Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CONTACT LIST Records Management Field Officers (RMFOs) PRGM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PRGM PRGM NAME PRGM OFC EMPLOY LOCATION PHONE EMAIL Ames Lab Tehan, Amy Ames Laboratory Federal Ames, IA 630-252-3721 ajotehan@ameslab.gov ANL Martin, Mary L. Argonne National Laboratory Contractor Germantown, MD 630-252-3721 mmartin@anl.gov BHSO Nekulak, Kim Brookhaven Site Office Federal Upton, NY 631-344-7439 knekulak@bnl.gov BNL Flood, Patricia E. Brookhaven National Laboratory Contractor Upton, NY 631-344-7886 flood@bnl.gov BPA Frost, Christopher Bonneville Power Administration Federal Portland, OR 503-230-5602 cmfrost@bpa.gov CB Chism, Lea Carlsbad Field Office Federal Carlsbad, NM 575-234-7442 lea.chism@wipp.ws CH Lane, Georgette M. Chicago Operations Office Federal Argonne, IL 630-252-8906 georgette.lane@ch.doe.gov EMCBC Reid, Kathy Portsmouth Paducah Project Office (PPPO, EM Small Sites: GE Vallecitos, Inhalation Toxicology Lab,

2

DOE - Office of Legacy Management -- Ames Laboratory Research...  

Office of Legacy Management (LM)

Ames Laboratory Research Reactor Facility - IA 03 FUSRAP Considered Sites Site: Ames Laboratory Research Reactor Facility (IA.03) Designated Name: Alternate Name: Location:...

3

Phenotypic Data Collection and Sample Preparation for Genomics of Wood Formation and Cellulosic Biomass Traits in Sunflower: Ames, IA location.  

Science Conference Proceedings (OSTI)

Three fields were planted in Ames in 2010, two association mapping fields, N3 and A, and a recombinant inbred line field, N13. Phenotype data and images were transferred to UGA to support genetic and genomic analyses of woody biomass-related traits.

Marek, Laura F.

2011-06-17T23:59:59.000Z

4

DOE - Office of Legacy Management -- Iowa State University Ames Laboratory  

Office of Legacy Management (LM)

Iowa State University Ames Iowa State University Ames Laboratory - IA 01 FUSRAP Considered Sites Site: Iowa State University Ames Laboratory (IA.01 ) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Wallace Road , Ames , Iowa IA.01-1 IA.01-2 Evaluation Year: Circa 1985 IA.01-3 Site Operations: Produced uranium and thorium metal, recovered uranium scrap, and conducted studies and experimental investigations in connection with chemistry and metallurgy of natural uranium and its allied forms. IA.01-1 IA.01-4 IA.01-5 IA.01-6 IA.01-7 Site Disposition: Eliminated - Referred to Chicago Operations Office for appropriate action IA.01-6 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium, Thorium IA.01-1

5

2011 Annual Planning Summary for Ames Site Office (Ames) | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Site Office (Ames) 2011 Annual Planning Summary for Ames Site Office (Ames) The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011...

6

Ames Laboratory Research Reactor Facility Ames, Iowa  

Office of Legacy Management (LM)

,, *' ; . Final Radiological Condition of the Ames Laboratory Research Reactor Facility Ames, Iowa _, . AGENCY: Office of Operational Safety, Department of Energy ' ACTION: Notice of Availability of Archival Information Package SUMMARY: The'Office of Operational Safety of the Department O i Energy (DOE) has reviewed documentation relating to the decontamination and decommissioning operations conducted at the Ames Laboratory Research Reactor Facility, Ames, Iowa and has prepared an archival informati0.n package to permanently document the results of the action and the site conditions and use restriction placed on the . site at the tim e of release. This review is based on post-decontamination survey data and other pertinent documentation referenced in and included in the archival package. The material and

7

AMEE | Open Energy Information  

Open Energy Info (EERE)

AMEE AMEE Jump to: navigation, search Name AMEE Place London, United Kingdom Sector Carbon Product AMEE aims to build the largest engine to calculate carbon footprints for organisations, companies and individuals. Clients include Morgan Stanley, Google, UK Department of Energy and Climate Change Coordinates 51.506325°, -0.127144° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.506325,"lon":-0.127144,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Home | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH ABOUT | NEED A MATERIAL | NEWS CENTER | RESEARCH | TECH TRANSFER | CONTACT search LOG IN | RARE EARTH METALS | CRITICAL MATERIALS INSTITUTE | STAFF/ASSOCIATES | VISITORS | BE A PART OF AMES LAB | STUDENTS | EDUCATORS | FUNDING AGENCIES | INDUSTRY | RESEARCHERS | COMMUNITY RARE EARTH METALS Current Market Prices About Rare Earth Metals Materials Preparation STAFF/ASSOCIATES Operations Forms & Documents Find People VISITORS How To Get Here Tours of Ames Laboratory Local Events Calendar BE A PART OF AMES LAB Job News Human Resources Ames Lab At A Glance STUDENTS K-12 Resources Undergraduates Graduates and Others EDUCATORS Science Bowl SULI Program VFP Program FUNDING AGENCIES DOE/Contractor Research Highlights Contract INDUSTRY Technology Transfer Unique Capabilities

9

Ames Laboratory Technologies Available for Licensing - Energy ...  

Bookmark Ames Laboratory Technologies Available for Licensing - Energy Innovation Portal on Google; Bookmark Ames Laboratory Technologies Available ...

10

Routine environmental audit of Ames Laboratory, Ames, Iowa  

SciTech Connect

This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit`s objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements.

1994-09-01T23:59:59.000Z

11

About Rare Earth Metals | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

About Rare Earth Metals About Rare Earth Metals What Are Rare Earths? Ames Laboratory's Materials Preparation Center The Ames Process for Purification of Rare...

12

Ames Laboratory | Open Energy Information  

Open Energy Info (EERE)

Ames Laboratory Ames Laboratory Jump to: navigation, search Name Ames Laboratory Place Ames, Iowa Zip 50011-3020 Product Research facility focused on solutions to energy-related problems. Coordinates 30.053389°, -94.742269° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.053389,"lon":-94.742269,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

Ames Laboratory, Former Production Workers Screening Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory, Former Production Workers Screening Projects Ames Laboratory, Former Production Workers...

14

2013 Annual Planning Summary for the Ames Site Office | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Site Office 2013 Annual Planning Summary for the Ames Site Office 2013 Annual Planning Summary for the Ames Site Office The ongoing and projected Environmental Assessments and...

15

Environmental Survey preliminary report, Ames Laboratory, Ames, Iowa  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings of the first phase of the environmental Survey of the United States Department of Energy's (DOE) Ames Laboratory, conducted April 18 through 22, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are being supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Ames Laboratory. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Ames Laboratory, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When S A is completed, the results will be incorporated into the Ames Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 60 refs., 13 figs., 20 tabs.

Not Available

1989-03-01T23:59:59.000Z

16

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

17

Ames Site Ofice 9800 South Cass Avenue  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Energy of Energy Ames Site Ofice 9800 South Cass Avenue Argonne, Illinois 60439 January 15, 2013 MEMORANDUM FOR GREGORY H. WOODS, GENERAL COUNSEL OFFICE OF THE GENERAL COUNSEL FROM: SUBJECT: CYNTHIA BAEBLER, MANAGER iLJ�= AMES SITE OFFICE AMES SITE OFFICE (AMSO) 2013 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a)(7) of DOE Order 451.1B Change 3, NEPA Compliance Program, requires

18

Image Library of Ames Lab on Flickr  

DOE Data Explorer (OSTI)

Ames has made their photos available on Flickr since 2009. The photos are organized into six sets, with the "Rare Earths' set being the largest.

19

UESC Project Overview: NASA Ames Research Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Research Center NASA Ames Research Center Utility Energy Services Contract Project Overview Federal Utilities Partnership Working Group Philadelphia, PA October 2011 NASA Ames Research Center Utility Energy Services Contract 2 Today's Discussion * NASA Ames Research Center (ARC) Energy Challenges * UESC Project Goals * Energy and Water Conservation Projects * Project Benefits and Results * Q&A NASA Ames Research Center Utility Energy Services Contract 3 NASA's Energy Challenges * Compliance with federal mandates - EISA, EPAct, Executive Orders (prior to UESC ARC was behind all of its goals) * Very low electric cost (<$0.05/kWh) * Not eligible for electric incentives through local utility (ARC purchases power from WAPA) * Aging mechanical and electrical infrastructure requiring significant

20

Tom Lograsso, Ames Laboratory (Iowa State University), Future...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tom Lograsso, Ames Laboratory (Iowa State University), Future Directions in Rare Earth Research: Critical Materials for 21st Century Industry Tom Lograsso, Ames Laboratory (Iowa...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Former Worker Medical Screening Program - Ames Laboratory Former...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ames Laboratory Former Workers Former Worker Medical Screening Program (FWP) Project Name: Medical Monitoring of Former Workers at the Ames National Laboratory Covered DOE Site:...

22

Ames Site Office 9800 South Cass Avenue  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Site Office Ames Site Office 9800 South Cass Avenue Argonne, Illinois 60439 January 9, 2012 MEMORANDUM FOR TIMOTHY G. LYNCH FROM : DEPUTY GENERAL COUSNEL FOR LITIGATION CYNTHIA K. BAEBLER MANAGER SUBJECT: AMES SITE OFFICE (AMSO) 2012 ANNUAL NATIONAL ENVIRONMENTAL POLICY ACT (NEPA) PLANNING SUMMARY Section 5(a)(7) of DOE Order 451.1B Change 2, NEPA Compliance Program, requires each Secretarial Officer and Head of Field Organization to submit an annual NEPA Annual Planning Summary to the Office of General Counsel. We have reviewed your associated December 5, 2011, memorandum and in consultation with Ames Laboratory staff determined that we have no Environmental Impacts Statements or Environmental Assessments either ongoing or forecast for the next 12 to 24 months.

23

2012 Annual Planning Summary for Ames Site Office  

Energy.gov (U.S. Department of Energy (DOE))

The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Ames Site Office.

24

Baldrige Award Recipients--Ames Rubber Corporation (1993)  

Science Conference Proceedings (OSTI)

... soundly. Its approach to environmental management is now part and parcel of Ames Rubber's quality management process. ...

2013-09-11T23:59:59.000Z

25

Ames, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ames, Iowa: Energy Resources Ames, Iowa: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.02335°, -93.625622° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.02335,"lon":-93.625622,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

26

Type Ia Supernovae Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Type Ia Supernovae Type Ia Supernovae Supernova-1.jpg Update: Recent Berkeley Lab Computing Sciences News about supernovae: read more... Key Challenges: Understanding Type Ia...

27

Nanomaterials Safety Implementation Plan, Ames Laboratory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nanomaterials Safety Implementation Plan, Ames Laboratory Nanomaterials Safety Implementation Plan, Ames Laboratory Nanomaterials Safety Implementation Plan, Ames Laboratory Ames Laboratory has limited activities involving nanomaterials. Potential hazards associated with nanomaterials work are addressed through the Laboratory's Integrated Safety Management System (ISMS) and specifically the Readiness Review process. Readiness Review provides the identification and evaluation of potential hazards and establishes effective control mechanisms to ensure protection of the employee and the environment. To date, hazards associated with projects involving nanomaterials have been determined to be amenable to conventional controls such as ventilation and use of personal protective equipment. The Laboratory recognizes that nanotechnology is an emerging field and that

28

Ames Electric Department- Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE))

The City of Ames Electric Services offers a variety of services and rebates for residential customers interested in purchasing energy efficient appliances or making energy efficiency improvements...

29

M. Meyyappan and Cattien V. Nguyen NASA Ames Research ...  

Science Conference Proceedings (OSTI)

Page 1. M. Meyyappan and Cattien V. Nguyen NASA Ames Research Center ... Si3N4 on Silicon substrate Nguyen et al., Nanotechnology, 2001, Vol. ...

30

Videos from AMES Laboratory on YouTube  

DOE Data Explorer (OSTI)

Ames Lab created a channel on YouTube near the end of 2009. This collection of clips provides quick looks at some of the outreach activities, educational explanations of various research projects (presented by the researcher involved), and the 2010 State of the Lab Address by Ames Lab Director Alex King. Approximately 50 videos are currently available.

31

Rare Earth Metals and Alloys | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Mpc » Rare Earth Metals and Alloys Mpc » Rare Earth Metals and Alloys Rare Earth Metals and Alloys Terbium (Tb) and Cerium (Ce) phosphors in your computer screen allow you to see GREEN. Europium (Eu) is the source of the RED light and BLUE emitted by our display. The Ames Laboratory has been actively involved in the preparation of very pure rare earth metals since the early 1940's when Dr. Frank H. Spedding and his group of pioneers developed the ion-exchange process, a technique that separates the "fraternal fifteen" plus yttrium and scandium. As a result of this and subsequent work, high-purity oxides are available from which high-purity rare earth metals can be prepared. In most cases, the rare earth oxides are first converted to their respective fluorides and are then reduced metallothermicaly on a kilogram

32

Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa  

SciTech Connect

At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

1984-09-01T23:59:59.000Z

33

Category:Mason, IA | Open Energy Information  

Open Energy Info (EERE)

IA IA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Mason, IA" The following 16 files are in this category, out of 16 total. SVQuickServiceRestaurant Mason IA MidAmerican Energy Co (Iowa).png SVQuickServiceRestaura... 64 KB SVFullServiceRestaurant Mason IA MidAmerican Energy Co (Iowa).png SVFullServiceRestauran... 64 KB SVHospital Mason IA MidAmerican Energy Co (Iowa).png SVHospital Mason IA Mi... 73 KB SVLargeHotel Mason IA MidAmerican Energy Co (Iowa).png SVLargeHotel Mason IA ... 72 KB SVLargeOffice Mason IA MidAmerican Energy Co (Iowa).png SVLargeOffice Mason IA... 73 KB SVMediumOffice Mason IA MidAmerican Energy Co (Iowa).png SVMediumOffice Mason I... 69 KB SVMidriseApartment Mason IA MidAmerican Energy Co (Iowa).png

34

Ames Electric Department - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Electric Department - Residential Energy Efficiency Rebate Ames Electric Department - Residential Energy Efficiency Rebate Programs Ames Electric Department - Residential Energy Efficiency Rebate Programs < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Commercial Lighting Lighting Maximum Rebate Appliances: 50% of the equipment cost Programmable Thermostats: 3 per household Room AC: 2 per household Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Energy Star New Home: $500 Energy Audit: FREE Lighting: $2 - $16 per fixture Lighting Sensors: $10 per unit Refrigerators: $25 - $100 Freezers: $50 Dishwashers: $50

35

Rapporteurs Report: Tom Lograsso, Ames Laboratory and Nick Morley...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Rare Earth Research: Critical Materials for 21st Century Industry Inspection Report: IG-0615 Audit of Acquisition of Scientific Research at Ames Laboratory, ER-B-95-05...

36

Environmental monitoring at Ames Laboratory: Calendar year 1975  

SciTech Connect

This is an annual report summarizing the effluent and environmental monitoring program at the Ames Laboratory of the United States Energy Research and Development Administration. An inventory of the radioactive materials and certain chemicals released to the environment is included. A summary of the radioactivity found in the environment is presented. An estimate of the radiation dose to the public resulting from the operations of the Ames Laboratory is stated. (auth)

Voss, M.D.

1976-04-01T23:59:59.000Z

37

Ames Laboratory integrated safety management self-assessment report  

SciTech Connect

The implementation of Integrated Safety Management (ISM) at Ames Laboratory began with the signing of the ISM Implementation Charter on February 24, 1997 (see Appendix A). The first step toward implementation of ISM at Ames Laboratory is the performance of a Self-Assessment (SA). In preparation for the SA, a workshop on ISM was provided to the Laboratory`s Environment, Safety, and Health (ES&H) Coordinators, Safety Review Committee members, and the Environment, Safety, Health and Assurance (ESH&A) staff. In addition, a briefing was given to the Laboratory`s Executive Council and Program Directors. Next, an SA Team was organized. The Team was composed of four Ames Laboratory and four Department of Energy-Chicago Operations Office (DOE-CH) staff members. The purpose of this SA was to determine the current status of ES&H management within Ames Laboratory, as well as to identify areas which need to be improved during ISM implementation. The SA was conducted by reviewing documents, interviewing Ames Laboratory management and staff, and performing walkthroughs of Laboratory areas. At the conclusion of this SA, Ames Laboratory management was briefed on the strengths, weaknesses, and the areas of improvement which will assist in the implementation of ISM.

NONE

1997-10-01T23:59:59.000Z

38

Labs at-a-Glance: Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames Laboratory Ames Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Ames Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Ames Laboratory Logo Visit the Ames Laboratory website External link Ames Laboratory Quick Facts

39

An aerial radiological survey of the Ames Laboratory and surrounding area, Ames, Iowa. Date of survey: July 1991  

Science Conference Proceedings (OSTI)

An aerial radiological survey of the Ames Laboratory and surrounding area in Ames, Iowa, was conducted during the period July 15--25, 1991. The purpose of the survey was to measure and document the terrestrial radiological environment at the Ames Laboratory and the surrounding area for use in effective environmental management and emergency response planning. The aerial survey was flown at an altitude of 200 feet (61 meters) along a series of parallel lines 350 feet (107 meters) apart. The survey encompassed an area of 36 square miles (93 square kilometers) and included the city of Ames, Iowa, and the Iowa State University. The results are reported as exposure rates at 1 meter above ground level (inferred from the aerial data) in the form of a gamma radiation contour map. Typical background exposure rates were found to vary from 7 to 9 microroentgens per hour ({mu}R/h). No anomalous radiation levels were detected at the Ames Laboratory. However, one anomalous radiation source was detected at an industrial storage yard in the city of Ames. In support of the aerial survey, ground-based exposure rate and soil sample measurements were obtained at several sites within the survey perimeter. The results of the aerial and ground-based measurements were found to agree within the expected uncertainty of {+-}15%.

Maurer, R.J.

1993-04-01T23:59:59.000Z

40

Ames Site Office Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Home Home Ames Site Office (AMSO) AMSO Home About Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Ames Site Office U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-6167 F: (630) 252-2855 Ames Site Office Pictured Right: Ames Laboratory Ames Laboratory 1 of 2 Print Text Size: A A A RSS Feeds FeedbackShare Page The Ames Site Office (AMSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) contract for the Ames Laboratory in Ames, Iowa. Ames Laboratory is one of ten Office of Science Laboratories and is a single program laboratory with a primary mission on delivering breakthrough science and technology in the area of Basic Energy Sciences. The AMSO is

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Ames Electric Department - Commercial Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ames Electric Department - Commercial Energy Efficiency Rebate Ames Electric Department - Commercial Energy Efficiency Rebate Programs Ames Electric Department - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Maximum Rebate Appliances: 50% of equipment cost per unit Lighting: Will not exceed equipment cost per unit, (contact AED about incentives expected to exceed $10,000) Power Factor Correction Equipment: Incentives over $15,000 will be examined on case by case basis Custom Rebate: Incentives over $15,000 willexamined on case by case basis Program Info State Iowa Program Type Utility Rebate Program Rebate Amount Refrigerators: $25 - $100

42

Prospective Type Ia supernova surveys from Dome A  

E-Print Network (OSTI)

Prospective Type Ia Supernova Surveys From Dome A A. Kim a ,are conducive toward Type Ia supernova surveys forheterogeneities within the Type Ia supernova class, reducing

Kim, A.

2010-01-01T23:59:59.000Z

43

Comparison Between Field Data and NASA Ames Wind Tunnel Data  

DOE Green Energy (OSTI)

The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

Corbus, D.

