National Library of Energy BETA

Sample records for amf nsa sgp

  1. Characterization of Surface Albedo Over the ARM SGP CART and the NSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Surface Albedo Over the ARM SGP CART and the NSA Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Surface albedo is needed for satellite remote sensing of the surface radiation budget and for climate modelling. Determination of areal-mean surface albedo is challenging. Over the Southern Great Plains (SGP) site, a

  2. ARM - NSA Calendar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calendar NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact...

  3. ARM - NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  4. ARM - NSA Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaNSA Operations NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site...

  5. ARM - NSA Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaNSA Science NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA...

  6. NSA Broadband Instrument Study: Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Instrument Study: Update PI: Scott Richardson, NSA SST Co-Is: Chuck Long, Tom Stoffel, Ells Dutton, Joe Michalsky, Jeff Zirzow... Background * NSA last site where Diffuse Correction VAP applied * In analyses of results prior to release, an apparent problem surfaced... Typical Corrections: SGP All POSITIVE corrections Typical Corrections: TWP All POSITIVE corrections NSA Corrections Some NEGATIVE Full corrections SGP Winter Corrections All POSITIVE corrections NSA Broadband Operations *

  7. NSA Atqasuk Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inactive NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Atqasuk Facility-Inactive Location: 70° 28' 19.11" N, 157° 24' 28.99" W Altitude: 20 meters The Atqasuk facility, which was part of the larger ARM Climate Research Facility (ARM) North Slope of Alaska site, was installed the summer of

  8. NSA Barrow Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow Facility NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the

  9. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  10. AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Shouxian Deployment AMF Home Shouxian Home Data Plots and Baseline Instruments ... AMF Poster, Mandarin Version News Campaign Images AMF Deployment, Shouxian, China In its ...

  11. ARM - AMF Architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Architecture The AMF1 sets up in Heselbach, Germany The AMF1...

  12. ARM - AMF Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Contacts Science AMF1 Site Scientist - Mark Miller, Rutgers...

  13. ARM - AMF Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Operations Members of the AMF1 installation team prepare the...

  14. ARM - SGP Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Operations Routine Operations SGP central facility offices. SGP central facility offices. The overwhelming majority of the measurements

  15. ARM - AMF Data Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West AfricaAMF Data Plots Niamey Deployment AMF Home Niamey Home Data Plots and Baseline Instruments Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in Niger, Africa (PDF) Posters AMF Poster, French Version We're Going to Sample the Sky in Africa! News Campaign Images AMMA International News AMF Data Plots ARM Mobile Facility data plot example from the Micropulse Lidar on January 1, 2005. ARM Mobile

  16. ARM - AMF2 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images ... 2009-2010 Shouxian, China, 2008 Black Forest, ... rain gauges and present weather detectors are available to ...

  17. ARM - Visiting the SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsVisiting the SGP SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Visiting the SGP View a custom Google map with driving directions to the SGP Central Facility. View a custom Google map with

  18. AMF ARM Mobile FAcility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Mobile FAcility Details on the AMF proposal process can be found at http://www.arm.gov/acrf/submit_proposals.stm. For more information, contact: Mark Miller Mary Jane Bartholomew AMF Site Scientist Assoc. Site Scientist (631) 344-2958 (631) 344-2444 miller@bnl.gov bartholomew@bnl.gov baseline capabilities Measurement capabilities include the standard meteor- ological instrumentation, broadband and spectral radi- ometer suite, and remote sensing instruments. The ARM Mobile Facility (AMF) can

  19. ARM - AMF2 Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Contacts Management and Operations Operations Overview ARM Links BCR | ECR ECO, EWO Extraview PIF, CAR, DQR & DQPR Operations Status System i.arm.gov AMF2 Deployment...

  20. ARM - AMF Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Data Available Data Plots View data plots from each deployment....

  1. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  2. ARM - SGP Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  3. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  4. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  5. ARM - News : AMF Deployment, Shouxian, China

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ChinaNews : AMF Deployment, Shouxian, China Shouxian Deployment AMF Home Shouxian Home ... AMF Poster, Mandarin Version News Campaign Images News : AMF Deployment, Shouxian, China ...

  6. ARM - AMF Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Questions Science Plan (PDF, 4.4M) Rob Wood Website Outreach Backgrounders English Version (PDF, 363K) Portuguese Version (PDF, 327K) AMF Posters, 2009 English Version...

  7. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    third, and newest, ARM Mobile Facility, or AMF3. Oliktok Point, approximately 300 kilometers southeast of the fixed ARM site in Barrow, Alaska, is home to an extended deployment...

  8. ARM - AMF Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF Science Locale: Anywhere in the World The purpose of an ARM...

  9. SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site

  10. SGP Overview Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Map SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  11. SGP Shipment Notification Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsShipment Notification Form SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric...

  12. AMF Deployment, Ganges Valley, India

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PDF, 1.4MB) News Education Flyer (PDF, 2.1MB) AMF Poster, 2011 Images Contacts V. Rao Kotamarthi AMF Deployment, Ganges Valley, India GVAX will take place in the Ganges...

  13. ARM - AMF2 Management and Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images ... 2009-2010 Shouxian, China, 2008 Black Forest, ... on Vessel position and weather is located here. ...

  14. AMF Deployment, Black Forest, Germany

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Germany Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009...

  15. ARM - AMF1 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Surface Meteorology Eddy Correlation Flux Measurement System (ECOR) Surface Energy Balance System (SEBS) Laser Disdrometer (LDIS) Meteorological Instrumentation at AMF (MET) ...

  16. AMF Deployment, Steamboat Springs, Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and...

  17. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on

  18. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  19. AMF Deployment, Point Reyes National Seashore, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California Point Reyes Deployment AMF Home Point Reyes Home Data Plots and Baseline ... AMF Deployment, Point Reyes National Seashore, California Point Reyes National Seashore, ...

  20. ARM - AMF2 Organization and Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 AMF2 Organization and Contact Information The Argonne AMF2...

  1. Orr 2007 ARM STM poster2.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responsible for management and maintenance of nearly all data and instrument computers as well as personal computers at the ACRF sites (AMF, NSA, SGP and TWP). Cyber...

  2. ARM - SGP Geographic Information By Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographic Information By Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Geographic Information By Facility Note: BF = Boundary Facility, EF = Extended Facility, and IF = Intermediate

  3. Interpolation Uncertainties Across the ARM SGP Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpolation Uncertainties Across the ARM SGP Area J. E. Christy, C. N. Long, and T. R. Shippert Pacific Northwest National Laboratory Richland, Washington Interpolation Grids Across the SGP Network Area The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates a network of surface radiation measurement sites across north central Oklahoma and south central Kansas. This Southern Great Plains (SGP) network consists of 21 sites unevenly spaced from 95.5 to 99.5

  4. ARM/NSA Vehicle Use Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operating Procedures for Scaffold Use October 2007 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Operating Procedures for The Use of Scaffolds at ACRF/NSA/AAO Meteorological Towers Introduction: An aluminum scaffold structure is used at ARM Climate Research Facility/North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Sites to access instruments mounted on the meteorological tower as shown in Figure 1 below. The

  5. Aerosol Retrievals from ARM SGP MFRSR Data (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Aerosol Retrievals from ARM SGP MFRSR Data Title: Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous ...

  6. ARM - Field Campaign - SGP '97 (Hydrology) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP '97 (Hydrology) IOP Campaign Links NASA Archive Model Initialization Data Comments? We would love to hear from you Send us a note below or call us at ...

  7. ARM - Field Campaign - SGP99 IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below or call us at 1-888-ARM-DATA. Send Campaign : SGP99 IOP 1999.07.07 - 1999.07.22 Lead Scientist : Richard Cederwall Summary The Southern Great Plains 1997 Hydrology...

  8. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsCampaign Data Additional Sorting By Site AAF AMF ENA NSA SGP TWP Other By Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009...

  9. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsFeatured Additional Sorting By Site AAF AMF ENA NSA SGP TWP Other By Activity Current Upcoming Past By Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003...

  10. ARM - AOS Aerosol Properties Plots

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ViewersAOS Aerosol Properties Plots XDC Data Viewers Aerosol Properties Plots SGP AMF NSA (BRW) AOS Aerosol Properties Plots These plots are designed to provide a quick look at the...

  11. ARM - Field Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsList of Campaigns Additional Sorting By Site AAF AMF ENA NSA SGP TWP Other By Activity Current Upcoming Past By Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001...

  12. Soundings from SGP, June 2014 Sonde Comparison Study (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Soundings from SGP, June 2014 Sonde Comparison Study Title: Soundings from SGP, June 2014 Sonde Comparison Study In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were

  13. ARM - PI Product - NSA AERI Hatch Correction Data Set

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : NSA AERI Hatch Correction Data Set From 2000-2008, the NSA AERI hatch was...

  14. Investigation of Unusual Albedos in the SGP Domain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Unusual Albedos in the SGP Domain Groff, David ARM SGP Duchon, Claude University Of Oklahoma Category: Atmospheric State and Surface We investigate the cause of unusually high albedos at an Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) extended facility near Morris, OK. In a previous study, daily albedos were calculated at several SGP extended facilities for 1998 and 1999 using broadband (.28 to 3 microns) pyranometers. The average daily albedo during this

  15. NSA AERI Hatch Correction Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Turner, David

    2012-03-23

    From 2000-2008, the NSA AERI hatch was determined to be indicated as open too frequently. Analysis suggests that the hatch was actually opening and closing properly but that its status was not being correctly reported by the hatch controller to the datastream. An algorithm was written to determine the hatch status from the observed

  16. ARM - AMF Deployment, Los Angeles, California, to Honolulu, Hawaii

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF Deployment, Los Angeles, California, to Honolulu, Hawaii From October 2012 through ... During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, ...

  17. AMF Deployment, Pearl Harbor, Hawaii, to San Francisco, California

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California HI to CA Deployment AMF Home Hawaii to California Home Deployment Operations Baseline Instruments Experiment Planning ACAPEX Full Proposal Abstract and Related Campaigns ...

  18. New Surface Meteorological Measurements at SGP,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM, March 22 - 26, 2004 1 New Surface Meteorological Measurements at SGP, and Their Use for Assessing Radiosonde Measurement Accuracy L.M. Miloshevich National Center for Atmospheric Research Boulder, Colorado B.M. Lesht and M. Ritche Argonne National Laboratory Argonne, Illinois Introduction Several recent ARM investigations have been directed toward characterizing and improving the accuracy of ARM radiosonde water vapor measurements. Tobin et al. (2002) showed that calculating the downwelling

  19. Soundings from SGP, June 2014 Sonde Comparison Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were used to further quantify the environment during the intercomparison. Over the course of five days (3 - 8 June) a total of 20 balloon launches were completed with efforts to sample the entire diurnal cycle and a variety of cloud conditions

  20. Soundings from SGP, June 2014 Sonde Comparison Study

    SciTech Connect (OSTI)

    Jensen, Michael

    2015-03-06

    In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were used to further quantify the environment during the intercomparison. Over the course of five days (3 - 8 June) a total of 20 balloon launches were completed with efforts to sample the entire diurnal cycle and a variety of cloud conditions

  1. sgp_stratus_poster_v1.0.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forcing, large-scale vertical velocity, and latent and sensible heat flux. Introduction LES (SAMEX) baseline WACR profiles (in blue) LES statistics for the SGP stratus control...

  2. ARM/NSA ES&H Policy Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ES&H Policy Statement November 2006 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) ES&H Policy Statement The ACRF/NSA/AAO ES&H Policy Statement describes the general safety-related requirements for all who work at, use, or visit the ACRF/NSA/AAO Site. The Site's ES&H policies and procedures are designed to ensure a safe work environment for Sandia employees, Sandia contractors, and visitors to the facility.

  3. ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband...

  4. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane...

    Office of Scientific and Technical Information (OSTI)

    files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates ...

  5. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane...

    Office of Scientific and Technical Information (OSTI)

    files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates ...

  6. Observed and Simulated Cirrus Cloud Properties at the SGP CART...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. Three-minute mean retrievals are available at 8-minute intervals for isolated cirrus (i.e., no...

  7. Senator Myers Tours SGP CART Site Technical Contact: James C...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Senator Myers Tours SGP CART Site Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov Editor: Donna J. Holdridge ANLERNL-03-06 www.arm.gov ARM...

  8. Naval Support Activity (NSA) in Bethesda Employment Education Fair

    Broader source: Energy.gov [DOE]

    Location: NSA Bethesda Fitness Center (Gymnasium, Bldg 17), 8901 Wisconsin Ave., Bethesda, MD 20889Attendees: Donna Friend (HC) and Rauland Sharp (HC)POC: Donna FriendWebsite: http://bit.ly/1yTjTNu

  9. Microsoft PowerPoint - nsa_shippingforminstructions.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a login with username and password. At this point in time, we will be limiting this to NSA operations personnel. Please send updates to Valerie Sparks at vsparks@sandia.gov so...

  10. New Atmospheric Profiling Instrument Added to SGP CART Suite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 New Atmospheric Profiling Instrument Added to SGP CART Suite A new atmospheric profiling instrument at the SGP CART site is giving researchers an additional useful data stream. The new instrument is a microwave radiometer profiler (MWRP) developed by Radiometrics Corporation. One ARM Program focus is improving the quality of simulations by global climate models, particularly models that deal with interactions between sunlight (solar radiation) and clouds. To support this improvement, ARM needs

  11. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer SGP ripbe1mcfarlane Title: Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties.

  12. An Overview of the SGP Tandem Differential Mobility Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Overview of the SGP Tandem Differential Mobility Analyzer Collins, Don Texas A&M University Spencer, Chance Texas A&M University Category: Instruments A differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system was integrated into the Aerosol Observing System (AOS) trailer at the SGP site in September, 2005. This instrument is used to continuously characterize the size-resolved concentration, hygroscopicity, and volatility of submicron particles. These

  13. ARM Carbon Cycle Gases Flasks at SGP Site

    SciTech Connect (OSTI)

    Biraud, Sebastien

    2013-03-26

    Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

  14. Continuous Intercomparison of Radiation Codes (CIRC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 SGP 31700 SGP 5400 SGP 71900 SGP 92500 NSA 5304 PYE 7605 LW CIRC GSFC SFC CAM SFC GSFC TOA CAM TOA model error(%) -10 -5 0 5 10 SGP 31700 SGP 5400 SGP 71900...

  15. SGP Cloud and Land Surface Interaction Campaign (CLASIC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan June 2007 Mark A. Miller, Principal Investigator and The CLASIC Steering Committee: Roni Avissar, Larry Berg, Sylvia Edgerton, Marc Fischer, Tom Jackson, Bill Kustas, Pete Lamb, Greg McFarquhar, Qilong Min, Beat Schmid, Margaret Torn, and Dave Turner Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research M.R. Miller et al., DOE/SC-ARM-0703

  16. CIMEL Measurements of Zenith Radiances at the ARM SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania

  17. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    Office of Scientific and Technical Information (OSTI)

    (Dataset) | Data Explorer ripbe370mcfarlane Title: Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties.

  18. ARM - Publications: Science Team Meeting Documents: The SGP Aerosol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project The SGP Aerosol Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project Turner, David Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest National Laboratory Flynn, Connor Pacific Northwest National Laboratory Mlawer, Eli Atmospheric & Environmental Research, Inc. The objective of the Aerosol Best-Estimate (ABE) Value-Added Procedure (VAP) is to provide estimates of aerosol

  19. ARM Aerosol Working Group Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report ARM STM 2008 Norfolk, VA Connor Flynn for B Schmid and AWG Members AWG Instruments * Raman Lidar - SGP * Micropulse Lidars - all sites * Aerosol Sampling - SGP, NSA, AMF - scattering, absorption, number, size distribution, hygroscopicity, CCN, composition (major ions). * In situ Aerosol Profile (Cessna) - scattering, absorption, number, hygroscopicity, * Radiometers: - MFRSR, NIMFR, RSS, Cimel, AERI, SWS AWG-related Field Campaigns * Recent Past: - MASRAD (Marine Stratus Radiation,

  20. ARM Carbon Cycle Gases Flasks at SGP Site (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences ARM; ccg-flask; SGP; AOS-CO2 Dataset File size NAView Dataset ...

  1. Determination of Ice Water Path Over the ARM SGP Using Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite ... Global information of cloud ice water path (IWP) is urgently needed for testing ...

  2. Surface Energy Balance System (SEBS) Handbook (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Surface Energy Balance System (SEBS) Handbook Citation Details In-Document Search Title: Surface Energy Balance System (SEBS) Handbook A Surface Energy Balance System (SEBS) has been installed collocated with each deployed Eddy Correlation Flux Measurement System (ECOR) at the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plains (SGP) site, North Slope of Alaska (NSA) site, first ARM Mobile Facility (AMF1), second ARM Mobile Facility (AMF2), and

  3. Surface Energy Balance System (SEBS) Handbook (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Surface Energy Balance System (SEBS) Handbook Citation Details In-Document Search Title: Surface Energy Balance System (SEBS) Handbook A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared

  4. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  5. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  6. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  7. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  8. SGP and TWP (Manus) Ice Cloud Vertical Velocities (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results SGP and TWP (Manus) Ice Cloud Vertical Velocities Title: SGP and TWP (Manus) Ice Cloud Vertical Velocities Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall

  9. ARM - PI Product - Merged MMCR-WSR88D Reflectivities at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resolution 90 meters. (2) WSR88D: The WSR-88D radar used located at Vance Air Force Base, OK (KVNX), approximately 59.3 km west of the SGP MMCR. WSR-88D level 2 data were ...

  10. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfar...

    Office of Scientific and Technical Information (OSTI)

    files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates ...

  11. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM’s third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  12. Atmospheric Radiation Measurement (ARM) Data from Oliktok Point, Alaska (an AMF3 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARMs third and newest ARM Mobile Facility, or AMF3. The AMF3 is gathering data using about two dozen instruments that obtain continuous measurements of clouds, aerosols, precipitation, energy, and other meteorological variables. Site operators will also fly manned and unmanned aircraft over sea ice, drop instrument probes and send up tethered balloons. The combination of atmospheric observations with measurements from both the ground and over the Arctic Ocean will give researchers a better sense of why the Arctic sea ice has been fluctuating in fairly dramatic fashion over recent years. AMF3 will be stationed at Oliktok Point.

  13. ARM - Evaluation Product - NSA-Barrow AmeriFlux and Methane VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsNSA-Barrow AmeriFlux and Methane VAP Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you...

