Powered by Deep Web Technologies
Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

amorphous silicon thin-film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amorphous silicon Kanicki, Jerzy 17 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

2

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell  

E-Print Network [OSTI]

Optimization of the absorption efficiency of an amorphous-silicon thin-film tandem solar cell-wave approach was used to compute the plane-wave absorptance of a thin-film tandem solar cell with a metallic­4]. In this context, a basic idea is to periodically texture the metallic back reflector of a thin-film solar cell

3

Enhanced quantum efficiency of amorphous silicon thin film solar cells with the inclusion of a rear-reflector thin film  

SciTech Connect (OSTI)

We investigated the growth mechanism of amorphous silicon thin films by implementing hot-wire chemical vapor deposition and fabricated thin film solar cell devices. The fabricated cells showed efficiencies of 7.5 and 8.6% for the samples without and with the rear-reflector decomposed by sputtering, respectively. The rear-reflector enhances the quantum efficiency in the infrared spectral region from 550 to 750?nm. The more stable quantum efficiency of the sample with the inclusion of a rear-reflector than the sample without the rear-reflector due to the bias effect is related to the enhancement of the short circuit current.

Park, Seungil [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Yong Ji, Hyung; Jun Kim, Myeong; Hyeon Peck, Jong [Energy Conversions Technology Center, Korea Institute of Industrial Technology, Cheonan 331-825 (Korea, Republic of); Kim, Keunjoo, E-mail: kimk@chonbuk.ac.kr [Department of Mechanical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

2014-02-17T23:59:59.000Z

4

Study of plasma enhanced chemical vapor deposition of boron-doped hydrogenated amorphous silicon thin films and the application to p-channel thin film transistor  

E-Print Network [OSTI]

The material and process characteristics of boron doped hydrogenated amorphous silicon (a-Si:H) thin film deposited by plasma enhanced chemical vapor deposition technique (PECVD) have been studied. The goal is to apply the high quality films...

Nominanda, Helinda

2004-01-01T23:59:59.000Z

5

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells  

E-Print Network [OSTI]

Electron energy-loss spectroscopy of boron-doped layers in amorphous thin film silicon solar cells. de Bariloche, Argentina 3 ECN Solar Energy, High Tech Campus, Building 5, 5656 AE Eindhoven energy-loss spectroscopy (EELS) is used to study p-doped layers in n-i-p amorphous thin film Si solar

Dunin-Borkowski, Rafal E.

6

Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications  

SciTech Connect (OSTI)

Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

Mouro, J.; Gualdino, A.; Chu, V. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Conde, J. P. [Instituto de Engenharia de Sistemas e Computadores – Microsistemas e Nanotecnologias (INESC-MN) and IN – Institute of Nanoscience and Nanotechnology, 1000-029 Lisbon (Portugal); Department of Bioengineering, Instituto Superior Técnico (IST), 1049-001 Lisbon (Portugal)

2013-11-14T23:59:59.000Z

7

Fluorination of amorphous thin-film materials with xenon fluoride  

DOE Patents [OSTI]

A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

Weil, R.B.

1987-05-01T23:59:59.000Z

8

amorphous thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

9

amorphous thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Silicon Thin-Film Transistor Pixel.S.A. 1 LG Philips LCD Research and Development Center, An-Yang, 431-080, Korea (Received July 23, 2006; accepted October 31, 2006;...

10

amorphous-silicon-based thin-film photovoltaic: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

devices have been obtained by a direct polymerization of undoped (or p-type doped) thin film (CH)x layer onto a polycrystalline cadmium sulfide film Paris-Sud XI, Universit...

11

Metal-induced nanocrystalline structures in Ni-containing amorphous silicon thin films  

SciTech Connect (OSTI)

The mechanisms of silicon nanocrystal structure formation in amorphous Si films have been studied for a relative Ni impurity content varying between 0.1 and 10 at. %, i.e., from a Ni doping range to the Si-Ni alloy phase. The films, deposited by the cosputtering technique at 200 deg. C, were submitted to isochronal (15 min) annealing cycles up to 800 deg. C. Four different substrates were used to deposit the studied films: crystalline (c-) quartz, c-Si, c-Ge, and glass. Both the two orders of magnitude impurity concentration range variation and the very short annealing times were selected on purpose to investigate the first steps of the mechanism leading to the appearance of crystal seeds. The conclusions of this work are the following: (a) Ni impurity induces the low-temperature crystallization of amorphous silicon; (b) the NiSi{sub 2} silicide phase mediates, at the surface or in the bulk of the film, the crystallization process; and (c) the onset of crystallization and the crystalline fraction of the samples at each temperature depend not only on the Ni impurity concentration, but also on the nature of the substrate.

Ferri, F. A.; Zanatta, A. R.; Chambouleyron, I. [Instituto de Fisica de Sao Carlos-USP, Sao Carlos 13560-250, Sao Paulo (Brazil); Instituto de Fisica Gleb Wataghin-UNICAMP, Campinas 13083-970, Sao Paulo (Brazil)

2006-11-01T23:59:59.000Z

12

Anti-reflection zinc oxide nanocones for higher efficiency thin-film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells, which are commonly made from microcrystalline silicon ([mu]c-Si) or amorphous silicon (a-Si), have been considered inexpensive alternatives to thick polycrystalline silicon (polysilicon) solar ...

Mailoa, Jonathan P

2012-01-01T23:59:59.000Z

13

amorphous silicon arrays: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

amorphous carbon Wang, Zhong L. 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

14

amorphous silicon carbon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

15

amorphous silicon film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

16

amorphous hydrogenated silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gunther; Baets, Roel 2011-01-01 36 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

17

amorphous silicon epid: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

18

amorphous silicon alloy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

19

amorphous silicon studied: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yang, Cheng-Chieh 2012-01-01 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

20

amorphous silicon films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

values previously Hellman, Frances 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

amorphous silicon sensor: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

22

amorphous silicon nanoparticles: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

23

amorphous silicon alloys: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

24

amorphous silicon solar: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

25

amorphous silicon thin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

values previously Hellman, Frances 6 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

26

amorphous silicon tft: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

27

amorphous silicon photovoltaic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

properties Mazur, Eric 20 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

28

amorphous silicon final: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

29

amorphous silicon diodes: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

30

amorphous silicon surfaces: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

31

amorphous silicon technology: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies is presented. Then 11 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

32

amorphous silicon electronic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technologies is presented. Then 22 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

33

amorphous silicon dioxide: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 8 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

34

amorphous silicon oxynitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 15 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

35

amorphous silicon schottky: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

36

amorphous silicon nitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Paris-Sud XI, Universit de 26 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

37

amorphous silicon layers: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 16 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

38

amorphous silicon detector: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

39

area amorphous silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

40

amorphous silicon measured: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 13 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

amorphous silicon deposited: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 23 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

42

amorphous silicon flat: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

43

amorphous silicon modules: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

44

amorphous silicon sensors: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

45

amorphous silicon carbonitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 7 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

46

amorphous silicon research: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

47

amorphous silicon prepared: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nominanda, Helinda 2008-10-10 10 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

48

amorphous silicon microdisk: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 24 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

49

amorphous silicon germanium: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(Si-I or Ge Wang, Wei Hua 37 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

50

amorphous silicon radiation: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 9 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

51

amorphous silicon pixel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ph. Emplit; S. Massar 2011-02-04 14 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

52

Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation  

E-Print Network [OSTI]

We study polarization independent improved light trapping in commercial thin film hydrogenated amorphous silicon (a-Si:H) solar photovoltaic cells using a three-dimensional silver array of multi-resonant nano-disk structures embedded in a silicon nitride anti-reflection coating (ARC) to enhance optical absorption in the intrinsic layer (i-a-Si:H) for the visible spectrum for any polarization angle. Predicted total optical enhancement (OE) in absorption in the i-a-Si:H for AM-1.5 solar spectrum is 18.51% as compared to the reference, and producing a 19.65% improvement in short-circuit current density (JSC) over 11.7 mA/cm2 for a reference cell. The JSC in the nano-disk patterned solar cell (NDPSC) was found to be higher than the commercial reference structure for any incident angle. The NDPSC has a multi-resonant optical response for the visible spectrum and the associated mechanism for OE in i-a-Si:H layer is excitation of Fabry-Perot resonance facilitated by surface plasmon resonances. The detrimental Staebl...

Vora, Ankit; Pearce, Joshua M; Bergstrom, Paul L; Güney, Durdu Ö

2014-01-01T23:59:59.000Z

53

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES  

E-Print Network [OSTI]

NANO-INDENTATION OF COPPER THIN FILMS ON SILICON SUBSTRATES S. Suresh1 , T.-G. Nieh2 and B.W. Choi2: Mechanical properties; Nano-indentation; Thin films; Copper; Dislocations Introduction Indentation methods films on substrates (e.g., [2,3]) using instrumented indentation. Nano-indentation studies of thin films

Suresh, Subra

54

Efficient light trapping structure in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film silicon solar cells are believed to be promising candidates for continuing cost reduction in photovoltaic panels because silicon usage could be greatly reduced. Since silicon is an indirect bandgap semiconductor, ...

Sheng, Xing

55

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS  

E-Print Network [OSTI]

CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS by David T. Oliphant. Woolley Dean, College of Physical and Mathematical Sciences #12;ABSTRACT CHARACTERIZATION OF URANIUM, URANIUM OXIDE AND SILICON MULTILAYER THIN FILMS David T. Oliphant Department of Physics and Astronomy

Hart, Gus

56

Two-and three-dimensional folding of thin film single-crystalline silicon for photovoltaic  

E-Print Network [OSTI]

Two- and three-dimensional folding of thin film single-crystalline silicon for photovoltaic power of a functional, nonpla- nar photovoltaic (PV) device. A mechanics model based on the theory of thin plates self-folding photovoltaics capillary force Silicon, in crystalline and amorphous forms, is currently

Lewis, Jennifer

57

Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films  

E-Print Network [OSTI]

MRSEC Quasi-Reversible Oxygen Exchange of Amorphous IGZO Thin Films NSF Grant # 1121262 A. U. Adler of varying oxygen partial pressure. Oxygen exchange was confirmed by 18O tracer diffusion (time of carrier content vs. pO2) analysis should be applicable for studying the underlying carrier generation

Shahriar, Selim

58

Black Silicon Enhanced Thin Film Silicon Photovoltaic Devices  

SciTech Connect (OSTI)

SiOnyx has developed an enhanced thin film silicon photovoltaic device with improved efficiency. Thin film silicon solar cells suffer from low material absorption characteristics resulting in poor cell efficiencies. SiOnyx’s approach leverages Black Silicon, an advanced material fabricated using ultrafast lasers. The laser treated films show dramatic enhancement in optical absorption with measured values in excess of 90% in the visible spectrum and well over 50% in the near infrared spectrum. Thin film Black Silicon solar cells demonstrate 25% higher current generation with almost no impact on open circuit voltage as compared with representative control samples. The initial prototypes demonstrated an improvement of nearly 2 percentage points in the suns Voc efficiency measurement. In addition we validated the capability to scale this processing technology to the throughputs (< 5 min/m2) required for volume production using state of the art commercially available high power industrial lasers. With these results we clearly demonstrate feasibility for the enhancement of thin film solar cells with this laser processing technique.

Martin U. Pralle; James E. Carey

2010-07-31T23:59:59.000Z

59

A Review of Thin Film Silicon for Solar Cell Applications  

E-Print Network [OSTI]

A Review of Thin Film Silicon for Solar Cell Applications May 99 Contents 1 Introduction 3 2 Low 2.2.3 Deposition onto foreign substrates with the intention of improving crystallographic nature Field Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 11

60

Amorphous Silicon  

Broader source: Energy.gov [DOE]

DOE has a proven track record of funding successes in amorphous silicon (a-Si)research. A list of current projects, summary of the benefits, and discussion on the production and manufacturing of...

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

amorphous silicon flat-panel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Asymmetric Electrical Properties of Half Corbino Hydrogenated Amorphous Silicon Thin-Film Transistor and Its Applications to Flat Panel Displays Materials Science...

62

Crystallization and phase transformations in amorphous NiTi thin films for microelectromechanical systems  

SciTech Connect (OSTI)

Amorphous sputtered nickel-titanium thin films were deposited onto micromachined silicon-nitride membranes and subjected to heating and cooling conditions. Their associated microstructure was monitored directly and simultaneously with in situ transmission electron microscopy. These electron-transparent membranes constrained the NiTi films and rendered it possible for observation of the complete transformation cycle, which includes: the crystallization of the amorphous phase to austenite phase (cubic B2 structure) with heating; and the conversion of austenite (B2) to martensite (monoclinic B19{sup '} structure) with cooling. Electron micrographs show the nucleation and growth of grains occurs at a temperature of 470 deg. C and at a rate that indicates a polymorphic transformation. The onset of martensitic transformation occurs between 25 and 35 deg. C. Calorimetric measurements are consistent with the observed crystallization.

Lee, Hoo-Jeong; Ramirez, Ainissa G. [Department of Mechanical Engineering, Yale University, New Haven, Connecticut 06520 (United States)

2004-08-16T23:59:59.000Z

63

Formation of thin-film resistors on silicon substrates  

DOE Patents [OSTI]

The formation of thin-film resistors by the ion implantation of a metallic conductive layer in the surface of a layer of phosphosilicate glass or borophosphosilicate glass which is deposited on a silicon substrate. The metallic conductive layer materials comprise one of the group consisting of tantalum, ruthenium, rhodium, platinum and chromium silicide. The resistor is formed and annealed prior to deposition of metal, e.g. aluminum, on the substrate.

Schnable, George L. (Montgomery County, PA); Wu, Chung P. (Hamilton Township, Mercer County, NJ)

1988-11-01T23:59:59.000Z

64

An ultrahigh vacuum facility for the co-deposition of amorphous transition metal alloy thin films  

E-Print Network [OSTI]

AN ULTRAHIGH VACUUM FACILITY FOR THE CO-DEPOSITION OF AMORPHOUS TRANSITION METAL ALLOY THIN FILMS A Thesis by VICTOR MICHAEL NICOLI Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1984 Major Subject: Physics AN ULTRAHIGH VACUUM FACILITY FOR THE CO-DEPOSITION OF AMORPHOUS TRANSITION METAL ALLOY THIN FILMS A Thes1s by VICTOR MICHAEL NICOLI Approved as to style and content by: ona . aug (Cha...

Nicoli, Victor Michael

1984-01-01T23:59:59.000Z

65

The origin of white luminescence from silicon oxycarbide thin films  

SciTech Connect (OSTI)

Silicon oxycarbide (SiC{sub x}O{sub y}) is a promising material for achieving strong room-temperature white luminescence. The present work investigated the mechanisms for light emission in the visible/ultraviolet range (1.5–4.0?eV) from chemical vapor deposited amorphous SiC{sub x}O{sub y} thin films, using a combination of optical characterizations and electron paramagnetic resonance (EPR) measurements. Photoluminescence (PL) and EPR studies of samples, with and without post-deposition passivation in an oxygen and forming gas (H{sub 2} 5 at.?% and N{sub 2} 95 at.?%) ambient, ruled out typical structural defects in oxides, e.g., Si-related neutral oxygen vacancies or non-bridging oxygen hole centers, as the dominant mechanism for white luminescence from SiC{sub x}O{sub y}. The observed intense white luminescence (red, green, and blue emission) is believed to arise from the generation of photo-carriers by optical absorption through C-Si-O related electronic transitions, and the recombination of such carriers between bands and/or at band tail states. This assertion is based on the realization that the PL intensity dramatically increased at an excitation energy coinciding with the E{sub 04} band gaps of the material, as well as by the observed correlation between the Si-O-C bond density and the PL intensity. An additional mechanism for the existence of a blue component of the white emission is also discussed.

Nikas, V.; Gallis, S., E-mail: sgalis@us.ibm.com; Huang, M.; Kaloyeros, A. E. [College of Nanoscale Sciences and Engineering, State University of New York, Albany, New York 12203 (United States); Nguyen, A. P. D.; Stesmans, A.; Afanas'ev, V. V. [Department of Physics and Astronomy, University of Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

2014-02-10T23:59:59.000Z

66

Amorphous semiconducting and conducting transparent metal oxide thin films and production thereof  

DOE Patents [OSTI]

Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Perkins, John (Boulder, CO); Van Hest, Marinus Franciscus Antonius Maria (Lakewood, CO); Ginley, David (Evergreen, CO); Taylor, Matthew (Golden, CO); Neuman, George A. (Holland, MI); Luten, Henry A. (Holland, MI); Forgette, Jeffrey A. (Hudsonville, MI); Anderson, John S. (Holland, MI)

2010-07-13T23:59:59.000Z

67

Atomic hydrogen interactions with amorphous carbon thin films Bhavin N. Jariwala,1  

E-Print Network [OSTI]

Atomic hydrogen interactions with amorphous carbon thin films Bhavin N. Jariwala,1 Cristian V-scale interactions of H atoms with hydrogenated amorphous carbon a-C:H films were identified using molecular dynamics through a detailed analysis of the MD trajectories. The MD simulations showed that hydrogenation occurs

Ciobanu, Cristian

68

Extended light scattering model incorporating coherence for thin-film silicon solar cells  

E-Print Network [OSTI]

Extended light scattering model incorporating coherence for thin-film silicon solar cells Thomas film solar cells. The model integrates coherent light propagation in thin layers with a direct, non potential for light trapping in textured thin film silicon solar cells. VC 2011 American Institute

Lenstra, Arjen K.

69

Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications  

E-Print Network [OSTI]

1 Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films, 35042 Rennes Cedex, France Abstract Amorphous chalcogenide and alumino-silicate thin films were (As40Se60/Ge25Sb5S70) and mixed chalcogenide-oxide layers (As40Se60/alumino-silicate and Ga10Ge15Te75

Boyer, Edmond

70

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium Reduction of Polymer-  

E-Print Network [OSTI]

Thermal Conductivity of Ordered Mesoporous Nanocrystalline Silicon Thin Films Made from Magnesium-assembly of mesoporous silica followed by magnesium reduction. The periodic ordering of pores in mesoporous silicon

Pilon, Laurent

71

The Electrical and Band-Gap Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films  

E-Print Network [OSTI]

MRSEC The Electrical and Band-Gap Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films D Science & Engineering Center For zinc-indium-tin oxide (ZITO) films, grown by pulsed-laser deposition was replaced by substitution with zinc and tin in equal molar proportions (co-substitution). All ZITO films

Shahriar, Selim

72

Light harvesting by planar photonic crystal in solar cells: The case of amorphous silicon  

E-Print Network [OSTI]

Light harvesting by planar photonic crystal in solar cells: The case of amorphous silicon Guillaume on light management in silicon thin film solar cells, using photonic crystals (PhC) structures. We by means of optical simulations performed on realistic thin film solar cell stacks. Theoretically

Boyer, Edmond

73

Silicon-integrated thin-film structure for electro-optic applications  

DOE Patents [OSTI]

A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

McKee, Rodney A. (Kingston, TN); Walker, Frederick Joseph (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

74

Electronic Structure and Chemical Bonding of Amorphous Chromium Carbide Thin Films  

E-Print Network [OSTI]

The microstructure, electronic structure, and chemical bonding of chromium carbide thin films with different carbon contents have been investigated with high-resolution transmission electron microscopy, electron energy loss spectroscopy and soft x-ray absorption-emission spectroscopies. Most of the films can be described as amorphous nanocomposites with non-crystalline CrCx in an amorphous carbon matrix. At high carbon contents, graphene-like structures are formed in the amorphous carbon matrix. At 47 at% carbon content, randomly oriented nanocrystallites are formed creating a complex microstructure of three components. The soft x-ray absorption-emission study shows additional peak structures exhibiting non-octahedral coordination and bonding.

Magnuson, Martin; Lu, Jun; Hultman, Lars; Jansson, Ulf; 10.1088/0953-8984/24/22/225004

2012-01-01T23:59:59.000Z

75

amorphous insulating thin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chuang3 , Barry G Kanicki, Jerzy 38 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

76

amorphization sputter rate: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nakamura, Hiroaki 2012-01-01 154 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

77

amorphous biophotonic nanostructure: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nanostructure Anitescu, Mihai 169 Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon Engineering...

78

Significant electrical control of amorphous oxide thin film transistors by an ultrathin Ti surface polarity modifier  

SciTech Connect (OSTI)

We demonstrate an enhanced electrical stability through a Ti oxide (TiO{sub x}) layer on the amorphous InGaZnO (a-IGZO) back-channel; this layer acts as a surface polarity modifier. Ultrathin Ti deposited on the a-IGZO existed as a TiO{sub x} thin film, resulting in oxygen cross-binding with a-IGZO surface. The electrical properties of a-IGZO thin film transistors (TFTs) with TiO{sub x} depend on the surface polarity change and electronic band structure evolution. This result indicates that TiO{sub x} on the back-channel serves as not only a passivation layer protecting the channel from ambient molecules or process variables but also a control layer of TFT device parameters.

Cho, Byungsu [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741 (Korea, Republic of); Choi, Yonghyuk; Shin, Seokyoon [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Jeon, Heeyoung [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Seo, Hyungtak, E-mail: hseo@ajou.ac.kr [Department of Materials Science and Engineering and Energy Systems Research, Ajou University, Suwon 443-739 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

2014-01-27T23:59:59.000Z

79

Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova*  

E-Print Network [OSTI]

1 Mechanics of thin-film transistors and solar cells on flexible substrates Helena Gleskova* , I be minimized throughout the fabrication process. Amorphous silicon thin-film transistors and solar cells, thin-film transistor, solar cell, flexible electronics Phone: (609) 258-4626, Fax: (609) 258-3585, E

80

Plasmonic enhancement of thin-film solar cells using gold-black C.J. Fredricksena  

E-Print Network [OSTI]

Plasmonic enhancement of thin-film solar cells using gold-black coatings C.J. Fredricksena , D. R thin-film amorphous-silicon solar cells enhance the short-circuit current by 20% over a broad spectrum and locally enhance the field strength. Keywords: plasmonics, thin-film, solar cell, metallic nanoparticles

Peale, Robert E.

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices  

E-Print Network [OSTI]

Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices for thermoelectric devices are presented. Inter- ference lithography was used to pattern square lattice photoresist. The Si NW arrays were embedded in SOG to form a dense and robust composite material for device

Bowers, John

82

THE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON  

E-Print Network [OSTI]

devices. The C:Si alloys were formed by the implantation of Si into polycrystalline diamond films grownTHE ELECTRICAL AND OPTICAL PROPERTIES OF THIN FILM DIAMOND IMPLANTED WITH SILICON K. J. Roe and J and electrical properties of diamond make it an attractive material for use in extreme conditions. Diamond

Kolodzey, James

83

Bendable single crystal silicon thin film transistors formed by printing on plastic substrates  

E-Print Network [OSTI]

Bendable single crystal silicon thin film transistors formed by printing on plastic substrates E on plastic substrates using an efficient dry transfer printing technique. In these devices, free standing-Si is then transferred, to a specific location and with a controlled orientation, onto a thin plastic sheet

Rogers, John A.

84

A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates.  

E-Print Network [OSTI]

A Review of Thin Film Crystalline Silicon for Solar Cell Applications. Part 1 : Native Substrates. Michelle J. Mc Cann, Kylie R. Catchpole, Klaus J. Weber and Andrew W. Blakers Centre for Sustainable Energy Systems Engineering Department, The Australian National University, ACT 0200, Australia. Email : michelle

85

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a  

E-Print Network [OSTI]

Universality of non-Ohmic shunt leakage in thin-film solar cells S. Dongaonkar,1,a J. D. Servaites thin-film solar cell types: hydrogenated amorphous silicon a-Si:H p-i-n cells, organic bulk understanding of thin film solar cell device physics, including important module performance variability issues

Alam, Muhammad A.

86

Experimental Demonstration of Quasi-Resonant Absorption in Silicon Thin Films for Enhanced Solar Light Trapping  

E-Print Network [OSTI]

We experimentally demonstrate that the addition of partial lattice disorder to a thin-film micro-crystalline silicon photonic crystal results in the controlled spectral broadening of its absorption peaks to form quasi resonances; increasing light trapping over a wide bandwidth while also reducing sensitivity to the angle of incident radiation. Accurate computational simulations are used to design the active-layer photonic crystal so as to maximize the number of its absorption resonances over the broadband interval where micro-crystalline silicon is weakly absorbing before lattice disorder augmented with fabrication-induced imperfections are applied to further boost performance. Such a design strategy may find practical use for increasing the efficiency of thin-film silicon photovoltaics.

Oskooi, Ardavan; Ishizaki, Kenji; Noda, Susumu

2013-01-01T23:59:59.000Z

87

Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors  

SciTech Connect (OSTI)

We report an experimental evidence that some hydrogens passivate electron traps in an amorphous oxide semiconductor, a-In-Ga-Zn-O (a-IGZO). The a-IGZO thin-film transistors (TFTs) annealed at 300?°C exhibit good operation characteristics; while those annealed at ?400?°C show deteriorated ones. Thermal desorption spectra (TDS) of H{sub 2}O indicate that this threshold annealing temperature corresponds to depletion of H{sub 2}O desorption from the a-IGZO layer. Hydrogen re-doping by wet oxygen annealing recovers the good TFT characteristic. The hydrogens responsible for this passivation have specific binding energies corresponding to the desorption temperatures of 300–430?°C. A plausible structural model is suggested.

Hanyu, Yuichiro, E-mail: y-hanyu@lucid.msl.titech.ac.jp; Domen, Kay [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan)] [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Nomura, Kenji [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan)] [Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Hiramatsu, Hidenori; Kamiya, Toshio [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan) [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Kumomi, Hideya [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)] [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan); Hosono, Hideo [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan) [Materials and Structures Laboratory, Tokyo Institute of Technology, Yokohama (Japan); Frontier Research Center, Tokyo Institute of Technology, Yokohama (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama (Japan)

2013-11-11T23:59:59.000Z

88

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Light trapping has been an important issue for thin film silicon solar cells because of the low absorption coefficient in the near infrared range. In this paper, we present a photonic structure which combines anodic aluminum ...

Sheng, Xing

89

Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer  

E-Print Network [OSTI]

Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within with stress-induced surface oxide thicken- ing and moisture-assisted subcritical cracking in the amor- phous

Ritchie, Robert

90

Beneficial effects of annealing on amorphous NbSi thin-film thermometers D. Querlioz, E. Helgren, D. R. Queen, and F. Hellmana  

E-Print Network [OSTI]

Beneficial effects of annealing on amorphous Nb­Si thin-film thermometers D. Querlioz, E. Helgren be tuned over many decades by controlling composition and are used for thin-film thermometers. Annealing as low-temperature thermometers even when they are cycled to temperatures as high as 500 °C. Cross

Hellman, Frances

91

Method of fabrication of display pixels driven by silicon thin film transistors  

DOE Patents [OSTI]

Display pixels driven by silicon thin film transistors are fabricated on plastic substrates for use in active matrix displays, such as flat panel displays. The process for forming the pixels involves a prior method for forming individual silicon thin film transistors on low-temperature plastic substrates. Low-temperature substrates are generally considered as being incapable of withstanding sustained processing temperatures greater than about 200.degree. C. The pixel formation process results in a complete pixel and active matrix pixel array. A pixel (or picture element) in an active matrix display consists of a silicon thin film transistor (TFT) and a large electrode, which may control a liquid crystal light valve, an emissive material (such as a light emitting diode or LED), or some other light emitting or attenuating material. The pixels can be connected in arrays wherein rows of pixels contain common gate electrodes and columns of pixels contain common drain electrodes. The source electrode of each pixel TFT is connected to its pixel electrode, and is electrically isolated from every other circuit element in the pixel array.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA)

1999-01-01T23:59:59.000Z

92

Recent technological advances in thin film solar cells  

SciTech Connect (OSTI)

High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

Ullal, H.S.; Zwelbel, K.; Surek, T.

1990-03-01T23:59:59.000Z

93

Amorphous silicon photovoltaic devices  

DOE Patents [OSTI]

This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

2004-08-31T23:59:59.000Z

94

Development of Thin Film Silicon Solar Cell Using Inkjet Printed Silicon and Other Inkjet Processes: Cooperative Research and Development Final Report, CRADA Number CRD-07-260  

SciTech Connect (OSTI)

The cost of silicon photovoltaics (Si-PV) can be greatly lowered by developing thin-film crystalline Si solar cells on glass or an equally lower cost substrate. Typically, Si film is deposited by thermal evaporation, plasma enhanced chemical vapor deposition, and sputtering. NREL and Silexos have worked under a CRADA to develop technology to make very low cost solar cells using liquid organic precursors. Typically, cyclopentasilane (CPS) is deposited on a glass substrate and then converted into an a-Si film by UV polymerization followed by low-temperature optical process that crystallizes the amorphous layer. This technique promises to be a very low cost approach for making a Si film.

Sopori, B.

2012-04-01T23:59:59.000Z

95

Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate  

E-Print Network [OSTI]

Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light://jap.aip.org/about/rights_and_permissions #12;Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light require light-trapping schemes that are predominantly based on depositing the solar cells on rough

Psaltis, Demetri

96

Amorphous silicon radiation detectors  

DOE Patents [OSTI]

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification.

Street, Robert A. (Palo Alto, CA); Perez-Mendez, Victor (Berkeley, CA); Kaplan, Selig N. (El Cerrito, CA)

1992-01-01T23:59:59.000Z

97

Amorphous silicon radiation detectors  

DOE Patents [OSTI]

Hydrogenated amorphous silicon radiation detector devices having enhanced signal are disclosed. Specifically provided are transversely oriented electrode layers and layered detector configurations of amorphous silicon, the structure of which allow high electric fields upon application of a bias thereby beneficially resulting in a reduction in noise from contact injection and an increase in signal including avalanche multiplication and gain of the signal produced by incoming high energy radiation. These enhanced radiation sensitive devices can be used as measuring and detection means for visible light, low energy photons and high energy ionizing particles such as electrons, x-rays, alpha particles, beta particles and gamma radiation. Particular utility of the device is disclosed for precision powder crystallography and biological identification. 13 figs.

