Sensors for Thermal Barrier Coatings

    SciTech Connect (OSTI)

    David R. Clarke

    2006-07-31

    The third year of this program on developing embedded optical sensors for thermal barrier coatings has been devoted to two principal topics: (i) continuing the assessment of the long-term, thermal cycle stability of the Eu{sup 3+} doped 8YSZ temperature sensor coatings, and (ii) improving the fiber-optic based luminescence detector system. Following the earlier, preliminary findings, it has been found that not only is the luminescence from the sensors not affected by prolonged thermal cycling, even after 195 hours at 1425 C, but the variation in luminescence lifetime with temperature remains unchanged. As the temperature of 1425 C is much higher than present engines attain or even planned in the foreseeable future, our findings indicate that the Eu{sup 3+} doped thermal barrier coating sensors are very robust and have the potential of being stable throughout the life of coatings. Investigation of Eu{sup 3+} doped coatings prepared by plasma-spraying exhibited the same luminescence characteristics as those prepared by electron-beam evaporation. This is of major significance since thermal barrier coatings can be prepared by both process technologies. A fiber-optic based luminescence system has been constructed in which the hottest section of fiber operates to at least 1250 C.

  8. Overview of Thermoelectric Power Generation Technologies in Japan |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting kajikawa.pdf (4.47 MB) More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  9. Industrial Technologies Available for Licensing - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Marketing Summaries (356) Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse Industrial Technologies

  10. Marine & Hydrokinetic Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    This fact sheet describes the U.S. Department of Energy's Water Power Program. The program supports the development of advanced water power devices that capture energy from waves, tides, ocean currents, rivers, streams, and ocean thermal gradients. The program works to promote the development and deployment of these new technologies, known as marine and hydrokinetic technologies, to assess the potential extractable energy from rivers, estuaries, and coastal waters, and to help industry harness this renewable, emissions-free resource to generate environmentally sustainable and cost-effective electricity.

  11. Advanced Thermal Energy Storage: Novel Tuning of Critical Fluctuations for Advanced Thermal Energy Storage

    SciTech Connect (OSTI)

    2011-12-01

    HEATS Project: NAVITASMAX is developing a novel thermal energy storage solution. This innovative technology is based on simple and complex supercritical fluids— substances where distinct liquid and gas phases do not exist, and tuning the properties of these fluid systems to increase their ability to store more heat. In solar thermal storage systems, heat can be stored in NAVITASMAX’s system during the day and released at night—when the sun is not shining—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in NAVITASMAX’s system at night and released to produce electricity during daytime peak-demand hours.

  12. Renewable Energy Technologies - Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  13. Advanced Reactor Thermal Hydraulic Modeling | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility Temperature distribution illustrating thermal striping in a T-junction. Computed on Intrepid with Nek5000 and visualized on Eureka with VisIt at the ALCF. Paul Fischer (ANL), Aleks Obabko (ANL), and Hank Childs (LBNL) Advanced Reactor Thermal Hydraulic Modeling PI Name: Paul Fischer PI Email: fischer@mcs.anl.gov Institution: Argonne National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 25 Million Year: 2012 Research Domain: Energy Technologies The DOE Nuclear

  14. Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nanomaterials for Thermal Energy Storage in CSP Plants Project Profile: Nanomaterials for Thermal Energy Storage in CSP Plants National Renewable National Laboratory logo The National Renewable Energy Laboratory (NREL), under an ARRA CSP Award, is extending previous work on nanoscale phase change materials to develop materials with technologically relevant temperature ranges and encapsulation structures. Approach Image of round and square particles floating together on

  15. DOE Issues Request for Information on Advanced Thermal Insulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composite Material Compatibility | Department of Energy Advanced Thermal Insulation and Composite Material Compatibility DOE Issues Request for Information on Advanced Thermal Insulation and Composite Material Compatibility October 20, 2015 - 9:58am Addthis The U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office has issued a request for information (RFI) to obtain feedback and opinions from industry, academia, research laboratories, government agencies, and other stakeholders

  16. General theme report: Working session 2, Solar thermal systems

    SciTech Connect (OSTI)

    Alpert, D.J.; Kolb, G.J.

    1991-01-01

    Currently, over 90% of the world's large-scale solar electric energy is generated with concentrating solar thermal power plants. Such plants have the potential to meet many of the world's future energy needs. Research efforts are generally focused on generating electricity, though a variety of other applications are being pursued. Today, the technology for using solar thermal energy is well developed, cost competitive, and in many cases, ready for widespread application. The current state of each of the solar thermal technologies and their applications is reviewed, and recommendations for increasing their use are presented. The technologies reviewed in detail are: parabolic trough systems, central tower systems, and parabolic dish systems. 20 refs., 1 fig., 1 tab.

  17. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  18. Overview of Thermal Management

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  19. Motor Thermal Control

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  20. Integrated Vehicle Thermal Management

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  1. Building Technologies Office Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roland Risser Director, Building Technologies Office Building Technologies Office Energy Efficiency Starts Here. 2 Building Technologies Office Integrated Approach: Improving ...

  2. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  3. Advances in window technology: 1973-1993

    SciTech Connect (OSTI)

    Arasteh, D.