  14. ARM - Publications: Science Team Meeting Documents: Clouds over the ARM SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network area - 3D prospective Clouds over the ARM SGP Network area - 3D prospective Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Minnis, Patrick NASA Langley Research Center Heck, Patrick University of Wisconsin Khaiyer, Mandana Analytical Services and Material, Inc. The poster will present the final product of a 3-dimentional characterization of the clouds over the ARM SGP network area. We have aquired various ground-based and satellite

  15. ARM SGP and BN AERI Instrument Diagnostic Comparison and Preliminary Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM SGP and BN AERI Instrument Diagnostic Comparison and Preliminary Assessment D. Yuan, C. Golanics, M. Howard, and G. Williams Bechtel Nevada Remote Sensing Laboratory Las Vegas, Nevada Abstract A continuous collection for diagnostic instrumental comparison was conducted at the Southern Great Plains (SGP) Lamont site from June 11 to the 13, 2003 using the Atmospheric Emitted Radiance Interferometer (AERI) at the site and the AERI owned by the U.S. Department of Energy (DOE), National Nuclear

  16. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  17. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  18. ARM - Field Campaign - AIRS Validation Soundings Phase IV and V-SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAIRS Validation Soundings Phase IV and V-SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AIRS Validation Soundings Phase IV and V-SGP 2005.08.04 - 2006.04.19 Lead Scientist : Jimmy Voyles For data sets, see below. Abstract ARM conducted a special series of radiosonde launches in support of validation studies for the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua

  19. ARM - Field Campaign - ARM Radiosondes for NPOESS/NPP Validation - SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Radiosondes for NPOESS/NPP Validation - SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Radiosondes for NPOESS/NPP Validation - SGP 2012.07.09 - 2017.12.31 Lead Scientist : Lori Borg For data sets, see below. Abstract This is a satellite validation project involving the use of satellite overpass coincident radiosonde launches. This is analogous to previous IOPs performed for AIRS on the NASA Aqua platform and

  20. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  1. Microsoft PowerPoint - 080306_stm_amf.ppt [Kompatibilitätsmodus]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convection Initiation and Clouds During COPS Volker Wulfmeyer 1 , Andreas Behrendt 1 , Susanne Crewell 2 , Hans-Stefan Bauer 1 , and Dave Turner 3 1: University of Hohenheim, Stuttgart, Germany; 2: University of Cologne, Germany; 3: University of Wisconsin - Madison, USA 1) COPS and AMF science goals The Convective and Orographically-induced Precipitation Study (COPS) is an international field experiment, which was endorsed as Research and Development Project (RDP) of the World Weather Research

  2. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  3. Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Albedo Intensive Operational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. C. Cribb and Z. Li University of Maryland College Park, Maryland K. Hamm University of Oklahoma Norman, Oklahoma Introduction A surface spectral albedo Intensive Operational Period (IOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site was conducted during August

  4. Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting, 12 March 2008 Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site Larry K. Berg, William I. Gustafson Jr., and Evgueni I. Kassianov Pacific Northwest National Laboratory ARM Science Team Meeting, 12 March 2008 Where are We Going? Development Simulation Evaluation Observations ARM Science Team Meeting, 12 March 2008 Development: Coupling Clouds to the Convective Boundary Layer * Shallow cumuli are turbulently coupled to the planetary boundary layer 4 3 2 1 0 Height

  5. Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data D. R. Doelling and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband

  6. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  7. Validation of Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers M. M. Khaiyer and J. Huang Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis, B. Lin, and W. L. Smith, Jr. National Aeronautics and Space Administration Langley Research Center Hampton, Virginia A. Fan Science Applications International Corporation Hampton, Virginia A. Rapp Colorado State University Fort Collins, Colorado Introduction Satellites are useful for monitoring climatological parameters over

  8. Validation of the ARchived CERES Surface and Atmosphere Radiation Budget at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archived CERES Surface and Atmosphere Radiation Budget at SGP T. P. Charlock National Aeronautics and Space Administration Langley Research Center Hampton, Virginia F. G. Rose and D. A. Rutan Analytical Services and Materials Inc. Hampton, Virginia Introduction The Clouds and Earth's Radiant Energy System (CERES) Surface and Atmosphere Radiation Budget (SARB) product (Charlock et al. 2002) includes the vertical profile of broadband shortwave (SW), broadband longwave (LW), and 8-12 micron window

  9. An Improved Cloud Classification Algorithm Based on the SGP CART Site Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Cloud Classification Algorithm Based on the SGP CART Site Observations Z. Wang Goddard Earth Sciences and Technology Center University of Maryland Greenbelt, Maryland K. Sassen University of Alaska Fairbanks, Alaska Introduction Different types of clouds are usually governed by different cloud dynamics processes and have different microphysical properties, which results in different cloud radiative forcings (Hartmann et al. 1992; Chen et al. 2000). Climate changes can result in changing

  10. New ARM Data Stream: Surface Images at NSA/AAO Sites in Barrow and Atqasuk

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ARM Data Stream: Surface Images at NSA/AAO Sites in Barrow and Atqasuk K. B. Widener Pacific Northwest National Laboratory Richland, Washington Abstract Web-enabled video cameras have been placed at both the Barrow and Atqasuk Atmospheric Radiation Measurement (ARM) Program sites to provide images of the surface surrounding the upwelling radiation instruments. These cameras give the researcher a visual indication of the surface cover. Hourly jpeg images from these cameras are now part of the

  11. Analysis of Selected Radiosonde Data from the ARM/NSA Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Selected Radiosonde Data from the ARM/NSA Site B. Petracca, H. W. Church, and B. D. Zak Sandia National Laboratories Albuquerque, New Mexico R. Storvold and C. Marty Geophysical Institute University of Alaska Fairbanks, Alaska B. M. Lesht Argonne National Laboratories Argonne, Illinois Introduction The purpose of this study was to analyze differences in temperature and relative humidity (RH) profiles obtained from near-simultaneous radiosonde soundings made from different locations

  12. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  13. Surface Energy Balance System (SEBS) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2011-02-14

    A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

  14. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  15. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  16. Techniques and Methods Used to Determine the Best Estimate of Radiation Fluxes at SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques and Methods Used to Determine the Best Estimate of Radiation Fluxes at SGP Central Facility Y. Shi and C. N. Long Pacific Northwest National Laboratory Richland, Washington Algorithm and Methodology The Best Estimate Flux value-added product (VAP) processes data started on March 22, 1997, when data from the three central facility (CF) radiometer systems, Solar Infrared Station (SIRS) E13, C1, and baseline surface radiation network (BSRN) (sgpsirs1duttE13.c1, sgpsirs1duttC1.c1, and

  17. Nuclear science abstracts (NSA) database 1948--1974 (on the Internet)

    SciTech Connect (OSTI)

    1999-02-01

    Nuclear Science Abstracts (NSA) is a comprehensive abstract and index collection of the International Nuclear Science and Technology literature for the period 1948 through 1976. Included are scientific and technical reports of the US Atomic Energy Commission, US Energy Research and Development Administration and its contractors, other agencies, universities, and industrial and research organizations. Coverage of the literature since 1976 is provided by Energy Science and Technology Database. Approximately 25% of the records in the file contain abstracts. These are from the following volumes of the print Nuclear Science Abstracts: Volumes 12--18, Volume 29, and Volume 33. The database contains over 900,000 bibliographic records. All aspects of nuclear science and technology are covered, including: Biomedical Sciences; Metals, Ceramics, and Other Materials; Chemistry; Nuclear Materials and Waste Management; Environmental and Earth Sciences; Particle Accelerators; Engineering; Physics; Fusion Energy; Radiation Effects; Instrumentation; Reactor Technology; Isotope and Radiation Source Technology. The database includes all records contained in Volume 1 (1948) through Volume 33 (1976) of the printed version of Nuclear Science Abstracts (NSA). This worldwide coverage includes books, conference proceedings, papers, patents, dissertations, engineering drawings, and journal literature. This database is now available for searching through the GOV. Research Center (GRC) service. GRC is a single online web-based search service to well known Government databases. Featuring powerful search and retrieval software, GRC is an important research tool. The GRC web site is at http://grc.ntis.gov.

  18. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  19. ARM - Value-Added Products (VAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correction of Diffuse Shortwave Measurements NSA, SGP, TWP 1993.09.01 2001.06.19 dlprof Doppler Lidar Profiles AWR, ENA, MAO, NSA, OLI, PGH, PVC, SGP, TWP 2010.10.22 2016.09.30...

  20. ARM - Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Light Absorption Photometer AWR, MAO, NSA, PGH, PVC, SGP 2011.03.01 2016.09.30 Z dl Doppler Lidar AWR, ENA, MAO, NSA, OLI, PGH, PVC, SGP, TWP 2010.10.21 2016.09.30 Z ecor...

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plains site. 5 Teacher lives at the TWP site. 7 Polar Bear lives at the NSA site. 8 Prairie Dog lives at the SGP site. 9 SGP, TWP, and NSA make up the ARM...

  2. Towards Development of a Synthesized Database of Spatial and Temporal Surface Spectral Reflectivity Over the ARM SGP CART Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towards Development of a Synthesized Database of Spatial and Temporal Surface Spectral Reflectivity Over the ARM SGP CART Area A. P. Trishchenko, Y. Luo, R. Latifovic, W. Park, J. Cihlar, and B. Hwang Canada Centre for Remote Sensing Ottawa, Ontario, Canada Z. Li and M. C. Cribb University of Maryland, College Park, Maryland Introduction Surface albedo is a key variable determining the disposition of solar radiation between the surface and the atmosphere. Reliable mapping of surface albedo and

  3. New Visible to Broadband Shortwave Conversions for Deriving Albedos from GOES-8 Over the ARM-SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Visible to Broadband Shortwave Conversions for Deriving Albedos from GOES-8 Over the ARM-SGP V. Chakrapani, D. R. Doelling, and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure

  4. Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement

  5. Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a

  6. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    SciTech Connect (OSTI)

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  7. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is biased low, especially for daylight periods, compared with those derived from the RL data, which detects 5 cloud base ranging from 7.5 km in winter to 9.5 km in summer (and tops ranging from 8.6 to 10.5 km). The optically thickest cirrus clouds (COT>0.3) reach 50% of the total population for the Raman lidar and only 20% for the Micropulse lidar due to the difference of pulse energy and the effect of solar irradiance contamination. A complementary study using the cloud fraction 10 derived from the Micropulse lidar for clouds below 5 km and from the Raman lidar for cloud above 5 km allows for better estimation of the total cloud fraction between the ground and the top of the atmosphere. This study presents the diurnal cycle of cloud fraction for each season in comparisons with the Long et al. (2006) cloud fraction calculation derived from radiative flux analysis.

  8. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Observing Systems Anne Jefferson Cires, University of Colorado John Ogren NOAA/ESRL ARM STM, Norfolk, VA 2008 Aerosol Observing Systems In-Situ surface and aircraft profile measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties SGP - ARM central facility Lamont, OK * AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg Valley, Germany 4/2007 -1/2008 - Shouxian China 5/2008 - 2009 * BRW/NSA - Barrow Alaska In-situ measurements of

  9. Atmospheric Radiation Measurement (ARM) Data from Los Angeles, California, to Honolulu, Hawaii for the Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign (an AMF2 Deployment)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    From October 2012 through September 2013, the second ARM Mobile Facility (AMF2) was deployed on the container ship Spirit, operated by Horizon Lines, for the Marine ARM GPCI* Investigation of Clouds (MAGIC) field campaign. During approximately 20 round trips between Los Angeles, California, and Honolulu, Hawaii, AMF2 obtained continuous on-board measurements of cloud and precipitation, aerosols, and atmospheric radiation; surface meteorological and oceanographic variables; and atmospheric profiles from weather balloons launched every six hours. During two two-week intensive observational periods in January and July 2013, additional instruments were deployed and balloon soundings were be increased to every three hours. These additional data provided a more detailed characterization of the state of the atmosphere and its daily cycle during two distinctly different seasons. The primary objective of MAGIC was to improve the representation of the stratocumulus-to-cumulus transition in climate models. AMF2 data documented the small-scale physical processes associated with turbulence, convection, and radiation in a variety of marine cloud types.

  10. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO{sub 2} with HIPPO and SGP aircraft profile measurements

    SciTech Connect (OSTI)

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.; Biraud, S. C.; Nassar, R.; Jones, D. B.A.; Olsen, E. T.; Osterman, G. B.

    2012-02-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases. We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.

  11. Scanning ARM Cloud Radar Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  12. AMF Deployment, Hyytiala, Finland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Press BAECC Blog Backgrounder (PDF, 1.5MB) Poster (JPEG, 1.3MB) Education Flyer (English) (PDF, 1.3MB) Education Flyer (Finnish) (PDF, 1.3MB) Images Contacts Nicki Hickmon,...

  13. ARM - AMF2 Architecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009-2010 Shouxian, China, 2008 Black Forest, ... computers, data loggers and other support equipment. ... (Optical Sci) Present Weather Detector (Vaisala) ...

  14. AMF Deployment, Manacapuru, Brazil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Brazil is the largest broadleaf forest in the world, covering 7 million square kilometers of the Amazon Basin in South America. It represents over half of the planet's...

  15. PROGRESS REPORT OF FY 2004 ACTIVITIES: IMPROVED WATER VAPOR AND CLOUD RETRIEVALS AT THE NSA/AAO

    SciTech Connect (OSTI)

    E. R. Westwater; V. V. Leuskiy; M. Klein; A. J. Gasiewski; and J. A. Shaw

    2004-11-01

    The basic goals of the research are to develop and test algorithms and deploy instruments that improve measurements of water vapor, cloud liquid, and cloud coverage, with a focus on the Arctic conditions of cold temperatures and low concentrations of water vapor. The importance of accurate measurements of column amounts of water vapor and cloud liquid has been well documented by scientists within the Atmospheric Radiation Measurement Program. Although several technologies have been investigated to measure these column amounts, microwave radiometers (MWR) have been used operationally by the ARM program for passive retrievals of these quantities: precipitable water vapor (PWV) and integrated water liquid (IWL). The technology of PWV and IWL retrievals has advanced steadily since the basic 2-channel MWR was first deployed at ARM CART sites Important advances are the development and refinement of the tipcal calibration method [1,2], and improvement of forward model radiative transfer algorithms [3,4]. However, the concern still remains that current instruments deployed by ARM may be inadequate to measure low amounts of PWV and IWL. In the case of water vapor, this is especially important because of the possibility of scaling and/or quality control of radiosondes by the water amount. Extremely dry conditions, with PWV less than 3 mm, commonly occur in Polar Regions during the winter months. Accurate measurements of the PWV during such dry conditions are needed to improve our understanding of the regional radiation energy budgets. The results of a 1999 experiment conducted at the ARM North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO) site during March of 1999 [5] have shown that the strength associated with the 183 GHz water vapor absorption line makes radiometry in this frequency regime suitable for measuring low amounts of PWV. As a portion of our research, we conducted another millimeter wave radiometric experiment at the NSA/AAO in March-April 2004. This experiment relied heavily on our experiences of the 1999 experiment. Particular attention was paid to issues of radiometric calibration and radiosonde intercomparisons. Our theoretical and experimental work also supplements efforts by industry (F. Solheim, Private Communication) to develop sub-millimeter radiometers for ARM deployment. In addition to quantitative improvement of water vapor measurements at cold temperature, the impact of adding millimeter-wave window channels to improve the sensitivity to arctic clouds was studied. We also deployed an Infrared Cloud Imager (ICI) during this experiment, both for measuring continuous day-night statistics of the study of cloud coverage and identifying conditions suitable for tipcal analysis. This system provided the first capability of determining spatial cloud statistics continuously in both day and night at the NSA site and has been used to demonstrate that biases exist in inferring cloud statistics from either zenith-pointing active sensors (lidars or radars) or sky imagers that rely on scattered sunlight in daytime and star maps at night [6].

  16. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  17. Cloud Property Retrieval Products for Graciosa Island, Azores

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    2014-05-05

    The motivation for developing this product was to use the Dong et al. 1998 method to retrieve cloud microphysical properties, such as cloud droplet effective radius, cloud droplets number concentration, and optical thickness. These retrieved properties have been used to validate the satellite retrieval, and evaluate the climate simulations and reanalyses. We had been using this method to retrieve cloud microphysical properties over ARM SGP and NSA sites. We also modified the method for the AMF at Shouxian, China and some IOPs, e.g. ARM IOP at SGP in March, 2000. The ARSCL data from ARM data archive over the SGP and NSA have been used to determine the cloud boundary and cloud phase. For these ARM permanent sites, the ARSCL data was developed based on MMCR measurements, however, there were no data available at the Azores field campaign. We followed the steps to generate this derived product and also include the MPLCMASK cloud retrievals to determine the most accurate cloud boundaries, including the thin cirrus clouds that WACR may under-detect. We use these as input to retrieve the cloud microphysical properties. Due to the different temporal resolutions of the derived cloud boundary heights product and the cloud properties product, we submit them as two separate netcdf files.

  18. Measurement of Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Exp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary-Layer Temperature Profiles by a Scanning 5-MM Radiometer During the 1999 Winter NSA/AAO Radiometer Experiment and WVIOP 2000 V. Y. Leuski and E. R. Westwater Cooperative Institute for Research in the Environmental Sciences National Oceanic and Atmospheric Administration Environmental Technology Laboratory University of Colorado Boulder, Colorado Introduction A scanning 5-mm-wavelength radiometer was deployed during two Intensive Operational Periods (IOPs) at the Atmospheric Radiation

  19. Use of ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM/NSA Data to Validate and Improve the Remote Sensing Retrieval of Cloud and Surface Properties in the Arctic from AVHRR Data X. Xiong QSS Group, Inc. National Oceanic and Atmospheric Administration National Environmental Satellite, Data, and Information Service Office of Research and Applications Camp Springs, Maryland R. Storvold and C. Marty Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute of Technology Hoboken, New Jersey B. D. Zak Sandia

  20. Using Radar, Lidar and Radiometer Data from NSA and SHEBA to Quantify Cloud Property Effects on the Surface Heat Budget in the Arctic

    SciTech Connect (OSTI)

    Janet Intrieri; Mathhew Shupe

    2005-01-01

    Cloud and radiation data from two distinctly different Arctic areas are analyzed to study the differences between coastal Alaskan and open Arctic Ocean region clouds and their respective influence on the surface radiation budget. The cloud and radiation datasets were obtained from (1) the DOE North Slope of Alaska (NSA) facility in the coastal town of Barrow, Alaska, and (2) the SHEBA field program, which was conducted from an icebreaker frozen in, and drifting with, the sea-ice for one year in the Western Arctic Ocean. Radar, lidar, radiometer, and sounding measurements from both locations were used to produce annual cycles of cloud occurrence and height, atmospheric temperature and humidity, surface longwave and shortwave broadband fluxes, surface albedo, and cloud radiative forcing. In general, both regions revealed a similar annual trend of cloud occurrence fraction with minimum values in winter (60-75%) and maximum values during spring, summer and fall (80-90%). However, the annual average cloud occurrence fraction for SHEBA (76%) was lower than the 6-year average cloud occurrence at NSA (92%). Both Arctic areas also showed similar annual cycle trends of cloud forcing with clouds warming the surface through most of the year and a period of surface cooling during the summer, when cloud shading effects overwhelm cloud greenhouse effects. The greatest difference between the two regions was observed in the magnitude of the cloud cooling effect (i.e., shortwave cloud forcing), which was significantly stronger at NSA and lasted for a longer period of time than at SHEBA. This is predominantly due to the longer and stronger melt season at NSA (i.e., albedo values that are much lower coupled with Sun angles that are somewhat higher) than the melt season observed over the ice pack at SHEBA. Longwave cloud forcing values were comparable between the two sites indicating a general similarity in cloudiness and atmospheric temperature and humidity structure between the two regions.