Street, R.A.; Perez-Mendez, V.; Kaplan, S.N.

1992-11-17T23:59:59.000Z

98

Modeling and control of thin film surface morphology: application to thin film solar cells  

E-Print Network [OSTI]

of a p-i-n thin-film solar cell with front transparent con-for thin-film a-si:h solar cells. Progress in Photovoltaics,in thin-film silicon solar cells. Optics Communications,

Huang, Jianqiao

2012-01-01T23:59:59.000Z

99

High efficiency thin film silicon solar cells with novel light trapping : principle, design and processing  

E-Print Network [OSTI]

One major efficiency limiting factor in thin film solar cells is weak absorption of long wavelength photons due to the limited optical path length imposed by the thin film thickness. This is especially severe in Si because ...

Zeng, Lirong, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

100

Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films  

SciTech Connect (OSTI)

n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30??m in width, and with high Hall mobility of about 71.5?cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18??m with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900?MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

Kumar, Avishek, E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Law, Felix; Widenborg, Per I. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 (Singapore); Dalapati, Goutam K., E-mail: avishek.kumar@nus.edu.sg, E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R. [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Aberle, Armin G. [Solar Energy Research Institute of Singapore, National University of Singapore, 7 Engineering Drive 1, Block E3A, #06-01, Singapore 117574 and Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583 (Singapore)

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Amorphous silicon thin film transistor as nonvolatile device.  

E-Print Network [OSTI]

layer all of which are exposed to the radiation source during operation.62 Under the high dose x-ray irradiation, the TFT needs to be electrically biased or thermally annealed in order to perform the switching function effectively.59 For the extra...-terrestrial use, the gamma ray is naturally abundant in the cosmic space. Gamma-ray is more energetic than the x-ray. An x-ray has longer wavelength than a gamma ray, i.e., 10-0.1 nm vs. gamma ray irradiation can result in different photoelectron...

Nominanda, Helinda

2008-10-10T23:59:59.000Z

102

Compensated amorphous silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

103

Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness  

SciTech Connect (OSTI)

Previously, Lau (one of the authors) pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD) on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

Lau, W. S., E-mail: liuweicheng@zju.edu.cn; Wan, X.; Xu, Y.; Wong, H. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Zhang, J. [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China)] [Zhejiang University, Department of Materials Science and Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Luo, J. K. [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China) [Zhejiang University, Department of Information Science and Electronic Engineering, No. 38 Zheda Road, Hangzhou 310027 (China); Institute of Renewable Energy and Environment Technology, Bolton University, Deane Road, Bolton BL3 5 AB (United Kingdom)

2014-02-15T23:59:59.000Z

104

P-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low-temperature technology  

E-Print Network [OSTI]

is obtained. P-type and N-type vertical TFTs have shown symmetric electrical characteristics. DifferentP-type and N-type multi-gate polycrystalline silicon vertical thin film transistors based on low) ABSTRACT P-type and N-type multi-gate vertical thin film transistors (vertical TFTs) have been fabricated

Boyer, Edmond

105

X-ray absorption spectroscopy elucidates the impact of structural disorder on electron mobility in amorphous zinc-tin-oxide thin films  

SciTech Connect (OSTI)

We investigate the correlation between the atomic structures of amorphous zinc-tin-oxide (a-ZTO) thin films grown by atomic layer deposition (ALD) and their electronic transport properties. We perform synchrotron-based X-ray absorption spectroscopy at the K-edges of Zn and Sn with varying [Zn]/[Sn] compositions in a-ZTO thin films. In extended X-ray absorption fine structure (EXAFS) measurements, signal attenuation from higher-order shells confirms the amorphous structure of a-ZTO thin films. Both quantitative EXAFS modeling and X-ray absorption near edge spectroscopy (XANES) reveal that structural disorder around Zn atoms increases with increasing [Sn]. Field- and Hall-effect mobilities are observed to decrease with increasing structural disorder around Zn atoms, suggesting that the degradation in electron mobility may be correlated with structural changes.

Siah, Sin Cheng, E-mail: siahsincheng@gmail.com, E-mail: buonassisi@mit.edu; Lee, Yun Seog; Buonassisi, Tonio, E-mail: siahsincheng@gmail.com, E-mail: buonassisi@mit.edu [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Lee, Sang Woon; Gordon, Roy G. [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Heo, Jaeyeong [Department of Materials Science and Engineering, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Shibata, Tomohiro; Segre, Carlo U. [Physics Department and CSRRI, Illinois Institute of Technology, Chicago, Illinois 606016 (United States)

2014-06-16T23:59:59.000Z

106

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

107

Investigation of porous alumina as a self-assembled diffractive element to facilitate light trapping in thin film silicon solar cells  

E-Print Network [OSTI]

Thin film solar cells are currently being investigated as an affordable alternative energy source because of the reduced material cost. However, these devices suffer from low efficiencies, compared to silicon wafer solar ...

Coronel, Naomi (Naomi Cristina)

2009-01-01T23:59:59.000Z

108

Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide  

SciTech Connect (OSTI)

This paper proposes the application of gallium oxide (Ga{sub 2}O{sub 3}) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga{sub 2}O{sub 3} films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O{sub 3}) as the reactants. Surface recombination velocities as low as 6.1?cm/s have been recorded with films less than 4.5?nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2?Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga{sub 2}O{sub 3} interface has been found to be approximately 0.5?eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9?eV.

Allen, T. G., E-mail: thomas.allen@anu.edu.au; Cuevas, A. [Research School of Engineering, Australian National University, Canberra 0200 (Australia)

2014-07-21T23:59:59.000Z

109

ULTRA-LIGHTWEIGHT AMORPHOUS SILICON SOLAR CELLS DEPOSITED OIN 7.5pn-1 THICK STAINLESS STEEL SUBSTRATES  

E-Print Network [OSTI]

ULTRA-LIGHTWEIGHT AMORPHOUS SILICON SOLAR CELLS DEPOSITED OIN 7.5pn-1 THICK STAINLESS STEEL specific power for space application, we deposited a-Si thin film solar cells on ultra-thin stainless steel-thin stainless steel (SS) substrates (down to 7.5 pm) for space power applications. In this paper, we report our

Deng, Xunming

110

Amorphous thin films for solar-cell applications. Final report, September 11, 1978-September 10, 1979  

SciTech Connect (OSTI)

In Section II, Theoretical Modeling, theories for the capture of electrons by deep centers in hydrogenated amorphous silicon (a-Si:H) and for field-dependent quantum efficiency in a-Si:H are presented. In Section III, Deposition and Doping Studies, the optimization of phosphorus-doped a-Si:H carried out in four different discharge systems is described. Some details of the dc proximity and rf magnetron discharge systems are also provided. Preliminary mass spectroscopy studies of the rf magnetron discharge in both SiH/sub 4/ and SiF/sub 4/ are presented. In Section IV, Experimental Methods for Characterizing a-Si:H, recent work involving photoluminescence of fluorine-doped a-Si:H, photoconductivity spectra, the photoelectromagnetic effect, the photo-Hall effect and tunneling into a-Si:H is presented. Also, studies of the growth mechanism of Pt adsorbed on both crystalline Si and a-Si:H are described. Measurements of the surface photovoltage have been used to estimate the distribution of surface states of phosphorus-doped and undoped a-Si:H. Section V, Formation of Solar-Cell Structures, contains information on stacked or multiple-junction a-Si:H solar cells. In Section VI, Theoretical and Experimental Evaluation of Solar-Cell Parameters, an upper limit of approx. = 400 A is established for the hole diffusion length in undoped a-Si:H. A detailed description of carrier generation, recombination and transport in a-Si:H solar cells is given. Finally, some characteristics of Pd-Schottky-barrier cells are described for different processing histories.

Carlson, D E; Balberg, I; Crandall, R S; Goldstein, B C; Hanak, J J; Pankove, J I; Staebler, D L; Weakliem, H A; Williams, R

1980-02-01T23:59:59.000Z

111

Spin-dependent processes in amorphous silicon-rich silicon-nitride S.-Y. Lee,1  

E-Print Network [OSTI]

diodes9 and a-Si:H solar cells.10 Fol- lowing coherent manipulation of paramagnetic centers, tran- sient-band , TSAMPLE=15 K. Dark and illuminated IV curves of the p-i-n devices were measured at room temperature and T amorphous silicon nitride a-SiNx:H has been used widely as a dielectric for thin-film transistors,1 solar

McCamey, Dane

112

CdS thin films on LiNbO{sub 3} (1 0 4) and silicon (1 1 1) substrates prepared through an atom substitution method  

SciTech Connect (OSTI)

CdS thin films on LiNbO{sub 3} (1 0 4) and silicon (1 1 1) substrates were prepared through an atom substitution technique using cadmium nitrate as a reactant in an H{sub 2}S atmosphere at 230 {sup o}C. X-ray diffraction, scanning electron microscopy and transmission microscopy results indicate that the CdS film grows on LiNbO{sub 3} oriented along the [0 0 1] axis in form of crystallized nanoplates, while that deposited on silicon forms randomly oriented nanoparticles. Investigation of the precursor thin film suggests that CdS forms from the O in the CdO precursor thin film being substituted by S from H{sub 2}S in the surrounding environment, which is designated as an atom substitution process. This novel method involving an atom substitution reaction between the CdO precursor thin film and its environment can provide a new low cost approach to the preparation of chalcogenide or other compound thin films. A schematic illustration and corresponding mechanism describing the details of this method are proposed. -- Graphical abstract: Elemental O in CdO is substituted by elemental S from the atmosphere in the apparatus, which is designated as an atom substitution process. This novel method involving an atom substitution reaction between the CdO precursor thin film and its environment can provide a new low cost approach to the preparation of chalcogenide or other compound thin films. Display Omitted Research highlights: {yields} An atom substitution method for thin film preparation was demonstrated. {yields} Combination of the atom substitution and spin coating method was achieved. {yields} Well oriented CdS thin film was prepared on LiNbO{sub 3} substrate. {yields} The atom substitution method could be used for many compound systems.

Qin Haiming; Zhao Yue [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Liu Hong, E-mail: hongliu@sdu.edu.c [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Gao Zheng [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Wang Jiyang, E-mail: Jywang@sdu.edu.c [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Liu Duo; Sang Yuanhua; Yao Bin [State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100 (China); Boughton, Robert I. [Center for Material Science, Bowling Green State University, Bowling Green, OH 43403 (United States)

2011-03-15T23:59:59.000Z

113

Low work function, stable thin films  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2000-01-01T23:59:59.000Z

114

Epitaxial ferromagnetic oxide thin films on silicon with atomically sharp interfaces  

SciTech Connect (OSTI)

A bottleneck in the integration of functional oxides with silicon, either directly grown or using a buffer, is the usual formation of an amorphous interfacial layer. Here, we demonstrate that ferromagnetic CoFe{sub 2}O{sub 4} films can be grown epitaxially on Si(111) using a Y{sub 2}O{sub 3} buffer layer, and remarkably the Y{sub 2}O{sub 3}/Si(111) interface is stable and remains atomically sharp. CoFe{sub 2}O{sub 4} films present high crystal quality and high saturation magnetization.

Coux, P. de [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Bachelet, R.; Fontcuberta, J.; Sánchez, F., E-mail: fsanchez@icmab.es [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra, Barcelona (Spain); Warot-Fonrose, B. [CEMES-CNRS, 29 rue Jeanne Marvig, BP 94347, Toulouse Cedex 4 (France); Skumryev, V. [Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain and Dep. de Física, Univ. Autònoma de Barcelona, 08193 Bellaterra (Spain); Lupina, L.; Niu, G.; Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany)

2014-07-07T23:59:59.000Z

115

alkali-resistant silicon nitride: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Silicon B. L. Zink,1,2,* R. Pietri,1. Above 50 K the thermal conductivity of thin-film amorphous silicon agrees with values previously Hellman, Frances 131 Profiles:...

116

Growth direction of oblique angle electron beam deposited silicon monoxide thin films identified by optical second-harmonic generation  

SciTech Connect (OSTI)

Oblique angle deposited (OAD) silicon monoxide (SiO) thin films forming tilted columnar structures have been characterized by second-harmonic generation. It was found that OAD SiO leads to a rotationally anisotropic second-harmonic response, depending on the optical angle of incidence. A model for the observed dependence of the second-harmonic signal on optical angle of incidence allows extraction of the growth direction of OAD films. The optically determined growth directions show convincing agreement with cross-sectional scanning electron microscopy images. In addition to a powerful characterization tool, these results demonstrate the possibilities for designing nonlinear optical devices through SiO OAD.

Vejling Andersen, Søren; Lund Trolle, Mads; Pedersen, Kjeld [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)] [Department of Physics and Nanotechnology, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Øst (Denmark)

2013-12-02T23:59:59.000Z

117

Influence of an anomalous dimension effect on thermal instability in amorphous-InGaZnO thin-film transistors  

SciTech Connect (OSTI)

This paper investigates abnormal dimension-dependent thermal instability in amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors. Device dimension should theoretically have no effects on threshold voltage, except for in short channel devices. Unlike short channel drain-induced source barrier lowering effect, threshold voltage increases with increasing drain voltage. Furthermore, for devices with either a relatively large channel width or a short channel length, the output drain current decreases instead of saturating with an increase in drain voltage. Moreover, the wider the channel and the shorter the channel length, the larger the threshold voltage and output on-state current degradation that is observed. Because of the surrounding oxide and other thermal insulating material and the low thermal conductivity of the IGZO layer, the self-heating effect will be pronounced in wider/shorter channel length devices and those with a larger operating drain bias. To further clarify the physical mechanism, fast I{sub D}-V{sub G} and modulated peak/base pulse time I{sub D}-V{sub D} measurements are utilized to demonstrate the self-heating induced anomalous dimension-dependent threshold voltage variation and on-state current degradation.

Liu, Kuan-Hsien; Chou, Wu-Ching, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, Hsin-chu 300, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com, E-mail: wuchingchou@mail.nctu.edu.tw [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Chen, Hua-Mao; Tai, Ya-Hsiang [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsin-chu 300, Taiwan (China); Tsai, Ming-Yen; Hung, Pei-Hua; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Wu, Ming-Siou; Hung, Yi-Syuan [Department of Electronics Engineering, National Chiao Tung University, Hsin-Chu 300, Taiwan (China); Hsieh, Tien-Yu [Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan (China); Yeh, Bo-Liang [Advanced Display Technology Research Center, AU Optronics, No.1, Li-Hsin Rd. 2, Hsinchu Science Park, Hsin-Chu 30078, Taiwan (China)

2014-10-21T23:59:59.000Z

118

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect (OSTI)

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

119

Angular behavior of the absorption limit in thin film silicon solar cells  

E-Print Network [OSTI]

We investigate the angular behavior of the upper bound of absorption provided by the guided modes in thin film solar cells. We show that the 4n^2 limit can be potentially exceeded in a wide angular and wavelength range using two-dimensional periodic thin film structures. Two models are used to estimate the absorption enhancement; in the first one, we apply the periodicity condition along the thickness of the thin film structure but in the second one, we consider imperfect confinement of the wave to the device. To extract the guided modes, we use an automatized procedure which is established in this work. Through examples, we show that from the optical point of view, thin film structures have a high potential to be improved by changing their shape. Also, we discuss the nature of different optical resonances which can be potentially used to enhance light trapping in the solar cell. We investigate the two different polarization directions for one-dimensional gratings and we show that the transverse magnetic pola...

Naqavi, Ali; Söderström, Karin; Battaglia, Corsin; Paeder, Vincent; Scharf, Toralf; Herzig, Hans Peter; Ballif, Christophe

2013-01-01T23:59:59.000Z

120

Permeability of CoNbZr amorphous thin films over a wide frequency range  

SciTech Connect (OSTI)

CoNbZr amorphous films have attracted the attention of many researchers because of their high saturation magnetization, high permeability, low coercivity, and nearly zero magnetostriction. For these films to be used, one of the important magnetic properties is the behavior of the permeability over a wide frequency range. We have measured the permeability of a square-shaped magnetic film (13 mm x 55 mm) sputtered on a glass substrate from 1 MHz to 400 MHz using a stripline. Over 400 MHz, the permeability of the magnetic film was measured using a ring-shaped sample mounted in a coaxial fixture. The wall motion permeability of CoNbZr amorphous films decreases from 1 kHz to nearly zero at 1 MHz. The rotation permeability is constant to 100 MHz and ferromagnetic resonance is observed near 1 GHz.

Koyama, H.; Tsujimoto, H.; Shirae, K.

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dual mechanical behaviour of hydrogen in stressed silicon nitride thin films  

SciTech Connect (OSTI)

In the present article, we report a study on the mechanical behaviour displayed by hydrogen atoms and pores in silicon nitride (SiN) films. A simple three-phase model is proposed to relate the physical properties (stiffness, film stress, mass density, etc.) of hydrogenated nanoporous SiN thin films to the volume fractions of hydrogen and pores. This model is then applied to experimental data extracted from films deposited by plasma enhanced chemical vapour deposition, where hydrogen content, stress, and mass densities range widely from 11% to 30%, ?2.8 to 1.5?GPa, and 2.0 to 2.8?g/cm{sup 3}, respectively. Starting from the conventional plotting of film's Young's modulus against film porosity, we first propose to correct the conventional calculation of porosity volume fraction with the hydrogen content, thus taking into account both hydrogen mass and concentration. The weight of this hydrogen-correction is found to evolve linearly with hydrogen concentration in tensile films (in accordance with a simple “mass correction” of the film density calculation), but a clear discontinuity is observed toward compressive stresses. Then, the effective volume occupied by hydrogen atoms is calculated taking account of the bond type (N-H or Si-H bonds), thus allowing a precise extraction of the hydrogen volume fraction. These calculations applied to tensile films show that both volume fractions of hydrogen and porosity are similar in magnitude and randomly distributed against Young's modulus. However, the expected linear dependence of the Young's modulus is clearly observed when both volume fractions are added. Finally, we show that the stiffer behaviour of compressive films cannot be only explained on the basis of this (hydrogen?+?porosity) volume fraction. Indeed this stiffness difference relies on a dual mechanical behaviour displayed by hydrogen atoms against the film stress state: while they participate to the stiffness in compressive films, hydrogen atoms mainly behave like pores in tensile films where they do not participate to the film stiffness.

Volpi, F., E-mail: fabien.volpi@simap.grenoble-inp.fr; Braccini, M.; Pasturel, A. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); Devos, A. [IEMN, UMR 8520 CNRS, Avenue Poincarré - CS 60069 - 59652 Villeneuve d'Ascq Cedex (France); Raymond, G. [Univ. Grenoble Alpes, SIMAP, F-38000 Grenoble (France); CNRS, SIMAP, F-38000 Grenoble (France); STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France); Morin, P. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles Cedex (France)

2014-07-28T23:59:59.000Z

122

amorphous-nanocrystalline silicon thin: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for manufacturing high...

123

Narrow band gap amorphous silicon semiconductors  

DOE Patents [OSTI]

Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

Madan, A.; Mahan, A.H.

1985-01-10T23:59:59.000Z

124

Hydrogen plasma treatment for improved conductivity in amorphous aluminum doped zinc tin oxide thin films  

SciTech Connect (OSTI)

Improving the conductivity of earth-abundant transparent conductive oxides (TCOs) remains an important challenge that will facilitate the replacement of indium-based TCOs. Here, we show that a hydrogen (H{sub 2})-plasma post-deposition treatment improves the conductivity of amorphous aluminum-doped zinc tin oxide while retaining its low optical absorption. We found that the H{sub 2}-plasma treatment performed at a substrate temperature of 50?°C reduces the resistivity of the films by 57% and increases the absorptance by only 2%. Additionally, the low substrate temperature delays the known formation of tin particles with the plasma and it allows the application of the process to temperature-sensitive substrates.

Morales-Masis, M., E-mail: monica.moralesmasis@epfl.ch; Ding, L.; Dauzou, F. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Jeangros, Q. [Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Hessler-Wyser, A. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Interdisciplinary Centre for Electron Microscopy, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne (Switzerland); Nicolay, S. [Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland); Ballif, C. [Photovoltaics and Thin-Film Electronics Laboratory (PVLab), Institute of Microengineering (IMT), Ecole Polytechnique Fédérale de Lausanne - EPFL, Rue de la Maladière 71b, CH-2002 Neuchatel (Switzerland); Centre Suisse d’Electronique et de Microtechnique (CSEM) SA, Rue Jaquet-Droz 1, CH-2002 Neuchatel (Switzerland)

2014-09-01T23:59:59.000Z

125

The effect of Ta interface on the crystallization of amorphous phase change material thin films  

SciTech Connect (OSTI)

The crystallization of amorphous GeTe and Ge{sub 2}Sb{sub 2}Te{sub 5} phase change material films, with thickness between 10 and 100?nm, sandwiched between either Ta or SiO{sub 2} layers, was investigated by optical reflectivity. Ta cladding layers were found to increase the crystallization temperature, even for films as thick as 100?nm. X-Ray diffraction investigations of crystallized GeTe films showed a very weak texture in Ta cladded films, in contrast with the strong texture observed for SiO{sub 2} cladding layers. This study shows that crystallization mechanism of phase change materials can be highly impacted by interface effects, even for relatively thick films.

Ghezzi, G. E. [CEA-LETI, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble (France); LMGP, CNRS Grenoble-INP, MINATEC, 3 parvis Louis Néel, F 38016 Grenoble (France); Noé, P., E-mail: pierre.noe@cea.fr; Marra, M.; Sabbione, C.; Fillot, F.; Bernier, N.; Ferrand, J.; Maîtrejean, S. [CEA-LETI, MINATEC campus, 17 rue des Martyrs, F 38054 Grenoble (France); Hippert, F. [LMGP, CNRS Grenoble-INP, MINATEC, 3 parvis Louis Néel, F 38016 Grenoble (France); LNCMI (CNRS, UJF, UPS, INSA), 25 rue des Martyrs, F 38042 Grenoble Cedex 9 (France)

2014-06-02T23:59:59.000Z

126

Growth, structure and electrical properties of epitaxial thulium silicide thin films on silicon  

SciTech Connect (OSTI)

Thulium silicide thin films were grown on (100) and (111) Si by evaporation of Tm metal and Si layers and annealing in a vacuum. Electron microscopy and x-ray diffraction results showed that the TmSi{sub 2{minus}x} layers are of high crystalline quality grown epitaxially on Si. Electrical resistivity measurements showed that TmSi{sub 2{minus}x} layers are metallic exhibiting magnetic ordering below 3 K. {copyright} {ital 1997 American Institute of Physics.}

Travlos, A.; Salamouras, N.; Boukos, N. [Institute of Materials Science, National Centre for Scientific Research Demokritos, Athens, (Greece) 15310] [Institute of Materials Science, National Centre for Scientific Research Demokritos, Athens, (Greece) 15310

1997-02-01T23:59:59.000Z

127

The Effects of Damage on Hydrogen-Implant-Induced Thin-Film Separation from Bulk Silicon Carbide  

SciTech Connect (OSTI)

Exfoliation of Sic by hydrogen implantation and subsequent annealing forms the basis for a thin-film separation process which, when combined with hydrophilic wafer bonding, can be exploited to produce silicon-carbide-on-insulator, SiCOI. Sic thin films produced by this process exhibit unacceptably high resistivity because defects generated by the implant neutralize electrical carriers. Separation occurs because of chemical interaction of hydrogen with dangling bonds within microvoids created by the implant, and physical stresses due to gas-pressure effects during post-implant anneal. Experimental results show that exfoliation of Sic is dependent upon the concentration of implanted hydrogen, but the damage generated by the implant approaches a point when exfoliation is, in fact, retarded. This is attributed to excessive damage at the projected range of the implant which inhibits physical processes of implant-induced cleaving. Damage is controlled independently of hydrogen dosage by elevating the temperature of the SiC during implant in order to promote dynamic annealing. The resulting decrease in damage is thought to promote growth of micro-cracks which form a continuous cleave. Channeled H{sup +} implantation enhances the cleaving process while simultaneously minimizing residual damage within the separated film. It is shown that high-temperature irradiation and channeling each reduces the hydrogen fluence required to affect separation of a thin film and results in a lower concentration of defects. This increases the potential for producing SiC01 which is sufficiently free of defects and, thus, more easily electrically activated.

Gregory, R.B.; Holland, O.W.; Thomas, D.K.; Wetteroth, T.A.; Wilson, S.R.

1999-04-05T23:59:59.000Z

128

Superconducting nanowire single photon detectors fabricated from an amorphous Mo{sub 0.75}Ge{sub 0.25} thin film  

SciTech Connect (OSTI)

We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo{sub 0.75}Ge{sub 0.25} thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1?K, with system dark count rates below 500 cps. Operation in a closed-cycle cryocooler at 2.5?K is possible with system detection efficiencies exceeding 20% for SNSPDs which have not been optimized for high detection efficiency. Jitter is observed to vary between 69 ps at 250 mK and 187 ps at 2.5?K using room temperature amplifiers.

Verma, V. B.; Lita, A. E.; Vissers, M. R.; Marsili, F.; Pappas, D. P.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

2014-07-14T23:59:59.000Z

129

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

hydrogen dilution in silane on light induced degradation of hydrogenated amor- phous silicon films for solar photovoltaichydrogen content from 14-22%[76]. Hydrogenated amorphous silicon has promise as a photovoltaic

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

130

Atomistic modeling of amorphous silicon carbide using a bond...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

modeling of amorphous silicon carbide using a bond-order potential. Atomistic modeling of amorphous silicon carbide using a bond-order potential. Abstract: Molecular dynamics...

131

Irradiation-induced defect clustering and amorphization in silicon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Irradiation-induced defect clustering and amorphization in silicon carbide. Irradiation-induced defect clustering and amorphization in silicon carbide. Abstract: Previous computer...

132

Producer-Focused Life Cycle Assessment of Thin-Film Silicon Photovoltaic Systems  

E-Print Network [OSTI]

microcrystalline- silicon photovoltaic cell, B) range ofpayback of roof mounted photovoltaic cells. Boustead, I. andmicrocrystalline-silicon photovoltaic cell, B) range of

Zhang, Teresa Weirui

2011-01-01T23:59:59.000Z

133

Aluminum recycling from reactor walls: A source of contamination in a-Si:H thin films  

SciTech Connect (OSTI)

In this article, the authors investigate the contamination of hydrogenated amorphous silicon thin films with aluminum recycled from the walls and electrodes of the deposition reactor. Thin films of hydrogenated amorphous silicon were prepared under various conditions by a standard radio frequency plasma enhanced chemical vapor deposition process in two reactors, the chambers of which were constructed of either aluminum or stainless steel. The authors have studied the electronic properties of these thin films and have found that when using an aluminum reactor chamber, the layers are contaminated with aluminum recycled from the chamber walls and electrode. This phenomenon is observed almost independently of the deposition conditions. The authors show that this contamination results in slightly p-doped films and could be detrimental to the deposition of device grade films. The authors also propose a simple way to control and eventually suppress this contamination.

Longeaud, C.; Ray, P. P.; Bhaduri, A.; Daineka, D.; Johnson, E. V.; Roca i Cabarrocas, P. [Laboratoire de Genie Electrique de Paris (UMR 8507 CNRS), Supelec, Universites Paris VI and XI, 11 Rue Joliot-Curie, Plateau de Moulon, 91190 Gif sur Yvette (France); Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau Cedex (France)

2010-11-15T23:59:59.000Z

134

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells  

E-Print Network [OSTI]

Deng & Schiff, Amorphous Silicon Based Solar Cells rev. 7/30/2002, Page 1 Amorphous Silicon Based Solar Cells Xunming Deng and Eric A. Schiff Table of Contents 1 Overview 3 1.1 Amorphous Silicon: The First Bipolar Amorphous Semiconductor 3 1.2 Designs for Amorphous Silicon Solar Cells: A Guided Tour 6

Deng, Xunming

135

Compensated amorphous-silicon solar cell  

DOE Patents [OSTI]

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the elecrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF/sub 3/ doped intrinsic layer.

Devaud, G.

1982-06-21T23:59:59.000Z

136

Towards high efficiency thin-film crystalline silicon solar cells: The roles of light trapping and non-radiative recombinations  

SciTech Connect (OSTI)

Thin-film solar cells based on silicon have emerged as an alternative to standard thick wafers technology, but they are less efficient, because of incomplete absorption of sunlight, and non-radiative recombinations. In this paper, we focus on the case of crystalline silicon (c-Si) devices, and we present a full analytic electro-optical model for p-n junction solar cells with Lambertian light trapping. This model is validated against numerical solutions of the drift-diffusion equations. We use this model to investigate the interplay between light trapping, and bulk and surface recombination. Special attention is paid to surface recombination processes, which become more important in thinner devices. These effects are further amplified due to the textures required for light trapping, which lead to increased surface area. We show that c-Si solar cells with thickness of a few microns can overcome 20% efficiency and outperform bulk ones when light trapping is implemented. The optimal device thickness in presence of light trapping, bulk and surface recombination, is quantified to be in the range of 10–80??m, depending on the bulk quality. These results hold, provided the effective surface recombination is kept below a critical level of the order of 100?cm/s. We discuss the possibility of meeting this requirement, in the context of state-of-the-art techniques for light trapping and surface passivation. We show that our predictions are within the capability of present day silicon technologies.