2005-11-01T23:59:59.000Z

44

Renewable Energy Microgrid Testbed at NASA Ames Research  

E-Print Network (OSTI)

Renewable Energy Microgrid Testbed at NASA Ames Research Center Joel Kubby, Dan O'Leary, Zachary #12;Goals · Set-up a unique microgrid test-bed for renewable energy generation, monitoring and storage · Use the facility for testing systems integration, optimization and control of new renewable energy

Lee, Herbie

45

DC Optimal Power Flow Formulation in AMES Leigh Tesfatsion  

E-Print Network (OSTI)

23 of a user-specified maximum day. AMES includes an Independent System Operator (ISO a demand bid to the ISO for the day-ahead market for day D+1. Each demand bid consists of two parts: fixed demand (i.e., a 24-hour load profile) to be sold downstream at a regulated price r to its retail

Tesfatsion, Leigh

46

Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Critical Materials and Rare Futures: Ames Laboratory Signs a New Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research Critical Materials and Rare Futures: Ames Laboratory Signs a New Agreement on Rare-Earth Research June 15, 2011 - 7:07pm Addthis The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr The plasma torch in the Retech plasma furnace is one tool used in Materials Preparation Center to create ultra-high purity metal alloy samples, particularly rare-earth metals, located at the Ames Lab. | Photo Courtesy of the Ames Lab Flickr Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science

47

Ames Laboratory scientists discover new family of quasicrystals | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Science Computing, Environment & Life Sciences Energy Engineering & Systems Analysis Photon Sciences Physical Sciences & Engineering Energy Frontier Research Centers Science Highlights Postdoctoral Researchers Ames Laboratory scientists discover new family of quasicrystals July 16, 2013 Tweet EmailPrint Scientists at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered a new family of rare-earth quasicrystals using an algorithm they developed to help pinpoint them. Quasicrystalline materials may be found close to crystalline phases that contain similar atomic motifs, called crystalline approximants. And just like fishing experts know that casting a line in the right habitat hooks the big catch, the scientists used their knowledge to hone in on just the right spot for new quasicrystal materials

48

Environmental monitoring at Ames Laboratory: calendar year 1980  

SciTech Connect

The results and conclusions from the Ames Laboratory environmental monitoring programs for the Ames Laboratory Research Reactor (ALRR) and other Laboratory facilities are presented. The major areas of radiological monitoring were ALRR effluent air, environmental air, effluent water and environmental water. A summary of the radioactivity found in the environment is presented. The ALRR ceased operation on December 1, 1977. Decommissioning activities began January 3, 1978, and are scheduled for completion October 1, 1981. Analysis of air samples collected at the ALRR on-site station showed no radioactivity that could be attributed to ALRR operations. The radiosotope of significance in the ALRR stack effluent was tritium (H-3). The yearly individual dose from H-3 at the exclusion fence was estimated to be 0.016 mRem and the estimated dose to the entire population within an 80 Km (50 mile) radius of the ALRR was 26.6 man-Rem. These values are 0.0032% and 0.026%, respectively, of the doses derived from the concentration guides. On September 1, 1978, the ALRR site was connected to the City of Ames sanitary sewage system. All liquids (except building foundation and roof water) from the ALRR complex are now discharged to the sewage system negating the requirement for monitoring chemical constituents of effluent and environmental waters. In the radioactive liquid waste released to the City of Ames sewage system from the ALRR complex, H-3 was the predominant isotope. After dilution with other waste water from the ALRR complex, the potential dose was not more than 0.68% of the dose derived from the concentration guide. Building foundation and roof water are discharged to a drainage gulch on site.

Voss, M.D.

1981-04-01T23:59:59.000Z

49

Turbulent Combustion in Type Ia Supernova Models  

E-Print Network (OSTI)

We review the astrophysical modeling of type Ia supernova explosions and describe numerical methods to implement numerical simulations of these events. Some results of such simulations are discussed.

F. K. Roepke; W. Hillebrandt

2006-09-15T23:59:59.000Z

50

New approaches for modeling type Ia supernovae  

SciTech Connect

Type Ia supernovae (SNe Ia) are the largest thermonuclearexplosions in the Universe. Their light output can be seen across greatstances and has led to the discovery that the expansion rate of theUniverse is accelerating. Despite the significance of SNe Ia, there arestill a large number of uncertainties in current theoretical models.Computational modeling offers the promise to help answer the outstandingquestions. However, even with today's supercomputers, such calculationsare extremely challenging because of the wide range of length and timescales. In this paper, we discuss several new algorithms for simulationsof SNe Ia and demonstrate some of their successes.

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-06-25T23:59:59.000Z

51

NASA/Ames Global Emissions Data Set (GLEMIS) | Open Energy Information  

Open Energy Info (EERE)

NASA/Ames Global Emissions Data Set (GLEMIS) NASA/Ames Global Emissions Data Set (GLEMIS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NASA/Ames Global Emissions Data Set (GLEMIS) Agency/Company /Organization: National Aeronautics and Space Administration Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Dataset, Maps Website: gcmd.nasa.gov/records/GCMD_NASA_AMES_GLEMIS.html NASA/Ames Global Emissions Data Set (GLEMIS) Screenshot References: NASA/Ames Global Emissions Data Set (GLEMIS)[1] "NASA-CASA data sets include global maps for predicted fluxes of soil nitrogen gases (N2O and NO), methane (CH4), and carbon monoxide (CO), plus predictions of net primary production (NPP) and carbon storage in leaf, wood, root, litter, and surface soil pools. Others data sets will follow.

52

SBOT IOWA AMES LAB POC Lisa Rodgers Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IOWA IOWA AMES LAB POC Lisa Rodgers Telephone (515) 294-4191 Email rodgers@ameslab.gov GOODS Photographic Equipment and Supplies Merchant Wholesalers 423410 Computer and Computer Peripheral Equipment and Software Merchant Wholesalers 423430 Other Commercial Equipment Merchant Wholesalers 423440 Other Professional Equipment and Supplies Merchant Wholesalers 423490 Electrical Apparatus and Equipment, Wiring Supplies, and Related Equipment Merchant Wholesalers 423610 Electrical and Electronic Appliance, Television, and Radio Set Merchant Wholesalers 423620 Other Electronic Parts and Equipment Merchant Wholesalers 423690 Industrial Machinery and Equipment Merchant Wholesalers 423830 Industrial Supplies Merchant Wholesalers 423840 Other Miscellaneous Durable Goods Merchant Wholesalers

53

Voluntary cleanup of the Ames chemical disposal site.  

SciTech Connect

The U.S. Department of Energy completed a voluntary removal action at the Ames chemical disposal site, a site associated with the early days of the Manhattan Project. It contained chemical and low-level radioactive wastes from development of the technology to extract uranium from uranium oxide. The process included the preparation of a Remedial Investigation, Feasibility Study, Baseline Risk Assessment, and, ultimately, issuance of a Record of Decision. Various stakeholder groups were involved, including members of the regulatory community, the general public, and the landowner, Iowa State University. The site was restored and returned to the landowner for unrestricted use.

Taboas, A. L.; Freeman, R.; Peterson, J.; Environmental Assessment; USDOE

2003-01-01T23:59:59.000Z

54

Theoretical cosmic Type Ia supernova rates  

E-Print Network (OSTI)

The aim of this work is the computation of the cosmic Type Ia supernova rates at very high redshifts (z>2). We adopt various progenitor models in order to predict the number of explosions in different scenarios for galaxy formation and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We also computed the Type Ia supernova rate in typical elliptical galaxies of different initial luminous masses and the total amount of iron produced by Type Ia supernovae in each case. It emerges that: it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; the monolithic collapse scenario predicts an increasing trend of the SN Ia rate at high redshifts whereas the predicted rate in the hierarchical scheme drops dramatically at high redshift; for the elliptical galaxies we note that the predicted maximum of the Type Ia supernova rate depends on the initial galactic mass. The maximum occurs earlier (at about 0.3 Gyr) in the most massive ellipticals, as a consequence of downsizing in star formation. We find that different delay time distributions predict different relations between the Type Ia supernova rate per unit mass at the present time and the color of the parent galaxies and that bluer ellipticals present higher supernova Type Ia rates at the present time.

R. Valiante; F. Matteucci; S. Recchi; F. Calura

2008-07-15T23:59:59.000Z

55

Steamboat IA Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

IA Geothermal Facility IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility Facility Steamboat IA Sector Geothermal energy Location Information Location Washoe, Nevada Coordinates 40.5608387°, -119.6035495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5608387,"lon":-119.6035495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

AME:NDMENT OF SOLICITATION/MODIFICATION OF CONTRACT  

National Nuclear Security Administration (NNSA)

AME:NDMENT OF SOLICITATION/MODIFICATION OF CONTRACT AME:NDMENT OF SOLICITATION/MODIFICATION OF CONTRACT 1. CONTRACT 10 CODE PAGE 1 OF 224 PAGES 2. AMENDMENT/MODIFICATION NO. M202 3. EFFECTIVE DATE October 1, 2003 4. REQUISITION/PURCHASE REQ. NO. 5. PROJECT NO. (If applicable) 6. ISSUED BY CODE 7. ADMINISTERED BY (If other than Item 6) CODE U.s. Department of Energy N.itional Nuclear Security Administration Sandia Site Office Mail Stop 0184 P.O. Box 5400 AlbuauerQue, NM 87185-5400 8. NAME AND ADDRESS OF CONTRACTOR (No., street, county, state, ZIP Code) 9A. AMENDMENT OF SOLICITATION NO. Sandia Corporation P. O. Box 5800 Albuquerque, NM 87185 98. DATED (SEE ITEM 11) 10A. MODIFICATION OF CONTRACT/ORDER NO. DE-ACO4-94AL85000 108. DATED (SEE ITEM 13) October 1, 1993 CODE II-ACIL~ CODE 11. THIS ITEM ONLY APPLIES TO AMENDMENTS OF SOLICITATIONS

57

The progenitors of subluminous type Ia supernovae  

DOE Green Energy (OSTI)

We find that spectroscopically peculiar subluminous SNe Ia come from an old population. Of the thirteen subluminous SNe Ia known, nine are found in E/S0 galaxies, and the remainder are found in early-type spirals. The probability that this is a chance occurrence is only 0.1%. The finding that subluminous SNe Ia are associated with an older stellar population indicates that for a sufficiently large lookback time (already accessible in current high redshift searches) they will not be found. Due to a scarcity in old populations, hydrogen and helium main sequence stars and He red giant stars that undergo Roche lobe overflow are unlikely to be the progenitors of subluminous SNe Ia. Earlier findings that overluminous SNe Ia (DELTA m{sub 15} (B) < 0.94) come from a young progenitor population are confirmed. The fact that subluminous SNe Ia and overluminous SNe Ia come from different progenitor populations and also have different properties is a prediction of the CO white dwarf merger progenitor scenario.

Howell, D. Andrew

2001-02-01T23:59:59.000Z

58

Iowa Start-up Taps Ames Laboratory Technology in Challenge | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Taps Ames Laboratory Technology in Challenge Taps Ames Laboratory Technology in Challenge Iowa Start-up Taps Ames Laboratory Technology in Challenge August 10, 2011 - 2:21pm Addthis Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT Using gas atomization technology developed at the Ames Lab (click through the photo to see a video), IPAT will be able to make titanium powder 10 times more efficiently than traditional powder-making methods. Above right, 1.8 grams of gas atomized titanium powder makes a finished 1.8 gram titanium bolt. | Image Courtesy of IPAT

59

City of Ames, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Iowa (Utility Company) Iowa (Utility Company) Jump to: navigation, search Name Ames City of Place Iowa Utility Id 554 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Rates Industrial Large Commercial Rates Commercial Residential Residential Small Commercial Rates Commercial Average Rates

60

Rates and progenitors of type Ia supernovae  

SciTech Connect

The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for analyzing the true sensitivity of a multi-epoch supernova search and finds a Type Ia supernova rate from z {approx} 0.01-0.1 of r{sub V} = 4.26{sub -1.93 -0.10}{sup +1.39 +0.10} h{sup 3} x 10{sup -4} SNe Ia/yr/Mpc{sup 3} from a preliminary analysis of a subsample of the SNfactory prototype search. Several unusual supernovae were found in the course of the SNfactory prototype search. One in particular, SN 2002ic, was the first SN Ia to exhibit convincing evidence for a circumstellar medium and offers valuable insight into the progenitors of Type Ia supernovae.

Wood-Vasey, William Michael

2004-08-16T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven ...

62

Rolling Hills (IA) | Open Energy Information  

Open Energy Info (EERE)

Rolling Hills (IA) Rolling Hills (IA) Jump to: navigation, search Name Rolling Hills (IA) Facility Rolling Hills (IA) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner MidAmerican Energy Company Developer MidAmerican Energy Company Energy Purchaser MidAmerican Energy Company Location Massena IA Coordinates 41.230443°, -94.75459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.230443,"lon":-94.75459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

On the Brightness of Supernova Ia  

E-Print Network (OSTI)

Before 1998 the universe expansion was thought to be slowing down. After 1998 the universe expansion is thought to be accelerating up. The key evidence came from the observed brightness of high redshift supernovae Ia in 1998. Astronomers found that the observed brightness of high redshift supernovae Ia is fainter than expected. Astronomers believe this means that the universe expansion is accelerating up. In this paper it is argued that if the ionized gas in the universe space is taken into account, then the brightness of the high redshift supernova Ia should be fainter than expected. The universe expansion does not need to be accelerating up. The exotic form of energy (dark energy) does not need to be introduce

Yijia Zheng

2013-10-01T23:59:59.000Z

64

Spectral diversity of Type Ia Supernovae  

E-Print Network (OSTI)

We use published spectroscopic and photometric data for 8 Type Ia supernovae to construct a dispersion spectrum for this class of object, showing their diversity over the wavelength range 3700A to 7100A. We find that the B and V bands are the spectral regions with the least dispersion, while the U band below 4100A is more diverse. Some spectral features such as the Si line at 6150A are also highly diverse. We then construct two objective measures of 'peculiarity' by (i) using the deviation of individual objects from the average SN Ia spectrum compared to the typical dispersion and (ii) applying principle component analysis. We demonstrate these methods on several SNe Ia that have previously been classified as peculiar.

J. Berian James; Tamara M. Davis; Brian P. Schmidt; Alex G. Kim

2006-05-05T23:59:59.000Z

65

After 15 Years, A New Top Earning Patent At Ames Lab | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

After 15 Years, A New Top Earning Patent At Ames Lab After 15 Years, A New Top Earning Patent At Ames Lab After 15 Years, A New Top Earning Patent At Ames Lab January 20, 2012 - 11:32am Addthis Ames Laboratory senior metallurgist Iver Anderson explains the importance of lead-free solder in taking hazardous lead out of the environment by eliminating it from discarded computers and electronics that wind up in landfills. Anderson led a team that developed a tin-silver-copper replacement for traditional lead solder that has been adopted by more than 50 companies worldwide and has generated more than $39 million in licensing income. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? As of the end of June 2011, lead-free solder generated $38.9 million

66

Making Stuff Outreach at the Ames Laboratory and Iowa State University  

SciTech Connect

The U. S. Department of Energy's Ames Laboratory in Ames, Iowa was a coalition partner for outreach activities connected with NOVA's Making Stuff television series on PBS. Volunteers affiliated with the Ames Laboratory and Iowa State University, with backgrounds in materials science, took part in activities including a science-themed Family Night at a local mall, Science Cafes at the Science Center of Iowa, teacher workshops, demonstrations at science nights in elementary and middle schools, and various other events. We describe a selection of the activities and present a summary of their outcomes and extent of their impact on Ames, Des Moines and the surrounding communities in Iowa. In Part 2, results of a volunteer attitude survey are presented, which shed some light on the volunteer experience and show how the volunteers participation in outreach activities has affected their views of materials education.

Ament, Katherine; Karsjen, Steven; Leshem-Ackerman, Adah; King, Alexander

2011-04-01T23:59:59.000Z

67

Analysis of Hexanitrostilbene (HNS) and Dipicryethane (DPE) for Mutagenicity by the Ames/Salmonella Assay  

Science Conference Proceedings (OSTI)

The Ames/Salmonella assay, developed by Professor Bruce Ames at the University of California, Berkeley, is a rapid and sensitive assay for detecting mutagenicity of various chemical compounds (Maron and Ames, 1983). It is a widely accepted short-term assay for detecting chemicals that induce mutations in the histidine (his) gene of Salmonella typhimurium. This is a reverse mutation assay that detects the mutational reversion of his-dependent Salmonella to the his-independent counterpart. Thereby, mutagenic compounds will increase the frequency of occurrence of his-independent bacterial colonies. The assay utilizes the specific genetically constructed strains of bacteria either with or without mammalian metabolic activation enzymes (S9), Aroclor induced rat liver homogenate to assess the mutagenicity of different compounds. In this study, we will use the Ames/Salmonella assay to investigate the mutagenicity of Hexanitrostilbene (HNS) from both Bofors and Pantex, and Dipicryethane (DPE).

Wu, R; Felton, J

2007-10-12T23:59:59.000Z

68

Visualizing Buoyant Burning Bubbles in Type Ia Supernovae at...  

NLE Websites -- All DOE Office Websites (Extended Search)

Burning in Supernovae Buoyant Burning Bubbles in Type Ia Supernovae bubble-s.jpeg Flame ignition in type Ia supernovae leads to isolated bubbles of burning buoyant fluid. As a...

69

LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS  

Science Conference Proceedings (OSTI)

Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

Foley, Ryan J.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Simon, Joshua D.; Burns, Christopher R. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Morrell, Nidia I.; Phillips, Mark M. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Shields, Gregory A. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States); Sternberg, Assaf, E-mail: rfoley@cfa.harvard.edu [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany)

2012-06-20T23:59:59.000Z

70

Ames Laboratory to Lead New Research Effort to Address Shortages in Rare  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory to Lead New Research Effort to Address Shortages in Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials Ames Laboratory to Lead New Research Effort to Address Shortages in Rare Earth and Other Critical Materials January 9, 2013 - 12:13pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - The U.S. Department of Energy announced today that a team led by Ames Laboratory in Ames, Iowa, has been selected for an award of up to $120 million over five years to establish an Energy Innovation Hub that will develop solutions to the domestic shortages of rare earth metals and other materials critical for U.S. energy security. The new research center, which will be named the Critical Materials Institute (CMI), will bring together leading researchers from academia, four Department of Energy

71

NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Saves Energy and Reduces Project Costs NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies The Wireless Pneumatic Thermostat Enables Energy Efficiency Strategies, Ongoing Commissioning and Improved Operational Control Harry Sim CEO Cypress Envirosystems harry.sim@cypressenvirosystems.com www.cypressenvirosystems.com NASA Ames Reduced Project Cost by Over 80% with Non-Invasive Retrofit Technologies * Legacy Pneumatic Thermostats  Waste energy  High maintenance costs  Uncomfortable occupants  No visibility * Project Scope  14 buildings  1,370 pneumatic thermostats  Integration with campus BAS  Diagnostics for ongoing commissioning * Traditional DDC Retrofit  Cost over $4.1 million  Asbestos exposure/abatement  Occupants significantly disrupted

72

Ames: Oct 1, 2010 - Sept 30, 2011 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2010 - Sept 30, 2011 Ames: Oct 1, 2010 - Sept 30, 2011 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards Ames: Oct 1, 2010 - Sept 30, 2011 Argonne: Oct 1, 2010 - Sept 30, 2011 BNL: Oct 1, 2010 - Sept 30, 2011 Fermilab: Oct 1, 2010 - Sept 30, 2011 LBNL: Oct 1, 2010 - Sept 30, 2011 ORNL: Oct 1, 2010 - Sept 30, 2011 PNNL: Oct 1, 2010 - Sept 30, 2011 PPPL: October 1, 2010 - September 30, 2011 SLAC: Oct 1, 2010 - Sept 30, 2011 JLab: Oct 1, 2010 - Sept 30, 2011 FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

73

Ames: Oct 1, 2012 - Sept 30, 2013| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2012 - Sept 30, 2013 Ames: Oct 1, 2012 - Sept 30, 2013 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards Ames: Oct 1, 2012 - Sept 30, 2013 Argonne: Oct 1, 2012 - Sept 30, 2013 BNL: Oct 1, 2012 - Sept 30, 2013 Fermilab: Oct 1, 2012 - Sept 30, 2013 LBNL: Oct 1, 2012 - Sept 30, 2013 ORNL: Oct 1, 2012 - Sept 30, 2013 PNNL: Oct 1, 2012 - Sept 30, 2013 PPPL: Oct 1, 2012 - Sept 30, 2013 SLAC: Oct 1, 2012 - Sept 30, 2013 JLab: Oct 1, 2012 - Sept 30, 2013 FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards

74

Ames Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames Site Office CX Determinations Ames Site Office CX Determinations Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Categorical Exclusion (CX) Determinations Ames Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Categorical Exclusion Determination Documents (CX Determinations): * Determination Date Name of Action: Description Categorical Exclusion Number External link 07/10/2013 Sensitive Instrument Facility .pdf file (792KB) B3.6