  1. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  2. mccoy_ARM_STM_09_cmbe_v3_final.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detailed description of the data and the algorithms: http:science.arm.govwgcpmscmbestestimate.html SGP - ARM Southern Great Plains Site, NSA - North Slope of Alaska, TWP...

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    27, 2012 [Facility News] Old Meets New: Comparison of Aerosol Observing Systems Underway Bookmark and Share In just a few days, AOS scientists from Brookhaven, AMF2 operations personnel, and SGP site technicians unpacked and installed the AMF2 AOS (foreground). On February 14, it began collecting data next to the SGP system (background). Not your typical Valentine's Day treat, but still pretty sweet. In just a few days, AOS scientists from Brookhaven, AMF2 operations personnel, and SGP site

  4. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect (OSTI)

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  5. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  6. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect (OSTI)

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  7. ARM - Evaluation Product - WACR-ARSCL VAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ratio (LDR) fields for SGP and AMF WACR deployments. Data Details Contact Michael Jensen Brookhaven National Laboratory mjensen@bnl.gov (631) 344-7021 30 Bell Avenue,...

  8. ARM - Firearm Training and Authorization List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaFirearm Training and Authorization List NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field...

  9. ARM - Information for Guest Scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AlaskaInformation for Guest Scientists NSA Related Links Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns...

  10. ARM - SGP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to support significant research addressing the objectives of the overall ARM Climate Research Facility. These overall objectives, as paraphrased from the ARM Program Plan (DOE...

  11. ARM - SGP Boundary Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nearest Town Status B1 Hillsboro Removed 10212010 B5 Morris Removed 11172010 B6 Purcell Removed 1132010 B4 Vici Removed 2172010 *NOTE: Site designations are used in...

  12. ARM - NSA Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lucero, Sandia National Laboratories Barrow Site Facilities Manager - Walter Brower, UIC Science, LLC, Cell: 907.878.4780 Rapid Response Team Manager - Martin Stuefer, University...

  13. ARM - Visiting the NSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teriyaki House 907.852.2276 Barrow Oriental American Arctic Pizza 907.852.4222 Barrow Italian American UIC NARL Cafeteria Barrow Breakfast, lunch, and dinner The only place to eat...

  14. ARM - AMF3 Baseline Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiler (RWP), 915-MHz for U.S. deployments, 1290-MHz for deployments outside the U.S. Doppler Lidar (DL) Raman Lidar (RL) Radiometers Atmospheric Emitted Radiance...

  15. AMF Deployment, Graciosa Island, Azores

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning CAP-MBL Proposal Abstract and Related Campaigns Science Questions Science Plan...

  16. knuteson-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ARM SGP, NSA, and TWP CART Sites R. O. Knuteson, H. E. Revercomb, F. A. Best, R. G. Dedecker, R. G. Garcia, H. B. Howell, D. C. Tobin, and V. P. Walden Space...

  17. A comparison of model short-range forecasts and the ARM Microbase...

    Office of Scientific and Technical Information (OSTI)

    the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. ...

  18. ARM - Evaluation Product - Areal Average Albedo (AREALAVEALB...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    albedo may be responsible for large uncertainties in these calculations. Moreover, the tower-based measurements of surface albedo are limited to SGP and NSA sites, and the TCAP...

  19. Sheridan-PJ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ Measurement of Aerosol Light Absorption and Single-Scattering Albedo at the NSA and SGP CART Sites P. J. Sheridan, 1 D. J. Delene, and J. A. Ogren National Oceanic and...

  20. ARM - PI Product - Convective Available Potential Energy (CAPE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mjensen@bnl.gov (631) 344-7021 30 Bell Avenue, Bldg-490D Upton, NY 11973 US Resource(s) Data Directory ReadMe Site Information FKB GRW HFE NIM NSA PYE SGP TWP Content Time Range...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ARM-UAV Grand Tour, SGP, NSA, TWP Tooman, T.T., Bolton, W.B.(a), and McCoy, R.F.(a), Sandia National Laboratories (a) Thirteenth Atmospheric Radiation Measurement (ARM) Science...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Velocities on the Relationship Between Cloud Optical Depth and Liquid Water Path at the NSA and SGP Sites Chen, Y.(a), Penner, J.E.(a), and Dong, X.(b), University of Michigan...

  3. AMF Deployment, Niamey, Niger, West Africa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots and Baseline Instruments Rainfall Record (PDF) Publications List, (PDF) Experiment Planning RADAGAST Proposal Outreach Fact Sheets RADAGAST (PDF) Annual Climate Cycle in...

  4. AMF Deployment, McMurdo Station, Antarctica

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    suite of instruments will be transported from McMurdo to the West Antarctic Ice Sheet (WAIS) for an intensive operational period of 56 days between November 2015 and January 2016....

  5. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesNorth Slope of AlaskaNSA Barrow FacilityInstruments NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Barrow AK Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. AERI Atmospheric

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2011-02-01

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of processed data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 x 2208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1987.20 hours (0.90 x 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 x 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continued through this quarter, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The second ARM Mobile Facility (AMF2) began deployment this quarter to Steamboat Springs, Colorado. The experiment officially began November 15, but most of the instruments were up and running by November 1. Therefore, the OPSMAX time for the AMF2 was 1390.80 hours (.95 x 1464 hours) for November and December (61 days). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2010, for the fixed sites. Because the AMFs operate episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This first quarter comprises a total of 2,208 possible hours for the fixed sites and the AMF1 and 1,464 possible hours for the AMF2. The average of the fixed sites exceeded our goal this quarter. The AMF1 has essentially completed its mission and is shutting down to pack up for its next deployment to India. Although all the raw data from the operational instruments are in the Archive for the AMF2, only the processed data are tabulated. Approximately half of the AMF2 instruments have data that was fully processed, resulting in the 46% of all possible data made available to users through the Archive for this first quarter. Typically, raw data is not made available to users unless specifically requested.

  7. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF, currently in Germany. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Due to the similarity of ACRF NSA data streams, and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2007 - December 31, 2007. Table 2 shows the summary of cumulative users for the period January 1, 2007 - December 31, 2007. For the first quarter of FY 2008, the overall number of users was up significantly from the last reporting period. For the fourth consecutive reporting period, a record high number of Archive users was recorded. In addition, the number of visitors and visitor days set a new record this reporting period particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany. It is interesting to note this quarter that 22% (a slight decrease from last quarter) of the Archive users are ARM Science funded principal investigators and 35% (the same as last quarter) of all other facility users are either ARM Science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period October 1 - December 31, 2007. There were no incidents this reporting period.

  8. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period October 1, 2007 - September 30, 2008. Table 2 shows the summary of cumulative users for the period October 1, 2007 - September 30, 2008. For the fourth quarter of FY 2008, the overall number of users is down substantially (about 30%) from last quarter. Most of this decrease resulted from a reduction in the ACRF Infrastructure users (e.g., site visits, research accounts, on-site device accounts, etc.) associated with the AMF China deployment. While users had easy access to the previous AMF deployment in Germany that resulted in all-time high user statistics, physical and remote access to on-site accounts are extremely limited for the AMF deployment in China. Furthermore, AMF data have not yet been released from China to the Data Management Facility for processing, which affects Archive user statistics. However, Archive users are only down about 10% from last quarter. Another reason for the apparent reduction in Archive users is that data from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), a major field campaign conducted on the North Slope of Alaska, are not yet available to users. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period July 1 - September 30, 2008. There were no incidents this reporting period.

  9. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  10. SGP CART Site Affected by Ice Storm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Dry nitrogen gas purges were installed to prevent condensation from forming on instrument ... compensation for damaged or destroyed property and cleanup costs not covered by insurance. ...

  11. ARM - Field Campaign - NSA Scanning Radar IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scanning radar observations for a variety of sampling modes assess the real-time signal processing of the 3-cm wave precipitation scanning radar by collecting IQ time...

  12. ARM - Field Campaign - NSA Snow IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    precipitation in the Arctic remains a challenge (e.g. Goodison et al. 1998, Benning and Yang 2005). Wind, drifting snow, and the accumulation of snow on and behind obstacles all...

  13. ARM - NSA Atqasuk Facility-Inactive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska site, was installed the summer of 1999 off of a road near the Atqasuk Airport and operated through 2010. Located approximately 70 miles south of Barrow, Atqasuk is...

  14. ARM/NSA Vehicle Use Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the tower, is used to pull the tower downward. In the lowered position, a hinged wood frame supports the top of the tower while instrument maintenance is performed....

  15. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; and the DMF at PNNL. In addition, the ACRF serves as a data repository for a long-term Arctic atmospheric observatory in Eureka, Canada (80 degrees 05 minutes N, 86 degrees 43 minutes W) as part of the multiagency Study of Environmental Arctic Change (SEARCH) Program. NOAA began providing instruments for the site in 2005, and currently cloud radar data are available. The intent of the site is to monitor the important components of the Arctic atmosphere, including clouds, aerosols, atmospheric radiation, and local-scale atmospheric dynamics. Because of the similarity of ACRF NSA data streams and the important synergy that can be formed between a network of Arctic atmospheric observations, much of the SEARCH observatory data are archived in the ARM archive. Instruments will be added to the site over time. For more information, please visit http://www.db.arm.gov/data. The designation for the archived Eureka data is YEU and is now included in the ACRF user metrics. This quarterly report provides the cumulative numbers of visitors and user accounts by site for the period April 1, 2007 - March 31, 2008. Table 2 shows the summary of cumulative users for the period April 1, 2007 - March 31, 2007. For the second quarter of FY 2008, the overall number of users was nearly as high as the last reporting period, in which a new record high for number of users was established. This quarter, a new record high was established for the number of user days, particularly due to the large number of field campaign activities in conjunction with the AMF deployment in Germany, as well as major field campaigns at the NSA and SGP sites. This quarter, 37% of the Archive users are ARM science-funded principal investigators and 23% of all other facility users are either ARM science-funded principal investigators or ACRF infrastructure personnel. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period January 1 - March 31, 2008. There were no incidents this reporting period.

  16. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 23, 2012 [Data Announcements] Moving on Up: Merged Sounding Data Now a Value-Added Product Bookmark and Share Examples of relative humidity for SGP, NSA, and TWP-Darwin. Examples of relative humidity for SGP, NSA, and TWP-Darwin. The Merged Sounding evaluation product has moved into the ARM Data Archive as a value-added product (VAP). This Merged Sounding VAP, initially designed by Dr. Gerald Mace, was modified by software developer David Troyan under the scientific direction of Michael

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operation quarterly report July 1 - September 30, 2010.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2010-10-26

    Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY2010 for the Southern Great Plains (SGP) site is 2097.60 hours (0.95 2208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1987.20 hours (0.90 2208) and for the Tropical Western Pacific (TWP) locale is 1876.80 hours (0.85 2208). The first ARM Mobile Facility (AMF1) deployment in Graciosa Island, the Azores, Portugal, continues, so the OPSMAX time this quarter is 2097.60 hours (0.95 x 2208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or datastream. Data availability reported here refers to the average of the individual, continuous datastreams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) that the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1-September 30, 2010, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. This fourth quarter comprises a total of 2208 possible hours for the fixed and mobile sites. The average of the fixed sites exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has historically had a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning in the second quarter of FY2010, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original instrumentation and new instrumentation made available through the American Recovery and Reinvestment Act of 2009 (ARRA). The Central Facility and 4 extended facilities will remain, but there will be up to 12 new surface characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The transition to the smaller footprint is ongoing through this quarter. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place by the end of calendar year 2011. AMF1 continues its 20-month deployment in Graciosa Island, the Azores, Portugal, that began on May 1, 2009. The AMF will also have additional observational capabilities by the end of 2011. The second ARM Mobile Facility (AMF2) was deployed this quarter to Steamboat Springs, Colorado, in support of the Storm Peak Lab Cloud Property Validation Experiment (STORMVEX). The first field deployment of the second ARM Mobile Facility will be used to validate ARM-developed algorithms that convert the remote sensing measurements to cloud properties for liquid and mixed phase clouds. Although AMF2 is being set up this quarter, the official start date of the field campaign is not until November 1, 2010. This quarterly report provides the cumulative numbers of scientific user accounts by site for the period October 1, 2009-September 30, 2010.

  18. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  19. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InactiveInstruments NSA Related Links Virtual Tour Facilities and Instruments Barrow Atqasuk Oliktok Point (AMF3) ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site NSA Fact Sheet Images Information for Guest Scientists Contacts Instruments : Central Facility, Atqasuk AK Active Retired Active instruments are currently deployed at fixed or mobile facilities or are available through the ARM Aerial Facility. MFRSR Multifilter Rotating Shadowband Radiometer Radiometric

  20. AWGagenda_033009.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STM 2009: Aerosol Working Group Meeting Agenda Monday, March 30, 1:00-3:00 PM Time Speaker Title 1:00 Jefferson The AOS system at SGP, BRW, and AMF China 1:15 Hallar The AMF2 deployment at Storm Peak Laboratory for StormVEx 1:30 Kassianov Aerosol remote sensing under partly cloudy conditions: How well are we doing? 1:45 Li Aerosol effect on rainfall frequency and cloud height revealed from SGP measurements Aerosol IOP Activities 2:00 Dubey Update on ISDAC and PASS 2:10 Ferrare Airborne

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 15, 2008 [Facility News] Cloud Radars on the Screen at Southern Great Plains Site Bookmark and Share With the flip of a switch, a mysterious cirrus dilemma turned from serious to solved recently, as the millimeter wavelength cloud radar (MMCR) passed inspection at the ARM Southern Great Plains (SGP) site in February. In addition, concerns about data from the ARM Mobile Facility (AMF)'s W-band ARM Cloud Radar (WACR) were alleviated through an intercomparison with the SGP WACR in March. Both

  2. An Automatic Doppler Spectrum Classifier for the MMCRs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Automatic Doppler Spectrum Classifier for the MMCRs Luke, Edward Brookhaven National Laboratory Kollias, Pavlos Brookhaven National Laboratory Clothiaux, Eugene The Pennsylvania State University Johnson, Karen Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Widener, Kevin Pacific Northwest National Laboratory Jensen, Michael Brookhaven National Laboratory Vogelmann, Andrew Brookhaven National Laboratory Category: Instruments The ARM MMCR receivers at the SGP, NSA

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP locale has historically had a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. Beginning this quarter, the SGP began a transition to a smaller footprint (150 km x 150 km) by rearranging the original and new instrumentation made available through the American Recovery and Reinvestment Act (ARRA). The central facility and 4 extended facilities will remain, but there will be up to 16 surface new characterization facilities, 4 radar facilities, and 3 profiler facilities sited in the smaller domain. This new configuration will provide observations at scales more appropriate to current and future climate models. The TWP locale has the Manus, Nauru, and Darwin sites. These sites will also have expanded measurement capabilities with the addition of new instrumentation made available through ARRA funds. It is anticipated that the new instrumentation at all the fixed sites will be in place within the next 12 months. The AMF continues its 20-month deployment in Graciosa Island, Azores, Portugal, that started May 1, 2009. The AMF will also have additional observational capabilities within the next 12 months. Users can participate in field experiments at the sites and mobile facility, or they can participate remotely. Therefore, a variety of mechanisms are provided to users to access site information. Users who have immediate (real-time) needs for data access can request a research account on the local site data systems. This access is particularly useful to users for quick decisions in executing time-dependent activities associated with field campaigns at the fixed sites and mobile facility locations. The eight computers for the research accounts are located at the Barrow and Atqasuk sites; the SGP central facility; the TWP Manus, Nauru, and Darwin sites; the AMF; and the DMF at PNNL. However, users are warned that the data provided at the time of collection have not been fully screened for quality and therefore are not considered to be official ACRF data. Hence, these accounts are considered to be part of the facility activities associated with field campaign activities, and users are tracked. In addition, users who visit sites can connect their computer or instrument to an ACRF site data system network, which requires an on-site device account. Remote (off-site) users can also have remote access to any ACRF instrument or computer system at any ACRF site, which requires an off-site device account. These accounts are also managed and tracked.

  4. Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status

    SciTech Connect (OSTI)

    Hodges, G.

    2005-03-18

    There are currently twenty-four Multi-Filter Rotating Shadowband Radiometers (MFRSR) operating within Atmospheric Radiation Measurement (ARM). Eighteen are located within the Southern Great Plains (SGP) region, there is one at each of the North Slope of Alaska (NSA) and Tropical Western Pacific (TWP) sites, and one is part of the instrumentation of the ARM Mobile Facility. At this time there are four sites, all extended facilities within the SGP, that are equipped for a MFRSR but do not have one due to instrument failure and a lack of spare instruments. In addition to the MFRSRs, there are three other MFRSR derived instruments that ARM operates. They are the Multi-Filter Radiometer (MFR), the Normal Incidence Multi-Filter Radiometer (NIMFR) and the Narrow Field of View (NFOV) radiometer. All are essentially just the head of a MFRSR used in innovative ways. The MFR is mounted on a tower and pointed at the surface. At the SGP Central Facility there is one at ten meters and one at twenty-five meters. The NSA has a MFR at each station, both at the ten meter level. ARM operates three NIMFRs; one is at the SGP Central Facility and one at each of the NSA stations. There are two NFOVs, both at the SGP Central Facility. One is a single channel (870) and the other utilizes two channels (673 and 870).