Bozzola, A., E-mail: angelo.bozzola@unipv.it; Kowalczewski, P.; Andreani, L. C. [Physics Department, University of Pavia and CNISM, via Bassi 6, I-27100 Pavia (Italy)

2014-03-07T23:59:59.000Z

137

AMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION  

E-Print Network [OSTI]

-based polymers (silicones) may not show this effect. Although silicones were used to encapsulate solar cells improved, which may make them suitable for encapsulating solar cells once again. We have recentlyAMORPHOUS SILICON-BASED MINIMODULES WITH SILICONE ELASTOMER ENCAPSULATION Aarohi Vijh 1

Deng, Xunming

138

Temperature dependence of magnetic properties of La0.7Sr0.3MnO3SrTiO3 thin films on silicon substrates  

E-Print Network [OSTI]

by a 20-nm-thick SrTiO3 001 buffer layer. X-ray diffraction and atomic force microscopy studies. INTRODUCTION Perovskite manganites RE 1-x AE xMnO3, where RE =rare earth and AE=alkaline earth formTemperature dependence of magnetic properties of La0.7Sr0.3MnO3Ã?SrTiO3 thin films on silicon

Boyer, Edmond

139

Phonon renormalization and Raman spectral evolution through amorphous to crystalline transitions in Sb{sub 2}Te{sub 3} thin films  

SciTech Connect (OSTI)

A symmetry specific phonon mode renormalization is observed across an amorphous to crystalline phase transformation in thin films of the topological material Sb{sub 2}Te{sub 3} using Raman spectroscopy. We present evidence for local crystalline symmetry in the amorphous state, eventhough, the q?=?0 Raman selection rule is broken due to strong structural disorder. At crystallization, the in-plane polarized (E{sub g}{sup 2}) mode abruptly sharpens while the out-of-plane polarized (A{sub 1g}) modes are only weakly effected. This effect unique to the E{sub g} symmetry is exceptional considering that polarized spectra and comparison of the single phonon density of states between the amorphous and crystalline phases suggest that short range order of the amorphous phase is, on the average, similar to that of the crystalline material while electrical transport measurements reveal a sharp insulator-to-metal transition. Our findings point to the important role of anisotropic disorder affecting potential applications of topological and phase-change based electronics.

Secor, Jeff; Zhao, Lukas; Krusin-Elbaum, Lia [The Graduate Center, CUNY, New York, New York 10016 (United States); Department of Physics, The City College of New York, CUNY, New York, New York 10031 (United States); Harris, Matt A.; Deng, Haiming [Department of Physics, The City College of New York, CUNY, New York, New York 10031 (United States); Raoux, Simone [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

2014-06-02T23:59:59.000Z

140

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

1998-10-06T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Method for formation of thin film transistors on plastic substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The process relies on techniques for depositing semiconductors, dielectrics, and metals at low temperatures; crystallizing and doping semiconductor layers in the TFT with a pulsed energy source; and creating top-gate self-aligned as well as back-gate TFT structures. The process enables the fabrication of amorphous and polycrystalline channel silicon TFTs at temperatures sufficiently low to prevent damage to plastic substrates. The process has use in large area low cost electronics, such as flat panel displays and portable electronics. 5 figs.

Carey, P.G.; Smith, P.M.; Sigmon, T.W.; Aceves, R.C.

1998-10-06T23:59:59.000Z

142

aln thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deposited by the reactive dc magnetron sputtering technique at room, amorphous and polycrystalline GaN thin films have been deposited using the magnetron sputtering...

143

Experimental Investigation of Size Effects on the Thermal Conductivity of Silicon-Germanium Alloy Thin Films  

E-Print Network [OSTI]

We experimentally investigate the role of size effects and boundary scattering on the thermal conductivity of silicon-germanium alloys. The thermal conductivities of a series of epitaxially grown Si[subscript 1-x] Ge[subscript ...

Cheaito, Ramez

144

Crystallization and doping of amorphous silicon on low temperature plastic  

DOE Patents [OSTI]

A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

Kaschmitter, James L. (Pleasanton, CA); Truher, Joel B. (Palo Alto, CA); Weiner, Kurt H. (Campbell, CA); Sigmon, Thomas W. (Beaverton, OR)

1994-01-01T23:59:59.000Z

145

Crystallization and doping of amorphous silicon on low temperature plastic  

DOE Patents [OSTI]

A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

1994-09-13T23:59:59.000Z

146

Low-temperature processable amorphous In-W-O thin-film transistors with high mobility and stability  

SciTech Connect (OSTI)

Thin-film transistors (TFTs) with a high stability and a high field-effect mobility have been achieved using W-doped indium oxide semiconductors in a low-temperature process (?150?°C). By incorporating WO{sub 3} into indium oxide, TFTs that were highly stable under a negative bias stress were reproducibly achieved without high-temperature annealing, and the degradation of the field-effect mobility was not pronounced. This may be due to the efficient suppression of the excess oxygen vacancies in the film by the high dissociation energy of the bond between oxygen and W atoms and to the different charge states of W ions.

Kizu, Takio; Aikawa, Shinya; Mitoma, Nobuhiko; Shimizu, Maki; Gao, Xu; Lin, Meng-Fang; Tsukagoshi, Kazuhito, E-mail: TSUKAGOSHI.Kazuhito@nims.go.jp [International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Nabatame, Toshihide [MANA Foundry and MANA Advanced Device Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)

2014-04-14T23:59:59.000Z

147

Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft for  

E-Print Network [OSTI]

Flexible Solar-Energy Harvesting System on Plastic with Thin-film LC Oscillators Operating Above ft- This paper presents an energy-harvesting system consisting of amorphous-silicon (a-Si) solar cells and thin of the energy-harvesting system. The solar module consists of solar cells in series operating at an output

148

Thin Film Transistors On Plastic Substrates  

DOE Patents [OSTI]

A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Sigmon, Thomas W. (Portola Valley, CA); Aceves, Randy C. (Livermore, CA)

2004-01-20T23:59:59.000Z

149

Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule  

SciTech Connect (OSTI)

The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the wafer. In addition, it was found to be suitable for growing very large crystals. The equipment used was simple and inexpensive to operate. Reasonable solar cells were fabricated on re-crystallized material.

Emanuel Sachs

2013-01-16T23:59:59.000Z

150

Structural characterisation of BaTiO{sub 3} thin films deposited on SrRuO{sub 3}/YSZ buffered silicon substrates and silicon microcantilevers  

SciTech Connect (OSTI)

We report on the progress towards an all epitaxial oxide layer technology on silicon substrates for epitaxial piezoelectric microelectromechanical systems. (101)-oriented epitaxial tetragonal BaTiO{sub 3} (BTO) thin films were deposited at two different oxygen pressures, 5.10{sup ?2} mbar and 5.10{sup ?3} mbar, on SrRuO{sub 3}/Yttria-stabilized zirconia (YSZ) buffered silicon substrates by pulsed laser deposition. The YSZ layer full (001) orientation allowed the further growth of a fully (110)-oriented conductive SrRuO{sub 3} electrode as shown by X-ray diffraction. The tetragonal structure of the BTO films, which is a prerequisite for the piezoelectric effect, was identified by Raman spectroscopy. In the BTO film deposited at 5.10{sup ?2} mbar strain was mostly localized inside the BTO grains whereas at 5.10{sup ?3} mbar, it was localized at the grain boundaries. The BTO/SRO/YSZ layers were finally deposited on Si microcantilevers at an O{sub 2} pressure of 5.10{sup ?3} mbar. The strain level was low enough to evaluate the BTO Young modulus. Transmission electron microscopy (TEM) was used to investigate the epitaxial quality of the layers and their epitaxial relationship on plain silicon wafers as well as on released microcantilevers, thanks to Focused-Ion-Beam TEM lamella preparation.

Colder, H.; Jorel, C., E-mail: corentin.jorel@unicaen.fr; Méchin, L. [GREYC, UMR 6072, CNRS, ENSICAEN, UCBN, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Domengès, B. [LAMIPS, CRISMAT-NXP Semiconductors-Presto Engineering laboratory, CNRS-UMR 6508, ENSICAEN, UCBN, 2 rue de la Girafe, 14 000 Caen (France); Marie, P.; Boisserie, M. [CIMAP, UMR 6252, CNRS, ENSICAEN, UCBN, CEA, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Guillon, S.; Nicu, L. [LAAS, CNRS, Univ de Toulouse, 7 avenue du Colonel Roche, 31400 Toulouse (France); Galdi, A. [GREYC, UMR 6072, CNRS, ENSICAEN, UCBN, 6 bd du Maréchal Juin, 14050 Caen Cedex (France); Department of Industrial Engineering, CNR-SPIN Salerno, Università di Salerno, 84084 Fisciano, Salerno (Italy)

2014-02-07T23:59:59.000Z

151

Structural, electrical, and thermoelectric properties of bismuth telluride: Silicon/carbon nanocomposites thin films  

SciTech Connect (OSTI)

In this study, the effect of the presence of secondary phases on the structural, electrical, and thermoelectric properties of nanocomposite Bi{sub 2}Te{sub 3} films prepared by co-sputtering of silicon and carbon with Bi{sub 2}Te{sub 3} has been investigated. Growth temperature and the presence of Si and C phase are observed to have a strong effect on the topography and orientation of crystallites. X-ray diffraction study demonstrates that Bi{sub 2}Te{sub 3} and Bi{sub 2}Te{sub 3}:C samples have preferred (0 0 15) orientation in comparison to Bi{sub 2}Te{sub 3}:Si sample, which have randomly oriented crystallites. Atomic force, conducting atomic force, and scanning thermal microscopy analysis show significant differences in topographical, electrical, and thermal conductivity contrasts in Bi{sub 2}Te{sub 3}:Si and Bi{sub 2}Te{sub 3}:C samples. Due to the randomly oriented crystallites and the presence of Si along the crystallite boundaries, appreciable Seebeck coefficient, higher electrical conductivity, and lower thermal conductivity is achieved resulting in relatively higher value of power factor (3.71 mW K{sup ?2} m{sup ?1}) for Bi{sub 2}Te{sub 3}:Si sample. This study shows that by incorporating a secondary phase along crystallite boundaries, microstructural, electrical, and thermoelectric properties of the composite samples can be modified.

Agarwal, Khushboo; Mehta, B. R., E-mail: brmehta@physics.iitd.ac.in [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India)

2014-08-28T23:59:59.000Z

152

Study of spontaneous and induced absorption in amorphous Ta{sub 2}O{sub 5} and SiO{sub 2} dielectric thin films  

SciTech Connect (OSTI)

Tantalum pentoxide (Ta{sub 2}O{sub 5}) and silicon dioxide (SiO{sub 2}) are common high-index and low-index materials used in dielectric optical coatings for high average-power lasers since high-density sputtered oxide films with absorption losses at near- and mid-infrared wavelengths of less than 1 ppm can be obtained. These oxides have been chosen to investigate the spontaneous and optically induced absorption at {lambda}{sub 0} = 1064 nm that occurs due to simultaneous illumination at shorter wavelengths. The effect is measured using the photothermal common-path interferometric technique. This technique is capable of detecting sub-ppm levels of optical absorption and tracking its changes at a given wavelength when a second laser beam is also incident on a thin film oxide sample. In this work, dual beam experiments are employed to assess changes in the optical absorption at {lambda}{sub 0} = 1064 nm in ion beam sputtered Ta{sub 2}O{sub 5} and SiO{sub 2} thin films deposited on fused silica substrates, with stimulating illumination {lambda}{sub 1} ranging from {lambda}{sub 1} = 266 nm to {lambda}{sub 1} = 780 nm. The power and wavelength of the stimulating radiation were found to affect the optical absorption at {lambda}{sub 0} = 1064 nm. Furthermore, the relaxation dynamics of the induced infrared absorption was found to be wavelength dependent and is thought to be associated with various electron traps existing in the forbidden gap that depend essentially on the film's preparation conditions. The significantly greater effect observed in Ta{sub 2}O{sub 5} at {lambda}{sub 1} = 266 nm is attributed to band-to-band transitions.

Markosyan, A. S.; Route, R.; Fejer, M. M. [Department of Applied Physics, E.L. Ginzton Laboratory, Stanford University, Stanford, California 94305 (United States); Patel, D.; Menoni, C. [Department of Electrical and Computer Engineering and NSF ERC for Extreme Ultraviolet Science and Technology, Colorado State University, Fort Collins, Colorado 80523 (United States)

2013-04-07T23:59:59.000Z

153

almgb14 thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

154

aggase2 thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

155

area thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

156

aluminide thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

157

antiferroelectric thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

158

ain thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

159

advanced thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

160

Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer  

DOE Patents [OSTI]

An improved process for fabricating amorphous silicon solar cells in which the temperature of the substrate is varied during the deposition of the amorphous silicon layer is described. Solar cells manufactured in accordance with this process are shown to have increased efficiencies and fill factors when compared to solar cells manufactured with a constant substrate temperature during deposition of the amorphous silicon layer.

Carlson, David E. (Yardley, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Metal electrode for amorphous silicon solar cells  

DOE Patents [OSTI]

An amorphous silicon solar cell having an N-type region wherein the contact to the N-type region is composed of a material having a work function of about 3.7 electron volts or less. Suitable materials include strontium, barium and magnesium and rare earth metals such as gadolinium and yttrium.

Williams, Richard (Princeton, NJ)

1983-01-01T23:59:59.000Z

162

Application of Thin-Film Amorphous Silicon to Chemical Imaging Tatsuo Yoshinobu1  

E-Print Network [OSTI]

is a field-effect sensor with an electrolyte-insulator-semiconductor (EIS) structure as shown in figure 1. A dc bias voltage is applied to the EIS system so that a depletion layer is induced at the insulator of the LAPS is similar to that of the EIS capacitance sensor [4,5], in which the capacitance of the EIS system

Moritz, Werner

163

Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E. Bouree (1), V. Perraki (*) (1), G. Revel (2),R. Kishore (2) (**), J. L. Pastol (2), R. Mertens (3), M. Caymax (3) and M. Eyckmans  

E-Print Network [OSTI]

687 Thin film solar cells using impure polycrystalline silicon M. Rodot (1), M. Barbe (1), J. E avec les autres aptes à l'utilisation de Si-UMG bon marché. Abstract. 2014 Epitaxial solar cells have and electron diffusion length adequate to produce good solar cells. 10.3 % efficiency cells have been obtained

Paris-Sud XI, Université de

164

High resolution amorphous silicon radiation detectors  

DOE Patents [OSTI]

A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n-type, intrinsic, p-type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography. 18 figs.

Street, R.A.; Kaplan, S.N.; Perez-Mendez, V.

1992-05-26T23:59:59.000Z

165

High resolution amorphous silicon radiation detectors  

DOE Patents [OSTI]

A radiation detector employing amorphous Si:H cells in an array with each detector cell having at least three contiguous layers (n type, intrinsic, p type), positioned between two electrodes to which a bias voltage is applied. An energy conversion layer atop the silicon cells intercepts incident radiation and converts radiation energy to light energy of a wavelength to which the silicon cells are responsive. A read-out device, positioned proximate to each detector element in an array allows each such element to be interrogated independently to determine whether radiation has been detected in that cell. The energy conversion material may be a layer of luminescent material having a columnar structure. In one embodiment a column of luminescent material detects the passage therethrough of radiation to be detected and directs a light beam signal to an adjacent a-Si:H film so that detection may be confined to one or more such cells in the array. One or both electrodes may have a comb structure, and the teeth of each electrode comb may be interdigitated for capacitance reduction. The amorphous Si:H film may be replaced by an amorphous Si:Ge:H film in which up to 40 percent of the amorphous material is Ge. Two dimensional arrays may be used in X-ray imaging, CT scanning, crystallography, high energy physics beam tracking, nuclear medicine cameras and autoradiography.

Street, Robert A. (Palo Alto, CA); Kaplan, Selig N. (El Cerrito, CA); Perez-Mendez, Victor (Berkeley, CA)

1992-01-01T23:59:59.000Z

166

Infrared optical properties of amorphous and nanocrystalline Ta{sub 2}O{sub 5} thin films  

SciTech Connect (OSTI)

The optical constants of tantalum pentoxide (Ta{sub 2}O{sub 5}) are determined in a broad spectral region from the visible to the far infrared. Ta{sub 2}O{sub 5} films of various thicknesses from approximately 170 to 1600 nm are deposited using reactive magnetron sputtering on Si substrates. X-ray diffraction shows that the as-deposited films are amorphous, and annealing in air at 800 °C results in the formation of nanocrystalline Ta{sub 2}O{sub 5}. Ellipsometry is used to obtain the dispersion in the visible and near-infrared. Two Fourier-transform infrared spectrometers are used to measure the transmittance and reflectance at wavelengths from 1 to 1000 ?m. The surface topography and microstructure of the samples are examined using atomic force microscopy, confocal microscopy, and scanning electron microscopy. Classical Lorentz oscillators are employed to model the absorption bands due to phonons and impurities. A simple model is introduced to account for light scattering in the annealed films, which contain micro-cracks. For the unannealed samples, an effective-medium approximation is used to take into account the adsorbed moisture in the film and a Drude free-electron term is also added to model the broad background absorption.

Bright, T. J.; Watjen, J. I.; Zhang, Z. M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)] [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Muratore, C. [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States) [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States); Department of Chemical and Materials Engineering, University of Dayton, Dayton, Ohio 45469 (United States); Voevodin, A. A. [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States)] [Nanoelectronic Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright Patterson AFB, Ohio 45433 (United States); Koukis, D. I.; Tanner, D. B. [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States)] [Department of Physics, University of Florida, Gainesville, Florida 32611 (United States); Arenas, D. J. [Department of Physics, University of North Florida, Jacksonville, Florida 32254 (United States)] [Department of Physics, University of North Florida, Jacksonville, Florida 32254 (United States)

2013-08-28T23:59:59.000Z

167

APPLIED PHYSICS REVIEWS Erbium implanted thin film photonic materials  

E-Print Network [OSTI]

, phosphosilicate, borosilicate, and soda-lime glasses , ceramic thin films Al2O3, Y2O3, LiNbO3 , and amorphous. Phosphosilicate glass. . . . . . . . . . . . . . . . . . . . . . 7 C. Soda-lime silicate glass Er-doped thin film photonic materials is described. It focuses on oxide glasses pure SiO2

Polman, Albert

168

Effect of deposition temperature on electron-beam evaporated polycrystalline silicon thin-film and crystallized by diode laser  

SciTech Connect (OSTI)

The effects of the deposition temperature on the microstructure, crystallographic orientation, and electrical properties of a 10-?m thick evaporated Si thin-film deposited on glass and crystallized using a diode laser, are investigated. The crystallization of the Si thin-film is initiated at a deposition temperature between 450 and 550?°C, and the predominant (110) orientation in the normal direction is found. Pole figure maps confirm that all films have a fiber texture and that it becomes stronger with increasing deposition temperature. Diode laser crystallization is performed, resulting in the formation of lateral grains along the laser scan direction. The laser power required to form lateral grains is higher in case of films deposited below 450?°C for all scan speeds. Pole figure maps show 75% occupancies of the (110) orientation in the normal direction when the laser crystallized film is deposited above 550?°C. A higher density of grain boundaries is obtained when the laser crystallized film is deposited below 450?°C, which limits the solar cell performance by n?=?2 recombination, and a performance degradation is expected due to severe shunting.

Yun, J., E-mail: j.yun@unsw.edu.au; Varalmov, S.; Huang, J.; Green, M. A. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Kim, K. [School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, New South Wales 2052 (Australia); Suntech R and D Australia, Botany, New South Wales 2019 (Australia)

2014-06-16T23:59:59.000Z

169

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents [OSTI]

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/{micro}c-Si) solar cells are disclosed which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell. 4 figs.

Kaschmitter, J.L.

1996-07-23T23:59:59.000Z

170

Three dimensional amorphous silicon/microcrystalline silicon solar cells  

DOE Patents [OSTI]

Three dimensional deep contact amorphous silicon/microcrystalline silicon (a-Si/.mu.c-Si) solar cells which use deep (high aspect ratio) p and n contacts to create high electric fields within the carrier collection volume material of the cell. The deep contacts are fabricated using repetitive pulsed laser doping so as to create the high aspect p and n contacts. By the provision of the deep contacts which penetrate the electric field deep into the material where the high strength of the field can collect many of the carriers, thereby resulting in a high efficiency solar cell.

Kaschmitter, James L. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

171

Generation of low work function, stable compound thin films by laser ablation  

DOE Patents [OSTI]

Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

Dinh, Long N. (Concord, CA); McLean, II, William (Oakland, CA); Balooch, Mehdi (Berkeley, CA); Fehring, Jr., Edward J. (Dublin, CA); Schildbach, Marcus A. (Livermore, CA)

2001-01-01T23:59:59.000Z

172

Superlattice doped layers for amorphous silicon photovoltaic cells  

DOE Patents [OSTI]

Superlattice doped layers for amorphous silicon photovoltaic cells comprise a plurality of first and second lattices of amorphous silicon alternatingly formed on one another. Each of the first lattices has a first optical bandgap and each of the second lattices has a second optical bandgap different from the first optical bandgap. A method of fabricating the superlattice doped layers also is disclosed.

Arya, Rajeewa R. (Doylestown, PA)

1988-01-12T23:59:59.000Z

173

Method for improving the stability of amorphous silicon  

DOE Patents [OSTI]

A method of producing a metastable degradation resistant amorphous hydrogenated silicon film is provided, which comprises the steps of growing a hydrogenated amorphous silicon film, the film having an exposed surface, illuminating the surface using an essentially blue or ultraviolet light to form high densities of a light induced defect near the surface, and etching the surface to remove the defect.

Branz, Howard M.

2004-03-30T23:59:59.000Z

174

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films  

E-Print Network [OSTI]

Hydrogen plasma enhanced crystallization of hydrogenated amorphous silicon films K. Pangal,a) J. C August 1998; accepted for publication 21 October 1998 We report that a room temperature hydrogen plasma thermal crystallization of amorphous silicon time by a factor of five. Exposure to hydrogen plasma reduces

175

A survey of thin-film solar photovoltaic industry & technologies  

E-Print Network [OSTI]

A new type of solar cell technology using so-called thin-film solar photovoltaic material has the potential to make a great impact on our lives. Because it uses very little or no silicon at all, thin- film (TF) solar ...

Grama, Sorin

2007-01-01T23:59:59.000Z

176

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

1999-03-23T23:59:59.000Z

177

Thin film hydrogen sensor  

DOE Patents [OSTI]

A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

Cheng, Yang-Tse (Rochester Hills, MI); Poli, Andrea A. (Livonia, MI); Meltser, Mark Alexander (Pittsford, NY)

1999-01-01T23:59:59.000Z

178

Thin Film Photovoltaics Research  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) supports research and development of four thin-film technologies on the path to achieving cost-competitive solar energy, including:

179

Disorder improves nanophotonic light trapping in thin-film solar cells  

SciTech Connect (OSTI)

We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500?nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500?nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

2014-03-31T23:59:59.000Z

180

Black Silicon Solar Thin-film Microcells Integrating Top Nanocone Structures for Broadband and Omnidirectional Light-Trapping  

E-Print Network [OSTI]

Recently developed classes of monocrystalline silicon solar microcells (u-cell) can be assembled into modules with characteristics (i.e., mechanically flexible forms, compact concentrator designs, and high-voltage outputs) that would be impossible to achieve using conventional, wafer-based approaches. In this paper, we describe a highly dense, uniform and non-periodic nanocone forest structure of black silicon (bSi) created on optically-thin (30 um) u-cells for broadband and omnidirectional light-trapping with a lithography-free and high-throughput plasma texturizing process. With optimized plasma etching conditions and a silicon nitride passivation layer, black silicon u-cells, when embedded in a polymer waveguiding layer, display dramatic increases of as much as 65.7% in short circuit current, as compared to a bare silicon device. The conversion efficiency increases from 8% to 11.5% with a small drop in open circuit voltage and fill factor.

Xu, Zhida; Brueckner, Eric P; Li, Lanfang; Jiang, Jing; Nuzzo, Ralph G; Liu, Gang L

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Plasma polymerization of C[subscript 4]F[subscript 8] thin film on high aspect ratio silicon molds  

E-Print Network [OSTI]

High aspect ratio polymeric micro-patterns are ubiquitous in many fields ranging from sensors, actuators, optics, fluidics and medical. Second generation PDMS molds are replicated against first generation silicon molds ...

Yeo, L. P.

182

Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films  

SciTech Connect (OSTI)

Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (?-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0?nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4?nm and P5 from 570.2 to 587.8?nm with temperature increasing from 600 to 900?°C. But then are both blue-shifted, P4 to 500.2?nm and P5 to 573.8?nm from 900 to 1200?°C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich ?-SiC: H materials.

Wen, Guozhi [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); School of Electronic and Electrical Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023 (China); Zeng, Xiangbin, E-mail: eexbzeng@mail.hust.edu.cn; Wen, Xixin; Liao, Wugang [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

2014-04-28T23:59:59.000Z

183

Amorphous silicon passivated contacts for diffused junction silicon solar cells  

SciTech Connect (OSTI)

Carrier recombination at the metal contacts is a major obstacle in the development of high-performance crystalline silicon homojunction solar cells. To address this issue, we insert thin intrinsic hydrogenated amorphous silicon [a-Si:H(i)] passivating films between the dopant-diffused silicon surface and aluminum contacts. We find that with increasing a-Si:H(i) interlayer thickness (from 0 to 16?nm) the recombination loss at metal-contacted phosphorus (n{sup +}) and boron (p{sup +}) diffused surfaces decreases by factors of ?25 and ?10, respectively. Conversely, the contact resistivity increases in both cases before saturating to still acceptable values of ? 50 m? cm{sup 2} for n{sup +} and ?100 m? cm{sup 2} for p{sup +} surfaces. Carrier transport towards the contacts likely occurs by a combination of carrier tunneling and aluminum spiking through the a-Si:H(i) layer, as supported by scanning transmission electron microscopy–energy dispersive x-ray maps. We explain the superior contact selectivity obtained on n{sup +} surfaces by more favorable band offsets and capture cross section ratios of recombination centers at the c-Si/a-Si:H(i) interface.

Bullock, J., E-mail: james.bullock@anu.edu.au; Yan, D.; Wan, Y.; Cuevas, A. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [École Polytechnique Fédérale de Lausanne (EPFL), Institute of micro engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory, Maladière 71, CH-200 Neuchâtel (Switzerland)

2014-04-28T23:59:59.000Z

184

abrasion-resistant thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

185

al-cu-fe thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

186

alendronate-hydroxyapatite thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

187

ag-in-se thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Access Theses and Dissertations Summary: ??Performance of polycrystalline silicon thin film solar cells is limited by high defect density solid-phase crystallised material....

188

Understanding and improving hole transport in hydrogenated amorphous silicon photovoltaics  

E-Print Network [OSTI]

While hydrogenated amorphous silicon (a-Si:H) solar cells have been studied extensively for the previous four decades, the low performance of the devices is still not well understood. The poor efficiency (below 10%, even ...

Johlin, Eric (Eric Carl)

2014-01-01T23:59:59.000Z

189

Thin Film Reliability SEMICONDUCTORS  

E-Print Network [OSTI]

Thin Film Reliability SEMICONDUCTORS Our goal is to develop new ways to evaluate the reliability $250 billion per year. As semiconductor devices become ultra miniaturized, reliability testing becomes-world conditions as possible will enable product designers to better balance performance and reliability

190

Thin film photovoltaic cell  

DOE Patents [OSTI]

A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

Meakin, John D. (Newark, DE); Bragagnolo, Julio (Newark, DE)

1982-01-01T23:59:59.000Z

191

Epitaxial thin films  

DOE Patents [OSTI]

Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

2006-04-25T23:59:59.000Z

192

Thin-film optical initiator  

DOE Patents [OSTI]

A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

Erickson, Kenneth L. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

193

E-Print Network 3.0 - amorphous carbon thin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at 20 K as thin films, films that subsequently have... of an amorphous iron thin film at 20 K. As discussed ... Source: Suslick, Kenneth S. - Department of Chemistry,...

194

Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief  

E-Print Network [OSTI]

of the materials. Solar cells based on thin films of amorphous or polycrystalline silicon require sub- stantially, Urbana, Illinois 61801 ABSTRACT Recently developed classes of monocrystalline silicon solar microcells systems that benefit from thin construction and efficient materials utilization. KEYWORDS Nanoimprint

Rogers, John A.

195

Biomimetic thin film deposition  

SciTech Connect (OSTI)

Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

1995-09-01T23:59:59.000Z

196

Thin film composite electrolyte  

DOE Patents [OSTI]

The invention is a thin film composite solid (and a means for making such) suitable for use as an electrolyte, having a first layer of a dense, non-porous conductive material; a second layer of a porous ionic conductive material; and a third layer of a dense non-porous conductive material, wherein the second layer has a Coefficient of thermal expansion within 5% of the coefficient of thermal expansion of the first and third layers.