    1994-12-31

    Until the 1970s, the thermal performance of windows and other fenestration technologies was rarely of interest to manufacturers, designers, and scientists. Since then, however, a significant research and industry effort has focused on better understanding window thermal and optical behavior, how windows influence building energy patterns, and on the development of advanced products. This chapter explains how fenestration technologies can make a positive impact on building energy flows, what physical phenomena govern window heat and light transfer, what new products have been developed, and what new products are currently the subject of international research efforts. 44 refs., 30 figs., 3 tabs.

  4. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  5. Information Technology - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Technology

  6. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  7. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  8. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  9. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  10. NREL Works to Increase Electric Vehicle Efficiency Through Enhanced Thermal Management (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    Researchers at NREL are providing new insight into how heating and cooling systems affect the distance that electric vehicles can travel on a single charge. Electric vehicle range can be reduced by as much as 68% per charge because of climate-control demands. NREL engineers are investigating opportunities to change this dynamic and increase driving range by improving vehicle thermal management. NREL experts are collaborating with automotive industry partners to investigate promising thermal management technologies and strategies, including zone-based cabin temperature controls, advanced heating and air conditioning controls, seat-based climate controls, vehicle thermal preconditioning, and thermal load reduction technologies.

  11. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    SciTech Connect (OSTI)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  12. Thermal Performance and Reliability of Bonded Interfaces | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ape028_devoto_2012_o.pdf (1.45 MB) More Documents & Publications Reliability of Bonded Interfaces Thermal Performance and Reliability of Bonded Interfaces Thermal Performance and Reliability Energy

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape028_narumanchi_2011_o.pdf (740.98 KB) More

  13. Review of computational thermal-hydraulic modeling

    SciTech Connect (OSTI)

    Keefer, R.H.; Keeton, L.W.

    1995-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  14. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  15. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  16. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  17. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels

    SciTech Connect (OSTI)

    2012-01-09

    HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuels photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MITs technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuelscalled Hybrisolcan also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

  19. THE IMPACT OF THERMAL ENGINEERING RESEARCH ON GLOBAL CLIMATE CHANGE

    SciTech Connect (OSTI)

    Phelan, Patrick; Abdelaziz, Omar; Otanicar, Todd; Phelan, Bernadette; Prasher, Ravi; Taylor, Robert; Tyagi, Himanshu

    2014-01-01

    Global climate change is recognized by many people around the world as being one of the most pressing issues facing our society today. The thermal engineering research community clearly plays an important role in addressing this critical issue, but what kind of thermal engineering research is, or will be, most impactful? In other words, in what directions should thermal engineering research be targeted in order to derive the greatest benefit with respect to global climate change? To answer this question we consider the potential reduction in greenhouse gas (GHG) emissions, coupled with potential economic impacts, resulting from thermal engineering research. Here a new model framework is introduced that allows a technological, sector-by-sector analysis of GHG emissions avoidance. For each sector, we consider the maximum reduction in CO2 emissions due to such research, and the cost effectiveness of the new efficient technologies. The results are normalized on a country-by-country basis, where we consider the USA, the European Union, China, India, and Australia as representative countries or regions. Among energy supply-side technologies, improvements in coal-burning power generation are seen as having the most beneficial CO2 and economic impacts. The one demand-side technology considered, residential space cooling, offers positive but limited impacts. The proposed framework can be extended to include additional technologies and impacts, such as water consumption.

  20. Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2010-02-01

    Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.

  1. Thermal Energy Storage Technology for Transportation and Other...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications CFD Combustion Modeling with Conditional Moment Closure using Tabulated Chemistry Active DPF for Off-Road Particulate Matter (PM) Control Chemical ...

  2. High-Performance Home Technologies: Solar Thermal & Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... FL, 25 August 1998. www2.fsec.ucf.eduenpublicationshtmlFSEC-CR-1028-98index.htm. ... the NEC 2005 Handbook published by the National Fire Protection Association (NFPA 2005). ...

  3. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  4. Proceedings of the international workshop on spallation materials technology

    SciTech Connect (OSTI)

    Mansur, L.K.; Ullmaier, H. [comps.] [comps.

    1996-10-01

    This document contains papers which were presented at the International Workshop on Spallation Materials Technology. Topics included: overviews and thermal response; operational experience; materials experience; target station and component design; particle transport and damage calculations; neutron sources; and compatibility.

  5. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments [OSTI]

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  6. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  7. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  8. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  9. 21st Century Locomotive Technology: Quarterly Technical Status Report 28

    SciTech Connect (OSTI)

    Lembit Salasoo; Ramu Chandra

    2010-02-19

    Thermal testing of a subscale locomotive sodium battery module was initiated.to validate thermal models. The hybrid trip optimizer problem was formulated. As outcomes of this project, GE has proceeded to commercialize trip optimizer technology, and has initiated work on a state-of-the-art battery manufacturing plant for high energy density, sodium-based batteries.