  5. Microsoft Word - AMF2 Instruments for BAECC.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    enith P ointing ARM C loud R adar ProSensing, Inc Cloud h eight a nd m icorphysics CPC Stephen Springston Condensation Particle Counter Model 3 772 CPC>10nm. D etermines t he c...

  6. Microsoft Word - AMF2 Environmental Health and Safety Manual...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for clearance; keep as low to the ground as ... and Native Energy management. The following checklist should be used as ... above shoulder level? 23. Is team lifting ...

  7. ARM - Field Campaign - RAdiative Divergence using AMF, GERB and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could not be obtained. A fundamental problem with all airborne experiments is the limited spatial and temporal sampling of the variability of the radiative fluxes, because of the...

  8. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - Sep. 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-10-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 ? 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 ? 2,208) and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 ? 2,208). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive result from downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The fourth quarter comprises a total of 2,208 hours for the fixed and mobile sites. The average of the fixed sites well exceeded our goal this quarter. The AMF data statistic requires explanation. Since the AMF radar data ingest software is being modified, the data are being stored in the DMF for data processing. Hence, the data are not at the Archive; they are anticipated to become available by the next report.

  9. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-01-15

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, they calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The US Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1-December 31, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The first quarter comprises a total of 2,208 hours. The average exceeded their goal this quarter.

  10. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request an account on the local site data system. The eight research computers are located at the Barrow and Atqasuk sites; the SGP Central Facility; the TWP Manus, Nauru, and Darwin sites; the DMF at PNNL; and the AMF in Niger. This report provides the cumulative numbers of visitors and user accounts by site for the period January 1, 2006 - December 31, 2006. The U.S. Department of Energy requires national user facilities to report facility use by total visitor days-broken down by institution type, gender, race, citizenship, visitor role, visit purpose, and facility-for actual visitors and for active user research computer accounts. During this reporting period, the ACRF Archive did not collect data on user characteristics in this way. Work is under way to collect and report these data. Table 2 shows the summary of cumulative users for the period January 1, 2006 - December 31, 2006. For the first quarter of FY 2007, the overall number of users is up from the last reporting period. The historical data show that there is an apparent relationship between the total number of users and the 'size' of field campaigns, called Intensive Operation Periods (IOPs): larger IOPs draw more of the site facility resources, which are reflected by the number of site visits and site visit days, research accounts, and device accounts. These types of users typically collect and analyze data in near-real time for a site-specific IOP that is in progress. However, the Archive accounts represent persistent (year-to-year) ACRF data users that often mine from the entire collection of ACRF data, which mostly includes routine data from the fixed and mobile sites, as well as cumulative IOP data sets. Archive data users continue to show a steady growth, which is independent of the size of IOPs. For this quarter, the number of Archive data user accounts was 961, the highest since record-keeping began. For reporting purposes, the three ACRF sites and the AMF operate 24 hours per day, 7 days per week, and 52 weeks per year. Although the AMF is not officially collecting data this quarter, personnel are regularly involved with teardown, packing, hipping, unpacking, setup, and maintenance activities, so they are included in the safety statistics. Time is reported in days instead of hours. If any lost work time is incurred by any employee, it is counted as a workday loss. Table 3 reports the consecutive days since the last recordable or reportable injury or incident causing damage to property, equipment, or vehicle for the period October 1 - December 31, 2006. There were no recordable or lost workdays or incidents for the first quarter of FY 2007.

  11. Atmospheric Radiation Measurement program climate research facilities quarterly report April 1 - June 30, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-07-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near-real time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter); for the North Slope Alaska (NSA) locale it is 1,965.60 hours (0.90 x 2,184); and for the Tropical Western Pacific (TWP) locale it is 1,856.40 hours (0.85 x 2,184). The ARM Mobile Facility (AMF) was officially operational May 1 in Graciosa Island, the Azores, Portugal, so the OPSMAX time this quarter is 1390.80 hours (0.95 x 1464). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for April 1 - June 30, 2009, for the fixed sites. Because the AMF operates episodically, the AMF statistics are reported separately and are not included in the aggregate average with the fixed sites. The AMF statistics for this reporting period were not available at the time of this report. The third quarter comprises a total of 2,184 hours for the fixed sites. The average well exceeded our goal this quarter.

  12. Atmospheric Radiation Measurement program climate research facility operations quarterly report.

    SciTech Connect (OSTI)

    Sisterson, D. L.; Decision and Information Sciences

    2006-09-06

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1-(ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.80 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.60 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.40 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.80 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The third quarter comprises a total of 2,184 hours. For all fixed sites (especially the TWP locale) and the AMF, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the third quarter of fiscal year (FY) 2006.

  13. Surface Di-directional Reflectance Properties Over the ARM SGP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Z. Li Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Introduction Surface albedo is an important parameter in atmospheric...

  14. Simultaneous Spectral Albedo Measurements Near the ARM SGP Central...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    varied noticeably within each day and between days, perhaps, because of bi-directional reflectance effects. Some preliminary calculations indicate that the differences that we...

  15. ARM - Field Campaign - Measuring Clouds at SGP with Stereo Photogramme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the form of the Point Cloud of Cloud Points Product (PCCPP). The PCCPP will: provide context on life-cycle stage and cloud position for vertically pointing radars, lidars, and...

  16. Continental Liquid-phase Stratus Clouds at SGP: Meteorological...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Relationship to Adiabacity Kim, Byung-Gon Kangnung National University Schwartz, Stephen Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Min,...

  17. New Eddy Correlation System for ARM SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    makes flux computations, prepares the data, and provides File Transfer Protocol (FTP) service for data transfer to the site communications computer. In a typical...

  18. Surface Albedo at ARM SGP from Helicopter Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Albedo at the Atmospheric Radiation Measurement Southern Great Plains Site from Helicopter Observations D. A. Rutan, F. G. Rose, and J. Madigan Analytical Services and Materials Inc. Hampton, Virginia T. P. Charlock National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction In August 1998, scientists from the National Aeronautics and Space Administration (NASA) Langley Research Center conducted a series of helicopter flights to determine spectral

  19. Preliminary Analysis of ARM SGP Area Sky Cover and Downwelling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clarifying and Implementing a Stricter DOD Definition Across Datastreams C. Sivaraman, B. Ermold, M. Macduff Pacific Northwest National Laboratory Definition of DOD: All dimension,...

  20. ARM - PI Product - Soundings from SGP, June 2014 Sonde Comparison...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diurnal cycle and a variety of cloud conditions. Data Details Developed by Michael Jensen | Tami Toto Contact Michael Jensen mjensen@bnl.gov (631) 344-7021 Upton, NY 11973 Tami...

  1. Merged MMCR-WSR88D Reflectivities at SGP

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dong, Xiquan

    2008-03-05

    There are substantial attenuations of MMCR signals for very large LWP and during precipitation events. We have used the nearest precipitation radar (WSR-88D) to merge two measurements to better represent such selected cases. In the near future, we are going to provide all the cumulus cases from Jan. 1997 to present whenever the two datasets are available. The original 2 data sets:

  2. Direct Aerosol Forcing in the Infrared at the SGP Site?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Introduction Low level haze is often observed ... lowers the ambient temperature and consequently ... is to improve the treatment of radiative transfer in ...

  3. Radiative Closure Studies at the NSA ACRF Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Michael Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory...

  4. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, James ProSensing Inc. Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM Cloud Radars (WACR) have been developed for the SGP and the ARM Mobile Facility (AMF) by ProSensing. The SGP WACR was successfully deployed in the same shelter as the MMCR in 2005. It is currently collecting co-polarization and cross-polarization spectral moments (reflectivity, Doppler velocity,

  5. Atmospheric Radiation Measurement program climate research facility operations quarterly report April 1 - June 30, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-07-26

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter of FY 2007 for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 x 2,184 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,965.6 hours (0.90 x 2,184), and that for the Tropical Western Pacific (TWP) locale is 1,856.4 hours (0.85 x 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 hours (0.95 x 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period April 1 through June 30, 2007, for the fixed sites only. The AMF has been deployed to Germany and is operational this quarter. The third quarter comprises a total of 2,184 hours. Although the average exceeded our goal this quarter, there were cash flow issues resulting from Continuing Resolution early in the period that did not allow for timely instrument repairs that kept our statistics lower than past quarters at all sites. The low NSA numbers resulted from missing MFRSR data this spring that appears to be recoverable but not available at the Archive at the time of this report.

  6. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multi-Filter Rotating Shadowband Radiometers Mentor Report and Baseline Surface Radiation Network Submission Status G. Hodges Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder, Colorado Overview Currently 24 multi-filter rotating shadowband radiometers (MFRSRs) operate within the Atmospheric Radiation Measurement (ARM) Program. Eighteen MFRSRs are located at Southern Great Plains (SGP) site, one is located at each of the North Slope of Alaska (NSA) and

  7. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave Cloud Radar Upgrades: Review, Status, and Plans K.B. Widener Pacific Northwest National Laboratory Richland, Washington K.P. Moran National Oceanic and Atmospheric Administration- Earth System Research Laboratory-Physical Sciences Division Boulder, Colorado Introduction The Atmospheric Radiation Measurement (ARM) Program currently operates five millimeter-wave cloud radars (MMCRs) at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) site, North Slope of Alaska (NSA)

  8. How is the Data Quality Office Doing?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How is the Data Quality Office Doing? K. L. Sonntag, R. A. Peppler, A. R. Dean, and C. M. Shafer Cooperative Institute for Mesoscale Meteorological Studies University of Oklahoma Norman, Oklahoma Introduction The Atmospheric Radiation Measurement (ARM) Program has collected data from its Southern Great Plains (SGP) climate research facility since late 1992, from its Tropical Western Pacific (TWP) site since 1996, and from its North Slope of Alaska (NSA) site since 1997. There are numerous

  9. liljegren-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Retrieval of Cloud Liquid Water Path J. C. Liljegren Ames Laboratory Ames, Iowa Introduction The Atmospheric Radiation Measurement (ARM) Program has deployed dual-frequency microwave water radiometers (MWRs) (Liljegren 1994) at its Cloud and Radiation Testbed (CART) sites in the U. S. Southern Great Plains (SGP), the Tropical Western Pacific (TWP), and the North Slope of Alaska/Adjacent Arctic Ocean (NSA/AAO). Although the integrated water vapor amount provided by these instruments has

  10. Barnard-JC.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeled and Measured Shortwave Broadband Radiative Fluxes at the SGP and NSA Sites (with Special Emphasis on Diffuse Radiation) J. C. Barnard and D. M. Powell Pacific Northwest National Laboratory Richland, Washington Introduction The ability to model broadband radiative fluxes under clear-sky conditions has been the focus of considerable activity in the past few years. Such activity has generated numerous studies that have examined how well- modeled radiative fluxes match measurements of these

  11. Microsoft Word - lesht.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of ECMWF Model Analyses with the Observed Upper-Air Temperature and Relative Humidity Climatology at the ARM NSA, SGP, and TWP Climate Research Facility Sites B. M. Lesht and J. C. Lijlegren Argonne National Laboratory Argonne, Illinois L. M. Miloshevich National Center for Atmospheric Research Boulder, Colorado Introduction Analyses of output from the European Centre for Medium-range Weather Forecasting (ECMWF 1994) model often are used for evaluating both observations (Ovarlez and

  12. Eddy Correlation Flux Measurement System Handbook (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Eddy Correlation Flux Measurement System Handbook Citation Details In-Document Search Title: Eddy Correlation Flux Measurement System Handbook The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are

  13. Failure and Redemption of Multifilter Rotating Shadowband Radiometer

    Office of Scientific and Technical Information (OSTI)

    (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric

  14. Eddy Correlation Flux Measurement System (ECOR) Handbook (Technical Report)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Eddy Correlation Flux Measurement System (ECOR) Handbook Citation Details In-Document Search Title: Eddy Correlation Flux Measurement System (ECOR) Handbook The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The

  15. Radiation Measurement (ARM) Climate Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    overview Sponsored by the U.S. Department of Energy's (DOE) Office of Science, the Atmospheric Radiation Measurement (ARM) Climate Research Facility was established in 1990 to improve global climate models by increasing understanding of clouds and radiative feedbacks. Through the ARM Facility, DOE funded the development of highly instrumented research sites at strategic locations around the world: the Southern Great Plains (SGP), Tropical Western Pacific (TWP), and North Slope of Alaska (NSA).

  16. MS_08_15.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Changes to the Merged Sounding VAP David Troyan and Mike Jensen, BNL Jim Mather and Sally McFarlane, PNNL Eli Mlawer and Jennifer Delamere, AER, Inc. Mark Miller, Rutger University Dave Turner, University of Wisconsin Jay Mace, University of Utah Merged Sounding Data Availability SGP: NSA: TWP Manus: TWP Nauru: TWP Darwin: 2000 - 2005 2004 - 2007 2006 2004 - 2006 2002 - 2006 Two versions of Merged Sounding exist. The original version is continuing to be run for all permanent sites; the

  17. Microsoft PowerPoint - GSWCorr2007Posterb_20070313.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 26 - 30, 2007 Summary * Radiometers are replaced each year, correction coefficients are calculated yearly for each radiometer * GSW corrections are about the same magnitude as PSP diffuse corrections * GSW corrections for TWP and NSA are about half those for SGP * No apparent seasonal changes in the corrections * DATA will be feed back to QCRad VAP for reprocessing and distributed as "c2" and "s2" level files through ARM ARCHIVE Summary * Radiometers are replaced each

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long Term AERI Data Summaries or Spectral Radiance Data for Testing Climate Models Tobin, D., Revercomb, H., Knuteson, R.O., Best, F., Dedecker, R., Howell, H.B., Garcia, R., and Feltz, W., University of Wisconsin-Madison Eleventh Atmospheric Radiation Measurement (ARM) Science Team Meeting Atmospheric Emitted Radiance Interferometer (AERI) data collection has been on-going at the SGP, NSA, and TWP ARM sites for a number of years now. This poster presents long term trends and distributions of

  19. ARM - Publications: Science Team Meeting Documents: The Merged-Sounding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VAP: Current Status and Future Direction The Merged-Sounding VAP: Current Status and Future Direction Troyan, David Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Mace, Gerald University of Utah The Merged-Sounding VAP is the much anticipated product which provides a thermodynamic profile of the atmosphere in one minute intervals. As the product is refined for the SGP site, work begins on modifying the existing code to create similar profiles for the NSA, TWP, and

  20. ARM - Data Announcements Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 29, 2014 [Data Announcements] High-Vertical Resolution Soundings Available for SGP and NSA Bookmark and Share A data visualization of the 1-second atmospheric measurements collected by the National Weather Service. A data visualization of the 1-second atmospheric measurements collected by the National Weather Service. The ARM External Data Center (XDC) now provides atmospheric soundings-vertical measurements of the atmospheric column-in 1-second resolutions collected by the National

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Data Stream Available from Millimeter Wave Cloud Radar Bookmark and Share Inside the instrument shelter, the MMCR data system collects radar spectral data and processes these into reflectivity, vertical velocities, and spectral width. As a result of upgrades to the Millimeter Wave Cloud Radar (MMCR) processors (see http://www.arm.gov/acrf/updates051504.stm#nsammcr) at the ARM Climate Research Facility Southern Great Plains (SGP) and North Slope of Alaska (NSA) locales, two MMCR data

  2. JeffersonSTM09.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOS: Measurements of Aerosol Optical and AOS: Measurements of Aerosol Optical and Cloud-forming Properties Cloud-forming Properties Anne Jefferson and John Ogren NOAA Environmental Science Research Laboratory CIRES, University of Colorado ARM STM 2009 Aerosol Observing Systems In-situ surface measurements of aerosol optical, chemical, size, hygroscopic and cloud-forming properties * SGP - ARM central facility Lamont, OK *AMF - Pt Reyes, CA 3/2005 - 9/2005 - Niamey, Niger 12/2005-1/2007 - Murg

  3. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January-March 2006

    SciTech Connect (OSTI)

    DL Sisterson

    2006-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year; and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter for the Southern Great Plains (SGP) site is 2,052 hours (0.95 × 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) locale is 1,836 hours (0.85 × 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,052 hours (0.95 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 – September 30, 2008

    SciTech Connect (OSTI)

    Sisterson, DL

    2008-09-30

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the fourth quarter of FY 2008 for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208), and for the Tropical Western Pacific (TWP) locale is 1,876.80 hours (0.85 x 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because the data have not yet been released from China to the DMF for processing. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 91 days for this quarter) the instruments were operating this quarter

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this quarter.

  8. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2009.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2009-04-23

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the second quarter of FY 2009 for the Southern Great Plains (SGP) site is 2,052.00 hours (0.95 x 2,160 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) locale is 1,944.00 hours (0.90 x 2,160), and for the Tropical Western Pacific (TWP) locale is 1,836.00 hours (0.85 x 2,160). The OPSMAX time for the ARM Mobile Facility (AMF) is not reported this quarter because not all of the metadata have been acquired that are used to generate this metric. The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percentage of data in the Archive represents the average percentage of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter. Summary. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2009, for the fixed sites. The AMF has completed its mission in China but not all of the data can be released to the public at the time of this report. The second quarter comprises a total of 2,160 hours. The average exceeded our goal this quarter.

  9. Coupling Between Oceanic Upwelling and Cloud-aerosol Properties at the AMF Point Reyes Site

    SciTech Connect (OSTI)

    Dunn, M.; Jensen, M.; Miller, M.; Kollias, P.; Bartholomew, M. J.; Turner, D.; Andrews, E.; Jefferson, A.; Daum, P.