75

Ames: Jan 1, 2007 - Sept 30, 2007 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Jan 1, 2007 - Sept 30, 2007 Ames: Jan 1, 2007 - Sept 30, 2007 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards Ames: Jan 1, 2007 - Sept 30, 2007 Argonne: Oct 1, 2006 - Sept 30, 2007 BNL: Oct 1, 2006 - Sept 30, 2007 Fermilab: Jan 1, 2007 - Sept 30, 2007 LBNL: Oct 1, 2006 - Sept 30, 2007 ORNL: Oct 1, 2006 - Sept 30, 2007 PNNL: Oct 1, 2006 - Sept 30, 2007 PPPL: Oct 1, 2006 - Sept 30, 2007 SLAC: Oct 1, 2006 - Sept 30, 2007

76

Ames: Oct 1, 2005 - Sept 30, 2006 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2005 - Sept 30, 2006 Ames: Oct 1, 2005 - Sept 30, 2006 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards FY 2006 SC Laboratory Performance Report Cards Ames: Oct 1, 2005 - Sept 30, 2006 Argonne: Oct 1, 2005 - Sept 30, 2006 BNL: Oct 1, 2005 - Sept 30, 2006 Fermilab: Oct 1, 2005 - Sept 30, 2006 LBNL: Oct 1, 2005 - Sept 30, 2006 ORNL: Oct 1, 2005 - Sept 30, 2006 PNNL: Oct 1, 2005 - Sept 30, 2006 PPPL: Oct 1, 2005 - Sept 30, 2006

77

Ames: Oct 1, 2009 - Sept 30, 2010 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2009 - Sept 30, 2010 Ames: Oct 1, 2009 - Sept 30, 2010 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards Ames: Oct 1, 2009 - Sept 30, 2010 Argonne: Oct 1, 2009 - Sept 30, 2010 BNL: Oct 1, 2009 - Sept 30, 2010 Fermilab: Oct 1, 2009 - Sept 30, 2010 LBNL: Oct 1, 2009 - Sept 30, 2010 ORNL: Oct 1, 2009 - Sept 30, 2010 PNNL: Oct 1, 2009 - Sept 30, 2010 PPPL: October 1, 2009 - September 30, 2010 SLAC: Oct 1, 2009 - Sept 30, 2010 JLab: Oct 1, 2009 - Sept 30, 2010 FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards

78

Ames: Oct 1, 2007 - Sept 30, 2008 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2007 - Sept 30, 2008 Ames: Oct 1, 2007 - Sept 30, 2008 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards Ames: Oct 1, 2007 - Sept 30, 2008 Argonne: Oct 1, 2007 - Sept 30, 2008 BNL: Oct 1, 2007 - Sept 30, 2008 Fermilab: Oct 1, 2007 - Sept 30, 2008 JLab: Oct 1, 2007 - Sept 30, 2008 LBNL: Oct 1, 2007 - Sept 30, 2008 ORNL: Oct 1, 2007 - Sept 30, 2008 PNNL: Oct 1, 2007 - Sept 30, 2008 PPPL: Oct 1, 2007 - Sept 30, 2008 SLAC: Oct 1, 2007 - Sept 30, 2008 FY 2007 SC Laboratory Performance Report Cards

79

Ames: Oct 1, 2008 - Sept 30, 2009 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2008 - Sept 30, 2009 Ames: Oct 1, 2008 - Sept 30, 2009 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards Ames: Oct 1, 2008 - Sept 30, 2009 Argonne: Oct 1, 2008 - Sept 30, 2009 BNL: Oct 1, 2008 - Sept 30, 2009 Fermilab: Oct 1, 2008 - Sept 30, 2009 LBNL: Oct 1, 2008 - Sept 30, 2009 ORNL: Oct 1, 2008 - Sept 30, 2009 PNNL: Oct 1, 2008 - Sept 30, 2009 PPPL: Apr 1, 2009 - Sept 30, 2009 SLAC: Oct 1, 2008 - Sept 30, 2009 JLab: Oct 1, 2008 - Sept 30, 2009 FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards

80

Ames Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames Site Office CX Determinations Ames Site Office CX Determinations Safety, Security and Infrastructure (SSI) SSI Home Facilities and Infrastructure Safeguards & Security Environment, Safety and Health (ES&H) Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC HQ Continuity of Operations (COOP) Implementation Plan .pdf file (307KB) Categorical Exclusion Determinations SLI & SS Budget Contact Information Safety, Security and Infrastructure U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4097 F: (301) 903-7047 Categorical Exclusion (CX) Determinations Ames Site Office CX Determinations Print Text Size: A A A RSS Feeds FeedbackShare Page Categorical Exclusion Determination Documents (CX Determinations): *

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ames: Oct 1, 2011 - Sept 30, 2012| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Ames: Oct 1, 2011 - Sept 30, 2012 Ames: Oct 1, 2011 - Sept 30, 2012 Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process FY 2013 SC Laboratory Performance Report Cards FY 2012 SC Laboratory Performance Report Cards Ames: Oct 1, 2011 - Sept 30, 2012 Argonne: Oct 1, 2011 - Sept 30, 2012 BNL: Oct 1, 2011 - Sept 30, 2012 Fermilab: Oct 1, 2011 - Sept 30, 2012 LBNL: Oct 1, 2011 - Sept 30, 2012 ORNL: Oct 1, 2011 - Sept 30, 2012 PNNL: Oct 1, 2011 - Sept 30, 2012 PPPL: Oct 1, 2011 - Sept 30, 2012 SLAC: Oct 1, 2011 - Sept 30, 2012 JLab: Oct 1, 2011 - Sept 30, 2012 FY 2011 SC Laboratory Performance Report Cards FY 2010 SC Laboratory Performance Report Cards FY 2009 SC Laboratory Performance Report Cards FY 2008 SC Laboratory Performance Report Cards FY 2007 SC Laboratory Performance Report Cards

82

Category:Des Moines, IA | Open Energy Information  

Open Energy Info (EERE)

IA IA Jump to: navigation, search Go Back to PV Economics By Location Media in category "Des Moines, IA" The following 16 files are in this category, out of 16 total. SVFullServiceRestaurant Des Moines IA MidAmerican Energy Co (Iowa).png SVFullServiceRestauran... 64 KB SVQuickServiceRestaurant Des Moines IA MidAmerican Energy Co (Iowa).png SVQuickServiceRestaura... 64 KB SVHospital Des Moines IA MidAmerican Energy Co (Iowa).png SVHospital Des Moines ... 73 KB SVLargeHotel Des Moines IA MidAmerican Energy Co (Iowa).png SVLargeHotel Des Moine... 72 KB SVLargeOffice Des Moines IA MidAmerican Energy Co (Iowa).png SVLargeOffice Des Moin... 73 KB SVMediumOffice Des Moines IA MidAmerican Energy Co (Iowa).png SVMediumOffice Des Moi... 69 KB SVMidriseApartment Des Moines IA MidAmerican Energy Co (Iowa).png

83

Pb-Free Sn-Ag-Cu-Mn Solder - Energy Innovation Portal  

Anderson, Iver E. (Ames, IA), Harringa, Joel (Ames, IA), Walleser, Jason K. (Idaho Falls, IA) Assignee: Iowa State University Research Foundation, ...

84

Video Supplements for Papers from the Superconducting and Magnetism Low-temperature Laboratory at AMES Laboratory  

DOE Data Explorer (OSTI)

The Superconductivity and Magnetism Low-temperature Laboratory is part of the Condensed Matter Physics group in the Department of Physics and Astronomy at Iowa State University and Ames Laboratory. Some of the publications from this lab have data and figures on video. These videos have been posted online with their "parent" publications.

85

DOE - Office of Legacy Management -- Titus Metals - IA 04  

Office of Legacy Management (LM)

from consideration under FUSRAP Also see Documents Related to TITUS METALS IA.04-1 - Argonne National Laboratory Memorandum; Lonergan to Novak; Subject: Extrusion of Billets,...

86

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network (OSTI)

Turbulence-Flame Interactions in Type Ia Supernovae A. J.Normalised time (e) Normalised flame speed Normalised time (length scale (cm) Laminar flame width Gibson scale Cell

Aspden, Andrew J; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (Authors 1, 2 & 3); Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (Author 4); Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (Author 5)

2008-01-01T23:59:59.000Z

87

DOE - Office of Legacy Management -- Bendix Aviation Corp Pioneer Div - IA  

Office of Legacy Management (LM)

Bendix Aviation Corp Pioneer Div - Bendix Aviation Corp Pioneer Div - IA 05 FUSRAP Considered Sites Site: BENDIX AVIATION CORP., PIONEER DIV. (IA.05 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Pioneer Division, Bendix Aviation Corporation Bendix Aviation Corporation Bendix Pioneer Division IA.05-1 IA.05-2 IA.05-3 Location: Davenport , Iowa IA.05-1 Evaluation Year: 1990 IA.05-2 IA.05-4 Site Operations: Conducted studies to investigate the feasibility of using sonic cleaning equipment to decontaminate uranium contaminated drums. IA.05-1 Site Disposition: Eliminated - Potential for contamination considered remote based on limited operations at the site IA.05-2 IA.05-4 IA.05-5 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Uranium IA.05-1

88

Conformal cosmological model and SNe Ia data  

SciTech Connect

Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the {Lambda} term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the {Lambda} term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard {Lambda}CDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without {Lambda} term (or dark energy). We confirm the claim with much larger set of observational data.

Zakharov, A. F., E-mail: zakharov@itep.ru [National Astronomical Observatories of Chinese Academy of Sciences (China); Pervushin, V. N. [Joint Institute for Nuclear Research, Bogoliubov Laboratory for Theoretical Physics (Russian Federation)

2012-11-15T23:59:59.000Z

89

The Distant Type Ia Supernova Rate  

DOE R&D Accomplishments (OSTI)

We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

2002-05-28T23:59:59.000Z

90

Burning Thermals in Type Ia Supernovae A. J. Aspden1  

E-Print Network (OSTI)

Burning Thermals in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , S. Dong2 , and S. E. Woosley2 ABSTRACT We develop a one-dimensional theoretical model for thermals burning in Type Ia supernovae based for the burning and for the expansion of the thermal due to changes in the background stratification found

Bell, John B.

91

Visualizing Type Ia Supernova Explosions at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Supernova Explosions Supernova Explosions Visualizing Type Ia Supernova Explosions Childs1a-Supernovasm.png Deep inside a dying star in a galaxy far, far away, a carbon fusion flame ignites. Ignition may happen in the middle or displaced slightly to one side, but this simulation explores the consequences of central ignition. In a localized hot spot, represented here by a deformed sphere with an average radius of 100 km, carbon is assumed to have already fused to iron, producing hot ash (~10 billion K) with a density about 20% less than its surroundings. As the burning progresses, this hot buoyant ash rises up and interacts with cold fuel. Rayleigh-Taylor fingers give rise to shear and turbulence, which interacts with the flame, causing it to move faster. In about 2 seconds, the energy released blows the entire white dwarf star up,

92

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY...

93

DOE - Office of Legacy Management -- Iowa Army Ammunition Plant - IA 02  

Office of Legacy Management (LM)

Army Ammunition Plant - IA 02 Army Ammunition Plant - IA 02 FUSRAP Considered Sites Iowa Army Ammunition Plant, IA Alternate Name(s): Burlington Ordnance Plant Iowa Ordnance Plant Silas Mason Company IA.02-3 Location: Located in Township 70 North, Range 3 West, Section 32, 5th Principal Meridian, Des Moines County, Burlington, Iowa IA.02-1 IA.02-5 Historical Operations: Assembled nuclear weapons, primarily high explosive components and conducted explosives testing using the high explosive components and depleted uranium. AEC and ERDA operations conducted under permit from the Department of the Army. IA.02-3 IA.02-4 Eligibility Determination: Eligible IA.02-5 Radiological Survey(s): Assessment Survey IA.02-2 Site Status: Cleanup pending by U.S. Army Corps of Engineers. IA.02-6

94

Late Light Curves of Normally-Luminous Type Ia Supernovae  

E-Print Network (OSTI)

The use of Type Ia supernovae as cosmological tools has reinforced the need to better understand these objects and their light curves. The light curves of Type Ia supernovae are powered by the nuclear decay of $^{56}Ni \\to ^{56}Co \\to ^{56}Fe$. The late time light curves can provide insight into the behavior of the decay products and their effect of the shape of the curves. We present the optical light curves of six "normal" Type Ia supernovae, obtained at late times with template image subtraction, and the fits of these light curves to supernova energy deposition models.

J. C. Lair; M. D. Leising; P. A. Milne; G. G. Williams

2006-01-05T23:59:59.000Z

95

UMore Ph IA CR Report 7-8-10.pdf  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PHASE IA ARCHAEOLOGICAL AND PHASE IA ARCHAEOLOGICAL AND ARCHITECTURAL HISTORY SURVEY FOR THE UMORE PARK RESEARCH WIND TURBINE PROJECT, DAKOTA COUNTY, MINNESOTA SHPO File No. Pending Client No. Pending The 106 Group Project No. 10-18 Submitted to: Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803 Submitted by: The 106 Group Ltd. The Dacotah Building 370 Selby Avenue St. Paul, MN 55102 Principal Investigators: AnneKetz, M.A., RPA Greg Mathis, M.C.R.P. Report Authors: Mark Doperalski, B.S. Miranda Van Vleet, M.H.P July 2010 UMore Park Wind Turbine Project Phase IA Archaeological and Architectural History Survey Page i MANAGEMENT SUMMARY During May of 2010, The 106 Group Ltd. (106 Group) conducted a Phase IA archaeological and architectural history survey for the University of Minnesota Outreach, Research, and

96

TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM  

SciTech Connect

Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Chornock, Ryan; Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Griffith, Christopher V. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, Mansi M., E-mail: jsilverman@astro.as.utexas.edu [Observatories of the Carnegie Institution of Science, Pasadena, CA 91101 (United States); and others

2013-07-01T23:59:59.000Z

97

VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE  

SciTech Connect

To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II {lambda}6355 and Ca II H and K are related to the B - V color at peak brightness. We find that the maximum-light velocity of Si II {lambda}6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II {lambda}6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II {lambda}6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia-even after removing a linear trend with velocity-indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P., E-mail: rfoley@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2011-12-01T23:59:59.000Z

98

The Rate of Type Ia Supernovae at High Redshift  

E-Print Network (OSTI)

We derive the rates of Type Ia supernovae (SNIa) over a wide range of redshifts using a complete sample from the IfA Deep Survey. This sample of more than 100 SNIa is the largest set ever collected from a single survey, and therefore uniquely powerful for a detailed supernova rate (SNR) calculation. Measurements of the SNR as a function of cosmological time offer a glimpse into the relationship between the star formation rate (SFR) and Type Ia SNR, and may provide evidence for the progenitor pathway. We observe a progressively increasing Type Ia SNR between redshifts z~0.3-0.8. The Type Ia SNR measurements are consistent with a short time delay (t~1 Gyr) with respect to the SFR, indicating a fairly prompt evolution of SNIa progenitor systems. We derive a best-fit value of SFR/SNR 580 h_70^(-2) M_solar/SNIa for the conversion factor between star formation and SNIa rates, as determined for a delay time of t~1 Gyr between the SFR and the Type Ia SNR. More complete measurements of the Type Ia SNR at z>1 are necessary to conclusively determine the SFR--SNR relationship and constrain SNIa evolutionary pathways.

Brian J. Barris; John L. Tonry

2005-09-22T23:59:59.000Z

99

The diversity of Type Ia Supernovae: evidence for systematics?  

E-Print Network (OSTI)

The photometric and spectroscopic properties of 26 well observed Type Ia Supernovae (SNeIa) were analyzed with the aim to explore SNIa diversity. The sample includes (Branch-)normal SNe as well as extreme events like SNe 1991T and 1991bg, while the truly peculiar SNIa, SN2000cx and SN2002cx are not included in our sample . A statistical treatment reveals the existence of three different groups. The first group (FAINT) consists of faint SNeIa similar to SN1991bg, with low expansion velocities and rapid evolution of SiII velocity. A second group consists of ``normal'' SNeIa, also with high temporal velocity gradient (HVG), but with brighter mean absolute magnitude =-19.3 and higher expansion velocities than the FAINT SNe. The third group includes both ``normal'' and SN1991T-like SNeIa: these SNe populate a narrow strip in the SiII velocity evolution plot, with a small velocity gradient (SVG), but have absolute magnitudes similar to HVGs. While the FAINT and HVG SNeIa together seem to define a relation between RSi(II) and Dm15(B), the SVG ones either do not conform with that relation or define a new, looser one. The RSi(II) pre-maximum evolution of HVGs is strikingly different from that of SVGs. The impact of this evidence on the understanding of SNIa diversity, in terms of explosion mechanisms, degree of ejecta mixing, and ejecta-CSM interaction, is discussed.

S. Benetti; E. Cappellaro; P. A. Mazzali; M. Turatto; G. Altavilla; F. Bufano; N. Elias-Rosa; R. Kotak; G. Pignata; M. Salvo; V. Stanishev

2004-11-02T23:59:59.000Z

100

William Ames  

Science Conference Proceedings (OSTI)

... Physics Graduation Date: 5/2009 Hometown: Fairfax, Virginia Project: I worked measuring contact resistances and electron mobility in graphene ...

2010-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Audit of Acquisition of Scientific Research at Ames Laboratory, ER-B-95-05  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S. DEPARTMENT OF ENERGY S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL REPORT ON AUDIT OF ACQUISITION OF SCIENTIFIC RESEARCH AT AMES LABORATORY The Office of Inspector General wants to make the distribution of its reports as customer friendly and cost effective as possible. Therefore, this report will be available electronically through the Internet five to seven days after publication at the following alternative addresses: Department of Energy Headquarters Gopher gopher.hr.doe.gov Department of Energy Headquarters Anonymous FTP vm1.hqadmin.doe.gov U.S. Department of Energy Human Resources and Administration

102

DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE  

Science Conference Proceedings (OSTI)

At a density near a few x10{sup 7} g cm{sup -3}, the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkoehler number (Da{sub T}), which steadily declines from much greater than one to less than one as the density decreases to a few x10{sup 6} g cm{sup -3}. Classical scaling arguments predict that the turbulent flame speed s{sub T} , normalized by the turbulent intensity u-check, follows s{sub T}/u-check = Da{sub T}{sup 1/2} for Da{sub T} {approx}burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s{sub l}ambda and width l{sub l}ambda, and we refer to this kind of flame as a lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the {integral} scale. While the total burning rate continues to have a well-defined average, s{sub T}{approx}u-check, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s{sub T} can actually be roughly twice u-check for Da{sub T} {approx}> 1, and that localized excursions to as much as 5 times u-check can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da{sub T} {approx} 1. The lambda-flame speed and width can be predicted based on the turbulence in the star (specifically the energy dissipation rate epsilon*) and the turbulent nuclear burning timescale of the fuel tau {sup T}{sub nuc}. We propose a practical method for measuring s{sub l}ambda and l{sub l}ambda based on the scaling relations and small-scale computationally inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed SNe flames. These results will be useful both for characterizing the deflagration speed in larger full-star simulations, where the flame cannot be resolved, and for predicting when detonation occurs.

Aspden, A. J.; Bell, J. B. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (United States); Woosley, S. E. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States)

2010-02-20T23:59:59.000Z

103

Redshift-Independent Distances to Type Ia Supernovae  

E-Print Network (OSTI)

We describe a procedure for accurately determining luminosity distances to Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure, which may be used as an extension of any of the various distance determination methods currently in use, is based on marginalizing over redshift, removing the requirement of knowing $z$ a priori. We demonstrate that the Hubble diagram scatter of distances measured with this technique is approximately equal to that of distances derived from conventional redshift-specific methods for a set of 60 nearby SNe Ia. This indicates that accurate distances for cosmological SNe Ia may be determined without the requirement of spectroscopic redshifts, which are typically the limiting factor for the number of SNe that modern surveys can collect. Removing this limitation would greatly increase the number of SNe for which current and future SN surveys will be able to accurately measure distance. The method may also be able to be used for high-$z$ SNe Ia to determine cosmological density parameters without redshift information.