  10. Electricity Transmission and Distribution Technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Marketing Summaries (74) Success Stories (2) Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  11. Vehicle Technologies Office Merit Review 2015: Development of Novel

    Broader source: Energy.gov (indexed) [DOE]

    Electronics of Electric Vehicles with Small Channel Coolant Boiling | Department of Energy thermal control of power electronics of electric vehicles with small channel coolant boiling. vss132_singh_2014_o.pdf (1.05 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Vehicle Technologies Office: 2008 Advanced Power Electronics and Electric Machinery R&D Annual

  12. CSP technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  13. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  14. Microenvironmental Control and Thermal Barrier Curtains/Shades for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Haul Trucks - Energy Innovation Portal Find More Like This Return to Search Microenvironmental Control and Thermal Barrier Curtains/Shades for Long-Haul Trucks National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Cab climate conditioning is one of the primary reasons for idling the main engine in a long-haul truck during driver rest periods. In the United States, long-haul trucks (trucks that travel more than 500 miles per day) use

  15. Device and Software to Measure Thermal Impedance of Electrochemical Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Energy Storage Energy Storage Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Device and Software to Measure Thermal Impedance of Electrochemical Systems National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Different components within an electrochemical system (e.g., a battery) can generate heat due to inefficiencies in

  16. Power Electronic Thermal System Performance and Integration | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy 09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape_13_bennion.pdf (1.2 MB) More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle Technologies Office: 2009 Advanced Power Electronics R&D Annual Progress Report

  17. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  18. Value of solar thermal industrial process heat

    SciTech Connect (OSTI)

    Brown, D.R.; Fassbender, L.L.; Chockie, A.D.

    1986-03-01

    This study estimated the value of solar thermal-generated industrial process heat (IPH) as a function of process heat temperature. The value of solar thermal energy is equal to the cost of producing energy from conventional fuels and equipment if the energy produced from either source provides an equal level of service. This requirement put the focus of this study on defining and characterizing conventional process heat equipment and fuels. Costs (values) were estimated for 17 different design points representing different combinations of conventional technologies, temperatures, and fuels. Costs were first estimated for median or representative conditions at each design point. The cost impact of capacity factor, efficiency, fuel escalation rate, and regional fuel price differences were then evaluated by varying each of these factors within credible ranges.

  19. Molten Glass for Thermal Storage: Advanced Molten Glass for Heat Transfer and Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: Halotechnics is developing a high-temperature thermal energy storage system using a new thermal-storage and heat-transfer material: earth-abundant and low-melting-point molten glass. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. Halotechnics new thermal storage material targets a price that is potentially cheaper than the molten salt used in most commercial solar thermal storage systems today. It is also extremely stable at temperatures up to 1200°C—hundreds of degrees hotter than the highest temperature molten salt can handle. Being able to function at high temperatures will significantly increase the efficiency of turning heat into electricity. Halotechnics is developing a scalable system to pump, heat, store, and discharge the molten glass. The company is leveraging technology used in the modern glass industry, which has decades of experience handling molten glass.

  20. Integrated thermal treatment system sudy: Phase 2, Results

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1995-08-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study, the results of which have been published as an interim report, examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 2 systems. The assumptions and methods were the same as for the Phase 1 study. The quantities, and physical and chemical compositions, of the input waste used in he Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr).

  1. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Molten Nitrate Salt Initial Flow Testing is a ...

  2. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 ... 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  3. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Employment in the solar thermal collector industry, 2000 - 2009 2000 284 2001 256 2002 ... Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  4. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  5. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  6. Promising Technology: Condensing Gas Water Heaters

    Broader source: Energy.gov [DOE]

    Condensing water heaters achieve higher efficiencies than conventional water heaters by capturing the latent heat from water vapor contained in the flue gases. Combustion gases are exhausted through a secondary heat exchanger where the latent heat of water vapor in the exhaust gas is transferred to the stored water. This technology enables the water heater to achieve thermal efficiencies up to 99%.

  7. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility Home/Tag:National Solar Thermal Test Facility Illuminated receiver on top of tower Permalink Gallery High-Temperature Falling Particle Receiver Reaches New Limits Concentrating Solar Power, Energy, National Solar Thermal Test Facility, News, Renewable Energy, Solar, SunShot High-Temperature Falling Particle Receiver Reaches New Limits At its National Solar Thermal Test Facility, Sandia National Laboratories

  8. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  9. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  10. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  11. THERMAL NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Spinrad, B.I.

    1960-01-12

    A novel thermal reactor was designed in which a first reflector formed from a high atomic weight, nonmoderating material is disposed immediately adjacent to the reactor core. A second reflector composed of a moderating material is disposed outwardly of the first reflector. The advantage of this novel reflector arrangement is that the first reflector provides a high slow neutron flux in the second reflector, where irradiation experiments may be conducted with a small effect on reactor reactivity.

  12. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  13. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  14. Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m

    ScienceCinema (OSTI)

    None

    2013-05-28

    Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

  15. Electricity storage using a thermal storage scheme

    SciTech Connect (OSTI)

    White, Alexander

    2015-01-22

    The increasing use of renewable energy technologies for electricity generation, many of which have an unpredictably intermittent nature, will inevitably lead to a greater demand for large-scale electricity storage schemes. For example, the expanding fraction of electricity produced by wind turbines will require either backup or storage capacity to cover extended periods of wind lull. This paper describes a recently proposed storage scheme, referred to here as Pumped Thermal Storage (PTS), and which is based on “sensible heat” storage in large thermal reservoirs. During the charging phase, the system effectively operates as a high temperature-ratio heat pump, extracting heat from a cold reservoir and delivering heat to a hot one. In the discharge phase the processes are reversed and it operates as a heat engine. The round-trip efficiency is limited only by process irreversibilities (as opposed to Second Law limitations on the coefficient of performance and the thermal efficiency of the heat pump and heat engine respectively). PTS is currently being developed in both France and England. In both cases, the schemes operate on the Joule-Brayton (gas turbine) cycle, using argon as the working fluid. However, the French scheme proposes the use of turbomachinery for compression and expansion, whereas for that being developed in England reciprocating devices are proposed. The current paper focuses on the impact of the various process irreversibilities on the thermodynamic round-trip efficiency of the scheme. Consideration is given to compression and expansion losses and pressure losses (in pipe-work, valves and thermal reservoirs); heat transfer related irreversibility in the thermal reservoirs is discussed but not included in the analysis. Results are presented demonstrating how the various loss parameters and operating conditions influence the overall performance.