Schucker, Robert C. (The Woodlands, TX)

2007-08-14T23:59:59.000Z

197

Active pixel imagers incorporating pixel-level amplifiers based on polycrystalline-silicon thin-film transistors  

SciTech Connect (OSTI)

Active matrix, flat-panel imagers (AMFPIs) employing a 2D matrix of a-Si addressing TFTs have become ubiquitous in many x-ray imaging applications due to their numerous advantages. However, under conditions of low exposures and/or high spatial resolution, their signal-to-noise performance is constrained by the modest system gain relative to the electronic additive noise. In this article, a strategy for overcoming this limitation through the incorporation of in-pixel amplification circuits, referred to as active pixel (AP) architectures, using polycrystalline-silicon (poly-Si) TFTs is reported. Compared to a-Si, poly-Si offers substantially higher mobilities, enabling higher TFT currents and the possibility of sophisticated AP designs based on both n- and p-channel TFTs. Three prototype indirect detection arrays employing poly-Si TFTs and a continuous a-Si photodiode structure were characterized. The prototypes consist of an array (PSI-1) that employs a pixel architecture with a single TFT, as well as two arrays (PSI-2 and PSI-3) that employ AP architectures based on three and five TFTs, respectively. While PSI-1 serves as a reference with a design similar to that of conventional AMFPI arrays, PSI-2 and PSI-3 incorporate additional in-pixel amplification circuitry. Compared to PSI-1, results of x-ray sensitivity demonstrate signal gains of {approx}10.7 and 20.9 for PSI-2 and PSI-3, respectively. These values are in reasonable agreement with design expectations, demonstrating that poly-Si AP circuits can be tailored to provide a desired level of signal gain. PSI-2 exhibits the same high levels of charge trapping as those observed for PSI-1 and other conventional arrays employing a continuous photodiode structure. For PSI-3, charge trapping was found to be significantly lower and largely independent of the bias voltage applied across the photodiode. MTF results indicate that the use of a continuous photodiode structure in PSI-1, PSI-2, and PSI-3 results in optical fill factors that are close to unity. In addition, the greater complexity of PSI-2 and PSI-3 pixel circuits, compared to that of PSI-1, has no observable effect on spatial resolution. Both PSI-2 and PSI-3 exhibit high levels of additive noise, resulting in no net improvement in the signal-to-noise performance of these early prototypes compared to conventional AMFPIs. However, faster readout rates, coupled with implementation of multiple sampling protocols allowed by the nondestructive nature of pixel readout, resulted in a significantly lower noise level of {approx}560 e (rms) for PSI-3.

El-Mohri, Youcef; Antonuk, Larry E.; Koniczek, Martin; Zhao Qihua; Li Yixin; Street, Robert A.; Lu Jengping [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan 48109 (United States); Palo Alto Research Center (PARC), 3333 Coyote Hill Road, Palo Alto, California 94304 (United States)

2009-07-15T23:59:59.000Z

198

E-Print Network 3.0 - amorphous-silicon-based solar cell Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vol. 609 2000 Materials Research Society Preparation of Microcrystalline Silicon Based Solar Cells at High i-layer Summary: light exposure as do the amorphous silicon-based...

199

Transmissive metallic contact for amorphous silicon solar cells  

DOE Patents [OSTI]

A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.

Madan, A.

1984-11-29T23:59:59.000Z

200

Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide p-layer structure  

E-Print Network [OSTI]

Improvement of pin-type amorphous silicon solar cell performance by employing double silicon-carbide Received 30 October 2003; accepted 18 November 2003 We investigated a double silicon-carbide p-layer structure consisting of a undiluted p-type amorphous silicon-carbide (p-a-SiC:H) window layer and a hydrogen

Kim, Yong Jung

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Latent ion tracks in amorphous silicon  

SciTech Connect (OSTI)

We present experimental evidence for the formation of ion tracks in amorphous Si induced by swift heavy ion irradiation. An underlying core-shell structure consistent with remnants of a high density liquid structure was revealed by small-angle x-ray scattering and molecular dynamics simulations. Ion track dimensions dier for as-implanted and relaxed Si as attributed to dierent microstructures and melting temperatures. The identication and characterisation of ion tracks in amorphous Si yields new insight into mechanisms of damage formation due to swift heavy ion irradiation in amorphous semiconductors.

Bierschenk, Thomas [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Giulian, Raquel [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Afra, Boshra [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Rodriguez, Matias D [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Schauries, D [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Mudie, Stephen [Australian Synchrotron] [Australian Synchrotron; Pakarinen, Olli H [ORNL] [ORNL; Djurabekova, Flyura [University of Helsinki] [University of Helsinki; Nordlund, Kai [University of Helsinki] [University of Helsinki; Osmani, Orkhan [University of Duisburg-Essen, Germany] [University of Duisburg-Essen, Germany; Medvedev, Nikita [University of Kaiserslautern, Germany] [University of Kaiserslautern, Germany; Rethfield, Baerbel [University of Kaiserslautern, Germany] [University of Kaiserslautern, Germany; Ridgway, Mark C [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia; Kluth, Patrick [Australian National University, Canberra, Australia] [Australian National University, Canberra, Australia

2013-01-01T23:59:59.000Z

202

Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films  

E-Print Network [OSTI]

Influence of Ba content on grain size and dynamics of crystallization in barium ferrite thin films of the crystallization process, which ultimately determines the grain size, were studied in barium ferrite thin films. Rapid thermal annealing was used to crystallize the amorphous as-deposited barium ferrite films

Laughlin, David E.

203

Thermal rectification at silicon-amorphous polyethylene interface Ming Hu,1,a  

E-Print Network [OSTI]

Thermal rectification at silicon-amorphous polyethylene interface Ming Hu,1,a Pawel Keblinski,1,b heat currents. We estimate that in the limit of large heat currents, the silicon-amorphous polyethylene by amorphous polymer polyethylene PE and silicon crystal. We will also show that the mecha- nism governing

Li, Baowen

204

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

Catalano, A.W.; Bhushan, M.

1982-08-03T23:59:59.000Z

205

Thin film photovoltaic device  

DOE Patents [OSTI]

A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

Catalano, Anthony W. (Wilmington, DE); Bhushan, Manjul (Wilmington, DE)

1982-01-01T23:59:59.000Z

206

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

Lauf, Robert J. (Oak Ridge, TN); Hoffheins, Barbara S. (Knoxville, TN); Fleming, Pamela H. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

207

Thin film photovoltaic device with multilayer substrate  

DOE Patents [OSTI]

A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

Catalano, Anthony W. (Rushland, PA); Bhushan, Manjul (Wilmington, DE)

1984-01-01T23:59:59.000Z

208

Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells  

E-Print Network [OSTI]

Infrared modulation spectroscopy of interfaces in amorphous silicon solar cells Kai Zhu a,1 , E Solar, Toano, VA 23168, USA Abstract We report infrared depletion modulation spectra for near an infrared modulation spectroscopy technique that probes the optical spectra of dopants and defects

Schiff, Eric A.

209

Amorphous Silicon as Semiconductor Material for High Resolution LAPS  

E-Print Network [OSTI]

-08 3.E -08 0 200 400 600 800 displacem ent/µµµµm current/A 1000 2000 3000 4000 1000 2000 3000 4000-substrate Amorphous silicon -4 -2 0 2 4 0,2 0,4 0,6 0,8 1,0 photocurrenta.u. gate voltage/V 600µm x 600µm area scan

Moritz, Werner

210

Thin film ion conducting coating  

DOE Patents [OSTI]

Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

Goldner, Ronald B. (Lexington, MA); Haas, Terry (Sudbury, MA); Wong, Kwok-Keung (Watertown, MA); Seward, George (Arlington, MA)

1989-01-01T23:59:59.000Z

211

Structure disorder degree of polysilicon thin films grown by different processing: Constant C from Raman spectroscopy  

SciTech Connect (OSTI)

Flat, low-stress, boron-doped polysilicon thin films were prepared on single crystalline silicon substrates by low pressure chemical vapor deposition. It was found that the polysilicon films with different deposition processing have different microstructure properties. The confinement effect, tensile stresses, defects, and the Fano effect all have a great influence on the line shape of Raman scattering peak. But the effect results are different. The microstructure and the surface layer are two important mechanisms dominating the internal stress in three types of polysilicon thin films. For low-stress polysilicon thin film, the tensile stresses are mainly due to the change of microstructure after thermal annealing. But the tensile stresses in flat polysilicon thin film are induced by the silicon carbide layer at surface. After the thin film doped with boron atoms, the phenomenon of the tensile stresses increasing can be explained by the change of microstructure and the increase in the content of silicon carbide. We also investigated the disorder degree states for three polysilicon thin films by analyzing a constant C. It was found that the disorder degree of low-stress polysilicon thin film larger than that of flat and boron-doped polysilicon thin films due to the phase transformation after annealing. After the flat polysilicon thin film doped with boron atoms, there is no obvious change in the disorder degree and the disorder degree in some regions even decreases.

Wang, Quan, E-mail: wangq@mail.ujs.edu.cn [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Zhang, Yanmin; Hu, Ran; Ren, Naifei [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); Ge, Daohan [School of mechanical engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Shanghai 200050 (China)

2013-11-14T23:59:59.000Z

212

Deposition of device quality low H content, amorphous silicon films  

DOE Patents [OSTI]

A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

1995-03-14T23:59:59.000Z

213

Threshold irradiation dose for amorphization of silicon carbide  

SciTech Connect (OSTI)

The amorphization of silicon carbide due to ion and electron irradiation is reviewed with emphasis on the temperature-dependent critical dose for amorphization. The effect of ion mass and energy on the threshold dose for amorphization is summarized, showing only a weak dependence near room temperature. Results are presented for 0.56 MeV silicon ions implanted into single crystal 6H-SiC as a function of temperature and ion dose. From this, the critical dose for amorphization is found as a function of temperature at depths well separated from the implanted ion region. Results are compared with published data generated using electrons and xenon ions as the irradiating species. High resolution TEM analysis is presented for the Si ion series showing the evolution of elongated amorphous islands oriented such that their major axis is parallel to the free surface. This suggests that surface or strain effects may be influencing the apparent amorphization threshold. Finally, a model for the temperature threshold for amorphization is described using the Si ion irradiation flux and the fitted interstitial migration energy which was found to be {approximately}0.56eV. This model successfully explains the difference in the temperature dependent amorphization behavior of SiC irradiated with 0.56 MeV Si{sup +} at 1 x 10{sup -3} dpa/s and with fission neutrons irradiated at 1 x 10{sup -6} dpa/s irradiated to 15 dpa in the temperature range of {approximately}340{+-}10K.

Snead, L.L.; Zinkle, S.J.

1997-03-01T23:59:59.000Z

214

Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices  

E-Print Network [OSTI]

film is deposited over the window. . . . . . . . . . . . . . . . . . . . . . . . .A carbon film is deposited over the window. Figure 4.11:films and the silicon is unknown. However, changes in geometry such as varying the window

Schriver, Maria Christine

2012-01-01T23:59:59.000Z

215

Micro/nano devices fabricated from Cu-Hf thin films  

DOE Patents [OSTI]

An all-metal microdevice or nanodevice such as an atomic force microscope probe is manufactured from a copper-hafnium alloy thin film having an x-ray amorphous microstructure.

Luber, Erik J; Ophus, Colin; Mitlin, David; Olsen, Brian; Harrower, Christopher; Radmilovi, Velimir

2013-06-04T23:59:59.000Z

216

Mode Splitting for Efficient Plasmoinc Thin-film Solar Cell  

E-Print Network [OSTI]

We propose an efficient plasmonic structure consisting of metal strips and thin-film silicon for solar energy absorption. We numerically demonstrate the absorption enhancement in symmetrical structure based on the mode coupling between the localized plasmonic mode in Ag strip pair and the excited waveguide mode in silicon slab. Then we explore the method of symmetry-breaking to excite the dark modes that can further enhance the absorption ability. We compare our structure with bare thin-film Si solar cell, and results show that the integrated quantum efficiency is improved by nearly 90% in such thin geometry. It is a promising way for the solar cell.

Li, Tong; Jiang, Chun

2010-01-01T23:59:59.000Z

217

Photoresist-free printing of amorphous silicon thin-film transistors Scott M. Miller and Sandra M. Troiana)  

E-Print Network [OSTI]

growth in the number of nonconventional techniques for the fabrication of electronic devices geared substrate is spin coated with a PS15 and toluene solution. In these studies, the PS thickness was chosen . Studies indicate that rapid separa- tion of liquid coated surfaces distributes the coating evenly between

Troian, Sandra M.

218

Innovative Characterization of Amorphous and Thin-Film Silicon for Improved Module Performance: 28 April 2005 - 15 September 2008  

SciTech Connect (OSTI)

This report focuses on (1) characterizing nc-Si:H from United Solar; (2) studying Si,Ge:H alloys deposited by HWCVD; and (3) characterizing CIGS films and relating to cell performance parameters.

Cohen, J. D.

2009-12-01T23:59:59.000Z

219

Thin film hydrogen sensor  

DOE Patents [OSTI]

A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

1994-11-22T23:59:59.000Z

220

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams  

E-Print Network [OSTI]

High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams Hyun-throughput residual stress measurements on thin films by means of micromachined cantilever beams and an array of parallel laser beams. In this technique, the film of interest is deposited onto a silicon substrate

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Rechargeable thin-film lithium batteries  

SciTech Connect (OSTI)

Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

1993-09-01T23:59:59.000Z

222

Dopant Ion Size and Electronic Structure Effects on Transparent Conducting Oxides. Sc-Doped CdO Thin Films  

E-Print Network [OSTI]

-doped CdO (CSO) thin films have been grown on both amorphous glass and single-crystal MgO(100) substrates metallic conductivities, and relatively simple crystal structures.2,4-7 Sn doping of CdO thin films grown with the highest carrier mobilities grown to date.7 In addition, Cd2SnO4, CdIn2O4, and CdO-ZnO thin films have been

Medvedeva, Julia E.

223

Short-and intermediate-range structural correlations in amorphous silicon carbide: A molecular dynamics study  

E-Print Network [OSTI]

Short- and intermediate-range structural correlations in amorphous silicon carbide: A molecular-range structural correlations in amorphous silicon carbide a-SiC are studied in terms of partial pair distributions.43.Dq, 61.43.Bn, 61.66.Dk, 81.05.Gc I. INTRODUCTION Silicon carbide SiC has been receiving increasing

Southern California, University of

224

Vertically Aligned Nanocomposite Thin Films  

E-Print Network [OSTI]

and epitaxial growth ability on given substrates. In the present work, we investigated unique epitaxial two-phase VAN (BiFeO3)x:(Sm2O3)1-x and (La0.7Sr0.3MnO3)x:(Mn3O4)1-x thin film systems by pulsed laser deposition. These VAN thin films exhibit a highly...

Bi, Zhenxing

2012-07-16T23:59:59.000Z

225

Thin film cracking and ratcheting caused by temperature cycling  

E-Print Network [OSTI]

Thin film cracking and ratcheting caused by temperature cycling M. Huang and Z. Suo Mechanical caused by ratcheting in an adjacent ductile layer. For example, on a silicon die directly attached corners. Aided by cycling temperature, the shear stresses cause ratcheting in the aluminum pads

Suo, Zhigang

226

Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction  

SciTech Connect (OSTI)

The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

Buergi, J.; Molleja, J. Garcia; Feugeas, J. [Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Neuenschwander, R. [Laboratorio Nacional Luz Sincrotron (LNLS), Caixa Postal 6192, CEP13083-970 Campinas (Brazil); Kellermann, G. [Departamento de Fisica (Universidade Federal do Parana), Caixa Postal 19044, CEP81531-990 Curitiba (Brazil); Craievich, A. F. [Instituto de Fisica (Universidade de Sao Paulo), Rua do Matao Travessa R 187, CEP05508-090 Sao Paulo (Brazil)

2013-01-15T23:59:59.000Z

227

Structure, Morphology, and Optical Properties of Amorphous and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium Oxide Thin Films. Structure, Morphology, and Optical Properties of Amorphous and Nanocrystalline Gallium...

228

Electron-beam-induced information storage in hydrogenated amorphous silicon devices  

DOE Patents [OSTI]

A method for recording and storing information in a hydrogenated amorphous silicon device, comprising: depositing hydrogenated amorphous silicon on a substrate to form a charge collection device; and generating defects in the hydrogenated amorphous silicon device, wherein the defects act as recombination centers that reduce the lifetime of carriers, thereby reducing charge collection efficiency and thus in the charge collection mode of scanning probe instruments, regions of the hydrogenated amorphous silicon device that contain the defects appear darker in comparison to regions of the device that do not contain the defects, leading to a contrast formation for pattern recognition and information storage.

Yacobi, B.G.

1985-03-18T23:59:59.000Z

229

Improved method of preparing p-i-n junctions in amorphous silicon semiconductors  

DOE Patents [OSTI]

A method of preparing p/sup +/-i-n/sup +/ junctions for amorphous silicon semiconductors includes depositing amorphous silicon on a thin layer of trivalent material, such as aluminum, indium, or gallium at a temperature in the range of 200/sup 0/C to 250/sup 0/C. At this temperature, the layer of trivalent material diffuses into the amorphous silicon to form a graded p/sup +/-i junction. A layer of n-type doped material is then deposited onto the intrinsic amorphous silicon layer in a conventional manner to finish forming the p/sup +/-i-n/sup +/ junction.

Madan, A.

1984-12-10T23:59:59.000Z

230

E-Print Network 3.0 - amorphous silicon multijunction Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: amorphous silicon multijunction Page: << < 1 2 3 4 5 > >> 1 Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical...

231

Integrated photonic structures for light trapping in thin-film Si solar cells  

E-Print Network [OSTI]

We explore the mechanisms for an efficient light trapping structure for thin-film silicon solar cells. The design combines a distributed Bragg reflector (DBR) and periodic gratings. Using photonic band theories and numerical ...

Sheng, Xing

232

Low Cost Thin Film Building-Integrated Photovoltaic Systems  

SciTech Connect (OSTI)

The goal of the program is to develop 'LOW COST THIN FILM BUILDING-INTEGRATED PV SYSTEMS'. Major focus was on developing low cost solution for the commercial BIPV and rooftop PV market and meet DOE LCOE goal for the commercial market segment of 9-12 cents/kWh for 2010 and 6-8 cents/kWh for 2015. We achieved the 2010 goal and were on track to achieve the 2015 goal. The program consists of five major tasks: (1) modules; (2) inverters and BOS; (3) systems engineering and integration; (4) deployment; and (5) project management and TPP collaborative activities. We successfully crossed all stage gates and surpassed all milestones. We proudly achieved world record stable efficiencies in small area cells (12.56% for 1cm2) and large area encapsulated modules (11.3% for 800 cm2) using a triple-junction amorphous silicon/nanocrystalline silicon/nanocrystalline silicon structure, confirmed by the National Renewable Energy Laboratory. We collaborated with two inverter companies, Solectria and PV Powered, and significantly reduced inverter cost. We collaborated with three universities (Syracuse University, University of Oregon, and Colorado School of Mines) and National Renewable Energy Laboratory, and improved understanding on nanocrystalline material properties and light trapping techniques. We jointly published 50 technical papers in peer-reviewed journals and International Conference Proceedings. We installed two 75kW roof-top systems, one in Florida and another in New Jersey demonstrating innovative designs. The systems performed satisfactorily meeting/exceeding estimated kWh/kW performance. The 50/50 cost shared program was a great success and received excellent comments from DOE Manager and Technical Monitor in the Final Review.

Dr. Subhendu Guha; Dr. Jeff Yang

2012-05-25T23:59:59.000Z

233

Properties of zirconia thin films deposited by laser ablation  

SciTech Connect (OSTI)

Zirconia thin films have been deposited by laser ablation of a ceramic ZrO{sub 2} target in vacuum or in oxygen background at 0.01 mbar. The laser beam generated by an ArF laser (?=193 nm, ?=40 Hz) has been focalized on the target through a spherical lens at an incident angle of 45°. The laser fluence has been established to a value from 2.0 to 3.4 Jcm{sup ?2}. A silicon (100) substrate has been placed parallel to the target, at a distance of 4 cm, and subsequently has been heated to temperatures ranging between 300 °C and 600 °C. Thin films morphology has been characterized by atomic force microscopy and secondary ion mass spectrometry. Biocompatibility of these thin films has been assessed by studying the cell attachment of L929 mouse fibroblasts.

Cancea, V. N. [Department of Physics, University of Craiova, Craiova 200585 (Romania); Filipescu, M.; Colceag, D.; Dinescu, M. [Department of Lasers, National Institute for Laser, Plasma and Radiation Physics, Magurele 077125 (Romania); Mustaciosu, C. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele, Bucharest (Romania)

2013-11-13T23:59:59.000Z

234

Polycrystalline thin-film solar cells and modules  

SciTech Connect (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

235

Polycrystalline thin-film solar cells and modules  

SciTech Connect (OSTI)

This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

1991-12-01T23:59:59.000Z

236

Uncooled thin film pyroelectric IR detector with aerogel thermal isolation  

SciTech Connect (OSTI)

Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

1998-01-01T23:59:59.000Z

237

Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells  

E-Print Network [OSTI]

In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

2013-01-01T23:59:59.000Z

238

Enhanced electrochemical etching of ion irradiated silicon by localized amorphization  

SciTech Connect (OSTI)

A tailored distribution of ion induced defects in p-type silicon allows subsequent electrochemical anodization to be modified in various ways. Here we describe how a low level of lattice amorphization induced by ion irradiation influences anodization. First, it superposes a chemical etching effect, which is observable at high fluences as a reduced height of a micromachined component. Second, at lower fluences, it greatly enhances electrochemical anodization by allowing a hole diffusion current to flow to the exposed surface. We present an anodization model, which explains all observed effects produced by light ions such as helium and heavy ions such as cesium over a wide range of fluences and irradiation geometries.

Dang, Z. Y.; Breese, M. B. H. [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore Singapore 117542 (Singapore); Lin, Y.; Tok, E. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Vittone, E. [Physics Department, NIS Excellence Centre and CNISM, University of Torino, via Pietro Giuria 1, 10125 Torino (Italy)

2014-05-12T23:59:59.000Z

239

Structure and dielectric properties of La{sub x}Hf{sub (1?x)}O{sub y} thin films: The dependence of components  

SciTech Connect (OSTI)

Graphical abstract: - Highlights: • La{sub x}Hf{sub (1?x)}O{sub y} thin films were grown by pulse laser deposition method. • The thin film with 10% La/(La + Hf) atom ratio forms a cubic HfO{sub 2} phase. • The amorphous thin films due to more La introduced have almost same local structure. • The main infrared phonon modes move to lower frequency for the amorphous thin films. • The static dielectric constants of the amorphous thin films increase with La content. - Abstract: La{sub x}Hf{sub (1?x)}O{sub y} (x = 0, 0.1, 0.3, 0.5, 0.7, y=2?(1/2)x) thin films were grown by pulsed laser deposition (PLD) method. The component dependence of the structure and vibration properties of these thin films is studied by combining X-ray diffraction, X-ray absorption fine structure (XAFS) and infrared spectroscopy. The thin film with 10% La/(La + Hf) atom ratio forms a cubic HfO{sub 2} phase and it has the largest static dielectric constant. More La atoms introduced cause amorphous phase formed and the static dielectric constants increase with the La content. Although XAFS indicates that these amorphous thin films have almost same local structures, the infrared phonon modes with most contribution to the static dielectric constant move to lower frequency, which results in the component dependence of the dielectric constant.

Qi, Zeming, E-mail: zmqi@ustc.edu.cn [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Cheng, Xuerui [Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002 (China); Zhang, Guobin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Li, Tingting [Institute of Microelectronics of Chinese Academy of Science, Beijing 100029 (China); Wang, Yuyin; Shao, Tao; Li, Chengxiang; He, Bo [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China)

2013-07-15T23:59:59.000Z

240

Epitaxial Thin Film XRD | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial Thin Film XRD Epitaxial Thin Film XRD Systems

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Semiconductor-nanocrystal/conjugated polymer thin films  

DOE Patents [OSTI]

The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

2010-08-17T23:59:59.000Z

242

Metal-semiconductor hybrid thin films in field-effect transistors  

SciTech Connect (OSTI)

Metal-semiconductor hybrid thin films consisting of an amorphous oxide semiconductor and a number of aluminum dots in different diameters and arrangements are formed by electron beam lithography and employed for thin-film transistors (TFTs). Experimental and computational demonstrations systematically reveal that the field-effect mobility of the TFTs enhances but levels off as the dot density increases, which originates from variations of the effective channel length that strongly depends on the electric field distribution in a transistor channel.

Okamura, Koshi, E-mail: koshi.okamura@kit.edu; Dehm, Simone [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany)] [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Hahn, Horst [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany) [Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt, Petersenstr. 32, 64287 Darmstadt (Germany)

2013-12-16T23:59:59.000Z

243

Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts  

DOE Patents [OSTI]

High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

Jansen, Kai W. (Lawrenceville, NJ); Maley, Nagi (Exton, PA)

2001-01-01T23:59:59.000Z

244

LASER TRANSFER DOPING USING AMORPHOUS SILICON Rafel Ferr (Correspondence author)1  

E-Print Network [OSTI]

LASER TRANSFER DOPING USING AMORPHOUS SILICON Rafel Ferré (Correspondence author)1 , Ralf Gogolin1@isfh.de ABSTRACT: We demonstrate and characterize "Laser Transfer Doping" (LTD) for producing locally doped regions. For this purpose we use nanosecond pulsed laser for transferring phosphorus doped amorphous silicon from a carrier

245

Thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (1554 Rosalba St. NE., Albuquerque, Bernalillo County, NM 87112); Arnold, Jr., Charles (3436 Tahoe, NE., Albuquerque, Bernalillo County, NM 87111); Delnick, Frank M. (9700 Fleming Rd., Dexter, MI 48130)

1996-01-01T23:59:59.000Z

246

Thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

1996-12-31T23:59:59.000Z

247

Oriented niobate ferroelectric thin films for electrical and optical devices  

DOE Patents [OSTI]

Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or cyrstalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Chicago, IL)

2001-01-01T23:59:59.000Z

248

Monolithic amorphous silicon modules on continuous polymer substrate  

SciTech Connect (OSTI)

This report examines manufacturing monolithic amorphous silicon modules on a continuous polymer substrate. Module production costs can be reduced by increasing module performance, expanding production, and improving and modifying production processes. Material costs can be reduced by developing processes that use a 1-mil polyimide substrate and multilayers of low-cost material for the front encapsulant. Research to speed up a-Si and ZnO deposition rates is needed to improve throughputs. To keep throughput rates compatible with depositions, multibeam fiber optic delivery systems for laser scribing can be used. However, mechanical scribing systems promise even higher throughputs. Tandem cells and production experience can increase device efficiency and stability. Two alternative manufacturing processes are described: (1) wet etching and sheet handling and (2) wet etching and roll-to-roll fabrication.

Grimmer, D.P. (Iowa Thin Film Technologies, Inc., Ames, IA (United States))

1992-03-01T23:59:59.000Z

249

Optical bandgap of ultra-thin amorphous silicon films deposited on crystalline silicon by PECVD  

SciTech Connect (OSTI)

An optical study based on spectroscopic ellipsometry, performed on ultrathin hydrogenated amorphous silicon (a-Si:H) layers, is presented in this work. Ultrathin layers of intrinsic amorphous silicon have been deposited on n-type mono-crystalline silicon (c-Si) wafers by plasma enhanced chemical vapor deposition (PECVD). The layer thicknesses along with their optical properties –including their refractive index and optical loss- were characterized by spectroscopic ellipsometry (SE) in a wavelength range from 250 nm to 850 nm. The data was fitted to a Tauc-Lorentz optical model and the fitting parameters were extracted and used to compute the refractive index, extinction coefficient and optical bandgap. Furthermore, the a-Si:H film grown on silicon was etched at a controlled rate using a TMAH solution prepared at room temperature. The optical properties along with the Tauc-Lorentz fitting parameters were extracted from the model as the film thickness was reduced. The etch rate for ultrathin a-Si:H layers in TMAH at room temperature was found to slow down drastically as the c-Si interface is approached. From the Tauc-Lorentz parameters obtained from SE, it was found that the a-Si film exhibited properties that evolved with thickness suggesting that the deposited film is non-homogeneous across its depth. It was also found that the degree of crystallinity and optical (Tauc) bandgap increased as the layers were reduced in thickness and coming closer to the c-Si substrate interface, suggesting the presence of nano-structured clusters mixed into the amorphous phase for the region close to the crystalline silicon substrate. Further results from Atomic Force Microscopy and Transmission Electron Microscopy confirmed the presence of an interfacial transitional layer between the amorphous film and the underlying substrate showing silicon nano-crystalline enclosures that can lead to quantum confinement effects. Quantum confinement is suggested to be the cause of the observed increase in the optical bandgap of a-Si:H films close to the a-Si:H/cSi interface.

Abdulraheem, Yaser, E-mail: yaser.abdulraheem@kuniv.edu.kw [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University. P.O. Box 5969, 13060 Safat (Kuwait); Gordon, Ivan; Bearda, Twan; Meddeb, Hosny; Poortmans, Jozef [IMEC, Kapeldreef 75, 3001, Leuven (Belgium)

2014-05-15T23:59:59.000Z

250

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film)

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

251

Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars  

E-Print Network [OSTI]

Monocrystalline silicon solar cells, polycrystalline silicon solar cells, and amorphous silicon (thin-film) solar

Tu, Bor-An Clayton

2013-01-01T23:59:59.000Z

252

Ion Beam Deposition of Thin Films: Growth Processes and Nanostructure Formation  

SciTech Connect (OSTI)

Ion beam deposition is a process far from thermodynamic equilibrium and is in particular suited to grow metastable thin films with diamond-like properties, such as tetrahedral amorphous carbon (ta-C) and cubic boron nitride (c-BN). In this contribution the atomistic description of the deposition and growth processes are reviewed and compared to experimental results, obtained from mass selected ion beam deposition. The focus will be set to the nucleation and growth processes of boron nitride as a model system for ion based thin film formation. Furthermore, recent examples for nanostructure formation in ion deposited compound thin films will be presented. Ion beam deposited metal-carbon nano-composite thin films exhibit a variety of different morphologies such as rather homogeneous nanocluster distributions embedded in an a-C matrix, but also the self-organized formation of nanoscale multilayer structures.