    2008-03-10

    Cloud microphysical properties measured at the ARM Mobile Facility site located on the northern coast of California near Point Reyes, during the 2005 Marine Stratus Radiation, Aerosol and Drizzle experiment, were analyzed to determine their relationship to the coastal sea surface temperature (SST) which was characterized using measurements acquired from a National Oceanic and Atmospheric Administration offshore buoy. An increase in SST resulting from a relaxation of upwelling, occurring in the eastern Pacific Ocean off the coast of California in summer is observed to strongly correlate with nearby ground measured cloud microphysical properties and cloud condensation nuclei (CCN) concentrations. Correlations between these atmospheric and oceanic features provide insight into the interplay between the ocean and cloud radiative properties. We present evidence of this robust correlation and examine the factors controlling these features. The marine boundary layer is in direct contact with the sea surface and is strongly influenced by SST. Moisture and vertical motion are crucial ingredients for cloud development and so we examine the role of SST in providing these key components to the atmosphere. Although upwelling of cold subsurface waters is conventionally thought to increase aerosols in the region, thus increasing clouds, here we observed a relaxation of upwelling associated with changes in the structure of marine stratus clouds. As upwelling relaxes, the SST get warmer, thick clouds with high liquid water paths are observed and persist for a few days. This cycle is repeated throughout the summer upwelling season. A concomitant cyclic increase and decrease of CCN concentration is also observed. Forcing mechanisms and large-scale atmospheric features are discussed. Marine stratocumulus clouds are a critical component of the earth's radiation budget and this site provides an excellent opportunity to study the influence of SST on these clouds.

  10. Microsoft Word - AMF2_BAECC_Safety_Appendix_For_Web.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and thinly spread out. However, moose and reindeer are possible encounters at our work area. When you plan to go outside of a facility it will be paramount you check the immediate...

  11. Microsoft Word - 20130423 AMF2_MAGIC_Safety_Appendix_for_Web...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Know the signals used in the event of emergency and where you are to go. Before you use ... Wear them all the time when the machinery is operating. 16.2 Respiratory Protection The ...

  12. ARM - VAP Product - armbeatm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsarmbearmbeatm Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1095313 DOI: 10.5439/1039931 Central Facility, Lamont, OK (SGP C1) DOI: 10.5439/1039932 Central Facility, Barrow AK (NSA C1) DOI: 10.5439/1039933 Central Facility, Manus I., PNG (TWP C1) DOI: 10.5439/1039934 Central Facility, Nauru Island (TWP C2) DOI: 10.5439/1039935 Central Facility, Darwin, Australia (TWP C3) [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We

  13. ARM - VAP Product - armbecldrad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Productsarmbearmbecldrad Documentation Data Management Facility Plots (Quick Looks) Citation DOI: 10.5439/1095314 DOI: 10.5439/1039926 Central Facility, Lamont, OK (SGP C1) DOI: 10.5439/1039927 Central Facility, Barrow AK (NSA C1) DOI: 10.5439/1039928 Central Facility, Manus I., PNG (TWP C1) DOI: 10.5439/1039929 Central Facility, Nauru Island (TWP C2) DOI: 10.5439/1039930 Central Facility, Darwin, Australia (TWP C3) [ What is this? ] Generate Citation ARM Data Discovery Browse Data Comments? We

  14. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect (OSTI)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  15. Investigation of SGP Atmospheric Moisture Budget for CLASIC … Recycling Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget for CLASIC - Recycling Study Contributors Peter Lamb, Diane Portis, Daniel Hartsock Background * Motivation: to provide larger-scale background for the interpretation of the results of CLASIC * Moisture budgets and related variables are analyzed over a large area encompassing the CLASIC field study for May-June periods with contrasting precipitation regimes * Emphasis will be given to the relative contribution to regional precipitation from local vs advective atmospheric water vapor. *

  16. Diurnal Cycle of Convection at the ARM SGP Site: Role of Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over both land and oceans (Gray and Jacobson 1977; Dai 2001; Nesbitt and Zipser 2003). ... has a significant impact on the atmospheric radiation budget and cloud radiative forcing. ...

  17. ARM - PI Product - SGP and TWP (Manus) Ice Cloud Vertical Velocities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    removed, however a multi-layer flag is included. Data Details Contact Heike Kalesse Leibniz Institute for Tropospheric Research kalesse@tropos.de Permoserstr. 15 Leipzig, 04318...

  18. Infrared Land Surface Emissivity in the Vicinity of the ARM SGP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aeronautics and Space Administration (NASA) funding, a model for the infrared land ... validation product developed under the NASA atmospheric infrared sounder (AIRS) ...

  19. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfar...

    Office of Scientific and Technical Information (OSTI)

    The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous ...

  20. LandUse/Land Cover Map of the CF of ARM in the SGP Site Using...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists collect and analyze data obtained over extended periods of time from a large array of instruments to study the effects and interactions of sunlight, radiant energy, and ...

  1. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

    2007-06-30

    The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

  2. Searching for Global Dimming Evidence at SGP and Update of ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    frequency. A recent news article on global dimming in the web-based newspaper the Guardian Unlimited seems to have brought this issue to the...

  3. Derivation of Seasonal Cloud Properties at ARM-NSA from Multispectral...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this paper, the operational Clouds and the Earth's Radiant Energy System (CERES) cloud ... In Clouds and the Earth's Radiant Energy System (CERES) Algorithm Theoretical Basis ...

  4. Calibrating and training of neutron based NSA techniques with less SNM standards

    SciTech Connect (OSTI)

    Geist, William H; Swinhoe, Martyn T; Bracken, David S; Freeman, Corey R; Newell, Matthew R

    2010-01-01

    Accessing special nuclear material (SNM) standards for the calibration of and training on nondestructive assay (NDA) instruments has become increasingly difficult in light of enhanced safeguards and security regulations. Limited or nonexistent access to SNM has affected neutron based NDA techniques more than gamma ray techniques because the effects of multiplication require a range of masses to accurately measure the detector response. Neutron based NDA techniques can also be greatly affected by the matrix and impurity characteristics of the item. The safeguards community has been developing techniques for calibrating instrumentation and training personnel with dwindling numbers of SNM standards. Monte Carlo methods have become increasingly important for design and calibration of instrumentation. Monte Carlo techniques have the ability to accurately predict the detector response for passive techniques. The Monte Carlo results are usually benchmarked to neutron source measurements such as californium. For active techniques, the modeling becomes more difficult because of the interaction of the interrogation source with the detector and nuclear material; and the results cannot be simply benchmarked with neutron sources. A Monte Carlo calculated calibration curve for a training course in Indonesia of material test reactor (MTR) fuel elements assayed with an active well coincidence counter (AWCC) will be presented as an example. Performing training activities with reduced amounts of nuclear material makes it difficult to demonstrate how the multiplication and matrix properties of the item affects the detector response and limits the knowledge that can be obtained with hands-on training. A neutron pulse simulator (NPS) has been developed that can produce a pulse stream representative of a real pulse stream output from a detector measuring SNM. The NPS has been used by the International Atomic Energy Agency (IAEA) for detector testing and training applications at the Agency due to the lack of appropriate SNM standards. This paper will address the effect of reduced access to SNM for calibration and training of neutron NDA applications along with the advantages and disadvantages of some solutions that do not use standards, such as the Monte Carlo techniques and the NPS.

  5. Short-Term Arctic Cloud Statistics at NSA from the Infrared Cloud...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10-20% 20-30% 30-40% 40-50% 50-60% 60-70% 70-80% 80-90% 90-100% Figure 4. Monthly cloud statistics. (March data limited to the last two weeks) Acknowledgment The ICI system was...

  6. ARM Publications Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sites: ARM Instruments: Data Products: AMF - Black Forest, ... (PYE) AMF - Shouxian, China (HFE) AMF - Steamboat ... (ASSIST) Automatic Weather Station (MAWS) ...

  7. ARM - Mobile Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images ... 2009-2010 Shouxian, China, 2008 Black Forest, ... Optical Absorption Weather Transmitter (WXT-520) ...

  8. Clouds, Aerosols and Precipitation in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Washington Rob Wood, University of Washington AMF Deployment Team Thanks to Mark Miller: AMF Site Scientist Mark Miller: AMF Site Scientist Kim Nitschke: AMF Site Manager...

  9. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  10. ARM Multi-Filter Rotating Shadowband Radiometer (MFRSR): irradiances

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Hodges, Gary

    1993-07-04

    The multifilter rotating shadowband radiometer (MFRSR) takes spectral measurements of direct normal, diffuse horizontal and total horizontal solar irradiances. These measurements are at nominal wavelengths of 415, 500, 615, 673, 870, and 940 nm. The measurements are made at a user-specified time interval, usually about one minute or less. The sampling rate for the Atmospheric Radiation Measurement (ARM) Climate Research Facility MFRSRs is 20 seconds. From such measurements, one may infer the atmosphere's optical depth at the wavelengths mentioned above. In turn, these optical depths may be used to derive information about the column abundances of ozone and water vapor (Michalsky et al. 1995), as well as aerosol (Michalsky et al. 1994) and other atmospheric constituents. A silicon detector is also part of the MFRSR. This detector provides a measure of the broadband direct normal, diffuse horizontal and total horizontal solar irradiances. A MFRSR head that is mounted to look vertically downward can measure upwelling spectral irradiances. In the ARM system, this instrument is called a multifilter radiometer (MFR). At the Southern Great Plains (SGP) there are two MFRs; one mounted at the 10-m height and the other at 25 m. At the North Slope of Alaska (NSA) sites, the MFRs are mounted at 10 m. MFRSR heads are also used to measure normal incidence radiation by mounting on a solar tracking device. These are referred to as normal incidence multi-filter radiometers (NIMFRs) and are located at the SGP and NSA sites. Another specialized use for the MFRSR is the narrow field of view (NFOV) instrument located at SGP. The NFOV is a ground-based radiometer (MFRSR head) that looks straight up.

  11. Data Products from ECMWF (European Centre for Medium Range Weather Forecasts) Covering the MAGIC AMF2 Deployment

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ahlgrimm, Maike

    2015-04-02

    ECMWF derived diagnostic variables over MAGIC's ship path from Los Angeles, CA and Honolulu, HI. Two dimensional (time and height) slices were extracted once the ship's exact positions were known.

  12. Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report) | SciTech Connect Technical feasibility of storage on large dish stirling systems. Citation Details In-Document Search Title: Technical feasibility of storage on large dish stirling systems. Authors: Andraka, Charles E. ; Rawlinson, Kim Scott ; Siegel, Nathan Phillip [1] + Show Author Affiliations (Bucknell University, Lewisburg, PA) Publication Date: 2012-09-01 OSTI Identifier: 1055585 Report Number(s): SAND2012-8352 DOE Contract Number: AC04-94AL85000 Resource Type: Technical

  13. Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of Mechanisms from SGP ARM Data

    SciTech Connect (OSTI)

    Sumant Nigam

    2013-02-01

    Work reported included analysis of pentad (5 day) averaged data, proposal of a hypothesis concerning the key role of the Atlantic Multi-decadal Oscillation in 20th century drought and wet periods over the Great Plains, analysis of recurrent super-synoptic evolution of the Great Plains low-level jet, and study of pentad evolution of the 1988 drought and 1993 flood over the Great Plains from a NARR perspective on the atmospheric and terrestrial water balance.

  14. ER2 Instrumentation and Measurements for CLASIC (Cloud Land Surface Interaction Campaign) June-2007 SGP {Author-Jimmy Voyles}

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » EPSA Internship Program EPSA Internship Program The Department of Energy's Office of Energy Policy and Systems Analysis (EPSA) is now accepting applications to select interns through the Department of Energy's Scholars Program. Over 10 weeks, interns will be working with policymakers in one of EPSA's offices, making meaningful contributions to research, analysis and day to day office administration. This program provides a unique opportunity to learn about energy policy at the

  15. Effective Radius of Cloud Droplets Derived from Ground-based Remote Sensing at the ARM SGP site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficacy of Aerosol - Cloud Interactions under Varying Meteorological Conditions Byung-Gon Kim, @ Mark Miller, # Stephen Schwartz, $ Yangang Liu, $ Qilong Min % Kangnung National University, @ Rutgers University # Brookhaven National Laboratory, $ State Univ. of NY at Albany % (Courtesy Magritte) Cloud dynamical processes such as entrainment mixing may be the primary modulators of cloud optical properties in certain situations. Entrainment of dry air alters the cloud drop size distribution by

  16. doe sc arm 14 038 Organic and Elemental Carbon Aerosol Particulate at the SGP_edited_formatted

    Office of Scientific and Technical Information (OSTI)

    8 Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report R Cary April 2016 CLIMATE RESEARCH FACILITY DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

  17. ARM - Datastreams - sondewrpn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP B1 Browse Data Hillsboro, KS (Boundary) retired SGP B4 Browse Data Vici, OK (Boundary) retired SGP B5 Browse Data Morris, OK (Boundary) retired SGP B6 Browse Data Purcell...

  18. ARM - Datastreams - swats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KS (Extended) SGP E10 Browse Data Tyro, KS (Extended) retired SGP E11 Browse Data Byron, OK (Extended) SGP E12 Browse Data Pawhuska, OK (Extended) SGP E13 Browse Data Lamont, OK...

  19. ARM - Datastreams - irt200ms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KS (Extended) SGP E10 Browse Data Tyro, KS (Extended) retired SGP E11 Browse Data Byron, OK (Extended) SGP E12 Browse Data Pawhuska, OK (Extended) SGP E13 Browse Data Lamont, OK...

  20. ARM - Datastreams - swatspcp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retired SGP E10 Browse Data Tyro, KS (Extended) retired SGP E12 Browse Data Pawhuska, OK (Extended) SGP E16 Browse Data Vici, OK (Extended) retired SGP E18 Browse Data Morris,...

  1. ARM - Datastreams - 5ebbr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retired SGP E9 Browse Data Ashton, KS (Extended) SGP E12 Browse Data Pawhuska, OK (Extended) SGP E13 Browse Data Lamont, OK (Extended) SGP E15 Browse Data Ringwood, OK...

  2. ARM - Instrument - ceil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plains SGP B1 Browse Data Hillsboro, KS (Boundary) retired SGP B4 Browse Data Vici, OK (Boundary) retired SGP B5 Browse Data Morris, OK (Boundary) retired SGP B6 Browse Data...

  3. ARM - Datastreams - sonde

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plains SGP B1 Browse Data Hillsboro, KS (Boundary) retired SGP B4 Browse Data Vici, OK (Boundary) retired SGP B5 Browse Data Morris, OK (Boundary) retired SGP C1 Browse Data...

  4. ARM - Instrument - swats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KS (Extended) SGP E10 Browse Data Tyro, KS (Extended) retired SGP E11 Browse Data Byron, OK (Extended) SGP E12 Browse Data Pawhuska, OK (Extended) SGP E13 Browse Data Lamont, OK...

  5. Tropical Western Pacific site science mission plan. Semiannual project report, January--June 1998

    SciTech Connect (OSTI)

    Ackerman, T.; Mather, J.; Clements, W.; Barnes, F.

    1998-11-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains (SGP) of the United States, the Tropical Western Pacific (TWP), and the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO). This Site Science Mission Plan [RPT(TWP)-010.000] describes the ARM program in the Tropical Western Pacific locale.

  6. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The ultimate goal is to improve our cloud classification algorithm into a VAP.

  7. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    SciTech Connect (OSTI)

    Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and cloud with a low optical depth are prevalent; the radiative closure studies using Microbase demonstrated significant residuals. As an alternative to Microbase at NSA, the Shupe-Turner cloud property retrieval algorithm, aimed at improving the partitioning of cloud phase and incorporating more constrained, conditional microphysics retrievals, also has been evaluated using the BBHRP data set.

  8. Contribution to the development of DOE ARM Climate Modeling Best Estimate Data (CMBE) products: Satellite data over the ARM permanent and AMF sites: Final Report

    SciTech Connect (OSTI)

    Xie, B; Dong, X; Xie, S

    2012-05-18

    To support the LLNL ARM infrastructure team Climate Modeling Best Estimate (CMBE) data development, the University of North Dakota (UND)'s group will provide the LLNL team the NASA CERES and ISCCP satellite retrieved cloud and radiative properties for the periods when they are available over the ARM permanent research sites. The current available datasets, to date, are as follows: the CERES/TERRA during 200003-200812; the CERES/AQUA during 200207-200712; and the ISCCP during 199601-200806. The detailed parameters list below: (1) CERES Shortwave radiative fluxes (net and downwelling); (2) CERES Longwave radiative fluxes (upwelling) - (items 1 & 2 include both all-sky and clear-sky fluxes); (3) CERES Layered clouds (total, high, middle, and low); (4) CERES Cloud thickness; (5) CERES Effective cloud height; (6) CERES cloud microphysical/optical properties; (7) ISCCP optical depth cloud top pressure matrix; (8) ISCCP derived cloud types (r.g., cirrus, stratus, etc.); and (9) ISCCP infrared derived cloud top pressures. (10) The UND group shall apply necessary quality checks to the original CERES and ISCCP data to remove suspicious data points. The temporal resolution for CERES data should be all available satellite overpasses over the ARM sites; for ISCCP data, it should be 3-hourly. The spatial resolution is the closest satellite field of view observations to the ARM surface sites. All the provided satellite data should be in a format that is consistent with the current ARM CMBE dataset so that the satellite data can be easily merged into the CMBE dataset.

  9. ARM - Instrument - met

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Browse Data Browse Plots Ashton, KS (Extended) SGP E11 Browse Data Browse Plots Byron, OK (Extended) SGP E13 Browse Data Browse Plots Lamont, OK (Extended) SGP E15 Browse Data...

  10. ARM - Instrument - mfrsr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility, Atqasuk AK Southern Great Plains SGP C1 Browse Data Central Facility, Lamont, OK SGP E1 Browse Data Larned, KS (Extended) retired SGP E3 Browse Data LeRoy, KS (Extended)...

  11. ARM - Instrument - sebs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (71.393, -156.422, 0) Southern Great Plains SGP E14 Browse Data Browse Plots Lamont, OK (Extended, secondary) SGP E21 Browse Data Browse Plots Okmulgee, OK (Extended) SGP E31...

  12. ARM - Other Aircraft Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Radar Campaign 12 days Stephen Sekelsky SGP 1998-08-03 Past BDRF Campaign 25 days Don Cahoon SGP 2002-05-13 Past IHOP Campaign 1 months Dave Parsons SGP 2005-05-21 Past...

  13. Long-term measurements of submicrometer aerosol chemistry at...

    Office of Scientific and Technical Information (OSTI)

    Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) Citation ... Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) In this study ...

  14. International H

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NOAA) Environmental Technology Laboratory will be bringing a mini-DIAL (differential absorption lidar) to the SGP central facility for comparison with the SGP Raman...

  15. ARM - Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Sources ARM Data Discovery Browser NSA Data Past ARM NSA campaigns NCARUCAR National Oceanic and Atmospheric Administration Collaborations ARCUS - Arctic Research...