  16. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  17. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  18. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Environmental Management (EM)

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  19. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  20. Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal...

    Office of Scientific and Technical Information (OSTI)

    Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  1. Technical resource document for assured thermal processing of wastes

    SciTech Connect (OSTI)

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  2. GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING

    SciTech Connect (OSTI)

    Walsh, S C; Lomov, I; Roberts, J J

    2012-01-19

    Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

  3. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  4. Lockheed Testing the Waters for Ocean Thermal Energy System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lockheed Testing the Waters for Ocean Thermal Energy System Lockheed Testing the Waters for Ocean Thermal Energy System May 27, 2010 - 11:46am Addthis Paul Lester Paul Lester Digital Content Specialist, Office of Public Affairs A floating platform, simple turbine and tropical oceans could be the key to producing 30 percent or more of the total energy the world consumes today, according to Lockheed Martin. The technology in play: Ocean Thermal Energy Conversion (OTEC). Lockheed Martin

  5. Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation Paper presented at the Third International Conference on Oxidation and Reduction Technologies for Soil and Groundwater. October 2004, San Diego, California. Michael Butherus, David S. Ingle, Randall Juhlin, Joseph Daniel Project Overview: Successful Field-Scale In Situ Thermal NAPL Remediation (305.82 KB) More Documents &

  6. Characterization of Contact and Bulk Thermal Resistance of Laminations for Electric Machines

    SciTech Connect (OSTI)

    Cousineau, J. Emily; Bennion, Kevin; DeVoto, Doug; Mihalic, Mark; Narumanchi, Sreekant

    2015-06-30

    The ability to remove heat from an electric machine depends on the passive stack thermal resistances within the machine and the convective cooling performance of the selected cooling technology. This report focuses on the passive thermal design, specifically properties of the stator and rotor lamination stacks. Orthotropic thermal conductivity, specific heat, and density are reported. Four materials commonly used in electric machines were tested, including M19 (29 and 26 gauge), HF10, and Arnon 7 materials.

  7. The Western Environmental Technology Office (WETO), Butte, Montana. Technology summary

    SciTech Connect (OSTI)

    1996-03-01

    The Western Environmental Technology Office (WETO) is a multi-purpose engineering test facility located in Butte, Montana, and is managed by MSE, Inc. WETO seeks to contribute to environmental research by emphasizing projects to develop heavy metals removal and recovery processes, thermal vitrification systems, and waste minimization/pollution prevention technologies. WETO`s environmental technology research and testing activities focus on the recovery of usable resources from waste. In one of WETO`s areas of focus, groundwater contamination, water from the Berkeley Pit, located near the WETO site, is being used in demonstrations directed toward the recovery of potable water and metal from the heavy metal-bearing water. The Berkeley Pit is part of an inactive copper mine near Butte that was once part of the nation`s largest open-pit mining operation. The Pit contains approximately 25 billion gallons of Berkeley Pit groundwater and surface water containing many dissolved minerals. As part of DOE/OST`s Resource Recovery Project (RRP), technologies are being demonstrated to not only clean the contaminated water but to recover metal values such as copper, zinc, and iron with an estimated gross value of more than $100 million. When recovered, the Berkeley Pit waters could benefit the entire Butte valley with new water resources for fisheries, irrigation, municipal, and industrial use. At WETO, the emphasis is on environmental technology development and commercialization activities, which will focus on mine cleanup, waste treatment, resource recovery, and water resource management.

  8. Integrated thermal treatment system study -- Phase 2 results. Revision 1

    SciTech Connect (OSTI)

    Feizollahi, F.; Quapp, W.J.

    1996-02-01

    This report presents the second phase of a study on thermal treatment technologies. The study consists of a systematic assessment of nineteen thermal treatment alternatives for the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the MLLW. The alternatives considered in Phase 2 were innovative thermal treatments with nine types of primary processing units. Other variations in the study examined the effect of combustion gas, air pollution control system design, and stabilization technology for the treatment residues. The Phase 1 study examined ten initial thermal treatment alternatives. The Phase 2 systems were evaluated in essentially the same manner as the Phase 1 systems. The alternatives evaluated were: rotary kiln, slagging kiln, plasma furnace, plasma gasification, molten salt oxidation, molten metal waste destruction, steam gasification, Joule-heated vitrification, thermal desorption and mediated electrochemical oxidation, and thermal desorption and supercritical water oxidation. The quantities, and physical and chemical compositions, of the input waste used in the Phase 2 systems differ from those in the Phase 1 systems, which were based on a preliminary waste input database developed at the onset of the Integrated Thermal Treatment System study. The inventory database used in the Phase 2 study incorporates the latest US Department of Energy information. All systems, both primary treatment systems and subsystem inputs, have now been evaluated using the same waste input (2,927 lb/hr). 28 refs., 88 figs., 41 tabs.