Brian J. Barris; John L. Tonry

2004-08-04T23:59:59.000Z

104

National Laboratories - Energy Innovation Portal  

Name Address City, State; Ames Laboratory: Ames Laboratory: Ames, IA: Argonne National Laboratory: 9700 S. Cass Avenue: Argonne, IL: Brookhaven National Laboratory

105

Ames Lab Plays Elemental Role in New PBS Special | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Plays Elemental Role in New PBS Special Lab Plays Elemental Role in New PBS Special Ames Lab Plays Elemental Role in New PBS Special April 4, 2012 - 2:34pm Addthis New York Times technology correspondent David Pogue -- host of NOVA’s popular “Making Stuff” series -- takes viewers on a quest to understand chemistry and all of the materials of life: the 118 unique elements that make up the amazing periodic table, including the 90 naturally-occurring elements and those created by scientists. | Photo courtesy of PBS. New York Times technology correspondent David Pogue -- host of NOVA's popular "Making Stuff" series -- takes viewers on a quest to understand chemistry and all of the materials of life: the 118 unique elements that make up the amazing periodic table, including the 90 naturally-occurring

106

The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star  

E-Print Network (OSTI)

The absolute magnitudes of Type IA supernovae. Astrophys. J.in a Sublu- o minous Type Ia Supernova: SpectropolarimetryL. Could There Be a Hole in Type Ia Super- novae? Astrophys.

2008-01-01T23:59:59.000Z

107

Nucleosynthesis in type Ia supernovae driven by asymmetric thermonuclear ignition  

Science Conference Proceedings (OSTI)

Type Ia Supernovae (SNe Ia) are believed to be thermonuclear explosions of a white dwarf. They can be used as mature cosmological standardized candles, leading to the discovery of the accelerating expansion of the Universe. However, the explosion mechanism has not yet been fully clarified. In this paper, we first present nucleosynthetic features of a leading explosion scenario, namely a delayed-detonation scenario. Based on this, we propose a new and strong observational constraint on the explosion mechanism through emission lines from neutron-rich Fe-peaks. Especially, we show that an asymmetry in the explosion is likely a generic feature. We further argue that the diversity arising from various viewing angles can be an origin of observational diversities of SNe Ia seen in their spectral features (suspected possible biases in cosmology) and colors (related to the extinction estimate in cosmology). Using these new insights could open up a possibility of using SNe Ia as more precise distance indicators than currently employed.

Maeda, Keiichi [Institute for the Physics and Mathematics of the Universe (IPMU), Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)

2012-11-12T23:59:59.000Z

108

Optical Spectra of Type Ia Supernovae at z=0.46 and z=1.2  

E-Print Network (OSTI)

We present optical spectra, obtained with the Keck 10-m telescope, of two high-redshift type Ia supernovae (SNe Ia) discovered by the High-z Supernova Search Team: SN 1999ff at z=0.455 and SN 1999fv at z~1.2, the highest-redshift published SN Ia spectrum. Both SNe were at maximum light when the spectra were taken. We compare our high-z spectra with low-z normal and peculiar SNe Ia as well as with SNe Ic, Ib, and II. There are no significant differences between SN 1999ff and normal SNe Ia at low redshift. SN 1999fv appears to be a SN Ia and does not resemble the most peculiar nearby SNe Ia.

Coil, A L; Filippenko, A V; Leonard, D C; Tonry, J; Riess, A G; Challis, P M; Clocchiatti, A; Garnavich, P M; Hogan, C J; Jha, S; Kirshner, R P; Leibundgut, B; Phillips, M M; Schmidt, B P; Schommer, R A; Smith, R C; Soderberg, A M; Spyromilio, J; Stubbs, C; Suntzeff, N B; Woudt, P A; Coil, Alison L.; Matheson, Thomas; Filippenko, Alexei V.; Leonard, Douglas C.; Tonry, John; Riess, Adam G.; Challis, Peter; Clocchiatti, Alejandro; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Kirshner, Robert P.; Schmidt, Brian P.; Schommer, Robert A.; Soderberg, Alicia M.; Stubbs, Christopher; Suntzeff, Nicholas B.; Woudt, Patrick

2000-01-01T23:59:59.000Z

109

Progenitors of type Ia supernovae in elliptical galaxies  

Science Conference Proceedings (OSTI)

Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than {approx}5% of type Ia supernovae observed in old stellar populations.

Gilfanov, M.; Bogdan, A.

2011-09-21T23:59:59.000Z

110

Learning from the scatter in type ia supernovae  

SciTech Connect

Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here they probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub s}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub s} to within 5% with observations of 2000 Type Ia Supernovae. They identify three sources of systematic error--evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing--which will make this measurement difficult.

Dodelson, Scott; /Fermilab /Chicago U., Astron. Astrophys. Ctr.; Vallinotto, Alberto; /Fermilab /Chicago U.

2005-11-01T23:59:59.000Z

111

Type Ia Supernova Spectral Line Ratios as LuminosityIndicators  

SciTech Connect

Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

2005-12-07T23:59:59.000Z

112

Investigating the Flame Microstructure in Type Ia Supernovae  

E-Print Network (OSTI)

We present a numerical model to study the behavior of thermonuclear flames in the discontinuity approximation. This model is applied to investigate the Landau-Darrieus instability under conditions found in Type Ia supernova explosions of Chandrasekhar mass white dwarfs. This is a first step to explore the flame microstructure in these events. The model reproduces Landau's linearized stability analysis in early stages of the flame evolution and the stabilization in a cellular flame structure in the nonlinear stage.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2002-04-02T23:59:59.000Z

113

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network (OSTI)

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particu...

Patat, F

2004-01-01T23:59:59.000Z

114

Could There Be A Hole In Type Ia Supernovae?  

E-Print Network (OSTI)

In the favored progenitor scenario, Type Ia supernovae arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et. al. show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

Daniel Kasen; Peter Nugent; R. C. Thomas; Lifan Wang

2003-11-01T23:59:59.000Z

115

THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES  

Science Conference Proceedings (OSTI)

Using data from the Sloan Digital Sky Supernova Survey-II (SDSS-II SN Survey), we measure the rate of Type Ia supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05 0.15) SNe Ia in highly star-forming galaxies. We consider that the high levels of dust in these systems may be obscuring the reddest and faintest SNe Ia.

Smith, Mathew [Department of Physics, University of Western Cape, Bellville 7530, Cape Town (South Africa); Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Dilday, Benjamin [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Marriner, John; Frieman, Joshua [Center for Particle Astrophysics, Fermilab, P.O. Box 500, Batavia, IL 60510 (United States); Kessler, Richard [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637 (United States); Bassett, Bruce [African Institute for Mathematical Sciences, 6-8 Melrose Road, Muizenberg 7945 (South Africa); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Lampeitl, Hubert [Astrophysics, Cosmology and Gravity Centre (ACGC), Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701 (South Africa); Sako, Masao [Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Sollerman, Jesper, E-mail: matsmith2@gmail.com [Oskar Klein Centre, Department of Astronomy, AlbaNova, Stockholm University, SE-106 91 Stockholm (Sweden)

2012-08-10T23:59:59.000Z

116

Status report on the collection and preparation of coal samples for the Ames Laboratory Coal Library  

SciTech Connect

In comparing and evaluating experimental results on coal generated in different laboratories, or even within the same laboratory, it is necessary to begin the work on samples which are reproducibly equivalent. Also, there must be a sufficient store of the material for ongoing investigations. Thus, the problem is difficult because of the heterogeneity of coal, both at the large bulk level and at the microscopic sample level. This affects the capability to assess the significance of discrepancies in experimental results among laboratories, even if the experimental conditions are carefully controlled. In collecting coal samples from a mine or a preparation plant, considerations must be made to assure a representative bulk sampling and to reduce the material into suitable working samples which accurately and reproducibly reflect the composition of the bulk sample. At the collection site, changes in the coal occur immediately upon exposure to air, resulting in marked deterioration of caking properties, solubility, tar yield, heating value, and other properties. This necessitates that measures be followed to preserve the samples in ''inert'' environments as much as possible. Thus, at each point the collection, transportation, preparation, storage, and preservation of the samples must be rigorously controlled and reproducibly implemented. Such precautions are emphasized in descriptions of the Penn State and the Exxon coal collections. This interim report provides information on an approach to establish a coal library at the Ames Laboratory. The coals serve as a collection of well-characterized materials for both the laboratory's own staff and, eventually, for other interested investigators. This report documents our efforts to date and includes the criteria for coal selection, the procedure for coal sampling, and the techniques utilized in the prevention of changes in the coals throughout the period prior to utilization. 8 refs., 2 figs., 6 tabs.

Biggs, D.L.; Birlingmair, D.H.; Fisher, R.W.; Greer, R.T.; Kaelin, R.A.; Markuszewski, R.; Smith, B.F.; Squires, T.G.; Venier, C.G.; Wheelock, T.D.

1985-01-01T23:59:59.000Z

117

THE DIFFUSE GAMMA-RAY BACKGROUND FROM TYPE Ia SUPERNOVAE  

SciTech Connect

The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper, we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae (SNe), extending earlier work that only included core-collapse SNe. We consider Type Ia events not only in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both SN types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus, our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays; total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

Lien, Amy; Fields, Brian D. [Department of Physics, University of Illinois, Urbana, IL 61801 (United States)

2012-03-10T23:59:59.000Z

118

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network (OSTI)

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particular, I have explored in detail the LE colour dependency from time and dust distribution, since this is a promising tool to determine the dust density and derive the effective presence of multiple scattering from the observed properties. Finally, again by means of Monte Carlo simulations, I have studied the effects of multiple scattering on the LE linear polarization, analyzing the dependencies from the dust parameters and geometry. Both the analytical formalism and MC codes described in this paper can be used for any LE for which the light curve of the central source is known.

F. Patat

2004-09-28T23:59:59.000Z

119

Turbulence-Flame Interactions in Type Ia Supernovae  

SciTech Connect

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to 8 x 107 g cm-3, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and 3 x 107 g cm-3 where the nature of the burning changes ualitatively. By 1 x 107 g cm-3, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, D_T \\sim u' l, where u' is the turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (Authors 1, 2& 3); Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (Author 4); Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (Author 5); Aspden, Andrew J; Aspden, Andrew J.; Bell, John B.; Day, Marc S.; Woosley, Stan E.; Zingale, Mike

2008-05-27T23:59:59.000Z

120

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network (OSTI)

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to $8 \\times 10^7$ g cm$^{-3}$, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and $3 \\times 10^7$ g cm$^{-3}$ where the nature of the burning changes qualitatively. By $1 \\times 10^7$ g cm$^{-3}$, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, $D_T \\sim u' l$, where $u'$ is the turbulent intensity and $l$ is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

A. J. Aspden; J. B. Bell; M. S. Day; S. E. Woosley; M. Zingale

2008-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ames/Salmonella mutagenicity assay of natural and synthetic crude oils including a Fischer-Retorted Estonian shale oil  

DOE Green Energy (OSTI)

DMSO extracts of a variety of natural and synthetic crude oils were tested for genotoxic activity in the Ames/Salmonella bioassay. Both mutagenic and cytotoxic potentials are cited. Natural crude oils and their refined products and upgraded synfuels are less mutagenic than parent crude shale oils which in turn are less mutagenic than the coal derived distillate blend sample, SRC II. However, this order is not true for cytotoxicity induced by these oil samples; therefore, caution must be exercised in the assessment of their mutagenic potential without consideration of other influential factors including cytotoxicity.

Strniste, G.F.; Nickols, J.W.

1981-01-01T23:59:59.000Z

122

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

0.00-1.99 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA ME MI MA MD MN MS MT MO NE ND OH NV NM NY NH NC OK OR PA RI SC SD TN TX UT VT WA WV WI AZ VA DC 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 18. Average Price of Natural Gas Delivered to U.S. Onsystem Industrial Consumers, 1996 (Dollars per Thousand Cubic Feet) Figure 19. Average Price of Natural Gas Delivered to U.S. Electric Utilities, 1996 (Dollars per Thousand Cubic Feet) Figure Sources: Federal Energy Regulatory Commission (FERC), Form FERC-423, "Monthly Report of Cost and Quality of Fuels for Electric Plants," and Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." Note: In 1996, consumption of natural gas for agricultural use

123

Microsoft PowerPoint - IEEE IAS PES 102313.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's ARRA DOE's ARRA Smart Grid Program Steve Bossart, Senior Energy Analyst IEEE IAS/PES Pittsburgh Section October 23, 2013 ‹#› Topics * OE ARRA Smart Grid Program * OE ARRA Smart Grid Progress * Results and Case Studies * Life After ARRA Smart Grid ‹#› DOE OE ARRA Smart Grid Program ‹#› American Recovery and Reinvestment Act ($4.5B) * Smart Grid Investment Grants (99 projects) - $3.4 billion Federal; $4.7 billion private sector - > 800 PMUs covering almost 100% of transmission - ~ 8000 distribution automation circuits - > 15 million smart meters * Smart Grid Demonstration Projects (32 projects) - $685 million Federal; $1 billion private sector - 16 storage projects - 16 regional demonstrations Smart Grid ARRA Activities ‹#› Smart Grid investment from ARRA field projects

124

Type Ia Supernova: Burning and Detonation in the Distributed Regime  

E-Print Network (OSTI)

A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.

S. E. Woosley

2007-09-26T23:59:59.000Z

125

Type Ia Supernovae Rates and Galaxy Clustering from the CFHT Supernova Legacy Survey  

E-Print Network (OSTI)

The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created a large homogeneous database of intermediate redshift (0.2 rates, properties, and host galaxy star formation rates. The SNLS SN Ia database has now been combined with a photometric redshift galaxy catalog and an optical galaxy cluster catalog to investigate the possible influence of galaxy clustering on the SN Ia rate, over and above the expected effect due to the dependence of SFR on clustering through the morphology-density relation. We identify three cluster SNe Ia, plus three additional possible cluster SNe Ia, and find the SN Ia rate per unit mass in clusters at intermediate redshifts is consistent with the rate per unit mass in field early-type galaxies and the SN Ia cluster rate from low redshift cluster targeted surveys. We also find the number of SNe Ia in cluster environments to be within a factor of two of expectations from the two component SNIa rate model.

M. L. Graham; C. J. Pritchet; M. Sullivan; S. D. J. Gwyn; J. D. Neill; E. Y. Hsiao; P. Astier; D. Balam; C. Balland; S. Basa; R. G. Carlberg; A. Conley; D. Fouchez; J. Guy; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; K. Perrett; N. Regnault; S. Baumont; J. Le Du; C. Lidman; S. Perlmutter; P. Ripoche; N. Suzuki; E. S. Walker; T. Zhang

2008-01-31T23:59:59.000Z

126

Fitting Type Ia supernovae with coupled dark energy  

E-Print Network (OSTI)

We discuss the possible consistency of the recently discovered Type Ia supernovae at z>1 with models in which dark energy is strongly coupled to a significant fraction of dark matter, and in which an (asymptotic) accelerated phase exists where dark matter and dark energy scale in the same way. Such a coupling has been suggested for a possible solution of the coincidence problem, and is also motivated by string cosmology models of "late time" dilaton interactions. Our analysis shows that, for coupled dark energy models, the recent data are still consistent with acceleration starting as early as at $z=3$ (to within 90% c.l.), although at the price of a large "non-universality" of the dark energy coupling to different matter fields. Also, as opposed to uncoupled models which seem to prefer a ``phantom'' dark energy, we find that a large amount of coupled dark matter is compatible with present data only if the dark energy field has a conventional equation of state w>-1.

Amendola, L; Piazza, F; Amendola, Luca; Gasperini, Maurizio; Piazza, Federico

2004-01-01T23:59:59.000Z

127

Mtrologie des supernovae de type Ia pour la cosmologie : instrumentation et analyse calorimtrique.  

E-Print Network (OSTI)

??L'utilisation des supernovae de type Ia comme indicateurs de distance est un pilier du modle de concordance actuel en cosmologie. Le travail d'instrumentation prsent dans (more)

Juramy, Claire

2006-01-01T23:59:59.000Z

128

Toward Exascale Computing of Type Ia and Ib,c Supernovae: V&V...  

NLE Websites -- All DOE Office Websites (Extended Search)

Toward Exascale Computing of Type Ia and Ib,c Supernovae: V&V of Current Models PI Name: Don Lamb PI Email: lamb@oddjob.uchicago.edu Institution: University Of Chicago Allocation...

129

Diversity of supernovae Ia determined using equivalent widths of Si II 4000  

E-Print Network (OSTI)

Spectroscopic and photometric properties of low and high-z supernovae Ia (SNe Ia) have been analyzed in order to achieve a better understanding of their diversity and to identify possible SN Ia sub-types. We use wavelet transformed spectra in which one can easily measure spectral features. We investigate the \\ion{Si}{II} 4000 equivalent width ($EW_w\\lbrace\\ion{Si}{II}\\rbrace$). The ability and, especially, the ease in extending the method to SNe at high-$z$ is demonstrated. We applied the method to 110 SNe Ia and found correlations between $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ and parameters related to the light-curve shape for 88 supernovae with available photometry. No evidence for evolution of $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ with redshift is seen. Three sub-classes of SNe Ia were confirmed using an independent cluster analysis with only light-curve shape, colour, and $EW_w\\lbrace\\ion{Si}{II}\\rbrace$. SNe from high-$z$ samples seem to follow a similar grouping to nearby objects. The $EW_w\\lbrace\\ion{Si}{II}\\rbrace$ value measured on a single spectrum may point towards SN Ia sub-classification, avoiding the need for expansion velocity gradient calculations.

V. Arsenijevic; S. Fabbro; A. M. Mourao; A. J. Rica da Silva

2008-09-18T23:59:59.000Z

130

INTERNATIONAL SYMPOSIUM ON PROCESSING AND HANDLING ...  

Science Conference Proceedings (OSTI)

... MS 106-5, Cleveland, OH 44135; Iver Anderson, Ames Laboratory, Iowa State University, 122 Metals Development Bldg, Ames, IA 50011-3020; John Pusateri, ...

131

Office of Acquisition and Assistance - Information for Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

or support service activities, please contact me directly. M&O Contractors Location Ames Laboratory Ames, IA Argonne National Laboratory Argonne, IL Brookhaven National...

132

ATP Project Brief - 00-00-5561  

Science Conference Proceedings (OSTI)

... City, UT) will be subcontracted to develop fabrication methods for constructing AMRs from brittle materials, and Ames Laboratory (Ames, IA) will be ...

133

Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect

We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2008-02-28T23:59:59.000Z

134

NREL Unsteady Aerodynamics Experiment in the NASA-Ames Wind Tunnel: A Comparison of Predictions to Measurements  

SciTech Connect

Currently, wind turbine designers rely on safety factors to compensate for the effects of unknown loads acting on the turbine structure. This results in components that are overdesigned because precise load levels and load paths are unknown. To advance wind turbine technology, the forces acting on the turbine structure must be accurately characterized because these forces translate directly into loads imparted to the wind turbine structure and resulting power production. Once these forces are more accurately characterized, we will better understand load paths and can therefore optimize turbine structures. To address this problem, the National Renewable Energy Laboratory (NREL) conducted the Unsteady Aerodynamics Experiment (UAE), which was a test of an extensively instrumented wind turbine in the giant NASA-Ames 24.4-m (80 feet) by 36.6-m (120 feet) wind tunnel. To maximize the benefits from testing, NREL formed a Science Panel of advisers comprised of wind turbine aerodynamics and modeling experts throughout the world. NREL used the Science Panel's guidance to specify the conditions and configurations under which the turbine was operated in the wind tunnel. The panel also helped define test priorities and objectives that would be effective for wind turbine modeling tool development and validation.

Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.J.

2001-06-22T23:59:59.000Z

135

Gamow-Teller strengths in 24Na using the 24Mg(t,3He) reaction at 115 AMeV  

E-Print Network (OSTI)

Gamow-Teller transitions from 24Mg to 24Na were studied via the (t,3He) reaction at 115 AMeV using a secondary triton beam produced via fast fragmentation of 150 AMeV 16O ions. Compared to previous (t,3He) experiments at this energy that employed a primary alpha beam, the secondary beam intensity is improved by about a factor of five. Despite the large emittance of the secondary beam, an excitation-energy resolution of ~200 keV is achieved. A good correspondence is found between the extracted Gamow-Teller strength distribution and those available from other charge-exchange probes. Theoretical calculations using the newly developed USDA and USDB sd-shell model interactions reproduce the data well.