  16. ARM - Arctic Meetings of Interest

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Collaborations Meetings of Interest Data Sources ARM Data Discovery Browser NSA Data Past ARM NSA campaigns NCARUCAR National Oceanic and Atmospheric Administration...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to ensure that ARM NSA data continues to receive appropriate inspection and reporting. Education: The PSU NSA SST has extensively used ARM data in the undergraduate meteorology...

  18. ARM - Instrument - sashe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF1 PGH M1 Browse Data ARIES Observatory, Nainital, Uttarkhand, India; AMF1 retired PVC M1 Browse Data Highland Center, Cape Cod MA; AMF1 retired retired Originating...

  19. ARM - Surface Aerosol Observing System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesSurface Aerosol Observing System AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011

  20. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesInstruments AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs,

  1. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesInstruments AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS Data Operations AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs,

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adieu to Niger, Guten Tag to Germany Bookmark and Share The AMF decommissioning team poses for a group photo at the AMF site near the airport in Niamey. At midnight January 7, 2007, the ARM Mobile Facility (AMF) deployment in Niamey, Niger, successfully concluded. For the next two weeks, the AMF decommissioning team packaged the AMF for subsequent uplift to Germany. Not only were AMF operations in Niamey a resounding success, but the data gathered from the deployment is already bearing fruit,

  3. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amon Haruta, AMF1 project coordinator from Los Alamos National Laboratory. Another Goodbye Vaughan Ivens, AMF1 site technician, retired at the conclusion of the deployment at...

  4. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China LIDAR Summary Connor Flynn, PNNL MPLs deployed for AMF campaign Summary of data dispostion MPL polarization technique, implications Visual survey with AMF China supported by ...

  5. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    during the AMF Deployment in Shouxian, China Christian Kummerow, Wesley Berg, Steve ... Our objective is to use data from the AMF deployment in Shouxian, China is to study ...

  6. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oceanic Upwelling and Cloud - - Aerosol Properties Aerosol Properties at the AMF Point Reyes Site at the AMF Point Reyes Site Maureen Dunn , Mike Jensen , Pavlos Kollias , Mark...

  7. Validation of a radar doppler spectra simulator using measurements from the ARM cloud radars

    SciTech Connect (OSTI)

    Remillard, J.; Luke, E.; Kollias, P.

    2010-03-15

    The use of forward models as an alternative approach to compare models with observations contains advantages and challenges. Radar Doppler spectra simulators are not new; their application in high- resolution models with bin microphysics schemes could help to compare model output with the Doppler spectra recorded from the vertically pointing cloud radars at the ARM Climate Research Facility sites. The input parameters to a Doppler spectra simulator are both microphysical (e.g., particle size, shape, phase, and number concentration) and dynamical (e.g., resolved wind components and sub-grid turbulent kinetic energy). Libraries for spherical and non-spherical particles are then used to compute the backscattering cross-section and fall velocities, while the turbulence is parameterized as a Gaussian function with a prescribed width. The Signal-to-Noise Ratio (SNR) is used to determine the amount of noise added throughout the spectrum, and the spectral smoothing due to spectral averages is included to reproduce the averaging realized by cloud radars on successive returns. Thus, realistic Doppler spectra are obtained, and several parameters that relate to the morphological characteristics of the synthetically generated spectra are computed. Here, the results are compared to the new ARM microARSCL data products in an attempt to validate the simulator. Drizzling data obtained at the SGP site by the MMCR and the AMF site at Azores using the WACR are used to ensure the liquid part and the turbulence representation part of the simulator are properly accounted in the forward model.

  8. ARM - Instrument - smos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KS (ABLE) retired SGP A4 Browse Data Smileyberg, KS (ABLE) retired SGP A5 Browse Data Oxford, KS (ABLE) retired retired Originating instrument has been retired at this location...

  9. ARM - Instrument - sodar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    KS (ABLE) retired SGP A2 Browse Data Beaumont, KS (ABLE) retired SGP A5 Browse Data Oxford, KS (ABLE) retired ARM Mobile Facility MAO S1 Browse Data Manacapuru, Amazonas,...

  10. turner_poster.arctic_bbhrp.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Profiles over the ACRF NSA Site Dave Turner 1 , Matt Shupe 2 , Dan DeSlover 1 , Eli ... Northwest National Laboratory Photo by D. Turner at NSA site, Mar 2007 Introduction A ...

  11. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Slope of Alaska (NSA) is home to one of the ARM Program's outdoor research sites. The NSA site has locations in the towns of Barrow and Atqasuk. These areas are important...

  12. Microsoft PowerPoint - NSF CISE Salishan 04262006

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... (HECRTF) March 2003 March 2003 NSF NIH DOESC NSF NIH DOESC DOENNSA DOENNSA DARPA NSA NASA DARPA NSA NASA AHRQ NIST OSD AHRQ NIST OSD NOAA EPA AFRL NOAA EPA AFRL ARO DHS FAA ARO ...

  13. Microsoft PowerPoint - Kassianov_etal_ARM2007_presentation_v01.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Between Relationship Between Cumulus Cloud Fraction Cumulus Cloud Fraction Cumulus Cloud Fraction Cumulus Cloud Fraction and and Aerosol Optical Depth Aerosol Optical Depth: : p p p p a Five a Five- -Year Climatology at Year Climatology at th ARM SGP Sit th ARM SGP Sit the ARM SGP Site the ARM SGP Site E. Kassianov, L. Berg, C.Flynn, and S. McFarlane Pacific Northwest National Laboratoty Outline Outline Outline Outline * * Motivation & Objectives Motivation & Objectives * * Approach

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 15, 2008 [Facility News] New Ceilometer Evaluated at Southern Great Plains Site Bookmark and Share Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. To analyze cloud properties, ARM scientists

  15. ARM - Measurement - Visibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Instruments LDIS : Laser Disdrometer MET : Surface Meteorological Instrumentation METTWR : Surface and Tower Meteorological Instrumentation at NSA External Instruments MOLTS : ...

  16. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2006 [Education] Students Tour the SGP Facility Bookmark and Share Seventh graders tour the ARM SGP site in November. On November 1, 2006, the SGP site hosted a group of 30 seventh graders from the local Deer Creek-Lamont school district. The students and their teacher, Deborah McFeeters, were on a mission to learn about the ARM Program and the exciting research taking place at the SGP site. SGP Operations Manager Dan Rusk gave a slide presentation about ARM and lead the group on a short

  17. ARM - Field Campaign - COPS - Initiation of Convection and the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Experiment in Support of CLOWD 2007.06.22, Vogelmann, AMF COPS - WILI Coherent Doppler Wind Lidar at Black Forest 2007.05.10, Althausen, AMF COPS - Multi Wavelength...

  18. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deployment-mean cloud and precipitation fraction during the AMF deployment at Niamey, Niger. The first international deployment of the AMF in Niamey, Niger,-one of the hottest...

  19. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Cumulus over the Ocean (RICO) campaign. Error bars in AMF data represent 95 percent confidence intervals. SPOP from AMF data, compared to (b) SPOP from the VOCALS Regional...

  20. ARM - Field Campaign - MArine Stratus Radiation Aerosol and Drizzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMArine Stratus Radiation Aerosol and Drizzle (MASRAD) IOP Campaign Links Science Plan AMF Point Reyes Website AMF Point Reyes Data Plots ARM Data Discovery Browse Data...

  1. ARM - Instrument - vdis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMF2 retired TMP M1 Browse Data U. of Helsinki Research Station (SMEAR II), Hyytiala, Finland; AMF2 retired Originating instrument has been retired at this location Contact(s)...

  2. ARM - Instrument - nav

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - NOAA Ship Ronald H. Brown; AMF2 MAG M1 Browse Data Los Angeles, CA to Honolulu, HI - container ship Horizon Spirit; AMF2 retired retired Originating instrument has been...

  3. ARM - Instrument - ozone

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ship Ronald H. Brown; AMF2 MAG M1 Browse Data Browse Plots Los Angeles, CA to Honolulu, HI - container ship Horizon Spirit; AMF2 retired MAO S1 Browse Data Browse Plots...

  4. ARM - Datastreams - tsiskyimage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVC M1 Browse Data Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Point Reyes, CA retired SBS M1 Browse Data Steamboat Springs CO, Valley Site; AMF2 retired TMP M1...

  5. ARM - Datastreams - skyrad20s

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    retired PVC M1 Browse Data Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Point Reyes, CA retired SBS M1 Browse Data Steamboat Springs CO, Valley Site; AMF2 retired...

  6. ARM - Datastreams - nfov2ch

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observatory, Nainital, Uttarkhand, India; AMF1 retired PVC M1 Browse Data Browse Plots Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA...

  7. ARM - Instrument - mwr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots ARIES Observatory, Nainital, Uttarkhand, India; AMF1 retired PVC M1 Browse Data Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA...

  8. ARM - Instrument - gndrad

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA retired SBS M1 Browse Data Steamboat Springs CO, Valley Site; AMF2 retired TMP M1...

  9. ARM - Instrument - sonde

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA retired SBS M1 Browse Data Browse Plots Steamboat Springs CO, Valley Site; AMF2...

  10. ARM - Datastreams - sondewnpn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plots Highland Center, Cape Cod MA; AMF1 retired PYE M1 Browse Data Browse Plots Point Reyes, CA retired SBS M1 Browse Data Browse Plots Steamboat Springs CO, Valley Site; AMF2...

  11. Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesSouthern Great Plains SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Southern Great Plains SGP Central Facility, Lamont, OK 36° 36' 18.0" N, 97° 29' 6.0" W Altitude: 320 meters

  12. Long-term measurements of submicrometer aerosol chemistry at the Southern

    Office of Scientific and Technical Information (OSTI)

    Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) (Journal Article) | SciTech Connect Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) Citation Details In-Document Search Title: Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM) In this study the long-term trends of non-refractory

  13. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains

    Office of Scientific and Technical Information (OSTI)

    (SGP) Site () | Data Explorer Southern Great Plains (SGP) Site Title: Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To

  14. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 13, 2010 [Education, Events, Facility News] SGP Hosts Two Groups for "Lunch and Launch" Visit Bookmark and Share John Schatz, SGP Deputy Site Manager (in striped shirt), answers questions from Billings Rotary Club members as Mary Green, BBSS operator (walking from cart) finishes launching the balloon and heads to the control room to monitor the data transmission. John Schatz, SGP Deputy Site Manager (in striped shirt), answers questions from Billings Rotary Club members as Mary

  15. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant

  16. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 31, 2009 [Facility News, Publications] African Collaborators Continue Data Analyses from Niamey Bookmark and Share During a recent gathering at the University of Niamey, SGP and African collaborators pause for a quick photo. From left to right: Dr. Zewdu Segele, SGP Site Scientist Postdoc; Professor Ibrah Sanda, Professor of Physics, University of Niamey; Dr. Pete Lamb, SGP Site Scientist; Professor Ben Mohamed, project lead from the University of Niamey; Hama Hamidou, a Niamey

  17. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 28, 2006 [Facility News] Network of Infrared Thermometers Nearly Complete at SGP Bookmark and Share Red dots indicate extended facilities at SGP with the new IRTs installed; green dots indicate future installations. As reported in April 2005, a network of infrared thermometers (IRT) is being installed throughout the ARM Southern Great Plains (SGP) site for the purpose of measuring cloud base temperature and inferring cloud base height across the domain. These measurements will enhance

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aide for Oklahoma Senator Inhofe Visits SGP Site Bookmark and Share On August 19, 2010, a legislative aide for Senator James Inhofe (R-Ok) visited the ARM Southern Great Plains (SGP) site to learn about the facility, its role in global climate research, and its contribution to the state of Oklahoma. Throughout the course of the visit, ARM representatives emphasized how the high-quality data provided by the SGP and other ARM sites help scientists identify critical atmospheric processes so that

  19. NCEP:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    surface net radiation: cloudy sky - clear sky cloud fraction (%) cloud fraction (%) cloud fraction (%) cloud fraction (%) cloud fraction (%) ARM/NSA vs. reanalysis summmaries NCEP: shortwave flux NCEP: longwave flux ARM/NSA validation of Arctic clouds and radiative impacts in reanalyses John E. Walsh, William L. Chapman and Diane H. Portis University of Illinois at Urbana-Champaign http://igloo.atmos.uiuc.edu/ARM/ Objectives: -- use ARM/NSA measurements to assess reanalysis-derived surface

  20. Microsoft PowerPoint - ARMSTM_2007_Westwater_et_al_02.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EXPERIMENTS 1. Arctic Winter Radiometric Experiment 2004 Period: March 9-April 9 2004 Location: ARM NSA, Barrow, Alaska 2. RHUBC (http://science.arm.gov/rhubc/) Period: February 22, 2007 to present Location: ARM NSA, Barrow, Alaska GOALS * Provide real time retrievals of PWV and CLP * Compare observations with ARM and Radiometrics millimeter-wave radiometers * Forward model radiative transfer studies Results from the Ground-based Scanning Radiometer's Deployments at the NSA in 2004 and 2007

  1. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska

    Office of Scientific and Technical Information (OSTI)

    (NSA) Site () | Data Explorer North Slope Alaska (NSA) Site Title: Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve

  2. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM Education Team Visits NSA Bookmark and Share Bernie Zak, NSA ARM site manager, gives a tour of the NSA site. In October, the ARM Education team met with several teachers and school administrators to reestablish a working relationship and to determine how to best enhance the existing ARM education outreach programs for the North Slope. Some of the current issues that the North Slope Borough School District is facing were discussed during these conversations. According to the No Child Left

  3. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2006 [Facility News] New NSA Site Manager Named; Science Liaison Joins the Team Bookmark and Share Dr. Mark Ivey to be NSA Site Manager beginning October 1. As of October 1, Dr. Mark Ivey officially became the ARM Climate Research Facility's North Slope of Alaska (NSA) Site Manager. From 1993 to 2000, Mark worked for the ARM Program as manager of the Tropical Western Pacific (TWP) Atmospheric Radiation and Cloud Station (ARCS) engineering team and ARCS integration site at Sandia National

  4. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    SciTech Connect (OSTI)

    Henry Revercomb, David Tobin, Robert Knuteson, Lori Borg, Leslie Moy

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the grand tour of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004. More specifically, our major achievements for ARM include 1. Development of the Atmospheric Emitted Radiance Interferometer (AERI) to function like a satellite on the ground for ARM, providing a steady stream of accurately calibrated spectral radiances for Science Team clear sky and cloud applications (Knuteson et al. 2004a), 2. Detailed radiometric calibration and characterization of AERI radiances, with uncertainty estimates established from complete error analyses and proven by inter-comparison tests (Knuteson et al. 2004b), 3. AERI data quality assessment and maintenance over the extended time frames needed to support ARM (Dedecker et al., 2005) 4. Key role in the radiative transfer model improvements from the AERI/LBLRTM QME (Turner et al. 2004) and AERI-ER especially from the SHEBA experiment (Tobin et al. 1999), 5. Contributed scientific and programmatic leadership leading to significant water vapor accuracy improvements and uncertainty assessments for the low to mid troposphere (Turner et al. 2003a, Revercomb et al. 2003), 6. Leadership of the ARM assessment of the accuracy of water vapor observations from radiosondes, Raman Lidar and in situ aircraft observations in the upper troposphere and lower stratosphere (Tobin et al. 2002, Ferrare et al. 2004), 7. New techniques for characterizing clouds from AERI (DeSlover et al. 1999, Turner 2003b, Turner et al. 2003b), 8. Initial design and development of the Scanning-HIS aircraft instrument and application to ARM UAV Program missions (Revercomb et al. 2005), and 9. Coordinated efforts leading to the use of ARM observations as a key validation tool for the high resolution Atmospheric IR Sounder on the NASA Aqua platform (Tobin et al. 2005a) 10. Performed ARM site and global clear sky radiative closure studies that shows closure of top-of-atmosphere flux at the level of ~1 W/m2 (Moy et al 2008 and Section 3 of this appendix) 11. Performed studies to characterize SGP site cirrus cloud property retrievals and assess impacts on computed fluxes and heating rate profiles (Borg et al. 2008 and Section 2 of this appendix).

  5. Measuring the Raindrop Size Distribution, ARM's Efforts at Darwin...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Raindrop Size Distribution, ARM's Efforts at Darwin and SGP Bartholomew, Mary Jane Brookhaven National Laboratory Category: Instruments ARM has purchased two impact...

  6. ARM - Instrument - org

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Southern Great Plains SGP C1 Browse Data Central Facility, Lamont, OK Contact(s) Mary Jane Bartholomew Brookhaven National Laboratory (631) 344-2444 bartholomew...

  7. ARM - Journal Articles 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... ratios provide constraints (Citation) Environmental Science & Technology Yes ARM ASR Dupont Cloud properties derived from two lidars over the ARM SGP site (Citation) Geophysical ...

  8. Continuous Evaluation of Fast Processes in Climate Models Using...

    Office of Scientific and Technical Information (OSTI)

    The data assimilation implementation focuses in the ARM SGP region. ARM measurements are assimilated along with other available satellite and radar data. Reanalyses are then ...

  9. oreopoulos-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional and Novel Cloud Property Retrieval Techniques on Landsat TM Data over SGP L. Oreopoulos, R. F. Cahalan, A. Marshak, and G. Wen Climate and Radiation Branch,...

  10. ARM - Information for Guest Scientists

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsInformation for Guest Scientists SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility...

  11. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP site, located a third-party provider for the gear and purchased a small supply. ... sensors * Sun trackers * Uninterruptible power supplies * Computer monitors, drives * ...

  12. Diffuse Irradiance Study Planned for October

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and radiometers installed at the SGP CART site near Lamont, Oklahoma. The instruments measuring diffuse solar radiation have black sphere-shaped shades to keep direct sunlight from...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    real-time for the SGP and TWP MPL units. Solving this equation requires calibrating each system for signal and range dependent deadtime, afterpulse and overlap corrections....

  14. X:\\ARM_19~1\\4264.FRT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    entraining parcel model SGP Southern Great Plains SIROS solar and infrared observing system SNR signal-to-noise ratio SORTI Solar Radiance Transmission Interferometer SPECTRE...

  15. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud products and the ARM SGP observation for individual cirrus cloud and stratus cloud cases. At the same time, statistical comparison of optically thin cirrus clouds is also...

  16. ARM - News & Press

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Operations Plan (PDF, 640K) SGP Data Plots RACORO wiki Login Required Experiment Planning Steering Committee Science Questions RACORO Proposal Abstract Full Proposal (PDF,...

  17. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP ... Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence ...