  9. Bibliography of reports of the Sandia Solar Thermal Distributed Receiver Systems Project

    SciTech Connect (OSTI)

    Leonard, J.A.; Klimas, C.R.

    1984-04-01

    This document, which is a bibliography of solar thermal distributed receiver reports and publications by Sandia Laboratories and its contractors, is provided as a convenient reference for those interested in solar thermal technology. Reports are listed by principal author, by report numbers, and by unnumbered reports.

  10. Rapid Solar-Thermal Conversion of Biomass to Syngas - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Rapid Solar-Thermal Conversion of Biomass to Syngas Production of synthesis gas or hydrogen by gasification or pyrolysis of biological feedstocks using solar-thermal energy. University of Colorado Contact CU About This Technology Technology Marketing Summary The invention provides processes that perform biomass gasification or pyrolysis for production of hydrogen, synthesis gas, liquid fuels, or other

  11. Building Technologies Office Window and Envelope Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building Technologies Office Window and Envelope Technologies Emerging Technologies R&D Program Karma Sawyer, Ph.D. karma.sawyer@ee.doe.gov BTO Goal Reduce building energy use by ...

  12. Environmental impacts of ocean thermal energy conversion

    SciTech Connect (OSTI)

    Not Available

    1986-04-01

    Ocean thermal energy conversion (OTEC) is a promising technology for production of energy and usable by-products from solar-generated temperature gradients in the world's oceans. Although considered benign compared to alternative forms of energy generation, deployment of OTEC plants will result in interactions with marine, terrestrial, and atmospheric environments and in socioeconomic interactions with surrounding areas. The Ocean Energy Technology Program of the Department of Energy has funded research to improve the understanding of these interactions. No insurmountable environmental obstacle to OTEC deployment has been uncovered. This document contains a summary of that research for entrepreneurs, utility engineers, and others interested in pursuing OTEC's potential. In addition, it provides a guide to permits, regulations, and licenses applicable to construction of an OTEC plant.

  13. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  14. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  15. High Impact Technology Catalyst: Technology Deployment Strategies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. High

  16. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  17. Vehicle Technologies Office: 2014 Electric Drive Technologies...

    Energy Savers [EERE]

    Electric Drive Technologies Annual Progress Report Vehicle ... FY14EDTAnnualReport.pdf (15.14 MB) More Documents & Publications Vehicle Technologies Office: 2015 ...

  18. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis and ...

  19. Vehicle Technologies Office: 2015 Electric Drive Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    automotive technologies under development. Research is focused on developing power electronics (PE), electric motor, and traction drive system (TDS) technologies that will ...

  20. Hydrogen Technologies Group

    SciTech Connect (OSTI)

    Not Available

    2008-03-01

    The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

  1. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  2. NREL: Technology Transfer - Ombuds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Transfer Ombuds NREL's Technology Transfer Ombuds offers an informal process to help resolve issues and concerns regarding the laboratory's technology partnership,...

  3. Thermal processing system concepts and considerations for RWMC buried waste

    SciTech Connect (OSTI)

    Eddy, T.L.; Kong, P.C.; Raivo, B.D.; Anderson, G.L.

    1992-02-01

    This report presents a preliminary determination of ex situ thermal processing system concepts and related processing considerations for application to remediation of transuranic (TRU)-contaminated buried wastes (TRUW) at the Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory (INEL). Beginning with top-level thermal treatment concepts and requirements identified in a previous Preliminary Systems Design Study (SDS), a more detailed consideration of the waste materials thermal processing problem is provided. Anticipated waste stream elements and problem characteristics are identified and considered. Final waste form performance criteria, requirements, and options are examined within the context of providing a high-integrity, low-leachability glass/ceramic, final waste form material. Thermal processing conditions required and capability of key systems components (equipment) to provide these material process conditions are considered. Information from closely related companion study reports on melter technology development needs assessment and INEL Iron-Enriched Basalt (IEB) research are considered. Five potentially practicable thermal process system design configuration concepts are defined and compared. A scenario for thermal processing of a mixed waste and soils stream with essentially no complex presorting and using a series process of incineration and high temperature melting is recommended. Recommendations for applied research and development necessary to further detail and demonstrate the final waste form, required thermal processes, and melter process equipment are provided.

  4. Hydrogen and Fuel Cell Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Marketing Summaries (106) Success Stories (1) Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Browse

  5. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1.2.4 - Thermal Conversion Sustainability Interface May 20, 2013 Technology Area Review: Analysis and Sustainability PI: Lesley Snowden-Swan Organization: PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 | Bioenergy Technologies Office eere.energy.gov Goal Statements * Integration of BETO's Thermochemical Conversion and Sustainability Thrusts: - Incorporate sustainability considerations during design and development of emerging pathways

  6. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  7. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  8. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  9. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  10. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  11. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  12. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  13. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  14. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  15. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  16. Thermal Performance and Reliability Characterization of Bonded Interface Materials (BIMs): Preprint

    SciTech Connect (OSTI)

    DeVoto, D.; Paret, P.; Mihalic, M.; Narumanchi, S.; Bar-Cohen, A.; Matin, K.