M. E. Howard; R. G. T. Zegers; Sam M. Austin; D. Bazin; B. A. Brown; A. L. Cole; B. Davids; M. Famiano; Y. Fujita; A. Gade; D. Galaviz; G. W. Hitt; M. Matos; S. D. Reitzner; C. Samanta; L. J. Schradin; Y. Shimbara; E. E. Smith; C. Simenel

2008-07-15T23:59:59.000Z

136

THE FIRST MAXIMUM-LIGHT ULTRAVIOLET THROUGH NEAR-INFRARED SPECTRUM OF A TYPE Ia SUPERNOVA  

Science Conference Proceedings (OSTI)

We present the first maximum-light ultraviolet (UV) through near-infrared (NIR) Type Ia supernova (SN Ia) spectrum. This spectrum of SN 2011iv was obtained nearly simultaneously by the Hubble Space Telescope at UV/optical wavelengths and the Magellan Baade telescope at NIR wavelengths. These data provide the opportunity to examine the entire maximum-light SN Ia spectral energy distribution. Since the UV region of an SN Ia spectrum is extremely sensitive to the composition of the outer layers of the explosion, which are transparent at longer wavelengths, this unprecedented spectrum can provide strong constraints on the composition of the SN ejecta, and similarly the SN explosion and progenitor system. SN 2011iv is spectroscopically normal, but has a relatively fast decline ({Delta}m{sub 15}(B) = 1.69 {+-} 0.05 mag). We compare SN 2011iv to other SNe Ia with UV spectra near maximum light and examine trends between UV spectral properties, light-curve shape, and ejecta velocity. We tentatively find that SNe with similar light-curve shapes but different ejecta velocities have similar UV spectra, while those with similar ejecta velocities but different light-curve shapes have very different UV spectra. Through a comparison with explosion models, we find that both a solar-metallicity W7 and a zero-metallicity delayed-detonation model provide a reasonable fit to the spectrum of SN 2011iv from the UV to the NIR.

Foley, Ryan J.; Marion, G. Howie; Challis, Peter; Kirshner, Robert P.; Berta, Zachory K. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kromer, Markus; Taubenberger, Stefan; Hillebrandt, Wolfgang; Roepke, Friedrich K.; Ciaraldi-Schoolmann, Franco; Seitenzahl, Ivo R. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching bei Muenchen (Germany); Pignata, Giuliano [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Stritzinger, Maximilian D. [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); Filippenko, Alexei V.; Li Weidong; Silverman, Jeffrey M. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8583 (Japan); Hsiao, Eric Y.; Morrell, Nidia I. [Carnegie Observatories, Las Campanas Observatory, La Serena (Chile); Simcoe, Robert A., E-mail: rfoley@cfa.harvard.edu [MIT-Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-664D Cambridge, MA 02139 (United States); and others

2012-07-01T23:59:59.000Z

137

Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models  

E-Print Network (OSTI)

We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

2006-03-03T23:59:59.000Z

138

THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es  

SciTech Connect

SN 2002es is a peculiar subluminous Type Ia supernova (SN Ia) with a combination of observed characteristics never before seen in an SN Ia. At maximum light, SN 2002es shares spectroscopic properties with the underluminous SN 1991bg subclass of SNe Ia, but with substantially lower expansion velocities ({approx}6000 km s{sup -1}) more typical of the peculiar SN 2002cx subclass. Photometrically, SN 2002es differs from both SN 1991bg-like and SN 2002cx-like supernovae. Although at maximum light it is subluminous (M{sub B} = -17.78 mag), SN 2002es has a relatively broad light curve ({Delta}m{sub 15}(B) = 1.28 {+-} 0.04 mag), making it a significant outlier in the light-curve width versus luminosity relationship. We estimate a {sup 56}Ni mass of 0.17 {+-} 0.05 M{sub Sun} synthesized in the explosion, relatively low for an SN Ia. One month after maximum light, we find an unexpected plummet in the bolometric luminosity. The late-time decay of the light curves is inconsistent with our estimated {sup 56}Ni mass, indicating that either the light curve was not completely powered by {sup 56}Ni decay or the ejecta became optically thin to {gamma}-rays within a month after maximum light. The host galaxy is classified as an S0 galaxy with little to no star formation, indicating that the progenitor of SN 2002es is likely from an old stellar population. We also present a less extensive data set for SN 1999bh, an object which shares similar photometric and spectroscopic properties. Both objects were found as part of the Lick Observatory Supernova Search, allowing us to estimate that these objects should account for 2.5% of SNe Ia within a fixed volume. Current theoretical models are unable to explain the observed characteristics of SN 2002es.

Ganeshalingam, Mohan; Li Weidong; Filippenko, Alexei V.; Silverman, Jeffrey M.; Shen, Ken J. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Chornock, Ryan; Foley, Ryan J.; Kirshner, Robert P.; Calkins, Mike [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Matheson, Thomas [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Milne, Peter, E-mail: mganesh@astro.berkeley.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

2012-06-01T23:59:59.000Z

139

EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc  

Science Conference Proceedings (OSTI)

We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is DELTAm{sub 15}(B) = 0.65 +- 0.03, which is one of the slowest among SNe Ia. The peak V-band absolute magnitude is estimated to be M{sub V} = -19.90 +- 0.15 mag if no host extinction is assumed. It reaches M{sub V} = -20.19 +- 0.19 mag if we assume the host extinction of A{sub V} = 0.29 mag. SN 2009dc belongs to the most luminous class of SNe Ia, like SNe 2003fg and 2006gz. Our JHK{sub s} -band photometry shows that this SN is also one of the most luminous SNe Ia in near-infrared wavelengths. We estimate the ejected {sup 56}Ni mass of 1.2 +- 0.3 M{sub sun} for the no host extinction case (and of 1.6 +- 0.4 M{sub sun} for the host extinction of A{sub V} = 0.29 mag). The C II lambda6580 absorption line remains visible until a week after the maximum brightness, in contrast to its early disappearance in SN 2006gz. The line velocity of Si II lambda6355 is about 8000 km s{sup -1} around the maximum, being considerably slower than that of SN 2006gz. The velocity of the C II line is similar to or slightly less than that of the Si II line around the maximum. The presence of the carbon line suggests that the thick unburned C+O layer remains after the explosion. Spectropolarimetric observations by Tanaka et al. indicate that the explosion is nearly spherical. These observational facts suggest that SN 2009dc is a super-Chandrasekhar mass SN Ia.

Yamanaka, M.; Arai, A.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H. [Department of Physical Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima 739-8526 (Japan); Kawabata, K. S. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Kinugasa, K.; Hashimoto, O.; Honda, S. [Gunma Astronomical Observatory, Takayama, Gunma 377-0702 (Japan); Tanaka, M. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Imada, A.; Kuroda, D. [Okayama Astrophysical Observatory, National Astronomical Observatory of Japan, Kamogata, Asakuchi-shi, Okayama 719-0232 (Japan); Maeda, K.; Nomoto, K. [Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa (Japan); Kamata, Y. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Kawai, N. [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Konishi, K., E-mail: myamanaka@hiroshima-u.ac.j [Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan)

2009-12-20T23:59:59.000Z

140

Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae  

Science Conference Proceedings (OSTI)

The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

Saurabh W. Jha

2012-10-03T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Symbiotic stars as possible progenitors of SNe Ia: binary parameters and overall outlook  

E-Print Network (OSTI)

Symbiotic stars are interacting binaries in which the first-formed white dwarf accretes and burns material from a red giant companion. This paper aims at presenting physical characteristics of these objects and discussing their possible link with progenitors of type Ia supernovae.

Miko?ajewska, J

2011-01-01T23:59:59.000Z

142

g-MODE EXCITATION DURING THE PRE-EXPLOSIVE SIMMERING OF TYPE Ia SUPERNOVAE  

SciTech Connect

Prior to the explosive burning of a white dwarf (WD) that makes a Type Ia supernova (SN Ia), the star 'simmers' for {approx}10{sup 3} yr in a convecting, carbon-burning region. I estimate the excitation of g-modes by convection during this phase and explore their possible effect on the WD. As these modes propagate from the core of the WD toward its surface, their amplitudes grow with decreasing density. Once the modes reach nonlinear amplitudes, they break and deposit their energy into a shell of mass {approx}10{sup -4} M{sub sun}. This raises the surface temperature by {approx}4 x 10{sup 8} K, which is sufficient to ignite a layer of helium, as is expected to exist for some SN Ia scenarios. This predominantly synthesizes {sup 40}Ca, but some amount of {sup 28}Si, {sup 32}S, and {sup 44}Ti may also be present. These ashes are expanded out with the subsequent explosion up to velocities of {approx}20, 000 km s{sup -1}, which may explain the high velocity features (HVFs) seen in many SNe Ia. The appearance of HVFs would therefore be a useful discriminant for determining between progenitors, since a flammable helium-rich layer will not be present for accretion from a C/O WD as in a merger scenario. I also discuss the implications of {sup 44}Ti production.

Piro, Anthony L., E-mail: piro@caltech.edu [Theoretical Astrophysics, California Institute of Technology, 1200 E California Blvd., M/C 350-17, Pasadena, CA 91125 (United States)

2011-09-01T23:59:59.000Z

143

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network (OSTI)

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E structure which, de- pending on density, may involve separate regions of carbon, oxygen and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions

144

Conference on Physics with Large Gamma-Ray Detector Arrays, Volume II Proceedings  

E-Print Network (OSTI)

Laboratory, Berkeley, CA 94720 University of California, Davis, CA 95616 Iowa State University, Ames, IA 50010 Rutgers University, New Brunswick,

Lawler editor, G.

2010-01-01T23:59:59.000Z

145

A Test for the Nature of the Type Ia Supernova Explosion Mechanism  

E-Print Network (OSTI)

Currently popular models for Type Ia supernovae (SNe Ia) fall into two general classes. The first comprises explosions of nearly pure carbon/oxygen (C/O) white dwarfs at the Chandrasekhar limit which ignite near their centers. The second consists of lower-mass C/O cores which are ignited by the detonation of an accreted surface helium layer. Explosions of the latter type produce copious Fe, Co and Ni K-alpha emission from 56Ni and 56Co decay in the detonated surface layers, emission which is much weaker from Chandrasekhar-mass models. The presence of this emission provides a simple and unambiguous discriminant between these two models for SNe Ia. Both mechanisms may produce 0.1-0.6 solar masses of 56Ni, making them bright gamma-ray line emitters. The time to maximum brightness of 56Ni decay lines is distinctly shorter in the sub-Chandrasekhar mass class of model (approximately 15 days) than in the Chandrasekhar mass model (approximately 30 days), making gamma-ray line evolution another direct test of the explosion mechanism. It should just be possible to detect K-shell emission from a sub-Chandrasekhar explosion from SNe Ia as far away as the Virgo cluster with the XMM Observatory. A 1 to 2 square meter X-ray telescope such as the proposed Con-X Observatory could observe K-alpha emission from sub-Chandrasekhar mass SNe Ia in the Virgo cluster, providing not just a detection, but high-accuracy flux and kinematic information.

Philip A. Pinto; Ronald G. Eastman; Tamara Rogers

2000-08-21T23:59:59.000Z

146

WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE  

SciTech Connect

Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

Wheeler, J. Craig, E-mail: wheel@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

2012-10-20T23:59:59.000Z

147

Complex Hydrides - A New Frontier for Future Energy Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Vitalij K. Pecharsky, 1 Marek Pruski, 2 L. Scott Chumbley, 3 Duane D. Johnson, 4 Takeshi Kobayashi 5 1 FWP Leader: Ames Laboratory, 253 Spedding Hall, Ames, IA 50011, Email: vitkp@ameslab.gov, Phone: (515) 294-8220 2 PI: Ames Laboratory, 230 Spedding Hall, Ames, IA 50011, Email: mpruski@iastate.edu, Phone: (515) 294-2017 3 PI: Ames Laboratory, 214 Wilhelm Hall, Ames, IA 50011, Email: chumbley@iastate.edu, Tel.: 515-2947903; 4 PI: Ames Laboratory, 311 TASF, Ames, IA 50011, Email: ddj@ameslab.gov, Phone: (515) 2949649 5 Ames Laboratory, 229 Spedding Hall, Ames, IA 50011, Email: takeshi@iastate.edu, Phone: (515)-294-6823 DOE Program Officer: Dr. Refik Kortan

148

File:USDA-CE-Production-GIFmaps-IA.pdf | Open Energy Information  

Open Energy Info (EERE)

IA.pdf IA.pdf Jump to: navigation, search File File history File usage Iowa Ethanol Plant Locations Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 303 KB, MIME type: application/pdf) Description Iowa Ethanol Plant Locations Sources United States Department of Agriculture Related Technologies Biomass, Biofuels, Ethanol Creation Date 2010-01-19 Extent State Countries United States UN Region Northern America States Iowa External links http://www.nass.usda.gov/Charts_and_Maps/Ethanol_Plants/ File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 16:13, 27 December 2010 Thumbnail for version as of 16:13, 27 December 2010 1,650 × 1,275 (303 KB) MapBot (Talk | contribs) Automated bot upload

149

IA REP0 SAND85-2809 Unlimited Release UC-92A  

Office of Scientific and Technical Information (OSTI)

IA REP0 SAND85-2809 Unlimited Release UC-92A IA REP0 SAND85-2809 Unlimited Release UC-92A Printed July 1986 High Energy Gas Fracture Experiments in Fluid-Filled Boreholes-Potential Geothermal Application J. F. Cuderman, T. Y. Chu, J. Jung, R. D. Jacobson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87 185 and Livermore, California 94550 for the United States Department of Energy under Contract DE-AC04-76DP00789 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process

150

Constraining the spin-down timescale of the white-dwarf progenitors of Type Ia supernovae  

E-Print Network (OSTI)

Justham (2011) and DiStefano et al.\\ (2011) proposed that the white-dwarf progenitor of a Type Ia supernova (SN Ia) may have to spin down before it can explode. As the white dwarf spin-down timescale is not well known theoretically, we here try to constrain it empirically (within the framework of this spin-down model) for progenitor systems that contain a giant donor and for which circumbinary material has been detected after the explosion: we obtain an upper limit of a few $10^{\\rm 7} {\\rm yr}$. Based on the study of Di Stefano & Kilic (2012) this means that it is too early to rule out the existence of a surviving companion in SNR 0509-67.5.

Meng, Xiangcun

2013-01-01T23:59:59.000Z

151

Integral Airframe Structures (IAS)---Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs  

Science Conference Proceedings (OSTI)

The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal ...

Munroe J.; Wilkins K.; Gruber M.

2000-05-01T23:59:59.000Z

152

In vivo cofactor biosynthesis and maintenance in the class Ia ribonucleotide reductase small subunit of Escherichia coli  

E-Print Network (OSTI)

The small subunit ([beta]2) of Escherichia coli class Ia ribonucleotide reductases (RNRs) contains a diferric tyrosyl radical (Y*) cofactor essential for the conversion of nucleotides to deoxynucleotides that are needed ...

Wu, Chia-Hung, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

153

Generation of a stable, aminotyrosyl radical-induced ?2?2 complex of Escherichia coli class Ia ribonucleotide reductase  

E-Print Network (OSTI)

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates (dNDPs). The Escherichia coli class Ia RNR uses a mechanism of radical propagation by which a cysteine in ...

Minnihan, Ellen Catherine

154

SELF-SHIELDING OF SOFT X-RAYS IN TYPE Ia SUPERNOVA PROGENITORS  

SciTech Connect

There are insufficient super-soft ({approx}0.1 keV) X-ray sources in either spiral or elliptical galaxies to account for the rate of explosion of Type Ia supernovae (SNe Ia) in either the single-degenerate or the double-degenerate scenarios. We quantify the amount of circumstellar matter that would be required to suppress the soft X-ray flux by yielding a column density in excess of 10{sup 23} cm{sup -2}. We summarize evidence that appropriate quantities of matter are extant in SNe Ia and in recurrent novae that may be supernova precursors. The obscuring matter is likely to have a large, but not complete, covering factor and to be substantially non-spherically symmetric. Assuming that much of the absorbed X-ray flux is re-radiated as blackbody radiation in the UV, we estimate that {approx}<100 sources might be detectable in the Galaxy Evolution Explorer All-sky Survey.

Wheeler, J. Craig [Department of Astronomy, University of Texas at Austin, Austin, TX (United States)] [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); Pooley, D., E-mail: wheel@astro.as.utexas.edu [Department of Physics, Sam Houston State University, Huntsville, TX (United States)

2013-01-10T23:59:59.000Z

155

Restframe I-band Hubble diagram for type Ia supernovae up toredshift z ~; 0.5  

SciTech Connect

We present a novel technique for fitting rest frame I-bandlight curves on a data set of 42 type Ia supernovae (SNe Ia). Using the result of the fit, we construct a Hubble diagram with 26 SNe from the subset at 0.01 < z < 0.1. Adding two SNe at z {approx} 0.5 yields results consistent with a flat Lambda-dominated ''concordance universe'' (OmegaM,Omega Lambda) = (0.25, 0.75). For one of these, SN 2000fr, new near infrared data are presented. The high redshift supernova NIR data are also used to test for systematic effects in the use of SNe Ia as distance estimators. A flat, Lambda = 0, universe where the faintness of supernovae at z {approx} 0.5 is due to grey dust homogeneously distributed in the intergalactic medium is disfavored based on the high-z Hubble diagram using this small data-set. However, the uncertainties are large and no firm conclusion may be drawn. We explore the possibility of setting limits on intergalactic dust based on B - I and B - V color measurements, and conclude that about 20 well measured SNe are needed to give statistically significant results. We also show that the high redshift restframe I-band data points are better fit by light curve templates that show a prominent second peak, suggesting that they are not intrinsically underluminous.

Nobili, S.; Amanullah, R.; Garavini, G.; Goobar, A.; Lidman, C.; Stanishev, V.; Aldering, G.; Antilogus, P.; Astier, P.; Burns, M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli,G.; Gibbons, R.; Goldhaber, G.; Groom, D.E.; Hook, I.; Howell, D.A.; Kim,A.G.; Knop, R.A.; Nugent, P.E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Thomas, R.C.; Wang, L.

2005-04-01T23:59:59.000Z

156

Observational constraints from SNe Ia and Gamma-Ray Bursts on a clumpy universe  

E-Print Network (OSTI)

The luminosity distance describing the effect of local inhomogeneities in the propagation of light proposed by Zeldovich-Kantowski-Dyer-Roeder (ZKDR) is tested with two probes for two distinct ranges of redshifts: supernovae Ia (SNe Ia) in 0.015 gamma-ray bursts (GRBs) in 1.547 < z < 3.57. Our analysis is performed by a Markov Chain Monte Carlo (MCMC) code that allows us to constrain the matter density parameter \\Omega_m as well as the smoothness parameter $\\alpha$ that measures the inhomogeneous-homogeneous rate of the cosmic fluid in a flat \\LambdaCDM model. The obtained best fits are (\\Omega_m=0.285^{+0.019}_{-0.018}, \\alpha= 0.856^{+0.106}_{-0.176}) from SNe Ia and (\\Omega_m=0.259^{+0.028}_{-0.028}, \\alpha=0.587^{+0.201}_{-0.202}) from GRBs, while from the joint analysis the best fits are (\\Omega_m=0.284^{+0.021}_{-0.020}, \\alpha= 0.685^{+0.164}_{-0.171}) with a \\chi^2_{\\rm red}=0.975. The value of the smoothness parameter $\\alpha$ indicates a clumped universe however it does not have an impact on the amount of dark energy (cosmological constant) needed to fit observations. This result may be an indication that the Dyer-Roeder approximation does not describe in a precise form the effects of clumpiness in the expansion of the universe.

Nora Bretn; Ariadna Montiel

2013-03-06T23:59:59.000Z

157

The Cellular Burning Regime in Type Ia Supernova Explosions - I. Flame Propagation into Quiescent Fuel  

E-Print Network (OSTI)

We present a numerical investigation of the cellular burning regime in Type Ia supernova explosions. This regime holds at small scales (i.e. below the Gibson scale), which are unresolved in large-scale Type Ia supernova simulations. The fundamental effects that dominate the flame evolution here are the Landau-Darrieus instability and its nonlinear stabilization, leading to a stabilization of the flame in a cellular shape. The flame propagation into quiescent fuel is investigated addressing the dependence of the simulation results on the specific parameters of the numerical setup. Furthermore, we investigate the flame stability at a range of fuel densities. This is directly connected to the questions of active turbulent combustion (a mechanism of flame destabilization and subsequent self-turbulization) and a deflagration-to-detonation transition of the flame. In our simulations we find no substantial destabilization of the flame when propagating into quiescent fuels of densities down to ~10^7 g/cm^3, corroborating fundamental assumptions of large-scale SN Ia explosion models. For these models, however, we suggest an increased lower cutoff for the flame propagation velocity to take the cellular burning regime into account.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2003-12-03T23:59:59.000Z

158

Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey  

E-Print Network (OSTI)

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z \\lesssim 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04+1.61-0.95 % of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used t...