Hofsaess, Hans C. [II. Physikalisches Institut, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany)

2004-12-01T23:59:59.000Z

253

Picoseconds-Laser Modification of Thin Films  

SciTech Connect (OSTI)

The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

Gakovic, Biljana; Trtica, Milan [Institute of Nuclear Sciences 'VINCA' 522, 11001 Belgrade (Serbia and Montenegro); Batani, Dimitri; Desai, Tara; Redaelli, Renato [Dipartimento di Fisica 'G. Occhialini', Universita' degli Studi Milano-Bicocca, Piazza della Scienza 3, Milan 20126 (Italy)

2006-04-07T23:59:59.000Z

254

Polycrystalline thin-film technology: Recent progress in photovoltaics  

SciTech Connect (OSTI)

Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe{sub 2}), cadmium telluride (CdTe), and thin-film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin-film CuInSe{sub 2}, has made some rapid advances in terms of high efficiency and long-term reliability. For CuInSe{sub 2} power modules, a world record has been reported on a 0.4-m{sup 2} module with an aperture-area efficiency of 10.4% and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe{sub 2} modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 cm{sup 2}. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10%; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

1991-12-01T23:59:59.000Z

255

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents [OSTI]

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, L.S.

1980-11-12T23:59:59.000Z

256

Method of preparing high-temperature-stable thin-film resistors  

DOE Patents [OSTI]

A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

Raymond, Leonard S. (Tucson, AZ)

1983-01-01T23:59:59.000Z

257

Control of morphology for enhanced electronic transport in PECVD-grown a-Si : H Thin Films  

E-Print Network [OSTI]

Solar cells have become an increasingly viable alternative to traditional, pollution causing power generation methods. Although crystalline silicon (c-Si) modules make up most of the market, thin films such as hydrogenated ...

Castro Galnares, Sebastián

2010-01-01T23:59:59.000Z

258

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

259

Thin film solar energy collector  

DOE Patents [OSTI]

A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

Aykan, Kamran (Monmouth Beach, NJ); Farrauto, Robert J. (Westfield, NJ); Jefferson, Clinton F. (Millburn, NJ); Lanam, Richard D. (Westfield, NJ)

1983-11-22T23:59:59.000Z

260

Thin-film Lithium Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe1 MembersStability| EMSLforThin Thin-Film

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Thin-Film Reliability Trends Toward Improved Stability: Preprint  

SciTech Connect (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (Rd) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2+/-0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-07-01T23:59:59.000Z

262

Thin-Film Reliability Trends Toward Improved Stability  

SciTech Connect (OSTI)

Long-term, stable performance of photovoltaic (PV) modules will be increasingly important to their successful penetration of the power grid. This paper summarizes more than 150 thin-film and more than 1700 silicon PV degradation rates (R{sub d}) quoted in publications for locations worldwide. Partitioning the literature results by technology and date of installation statistical analysis shows an improvement in degradation rate especially for thin-film technologies in the last decade. A CIGS array deployed at NREL for more than 5 years that appears to be stable supports the literature trends. Indoor and outdoor data indicate undetectable change in performance (0.2 {+-} 0.2 %/yr). One module shows signs of slight degradation from what appears to be an initial manufacturing defect, however it has not affected the overall system performance.

Jordan, D. C.; Kurtz, S. R.

2011-01-01T23:59:59.000Z

263

Amorphous silicon cell array powered solar tracking apparatus  

DOE Patents [OSTI]

An array of an even number of amorphous silicon solar cells are serially connected between first and second terminals of opposite polarity. The terminals are connected to one input terminal of a DC motor whose other input terminal is connected to the mid-cell of the serial array. Vane elements are adjacent the end cells to selectively shadow one or the other of the end cells when the array is oriented from a desired attitude relative to the sun. The shadowing of one cell of a group of cells on one side of the mid-cell reduces the power of that group substantially so that full power from the group of cells on the other side of the mid-cell drives the motor to reorient the array to the desired attitude. The cell groups each have a full power output at the power rating of the motor. When the array is at the desired attitude the power output of the two groups of cells balances due to their opposite polarity so that the motor remains unpowered.

Hanak, Joseph J. (Lawrenceville, NJ)

1985-01-01T23:59:59.000Z

264

Temperature dependent deformation mechanisms in pure amorphous silicon  

SciTech Connect (OSTI)

High temperature nanoindentation has been performed on pure ion-implanted amorphous silicon (unrelaxed a-Si) and structurally relaxed a-Si to investigate the temperature dependence of mechanical deformation, including pressure-induced phase transformations. Along with the indentation load-depth curves, ex situ measurements such as Raman micro-spectroscopy and cross-sectional transmission electron microscopy analysis on the residual indents reveal the mode of deformation under the indenter. While unrelaxed a-Si deforms entirely via plastic flow up to 200?°C, a clear transition in the mode of deformation is observed in relaxed a-Si with increasing temperature. Up to 100?°C, pressure-induced phase transformation and the observation of either crystalline (r8/bc8) end phases or pressure-induced a-Si occurs in relaxed a-Si. However, with further increase of temperature, plastic flow rather than phase transformation is the dominant mode of deformation. It is believed that the elevated temperature and pressure together induce bond softening and “defect” formation in structurally relaxed a-Si, leading to the inhibition of phase transformation due to pressure-releasing plastic flow under the indenter.

Kiran, M. S. R. N., E-mail: kiran.mangalampalli@anu.edu.au; Haberl, B.; Williams, J. S.; Bradby, J. E. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia)

2014-03-21T23:59:59.000Z

265

Fatigue failure in thin-film polysilicon is due to subcriticalcracking within the oxide layer  

SciTech Connect (OSTI)

It has been established that microelectromechanical systems (MEMS) created from polycrystalline silicon thin-films are subject to cyclic fatigue. Prior work by the authors has suggested that although bulk silicon is not susceptible to fatigue failure in ambient air, fatigue in micron-scale silicon is a result of a ''reaction-layer'' process, whereby high stresses induce a thickening of the post-release oxide at stress concentrations such as notches, which subsequently undergoes moisture-assisted cracking. However, there exists some controversy regarding the post-release oxide thickness of the samples used in the prior study. In this Letter, we present data from devices from a more recent fabrication run that confirm our prior observations. Additionally, new data from tests in high vacuum show that these devices do not fatigue when oxidation and moisture are suppressed. Each of these observations lends credence to the '''reaction-layer'' mechanism. Recent advances in the design of microelectromechanical systems (MEMS) have increased the demand for more reliable microscale structures. Although silicon is an effective and widely used structural material at the microscale, it is very brittle. Consequently, reliability is a limiting factor for commercial and defense applications. Since the surface to volume ratio of these structural films is very large, classical models for failure modes in bulk materials cannot always be applied. For example, whereas bulk silicon is immune to cyclic fatigue failure thin micron-scale structural films of silicon appear to be highly susceptible. It is clear that at these size scales, surface effects may become dominant in controlling mechanical properties. The main reliability issues for MEMS are stiction, fatigue and wear. Fatigue is important in cases where devices are subjected to a large number of loading cycles with amplitudes below their (single-cycle) fracture stress, which may arise due to vibrations intentionally induced in the structure (i.e. a resonator) or those which arise from the service environment. While the reliability of MEMS has received extensive attention, the physical mechanisms responsible for these failure modes have yet to be conclusively determined. This is particularly true for fatigue, where the mechanisms have been subject to intense debate. Recently we have proposed that the fatigue of micron-scale polysilicon is associated with stress-induced surface oxide thickening and moisture-assisted subcritical cracking in the amorphous SiO{sub 2} oxide layer (''reaction-layer'' fatigue). The mechanism of oxide thickening is as yet unknown, but is likely related to some form of stress-assisted diffusion. Allameh et al. suggest a complementary mechanism involving stress-assisted oxide thickening, caused by dissolution of the surface oxide which forms deep grooves that are sites for crack initiation. Kahn et al. have criticized these mechanisms and proposed that, instead, fatigue is caused by subcritical cracking due to contacting surface asperities in the compressive part of the cycle. To the authors' knowledge, there is no direct experimental observation of such asperity contact. Also, their model cannot explain why micron-scale silicon, and not bulk silicon, is susceptible to fatigue. Moreover, Kahn et al. do not acknowledge the role of stress-induced oxide thickening, which has been observed directly using TEM and indirectly using atomic-force microscope measurements by several investigators, and have questioned whether the materials utilized by Muhlstein et al. and Allameh et al. were representative due to the relatively thick oxide scales. Accordingly, the goal of the present research is to seek a definitive understanding of the physical mechanisms responsible for fatigue in polysilicon structural thin-films. Our approach is to combine on-chip testing methods with electron microscopy by fatiguing thin-film samples and observing them, in an unthinned condition, using high-voltage transmission electron microscopy (HVTEM). Two principal results are found from this work: (1

Alsem, D.H.; Muhlstein, C.L.; Stach, E.A.; Ritchie, R.O.

2005-01-11T23:59:59.000Z

266

Amorphous silicon/polyaniline heterojunction solar cells: Fermi levels and open-circuit voltages  

E-Print Network [OSTI]

these open-circuit voltages are lower than for the best a-Si:H cells utilizing nanocrystalline Si or a reports on conducting polymer/ amorphous silicon (a-Si:H) structures [1­4] and conduct- ing polymer/crystalline silicon (c-Si) structures [5,6]. In this paper, we report our research on polyaniline (PANI)/a-Si:H

Schiff, Eric A.

267

Electroabsorption measurements and built-in potentials in amorphous silicon pin solar cells  

E-Print Network [OSTI]

and the capacitance of such devices. We apply this technique to hydrogenated amorphous silicon a-Si:H -based solar-6951 96 04246-5 The internal electric fields of amporphous silicon a- Si:H -based p­i­n solar cells on electroluminescent organic heterostructure diodes . We con- firmed this interpretation by studying a-Si:H n

Schiff, Eric A.

268

Thin films of mixed metal compounds  

DOE Patents [OSTI]

A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

Mickelsen, Reid A. (Bellevue, WA); Chen, Wen S. (Seattle, WA)

1985-01-01T23:59:59.000Z

269

Direct Measurement of Oxygen Incorporation into Thin Film Oxides...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Measurement of Oxygen Incorporation into Thin Film Oxides at Room Temperature Upon Ultraviolet Phton Irradiation. Direct Measurement of Oxygen Incorporation into Thin Film Oxides...

270

Thin film solar cell including a spatially modulated intrinsic layer  

DOE Patents [OSTI]

One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.

Guha, Subhendu (Troy, MI); Yang, Chi-Chung (Troy, MI); Ovshinsky, Stanford R. (Bloomfield Hills, MI)

1989-03-28T23:59:59.000Z

271

amorphous diamond films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

simulations of the nanometer-scale indentation of amorphous-carbon thin films Materials Science Websites Summary: , and lattice constants of both solid-state diamond and...

272

Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous  

E-Print Network [OSTI]

Elasticity, strength, and toughness of single crystal silicon carbide, ultrananocrystalline diamond carbide 3C-SiC , ultrananocrystalline diamond, and hydrogen-free tetrahedral amorphous carbon

Espinosa, Horacio D.

273

Amorphous silicon/crystalline silicon heterojunctions: The future of high-efficiency silicon solar cells  

E-Print Network [OSTI]

;5 Record efficiencies #12;6 Diffused-junction solar cells Diffused-junction solar cell Chemical passivation to ~650 mV #12;7 Silicon heterojunction solar cells a-Si:H provides excellent passivation of c-Si surface Heterojunction solar cell Chemical passivation Chemical passivation #12;8 Voc and silicon heterojunction solar

Firestone, Jeremy

274

Excitation mechanism and thermal emission quenching of Tb ions in silicon rich silicon oxide thin films grown by plasma-enhanced chemical vapour deposition—Do we need silicon nanoclusters?  

SciTech Connect (OSTI)

In this work, we will discuss the excitation and emission properties of Tb ions in a Silicon Rich Silicon Oxide (SRSO) matrix obtained at different technological conditions. By means of electron cyclotron resonance plasma-enhanced chemical vapour deposition, undoped and doped SRSO films have been obtained with different Si content (33, 35, 39, 50 at. %) and were annealed at different temperatures (600, 900, 1100?°C). The samples were characterized optically and structurally using photoluminescence (PL), PL excitation, time resolved PL, absorption, cathodoluminescence, temperature dependent PL, Rutherford backscattering spectrometry, Fourier transform infrared spectroscopy and positron annihilation lifetime spectroscopy. Based on the obtained results, we discuss how the matrix modifications influence excitation and emission properties of Tb ions.

Podhorodecki, A., E-mail: artur.p.podhorodecki@pwr.wroc.pl; Golacki, L. W.; Zatryb, G.; Misiewicz, J. [Institute of Physics, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw (Poland); Wang, J.; Jadwisienczak, W. [School of EECS, Ohio University, Stocker Center 363, Athens, Ohio 45701 (United States); Fedus, K. [Institute of Physics, Nicholas Copernicus University, Grudziadzka 5/7, 87-100 Torun (Poland); Wojcik, J.; Wilson, P. R. J.; Mascher, P. [Department of Engineering Physics and Centre for Emerging Device Technologies, McMaster University, 1280 Main St. W, Hamilton, Ontario L8S4L7 (Canada)

2014-04-14T23:59:59.000Z

275

Pulsed energy synthesis and doping of silicon carbide  

DOE Patents [OSTI]

A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate is disclosed, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27--730 C is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including HETEROJUNCTION-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

Truher, J.B.; Kaschmitter, J.L.; Thompson, J.B.; Sigmon, T.W.

1995-06-20T23:59:59.000Z

276

Pulsed energy synthesis and doping of silicon carbide  

DOE Patents [OSTI]

A method for producing beta silicon carbide thin films by co-depositing thin films of amorphous silicon and carbon onto a substrate, whereafter the films are irradiated by exposure to a pulsed energy source (e.g. excimer laser) to cause formation of the beta-SiC compound. Doped beta-SiC may be produced by introducing dopant gases during irradiation. Single layers up to a thickness of 0.5-1 micron have been produced, with thicker layers being produced by multiple processing steps. Since the electron transport properties of beta silicon carbide over a wide temperature range of 27.degree.-730.degree. C. is better than these properties of alpha silicon carbide, they have wide application, such as in high temperature semiconductors, including hetero-junction bipolar transistors and power devices, as well as in high bandgap solar arrays, ultra-hard coatings, light emitting diodes, sensors, etc.

Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Thompson, Jesse B. (Brentwood, CA); Sigmon, Thomas W. (Beaverton, OR)

1995-01-01T23:59:59.000Z

277

BDS thin film damage competition  

SciTech Connect (OSTI)

A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

Stolz, C J; Thomas, M D; Griffin, A J

2008-10-24T23:59:59.000Z

278

Geometric shape control of thin film ferroelectrics and resulting structures  

DOE Patents [OSTI]

A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

McKee, Rodney A. (Kingston, TN); Walker, Frederick J. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

279

Status and future of government-supported amorphous silicon research in the United States  

SciTech Connect (OSTI)

The Amorphous Silicon Research Project (ASRP) was established at the Solar Energy Research Institute in 1983 and is responsible for all US Department of Energy government supported research activities in the field of amorphous silicon photovoltaics. The objectives and research directions of the project have been established by a Five-Year Research Plan, which was developed at SERI in cooperation with the Department of Energy in 1984 and is divided into research on single-junction and multi-junction solar cells. DOE/SERI has recently initiated a new three year program to be performed in collaboration with US industry to perform work on high efficiency amorphous silicon solar cells and submodules. The objectives of this initiative are: (i) to achieve 18% efficiencies for small area multi-junction amorphous silicon cells, and (ii) to achieve amorphous silicon submodule efficiencies in the 10 to 13% range for single-junction and multi-junction submodule configurations over areas of at least 1000 cm/sup 2/.

Wallace, W.L.; Sabisky, E.S.

1986-06-01T23:59:59.000Z

280

Hydrogen dynamics and light-induced structural changes in hydrogenated amorphous silicon T. A. Abtew* and D. A. Drabold  

E-Print Network [OSTI]

Hydrogen dynamics and light-induced structural changes in hydrogenated amorphous silicon T. A first-principles methods to study the network dynamics of hydrogenated amorphous silicon, including the motion of hydrogen. In addition to studies of atomic dynamics in the electronic ground state, we also

Drabold, David

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Integrated thin film batteries on silicon  

E-Print Network [OSTI]

Monolithic integration has been implemented successfully in complementary metal oxide semiconductor (CMOS) technology and led to improved device performance, increased reliability, and overall cost reduction. The next ...

Ariel, Nava

2005-01-01T23:59:59.000Z

282

Visible spectrometer utilizing organic thin film absorption  

E-Print Network [OSTI]

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01T23:59:59.000Z

283

Solid State Thin Film Lithium Microbatteries  

E-Print Network [OSTI]

Solid state thin film lithium microbatteries fabricated by pulsed-laser deposition (PLD) are suggested. During deposition the following process parameters must be considered, which are laser energy and fluence, laser pulse ...

Shi, Z.

284

Boron-doped amorphous diamondlike carbon as a new p-type window material in amorphous silicon p-i-n solar cells  

E-Print Network [OSTI]

-i-n solar cells Chang Hyun Lee and Koeng Su Lim Department of Electrical Engineering, Korea Advanced this film, amorphous silicon (a-Si solar cells with a novel p-a-DLC:H/p-a-SiC double p-layer structure were as window materials for amorphous silicon (a-Si based solar cells.1­4 In using such films as a p layer

Kim, Yong Jung

285

PREFERENTIAL OXIDATION OF CARBON MONOXIDE IN A THIN-FILM CATALYTIC MICROREACTOR: ADVANTAGES AND LIMITATIONS  

E-Print Network [OSTI]

-PBR's favor the reverse water-gas-shift (r-WGS) reaction, thus causing a much narrower range of permissible stream after hydrocarbon fuel reforming and water-gas-shift reactions. This process, referred to as CO;2 ABSTRACT Silicon microreactors with thin-film wall catalyst were adopted for kinetic studies of CO

Besser, Ronald S.

286

Enhanced efficiency of thin film solar cells using a shifted dual grating plasmonic structure  

E-Print Network [OSTI]

.5403) Plasmonics; (310.2790) Guided waves. References and links 1. O. Morton, "Solar energy: A new day dawning Society of America OCIS codes: (350.6050) Solar energy; (050.2770) Gratings; (310.0310) Thin films; (250? Silicon valley sunrise," Nature 443(7107), 19­22 (2006). 2. M. A. Green and S. Pillai, "Harnessing

Levy, Uriel

287

Dual gratings for enhanced light trapping in thin-film solar cells  

E-Print Network [OSTI]

, Ireland * christian.schuster@york.ac.uk Abstract: Thin film solar cells benefit significantly from; (350.6050) Solar energy. References and links 1. M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, "Progress and outlook for high-efficiency crystalline silicon solar cells," Sol. Energy Mater. Sol. Cells 65

288

SEARCH FOR CHARGED -PARTICLE d -d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM  

E-Print Network [OSTI]

SEARCH FOR CHARGED - PARTICLE d - d FUSION PRODUCTS IN AN ENCAPSULATED Pd THIN FILM E. López, B the possibility of deuteron-deuteron (d-d) fusion at room temperature within the bulk palladium electrode / Pd ratio exceeding 100 %. The palladium film was encapsulated with a thin layer of silicon nitride

Neuhauser, Barbara

289

Electron Injection Mechanism in Top-gate Amorphous Silicon Thin-film Transistors with Self-Aligned Silicide Source and Drain  

E-Print Network [OSTI]

Institute for the Science and Technology of Materials (PRISM), Department of Elect. Eng., Princeton. The devices exhibit a threshold voltage of 2.7V, saturation mobility of 1cm2 /Vs, subthreshold slope of 600m from 1cm2 /Vs at L=100µm to 0.65 cm2 /Vs at L=5µm while the observed effective threshold is independent

290

Crystal coherence length effects on the infrared optical response of MgO thin films.  

SciTech Connect (OSTI)

The role of crystal coherence length on the infrared optical response of MgO thin films was investigated with regard to Reststrahlen band photon-phonon coupling. Preferentially (001)-oriented sputtered and evaporated ion-beam assisted deposited thin films were prepared on silicon and annealed to vary film microstructure. Film crystalline coherence was characterized by x-ray diffraction line broadening and transmission electron microscopy. The infrared dielectric response revealed a strong dependence of dielectric resonance magnitude on crystalline coherence. Shifts to lower transverse optical phonon frequencies were observed with increased crystalline coherence. Increased optical phonon damping is attributed to increasing granularity and intergrain misorientation.

Boreman, Glenn D. (University of Central Florida, Orlando, FL); Kotula, Paul Gabriel; Rodriguez, Mark Andrew; Shelton, David J. (University of Central Florida, Orlando, FL); Carroll, James F., III; Sinclair, Michael B.; Ihlefeld, Jon F.; Ginn, James Cleveland, III; Clem, Paul Gilbert; Matias, Vladimir (Los Alamos National Laboratory, Los Alamos, NM)

2010-07-01T23:59:59.000Z

291

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films  

E-Print Network [OSTI]

Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave

Hart, Gus

292

Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films  

DOE Patents [OSTI]

A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

Brinker, Charles Jeffrey (Albuquerque, NM); Prakash, Sai Sivasankaran (Minneapolis, MN)

1999-01-01T23:59:59.000Z

293

Passivation effect on gate-bias stress instability of carbon nanotube thin film transistors  

SciTech Connect (OSTI)

A prior requirement of any developed transistor for practical use is the stability test. Random network carbon nanotube-thin film transistor (CNT-TFT) was fabricated on SiO{sub 2}/Si. Gate bias stress stability was investigated with various passivation layers of HfO{sub 2} and Al{sub 2}O{sub 3}. Compared to the threshold voltage shift without passivation layer, the measured values in the presence of passivation layers were reduced independent of gate bias polarity except HfO{sub 2} under positive gate bias stress (PGBS). Al{sub 2}O{sub 3} capping layer was found to be the best passivation layer to prevent ambient gas adsorption, while gas adsorption on HfO{sub 2} layer was unavoidable, inducing surface charges to increase threshold voltage shift in particular for PGBS. This high performance in the gate bias stress test of CNT-TFT even superior to that of amorphous silicon opens potential applications to active TFT industry for soft electronics.

Won Lee, Sang [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Suh, Dongseok, E-mail: energy.suh@skku.edu [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science and Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Young Lee, Si [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Hee Lee, Young, E-mail: leeyoung@skku.edu [Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Energy Science and Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Physics, Sungkyunkwan Advanced Institute of Nanotechnology, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

2014-04-21T23:59:59.000Z

294

Characterization of diamond-like nanocomposite thin films grown by plasma enhanced chemical vapor deposition  

SciTech Connect (OSTI)

Diamond-like nanocomposite (DLN) thin films, comprising the networks of a-C:H and a-Si:O were deposited on pyrex glass or silicon substrate using gas precursors (e.g., hexamethyldisilane, hexamethyldisiloxane, hexamethyldisilazane, or their different combinations) mixed with argon gas, by plasma enhanced chemical vapor deposition technique. Surface morphology of DLN films was analyzed by atomic force microscopy. High-resolution transmission electron microscopic result shows that the films contain nanoparticles within the amorphous structure. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS) were used to determine the structural change within the DLN films. The hardness and friction coefficient of the films were measured by nanoindentation and scratch test techniques, respectively. FTIR and XPS studies show the presence of C-C, C-H, Si-C, and Si-H bonds in the a-C:H and a-Si:O networks. Using Raman spectroscopy, we also found that the hardness of the DLN films varies with the intensity ratio I{sub D}/I{sub G}. Finally, we observed that the DLN films has a better performance compared to DLC, when it comes to properties like high hardness, high modulus of elasticity, low surface roughness and low friction coefficient. These characteristics are the critical components in microelectromechanical systems (MEMS) and emerging nanoelectromechanical systems (NEMS).

Santra, T. S.; Liu, C. H. [Institute of Nanoengineering and Microsystems (NEMS), National Tsing Hua University, Hsinchu, Taiwan 30043 (China); Bhattacharyya, T. K. [Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal (India); Patel, P. [Department of Electrical and Computer Engineering, University of Illinois at Urbana Champaign, Urbana, Illinois 61801 (United States); Barik, T. K. [School of Applied Sciences, Haldia Institute of Technology, Haldia 721657, Purba Medinipur, West Bengal (India)

2010-06-15T23:59:59.000Z

295

Numerical simulation of the heat transfer in amorphous silicon nitride membrane-based microcalorimeters  

E-Print Network [OSTI]

Numerical simulation of the heat transfer in amorphous silicon nitride membrane July 2003 Numerical simulations of the two-dimensional 2D heat flow in a membrane-based microcalorimeter have been performed. The steady-state isotherms and time-dependent heat flow have been calculated

Hellman, Frances

296

Short Channel Amorphous-Silicon TFT's on High-Temperature Clear Plastic Substrates  

E-Print Network [OSTI]

Short Channel Amorphous-Silicon TFT's on High-Temperature Clear Plastic Substrates K. Long, H@princeton.edu To achieve light-weight flexible AMOLED displays on plastic substrates, the substratesmust be optically clear for plastic. High-temperature plastics such as polyimide (e.g. KaptonB E) have a glass transition temperature

297

Defect transition energies and the density of electronic states in hydrogenated amorphous silicon  

E-Print Network [OSTI]

-Si:H. The data allow us to determine the dominant ra- diative transitions and the corresponding positionsDefect transition energies and the density of electronic states in hydrogenated amorphous silicon G of Utah, Salt Lake City, UT 84112, USA Abstract Using photoluminescence excitation (PLE) spectroscopy, we

Tolk, Norman H.

298

High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells  

E-Print Network [OSTI]

. Figure 3-1 IV curve of a UT fabricated triple cell, showing 12.7% initial, active-area efficiency. Figure1 High Efficiency and High Rate Deposited Amorphous Silicon-Based Solar Cells PHASE I Annual-junction a-Si Solar Cells with Heavily Doped Thin Interface Layers at the Tunnel Junctions Section 4 High

Deng, Xunming

299

Infrared Charge-Modulation Spectroscopy of Defects in Phosphorus Doped Amorphous Silicon  

E-Print Network [OSTI]

Infrared Charge-Modulation Spectroscopy of Defects in Phosphorus Doped Amorphous Silicon KAI ZHU Solar, Toano, VA 23168 USA ABSTRACT We present infrared charge-modulation absorption spectra have been developing an infrared modulation spectroscopy technique that probes the optical spectra

Schiff, Eric A.

300

Thin film absorber for a solar collector  

DOE Patents [OSTI]

This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

Wilhelm, William G. (Cutchogue, NY)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Thin film transistors on plastic substrates with reflective coatings for radiation protection  

DOE Patents [OSTI]

Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

Wolfe, Jesse D.; Theiss, Steven D.; Carey, Paul G.; Smith, Patrick M.; Wickboldt, Paul

2003-11-04T23:59:59.000Z

302

Thin film transistors on plastic substrates with reflective coatings for radiation protection  

DOE Patents [OSTI]

Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

Wolfe, Jesse D. (Fairfield, CA); Theiss, Steven D. (Woodbury, MN); Carey, Paul G. (Mountain View, CA); Smith, Patrick M. (San Ramon, CA); Wickbold, Paul (Walnut Creek, CA)

2006-09-26T23:59:59.000Z

303

amorphous silicon based: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The researchers have managed to create Rogers, John A. 279 A Silicon-Based Micro Gas Turbine Engine for Power Generation CERN Preprints Summary: This paper reports on our...

304

amorphous silicon carbide: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The high power densities expected for the MIT microengine (silicon MEMS-based micro-gas turbine generator) require the turbine and compressor spool to rotate at a very high...

305

Thin film dielectric composite materials  

DOE Patents [OSTI]

A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

2002-01-01T23:59:59.000Z

306

Tungsten-doped thin film materials  

DOE Patents [OSTI]

A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

2003-12-09T23:59:59.000Z

307

Vibration welding system with thin film sensor  

DOE Patents [OSTI]

A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

2014-03-18T23:59:59.000Z

308

The interplay between spatially separated ferromagnetic and superconducting thin films  

E-Print Network [OSTI]

Ferromagnetic thin films have been grown via physical vapor deposition utilizing the technique of flash evaporation and characterized by measuring magnetization as a function of magnetic field. An Al thin film was evaporated atop the ferromagnetic...

Sullivan, Isaac John

2013-02-22T23:59:59.000Z

309

Guided Self-Assembly of Gold Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Guided Self-Assembly of Gold Thin Films Guided Self-Assembly of Gold Thin Films Print Wednesday, 21 November 2012 12:18 Nanoparticles-man-made atoms with unique optical,...

310

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by Oxygen-plasma-assisted Molecular Beam Epitaxy. Conductivity of Oriented Samaria-Doped Ceria Thin Films Grown by...

311

aluminium thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 21 Thin-Film Metamaterials called Sculptured Thin Films CERN Preprints Summary: Morphology...

312

Studies on nickel-tungsten oxide thin films  

SciTech Connect (OSTI)

Nickel-Tungsten oxide (95:5) thin films were prepared by rf sputtering at 200W rf power with various substrate temperatures. X-ray diffraction study reveals the amorphous nature of films. The substrate temperature induced decrease in energy band gap with a maximum transmittance of 71%1 was observed. The Micro-Raman study shows broad peaks at 560 cm{sup ?1} and 1100 cm{sup ?1} correspond to Ni-O vibration and the peak at 860 cm{sup ?1} can be assigned to the vibration of W-O-W bond. Photoluminescence spectra show two peaks centered on 420 nm and 485 nm corresponding to the band edge emission and vacancies created due to the addition of tungsten, respectively.