    2014-08-01

    Thermal interface materials are an important enabler for low thermal resistance and reliable electronics packaging for a wide array of applications. There is a trend towards bonded interface materials (BIMs) because of their potential for low thermal resistivity (< 1 mm2K/W). However, BIMs induce thermomechanical stresses in the package and can be prone to failures and integrity risks. Deteriorated interfaces can result in high thermal resistance in the package and degradation and/or failure of the electronics. DARPA's Thermal Management Technologies program has addressed this challenge, supporting the development of mechanically-compliant, low resistivity nano-thermal interface (NTI) materials. In this work, we describe the testing procedure and report the results of NREL's thermal performance and reliability characterization of an initial sample of four different NTI-BIMs.

  17. Thermomechanical measurements on thermal microactuators. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal ... SANDIA NATIONAL LABORATORIES; SILICON; VALIDATION Microactuators.; Ceramic ...

  18. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  19. Chapter 8: Advancing Clean Transportation and Vehicle Systems and Technologies | Lightweight Automotive Materials Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lightweight Automotive Materials Chapter 8: Technology Assessments Introduction to the Technology/System Overview of vehicle lightweighting Reducing vehicle weight affects transportation energy consumption by improving efficiency. Upwards of 85% of the energy in fuel is lost to thermal and mechanical inefficiency in the drivetrain 1 while the remaining 12-15% is used to overcome the tractive forces that resist forward motion. 2 Of these tractive forces, vehicle weight most significantly affects

  20. Solar thermal power system

    SciTech Connect (OSTI)

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  1. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    SciTech Connect (OSTI)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. The typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.

  2. Pulse Thermal Processing for Low Thermal Budget Integration of IGZO Thin Film Transistors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Noh, Joo Hyon; Joshi, Pooran C.; Kuruganti, Teja; Rack, Philip D.

    2014-11-26

    Pulse thermal processing (PTP) has been explored for low thermal budget integration of indium gallium zinc oxide (IGZO) thin film transistors (TFTs). The IGZO TFTs are exposed to a broadband (0.2-1.4 m) arc lamp radiation spectrum with 100 pulses of 1 msec pulse width. The impact of radiant exposure power on the TFT performance was analyzed in terms of the switching characteristics and bias stress reliability characteristics, respectively. The PTP treated IGZO TFTs with power density of 3.95 kW/cm2 and 0.1 sec total irradiation time showed comparable switching properties, at significantly lower thermal budget, to furnace annealed IGZO TFT. Themore » typical field effect mobility FE, threshold voltage VT, and sub-threshold gate swing S.S were calculated to be 7.8 cm2/ V s, 8.1 V, and 0.22 V/ decade, respectively. The observed performance shows promise for low thermal budget TFT integration on flexible substrates exploiting the large-area, scalable PTP technology.« less

  3. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  4. Technology Partnership Agreements | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Investment Agreements Technology Investment Agreements Guidance Policy Flash 2006-31 - Technology Investment Agreements Financial Assistance Letter 2006-03 - Guidance for Awarding Technology Investment Agreements Final Rule - Financial Assistance Regulations - Technology Investment Agreements Templates Company Template (Expenditure-Based) Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support) Training Technology Investment

  5. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  6. Advanced Combustion Technology to Enable High Efficiency Clean Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Enable High Efficiency Clean Combustion Advanced Combustion Technology to Enable High Efficiency Clean Combustion Summary of advanced combustion research at Cummins to explore strategies for fuel economy improvements (PCCI and HECC) and redced engine-out NOx emissions. deer08_stanton.pdf (1.23 MB) More Documents & Publications Integration of Diesel Engine Technology to Meet US EPA 2010 Emissions with Improved Thermal Efficiency Development of Enabling

  7. Marine and Hydrokinetic (MHK) Technology Development Risk Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Framework Webinar | Department of Energy Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar Marine and Hydrokinetic (MHK) Technology Development Risk Management Framework Webinar December 16, 2014 9:00AM to 10:30AM EST This webinar is also being offered on the same day in the afternoon at 2:00 p.m. EST. Marine and hydrokinetic (MHK) technologies convert the kinetic energy from ocean waves, tides, currents, and ocean thermal resources into electricity. The

  8. Waste-to-Energy Technologies and Project Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste-to-Energy Technologies and Project Development DOE-DOD WTE Workshop Jerry Davis July 13, 2011 Gasification Technology Overview Technology Profile for Gasification WTE applications Driving Factors for WTE Project Development Considerations Overview National Renewable Energy Laboratory Innovation for Our Energy Future Thermal Biochemical Combustion Gasification Pyrolysis Heat Fuel Gases (producer gas) (CO + H 2 +CH 4 ) Char, gases, aerosols (syn gas) Pretreatment Fermentation

  9. Calibrating thermal behavior of electronics

    DOE Patents [OSTI]

    Chainer, Timothy J.; Parida, Pritish R.; Schultz, Mark D.

    2016-05-31

    A method includes determining a relationship between indirect thermal data for a processor and a measured temperature associated with the processor, during a calibration process, obtaining the indirect thermal data for the processor during actual operation of the processor, and determining an actual significant temperature associated with the processor during the actual operation using the indirect thermal data for the processor during actual operation of the processor and the relationship.

  10. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  11. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  12. SUPERFAST THERMALIZATION OF PLASMA

    DOE Patents [OSTI]

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  13. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  14. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  15. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Moore, Troy K.