Dilday, Benjamin; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V; Frieman, Joshua A; Galbany, Lluis; Garnavich, Peter M; Goobar, Ariel; Hopp, Ulrich; Ihara, Yutaka; Jha, Saurabh W; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Miquel, Ramon; Molla, Mercedes; Nichol, Robert C; Nordin, Jakob; Riess, Adam G; Sako, Masao; Schneider, Donald P; Sollerman, Jesper; Wheeler, J Craig; Ostman, Linda; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

2010-01-01T23:59:59.000Z

159

AME 514 -Applications of Combustion -Spring 2013 Homework #3 Due Friday 4/5/13, 4:30 pm in the drop box in OHE 430N (Xerox room). If you're off  

E-Print Network (OSTI)

AME 514 - Applications of Combustion - Spring 2013 ­ Homework #3 Due Friday 4/5/13, 4:30 pm · Joulin, G., Sivashinsky, G. I. (1994). Combust. Sci. Technol. 98, 11-23. Theoretical description of flames in Hele-Shaw cells. · Yoshida, A. (1988). Proc. Combust. Inst. 22, 1471-1478. Very good

160

Notes on the compatibility of type Ia supernovae data and varying--$G$ cosmology  

E-Print Network (OSTI)

Observational data for type Ia supernovae, shows that the expansion of the universe is accelerated. This accelerated expansion can be described by a cosmological constant or by dark energy models like quintessence. An interesting question may be raised here. Is it possible to describe the accelerated expansion of universe using varying--$G$ cosmological models? Here we shall show that the price for having accelerated expansion in slow--varying--$G$ models (in which the dynamical terms of $G$ are ignored) is to have highly non--conserved matter and also that it is in contradiction with other data.

Shojai, F

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

On the hydrogen emission from the type Ia supernova 2002ic  

DOE Green Energy (OSTI)

The discovery of SN 2002ic by the Supernova Factory and the subsequent spectroscopic studies have led to the surprising finding that SN 2002ic is a type Ia supernova with strong ejecta-circumstellar interaction. Here we show that nearly 1 year after the explosion the supernova has become fainter overall, but the H-alpha emission has brightened and broadened dramatically compared to earlier observations. We have obtained spectropolarimetry data which show that the hydrogen-rich matter is highly aspherically distributed. These observations suggest that the supernova exploded inside a dense, clumpy, disk-like circumstellar environment.

Wang, Lifan; Baade, Dietrich; Hoflich, Peter; Wheeler, J. Craig; Kawabata, Koji; Nomoto, Ken'ichi

2003-12-10T23:59:59.000Z

162

Photometric Observations of the Type Ia SN 2002er in UGC 10743  

E-Print Network (OSTI)

Extensive light and colour curves for the Type Ia supernova SN 2002er are presented as part of the European Supernova Collaboration. We have collected UBVRI photometry from ten different telescopes covering the phases from 7 days before until 619 days after maximum light. Corrections for the different instrumental systems and the non-thermal spectrum of the supernova (S-corrections) have been applied. With the densely sampled light curves we can make detailed comparisons to other well-observed objects. SN 2002er most closely resembles SN 1996X after maximum, but clearly shows a different colour evolution before peak light and a stronger shoulder in V and R bands compared to other well-observed SNe Ia. In particular, the rise time appears to be longer than what is expected from rise-time vs.decline-rate relation. We use several methods to determine the reddening towards SN 2002er based on the colour evolution at near peak and at late phases. The uvoir (bolometric) light curve shows great similarity with SN 199...

Pignata, G; Benetti, S; Blinnikov, S; Hillebrandt, W; Kotak, R; Leibundgut, B; Mazzali, P A; Meikle, P; Qiu, Y; Ruiz-Lapuente, P; Smartt, S; Sorokina, E; Stritzinger, M; Stehle, M; Turatto, M; Marsh, T; Martin-Luis, F; McBride, N; Mndez, J; Morales-Rueda, L; Narbutis, D; Street, R

2004-01-01T23:59:59.000Z

163

The Cellular Burning Regime in Type Ia Supernova Explosions - II. Flame Propagation into Vortical Fuel  

E-Print Network (OSTI)

We investigate the interaction of thermonuclear flames in Type Ia supernova explosions with vortical flows by means of numerical simulations. In our study, we focus on small scales, where the flame propagation is no longer dominated by the turbulent cascade originating from large-scale effects. Here, the flame propagation proceeds in the cellular burning regime, resulting from a balance between the Landau-Darrieus instability and its nonlinear stabilization. The interaction of a cellularly stabilized flame front with a vortical fuel flow is explored applying a variety of fuel densities and strengths of the velocity fluctuations. We find that the vortical flow can break up the cellular flame structure if it is sufficiently strong. In this case the flame structure adapts to the imprinted flow field. The transition from the cellularly stabilized front to the flame structure dominated by vortices of the flow proceeds in a smooth way. The implications of the results of our simulations for Type Ia Supernova explosion models are discussed.

F. K. Roepke; W. Hillebrandt; J. C. Niemeyer

2003-12-08T23:59:59.000Z

164

Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario  

E-Print Network (OSTI)

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.

D. M. Townsley; A. C. Calder; S. M. Asida; I. R. Seitenzahl; F. Peng; N. Vladimirova; D. Q. Lamb; J. W. Truran

2007-06-07T23:59:59.000Z

165

Flame-driven deflagration-to-detonation transitions in Type Ia supernovae?  

E-Print Network (OSTI)

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions.

F. K. Roepke

2007-09-26T23:59:59.000Z

166

Verifying the Cosmological Utility of Type Ia Supernovae:Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect

We analyze the mean rest-frame ultraviolet (UV) spectrum ofType Ia Supernovae(SNe) and its dispersion using high signal-to-noiseKeck-I/LRIS-B spectroscopyfor a sample of 36 events at intermediateredshift (z=0.5) discoveredby the Canada-France-Hawaii TelescopeSupernova Legacy Survey (SNLS). Weintroduce a new method for removinghost galaxy contamination in our spectra,exploiting the comprehensivephotometric coverage of the SNLS SNe and theirhost galaxies, therebyproviding the first quantitative view of the UV spectralproperties of alarge sample of distant SNe Ia. Although the mean SN Ia spectrumhas notevolved significantly over the past 40 percent of cosmic history,preciseevolutionary constraints are limited by the absence of acomparable sample ofhigh quality local spectra. The mean UV spectrum ofour z 0.5 SNe Ia and itsdispersion is tabulated for use in futureapplications. Within the high-redshiftsample, we discover significant UVspectral variations and exclude dust extinctionas the primary cause byexamining trends with the optical SN color. Although progenitormetallicity may drive some of these trends, the variations we see aremuchlarger than predicted in recent models and do not follow expectedpatterns.An interesting new result is a variation seen in the wavelengthof selected UVfeatures with phase. We also demonstrate systematicdifferences in the SN Iaspectral features with SN lightcurve width inboth the UV and the optical. Weshow that these intrinsic variations couldrepresent a statistical limitation in thefuture use of high-redshift SNeIa for precision cosmology. We conclude thatfurther detailed studies areneeded, both locally and at moderate redshift wherethe rest-frame UV canbe studied precisely, in order that future missions canconfidently beplanned to fully exploit SNe Ia as cosmological probes.

Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam,A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.G.; Conley,A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2007-11-02T23:59:59.000Z

167

LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx  

SciTech Connect

PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by H{alpha} emission (with widths of full width at half-maximum intensity Almost-Equal-To 2000 km s{sup -1}), strong Ca II emission features ({approx}10,000 km s{sup -1} wide), and a blue 'quasi-continuum' due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The H{alpha} emission appears to increase in strength with time for {approx}1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pan, Yen-Chen; Hook, Isobel M., E-mail: jsilverman@astro.as.utexas.edu [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

2013-08-01T23:59:59.000Z

168

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

Science Conference Proceedings (OSTI)

Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

Mosher, J.; /Pennsylvania U.; Sako, M.; /Pennsylvania U.; Corlies, L.; /Pennsylvania U. /Columbia U.; Folatelli, G.; /Tokyo U. /Carnegie Inst. Observ.; Frieman, J.; /Chicago U., KICP /Chicago U., Astron. Astrophys. Ctr.; Holtzman, J.; /New Mexico State U.; Jha, S.W.; /Rutgers U., Piscataway; Kessler, R.; /Chicago U., Astron. Astrophys. Ctr. /Chicago U., KICP; Marriner, J.; /Fermilab; Phillips, M.M.; /Carnegie Inst. Observ.; Stritzinger, M.; /Aarhus U. /Stockholm U., OKC /Bohr Inst. /Carnegie Inst. Observ.

2012-06-01T23:59:59.000Z

169

A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA  

SciTech Connect

Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

Mosher, J.; Sako, M.; Corlies, L. [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Folatelli, G. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Frieman, J.; Kessler, R. [Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Holtzman, J. [Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003 (United States); Jha, S. W. [Department of Physics and Astronomy, Rutgers, the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Marriner, J. [Center for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Phillips, M. M.; Morrell, N. [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, M. [Oskar Klein Centre for Cosmo Particle Physics, AlbaNova University Center, 106 91 Stockholm (Sweden); Schneider, D. P., E-mail: jmosher@sas.upenn.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States)

2012-07-15T23:59:59.000Z

170

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

E-Print Network (OSTI)

Consistency between Carnegie Supernova Project (CSP) and SDSS-II supernova (SN) survey ugri measurements has been evaluated by comparing SDSS and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 magnitude level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 magnitudes in ugri, with rms scatter ranging from 0.043 to 0.077 magnitudes. The u band agreement is promising, with the caveat that only four of the nine supernovae are well-observed in u and these four exhibit an 0.038 magnitude supernova-to-supernova scatter in this filter.

Mosher, J; Corlies, L; Folatelli, G; Frieman, J; Holtzman, J; Jha, S W; Kessler, R; Marriner, J; Phillips, M M; Stritzinger, M; Morrell, N; Schneider, D P

2012-01-01T23:59:59.000Z

171

Analysis of Reaction-Diffusion Systems for Flame Capturing in Type Ia Supernova Simulations  

E-Print Network (OSTI)

We present a study of numerical behavior of a thickened flame used in Flame Capturing (FC, Khokhlov (1995)) for tracking thin unresolved physical flames in deflagration simulations. We develop a steady-state procedure for calibrating the flame model used, and test it against analytical results. We observe numerical noises generated by original realization of the technique. Alternative artificial burning rates are discussed, which produce acceptably quiet flames. Two new quiet models are calibrated to yield required "flame" speed and width, and further studied in 2D and 3D setting. Landau-Darrieus type instabilities of the flames are observed. One model also shows significantly anisotropic propagation speed on the grid, both effects increasingly pronounced at larger matter expansion as a result of burning; this makes the model unacceptable for use in type Ia supernova simulations. Another model looks promising for use in flame capturing at fuel to ash density ratio of order 3 and below. That "Model B" yields f...

Zhiglo, Andrey V

2009-01-01T23:59:59.000Z

172

ASD(NII)/DoD CIO SUBJECT: Defense Industrial Base (DIB) Cyber Security/Information Assurance (CS/IA) Activities  

E-Print Network (OSTI)

directing the conduct of DIB CS/IA activities to protect unclassified DoD information, as defined in the Glossary, that transits or resides on unclassified DIB information systems and networks. 2. APPLICABILITY. This Instruction applies to OSD, the Military Departments, the Office of

unknown authors

2010-01-01T23:59:59.000Z

173

EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)  

SciTech Connect

On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot {approx}<10{sup -8}(w/100 km s{sup -1}) M{sub sun} yr{sup -1} from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Fox, Derek B. [Astronomy and Astrophysics, Eberly College of Science, Pennsylvania State University, University Park, PA 16802 (United States); Quimby, Robert [IPMU, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba (Japan); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); De Bruyn, A. G. [Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, NL-7990 AA Dwingeloo (Netherlands); Kamble, Atish; Wijers, Ralph A. M. J. [Center for Gravitation and Cosmology, University of Wisconsin, Milwaukee, WI 53211 (United States); Van der Horst, Alexander J. [Universities Space Research Association, NSSTC, Huntsville, AL 35805 (United States); Kouveliotou, Chryssa [Space Science Office, VP-62, NASA-Marshall Space Flight Center, Huntsville, AL 35805 (United States); Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Santa Barbara, CA 93117 (United States); Nugent, Peter E. [Computational Cosmology Center, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Gehrels, Neil [NASA-Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

2012-02-10T23:59:59.000Z

174

Photometric Observations of the Type Ia SN 2002er in UGC 10743  

E-Print Network (OSTI)

Extensive light and colour curves for the Type Ia supernova SN 2002er are presented as part of the European Supernova Collaboration. We have collected UBVRI photometry from ten different telescopes covering the phases from 7 days before until 619 days after maximum light. Corrections for the different instrumental systems and the non-thermal spectrum of the supernova (S-corrections) have been applied. With the densely sampled light curves we can make detailed comparisons to other well-observed objects. SN 2002er most closely resembles SN 1996X after maximum, but clearly shows a different colour evolution before peak light and a stronger shoulder in V and R bands compared to other well-observed SNe Ia. In particular, the rise time appears to be longer than what is expected from rise-time vs.decline-rate relation. We use several methods to determine the reddening towards SN 2002er based on the colour evolution at near peak and at late phases. The uvoir (bolometric) light curve shows great similarity with SN 1996X, but also indications of a higher luminosity, longer rise time and a more pronounced shoulder 25 days past maximum. The interpretation of the light curves was done with two independent light curve codes. Both find that given the luminosity of SN 2002er the 56Ni mass exceeds 0.6 Msun with prefered values near 0.7 Msun. Uncertainties in the exact distance to SN 2002er are the most serious limitation of this measurement. The light curve modelling also indicates a high level of mixing of the nickel in the explosion of SN 2002er.

G. Pignata; F. Patat; S. Benetti; S. Blinnikov; W. Hillebrandt; R. Kotak; B. Leibundgut; P. A. Mazzali; P. Meikle; Y. Qiu; P. Ruiz-Lapuente; S. Smartt; E. Sorokina; M. Stritzinger; M. Stehle; M. Turatto; T. Marsh; F. Martin-Luis; N. McBride; J. Mendez; L. Morales-Rueda; D. Narbutis; R. Street

2004-08-12T23:59:59.000Z

175

Direct Analysis of Spectra of the Peculiar Type Ia Supernova 2000cx  

E-Print Network (OSTI)

The Type Ia SN 2000cx exhibited multiple peculiarities, including a lopsided B-band light-curve peak that does not conform to current methods for using shapes of light curves to standardize SN Ia luminosities. We use the parameterized supernova synthetic-spectrum code SYNOW to study line identifications in the photospheric-phase spectra of SN 2000cx. Previous work established the presence of Ca II infrared-triplet features forming above velocity about 20,000 km/s, much higher than the photospheric velocity of about 10,000 km/s. We find Ti II features forming at the same high velocity. High-velocity line formation is partly responsible for the photometric peculiarities of SN 2000cx: for example, B-band flux blocking by Ti II absorption features that decreases with time causes the B light curve to rise more rapidly and decline more slowly than it otherwise would. SN 2000cx contains an absorption feature near 4530 A that may be H-beta, forming at the same high velocity. The lack of conspicuous H-alpha and P-alpha signatures does not necessarily invalidate the H-beta identification if the high-velocity line formation is confined to a clump that partly covers the photosphere and the H-alpha and P-alpha source functions are elevated relative to that of resonance scattering. The H-beta identification is tentative. If it is correct, the high-velocity matter must have come from a nondegenerate companion star.

D. Branch; R. C. Thomas; E. Baron; D. Kasen; K. Hatano; K. Nomoto; A. V. Filippenko; W. Li; R. J. Rudy

2004-01-15T23:59:59.000Z

176

NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS  

SciTech Connect

For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off-set, above the bulk of {sup 56}Ni distribution, while species produced by the detonation are distributed more spherically.

Maeda, K. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany); Thielemann, F.-K., E-mail: keiichi.maeda@ipmu.j [Department Physik, Universitaet Basel, CH-4056 Basel (Switzerland)

2010-03-20T23:59:59.000Z

177

Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

2010-01-01T23:59:59.000Z

178

Joint Outreach Task Group (JOTG) Calendar: September  

NLE Websites -- All DOE Office Websites (Extended Search)

FWP Event K-25 Oak Ridge, TN 6 7 8 9 10 11 12 Local Event X-10 Oak Ridge, TN 13 FWP Event Ames Laboratory Ames, IA 14 15 16 17 JOTG Event, Livermore, CA JOTG Event, Emeryville, CA...

179

Constraints on SN Ia progenitor time delays from high-z SNe and the star formation history  

E-Print Network (OSTI)

We re-assess the question of a systematic time delay between the formation of the progenitor and its explosion in a type Ia supernova (SN Ia) using the Hubble Higher-z Supernova Search sample (Strolger et al. 2004). While the previous analysis indicated a significant time delay, with a most likely value of 3.4 Gyr, effectively ruling out all previously proposed progenitor models, our analysis shows that the time-delay estimate is dominated by systematic errors, in particular due to uncertainties in the star-formation history. We find that none of the popular progenitor models under consideration can be ruled out with any significant degree of confidence. The inferred time delay is mainly determined by the peak in the assumed star-formation history. We show that, even with a much larger Supernova sample, the time delay distribution cannot be reliably reconstructed without better constraints on the star-formation history.

F. Frster; C. Wolf; Ph. Podsiadlowski; Z. Han

2006-01-19T23:59:59.000Z

180

A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z {le} 0.17 and 27 SN events in 492 maxBCG clusters at 0.1 {le} z {le} 0.3. We find values for the cluster SN Ia rate of (0.37{sub -0.12-0.01}{sup +0.17+0.01}) SNur h{sup 2} and (0.55{sub -0.11-0.01}{sup +0.13+0.02}) SNur h{sup 2} (SNux = 10{sup -12}L{sub x{circle_dot}}{sup -1} yr{sup -1}) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be (0.31{sub -0.12-0.01}{sup +0.18+0.01}) SNur h{sup 2} and (0.49{sub -0.11-0.01}{sup +0.15+0.02}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be (2.04{sub -1.11-0.04}{sup +1.99+0.07}) SNur h{sup 2} and (0.36{sub -0.30-0.01}{sup +0.84+0.01}) SNur h{sup 2} in C4 and maxBCG clusters, respectively. The ratio of the SN Ia rate in cluster early-type galaxies to that of the SN Ia rate in field early-type galaxies is 1.94{sub -0.91-0.015}{sup +1.31+0.043} and 3.02{sub -1.03-0.048}{sup +1.31+0.062}, for C4 and maxBCG clusters, respectively. The SN rate in galaxy clusters as a function of redshift, which probes the late time SN Ia delay distribution, shows only weak dependence on redshift. Combining our current measurements with previous measurements, we fit the cluster SN Ia rate data to a linear function of redshift, and find r{sub L} = [(0.49{sub -0.14}{sup +0.15}) + (0.91{sub -0.81}{sup +0.85}) x z] SNuB h{sup 2}. A comparison of the radial distribution of SNe in cluster to field early-type galaxies shows possible evidence for an enhancement of the SN rate in the cores of cluster early-type galaxies. With an observation of at most 3 hostless, intra-cluster SNe Ia, we estimate the fraction of cluster SNe that are hostless to be (9.4{sub -5.1}{sup +8.3})%.

Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter; /Notre Dame U.; Goobar, Ariel; /Stockholm U., OKC /Stockholm U.; Hopp, Ulrich; /Munich, Tech. U. /Munich U. Observ. /Tokyo U.