Usha, K. S. [Department of Physics, Alagappa University, Karaikudi - 630 004 (India); Sivakumar, R., E-mail: krsivakumar1979@yahoo.com [Directorate of Distance Education, Alagappa University, Karaikudi - 630 004 (India); Sanjeeviraja, C. [Department of Physics, Alagappa Chettiar College of Engineering and Technology, Karaikudi - 630 004 (India)

2014-10-15T23:59:59.000Z

313

SINGLE AND DUAL LAYER THIN FILM BULGE TESTING  

E-Print Network [OSTI]

film windows that are used in Next Generation Lithography masks and certain MEMS devices. The bulge testing method measures the mechanical properties of a thin film by isolating it in a thin film window of the system. Figure 6 Dual Layer Thin Film Membrane Window For a dual layer membrane the effective total

Huston, Dryver R.

314

THIN FILM MECHANICS BULGING AND Ph.D Dissertation  

E-Print Network [OSTI]

for the intensive effort in research in materials and processing techniques. Thin film windows are window underneath. The thin film window has such a small thickness to span ratio that it can usually be considered and precision-stretching of thin film windows are examined. Bulge Testing is a method used to evaluate

Huston, Dryver R.

315

Template structure at the silicon/amorphous-silicide interface  

SciTech Connect (OSTI)

Surface x-ray diffraction was used to monitor the reaction of Ni on Si(111) at room temperature. Intensity oscillations during deposition signify that a layerwise reaction occurs for the first 30 A of metal deposited, forming a silicide overlayer with stoichiometry Ni{sub 2}Si. Structural analysis of the interfacial layers detects an epitaxial and commensurate phase, Ni{sub 2}Si-{theta}, with long range order imposed by the substrate but with very large local atomic displacements. This epitaxial structure remains at the interface as amorphous silicide forms above it.

Bennett, P.A.; Lee, M.Y.; Yang, P. [Department of Physics and Astronomy, Arizona State University, Box 871504, Tempe, Arizona 85287-1504 (United States)] [Department of Physics and Astronomy, Arizona State University, Box 871504, Tempe, Arizona 85287-1504 (United States); Schuster, R.; Eng, P.J.; Robinson, I.K. [Physics Department, University of Illinois, Urbana, Illinois 61801 (United States)] [Physics Department, University of Illinois, Urbana, Illinois 61801 (United States)

1995-10-02T23:59:59.000Z

316

US polycrystalline thin film solar cells program  

SciTech Connect (OSTI)

The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

Ullal, H.S.; Zweibel, K.; Mitchell, R.L. (Solar Energy Research Inst., Golden, CO (USA)) [Solar Energy Research Inst., Golden, CO (USA)

1989-11-01T23:59:59.000Z

317

Enhanced Thin Film Organic Photovoltaic Devices  

Energy Innovation Portal (Marketing Summaries) [EERE]

A novel structure design for thin film organic photovoltaic (OPV) devices provides a system for increasing the optical absorption in the active layer. The waveguided structure permits reduction of the active layer thickness, resulting in enhanced charge collection and extraction, leading to improved power conversion efficiency compared to standard OPV devices....

2014-01-10T23:59:59.000Z

318

Energy transfer and 1.54 m emission in amorphous silicon nitride films S. O. Kucheyev,2  

E-Print Network [OSTI]

spectrometry RBS and high-resolution transmission electron microscopy HRTEM to quantify the amount of Si, NEnergy transfer and 1.54 m emission in amorphous silicon nitride films S. Yerci,1 R. Li,1 S. O a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er

319

Research Progress in the DOE/SERI Amorphous Silicon Research Project  

SciTech Connect (OSTI)

The Amorphous Silicon Research Project (ASRP), established at the Solar Energy Research Institute (SERI) in 1983, is responsible for all U.S. DOE government-supported research activities in the field of amorphous silicon photovoltaics. The objectives and research directions of the project have been established by a Five-Year Research Plan developed at SERI in cooperation with the Department of Energy in 1984. In order to accomplish project goals, research is performed by a combination of i) multi-year programs consisting of multi-disciplinary research teams based on strong government/industry partnerships and ii) basic research performed in university, government, and industrial laboratories. A summary of recent research progress in the ASRP program is presented.

Sabisky, E.; Wallace, W.; Stafford, B.; Sadlon, K.; Luft, W.

1985-04-01T23:59:59.000Z

320

Efficient Crystalline Si Solar Cell with Amorphous/Crystalline Silicon Heterojunction as Back Contact: Preprint  

SciTech Connect (OSTI)

We study an amorphous/crystalline silicon heterojunction (Si HJ) as a back contact in industrial standard p-type five-inch pseudo-square wafer to replace Al back surface field (BSF) contact. The best efficiency in this study is over 17% with open-circuit (Voc) of 0.623 V, which is very similar to the control cell with Al BSF. We found that Voc has not been improved with the heterojunction structure in the back. The typical minority carrier lifetime of these wafers is on the order of 10 us. We also found that the doping levels of p-layer affect the FF due to conductivity and band gap shifting, and an optimized layer is identified. We conclude that an amorphous/crystalline silicon heterojunction can be a very promising structure to replace Al BSF back contact.

Nemeth, B.; Wang, Q.; Shan, W.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Dual operation characteristics of resistance random access memory in indium-gallium-zinc-oxide thin film transistors  

SciTech Connect (OSTI)

In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.

Yang, Jyun-Bao; Chen, Yu-Ting; Chu, Ann-Kuo [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang@mail.phys.nsysu.edu.tw [Department of Photonics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Taiwan (China); Huang, Jheng-Jie; Chen, Yu-Chun; Tseng, Hsueh-Chih [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Sze, Simon M. [Department of Physics, National Sun Yat-Sen University, Kaohsiung, Taiwan (China); Department of Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan (China)

2014-04-14T23:59:59.000Z

322

Amorphization of Silicon Carbide by Carbon Displacement. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross Blood Driveover a broadof Silicon

323

Oriented niobate ferroelectric thin films for electrical and optical devices and method of making such films  

DOE Patents [OSTI]

Sr.sub.x Ba.sub.1-x Nb.sub.2 O.sub.6, where x is greater than 0.25 and less than 0.75, and KNbO.sub.3 ferroelectric thin films metalorganic chemical vapor deposited on amorphous or crystalline substrate surfaces to provide a crystal axis of the film exhibiting a high dielectric susceptibility, electro-optic coefficient, and/or nonlinear optic coefficient oriented preferentially in a direction relative to a crystalline or amorphous substrate surface. Such films can be used in electronic, electro-optic, and frequency doubling components.

Wessels, Bruce W. (Wilmette, IL); Nystrom, Michael J. (Germantown, MD)

1998-01-01T23:59:59.000Z

324

Nanocrystalline Silicon Quantum Dot Light Emitting Diodes Using Metal Oxide Charge Transport Layers.  

E-Print Network [OSTI]

??Silicon-based lighting show promise for display and solid state lighting use. Here we demonstrate a novel thin film light emitting diode device using nanocrystalline silicon… (more)

Zhu, Jiayuan

2013-01-01T23:59:59.000Z

325

Polycrystalline thin films FY 1992 project report  

SciTech Connect (OSTI)

This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

Zweibel, K. [ed.

1993-01-01T23:59:59.000Z

326

Electrostatic thin film chemical and biological sensor  

DOE Patents [OSTI]

A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

2010-01-19T23:59:59.000Z

327

Thin film photovoltaic panel and method  

DOE Patents [OSTI]

A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

Ackerman, Bruce (El Paso, TX); Albright, Scot P. (El Paso, TX); Jordan, John F. (El Paso, TX)

1991-06-11T23:59:59.000Z

328

Packaging material for thin film lithium batteries  

DOE Patents [OSTI]

A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

1996-01-01T23:59:59.000Z

329

Annealed CVD molybdenum thin film surface  

DOE Patents [OSTI]

Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

Carver, Gary E. (Tucson, AZ); Seraphin, Bernhard O. (Tucson, AZ)

1984-01-01T23:59:59.000Z

330

Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation deposition  

E-Print Network [OSTI]

Structural and magnetic properties of NiZn and Zn ferrite thin films obtained by laser ablation ferrite structures. Our investigations were performed on NiZn and Zn ferrite films deposited on silicon of the blocking temperature in both NiZn and Zn ferrite systems. © 2005 American Institute of Physics. DOI: 10

McHenry, Michael E.

331

Energy transfer and 1.54 {mu}m emission in amorphous silicon nitride films  

SciTech Connect (OSTI)

Er-doped amorphous silicon nitride films with various Si concentrations (Er:SiN{sub x}) were fabricated by reactive magnetron cosputtering followed by thermal annealing. The effects of Si concentrations and annealing temperatures were investigated in relation to Er emission and excitation processes. Efficient excitation of Er ions was demonstrated within a broad energy spectrum and attributed to disorder-induced localized transitions in amorphous Er:SiN{sub x}. A systematic optimization of the 1.54 {mu}m emission was performed and a fundamental trade-off was discovered between Er excitation and emission efficiency due to excess Si incorporation. These results provide an alternative approach for the engineering of sensitized Si-based light sources and lasers.

Yerci, S.; Li, R. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215-2421 (United States); Kucheyev, S. O.; Buuren, T. van [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Basu, S. N. [Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02446 (United States); Department of Mechanical Engineering, Boston University, 110 Cummington Street, Boston, Massachusetts 02215 (United States); Dal Negro, L. [Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215-2421 (United States); Division of Materials Science and Engineering, Boston University, 15 Saint Mary's Street, Brookline, Massachusetts 02446 (United States)

2009-07-20T23:59:59.000Z

332

Optical properties of nanostructured silicon-rich silicon dioxide  

E-Print Network [OSTI]

We have conducted a study of the optical properties of sputtered silicon-rich silicon dioxide (SRO) thin films with specific application for the fabrication of erbium-doped waveguide amplifiers and lasers, polarization ...

Stolfi, Michael Anthony

2006-01-01T23:59:59.000Z

333

.beta.-silicon carbide protective coating and method for fabricating same  

DOE Patents [OSTI]

A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or .mu.c-SiC film on the surface and produce .beta.--SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA)

1994-01-01T23:59:59.000Z

334

[beta]-silicon carbide protective coating and method for fabricating same  

DOE Patents [OSTI]

A polycrystalline beta-silicon carbide film or coating and method for forming same on components, such as the top of solar cells, to act as an extremely hard protective surface, and as an anti-reflective coating are disclosed. This is achieved by DC magnetron co-sputtering of amorphous silicon and carbon to form a SiC thin film onto a surface, such as a solar cell. The thin film is then irradiated by a pulsed energy source, such as an excimer laser, to synthesize the poly- or [mu]c-SiC film on the surface and produce [beta]-SiC. While the method of this invention has primary application in solar cell manufacturing, it has application wherever there is a requirement for an extremely hard surface. 3 figs.

Carey, P.G.; Thompson, J.B.

1994-11-01T23:59:59.000Z

335

Study of the electronic properties of hydrogenated amorphous silicon films by femtosecond spectroscopy  

SciTech Connect (OSTI)

Experimental results on the electron relaxation time and diffusion coefficient in hydrogenated amorphous silicon films that exhibit intrinsic and electronic conductivity at room temperature are reported. It is found that, for these two types of films, the relaxation times are 1 ns and 465 ps and the diffusion coefficients are 0.54 and 0.83 cm{sup 2} s{sup -1}. It is established that, as the pulse intensity is increased, the decay time of the induced-grating signal shortens.

Sevastyanov, M. G. [Kazan State Power Engineering University (Russian Federation)] [Kazan State Power Engineering University (Russian Federation); Lobkov, V. S.; Shmelev, A. G.; Leontev, A. V. [Russian Academy of Sciences, Zavoisky Physical Technical Institute, Kazan Research Center (Russian Federation)] [Russian Academy of Sciences, Zavoisky Physical Technical Institute, Kazan Research Center (Russian Federation); Matuhin, V. L. [Kazan State Power Engineering University (Russian Federation)] [Kazan State Power Engineering University (Russian Federation); Bobyl, A. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Terukov, E. I., E-mail: Eug.Terukov@mail.ioffe.ru [Russian Academy of Sciences, Zavoisky Physical Technical Institute, Kazan Research Center (Russian Federation); Kukin, A. V. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

2013-10-15T23:59:59.000Z

336

Amorphous Silicon Solar cells with a Core-Shell Nanograting Structure  

E-Print Network [OSTI]

We systematically investigate the optical behaviors of an amorphous silicon solar cell based on a core-shell nanograting structure. The horizontally propagating Bloch waves and Surface Plasmon Polariton (SPP) waves lead to significant absorption enhancements and consequently short-circuit current enhancements of this structure, compared with the conventional planar one. The perpendicular carrier collection makes this structure optically thick and electronically thin. An optimal design is achieved through full-field numerical simulation, and physical explanation is given. Our numerical results show that this configuration has ultrabroadband, omnidirectional and polarization-insensitive responses, and has a great potential in photovoltaics.

Yang, L; Okuno, Y; He, S

2011-01-01T23:59:59.000Z

337

Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets  

DOE Patents [OSTI]

A silicon PIN microcrystalline/amorphous silicon semiconductor device is constructed by the sputtering of N, and P layers of silicon from silicon doped targets and the I layer from an undoped target, and at least one semi-transparent ohmic electrode.

Moustakas, Theodore D. (Annandale, NJ); Maruska, H. Paul (Annandale, NJ)

1985-04-02T23:59:59.000Z

338

Rechargeable thin film battery and method for making the same  

DOE Patents [OSTI]

A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

2006-01-03T23:59:59.000Z

339

Creating CZTS Thin Films Via Stacked Metallic CVD and Sulfurization  

E-Print Network [OSTI]

Research, Thin-Film Photovoltaic (PV) Cells Market Analysiscost of photovoltaic systems (such as solar cells) due tosolar cells are created by depositing layers of photovoltaic

Bielecki, Anthony

2013-01-01T23:59:59.000Z

340

Institute of Photo Electronic Thin Film Devices and Technology...  

Open Energy Info (EERE)

Technology of Nankai University Place: Tianjin Municipality, China Zip: 300071 Sector: Solar Product: A thin-film solar cell research institute in China. References: Institute...

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

applications thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nikolay 27 Solvent-enhanced dye diffusion in polymer thin films for polymer light-emitting diode application Engineering Websites Summary: Solvent-enhanced dye diffusion in...

342

Low-Cost Light Weigh Thin Film Solar Concentrators  

Broader source: Energy.gov (indexed) [DOE]

Light Weight Thin Film Solar Concentrators PI: Gani B. Ganapathi (JPLCaltech) Other Contributors: L'Garde: Art Palisoc, Gyula Greschik, Koorosh Gidanian JPL: Bill Nesmith,...

343

antibacterial thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Skovlin, Dean Oliver 2012-06-07 138 Uncooled Thin Film Pyroelectric IR Detector with Aerogel Thermal Isolation CiteSeer Summary: Uncooled pyroelectric IR imaging systems, such...

344

acid thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

345

ablation thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

346

anatase thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

347

arsenide thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

films Engineering Websites Summary: of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from the switching mechanisms of...

348

Uncooled thin film pyroelectric IR detector with aerogel thermal isolation  

SciTech Connect (OSTI)

A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

Ruffner, Judith A. (Albuquerque, NM); Bullington, Jeff A. (Albuquerque, NM); Clem, Paul G. (Albuquerque, NM); Warren, William L. (Albuquerque, NM); Brinker, C. Jeffrey (Albuquerque, NM); Tuttle, Bruce A. (Albuquerque, NM); Schwartz, Robert W. (Seneca, SC)

1999-01-01T23:59:59.000Z

349

Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria...

350

Fully Solution-Processed Copper Chalcopyrite Thin Film Solar Cells: Materials Chemistry, Processing, and Device Physics  

E-Print Network [OSTI]

nanowire networks as window layers in thin film solar cells.window layer for fully solution-deposited thin filmITO) thin films by silver nanowire composite window layers

Chung, Choong-Heui

2012-01-01T23:59:59.000Z

351

Synthesis and application perspective of advanced plasma polymerized organic thin films  

E-Print Network [OSTI]

Synthesis and application perspective of advanced plasma polymerized organic thin films I.-S. Bae a November 2005 Abstract Plasma polymerized cyclohexane and ethylcyclohexane organic thin films were rights reserved. Keywords: Plasma polymerization; Ethylcyclohexane and cyclohexane organic thin films

Boo, Jin-Hyo

352

Thin-film chip-to-substrate interconnect and methods for making same  

DOE Patents [OSTI]

Integrated circuit chips are electrically connected to a silicon wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability. 6 figs.

Tuckerman, D.B.

1988-06-06T23:59:59.000Z

353

Solar-to-Hydrogen Photovoltaic/Photoelectrochemical Devices Using Amorphous Silicon Carbide as the Photoelectrode  

SciTech Connect (OSTI)

We report the use of hydrogenated amorphous silicon carbide (a-SiC:H) prepared by plasma enhanced chemical vapor deposition (PECVD) as the photoelectrode in an integrated 'hybrid' photoelectrochemical (PEC) cell to produce hydrogen directly from water using sunlight. Results on the durability of hydrogenated amorphous silicon carbide (a-SiC:H) photoelectrodes in an electrolyte are presented. In a pH2 electrolyte, the a-SiC:H photoelectrode exhibits excellent stability for 100 hour test so far performed. A photocurrent onset shift (anodically) after a 24- or 100-hour durability test in electrolyte is observed, likely due to changes in the surface chemical structure of the a-SiC:H photoelectrode. It is also observed that a thin SiOx layer native to the air exposed surface of the a-SiC:H affects the photocurrent and the its onset shift. Finally, approaches for eliminating the external bias voltage and enhancing the solar-to-hydrogen efficiency in a PV/PEC hybrid structure to achieve {>=} 10% are presented.

Hu, J.; Zhu, F.; Matulionis, I.; Kunrath, A.; Deutsch, T.; Kuritzky, L.; Miller, E.; Madan, A.

2008-01-01T23:59:59.000Z

354

Improved Stability Of Amorphous Zinc Tin Oxide Thin Film Transistors...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

shifts, as opposed to charge injection into the dielectric or trapping due to oxygen vacancies. Citation: Rajachidambaram MS, A Pandey, S Vilayur Ganapathy, P Nachimuthu, S...

355

Apparatus for laser assisted thin film deposition  

DOE Patents [OSTI]

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

Warner, B.E.; McLean, W. II

1996-02-13T23:59:59.000Z

356

Apparatus for laser assisted thin film deposition  

DOE Patents [OSTI]

A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

Warner, Bruce E. (Pleasanton, CA); McLean, II, William (Oakland, CA)

1996-01-01T23:59:59.000Z

357

STRESSES AND FAILURE MODES IN THIN FILMS AND MULTILAYERS  

E-Print Network [OSTI]

Stressesin a Thin Film 4 2.3 Stresses in a Multilayer: Layer by Layer Deposition and Release from of the Interface a Bilayer under Residual Stress 30 5.2 Delamination of a Bilayer by Layer Cracking Parallel FOR THIN FILMS UNDER RESIDUAL COMPRESSION 36 6.1 Straight-sided Blisters 36 6.2 Circular Blisters 40 6

Hutchinson, John W.

358

Avalanches through windows: Multiscale visualization in magnetic thin films  

E-Print Network [OSTI]

Avalanches through windows: Multiscale visualization in magnetic thin films Alessandro Magni, Cornell University, Ithaca, NY 14853-2501 Abstract--The dynamics of domain walls motion in thin films dynamics, but are strongly dependent on the size of the windows chosen. Here we investigate how to properly

Sethna, James P.

359

Fracture patterns in thin films and multilayers Alex A. Volinsky  

E-Print Network [OSTI]

Fracture patterns in thin films and multilayers Alex A. Volinsky University of South Florida, excessive residual and externally applied stresses cause film fracture. In the case of tensile stress is the key for causing thin film fracture, either in tension, or compression, it is the influence

Volinsky, Alex A.

360

Wave propagation in highly inhomogeneous thin films: exactly solvable models  

E-Print Network [OSTI]

Wave propagation in highly inhomogeneous thin films: exactly solvable models Guillaume Petite(1 of wave propagation in some inhomogeneous thin films with highly space- dependent dielectric constant will show that depending on the type of space dependence, an incident wave can either propagate or tunnel

Boyer, Edmond

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

E-Print Network 3.0 - alumina thin films Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

constant in RF devices. Some unique features of thin-film silica and alumina aerogels have been... aerogel thin films, silica and alumina aerogel cantilevers were...

362

Theory and simulation of amorphous organic electronic devices  

E-Print Network [OSTI]

The electronic properties of amorphous organic thin films are of great interest due to their application in devices such as light emitting devices, solar cells, photodetectors, and lasers. Compared to conventional inorganic ...

Madigan, Conor (Conor Francis), 1978-

2006-01-01T23:59:59.000Z

363

Exciton harvesting, charge transfer, and charge-carrier transport in amorphous-silicon nanopillar/polymer hybrid solar cells  

E-Print Network [OSTI]

report on the device physics of nanostructured amorphous-silicon a-Si:H /polymer hybrid solar cells and nanostructured a-Si:H/polymer systems. We find that strong energy transfer occurs in the a-Si:H/MEH-PPV system. However, inefficient hole transfer from the a-Si:H to the polymers renders negligible photocurrent

McGehee, Michael

364

Glow discharge plasma deposition of thin films  

DOE Patents [OSTI]

A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

Weakliem, Herbert A. (Pennington, NJ); Vossen, Jr., John L. (Bridgewater, NJ)

1984-05-29T23:59:59.000Z

365

Rechargeable thin-film electrochemical generator  

DOE Patents [OSTI]

An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

Rouillard, Roger (Beloeil, CA); Domroese, Michael K. (South St. Paul, MN); Hoffman, Joseph A. (Minneapolis, MN); Lindeman, David D. (Hudson, WI); Noel, Joseph-Robert-Gaetan (St-Hubert, CA); Radewald, Vern E. (Austin, TX); Ranger, Michel (Lachine, CA); Sudano, Anthony (Laval, CA); Trice, Jennifer L. (Eagan, MN); Turgeon, Thomas A. (Fridley, MN)

2000-09-15T23:59:59.000Z

366

Thin films of mixed metal compounds  

DOE Patents [OSTI]

Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

Mickelsen, R.A.; Chen, W.S.

1985-06-11T23:59:59.000Z

367

Thin Film Femtosecond Laser Damage Competition  

SciTech Connect (OSTI)

In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

2009-11-14T23:59:59.000Z

368

Unexpected short- and medium-range atomic structure of sputtered amorphous silicon upon thermal annealing  

SciTech Connect (OSTI)

We investigate the structure of magnetron-sputtered (MS) amorphous silicon (a-Si) prepared under standard deposition conditions and compare this to pure ion-implanted (II) a-Si. The structure of both films is characterized in their as-prepared and thermally annealed states. Significant differences are observed in short- and medium-range order following thermal annealing. Whereas II a-Si undergoes structural relaxation toward a continuous random network, MS a-Si exhibits little change. Cross-sectional transmission electron microscopy reveals the presence of nanopores in the MS film consistent with reduced mass-density. Therefore, the short- and medium-range order of annealed, MS a-Si is tentatively attributed to these pores.

Haberl, B.; McKerracher, I.; Ruffell, S.; Williams, J. S.; Bradby, J. E. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Bogle, S. N.; Li, T.; Abelson, J. R. [Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Munroe, P. [Electron Microscope Unit, University of New South Wales, Sydney, NSW 2052 (Australia)

2011-11-01T23:59:59.000Z

369

FTIR (Fourier transform infrared) spectrophotometry for thin film monitors: Computer and equipment integration for enhanced capabilities  

SciTech Connect (OSTI)

Fourier transform infrared spectrophotometry (FTIR) is a valuable technique for monitoring thin films used in semiconductor device manufacture. Determinations of the constituent contents in borophosphosilicate (BPSG), phosphosilicate (PSG), silicon oxynitride (SiON:H,OH), and spin-on-glass (SOG) thin films are a few applications. Due to the nature of the technique, FTIR instrumentation is one of the most extensively computer-dependent pieces of equipment that is likely to be found in a microelectronics plant. In the role of fab monitor or reactor characterization tool, FTIR instruments can rapidly generate large amounts of data. By linking a local FTIR data station to a remote minicomputer its capabilities are greatly improved. We discuss three caused of enhancement. First, the FTIR in the fab area communicates and interacts in real time with the minicomputer: transferring data segments to it, instructing it to perform sophisticated processing, and returning the result to the operator in the fab. Characterizations of PSG thin films by this approach are discussed. Second, the spectra of large numbers of samples are processed locally. The large database is then transmitted to the minicomputer for study by statistical/graphics software. Results of CVD-reactor spatial profiling experiments for plasma SiON are presented. Third, processing of calibration spectra is performed on the minicomputer to optimize the accuracy and precision of a Partial Least Squares'' analysis mode. This model is then transferred to the data station in the fab. The analysis of BPSG thin films is discussed in this regard. The prospects for fully automated at-line monitoring and for real-time, in-situ monitoring will be discussed. 10 refs., 4 figs.

Cox, J.N.; Sedayao, J.; Shergill, G.; Villasol, R. (Intel Corp., Santa Clara, CA (USA)); Haaland, D.M. (Sandia National Labs., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

370

Focused ion beam specimen preparation for electron holography of electrically biased thin film solar cells  

E-Print Network [OSTI]

, biased TEM specimen, thin film solar cell, FIB Thin films of hydrogenated Si (Si:H) can be used as active for electron holography of a thin film solar cell using conventional lift-out specimen preparation and a homeFocused ion beam specimen preparation for electron holography of electrically biased thin film

Dunin-Borkowski, Rafal E.

371

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION DEVICE PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Submitted by Markus Gloeckler PHYSICS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS OF Cu(In,Ga)Se2 THIN-FILM SOLAR CELLS Thin-film solar cells have the potential to be an important

Sites, James R.

372

Bulge testing of single and dual layer thin films Dryver R. Huston*ab  

E-Print Network [OSTI]

to a thin film window. By comparing the pressure- displacement relation with a mechanical model, the elastic structures, such as the thin film windows that are used in Next Generation Lithography masks and certain MEMS it in a thin film window. Thin film windows are fabricated by removing the thick substrate out from underneath

Huston, Dryver R.

373

Crystallization characteristics and chemical bonding properties of nickel carbide thin film nanocomposites  

E-Print Network [OSTI]

The crystal structure and chemical bonding of magnetron-sputtering deposited nickel carbide Ni$_{1-x}$C$_{x}$ (0.05$\\leq$x$\\leq$0.62) thin films have been investigated by high-resolution X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and soft X-ray absorption spectroscopy. By using X-ray as well as electron diffraction, we found carbon-containing hcp-Ni (hcp-NiC$_{y}$ phase), instead of the expected rhombohedral-Ni$_{3}$C. At low carbon content (4.9 at\\%) the thin film consists of hcp-NiC$_{y}$ nanocrystallites mixed with a smaller amount of fcc-NiC$_{x}$. The average grain size is about 10-20 nm. With the increase of carbon content to 16.3 at\\%, the film contains single-phase hcp-NiC$_{y}$ nanocrystallites with expanded lattice parameters. With further increase of carbon content to 38 at\\%, and 62 at\\%, the films transform to X-ray amorphous materials with hcp-NiC$_{y}$ and fcc-NiC$_{x }$ nanodomain structures in an amorphous carbon-rich matrix. Ram...

Furlan, Andrej; Hultman, Lars; Jansson, Ulf; Magnuson, Martin

2014-01-01T23:59:59.000Z

374

Amorphous silicon enhanced metal-insulator-semiconductor contacts for silicon solar cells  

SciTech Connect (OSTI)

Carrier recombination at the metal-semiconductor contacts has become a significant obstacle to the further advancement of high-efficiency diffused-junction silicon solar cells. This paper provides the proof-of-concept of a procedure to reduce contact recombination by means of enhanced metal-insulator-semiconductor (MIS) structures. Lightly diffused n{sup +} and p{sup +} surfaces are passivated with SiO{sub 2}/a-Si:H and Al{sub 2}O{sub 3}/a-Si:H stacks, respectively, before the MIS contacts are formed by a thermally activated alloying process between the a-Si:H layer and an overlying aluminum film. Transmission/scanning transmission electron microscopy (TEM/STEM) and energy dispersive x-ray spectroscopy are used to ascertain the nature of the alloy. Idealized solar cell simulations reveal that MIS(n{sup +}) contacts, with SiO{sub 2} thicknesses of ?1.55?nm, achieve the best carrier-selectivity producing a contact resistivity ?{sub c} of ?3 m? cm{sup 2} and a recombination current density J{sub 0c} of ?40 fA/cm{sup 2}. These characteristics are shown to be stable at temperatures up to 350?°C. The MIS(p{sup +}) contacts fail to achieve equivalent results both in terms of thermal stability and contact characteristics but may still offer advantages over directly metallized contacts in terms of manufacturing simplicity.

Bullock, J., E-mail: james.bullock@anu.edu.au; Cuevas, A.; Yan, D. [Research School of Engineering, The Australian National University, Canberra, ACT 0200 (Australia); Demaurex, B.; Hessler-Wyser, A.; De Wolf, S. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Micro Engineering (IMT), Photovoltaics and Thin Film Electronic Laboratory PVLab, Maladière 71b, CH-200 Neuchâtel (Switzerland)

2014-10-28T23:59:59.000Z

375

Thin Ni silicide formation by low temperature-induced metal atom reaction with ion implanted amorphous silicon  

SciTech Connect (OSTI)

We have extended our recent work on buried silicide formation by Ni diffusion into a buried amorphous silicon layer to the case where silicide formation is at lower temperatures on silicon substrates which have been preamorphized. The reaction of metal atoms from a 12 nm Ni film evaporated on top of a 65 nm thick surface amorphous layer formed by 35 keV Si{sup +} ion implantation has been investigated at temperature {le}400C. Rutherford Backscattering Spectrometry (RBS) with channeling, cross-sectional transmission electron microscopy (XTEM), x-ray diffraction and four-point-probe measurements were used to determine structure, interfacial morphology, composition and resistivity of the silicide films. It has been found that an increased rate of silicidation occurs for amorphous silicon with respect to crystalline areas permitting a selective control of the silicon area to be contacted during silicide growth. Vacuum furnace annealing at 360C for 8 hours followed by an additional step at 400C for one hour produces a continuos NiSi{sub 2} layer with a resistivity 44 {mu}{Omega} cm.