  18. ARM - Field Campaign - 2013 Lower Atmospheric Boundary Layer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lower Atmospheric Boundary Layer Experiment 2012.09.17, Turner, SGP Comments? We would ... Lead Scientist : David Turner For data sets, see below. Abstract Instruments were deployed ...

  19. ARM - Field Campaign - ARM Support for the Plains Elevated Convection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convection at Night Experiment: Doppler Lidar Operations 2015.06.01, Turner, SGP Comments? ... Lead Scientist : David Turner For data sets, see below. Abstract The Plains Elevated ...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observational data from the Atmospheric Radiation Measurements (ARM) Program at the Southern Great Plain (SGP) Oklahoma Central Facility and the Tropical Western Pacific (TWP) ...

  1. SCM Working Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement A Little Background 3.5 x 3.5 degree 23 ARM Extended ... Current ARM SGP Observation Network ARM Atmospheric Radiation Measurement Issues with ...

  2. ARM - Datastreams - precnet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Variable Precipitation precipamt Locations Southern Great Plains SGP A1 Browse Data Whitewater, KS (ABLE) retired retired Originating instrument has been...

  3. ARM - Instrument - precnet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    considered scientifically relevant. Precipitation Locations Southern Great Plains SGP A1 Browse Data Whitewater, KS (ABLE) retired retired Originating instrument has been...

  4. ARM - Measurement - Soil surface temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems SOIL : Soil Measurement from the SGP SWATS : Soil Water and Temperature System MET : Surface Meteorological Instrumentation External Instruments ETA : Eta Model Runs...

  5. ARM - Instrument - surflog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System (OMIS). Output Datastreams surflog : Surface vegetation information from SGP Meta Data System (MDS) Primary Measurements The following measurements are those considered...

  6. Characterization of Vertical Velocity and Drop Size Distribution...

    Office of Scientific and Technical Information (OSTI)

    Additional insights into the form of the raindrop size distribution are provided using available dual-frequency Doppler velocity observations at SGP. The analysis suggests that ...

  7. ARM - Publications: Science Team Meeting Documents: Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the Ground-based Remote Sensing at SGP Kim, Byung-Gon Princeton University Klein, Stephen Lawrence Livermore National Laboratory Mace, Gerald University of Utah Benson, Sally...

  8. ARM - Publications: Science Team Meeting Documents: A new Shortwave...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A new Shortwave Spectrometer for SGP Pommier, John NASA Ames Research Center Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center A new Shortwave ...

  9. ARM - Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment Operations Measurements SGP Data Plots NASA Data Plots ARM Data Discovery ... SPEC Humidity Diode Laser Hygrometer (DLH) NASA Turbulence AIMMS-20 SPEC Cloud Properties ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Observations Help Validate Soil Temperature Simulations Download a printable PDF Submitter: Huang, M., Pacific Northwest National Laboratory Area of Research: Surface...

  11. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SGP) site. The microphysical data have been analyzed to better understand the particle size distributions, ice water contents (IWC), and ice crystal habits of these clouds. These...

  12. penner(1)-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with this goal, we have selected data from the Southern Great Plains (SGP) ARM site. The data include total liquid water path (from the Microwave Radiometer), temperature,...

  13. miller-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    figure, please see http:www.arm.govdocsdocumentstechnical conf9803 miller-98.pdf.) Figure 2. (a) (top) Composite operating modes for all SGP radars and (b) (bottom)...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time Series Analyses* Effect of Stratus on Solar Radiation: A Study using Millimeter Wave Cloud Radar and Microwave Radiometer Data from the Southern Great Plains (SGP) ...

  15. Procedure for Generating Data Quality Reports for SIRS Radiometric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To this end, the National Renewable Energy Laboratory (NREL) performs a quality assessment of the data from 22 Solar Infrared Stations (SIRS) in the Southern Great Plains (SGP). ...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM SGP domain, as a result of correlated subgrid-scale vertical velocity and thermodynamic structure, can reach 2000 Wm2 during strong convective events. This energy...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    additional nine stations in 2000. The entire network covers approximately 40 square kilometers roughly centered around the SGP CF. This network constitutes a single instrument to...

  18. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... on the preceding day, according to the judgment of the PI's and taking into consideration daily weather forecasts and the operability of complimentary ARM-SGP CF instrumentation. ...

  19. Oguni Geothermal Field | Open Energy Information

    Open Energy Info (EERE)

    Engineering. Report No.: SGP- TR-145. Benjamin Matek. Geo-energy Internet. Geothermal Energy Association. updated 20150428;cited 20150428. Available from:...

  20. ARM - Field Campaign - Complex Layered Cloud Experiment (CLEX...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University. Personnel who will be working at the SGP site include Professor Stephen Cox, John Davis, David Wood, John Kleist, Sean Gilles, Norm Wood, and Arlie...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (USI) (Figure 1) were deployed the U.S. Department of Energy(DOE)'s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains SGP) research facility. ...

  2. Atmosphere-Land-Surface Interaction over the Southern Great Plains...

    Office of Scientific and Technical Information (OSTI)

    Plains: Diagnosis of Mechanisms from SGP ARM Data Citation Details In-Document Search Title: Atmosphere-Land-Surface Interaction over the Southern Great Plains: Diagnosis of ...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data over the Southern Great Plains (SGP) for January 1998 have been used to analyze the Clouds and the Earth's Radiant Energy System (CERES) radiative transfer calculations with ...

  4. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Clear-Sky Diffuse 'Problem' at SGP: RSS Data & Analysis Harrison, L., Kiedron, P., and Min, Q., State University of new York, Albany Twelfth Atmospheric Radiation Measurement...

  5. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deployment at the SGP Site Kiedron, P., Berndt, J., Yager, E., Schlemmer, J., Harrison, L., and Michalsky, J.J., SUNY at Albany Thirteenth Atmospheric Radiation Measurement...

  6. Section 94

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Shortwave Radiometry and Analysis at the Southern Great Plains (SGP) Site L. Harrison, J. J. Michalsky and Q. Min Atmospheric Sciences Research Center State University of New...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RSS Slated for Permanent Deployment at SGP Kiedron, P., Berndt, J., Yager, E., Harrison, L., and Michalsky, J., Atmospheric Sciences Research Center, SUNY at Albany, New...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Rotating Shadowband Spectroradiometer Data from SGP Harrison, L., Min, Q., and Michalsky, J. J., Atmospheric Sciences Research Inst., State University of New York at...

  9. ARM - Measurement - Soil moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Soil Measurement from the SGP SWATS : Soil Water and Temperature System SEBS : Surface Energy Balance System External Instruments ECMWFDIAG : European Centre for Medium Range...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are likely to dominate the spatial heterogeneity in cycles of energy, carbon, and water in ecosystems of the Southern Great Plains (SGP). We report recent progress on...

  11. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Team Meeting Proceedings, San Antonio, Texas, March 13-17, 2000 2 the ARM SGP central ... during daylight hours (from 1300 Universal Time Coordinates UTC to 2330 UTC) ...

  12. ARM - Instrument - sws

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with SGP surface remote sensors and future cloud IOP campaigns. Multivariate analysis to derive information content in hyper spectral data sets and to improve cloud...

  13. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL ... concept of Hot Dry Rock (HDR) geothermal energy originated at Los Alamos National ...

  14. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM SGP CART site area, to gather information useful for conducting surface type classification from aerialsatellite remote sensing data, to develop the detailed spectral model...

  15. Deployment of a New Shortwave Spectroradiometer (SWS) at the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the SGP Pommier, John NASA Ames Research Center Pilewskie, Peter University of Colorado Gore, Warren NASA Ames Research Center Category: Instruments A new Shortwave...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud optical depth required to determine the observed surface flux. Aerosol number concentration at the SGP site was determined from the observed CN number concentration as well...

  17. ARM - Datastreams - wacrspecmom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Measurement Variable Radar Doppler raw Locations Southern Great Plains SGP C1 Browse Data Central Facility,...

  18. ARM - Instrument - swacr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The following measurements are those considered scientifically relevant. Radar Doppler Radar reflectivity Locations Southern Great Plains SGP C1 Browse Data Central...

  19. ARM - Datastreams - mmcrspectra

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this product are those considered scientifically relevant. Measurement Variable Radar Doppler Spectra Locations Southern Great Plains SGP C1 Browse Data Central Facility,...

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Communications Upgrade for SGP Extended Facilities Smith, J. (a), Reed, R. (a), Eagan, R. (b), and Ermold, B. (c), Aeromet Inc. (a), Argonne National Laboratory (b), Pacific ...

  1. ARM - Instrument - twr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    installed on the towers are listed in section 7, Instrument Details, although only the TemperatureRelative HumidityVapor Pressure (TRHVP) measurements made on the SGP CF...

  2. ARM - Field Campaign - Surface Albedo IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of surface reflective properties over the area. The measurement period coincided with Landsat and TerraASTERMODIS overpass over SGP CART site on October 24, 2004. Ground and...

  3. ARM - Instrument - mfrirt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    broadband upwelling irradiance Shortwave broadband total upwelling irradiance Surface skin temperature Locations Southern Great Plains SGP C1 Browse Data Browse Plots Central...

  4. ARM - Field Campaign - Holistic Interactions of Shallow Clouds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE); National Geospatial-Intelligence Agency Calibration Target Placements 2016.04.24, Kalukin, SGP ...

  5. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    built by the ARM Program. The SGP site is located in northern Oklahoma and southern Kansas. This area was chosen for its fairly uniform geography, easy accessibility, and...

  6. 2009-ARMSTM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP long-term data to assess convection triggering and transition theories on stability, free- troposphere humidity and boundary layer inhomogeneity. Compared with clear-sky and...

  7. Uganda-Demonstrating Wind and Solar Energy on Lake Victoria ...

    Open Energy Info (EERE)

    programs, Background analysis, Technology characterizations Resource Type Guidemanual, Lessons learnedbest practices Website http:sgp.undp.orgdownloadS Country Uganda UN...

  8. Status, Accomplishments, and Recent Developments at the ARM Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OK Installed revised version of rotating bird deterrent device to prevent roosting turkey vultures from damaging equipment. * LICOR-7500 IRGA calibrations Trained SGP...

  9. Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    installed together at the SGP central facility (ARM photo). October 2004 3 Okmulgee Turkey Vultures Thwarted . . . Finally After years of trying to keep messy turkey vultures...

  10. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the SGP and TWP sites derived from cloud layers of similar temperature reveal both similarities and large differences. We will explore these similarities and differences in our...

  11. ARM - VAP Process - armbestns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface pressure is shown in hPa from different SGP surface meteorological sites (color-coded) from ARMBESTNS data set for the Midlatitude Continental Convective Clouds...

  12. Microsoft PowerPoint - liu_talk.ppt [Compatibility Mode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Mean vertical structure - Histograms * Ice water over 10x10 area centered D i Darwin - Mean distribution - vs. cloud temperature - vs. SGP March 2000 Ice Water Retrieval...

  13. Techniques and Methods Used to Determine the Best Estimate of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Science Team Meeting, we presented the preliminary analysis of surface radiation measurement data quality at the Southern Great Plains (SGP) extended facilities (Shi and Long)....

  14. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site

  15. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    SciTech Connect (OSTI)

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversity Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to cloud modeling groups, such as the GEWEX Cloud Simulation Study (GCSS) Cirrus Working Groups. In this paper we summarize our IOP-related accomplishments.

  16. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90 days for this quarter) the instruments were operating this quarter.

  17. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  18. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    DL Sisterson

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 365 days per year) the instruments were operating.

  19. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    world famous. NSA broadened the type of literature announced (adding journal articles, books, international literature, etc. - not just material produced by AEC) making it ...

  20. Microsoft Word - Instrument Status - January 2007 formatted.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... TWP (SMET, ORG) - All systems are operating nominally. The barometer at Nauru failed in early December. NSA (METTWR) - Icing continues to be a problem with the wind direction ...

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy (DOE) Atmospheric Radiation ... (NSA) and Surface Heat Budget of the Arctic Ocean ... Georgia, March 19-23, 2001 2 Eta model is ...

  2. Section 93

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fairbanks, Alaska Introduction Radiative energy is a major component of the surface energy balance in the Arctic. The North Slope of Alaska (NSA) Atmospheric Radiation...

  3. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements 1)Cloud classification based on measurements 2)Improved LWP retrieval 3)More conditional retrievals The ShupeTurner Microphysics Product at NSA Radiative Closure and...

  4. ARM - Publications: Science Team Meeting Documents: Determination...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of this indirect effect detection is provided by downwelling longwave flux measurements from the NSA pyrgeometers, which show consistently larger fluxes in the high CN...

  5. ARM - Instrument - noaacrn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    those considered scientifically relevant. Atmospheric temperature Precipitation Surface skin temperature Locations North Slope Alaska NSA X1 Browse Data External Data (satellites...

  6. ARM - Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts Related Links RHUBC Home NSA Home ARM Data Discovery Browse Data Experiment Planning RHUBC Proposal Abstract Full Proposal (pdf, 420kb) Science Plan (pdf) Operations Plan...

  7. Expansion of Facilities on the North Slope of Alaska in Time...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zirzow, Jeffrey Sandia National Laboratories Brower, Walter UIC Science Division ARMNSA Ivanoff, James NSA Whiteman, Doug NSAAAO Sassen, Kenneth University of Alaska...

  8. ARM - Publications Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research, and scientists have an important resource in the North Slope of Alaska (NSA) facilities of the ARM Climate Research Facility. The ARM Facility is being...

  9. Microsoft Word - FY11NITRDSupp-FINAL-printer1-0218.doc

    Office of Environmental Management (EM)

    ... Service research organizations, DOESC, DARPA, NIST, NASA, NSA, NOAA, DOENNSA HEC R&D ... of performance-critical applications - DARPA, DOESC, DOENNSA Next-generation ...

  10. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of radiosondes launched during the 2004 NSA Arctic Winter Radiometric Experiment. Dual-radiosonde launch of the Vaisala RS90 and Chilled Mirror radiosondes is pictured here....

  11. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The NSA machine received its upgrade and was successfully returned to service following ... We have determined that the new components appear to operate correctly, and the signals to ...

  12. 1960s | OSTI, US Dept of Energy, Office of Scientific and Technical...

    Office of Scientific and Technical Information (OSTI)

    1962: NSA 1962: Printing Plant 1962: Publishing Composition 1962: Tech Lit 1963: Education 1963: Microfilm 1963: MicroNeg Process 1963: Publications 1963: Students 1964: All ...

  13. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect (OSTI)

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the development of 3D cloud products from all new SACRs that the program will deploy at all fixed and mobile sites by the end of 2010.

  14. LASIC Layered Atlantic Smoke Interaction with Clouds ARM Mobile Facility

    Office of Scientific and Technical Information (OSTI)

    (AMF) Overview (Conference) | SciTech Connect LASIC Layered Atlantic Smoke Interaction with Clouds ARM Mobile Facility (AMF) Overview Citation Details In-Document Search Title: LASIC Layered Atlantic Smoke Interaction with Clouds ARM Mobile Facility (AMF) Overview Authors: Nitschke, Kim Leonard [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2015-01-16 OSTI Identifier: 1167489 Report Number(s): LA-UR-15-20285 DOE Contract Number: AC52-06NA25396 Resource Type:

  15. Data Products from ECMWF (European Centre for Medium Range Weather

    Office of Scientific and Technical Information (OSTI)

    Forecasts) Covering the MAGIC AMF2 Deployment (Dataset) | Data Explorer Data Explorer Search Results Data Products from ECMWF (European Centre for Medium Range Weather Forecasts) Covering the MAGIC AMF2 Deployment Title: Data Products from ECMWF (European Centre for Medium Range Weather Forecasts) Covering the MAGIC AMF2 Deployment ECMWF derived diagnostic variables over MAGIC's ship path from Los Angeles, CA and Honolulu, HI. Two dimensional (time and height) slices were extracted once the

  16. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the

    Office of Scientific and Technical Information (OSTI)

    Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST) () | Data Explorer Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST) Title: Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST) The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy.

  17. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pearl Harbor, Hawaii, to San Francisco, CaliforniaInstruments HI to CA Deployment AMF Home Hawaii to California Home Deployment Operations Baseline Instruments Experiment Planning ACAPEX Full Proposal Abstract and Related Campaigns Science Plan Backgrounder (PDF) Outreach News and Press Images Contacts L. Ruby Leung, Principal Investigator Nicki Hickmon, AMF Operations Paul Ortega, AMF Operations Beat Schmid, AAF Technical Director Instruments : ACAPEX (ARM Cloud Aerosol Precip Experiment)

  18. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesAMF Deployment, Black Forest, GermanyInstruments Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009 Experiment Planning COPS Proposal Abstract and Related Campaigns Science Plan (PDF, 12.4M) Outreach COPS Backgrounder (PDF, 306K) Posters AMF Poster, German Vesion Researching Raindrops in the Black Forest News Campaign Images Instruments : Black Forest, Germany Active Retired

  19. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FacilitiesAMF Deployment, Ganges Valley, IndiaInstruments Ganges Valley Deployment AMF Home Ganges Valley Home Data Plots and Baseline Instruments Campaign Images Experiment Planning GVAX Full Proposal Abstract and Related Campaigns Science Plan Field Campaign Report Outreach GVAX Backgrounder (PDF, 1.4MB) News Education Flyer (PDF, 2.1MB) AMF Poster, 2011 Images Contacts V. Rao Kotamarthi Instruments : Ganges Valley, India Active Retired Active instruments are currently deployed at fixed or

  20. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2011 [Facility News] Team Continues Campaign Planning on Gan Island Bookmark and Share Mike Ritsche, technical operations manager for the AMF2, discusses instrumentation specifics with Gan airport and MMS officials. Mike Ritsche, technical operations manager for the AMF2, discusses instrumentation specifics with Gan airport and MMS officials. For its first international field campaign, the second ARM Mobile Facility (AMF2) is scheduled to operate on Gan Island in the Indian Ocean for the ARM

  1. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, 2008 [Facility News] Mobile Facility Anchors Multi-site Aerosol Study in China Bookmark and Share The AMF installation in Shouxian includes the primary shelters and operations area, an adjacent instrument field, and several more instruments located on the roof of a nearby building. In its most complex ARM Mobile Facility (AMF) deployment to date, ARM is coordinating operations and data collection at four different sites for the Aerosol Indirect Effects Study in China. Anchored by the AMF in

  3. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boundary FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Boundary Facilities Active Retired Active instruments are currently deployed at fixed or mobile facilities

  4. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Extended Facilities Active Retired Active instruments are currently deployed at fixed or mobile facilities

  5. ARM - Site Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate FacilityInstruments SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Instruments : Intermediate Facilities Active Retired Active instruments are currently deployed at fixed or mobile

  6. ARM - Kim Nitschke Interview (English Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DeployementKim Nitschke Interview (English Version) Azores Deployment AMF Home Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning...