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

LAX XXlCfl jX?iK, Idd+?KYLViG?IA  

Office of Legacy Management (LM)

f f , : I~&l, samtier cipwati8Aa CffUm - . Jiux.lCJ d,# 1754 - - _- - .- t :; . Jesse e. ahizmn*~*ter -2.' -------- - _ &tV' hi@A l f izau Bkteriala ;' . . 1 -7 I _' i' . Fpr&G& r&Q Q,&& fu &fI& L;&& -l&d 2;,i' iI,;/Qi' rIGN CQ&GgJy p;E& p;~p>gyf LAX XXlCfl jX?iK, Idd+?KYLViG?IA i-icfer~~o is &o ta yaw rwarandu3;: l P iimwmbec L?, 1953, reque&in~ a d&q.&ti of khority tA A&sister prog= for th+zz developmrrrl, Ii-&k& & acyui8itti ef c;uYletit*type and reswitlitc-type urtim bi:aPing eres and far t3-u jx*uctim and acquisitian 6f W ;aniU CCm- csa:ratc~ fhzi awes wit2n Lhe Six&e of Pemlsyzvania. 1 da not b&i- the projscrt fmr the pkcch2670 +S eroa from i&d.&

182

Prospects for Type Ia Supernova explosion mechanism identification with gamma rays  

E-Print Network (OSTI)

The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of of radioactive nuclei are produced during these events and they are expected to be strong gamma-ray emitters. In the past, several authors have investigated the use of this gamma-ray emission as a diagnostic tool. In this paper we have done a complete study of the gamma-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-center detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estimations of the SPI and IBIS instruments aboard INTEGRAL in such a way that our results can be used as a guideline to evaluate the capabilities of INTEGRAL in the study of type Ia supernovae. For the purpose of completeness we have also investigated the nuclear excitation and spallation reactions as a possible secondary source of gamma-rays present in some supernova scenarios. We conclude that this mechanism can be neglected due to its small contribution.

Jordi Gomez-Gomar; Jordi Isern; Pierre Jean

1997-09-05T23:59:59.000Z

183

EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF CENTRAL DENSITY  

SciTech Connect

We present a study exploring a systematic effect on the brightness of Type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition, and considered its impact on the explosion yield, particularly the production and distribution of radioactive {sup 56}Ni, which powers the light curve. We performed a suite of two-dimensional simulations with randomized initial conditions, allowing us to characterize the statistical trends that we present. The simulations indicate that the production of Fe-group material is statistically independent of progenitor central density, but the mass of stable Fe-group isotopes is tightly correlated with central density, with a decrease in the production of {sup 56}Ni at higher central densities. These results imply that progenitors with higher central densities produce dimmer events. We provide details of the post-explosion distribution of {sup 56}Ni in the models, including the lack of a consistent centrally located deficit of {sup 56}Ni, which may be compared to observed remnants. By performing a self-consistent extrapolation of our model yields and considering the main-sequence lifetime of the progenitor star and the elapsed time between the formation of the white dwarf and the onset of accretion, we develop a brightness-age relation that improves our prediction of the expected trend for single degenerates and we compare this relation with observations.

Krueger, Brendan K.; Jackson, Aaron P.; Calder, Alan C. [Department of Physics and Astronomy, State University of New York-Stony Brook, Stony Brook, NY (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States); Brown, Edward F. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); Timmes, Francis X., E-mail: brendan.krueger@stonybrook.edu [Joint Institute for Nuclear Astrophysics, Notre Dame, IN (United States)

2012-10-01T23:59:59.000Z

184

Phenomenology for Supernova Ia Data Based on a New Cosmic Time  

E-Print Network (OSTI)

A new phenomenological theory for the expansion of our universe is presented. Because fundamental supporting theory is still in development, its discussion is not presented in this paper. The theory is based on a new algebraic expression for cosmic time G Rho t^2=3/32Pi, which correctly predicts the WMAP measured cosmological constants and the fundamental Hubble parameter H(t) for the expansion of the universe. A replacement for dark matter, called here "dark mass", is proposed which scales as with the expansion and incorporated. It does not react with ordinary matter, except gravitationally, and produces flat rotational curves for spiral galaxies. Also a new expression for the approaching velocity of radiation in a closed 3-sphere expanding universe is given that accounts for the early degrading negative approach of radiation for z > 1.7. The expression is v = Hr-c. Combining these three elements produces a luminosity distance dL that successfully predicts the apparent magnitude of exploding supernova Ia stars and even the new gamma ray bursts with no need for dark energy or acceleration of the expansion of the universe.

Charles B. Leffert

2007-07-26T23:59:59.000Z

185

HIGH-RESOLUTION SIMULATIONS OF CONVECTION PRECEDING IGNITION IN TYPE Ia SUPERNOVAE USING ADAPTIVE MESH REFINEMENT  

E-Print Network (OSTI)

We extend our previous three-dimensional, full-star simulations of the final hours of convection preceding ignition in Type Ia supernovae to higher resolution using the adaptive mesh refinement capability of our low Mach number code, MAESTRO. We report the statistics of the ignition of the first flame at an effective 4.34 km resolution and general flow field properties at an effective 2.17 km resolution. We find that off-center ignition is likely, with radius of 50 km most favored and a likely range of 4075 km. This is consistent with our previous coarser (8.68 km resolution) simulations, implying that we have achieved sufficient resolution in our determination of likely ignition radii. The dynamics of the last few hot spots preceding ignition suggest that a multiple ignition scenario is not likely. With improved resolution, we can more clearly see the general flow pattern in the convective region, characterized by a strong outward plume with a lower speed recirculation. We show that the convective core is turbulent with a Kolmogorov spectrum and has a lower turbulent intensity and larger integral length scale than previously thought (on the order of 16 km s?1 and 200 km, respectively), and we discuss the potential consequences for the first flames. Key words: convection hydrodynamics methods: numerical nuclear reactions, nucleosynthesis, abundances supernovae: general white dwarfs Online-only material: color figures 1.

A. Nonaka; A. J. Aspden; M. Zingale; A. S. Almgren; J. B. Bell; S. E. Woosley

2012-01-01T23:59:59.000Z

186

Direct numerical simulations of type Ia supernovae flames II: The Rayleigh-Taylor instability  

Science Conference Proceedings (OSTI)

A Type Ia supernova explosion likely begins as a nuclear runaway near the center of a carbon-oxygen white dwarf. The outward propagating flame is unstable to the Landau-Darrieus, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities, which serve to accelerate it to a large fraction of the speed of sound. We investigate the Rayleigh-Taylor unstable flame at the transition from the flamelet regime to the distributed-burning regime, around densities of 10e7 gm/cc, through detailed, fully resolved simulations. A low Mach number, adaptive mesh hydrodynamics code is used to achieve the necessary resolution and long time scales. As the density is varied, we see a fundamental change in the character of the burning--at the low end of the density range the Rayleigh-Taylor instability dominates the burning, whereas at the high end the burning suppresses the instability. In all cases, significant acceleration of the flame is observed, limited only by the size of the domain we are able to study. We discuss the implications of these results on the potential for a deflagration to detonation transition.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2004-01-12T23:59:59.000Z

187

Constraining deflagration models of Type Ia supernovae through intermediate-mass elements  

E-Print Network (OSTI)

The physical structure of a nuclear flame is a basic ingredient of the theory of Type Ia supernovae (SNIa). Assuming an exponential density reduction with several characteristic times we have followed the evolution of a planar nuclear flame in an expanding background from an initial density 6.6 10^7 g/cm3 down to 2 10^6 g/cm3. The total amount of synthesized intermediate-mass elements (IME), from silicon to calcium, was monitored during the calculation. We have made use of the computed mass fractions, X_IME, of these elements to give an estimation of the total amount of IME synthesized during the deflagration of a massive white dwarf. Using X_IME and adopting the usual hypothesis that turbulence decouples the effective burning velocity from the laminar flame speed, so that the relevant flame speed is actually the turbulent speed on the integral length-scale, we have built a simple geometrical approach to model the region where IME are thought to be produced. It turns out that a healthy production of IME invol...

Garca-Senz, D; Cabezon, R M; Woosley, S E

2006-01-01T23:59:59.000Z

188

Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability  

SciTech Connect

Planar flames are intrinsically unstable in open domains due to the thermal expansion across the burning front--the Landau-Darrieus instability. This instability leads to wrinkling and growth of the flame surface, and corresponding acceleration of the flame, until it is stabilized by cusp formation. We look at the Landau-Darrieus in stability for C/O thermonuclear flames at conditions relevant to the late stages of a Type Ia supernova explosion. Two-dimensional direct numerical simulations of both single-mode and multi-mode perturbations using a low Mach number hydrodynamics code are presented. We show the effect of the instability on the flame speed as a function of both the density and domain size, demonstrate the existence of the small scale cutoff to the growth of the instability, and look for the proposed breakdown of the non-linear stabilization at low densities. The effects of curvature on the flame as quantified through measurements of the growth rate and computation of the corresponding Markstein number. While accelerations of a few percent are observed, they are too small to have any direct outcome on the supernova explosion.

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2003-11-24T23:59:59.000Z

189

FLAMES IN TYPE Ia SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME  

Science Conference Proceedings (OSTI)

The flame in a Type Ia supernova is a conglomerate structure that, depending on density, may involve separate regions of carbon, oxygen, and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 x 10{sup 7} g cm{sup -3}, only carbon burning remains active, the other two burning phases having 'frozen out' on stellar scales. Between 2 and 3 x 10{sup 7} g cm{sup -3}, however, there remains an energetic oxygen-burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number {approx}> 10), the characteristic separation between the carbon- and oxygen-burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Aspden, A. J., E-mail: woosley@ucolick.org, E-mail: arkerst@sandia.gov, E-mail: ajaspden@lbl.gov [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, CA 94720 (United States)

2011-06-10T23:59:59.000Z

190

TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL  

SciTech Connect

The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kolmogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein elucidate three regimes of turbulent burning. In the simplest case, large-scale turbulence folds and deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately by the speed of turbulent fluctuations on the integral scale, U{sub L} , This is the regime where the supernova explosion begins and where most of its pre-detonation burning occurs. As the density declines, turbulence starts to tear the individual flamelets, making broader structures that move faster. For a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of a flame brush moving with an overall speed of U{sub L} remains valid. However, the typical width of the individual flamelets, which is given by the condition that their turnover time equals their burning time, continues to increase as the density declines. Eventually, mixed regions almost as large as the integral scale itself are transiently formed. At that point, a transition to detonation can occur. The conditions for such a transition are explored numerically and it is estimated that the transition will occur for densities near 1 x 10{sup 7} g cm{sup -3}, provided the turbulent speed on the integral scale exceeds about 20% sonic. An example calculation shows the details of a detonation actually developing.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R.; Sankaran, V. [Combustion Research Facility, Sandia National Laboratory, Livermore, CA 94551 (United States); Aspden, A. J. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Roepke, F. K., E-mail: woosley@ucolick.or, E-mail: arkerst@sandia.go, E-mail: AJAspden@lbl.go, E-mail: fritz@mpa-Garching.mpg.d [Max Planck Institut fuer Astrophysik, Garching (Germany)

2009-10-10T23:59:59.000Z

191

ON THE NATURE OF THE PROGENITOR OF THE Type Ia SN2011fe IN M101  

SciTech Connect

The explosion of a Type Ia supernova, SN2011fe, in the nearby Pinwheel galaxy (M101 at 6.4 Mpc) provides an opportunity to study pre-explosion images and search for the progenitor, which should consist of a white dwarf (WD), possibly surrounded by an accretion disk, in orbit with another star. We report on our use of deep Chandra observations and Hubble Space Telescope observations to limit the luminosity and temperature of the pre-explosion WD. It is found that if the spectrum was a blackbody, then pre-SN WDs with steady nuclear burning of the highest possible temperatures and luminosities are excluded assuming moderate n{sub H} values, but values of kT between roughly 10 eV and 60 eV are permitted even if the WD was emitting at the Eddington luminosity. This allows the progenitor to be an accreting nuclear-burning WD with an expanded photosphere 4-100 times the WD itself, or a super-critically accreting WD blowing off an optically thick strong wind, or possibly a recurrent nova with luminosities an order of magnitude lower than Eddington. The observations are also consistent with a double degenerate scenario, or a spinning down WD that has been spun up by accretion from the donor.

Liu Jifeng [National Astronomical Observatory of China, Beijing 100012 (China); Di Stefano, Rosanne; Wang Tao; Moe, Maxwell [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2012-04-20T23:59:59.000Z

192

Capturing the Fire: Flame Energetics and Neutronizaton for Type Ia Supernova Simulations  

E-Print Network (OSTI)

We develop and calibrate a realistic model flame for hydrodynamical simulations of deflagrations in white dwarf (Type Ia) supernovae. Our flame model builds on the advection-diffusion-reaction model of Khokhlov and includes electron screening and Coulomb corrections to the equation of state in a self-consistent way. We calibrate this model flame--its energetics and timescales for energy release and neutronization--with self-heating reaction network calculations that include both these Coulomb effects and up-to-date weak interactions. The burned material evolves post-flame due to both weak interactions and hydrodynamic changes in density and temperature. We develop a scheme to follow the evolution, including neutronization, of the NSE state subsequent to the passage of the flame front. As a result, our model flame is suitable for deflagration simulations over a wide range of initial central densities and can track the temperature and electron fraction of the burned material through the explosion and into the expansion of the ejecta.

A. C. Calder; D. M. Townsley; I. R. Seitenzahl; F. Peng; O. E. B. Messer; N. Vladimirova; E. F. Brown; J. W. Truran; D. Q. Lamb

2006-11-01T23:59:59.000Z

193

The Joint Efficient Dark-energy Investigation (JEDI): Measuring the cosmic expansion history from type Ia supernovae  

E-Print Network (OSTI)

JEDI (Joint Efficient Dark-energy Investigation) is a candidate implementation of the NASA-DOE Joint Dark Energy Mission (JDEM). JEDI will probe dark energy in three independent methods: (1) type Ia supernovae, (2) baryon acoustic oscillations, and (3) weak gravitational lensing. In an accompanying paper, an overall summary of the JEDI mission is given. In this paper, we present further details of the supernova component of JEDI. To derive model-independent constraints on dark energy, it is important to precisely measure the cosmic expansion history, H(z), in continuous redshift bins from z \\~ 0-2 (the redshift range in which dark energy is important). SNe Ia at z > 1 are not readily accessible from the ground because the bulk of their light has shifted into the near-infrared where the sky background is overwhelming; hence a space mission is required to probe dark energy using SNe. Because of its unique near-infrared wavelength coverage (0.8-4.2 microns), JEDI has the advantage of observing SNe Ia in the rest frame J band for the entire redshift range of 0 energy are discussed, with special emphasis on the improved precision afforded by the rest frame near-infrared data.

M. M. Phillips; Peter Garnavich; Yun Wang; David Branch; Edward Baron; Arlin Crotts; J. Craig Wheeler; Edward Cheng; Mario Hamuy; for the JEDI Team

2006-06-28T23:59:59.000Z

194

A Measurement of the Rate of Type Ia Supernovae in Galaxy Clusters from the SDSS-II Supernova Survey  

E-Print Network (OSTI)

ABRIDGED We present measurements of the Type Ia supernova (SN) rate in galaxy clusters based on data from the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. The cluster SN Ia rate is determined from 9 SN events in a set of 71 C4 clusters at z <0.17 and 27 SN events in 492 maxBCG clusters at 0.1 < z < 0.3$. We find values for the cluster SN Ia rate of $({0.37}^{+0.17+0.01}_{-0.12-0.01}) \\mathrm{SNu}r h^{2}$ and $({0.55}^{+0.13+0.02}_{-0.11-0.01}) \\mathrm{SNu}r h^{2}$ ($\\mathrm{SNu}x = 10^{-12} L_{x\\sun}^{-1} \\mathrm{yr}^{-1}$) in C4 and maxBCG clusters, respectively, where the quoted errors are statistical and systematic, respectively. The SN rate for early-type galaxies is found to be $({0.31}^{+0.18+0.01}_{-0.12-0.01}) \\mathrm{SNu}r h^{2}$ and $({0.49}^{+0.15+0.02}_{-0.11-0.01})$ $\\mathrm{SNu}r h^{2}$ in C4 and maxBCG clusters, respectively. The SN rate for the brightest cluster galaxies (BCG) is found to be $({2.04}^{+1.99+0.07}_{-1.11-0.04}) \\mathrm{SNu}r h^{2}$ and $({0.36}^{+0.84+0.01}_...

Dilday, Benjamin; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Frieman, Joshua A; Galbany, Llus; Garnavich, Peter; Goobar, Ariel; Hopp, Ulrich; Ihara, Yutaka; Jha, Saurabh W; Kessler, Richard; Lampeitl, Hubert; Marriner, John; Miquel, Ramon; Moll, Mercedes; Nichol, Robert C; Nordin, Jakob; Riess, Adam G; Sako, Masao; Schneider, Donald P; Smith, Mathew; Sollerman, Jesper; Wheeler, J Craig; stman, Linda; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Pan, Kaike; Simmons, Audrey; Snedden, Stephanie

2010-01-01T23:59:59.000Z

195

Rare Earth Metals | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

are critical components in modern electronic technologies, ranging from TVs, fluorescent light bulbs, cell phones and computers to "green" magnets in electric motors that power...

196

The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey  

Science Conference Proceedings (OSTI)

We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx} 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our sample.

Hayden, Brian T.; /Notre Dame U.; Garnavich, Peter M.; /Notre Dame U.; Kessler, Richard; /KICP, Chicago /Chicago U., EFI; Frieman, Joshua A.; /KICP, Chicago /Chicago U. /Fermilab; Jha, Saurabh W.; /Stanford U., Phys. Dept. /Rutgers U., Piscataway; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Cinabro, David; /Wayne State U.; Dilday, Benjamin; /Rutgers U., Piscataway; Kasen, Daniel; /UC, Santa Cruz; Marriner, John; /Fermilab; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

2010-01-01T23:59:59.000Z

197

THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE  

Science Conference Proceedings (OSTI)

We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

2012-11-01T23:59:59.000Z

198

Three-dimensional numerical simulations of Rayleigh-Taylorunstable flames in type Ia supernovae  

SciTech Connect

Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5x107 gm/cc, and half carbon/half oxygen fuel--conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation, and show that while fire-polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. Based on the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.

Zingale, M.; Woosley, S.E.; Rendleman, C.A.; Day, M.S.; Bell, J.B.

2005-01-28T23:59:59.000Z

199

Constraining deflagration models of Type Ia supernovae through intermediate-mass elements  

E-Print Network (OSTI)

The physical structure of a nuclear flame is a basic ingredient of the theory of Type Ia supernovae (SNIa). Assuming an exponential density reduction with several characteristic times we have followed the evolution of a planar nuclear flame in an expanding background from an initial density 6.6 10^7 g/cm3 down to 2 10^6 g/cm3. The total amount of synthesized intermediate-mass elements (IME), from silicon to calcium, was monitored during the calculation. We have made use of the computed mass fractions, X_IME, of these elements to give an estimation of the total amount of IME synthesized during the deflagration of a massive white dwarf. Using X_IME and adopting the usual hypothesis that turbulence decouples the effective burning velocity from the laminar flame speed, so that the relevant flame speed is actually the turbulent speed on the integral length-scale, we have built a simple geometrical approach to model the region where IME are thought to be produced. It turns out that a healthy production of IME involves the combination of not too short expansion times, t_c > 0.2 s, and high turbulent intensities. According to our results it could be difficult to produce much more than 0.2 solar masses of intermediate-mass elements within the deflagrative paradigma. The calculations also suggest that the mass of IME scales with the mass of Fe-peak elements, making it difficult to conciliate energetic explosions with low ejected nickel masses, as in the well observed SN1991bg or in SN1998de. Thus a large production of Si-peak elements, especially in combination with a low or a moderate production of iron, could be better addressed by either the delayed detonation route in standard Chandrasekhar-mass models or, perhaps, by the off-center helium detonation in the sub Chandrasekhar-mass scenario.

D. Garcia-Senz; E. Bravo; R. M. Cabezon; S. E. Woosley

2006-09-15T23:59:59.000Z

200

Revealing Type Ia supernova physics with cosmic rates and nuclear gamma rays  

E-Print Network (OSTI)

Type Ia supernovae (SNIa) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNIa can be probed by the delay time between progenitor birth and explosion as SNIa. The explosions and progenitors of SNIa can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SNIa rates, finding that their different redshift evolution requires a large fraction of SNIa to have large delay times. A delay time distribution of the form t^{-1.0 +/- 0.3} provides a good fit, implying 50% of SNIa explode more than ~ 1 Gyr after progenitor birth. The extrapolation of the cosmic SNIa rate to z = 0 agrees with the rate we deduce from catalogs of local SNIa. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNIa and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes & Woosley in 1997 due to larger and more certain SNIa rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity ~ 60 times better than that of current satellites, would, on an annual basis, detect up to ~ 100 SNIa (3 sigma) and provide revolutionary model discrimination for SNIa within 20 Mpc, with gamma-ray light curves measured with ~ 10 sigma significance daily for ~ 100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SNIa gamma-ray detections.