Erokhin, Yu.N.; Pramanick, S.; Hong, F.; Rozgonyi, G.A. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Materials Science and Engineering; Patnaik, B.K. [North Carolina State Univ., Raleigh, NC (United States)

1992-12-31T23:59:59.000Z

376

Evolution of structural and optical properties of photocatalytic Fe doped TiO{sub 2} thin films prepared by RF magnetron sputtering  

SciTech Connect (OSTI)

Undoped and Fe doped TiO{sub 2} thin films have been prepared by RF magnetron sputtering. Pure TiO{sub 2} thin film exhibited an amorphous-like nature. With increase in iron concentration (0–0.1 at%), the films exhibited better crystallization to anatase phase . Red shift of absorption edge was observed in the UV-vis transmittance spectra . At higher Fe concentration (0.5 at%), onset of phase transformation to rutile is noticed. Photocatalytic properties of pure and 0.1 at% Fe doped TiO{sub 2} thin films were investigated by degradation of methylene blue in UV light, visible light and light from Hg vapor lamp. 70% degradation of methylene blue was observed in the presence of Fe doped film in comparison with 3% degradation in presence of pure TiO{sub 2} film when irradiated using visible light for 2 h.

Nair, Prabitha B., E-mail: thomaspv-15@yahoo.com; Maneeshya, L. V., E-mail: thomaspv-15@yahoo.com; Justinvictor, V. B., E-mail: thomaspv-15@yahoo.com; Daniel, Georgi P., E-mail: thomaspv-15@yahoo.com; Joy, K., E-mail: thomaspv-15@yahoo.com; Thomas, P. V., E-mail: thomaspv-15@yahoo.com [Thin Film Lab, Post Graduate and Research Department of Physics, Mar Ivanios College, Nalanchira, Thiruvananthapuram 695015, Kerala (India)

2014-01-28T23:59:59.000Z

377

Antimony-Doped Tin(II) Sulfide Thin Films  

E-Print Network [OSTI]

Thin-film solar cells made from earth-abundant, inexpensive, and nontoxic materials are needed to replace the current technologies whose widespread use is limited by their use of scarce, costly, and toxic elements. Tin ...

Chakraborty, Rupak

378

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

SciTech Connect (OSTI)

Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

Not Available

2011-06-01T23:59:59.000Z

379

Structural, magnetic, and optical properties of orthoferrite thin films  

E-Print Network [OSTI]

Pulsed laser deposition was used to create thin films of Ce-Fe-O and Y-Fe-O systems. Deposition temperature and ambient oxygen pressure were varied systematically between samples to determine which deposition conditions ...

Supplee, William Wagner

2007-01-01T23:59:59.000Z

380

Modeling of thin-film solar thermoelectric generators  

E-Print Network [OSTI]

Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

Weinstein, Lee Adragon

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)  

SciTech Connect (OSTI)

This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

Not Available

2013-06-01T23:59:59.000Z

382

Multimonth controlled small molecule release from biodegradable thin films  

E-Print Network [OSTI]

Long-term, localized delivery of small molecules from a biodegradable thin film is challenging owing to their low molecular weight and poor charge density. Accomplishing highly extended controlled release can facilitate ...

Hammond, Paula T.

383

Initiated chemical vapor deposition of functional polyacrylic thin films  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) was explored as a novel method for synthesis of functional polyacrylic thin films. The process introduces a peroxide initiator, which can be decomposed at low temperatures (<200?C) ...

Mao, Yu, 1975-

2005-01-01T23:59:59.000Z

384

al thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

385

al thin film: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dalek@eee.hku.hk , C. Y. Kwong, T. W. Lau, L. S. M. Lam, and W. K 276 DEFECT-FREE THIN FILM MEMBRANES FOR H2 SEPARATION AND ISOLATION Energy Storage, Conversion and...

386

Monolithic integration of thin-film coolers with optoelectronic devices  

E-Print Network [OSTI]

Monolithic integration of thin-film coolers with optoelectronic devices Christopher La Barbara, California 93106-9560 Abstract. Active refrigeration of optoelectronic components through the use manuscript received June 30, 2000; accepted for publication June 30, 2000. 1 Introduction Optoelectronic

387

Role of Microstructural Phenomena in Magnetic Thin Films. Final Report  

SciTech Connect (OSTI)

Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

Laughlin, D. E.; Lambeth, D. N.

2001-04-30T23:59:59.000Z

388

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

Sandia

2009-09-01T23:59:59.000Z

389

Self-Assembling Process for Fabricating Tailored Thin Films  

ScienceCinema (OSTI)

A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

None

2010-01-08T23:59:59.000Z

390

Orientational Analysis of Molecules in Thin Films | Stanford...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Orientational Analysis of Molecules in Thin Films Monday, September 17, 2012 - 10:00am SSRL Bldg. 137, room 226 Daniel Kaefer The synchrotron-based X-ray absorption spectroscopy is...

391

National High Magnetic Field Laboratory: Magnetic Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recorded work with magnetic thin films took place in the 1880s and was carried out by German physicist August Kundt. Well known for his research on sound and optics, Kundts...

392

Enabling integration of vapor-deposited polymer thin films  

E-Print Network [OSTI]

Initiated Chemical Vapor Deposition (iCVD) is a versatile, one-step process for synthesizing conformal and functional polymer thin films on a variety of substrates. This thesis emphasizes the development of tools to further ...

Petruczok, Christy D. (Christy Danielle)

2014-01-01T23:59:59.000Z

393

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (New Orleans, LA); Fan, Hong You (Albuquerque, NM)

2010-08-31T23:59:59.000Z

394

Method for making surfactant-templated thin films  

DOE Patents [OSTI]

An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

Brinker, C. Jeffrey (Albuquerque, NM); Lu, Yunfeng (San Jose, CA); Fan, Hongyou (Albuquerque, NM)

2002-01-01T23:59:59.000Z

395

Laser Induced Breakdown Spectroscopy and Applications Toward Thin Film Analysis  

E-Print Network [OSTI]

on the surface. Ultrafast laser pulses are shorter than thethe advantages of ultrafast laser pulses for thin film LIBS,each time. While ultrafast laser pulses are effective in

Owens, Travis Nathan

2011-01-01T23:59:59.000Z

396

Nanostructured thin films for solid oxide fuel cells  

E-Print Network [OSTI]

The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes...

Yoon, Jongsik

2009-05-15T23:59:59.000Z

397

ag thin films: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MgO, Ref. 21 Marcon, Marco 2 Multi-level surface enhanced Raman scattering using AgOx thin film Physics Websites Summary: by applying laser-direct writing (LDW) technique on...

398

Properties and sensor performance of zinc oxide thin films  

E-Print Network [OSTI]

Reactively sputtered ZnO thin film gas sensors were fabricated onto Si wafers. The atmosphere dependent electrical response of the ZnO micro arrays was examined. The effects of processing conditions on the properties and ...

Min, Yongki, 1965-

2003-01-01T23:59:59.000Z

399

Functionalized multilayer thin films for protection against acutely toxic agents  

E-Print Network [OSTI]

The recently developed practice of spraying polyelectrolyte solutions onto a substrate in order to construct thin films via the Layer-by-Layer (LbL) technique has been further investigated and extended. In this process a ...

Krogman, Kevin Christopher

2009-01-01T23:59:59.000Z

400

Direct printing of lead zirconate titanate thin films  

E-Print Network [OSTI]

Thus far, use of lead zirconate titanate (PZT) in MEMS has been limited due to the lack of process compatibility with existing MEMS manufacturing techniques. Direct printing of thin films eliminates the need for photolithographic ...

Bathurst, Stephen, 1980-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nonlinear viscoelastic characterization of thin films using dynamic mechanical analysis  

E-Print Network [OSTI]

NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE AUGUST 1993 Major Subject: Aerospace Engineering NONLINEAR VISCOELASTIC CHARACTERIZATION OF THIN FILMS USING DYNAMIC MECHANICAL ANALYSIS A Thesis by DEBBIE FLOWERS PAYNE Approved as to style and content by: Thomas W...

Payne, Debbie Flowers

1993-01-01T23:59:59.000Z

402

Temperature effect on low-k dielectric thin films studied by ERDA  

SciTech Connect (OSTI)

Low-k dielectric materials are becoming increasingly interesting as alternative to SiO2 with device geometries shrinking beyond the 65 nm technology node. At elevated temperatures hydrogen migration becomes an important degradation mechanism for conductivity breakdown in semiconductor devices. The possibility of hydrogen release during the fabrication process is, therefore, of great interest in the understanding of device reliability. In this study, various low-k dielectric films were subjected to thermal annealing at temperatures that are generally used for device fabrication. Elastic recoil detection analysis (ERDA) was used to investigate compositional changes and hydrogen redistribution in thin films of plasma-enhanced tetraethylortho-silicate (PETEOS), phosphorus doped silicon glass (PSG), silicon nitride (SiN) and silicon oxynitride (SiON). Except for an initial hydrogen release from the surface region in films of PETEOS and PSG, the results indicate that the elemental composition of the films was stable for at least 2 hours at 450?C.

Jensen, Jens; Possnert, Göran; Zhang, Yanwen

2008-09-23T23:59:59.000Z

403

Controlled nanostructuration of polycrystalline tungsten thin films  

SciTech Connect (OSTI)

Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

Girault, B. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Institut de Recherche en Genie Civil et Mecanique (UMR CNRS 6183), LUNAM Universite, Universite de Nantes, Centrale Nantes, CRTT, 37 Bd de l'Universite, BP 406, 44602 Saint-Nazaire Cedex (France); Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O. [Institut P' (UPR 3346 CNRS), Universite de Poitiers, ENSMA, Bd Pierre et Marie Curie, 86962 Futuroscope Cedex (France); Sauvage, T. [CEMHTI/CNRS (UPR 3079 CNRS), Universite d'Orleans, 3A rue de la Ferollerie, 45071 Orleans Cedex 2 (France)

2013-05-07T23:59:59.000Z

404

Electrochromism in copper oxide thin films  

SciTech Connect (OSTI)

Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

Richardson, T.J.; Slack, J.L.; Rubin, M.D.

2000-08-15T23:59:59.000Z

405

Adhesion and Thin-Film Module Reliability  

SciTech Connect (OSTI)

Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

McMahon, T. J.; Jorgenson, G. J.

2006-01-01T23:59:59.000Z

406

Josephson junction in a thin film  

SciTech Connect (OSTI)

The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

2001-04-01T23:59:59.000Z

407

Optical switching and photoluminescence in erbium-implanted vanadium dioxide thin films  

SciTech Connect (OSTI)

Vanadium dioxide (VO{sub 2}) is under intensive consideration for optical switching due to its reversible phase transition, which features a drastic and rapid shift in infrared reflectivity. Classified as an insulator–to–metal transition, the phase transition in VO{sub 2} can be induced thermally, electrically, and optically. When induced optically, the transition can occur on sub-picosecond time scales. It is interesting to dope VO{sub 2} with erbium ions (Er{sup 3+}) and observe their combined properties. The first excited-state luminescence of Er{sup 3+} lies within the wavelength window of minimal transmission-loss in silicon and has been widely utilized for signal amplification and generation in silicon photonics. The incorporation of Er{sup 3+} into VO{sub 2} could therefore result in a novel photonic material capable of simultaneous optical switching and amplification. In this work, we investigate the optical switching and photoluminescence in Er-implanted VO{sub 2} thin films. Thermally driven optical switching is demonstrated in the Er-implanted VO{sub 2} by infrared reflectometry. Photoluminescence is observed in the thin films annealed at ?800?°C or above. In addition, Raman spectroscopy and a statistical analysis of switching hysteresis are carried out to assess the effects of the ion implantation on the VO{sub 2} thin films. We conclude that Er-implanted VO{sub 2} can function as an optical switch and amplifier, but with reduced switching quality compared to pure VO{sub 2}.

Lim, Herianto, E-mail: mail@heriantolim.com; Stavrias, Nikolas; Johnson, Brett C.; McCallum, Jeffrey C. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Marvel, Robert E.; Haglund, Richard F. [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37240 (United States)

2014-03-07T23:59:59.000Z

408

Increasing Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.  

DOE Patents [OSTI]

High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

Li, Yaun-Min (Langhorne, PA); Bennett, Murray S. (Langhorne, PA); Yang, Liyou (Plainsboro, NJ)

1999-08-24T23:59:59.000Z

409

Increased Stabilized Performance Of Amorphous Silicon Based Devices Produced By Highly Hydrogen Diluted Lower Temperature Plasma Deposition.  

DOE Patents [OSTI]

High quality, stable photovoltaic and electronic amorphous silicon devices which effectively resist light-induced degradation and current-induced degradation, are produced by a special plasma deposition process. Powerful, efficient single and multi-junction solar cells with high open circuit voltages and fill factors and with wider bandgaps, can be economically fabricated by the special plasma deposition process. The preferred process includes relatively low temperature, high pressure, glow discharge of silane in the presence of a high concentration of hydrogen gas.

Li, Yaun-Min (Langhorne, PA); Bennett, Murray S. (Langhorne, PA); Yang, Liyou (Plainsboro, NJ)

1997-07-08T23:59:59.000Z

410

Microelectronically fabricated LiCoO2/SiO2/polycrystalline-silicon power cells planarized by chemical mechanical polishing  

E-Print Network [OSTI]

. Integrating a power unit onto a silicon chip requires the implementation of a thin-film solid-state battery as a solid-state electrolyte in our integrated thin-film battery. This SiO2 electrolyte layer is thermally in the fabrication of the integrated solid-state thin-film lithium-ion battery. Polishing the polysilicon layer

411

An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance  

SciTech Connect (OSTI)

This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)

2014-07-07T23:59:59.000Z

412

Nitrogen doped zinc oxide thin film  

SciTech Connect (OSTI)

To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

Li, Sonny X.

2003-12-15T23:59:59.000Z

413

Atmospheric Pressure Chemical Vapor Deposition of High Silica SiO2-TiO2 Antireflective Thin Films for Glass Based Solar Panels  

SciTech Connect (OSTI)

The atmospheric pressure chemical vapor deposition (APCVD) of SiO2-TiO2 thin films employing [[(tBuO)3Si]2O-Ti(OiPr)2], which can be prepared from commercially available materials, results in antireflective thin films on float glass under industrially relevant manufacturing conditions. It was found that while the deposition temperature had an effect on the SiO2:TiO2 ratio, the thickness was dependent on the time of deposition. This study shows that it is possible to use APCVD employing a single source precursor containing titanium and silicon to produce thin films on float glass with high SiO2:TiO2 ratios.

Klobukowski, Erik R [ORNL; Tenhaeff, Wyatt E [ORNL; McCamy, James [PPG; Harris, Caroline [PPG; Narula, Chaitanya Kumar [ORNL

2013-01-01T23:59:59.000Z

414

Real-time process sensing and metrology in amorphous and selective area silicon plasma enhanced chemical vapor deposition using in situ  

E-Print Network [OSTI]

Real-time process sensing and metrology in amorphous and selective area silicon plasma enhanced Materials Processing, North Carolina State University, Raleigh, North Carolina 27695 Received 11 July 1996 silicon deposition. The ability of mass spectrometry to observe process faults in real time is also

Rubloff, Gary W.

415

Thin Film Packaging Solutions for High Efficiency OLED Lighting Products  

SciTech Connect (OSTI)

The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology was characterized as having less than 10% change in transmission during the 15,000 hour test period; (3) demonstrated thin film encapsulation of a phosphorescent OLED device with 1,500 hours of lifetime at 60 C and 80% RH; (4) demonstrated that a thin film laminate encapsulation, in addition to the direct thin film deposition process, of a polymer OLED device was another feasible packaging strategy for OLED lighting. The thin film laminate strategy was developed to mitigate defects, demonstrate roll-to-roll process capability for high volume throughput (reduce costs) and to support a potential commercial pathway that is less dependent upon integrated manufacturing since the laminate could be sold as a rolled good; (5) demonstrated that low cost 'blue' glass substrates could be coated with a siloxane barrier layer for planarization and ion-protection and used in the fabrication of a polymer OLED lighting device. This study further demonstrated that the substrate cost has potential for huge cost reductions from the white borosilicate glass substrate currently used by the OLED lighting industry; (6) delivered four-square feet of white phosphorescent OLED technology, including novel high efficiency devices with 82 CRI, greater than 50 lm/W efficiency, and more than 1,000 hours lifetime in a product concept model shelf; (7) presented and or published more than twenty internal studies (for private use), three external presentations (OLED workshop-for public use), and five technology-related external presentations (industry conferences-for public use); and (8) issued five patent applications, which are in various maturity stages at time of publication. Delivery of thin film encapsulated white phosphorescent OLED lighting technology remains a challenging technical achievement, and it seems that commercial availability of thin, bright, white OLED light that meets market requirements will continue to require research and development effort. However, there will be glass encapsulated white OLED lighting products commercialized in niche markets during the 2008 calendar year. This commercializ

None

2008-06-30T23:59:59.000Z

416

assisted grown silicon: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

417

acid modified silicone: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

418

athermal silicon microring: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

419

Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors  

SciTech Connect (OSTI)

The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

2009-04-23T23:59:59.000Z

420

Shape variation of micelles in polymer thin films  

SciTech Connect (OSTI)

The equilibrium properties of block copolymer micelles confined in polymer thin films are investigated using self-consistent field theory. The theory is based on a model system consisting of AB diblock copolymers and A homopolymers. Two different methods, based on the radius of gyration tensor and the spherical harmonics expansion, are used to characterize the micellar shape. The results reveal that the morphology of micelles in thin films depends on the thickness of the thin films and the selectivity of the confining surfaces. For spherical (cylindrical) micelles, the spherical (cylindrical) symmetry is broken by the presence of the one-dimensional confinement, whereas the top-down symmetry is broken by the selectivity of the confining surfaces. Morphological transitions from spherical or cylindrical micelles to cylinders or lamella are predicted when the film thickness approaches the micellar size.

Zhou, Jiajia, E-mail: zhou@uni-mainz.de; Shi, An-Chang, E-mail: shi@mcmaste.ca [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)] [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1 (Canada)

2014-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Off-axis dose response characteristics of an amorphous silicon electronic portal imaging device  

SciTech Connect (OSTI)

Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) have typically been calibrated to dose at central axis (CAX). Division of acquired images by the flood-field (FF) image that corrects for pixel sensitivity variation as well as open field energy-dependent off-axis response variation should result in a flat EPID response over the entire matrix for the same field size. While the beam profile can be reintroduced to the image by an additional correction matrix, the CAX EPID response to dose calibration factor is assumed to apply to all pixels in the detector. The aim of this work was to investigate the dose response of the Varian aS500 amorphous silicon detector across the entire detector area. First it was established that the EPID response across the panel became stable (within {approx}0.2%) for MU settings greater than {approx}200 MU. The EPID was then FF calibrated with a high MU setting of {approx}400 for all subsequent experiments. Whole detector images with varying MU settings from 2-500 were then acquired for two dose rates (300 and 600 MU/min) for 6 MV photons for two EPIDs. The FF corrected EPID response was approximately flat or uniform across the detector for greater than 100 MU delivered (within 0.5%). However, the off-axis EPID response was greater than the CAX response for small MU irradiations, giving a raised EPID profile. Up to 5% increase in response at 20 cm off-axis compared to CAX was found for very small MU settings for one EPID, while it was within 2% for the second (newer) EPID. Off-axis response nonuniformities attributed to detector damage were also found for the older EPID. Similar results were obtained with the EPID at 18 MV energy and operating in asynchronous mode (acquisition not synchronized with beam pulses), however the profiles were flatter and more irregular for the small MU irradiations. By moving the detector laterally and repeating the experiments, the increase in response off-axis was found to depend on the pixel position relative to the beam CAX. When the beam was heavily filtered by a phantom the off-axis response variation was reduced markedly to within 0.5% for all MU settings. Independent measurements of off-axis point doses with ion chamber did not show any change in off-axis factor with MUs. Measurements of beam quality (TMR{sub 20-10}) for MU settings of 2, 5, and 100 at central axis and at 15 cm off-axis could not explain the effect. The response change is unlikely to be significant for clinical IMRT verification with this imaging/acclerator system where MUs are of the order of 100-300, provided the detector does not exhibit radiation damage artifacts.

Greer, Peter B. [Calvary Mater Newcastle Hospital, Newcastle, New South Wales (Australia); University of Newcastle, Newcastle, New South Wales (Australia)

2007-10-15T23:59:59.000Z

422

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

1999-01-01T23:59:59.000Z

423

Method of improving field emission characteristics of diamond thin films  

DOE Patents [OSTI]

A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

Krauss, A.R.; Gruen, D.M.

1999-05-11T23:59:59.000Z

424

A comparison of thick film and thin film traffic stripes  

E-Print Network [OSTI]

Striys. . . Pigmented Bitusmn Stripes . Asphalt %uilt-Upa Striye vith Pigmented Portland Cement Mortar Cover Course 38 . ~ 41 Thin Film Stripes Used for Comparison Results of Comparing Thick Film Stripes and Thin Film Paint Stripes . ~ ~ ~ ~ ~ 43... was aspbaltio oonorets. The pavement in Test Areas 2y 3p and 4 vas portland cesmnh ooncrete, Two test areas (3 and 4) vere located in such manner as to provide uninterrupted flow of traffic over tbs entire length of the test area. The other two test areas (1...

Keese, Charles J

1952-01-01T23:59:59.000Z

425

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method is disclosed for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells. 1 fig.

Mitlitsky, F.; Truher, J.B.; Kaschmitter, J.L.; Colella, N.J.

1998-02-03T23:59:59.000Z

426

Fabrication of polycrystalline thin films by pulsed laser processing  

DOE Patents [OSTI]

A method for fabricating polycrystalline thin films on low-temperature (or high-temperature) substrates which uses processing temperatures that are low enough to avoid damage to the substrate, and then transiently heating select layers of the thin films with at least one pulse of a laser or other homogenized beam source. The pulse length is selected so that the layers of interest are transiently heated to a temperature which allows recrystallization and/or dopant activation while maintaining the substrate at a temperature which is sufficiently low to avoid damage to the substrate. This method is particularly applicable in the fabrication of solar cells.

Mitlitsky, Fred (Livermore, CA); Truher, Joel B. (San Rafael, CA); Kaschmitter, James L. (Pleasanton, CA); Colella, Nicholas J. (Livermore, CA)

1998-02-03T23:59:59.000Z

427

Study of Martensitic Phase transformation in a NiTiCu Thin Film...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy. Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape...

428

Tax Credits Give Thin-Film Solar a Big Boost | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Thin-Film Solar a Big Boost October 18, 2010 - 2:00pm Addthis MiaSol will expand its capacity to make its thin-film solar panels by more than ten times, thanks to two Recovery...

429

The development of a thin-film rollforming process for pharmaceutical continuous manufacturing  

E-Print Network [OSTI]

In this thesis, a continuous rollforming process for the folding of thin-films was proposed and studied as a key step in the continuous manufacturing of pharmaceutical tablets. HPMC and PEG based polymeric thin-films were ...

Slaughter, Ryan (Ryan R.)

2013-01-01T23:59:59.000Z

430

PID Failure of c-Si and Thin-Film Modules and Possible Correlation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents...

431

Epoxy/Single Walled Carbon Nanotube Nanocomposite Thin Films for Composites Reinforcement  

E-Print Network [OSTI]

This work is mainly focused upon the preparation, processing and evaluation of mechanical and material properties of epoxy/single walled carbon nanotube (SWCNT) nanocomposite thin films. B-staged epoxy/SWCNT nanocomposite thin films at 50% of cure...

Warren, Graham

2010-07-14T23:59:59.000Z

432

Characterization of LiNi?.?Mn?.?O? Thin Film Cathode Prepared by Pulsed Laser Deposition  

E-Print Network [OSTI]

LiNi?.?Mn?.?O? thin films have been grown by pulsed laser deposition (PLD) on stainless steel (SS) substrates. The crystallinity and structure of thin films were investigated by X-ray diffraction (XRD). Microstructure and ...

Xia, Hui

433

Adsorption of iso-/n-butane on an Anatase Thin Film: A Molecular...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study. Adsorption of iso-n-butane on an Anatase Thin Film: A Molecular Beam Scattering and TDS Study....

434

Influence of samaria doping on the resistance of ceria thin films...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

doping on the resistance of ceria thin films and its implications to the planar oxygen sensing devices. Influence of samaria doping on the resistance of ceria thin films and...

435

Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carrier Dynamics in a-Fe2O3 (0001) Thin Films and Single Crystals Probed by Femtosecond Transient Absorption and Reflectivity. Carrier Dynamics in a-Fe2O3 (0001) Thin Films and...

436

Two-color Laser Desorption of Nanostructured MgO Thin Films....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

437

Initiated chemical vapor deposition of polymeric thin films : mechanism and applications  

E-Print Network [OSTI]

Initiated chemical vapor deposition (iCVD) is a novel technique for depositing polymeric thin films. It is able to deposit thin films of application-specific polymers in one step without using any solvents. Its uniqueness ...

Chan, Kelvin, Ph. D. Massachusetts Institute of Technology

2005-01-01T23:59:59.000Z

438

Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly. Iron Oxide-Gold Core-Shell Nanoparticles and Thin-Film Assembly. Abstract: This paper reports findings of an...

439

Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)  

SciTech Connect (OSTI)

Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

Gessert, T. A.

2010-09-01T23:59:59.000Z

440

A non-resonant dielectric metamaterial for enhancement of thin-film solar cells  

E-Print Network [OSTI]

Recently, we have suggested dielectric metamaterial composed as an array of submicron dielectric spheres located on top of an amorphous thin-film solar cell. We have theoretically shown that this metamaterial can decrease the reflection and simultaneously can suppress the transmission through the photovoltaic layer because it transforms the incident plane wave into a set of focused light beams. This theoretical concept has been strongly developed and experimentally confirmed in the present paper. Here we consider the metamaterial for oblique angle illumination, redesign the solar cell and present a detailed experimental study of the whole structure. In contrast to our precedent theoretical study we show that our omnidirectional light-trapping structure may operate better than the optimized flat coating obtained by plasma-enhanced chemical vapor deposition.

Omelyanovich, Mikhail; Simovski, Constantin

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby  

DOE Patents [OSTI]

A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

Wu, Xuanzhi (Golden, CO); Sheldon, Peter (Lakewood, CO)

2000-01-01T23:59:59.000Z

442

Electrochemical deposition and characterization of Ni-P alloy thin films  

SciTech Connect (OSTI)

Nickel phosphorus (Ni-P) alloy thin films were prepared by electrodeposition on pre-cleaned copper substrates using a potentiostatic cathodic electrodeposition method from sulfate electrolyte baths at various sodium hypophosphite (NaH{sub 2}PO{sub 2}) concentrations. X-ray diffraction studies reveal polycrystalline cubic alloys at low concentrations of phosphorus (< 13.5 at.%) and these transformed into amorphous alloys at higher concentrations. X-ray photoelectron spectra show the presence of Ni{sub 2}p and P{sub 2}p lines corresponding to their binding energies. Scanning electron microscopic studies reveal spherical shaped grains at low phosphorus contents and modules of cauliflower type morphology at higher phosphorus concentrations. The effects of phosphorus concentration on the crystal structure, composition and morphology are studied and discussed.

Mahalingam, T. [Department of Physics, Alagappa University, Karaikudi, 630 003 (India) and Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon 443-749 (Korea, Republic of)]. E-mail: maha51@rediffmail.com; Raja, M. [Department of Physics, Alagappa University, Karaikudi, 630 003 (India); Thanikaikarasan, S. [Department of Physics, Alagappa University, Karaikudi, 630 003 (India); Sanjeeviraja, C. [Department of Physics, Alagappa University, Karaikudi, 630 003 (India); Velumani, S. [Departamento de Fisica, ITESM-Campus Monterrey, Nuevo Leon, C.P. 64849 (Mexico); Moon, Hosun [Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon 443-749 (Korea, Republic of); Kim, Yong Deak [Department of Electrical and Computer Engineering, College of Information Technology, Ajou University, Suwon 443-749 (Korea, Republic of)

2007-08-15T23:59:59.000Z

443

Microstructure and properties of copper thin films on silicon substrates  

E-Print Network [OSTI]

on Si (100) and Si (110) substrates, respectively. Single crystal Cu (111) films have a high density of growth twins, oriented parallel to the substrate surface due to low twin boundary energy and a high deposition rate. The yield strengths...

Jain, Vibhor Vinodkumar

2009-05-15T23:59:59.000Z

444

Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors  

SciTech Connect (OSTI)

Metglas{sup TM} 2826MB foils of 25-30 {mu}m thickness with the composition of Fe{sub 40}Ni{sub 38}Mo{sub 4}B{sub 18} have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of {approx}3 {mu}m thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum (Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magnetic properties of FeNi is also observed as the Mo dopant level increases. The coercivity of FeNi films doped with Mo decreases to a value less than one third of the value without dopant. Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropy properties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The film material that is fabricated using an optimized process is magnetically as soft as amorphous Metglas{sup TM} 2826MB with a coercivity of less than 40 Am{sup -1}. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin film materials on their magnetic properties.