  7. ARM - Carlos Sousa Interview (English Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DeployementCarlos Sousa Interview (English Version) Azores Deployment AMF Home Graciosa Island Home Data Plots and Baseline Instruments Satellite Retrievals Experiment Planning...

  8. ARM - ACAPEX News and Press

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CaliforniaACAPEX News and Press HI to CA Deployment AMF Home Hawaii to California Home ... To Study 'Atmospheric River' Effects On California Drought" February 3, 2015 Capital ...

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observing Systems Pass Acceptance Testing Bookmark and Share Left to right: Pat Maloy, Stephen Springston, and Mike Ritsche inspect the AMF2 AOS container. They checked for proper...

  10. ARM - Field Campaign - Azores: Clouds, Aerosol and Precipitation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaigns Azores: Above-Cloud Radiation Budget near Graciosa Island 2010.04.15, Miller, AMF Azores: Extension to Clouds, Aerosol and Precipitation in the Marine Boundary...

  11. ARM - Instrument - sasze

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building isolated from the elements. ... Data Highland Center, Cape Cod MA; AMF1 retired retired Originating instrument has been retired at this location ...

  12. ARM - News from the Steamboat Springs Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment...

  13. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    play key roles in MJO initiation and maintenance. Planned major observations: ship-borne Doppler radar and radiationsurface flux package (AMF2), air-sea boundary layer turbulence...

  14. ARM - Field Campaign - MASRAD: Cloud Condensate Nuclei Chemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cloud Condensate Nuclei Chemistry Measurements Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  15. ARM - Field Campaign - MASRAD - Aerosol Optical Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD - Aerosol Optical Properties Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation Aerosol and Drizzle...

  16. ARM - Field Campaign - MASRAD: Pt. Reyes Stratus Cloud and Drizzle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsMASRAD: Pt. Reyes Stratus Cloud and Drizzle Study Campaign Links AMF Point Reyes Website ARM Data Discovery Browse Data Related Campaigns MArine Stratus Radiation...

  17. Dec08.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    around for potential AMF2 deployment sites. They were particularly concerned with logistics for installation and operations in potentially more than 7 meters (300+ inches) of...

  18. Data Products from ECMWF (European Centre for Medium Range Weather...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences ECMWF, MAGIC, AMF2, advective tendency, atmospheric moisture, ...

  19. Atmospheric Radiation Measurement (ARM) Data from Steamboat Springs...

    Office of Scientific and Technical Information (OSTI)

    In October 2010, the initial deployment of the second ARM Mobile Facility (AMF2) took ... Availability: User Registration Required Language: English Subject: 54 - ENVIRONMENTAL SCIENCES ...

  20. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (AMF) is being packed up and shipped from Richland, Washington, to the Point Reyes National Seashore north of San Francisco, California. There, it will be reassembled in...

  1. Communications: NREL PowerPoint Presentation Template with Light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Tom Stoffel March 10, 2008 ACRF Upwelling Irradiances Infrared UIR Shortwave US Pt Reyes, CA Banizoumbou Niger AMF Upwelling Irradiances Warren et al. visits FKB... BCR 01402:...

  2. ARM - News from the Los Angeles to Hawaii Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blog Images Contacts Nicki Hickmon, AMF Operations Lynne Roeder, Media Contact Ernie Lewis, Principal Investigator News from the Los Angeles to Hawaii Deployment Media Coverage...

  3. Bench-Scale Cross Flow Filtration of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include the ARM Mobile Facility (AMF) deployment to the Azores and with the VAMOS Ocean- Cloud-Atmosphere-Land Study (VOCALS) experiment off the coast of Chile. This...

  4. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer: Analysis of Results from the ARM Mobile Facility Deployment to the Azores (2009/2010)

    SciTech Connect (OSTI)

    Wood, Robert

    2013-05-31

    The project focuses upon dataset analysis and synthesis of datasets from the AMF deployment entitled “Clouds, Aerosols, and Precipitation in the Marine Boundary Layer (CAP‐MBL)” at Graciosa Island in the Azores. Wood is serving a PI for this AMF deployment.

  5. FACT SHEET U.S. Department of Energy ARM Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    t a * r - m * - HarmI cf r * f f - -* f * * - s - g pf -*L n sf af * L - t f w * - p L f * arm a f f f L - - - * * - * f - * - f f* i- -L arm m f f f * HamfI f -* - f * - - * - * f * - R - *L - - - - - L f f * * t * f f L amf L * * f - RPP * - f L amfRL * * f * * f - - o RP P c -* * - * f f * f *L * f - * -* - *L - -*L - * * *L amf * * f -* a- - * f f * * f * - -* - * amf - f * - f f - - fM b * * f - f L amf * - f f - - ff * - - f s - - - * * f f ff f -- - *L - * * * f f f f -M* f * ff - * - * *

  6. Microsoft PowerPoint - 02_A_AWG_Monterey_ALIVE_Schmid_short.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lidar Validation Experiment (ALIVE) NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14) Sky Research J-31 Research Scanning Polarimeter (RSP) N i ti l d M t l i l Cessna 206 Navigational and Meteorological Parameters Raman Lidar Micro Pulse Lidar SGP, Sep 11-22, 2005 2005 ALIVE Operations Summary ALIVE Operations Summary * Sep 11 - 22, 2005 Sep 11 22, 2005 * 23 research flight hours * 12 flights over SGP on 8 days 12 flights over SGP on 8 days * 5 coordinated flights with C206 *

  7. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2012 [Facility News] Swapping Science with Korean Researchers Bookmark and Share Commemorating the visit to the ARM Southern Great Plains site are (left of sign) John Schatz, SGP site operations manager, with Dr. Gyuwon Lee and daughter Sueha Lee; and (right of sign) Dr. Yeon-Hee Kim; Doug Sisterson, SGP site manager; Dr. Seungsook Shin; and Dr. Kwan-Young Chung. Commemorating the visit to the ARM Southern Great Plains site are (left of sign) John Schatz, SGP site operations manager, with

  8. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farewell to Dan Nelson, SGP Facilities Manager Bookmark and Share Dan Nelson Dan Nelson Dan Nelson, long-time facilities manager at the ARM Southern Great Plains site, is heading west to take a new position in the Atmospheric Chemistry and Meteorology group at Pacific Northwest National Laboratory in Richland, Washington. For the past 17 years, Dan has been an integral part of the ARM operations team at SGP, overseeing all of the SGP facilities (31 locations in all) and managing the operation of

  9. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 31, 2006 [Facility News] New Shortwave Spectroradiometer Deployed at SGP Bookmark and Share A ceiling port in the SGP Optical Trailer houses the optic element of the SWS, which connects to the spectrometer inside the trailer via fiber optic cable. In late April, a new Shortwave Spectroradiometer (SWS) began operating at the ARM Southern Great Plains (SGP) site. The instrument measures the zenith solar spectral radiance (1.4° field of view) between 300-2200 nm. The SWS incorporates two Zeiss

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 22, 2008 [Facility News] ARM Staff Changes to Note Bookmark and Share Dr. Martin Stuefer, newest member of NSA team, and his plane. Martin Stuefer Joins North Slope Team to Help Ensure Data Delivery. Please extend a warm welcome to Dr. Martin Stuefer, the newest member of the ARCF North Slope of Alaska (NSA) site operations team. As the Rapid Response Team Manager for the Barrow and Atqasuk sites, Martin works with NSA operators and mentors to ensure flawless data acquisition and flow.

  11. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    network in Korea opens door to new collaborations Daniel Hartsock and Dr. Kyungjeen Park look on as Pat Dowell describes the operation of a disdrometer at the SGP site. A...

  12. ARM - Instrument - soil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Soil Measurement from the SGP (SOIL) Instrument Categories SurfaceSubsurface Properties...

  13. ARM - As-PECAN - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Campaigns ARM Support for the Plains Elevated Convection at Night Experiment: Doppler Lidar Operations 2015.06.01, Turner, SGP Comments? We would love to hear from you...

  14. Collaborative Research: ARM observations for the development...

    Office of Scientific and Technical Information (OSTI)

    The principal focus of the observational component of this collaborative study during this funding period was on stratocumulus clouds over the SGP site and fair-weather cumuli over ...

  15. ARM - Publications: Science Team Meeting Documents: Investigation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of the impact of aerosols on clouds during the 2003 Aerosol IOP at the SGP Guo, Huan University of Michigan Aerosol-cloud interaction, that is, the aerosol indirect...

  16. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large Eddy Simulations of Fair-Weather Cumulus Case at SGP Site Zhu, P. and Albrecht, B.A., University of Miami Twelfth Atmospheric Radiation Measurement (ARM) Science Team Meeting...

  17. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The storm system tapped instability in the air above 850 mb to cause convective cells that contributed to much of Oklahoma's heavy icing. 15 of the SGP's 31 sites were affected by ...

  18. arm_KI_TPA_2007.cdr

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Attempt to Distinguish Dynamical and Microphysical Contributions to the Radiative Properties of Cirrus Clouds at the ARM SGP site K. Ivanova¹ and T. Ackerman² ¹Pennsylvania State University ²University of Washington => * * * - * * * * ?

  19. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Supercooled Liquid Water Generating Heads from the SGP Central Facility Campbell, J.R.(a), Welton, E.J.(b), Spinhirne, J.D.(c), Starr, D.O'C.(d), and Ferrare,...

  20. tichler-99.PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assured by the High Plains Climate Center. netCDF Beginning January 1993 sgp60nwssurfX1.a1 National Weather Service (NWS) hourly surface measurements. netCDF 193 - 696...

  1. ARM - Field Campaign - ARM Airborne Carbon Measurements (ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 submitted) in the past four years. We will continue our airborne study of atmospheric composition and carbon cycling in the SGP. The goals of this measurement program are to...

  2. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DQ information. In addition, DQRs are being used to color the quality of data via the Meta Data Navigator. Instrument Health and Status Website (http:rl.sgp.arm.govsgpdq)....

  3. ARM - Datastreams - surflog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    us at 1-888-ARM-DATA. Send Datastream : SURFLOG Surface vegetation information from SGP Meta Data System (MDS) Active Dates 1995.10.24 - 2002.04.25 Measurement Categories Surface...

  4. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five Years of Clear-Sky Solar Radiation Measurements and Aerosol Forcing at the SGP ARM ... has been collecting high-quality surface radiative flux measurements for over five years. ...

  5. ayers-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SGP) and the Tropical Western Pacific (TWP) sites. The data are used to derive cloud prop- erties and the top-of-the-atmosphere radiation budget at sev- eral time and space...

  6. Posters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this region is very high in the springtime, coincident with the Remote Cloud Sensing, (RCS) intensive observing period (IOP). The SGP site itself is the location of at least...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Properties from Aircraft Measurements Over the SGP Cairns, B. (a), Lacis, A.A. (b), Carlson, B.E. (b), Alexandrov, A. (a), and Barnard, J.C. (c), Columbia University (a), NASA...

  8. ARM - 2006 Science Team Meeting Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ed Westwater (PDF, 2MB) Clouds with Low Liquid Water Path: An Update from CLOWD Dave Turner (PDF, 525K) Aerosol Properties over the ARM SGP - Measured vs. Modeled Richard...

  9. ARM - Field Campaign - Fall 2002 SCM IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    below. Abstract This SCM IOP is proposed to run concurrently with the SGP UAV flights. Part of the UAV Science Plan is to help close the column for providing estimates of...

  10. Orr 2009 ARM STM poster2.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LLC Accomplishments and Status of SGP During 2008 Brad W. Orr 1 Dan J. Rusk 2 John Schatz 2 David Breedlove 2 Richard Eagan 1 1 Argonne National Laboratory, Argonne, IL 2 ...

  11. Microsoft PowerPoint - ferrare_STM_2009_poster [Compatibility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ground (SGP Raman Lidar) and airborne (NASALaRC HSRL) lidars and * Lidar measurements ... Aerosol Variability Near Clouds During CLASICCHAPS 1 NASA LaRC; 2 SSAI; 3 Univ. of ...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Correlaton Between Satellite-Derived Water Cloud Microphysical Properties and ARM Aerosol Data at the SGP Smith, W.L., Jr.(a), Minnis, P.(a), Ferrare, R.A.(a), and Khaiyer,...

  13. ARM - Evaluation Product - Broadband Heating Rate Profile Project...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to...

  14. stoffel-98.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and a scanning spectroradiometer were deployed at the Southern Great Plains (SGP) site to meet the needs of the Shortwave IOP for high-accuracy clear-sky solar irradiance data. ...

  15. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 ARM research The...

  16. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 ARM research The...

  17. ARM - 2011 AGU Presentations Featuring ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... to ARM SGP Observations LD Riihimaki, SA McFarlane, G Lin, Y Qian, D Chand 8:00 am, ... Ground-based Measurements C Zhao, S Xie, SA Klein, R McCoy, JM Comstock, J Delano, M ...

  18. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Retrieval (MICROBASE): Status of SGP Version 1.2 and Prototype TWP Version Miller, M.A.(a), Johnson, K.L.(a), Jensen, M.P.(b), Mace, G.G.(c), Dong, X.(d), and...

  19. ARM - Field Campaign - Cloud LAnd Surface Interaction Campaign...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Campaign Links CLASIC Website ARM Data Discovery Browse Data Related Campaigns CLASIC - SAM Support 2007.06.09, DeVore, SGP CLASIC - 9.4 GHz Phase Array Radar 2007.06.08, Kollias,...

  20. Sep08.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements, three scanning, compact microwave radiometers were deployed, each 10 kilometers (6.2 miles) apart, to form a triangle. One of the radiometers was based at the SGP...

  1. FACT SHEET U.S. Department of Energy Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50 instruments over 25 locations covering over 35,000 square miles (90,000 square kilometers) and can be viewed as a real "laboratory without walls." The heart of the SGP is the...

  2. HDR Geothermal Energy: Important Lessons From Fenton Hill

    National Nuclear Security Administration (NNSA)

    Stanford University, Stanford, California, February 9-11, 2009 SGP-TR-187 HOT DRY ROCK GEOTHERMAL ENERGY: IMPORTANT LESSONS FROM FENTON HILL Donald W. Brown Los Alamos National...

  3. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Fan, T.-F. Determination of Ice-Water Path Over the ARM SGP Using Combined Surface and Satellite Datasets Fargion, G. Sun Photometer Laser and Lamp Based Radiometric Calibrations* ...

  4. ARM - Instrument -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    radar line up at the SGP site Instrument collections* at three fixed sites around the globe, two mobile facilities, and an aerial facility are operated by the ARM Climate...

  5. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont...

    Office of Scientific and Technical Information (OSTI)

    Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, ...

  6. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparison of Stratus Cloud Optical Depths Retrieved from Surface and GOES Measurements over the SGP ARM Central Facility Dong, X., and Smith, W.L. Jr., Analytical Services and...

  7. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evidence for Aerosol Effects on AERI Clear-Sky Radiance at the SGP Ma, Y., and Ellingson, R.G., University of Maryland Ninth Atmospheric Radiation Measurement (ARM) Science Team...

  8. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Pathlength Distributions Inferred from the RSS at the ARM SGP Site Min, Q. and Harrison, L.C., ASRC, SUNY at Albany Eleventh Atmospheric Radiation Measurement (ARM) Science...

  9. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model Calculations on Clear Days at the ARM SGP Site Arking, A. (a), Liu, F. (a), Harrison, L. C. (b), Pilewskie, P. (c), and Chou, M.-D. (d), Johns Hopkins University (a),...

  10. Singapore: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    ","visitedicon":"" Country Profile Name Singapore Population 5,469,700 GDP 298 Energy Consumption 2.38 Quadrillion Btu 2-letter ISO code SG 3-letter ISO code SGP Numeric ISO...

  11. An Improved Hindcast Approach for Evaluation and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Right) 2009 monthly mean 10 cm soil moisture (kg m-2) from the east (black) and west (grey) profiles of SWATS measurements at the ARM SGP Central Facility, as well as from the...

  12. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impact of Clouds on the Atmospheric Absorption of SW - Comparing Theory and Observation at SGP Rose, F.G. (a), Charlock, T.P. (b), and Rutan, D.A. (a), Analytical Services &...

  13. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Comparison of the TSIWSI Cloud Fraction Estimates at the SGP Slater, D.W.(a), Long, C.N.(a), and Tooman, T.P.(b), Pacific Northwest National Laboratory (a), Sandia National...

  14. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Variability of Low Stratus Over the ARM SGP CART Based on Cloud Radar Data and LES Simulations Kogan, Z.N., Mechem, D.B., and Kogan, Y.L., Cooperative Institute for Mesoscale...

  15. ARM - Midlatitude Continental Convective Clouds - Single Column...

    Office of Scientific and Technical Information (OSTI)

    with a diameter of 300 km (standard SGP forcing domain size), 150 km and 75 km, as shown in Figure 1. This is to support modeling studies on various-scale convective systems. ...

  16. Search for: All records | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    domains centered at central facility with a diameter of 300 km (standard SGP forcing domain size),more 150 km and 75 km, as shown in Figure 1. This is to support modeling ...

  17. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring 2000 Cloud IOP at the SGP CART site is being used to generate three-dimensional volumetric distributions of cloud reflectivity. During the IOP, the range of cloud...

  18. CCRS Landcover Maps From Satellite Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Trishchenko, Alexander

    2008-01-15

    The Canadian Centre for Remote Sensing (CCRS) presents several landcover maps over the SGP CART site area (32-40N, 92-102W) derived from satellite data including AVHRR, MODIS, SPOT vegetation data, and Landsat satellite TM imagery.

  19. ARM - Field Campaign - PGS Validatation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery Browse Data Related Campaigns Precision Gas Sampling (PGS) Validation Field Campaign 2008.01.01, Fischer, SGP Comments? We would love to hear from you Send us a note...

  20. ARM - Field Campaign - Precision Gas Sampling (PGS) Validation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsPrecision Gas Sampling (PGS) Validation Field Campaign ARM Data Discovery Browse Data Related Campaigns PGS Validation 2011-2013 2011.03.01, Fischer, SGP PGS...