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  16. Experience base for Radioactive Waste Thermal Processing Systems: A preliminary survey

    SciTech Connect (OSTI)

    Mayberry, J.; Geimer, R.; Gillins, R.; Steverson, E.M.; Dalton, D.; Anderson, G.L.

    1992-04-01

    In the process of considering thermal technologies for potential treatment of the Idaho National Engineering Laboratory mixed transuranic contaminated wastes, a preliminary survey of the experience base available from Radioactive Waste Thermal Processing Systems is reported. A list of known commercial radioactive waste facilities in the United States and some international thermal treatment facilities are provided. Survey focus is upon the US Department of Energy thermal treatment facilities. A brief facility description and a preliminary summary of facility status, and problems experienced is provided for a selected subset of the DOE facilities.

  17. SunShot Podcast: Concentrating Solar Power Thermal Storage Part II |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power Thermal Storage Part II SunShot Podcast: Concentrating Solar Power Thermal Storage Part II This SunShot Initiative podcast features Ranga Pitchumani of the U.S. Department of Energy Solar Program. In the second segment of a three-part series focused on thermal energy storage for concentrating solar power (CSP), this episode covers the most common storage system in use today and SunShot's role in advancing thermal energy storage technologies.

  18. Parylene-based active micro space radiator with thermal contact switch

    SciTech Connect (OSTI)

    Ueno, Ai; Suzuki, Yuji

    2014-03-03

    Thermal management is crucial for highly functional spacecrafts exposed to large fluctuations of internal heat dissipation and/or thermal boundary conditions. Since thermal radiation is the only means for heat removal, effective control of radiation is required for advanced space missions. In the present study, a MEMS (Micro Electro Mechanical Systems) active radiator using the contact resistance change has been proposed. Unlike previous bulky thermal louvers/shutters, higher fill factor can be accomplished with an array of electrostatically driven micro diaphragms suspended with polymer tethers. With an early prototype developed with parylene MEMS technologies, radiation heat flux enhancement up to 42% has been achieved.

  19. Butterfly-Inspired Thermal Imaging | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Butterfly-Inspired Design Enables Low-Cost Thermal Imaging Taking heat detection to a new level of sensitivity and speed, a team of scientists at GE Global Research, the technology development arm for the General Electric Company (NYSE: GE),

  20. Thermal energy storage for cooling of commercial buildings

    SciTech Connect (OSTI)

    Akbari, H. ); Mertol, A. )

    1988-07-01

    The storage of coolness'' has been in use in limited applications for more than a half century. Recently, because of high electricity costs during utilities' peak power periods, thermal storage for cooling has become a prime target for load management strategies. Systems with cool storage shift all or part of the electricity requirement from peak to off-peak hours to take advantage of reduced demand charges and/or off-peak rates. Thermal storage technology applies equally to industrial, commercial, and residential sectors. In the industrial sector, because of the lack of economic incentives and the custom design required for each application, the penetration of this technology has been limited to a few industries. The penetration rate in the residential sector has been also very limited due to the absence of economic incentives, sizing problems, and the lack of compact packaged systems. To date, the most promising applications of these systems, therefore, appear to be for commercial cooling. In this report, the current and potential use of thermal energy storage systems for cooling commercial buildings is investigated. In addition, a general overview of the technology is presented and the applicability and cost-effectiveness of this technology for developed and developing countries are discussed. 28 refs., 12 figs., 1 tab.

  1. Vehicle Technologies Office Merit Review 2016: Overview of the DOE VTO

    Broader source: Energy.gov (indexed) [DOE]

    Electric Drive Technologies R&D Program | Department of Energy Electric Drive Systems edt000_rogers_2016_o_web.pdf (2.96 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: Overview of the DOE Advanced Power Electronics and Electric Motor R&D Program Vehicle Technologies Office Merit Review 2015: Overview of the TO Electric Drive Technologies Program Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management Propulsion Materials

  2. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  3. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  4. Package-interface thermal switch

    SciTech Connect (OSTI)

    Hyman, N.L.

    1995-05-24

    The package-interface thermal switch (PITS) is an active temperature control device for modulating the flow of thermal energy from satellite equipment, such as electronic modules or batteries, to the satellite mounting deck which serves as a heat sink. PITS comprises a mounting bolt made of a shaped memory alloy (SMA) actuating bolt and a non-metallic rod with a helical spring surrounding it forming a mounting bolt for a satellite equipment package. At least four mounting bolts are used for installing the equipment package and are preloaded to a predetermined stress representing the desired thermal conductance between the heat sink and the package. The SMA actuating bolt is in thermal contact with the component or package and expands or contracts as the result of changing package temperature and the helical return spring forces against the SMA actuating bolt portion of the PITS, increasing (hot-on`1 condition) or decreasing (cold-off condition) the pressure of the package against the mounting deck. As the PITS changes its total length, the thermal conductance between the two objects is increased or decreased. Thus thermal conductance changes as a direct function of package temperature, resulting in active temperature control. The simple design of the PITS reduces the cost and weight of the thermal control subsystem in satellites and its high reliability eliminates the requirement for thermal design verification testing.

  5. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect (OSTI)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  6. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  7. Innovative Technologies for Bioenergy Technologies Incubator...