Liang Cai; Gooneratne, Chinthaka; Cha, Dongkyu; Chen Long; Kosel, Jurgen [Computer Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal 23955 (Saudi Arabia); Gianchandani, Yogesh [Department of Electrical Engineering and Computer Science, 1301 Beal Ave., University of Michigan, Ann Arbor, Michigan 48109 (United States)

2012-12-01T23:59:59.000Z

445

Barium ferrite thin film media with perpendicular c-axis orientation and small grain size  

E-Print Network [OSTI]

Barium ferrite thin film media with perpendicular c-axis orientation and small grain size Zailong, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 Barium ferrite thin films with perpendicular c conditions. The c-axis orientation of barium ferrite thin films is most sensitive to the oxygen partial

Laughlin, David E.

446

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a)  

E-Print Network [OSTI]

An integrated thin-film thermo-optic waveguide beam deflector Suning Tang,a) Bulang Li, and Xinghua for publication 16 February 2000 We have demonstrated the operation of a thin-film thermo-optical beam deflector in a three-layer optical planar waveguide. The fabricated waveguide beam deflector consists of a thin-film Si

Chen, Ray

447

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b  

E-Print Network [OSTI]

Design and fabrication of photonic crystal thin film photovoltaic cells Guillaume Gomarda,b , Ounsi of an absorbing planar photonic crystal within a thin film photovoltaic cell. The devices are based on a stack with large areas. Keywords: Photonic crystal, Photovoltaic solar cell, Thin film solar cell, Hydrogenated

Paris-Sud XI, Université de

448

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells  

E-Print Network [OSTI]

Performance predictions for monolithic, thin-film CdTe/Ge tandem solar cells D.L. Pulfrey*, J. Dell): pulfrey@ece.ubc.ca ABSTRACT Cadmium telluride thin-film solar cells are now commercially available be attainable. 1. INTRODUCTION Thin film solar cells based on polycrystalline CdTe have been investigated

Pulfrey, David L.

449

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS  

E-Print Network [OSTI]

EARTH ABUNDANT MATERIALS FOR HIGH EFFICIENCY HETEROJUNCTION THIN FILM SOLAR CELLS Yun Seog Lee 1; * Corresponding author: buonassisi@mit.edu; ABSTRACT We investigate earth abundant materials for thin- film solar cuprous oxide (Cu2O) as a prototype candidate for investigation as an absorber layer in thin film solar

Ceder, Gerbrand

450

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle  

E-Print Network [OSTI]

LBIC ANALYSIS OF THIN-FILM POLYCRYSTALLINE SOLAR CELLS James R. Sites and Timothy J. Nagle Physics response map, was developed and used to map defects in thin-film solar cells [4]. Improvements to the two) measurements are providing a direct link between the spatial non-uniformities inherent in thin-film

Sites, James R.

451

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells  

E-Print Network [OSTI]

Femtosecond laser ablation of indium tin-oxide narrow grooves for thin film solar cells Qiumei Bian in the fabrication and assembly of thin film solar cells. Using a femtosecond (fs) laser, we selectively removed a unique scheme to ablate the indium tin-oxide layer for the fabrication of thin film solar cells

Van Stryland, Eric

452

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS  

E-Print Network [OSTI]

DISSERTATION ELECTRON-REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS Submitted by Kuo-Jui Hsiao ELECTRON- REFLECTOR STRATEGY FOR CdTe THIN-FILM SOLAR CELLS BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS SOLAR CELLS The CdTe thin-film solar cell has a large absorption coefficient and high theoretical

Sites, James R.

453

DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME  

E-Print Network [OSTI]

DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2

Hart, Gus

454

Josephson junction in a thin film V. G. Kogan, V. V. Dobrovitski, and J. R. Clem  

E-Print Network [OSTI]

Josephson junction in a thin film V. G. Kogan, V. V. Dobrovitski, and J. R. Clem Ames Laboratory The phase difference (y) for a vortex at a line Josephson junction in a thin film attenuates at large was normal to the film faces unlike traditional thin-film large- area Josephson junctions in which

Mints, Roman G.

455

Metal-black scattering centers to enhance light harvesting by thin-film solar cells  

E-Print Network [OSTI]

Metal-black scattering centers to enhance light harvesting by thin-film solar cells Deep Panjwania as scattering centers to increase the effective optical thickness of thin-film solar cells. The particular type. Gold-black was deposited on commercial thin-film solar cells using a thermal evaporator in nitrogen

Peale, Robert E.

456

Microwave plasma assisted supersonic gas jet deposition of thin film materials  

DOE Patents [OSTI]

An apparatus for fabricating thin film materials utilizing high speed gas dynamics relies on supersonic free jets of carrier gas to transport depositing vapor species generated in a microwave discharge to the surface of a prepared substrate where the vapor deposits to form a thin film. The present invention generates high rates of deposition and thin films of unforeseen high quality at low temperatures.

Schmitt, III, Jerome J. (New Haven, CT); Halpern, Bret L. (Bethany, CT)

1993-01-01T23:59:59.000Z

457

Transition from Irradiation-Induced Amorphization to Crystallization...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide. Transition from Irradiation-Induced Amorphization to Crystallization in...

458

Stress and Moisture Effects on Thin Film Buckling Delamination  

E-Print Network [OSTI]

­2 GPa compres- sive residual stresses were sputter deposited on top of thin (below 100 nm) copper superlayer with com- pressive residual stress was sputter deposited on top of the films in order to help Mechanics 2006 Abstract Deposition processes control the properties of thin films; they can also introduce

Volinsky, Alex A.

459

Perovskite phase thin films and method of making  

DOE Patents [OSTI]

The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

Boyle, Timothy J. (Albuquerque, NM); Rodriguez, Mark A. (Albuquerque, NM)

2000-01-01T23:59:59.000Z

460

Critical fields in ferromagnetic thin films: Identification of four regimes  

E-Print Network [OSTI]

Critical fields in ferromagnetic thin films: Identification of four regimes Rub´en Cantero­film elements is a paradigm for a multi­scale pattern­forming system. On one hand, there is a material length functional ceases to be positive definite. The degenerate subspace consists of the "unstable modes

Otto, Felix

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

Derzon, Dora K. (Albuquerque, NM); Arnold, Jr., Charles (Albuquerque, NM)

1997-01-01T23:59:59.000Z

462

Preparation and characterization of TL-based superconducting thin films  

E-Print Network [OSTI]

A simple method for growth of Tl-based superconducting thin films is described. In this method, the precursor was prepared in a vacuum chamber by deposition of Ba, Ca and Cu metals or a Ba-Ca alloy and Cu metal. The precursor was then oxidized...

Wang, Pingshu

1995-01-01T23:59:59.000Z

463

Method of preparing thin film polymeric gel electrolytes  

DOE Patents [OSTI]

Novel hybrid thin film electrolyte is described, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1}cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

Derzon, D.K.; Arnold, C. Jr.

1997-11-25T23:59:59.000Z

464

Method for double-sided processing of thin film transistors  

DOE Patents [OSTI]

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2008-04-08T23:59:59.000Z

465

Front and backside processed thin film electronic devices  

DOE Patents [OSTI]

This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI); Yuan, Hao-Chih (Lakewood, CO); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI)

2012-01-03T23:59:59.000Z

466

Front and backside processed thin film electronic devices  

DOE Patents [OSTI]

This invention provides methods for fabricating thin film electronic devices with both front- and backside processing capabilities. Using these methods, high temperature processing steps may be carried out during both frontside and backside processing. The methods are well-suited for fabricating back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

Yuan, Hao-Chih (Madison, WI); Wang, Guogong (Madison, WI); Eriksson, Mark A. (Madison, WI); Evans, Paul G. (Madison, WI); Lagally, Max G. (Madison, WI); Ma, Zhenqiang (Middleton, WI)

2010-10-12T23:59:59.000Z

467

Chemical analysis of thin films at Sandia National Laboratories  

SciTech Connect (OSTI)

The characterization of thin films produced by chemical and physical vapor deposition requires special analytical techniques. When the average compositions of the films are required, dissolution of the thin films and measurement of the concentrations of the solubilized species is the appropriate analytical approach. In this report techniques for the wet chemical analysis of thin films of Si:Al, P/sub 2/O/sub 5/:SiO/sub 2/, B/sub 2/O/sub 3/:SiO/sub 2/, TiB/sub x/ and TaB/sub x/ are described. The analyses are complicated by the small total quantities of these analytes present in the films, the refractory characters of these analytes, and the possibility of interferences from the substrates on which the films are deposited. Etching conditions are described which dissolve the thin films without introducing interferences from the substrates. A chemical amplification technique and inductively coupled plasma atomic emission spectrometry are shown to provide the sensitivity required to measure the small total quantities (micrograms to milligrams) of analytes present. Also the chemical analysis data has been used to calibrate normal infrared absorption spectroscopy to give fast estimates of the phosphorus and/or boron dopant levels in thin SiO/sub 2/ films.

Tallant, D.R.; Taylor, E.L.

1980-05-01T23:59:59.000Z

468

Micromachined thin-film gas flow sensor for microchemical reactors  

E-Print Network [OSTI]

Micromachined thin-film gas flow sensor for microchemical reactors W C Shin and R S Besser New applications not practical before such as highly compact, non-invasive pressure sensors, accelerometers and gas power consumption, fast response, and low-cost batch production [1-4]. Spurred by the development

Besser, Ronald S.

469

Thin Films and the Systems-Driven Approach  

SciTech Connect (OSTI)

A systems-driven approach is used to discern tradeoffs between cost and efficiency improvements for various thin-film module technologies and designs. Prospects for reduced system cost via such strategies are enhanced as balance-of-systems costs decline, and some strategies are identified for greater research focus.

Zweibel, K.

2005-01-01T23:59:59.000Z

470

Long-wave models of thin film fluid dynamics  

E-Print Network [OSTI]

Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.

A. J. Roberts

1994-11-04T23:59:59.000Z

471

Thin crystalline silicon solar cells based on epitaxial films grown at 165C by RF PECVD  

E-Print Network [OSTI]

1 Thin crystalline silicon solar cells based on epitaxial films grown at 165°C by RF PECVD Romain temperatures. Keywords : Low temperature, epitaxy, PECVD, Si thin film, Solar cell hal-00749873,version1-25Nov shortage until 2010. Research on epitaxial growth for thin film crystalline silicon solar cells has gained

472

Silicon Solar Cell Light-Trapping Using Defect Mode Photonic Kelsey A. Whitesell*a  

E-Print Network [OSTI]

Silicon Solar Cell Light-Trapping Using Defect Mode Photonic Crystals Kelsey A. Whitesell to enhance performance of thin film solar cells because of their unique ability to control light. We show for light trapping in thin film photovoltaics. Keywords: photonic crystals, defect, silicon, solar cell

Atwater, Harry

473

Theoretical simulations of protective thin film Fabry-Pérot filters for integrated optical elements of diode pumped alkali lasers (DPAL)  

SciTech Connect (OSTI)

The lifetime of Diode-Pumped Alkali Lasers (DPALs) is limited by damage initiated by reaction of the glass envelope of its gain medium with rubidium vapor. Rubidium is absorbed into the glass and the rubidium cations diffuse through the glass structure, breaking bridging Si-O bonds. A damage-resistant thin film was developed enhancing high-optical transmission at natural rubidium resonance input and output laser beam wavelengths of 780 nm and 795 nm, while protecting the optical windows of the gain cell in a DPAL. The methodology developed here can be readily modified for simulation of expected transmission performance at input pump and output laser wavelengths using different combination of thin film materials in a DPAL. High coupling efficiency of the light through the gas cell was accomplished by matching the air-glass and glass-gas interfaces at the appropriate wavelengths using a dielectric stack of high and low index of refraction materials selected to work at the laser energies and protected from the alkali metal vapor in the gain cell. Thin films as oxides of aluminum, zirconium, tantalum, and silicon were selected allowing the creation of Fabry-Perot optical filters on the optical windows achieving close to 100% laser transmission in a solid optic combination of window and highly reflective mirror. This approach allows for the development of a new whole solid optic laser.

Quarrie, L., E-mail: Lindsay.Quarrie@l-3com.com, E-mail: lindsay.o.quarrie@gmail.com [New Mexico Institute of Mining and Technology, Department of Materials Engineering, 801 LeRoy Place, Socorro, NM 87801 (United States); Air Force Research Laboratory, AFRL/RDLC Laser CoE, 3550 Aberdeen Avenue SE, Kirtland AFB, NM 87117-5776 (United States)

2014-09-15T23:59:59.000Z

474

Manipulating hybrid structures of polymer/a-Si for thin film solar cells  

SciTech Connect (OSTI)

A series of uniform polymer/amorphous silicon hybrid structures have been fabricated by means of solution-casting for polymer and radio frequency excited plasma enhanced chemical vapour deposition for amorphous silicon (a-Si:H). Poly(3,4-ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) functioned as a photoactive donor, while the silicon layer acted as an acceptor. It is found that matching the hole mobility of the polymer to the electron mobility of amorphous silicon is critical to improve the photovoltaic performance from hybrid cells. A three-layer p-i-n structure of ITO/PEDOT:PSS(200?nm)/i-Si(450?nm)/n-Si(200?nm)/Al with a power conversion efficiency of 4.78% under a standard test condition was achieved.

Peng, Ying; He, Zhiqun, E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk; Zhang, Zhi; Liang, Chunjun [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Diyaf, Adel; Ivaturi, Aruna; Wilson, John I. B., E-mail: zhqhe@bjtu.edu.cn, E-mail: J.I.B.Wilson@hw.ac.uk [SUPA, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

2014-03-10T23:59:59.000Z

475

Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties  

SciTech Connect (OSTI)

Thin film capacitors were fabricated by sputtering TiN-Y doped HfO{sub 2}-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO{sub 2} layers by simultaneously sputtering from Y{sub 2}O{sub 3} and HfO{sub 2} sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.

Olsen, T. [NaMLab gGmbH, 01187 Dresden (Germany); Department of Electrical and Computer Engineering, University of Alberta, Edmonton T6G 2V4 (Canada); Schroeder, U.; Mueller, S.; Krause, A.; Martin, D.; Singh, A. [NaMLab gGmbH, 01187 Dresden (Germany); Mueller, J. [Fraunhofer CNT, 01099 Dresden (Germany); Geidel, M. [Institute of Semiconductors and Microsystems, Technische Universitaet Dresden, 01062 Dresden (Germany); Mikolajick, T. [NaMLab gGmbH, 01187 Dresden (Germany); Institute of Semiconductors and Microsystems, Technische Universitaet Dresden, 01062 Dresden (Germany)

2012-08-20T23:59:59.000Z

476

Spin Coated Plasmonic Nanoparticle Interfaces for Photocurrent Enhancement in Thin Film Si Solar Cells  

E-Print Network [OSTI]

Nanoparticle (NP) arrays of noble metals strongly absorb light in the visible to infrared wavelengths through resonant interactions between the incident electromagnetic field and the metal's free electron plasma. Such plasmonic interfaces enhance light absorption and photocurrent in solar cells. We report a cost effective and scalable room temperature/pressure spin-coating route to fabricate broadband plasmonic interfaces consisting of silver NPs. The NP interface yields photocurrent enhancement (PE) in thin film silicon devices by up to 200% which is significantly greater than previously reported values. For coatings produced from Ag nanoink containing particles with average diameter of 40 nm, an optimal NP surface coverage of 7% was observed. Scanning electron microscopy of interface morphologies revealed that for low surface coverage, particles are well-separated, resulting in broadband PE. At higher surface coverage, formation of particle strings and clusters caused red-shifting of the PE peak and a narro...

Israelowitz, Miriam; Cong, Tao; Sureshkumar, Radhakrishna

2013-01-01T23:59:59.000Z

477

Outdoor Performance of a Thin-Film Gallium-Arsenide Photovoltaic Module  

SciTech Connect (OSTI)

We deployed a 855 cm2 thin-film, single-junction gallium arsenide (GaAs) photovoltaic (PV) module outdoors. Due to its fundamentally different cell technology compared to silicon (Si), the module responds differently to outdoor conditions. On average during the test, the GaAs module produced more power when its temperature was higher. We show that its maximum-power temperature coefficient, while actually negative, is several times smaller in magnitude than that of a Si module used for comparison. The positive correlation of power with temperature in GaAs is due to temperature-correlated changes in the incident spectrum. We show that a simple correction based on precipitable water vapor (PWV) brings the photocurrent temperature coefficient into agreement with that measured by other methods and predicted by theory. The low operating temperature and small temperature coefficient of GaAs give it an energy production advantage in warm weather.

Silverman, T. J.; Deceglie, M. G.; Marion, B.; Cowley, S.; Kayes, B.; Kurtz, S.

2013-06-01T23:59:59.000Z

478

Molecular doping for control of gate bias stress in organic thin film transistors  

SciTech Connect (OSTI)

The key active devices of future organic electronic circuits are organic thin film transistors (OTFTs). Reliability of OTFTs remains one of the most challenging obstacles to be overcome for broad commercial applications. In particular, bias stress was identified as the key instability under operation for numerous OTFT devices and interfaces. Despite a multitude of experimental observations, a comprehensive mechanism describing this behavior is still missing. Furthermore, controlled methods to overcome these instabilities are so far lacking. Here, we present the approach to control and significantly alleviate the bias stress effect by using molecular doping at low concentrations. For pentacene and silicon oxide as gate oxide, we are able to reduce the time constant of degradation by three orders of magnitude. The effect of molecular doping on the bias stress behavior is explained in terms of the shift of Fermi Level and, thus, exponentially reduced proton generation at the pentacene/oxide interface.

Hein, Moritz P., E-mail: hein@iapp.de; Lüssem, Björn; Jankowski, Jens; Tietze, Max L.; Riede, Moritz K. [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany)] [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Zakhidov, Alexander A. [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)] [Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany); Leo, Karl [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany) [Institut für Angewandte Photophysik, Technische Universität Dresden, George-Bähr-Straße 1, 01069 Dresden (Germany); Fraunhofer COMEDD, Maria-Reiche-Str. 2, 01109 Dresden (Germany)

2014-01-06T23:59:59.000Z

479

In–Ga–Zn–O thin film transistor with HfO{sub 2} gate insulator prepared using various O{sub 2}/(Ar + O{sub 2}) gas ratios  

SciTech Connect (OSTI)

We have investigated the effect of the deposition of an HfO{sub 2} thin film as a gate insulator with different O{sub 2}/(Ar + O{sub 2}) gas ratios using RF magnetron sputtering. The HfO{sub 2} thin film affected the device performance of amorphous indium–gallium–zinc oxide transistors. The performance of the fabricated transistors improved monotonously with increasing O{sub 2}/(Ar + O{sub 2}) gas ratio: at a ratio of 0.35, the field effect mobility of the amorphous InGaZnO thin film transistors was improved to 7.54 cm{sup 2}/(V s). Compared to those prepared with an O{sub 2}/(Ar + O{sub 2}) gas ratio of 0.05, the field effect mobility of the amorphous InGaZnO thin film transistors was increased to 1.64 cm{sup 2}/(V s) at a ratio of 0.35. This enhancement in the field effect mobility was attributed to the reduction of the root mean square roughness of the gate insulator layer, which might result from the trap states and surface scattering of the gate insulator layer at the lower O{sub 2}/(Ar + O{sub 2}) gas ratio.

Jo, Young Je [WCU Department of Printed Electronics, Sunchon National University, Chonnam 540-742 (Korea, Republic of)] [WCU Department of Printed Electronics, Sunchon National University, Chonnam 540-742 (Korea, Republic of); Lee, In-Hwan [School of Advanced Materials Engineering, Chonbuk National University, Chonju 561-756 (Korea, Republic of)] [School of Advanced Materials Engineering, Chonbuk National University, Chonju 561-756 (Korea, Republic of); Kwak, Joon Seop, E-mail: jskwak@sunchon.ac.kr [WCU Department of Printed Electronics, Sunchon National University, Chonnam 540-742 (Korea, Republic of)

2012-10-15T23:59:59.000Z

480

Performance Test of Amorphous Silicon Modules in Different Climates - Year Four: Progress in Understanding Exposure History Stabilization Effects; Preprint  

SciTech Connect (OSTI)

The four-year experiment involved three identical sets of thin-film a-Si modules from various manufacturers deployed outdoors simultaneously in three sites with distinct climates. Each PV module set spent a one-year period at each site before a final period at the original site where it was first deployed.

Ruther, R.; Montenegro, A. A.; del Cueto, J.; Rummel, S.; Anderberg, A.; von Roedern, B.; Tamizh-Mani, G.

2008-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "amorphous silicon thin-film" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Deposition of device quality, low hydrogen content, hydrogenated amorphous silicon at high deposition rates  

DOE Patents [OSTI]

A method of fabricating device quality, thin-film a-Si:H for use as semiconductor material in photovoltaic and other devices, comprising in any order; positioning a substrate in a vacuum chamber adjacent a plurality of heatable filaments with a spacing distance L between the substrate and the filaments; heating the filaments to a temperature that is high enough to obtain complete decomposition of silicohydride molecules that impinge said filaments into Si and H atomic species; providing a flow of silicohydride gas, or a mixture of silicohydride gas containing Si and H, in said vacuum chamber while maintaining a pressure P of said gas in said chamber, which, in combination with said spacing distance L, provides a P.times.L product in a range of 10-300 mT-cm to ensure that most of the Si atomic species react with silicohydride molecules in the gas before reaching the substrate, to thereby grow a a-Si:H film at a rate of at least 50 .ANG./sec.; and maintaining the substrate at a temperature that balances out-diffusion of H from the growing a-Si:H film with time needed for radical species containing Si and H to migrate to preferred bonding sites.

Mahan, Archie Harvin (Golden, CO); Molenbroek, Edith C. (Rotterdam, NL); Gallagher, Alan C. (Louisville, CO); Nelson, Brent P. (Golden, CO); Iwaniczko, Eugene (Lafayette, CO); Xu, Yueqin (Golden, CO)

2002-01-01T23:59:59.000Z

482

New Approaches for Passivation of Crystalline and Amorphous Silicon: Cooperative Research and Development Final Report, CRADA Number CRD-09-351  

SciTech Connect (OSTI)

New approaches of passivating crystalline, multicrystalline, and amorphous silicon will be explored. These will include the use of aqueous solution of KCN and a proprietary composition formulated by Mallinckrodt Baker, Inc. The surface passivation will be compared with that provided by an iodine-ethanol solution, and bulk passivation will be compared with that of H-passivation obtained by silicon nitride, in a fire-through process.

Sopori, B.

2012-09-01T23:59:59.000Z

483

E-Print Network 3.0 - amorphous-silicon solar cells Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with silver nanoparticlessolar cells with silver nanoparticles C. Eminian, F... silicon solar cells to achieve light trapping. Nanoparticles have a size 200nm and are...

484

antibiotic-impregnated silicone rubber: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SOLAR CELLS FROM THE POROUS SILICON PROCESS APPLYING CONVECTION for the first time to monocrystalline Si thin-film solar cells from the porous silicon (PSI) layer transfer for...

485

Mono-textured nanocrystalline thin films with pronounced stress-gradients: On the role of grain boundaries in the stress evolution  

SciTech Connect (OSTI)

The origins of residual stress gradients in nanocrystalline thin films, especially the role of grain size and texture gradients, are still not fully understood. In this work, the stress evolution in exemplary nanocrystalline TiN thin films with one and two fiber texture components as well as in homogeneous amorphous SiO{sub x} films is analyzed using wafer curvature as well as laboratory and synchrotron cross-sectional nanobeam X-ray diffraction techniques. The stress evolution across the film thickness is attributed to the evolutionary nature of microstructural development at the individual growth stages. While the effect of the smooth crystallographic texture changes during growth is only of minor importance, as this does not significantly affect the dominant stress formation mechanisms, the change in the grain size accompanied by a change of the volume fraction of grain boundaries plays a decisive role in the stress development across the film thickness. This is demonstrated on the monotextured thin films, where the residual stresses scale with the apparent grain size. These findings are validated also by the investigations of stress profiles in homogeneous amorphous SiO{sub x} films exhibiting no grain boundaries.

Daniel, R., E-mail: Rostislav.Daniel@unileoben.ac.at; Mitterer, C. [Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben (Austria); Jäger, E.; Sartory, B. [Materials Center Leoben Forschung GmbH, Leoben (Austria); Todt, J.; Keckes, J. [Department of Materials Physics, Montanuniversität Leoben and Erich Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria)

2014-05-28T23:59:59.000Z

486

Thin film battery and method for making same  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between -15.degree. C. and 150.degree. C.

Bates, John B. (Oak Ridge, TN); Dudney, Nancy J. (Knoxville, TN); Gruzalski, Greg R. (Oak Ridge, TN); Luck, Christopher F. (Knoxville, TN)

1994-01-01T23:59:59.000Z

487

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1999-02-09T23:59:59.000Z

488

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

Albright, Scot P. (Lakewood, CO); Chamberlin, Rhodes (El Paso, TX)

1997-10-07T23:59:59.000Z

489

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1997-10-07T23:59:59.000Z

490

Thin film photovoltaic device and process of manufacture  

DOE Patents [OSTI]

Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

Albright, S.P.; Chamberlin, R.

1999-02-09T23:59:59.000Z

491

Thin film battery and method for making same  

DOE Patents [OSTI]

Described is a thin-film battery, especially a thin-film microbattery, and a method for making same having application as a backup or primary integrated power source for electronic devices. The battery includes a novel electrolyte which is electrochemically stable and does not react with the lithium anode and a novel vanadium oxide cathode. Configured as a microbattery, the battery can be fabricated directly onto a semiconductor chip, onto the semiconductor die or onto any portion of the chip carrier. The battery can be fabricated to any specified size or shape to meet the requirements of a particular application. The battery is fabricated of solid state materials and is capable of operation between [minus]15 C and 150 C. 9 figs.

Bates, J.B.; Dudney, N.J.; Gruzalski, G.R.; Luck, C.F.

1994-08-16T23:59:59.000Z

492

TI--CR--AL--O thin film resistors  

DOE Patents [OSTI]

Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

Jankowski, Alan F. (Livermore, CA); Schmid, Anthony P. (Solana Beach, CA)

2000-01-01T23:59:59.000Z

493

Lithium implantation at low temperature in silicon for sharp buried amorphous layer formation and defect engineering  

SciTech Connect (OSTI)

The crystalline-to-amorphous transformation induced by lithium ion implantation at low temperature has been investigated. The resulting damage structure and its thermal evolution have been studied by a combination of Rutherford backscattering spectroscopy channelling (RBS/C) and cross sectional transmission electron microscopy (XTEM). Lithium low-fluence implantation at liquid nitrogen temperature is shown to produce a three layers structure: an amorphous layer surrounded by two highly damaged layers. A thermal treatment at 400 Degree-Sign C leads to the formation of a sharp amorphous/crystalline interfacial transition and defect annihilation of the front heavily damaged layer. After 600 Degree-Sign C annealing, complete recrystallization takes place and no extended defects are left. Anomalous recrystallization rate is observed with different motion velocities of the a/c interfaces and is ascribed to lithium acting as a surfactant. Moreover, the sharp buried amorphous layer is shown to be an efficient sink for interstitials impeding interstitial supersaturation and {l_brace}311{r_brace} defect formation in case of subsequent neon implantation. This study shows that lithium implantation at liquid nitrogen temperature can be suitable to form a sharp buried amorphous layer with a well-defined crystalline front layer, thus having potential applications for defects engineering in the improvement of post-implantation layers quality and for shallow junction formation.

Oliviero, E. [CSNSM, CNRS-IN2P3-Universite Paris-Sud, Batiment 108, 91405 Orsay (France); David, M. L.; Beaufort, M. F.; Barbot, J. F. [Institut Pprime, CNRS-Universite de Poitiers-ENSMA, SP2MI, Bd Marie et Pierre Curie, BP30179, 86962 Futuroscope-Chasseneuil Cedex (France); Fichtner, P. F. P. [Departamento de Metalurgia, Universidade Federal do Rio Grande do Sul, Av Bento Goncalves 9500, Caixa Postal 15051, 90035-190 Porto Alegre, RS (Brazil)

2013-02-28T23:59:59.000Z

494

Strain mapping on gold thin film buckling and siliconblistering  

SciTech Connect (OSTI)

Stress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.

Goudeau, P.; Tamura, N.; Parry, G.; Colin, J.; Coupeau, C.; Cleymand, F.; Padmore, H.

2005-09-01T23:59:59.000Z

495

Preparation of redox polymer cathodes for thin film rechargeable batteries  

DOE Patents [OSTI]

The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

Skotheim, T.A.; Lee, H.S.; Okamoto, Yoshiyuki.

1994-11-08T23:59:59.000Z

496

Synthesis of thin films and materials utilizing a gaseous catalyst  

DOE Patents [OSTI]

A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

2013-10-29T23:59:59.000Z

497

Optical sensors and multisensor arrays containing thin film electroluminescent devices  

DOE Patents [OSTI]

Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

2001-12-18T23:59:59.000Z

498

Fabrication and testing of thermoelectric thin film devices  

SciTech Connect (OSTI)

Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

1996-03-01T23:59:59.000Z

499

Substrates suitable for deposition of superconducting thin films  

DOE Patents [OSTI]

A superconducting system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

Feenstra, Roeland (Oak Ridge, TN); Boatner, Lynn A. (Oak Ridge, TN)

1993-01-01T23:59:59.000Z

500

Thin film adhesion by nanoindentation-induced superlayers. Final report  

SciTech Connect (OSTI)

This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

Gerberich, William W.; Volinsky, A.A.

2001-06-01T23:59:59.000Z