    Broader source: Energy.gov (indexed) [DOE]

    00PM EDT Online The Innovative Technologies for Bioenergy Technologies Incubator 2 FOA Informational Webinar will be held Wednesday, September 2, 1:00 p.m.-2:00 p.m. ET. Standard...

  8. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    SciTech Connect (OSTI)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  9. Plasma technology directory

    SciTech Connect (OSTI)

    Ward, P.P.; Dybwad, G.L.

    1995-03-01

    The Plasma Technology Directory has two main goals: (1) promote, coordinate, and share plasma technology experience and equipment within the Department of Energy; and (2) facilitate technology transfer to the commercial sector where appropriate. Personnel are averaged first by Laboratory and next by technology area. The technology areas are accelerators, cleaning and etching deposition, diagnostics, and modeling.

  10. Vehicle Technologies Office Propulsion Materials Technologies

    Broader source: Energy.gov (indexed) [DOE]

    Construction | Department of Energy UQM Technologies, Inc. at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Electric Drive Systems edt044_ley_2016_o_web.pdf (1.13 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2014: Unique Lanthide-Free Motor Construction Unique Lanthide-Free Motor

  11. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  12. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  13. Ceramic technology for advanced heat engines project

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems in Conservation and Renewable Energy. This project was developed to meet the ceramic technology requirements of the OTT's automotive technology programs. This project is managed by ORNL and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DoD, and industry. Research is discussed under the following topics; Turbomilling of SiC Whiskers; microwave sintering of silicon nitride; and milling characterization; processing of monolithics; silicon nitride matrix; oxide matrix; silicate matrix; thermal and wear coatings; joining; design; contact interfaces; time-dependent behavior; environmental effects; fracture mechanics; nondestructive evaluation; and technology transfer. References, figures, and tables are included with each topic.

  14. Thermal Enhancer - Airless Exhaust Thermal Management Device | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Enhancer - Airless Exhaust Thermal Management Device Thermal Enhancer - Airless Exhaust Thermal Management Device Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_coker.pdf (1.85 MB) More Documents & Publications Heavy Duty Vehicle In-Use Emission Performance Why Light Duty Diesels Make Sense in the North American Market Scalable, Low-Cost, High

  15. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  16. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-11-01

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  17. Aerogel commercialization: Technology, markets and costs

    SciTech Connect (OSTI)

    Carlson, G.; Lewis, D.; McKinley, K.; Richardson, J.; Tillotson, T.

    1994-10-07

    Commercialization of aerogels has been slow due to several factors including cost and manufacturability issues. The technology itself is well enough developed as a result of work over the past decade by an international-community of researchers. Several extensive substantial markets appear to exist for aerogels as thermal and sound insulators, if production costs can keep prices in line with competing established materials. The authors discuss here the elements which they have identified as key cost drivers, and they give a prognosis for the evolution of the technology leading to reduced cost aerogel production.

  18. Ocean Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Ocean Energy Technology Basics Ocean Energy Technology Basics August 16, 2013 - 4:18pm Addthis Text Version Photo of low waves in the ocean. A dock is visible in the background. Oceans cover more than 70% of the Earth's surface. As the world's largest solar collectors, oceans contain thermal energy from the sun and produce mechanical energy from tides and waves. Even though the sun affects all ocean activity, the gravitational pull of the moon primarily drives tides, and wind

  19. Review of Water Resources and Desalination Technologies

    SciTech Connect (OSTI)

    MILLER, JAMES E.

    2003-03-01

    Water shortages affect 88 developing countries that are home to half of the world's population. In these places, 80-90% of all diseases and 30% of all deaths result from poor water quality. Furthermore, over the next 25 years, the number of people affected by severe water shortages is expected to increase fourfold. Low cost methods to desalinate brackish water and sea water can help reverse this destabilizing trend. Desalination has now been practiced on a large scale for more than 50 years. During this time continual improvements have been made, and the major technologies are now remarkably efficient, reliable, and inexpensive. For many years, thermal technologies were the only viable option, and multi-stage flash (MSF) was established as the baseline technology. Multi-effect evaporation (MEE) is now the state-of-the-art thermal technology, but has not been widely implemented. With the growth of membrane science, reverse osmosis (RO) overtook MSF as the leading desalination technology, and should be considered the baseline technology. Presently, RO of seawater can be accomplished with an energy expenditure in the range of 11-60 kJ/kg at a cost of $2 to $4 per 1000 gallons. The theoretical minimum energy expenditure is 3-7 kJ/kg. Since RO is a fairly mature technology, further improvements are likely to be incremental in nature, unless design improvements allow major savings in capital costs. Therefore, the best hope to dramatically decrease desalination costs is to develop ''out of the box'' technologies. These ''out of the box'' approaches must offer a significant advantage over RO (or MEE, if waste heat is available) if they are to be viable. When making these comparisons, it is crucial that the specifics of the calculation are understood so that the comparison is made on a fair and equivalent basis.

  20. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer NETL Sorbent Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sorbent Technologies Licensed for Use in Biomass-to- Biofuel Conversion Process with Carbon Capture and Storage Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has granted a license for two of its patented sorbent technologies: carbon dioxide (CO 2 ) removal and water-gas shift (WGS) reaction enhancement to CogniTek Management Systems "CogniTek," a renewable energy systems developer. CogniTek plans to implement a regenerable magnesium sorbent,