Shunsaku Horiuchi; John F. Beacom

2010-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PMCPVT 2011 Ron Harp 1012011 - 9302014 Ames, IA Unique Lanthanide-Free Motor Construction Develop, construct, and test new bench-scale motor prototypes that do not...

202

Kenneth W. Pratt  

Science Conference Proceedings (OSTI)

... Clinical and Laboratory Standards Institute, CLSI (formerly NCCLS), Area Committee on ... Chemistry, Ph.D., Iowa State University, Ames, IA, 1981. ...

2012-11-15T23:59:59.000Z

203

Limits on the Time Variation of the Fermi Constant G_F Based on Type Ia Supernova Observations  

E-Print Network (OSTI)

The light curve of a type Ia supernova decays at a rate set by the beta-decay lifetimes of the Ni-56 and Co-56 produced in the explosion. This makes such a light curve sensitive to the value of the Fermi constant G_F at the time of the supernova. Using data from the CfA Supernova Archive, we measure the dependence of the light curve decay rate on redshift and place a bound on the time variation of G_F of |(dG_F/dt)/G_F| < 10^(-9) / y.

Ferrero, Alejandro

2010-01-01T23:59:59.000Z

204

Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey  

E-Print Network (OSTI)

We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the proj...

Galbany, Lluis; Ostman, Linda; Brown, Peter J; Cinabro, David; D'Andrea, Chris B; Frieman, Joshua; Jha, Saurabh W; Marriner, John; Nichol, Robert C; Nordin, Jakob; Olmstead, Matthew D; Sako, Masao; Schneider, Donald P; Smith, Mathew; Sollerman, Jesper; Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Dan; Simmons, Audrey; Shelden, Alaina

2012-01-01T23:59:59.000Z

205

FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES  

SciTech Connect

Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M{sub Sun} of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s{sup -1}. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

Jordan, George C. IV; Van Rossum, Daniel R. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States); Perets, Hagai B. [Physics Department, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Robert T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States)

2012-12-20T23:59:59.000Z

206

TYPE Ia SUPERNOVA PROPERTIES AS A FUNCTION OF THE DISTANCE TO THE HOST GALAXY IN THE SDSS-II SN SURVEY  

Science Conference Proceedings (OSTI)

We use Type Ia supernovae (SNe Ia) discovered by the Sloan Digital Sky Survey-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host-galaxy center, using the distance as a proxy for local galaxy properties (local star formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light curves using both MLCS2K2 and SALT2, and determine color (A{sub V} , c) and light-curve shape ({Delta}, x{sub 1}) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4{sigma} level) finding is that the average fitted A{sub V} from MLCS2K2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that supernovae (SNe) in elliptical galaxies tend to have narrower light curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.

Galbany, Lluis; Miquel, Ramon; Oestman, Linda [Institut de Fisica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Barcelona) (Spain); Brown, Peter J.; Olmstead, Matthew D. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); D'Andrea, Chris B.; Nichol, Robert C. [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth PO1 3FX (United Kingdom); Frieman, Joshua [Kavli Institute for Cosmological Physics, University of Chicago, 5640 South Ellise Avenue, Chicago, IL 60637 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers the State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Marriner, John [Center for Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Nordin, Jakob [E.O. Lawrence Berkeley National Lab, 1 Cyclotron Rd., Berkeley, CA 94720 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Smith, Mathew [Department of Physics, University of Western Cape, Bellville 7535, Cape Town (South Africa); Sollerman, Jesper [Oskar Klein Centre, Department of Astronomy, AlbaNova, SE-106 91 Stockholm (Sweden); Pan, Kaike; Snedden, Stephanie; Bizyaev, Dmitry; Brewington, Howard, E-mail: lluis.galbany@ist.utl.pt [Apache Point Observatory, P.O. Box 59, Sunspot, NM 88349 (United States); and others

2012-08-20T23:59:59.000Z

207

A Measurement of the Rate of type-Ia Supernovae at Redshift $z\\approx$ 0.1 from the First Season of the SDSS-II Supernova Survey  

E-Print Network (OSTI)

We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $z\\le0.12$. Assuming a flat cosmology with $\\Omega_m = 0.3=1-\\Omega_\\Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({\\rm systematic})^{+0.90}_{-0.71}({\\rm statistical})] \\times 10^{-5} {\\rm SNe} {\\rm Mpc}^{-3} h_{70}^3 {\\rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rat...

Dilday, Benjamin; Frieman, J A; Holtzman, J; Marriner, J; Miknaitis, G; Nichol, R C; Romani, R; Sako, M; Bassett, B; Becker, A; Cinabro, D; De Jongh, F; Depoy, D L; Doi, M; Garnavich, P M; Hogan, C J; Jha, S; Konishi, K; Lampeitl, H; Marshall, J L; McGinnis, D; Prieto, J L; Riess, A G; Richmond, M W; Schneider, D P; Smith, M; Takanashi, N; Tokita, K; van der Heyden, K; Zheng, N Yasuda C; Barentine, J; Brewington, H; Choi, C; Crotts, A; Dembicky, J; Harvanek, M; Im, M; Ketzeback, W; Kleinman, S J; Krzesi?ski, J; Long, D C; Malanushenko, E; Malanushenko, V; McMillan, R J; Nitta, A; Pan, K; Saurage, G; Snedden, S A; Watters, S; Wheeler, J C; York, D

2008-01-01T23:59:59.000Z

208

Making the Standard Candle: A study of how the progenitor white dwarf modulates the peak luminosity of type Ia supernovae  

SciTech Connect

The goals of the proposed research as stated in the proposal were to: Build a suite of one-dimensional initial models of different metallicities and central densities. Using the improved flame capturing scheme, simulate the explosion of a white dwarf with embedded Lagrangian tracer particles, and post-process the thermal histories of the tracers to reconstruct the nucleosynthesis of the explosion. Survey the effects of a changing progenitor metallicity on the isotopic yields. Of particular interest is 1) whether the linear relation between the mass of 56Ni synthesized and the pro- genitor metallicity is moderated by the effect of electron captures in the core; and 2) how a varying central density alters the relation between metallicity and 56Ni mass. Using these results, examine how the observed metallicity distribution would affect the brightness distribution of SNe Ia and the isotopic ratios about the Fe-peak.

Brown, Edward F [Michigan State University

2010-01-21T23:59:59.000Z

209

Determining the motion of the solar system relative to the cosmic microwave background using type Ia supernovae  

E-Print Network (OSTI)

We estimate the solar system motion relative to the cosmic microwave background using type Ia supernovae (SNe) measurements. We take into account the correlations in the error bars of the SNe measurements arising from correlated peculiar velocities. Without accounting for correlations in the peculiar velocities, the SNe data we use appear to detect the peculiar velocity of the solar system at about the 3.5 sigma level. However, when the correlations are correctly accounted for, the SNe data only detects the solar system peculiar velocity at about the 2.5 sigma level. We forecast that the solar system peculiar velocity will be detected at the 9 sigma level by GAIA and the 11 sigma level by the LSST. For these surveys we find the correlations are much less important as most of the signal comes from higher redshifts where the number density of SNe is insufficient for the correlations to be important.

Christopher Gordon; Kate Land; Anze Slosar

2007-11-27T23:59:59.000Z

210

A localised subgrid scale model for fluid dynamical simulations in astrophysics II: Application to type Ia supernovae  

E-Print Network (OSTI)

The dynamics of the explosive burning process is highly sensitive to the flame speed model in numerical simulations of type Ia supernovae. Based upon the hypothesis that the effective flame speed is determined by the unresolved turbulent velocity fluctuations, we employ a new subgrid scale model which includes a localised treatment of the energy transfer through the turbulence cascade in combination with semi-statistical closures for the dissipation and non-local transport of turbulence energy. In addition, subgrid scale buoyancy effects are included. In the limit of negligible energy transfer and transport, the dynamical model reduces to the Sharp-Wheeler relation. According to our findings, the Sharp-Wheeler relation is insuffcient to account for the complicated turbulent dynamics of flames in thermonuclear supernovae. The application of a co-moving grid technique enables us to achieve very high spatial resolution in the burning region. Turbulence is produced mostly at the flame surface and in the interior ash regions. Consequently, there is a pronounced anisotropy in the vicinity of the flame fronts. The localised subgrid scale model predicts significantly enhanced energy generation and less unburnt carbon and oxygen at low velocities compared to earlier simulations.

W. Schmidt; J. C. Niemeyer; W. Hillebrandt; F. K. Roepke

2006-01-23T23:59:59.000Z

211

Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova  

E-Print Network (OSTI)

We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained 9 and 2 days before (B-band) maximum light in order to detect narrow hydrogen and/or helium emission lines from the SN CSM. No such lines were detected in our data. We therefore use photoionisation models to derive upper limits of 1x10^-5 and 6x10^-5 Msol/yr, assuming wind velocities of 10 and 50 km/s, respectively, for the mass loss rate from the progenitor system of SN 2001el. This excludes a symbiotic star in the upper mass loss rate regime from being the progenitor of SN 2001el. The low-resolution spectrum was obtained in the nebular phase of the supernova, \\~400 days after the maximum light, to search for any hydrogen rich gas originating from the SN progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of ~0.03 Msol for solar a...

Mattila, S; Sollerman, J; Kozma, C; Baron, E; Fransson, C; Leibundgut, B; Nomoto, K

2005-01-01T23:59:59.000Z

212

EVOLUTION OF POST-IMPACT COMPANION STARS IN SN Ia REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO  

Science Conference Proceedings (OSTI)

The nature of the progenitor systems of Type Ia supernovae is still uncertain. One way to distinguish between the single-degenerate scenario and double-degenerate scenario is to search for the post-impact remnant star. To examine the characteristics of the post-impact remnant star, we have carried out three-dimensional hydrodynamic simulations of supernova impacts on main-sequence-like stars. We explore the evolution of the post-impact remnants using the stellar evolution code MESA. We find that the luminosity and radius of the remnant star dramatically increase just after the impact. After the explosion, post-impact companions continue to expand on a progenitor-dependent timescale of {approx}10{sup 2.5}-10{sup 3} years before contracting. It is found that the time evolution of the remnant star is dependent not only on the amount of energy absorbed but also on the depth of the energy deposition. We examine the viability of the candidate star Tycho G as the possible remnant companion in Tycho's supernova by comparing it to the evolved post-impact remnant stars in our simulations. The closest model in our simulations has a similar effective temperature, but the luminosity and radius are twice as large. By examining the angular momentum distribution in our simulations, we find that the surface rotational speed could drop to {approx}10 km s{sup -1} if the specific angular momentum is conserved during the post-impact evolution, implying that Tycho G cannot be completely ruled out because of its low surface rotation speed.

Pan, Kuo-Chuan; Ricker, Paul M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Taam, Ronald E., E-mail: kpan2@illinois.edu, E-mail: pmricker@illinois.edu, E-mail: taam@northwestern.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

2012-11-20T23:59:59.000Z

213

Gorchakova-IA  

NLE Websites -- All DOE Office Websites (Extended Search)

(3D) Radiation Codes (Cahalan 2000). In the present work, the broadband fluxes of solar radiation are calculated using two different approaches. The purpose is * to compare...

214

Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5  

SciTech Connect

Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could be collected the goal would be to determine the strain tensor's orientation and magnitude of strain along each principle axis direction.

Hubbard, Camden R [ORNL

2011-09-01T23:59:59.000Z

215

Early and late time VLT spectroscopy of SN 2001el - progenitor constraints for a type Ia supernova  

E-Print Network (OSTI)

We present early time high-resolution (VLT/UVES) and late time low-resolution (VLT/FORS) optical spectra of the normal type Ia supernova, SN 2001el. The high-resolution spectra were obtained at -9 and -2 days to allow the detection of narrow hydrogen and/or helium emission lines from the circumstellar medium of the SN. No such lines were detected, and we therefore use photoionisation models to derive upper limits of 9x10^-6 Msun/yr and 5x10^-5 Msun/yr for the mass loss rate from the progenitor system assuming velocities of 10 km/s and 50 km/s, respectively, for a wind extending to outside at least a few x 10^15 cm away from the SN explosion site. These limits exclude a symbiotic star in the upper mass loss rate regime from being the progenitor of SN 2001el. The low resolution spectrum was obtained in the nebular phase of the SN, 400 days after the maximum light, to search for any hydrogen rich gas originating from the SN progenitor system. However, we see no signs of Balmer lines in our spectrum. Therefore, we model the late time spectra to derive an upper limit of ~0.03 Msun for solar abundance material present at velocities lower than 1000 km/s within the SN explosion site. According to simulations of Marietta et al. (2000) this is less than the expected mass lost by a subgiant, red giant or main sequence secondary star at a small binary separation as a result of the SN explosion. Finally, we discuss the origin of high velocity Ca II lines. We see both the CaII IR triplet and the H&K lines in the -9 days spectrum at a very high velocity of up to 34000 km/s. The spectrum also shows a flat-bottomed Si II `6150 A' feature similar to the one previously observed in SN 1990N at -14 days. We compare these spectral features to those observed in SNe 1984A and 1990N at even higher velocities.

S. Mattila; P. Lundqvist; J. Sollerman; C. Kozma; E. Baron; C. Fransson; B. Leibundgut; K. Nomoto

2005-01-20T23:59:59.000Z

216

A Measurement of the Rate of type-Ia Supernovae at Redshift $z\\approx$ 0.1 from the First Season of the SDSS-II Supernova Survey  

E-Print Network (OSTI)

We present a measurement of the rate of type Ia supernovae (SNe Ia) from the first of three seasons of data from the SDSS-II Supernova Survey. For this measurement, we include 17 SNe Ia at redshift $z\\le0.12$. Assuming a flat cosmology with $\\Omega_m = 0.3=1-\\Omega_\\Lambda$, we find a volumetric SN Ia rate of $[2.93^{+0.17}_{-0.04}({\\rm systematic})^{+0.90}_{-0.71}({\\rm statistical})] \\times 10^{-5} {\\rm SNe} {\\rm Mpc}^{-3} h_{70}^3 {\\rm year}^{-1}$, at a volume-weighted mean redshift of 0.09. This result is consistent with previous measurements of the SN Ia rate in a similar redshift range. The systematic errors are well controlled, resulting in the most precise measurement of the SN Ia rate in this redshift range. We use a maximum likelihood method to fit SN rate models to the SDSS-II Supernova Survey data in combination with other rate measurements, thereby constraining models for the redshift-evolution of the SN Ia rate. Fitting the combined data to a simple power-law evolution of the volumetric SN Ia rate, $r_V \\propto (1+z)^{\\beta}$, we obtain a value of $\\beta = 1.5 \\pm 0.6$, i.e. the SN Ia rate is determined to be an increasing function of redshift at the $\\sim 2.5 \\sigma$ level. Fitting the results to a model in which the volumetric SN rate, $r_V=A\\rho(t)+B\\dot \\rho(t)$, where $\\rho(t)$ is the stellar mass density and $\\dot \\rho(t)$ is the star formation rate, we find $A = (2.8 \\pm 1.2) \\times 10^{-14} \\mathrm{SNe} \\mathrm{M}_{\\sun}^{-1} \\mathrm{year}^{-1}$, $B = (9.3^{+3.4}_{-3.1})\\times 10^{-4} \\mathrm{SNe} \\mathrm{M}_{\\sun}^{-1}$.

Benjamin Dilday; R. Kessler; J. A. Frieman; J. Holtzman; J. Marriner; G. Miknaitis; R. C. Nichol; R. Romani; M. Sako; B. Bassett; A. Becker; D. Cinabro; F. DeJongh; D. L. Depoy; M. Doi; P. M. Garnavich; C. J. Hogan; S. Jha; K. Konishi; H. Lampeitl; J. L. Marshall; D. McGinnis; J. L. Prieto; A. G. Riess; M. W. Richmond; D. P. Schneider; M. Smith; N. Takanashi; K. Tokita; K. van der Heyden; N. Yasuda; C. Zheng; J. Barentine; H. Brewington; C. Choi; A. Crotts; J. Dembicky; M. Harvanek; M. Im; W. Ketzeback; S. J. Kleinman; J. Krzesi?ski; D. C. Long; E. Malanushenko; V. Malanushenko; R. J. McMillan; A. Nitta; K. Pan; G. Saurage; S. A. Snedden; S. Watters; J. C. Wheeler; D. York

2008-01-22T23:59:59.000Z

217

AMES Success Stories - Energy Innovation Portal  

1 Success Stories; Category Title and Abstract Company / Laboratories Date; Industrial Technologies Lead Free Solder. A lead free solder, developed at ...

218

Division of Chemical & Biological Sciences | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division of Chemical & Biological Sciences Division of Chemical & Biological Sciences Image Welcome Research teams in this Division conduct fundamental and applied studies of how...

219

Ames Laboratory Technology Marketing Summaries - Energy ...  

Innovative microstructures that can direct light in a manner similar to the way semiconductors can ... the efficiency of conventional incandescent ...

220

AME 327: Thermodynamics I CATALOG DATA  

E-Print Network (OSTI)

. Gas power cycles. Refrigeration and heat pump cycles. Tests. Practice and Assessment Methods: In order the course description: Engineering Science: 3.0 credits or 100% Engineering Design: 0 credits Prepared by

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

What are the Rare Earths? | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

made from neodymium-iron--boron have been used in a variety of products, including electric motors and hybrid cars components. The Elements Scandium Sc symbol Scandium...

222

Ames Laboratory Technology Marketing Summaries - Energy ...  

Innovative microstructures that can direct light in a manner similar to the way semiconductors can ... the efficiency of conventional incandescent light bulbs.

223

RELATIVISTIC SHOCK BREAKOUTS-A VARIETY OF GAMMA-RAY FLARES: FROM LOW-LUMINOSITY GAMMA-RAY BURSTS TO TYPE Ia SUPERNOVAE  

SciTech Connect

The light from a shock breakout of stellar explosions, which carries a wealth of information, strongly depends on the shock velocity at the time of the breakout. The emission from Newtonian breakouts, typical in regular core-collapse supernovae (SNe), has been explored extensively. However, a large variety of explosions result in mildly or ultrarelativistic breakouts, where the observed signature is unknown. Here we calculate the luminosity and spectrum produced by relativistic breakouts. In order to do so, we improve the analytic description of relativistic radiation-mediated shocks and follow the system from the breakout itself, through the planar phase and into the spherical phase. We limit our calculation to cases where the post-breakout acceleration of the gas ends during the planar phase (i.e., the final gas Lorentz factor {approx}< 30). We find that spherical relativistic breakouts produce a flash of gamma rays with energy, E{sub bo}, temperature, T{sub bo}, and duration, t{sup obs} b{sub o}, that provide the breakout radius ( Almost-Equal-To 5 R{sub Sun }(t{sup obs}{sub bo}/10 s)(T{sub bo}/50 keV){sup 2}) and the Lorentz factor ( Almost-Equal-To T{sub bo}/50 keV). They also always satisfy a relativistic breakout relation (t{sup obs}{sub bo}/20 s) {approx} (E{sub bo}/10{sup 46} erg){sup 1/2}(T{sub bo}/50 keV){sup -2.68}. The breakout flare is typically followed, on longer timescales, by X-rays that carry a comparable energy. We apply our model to a variety of explosions, including Type Ia and .Ia SNe, accretion-induced collapse, energetic SNe, and gamma-ray bursts (GRBs). We find that all these events produce detectable gamma-ray signals, some of which may have already been seen. Some particular examples are: (1) relativistic shock breakouts provide a natural explanation to the energy, temperature, and timescales of low-luminosity GRBs. Indeed, all observed low-luminosity GRBs satisfy the relativistic breakout relation. (2) Nearby broad-line Type Ib/c (like SN 2002ap) may produce a detectable {gamma}-ray signal. (3) Galactic Type Ia SNe may produce detectable {gamma}-ray flares. We conclude that relativistic shock breakouts provide a generic process for the production of gamma-ray flares.

Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Sari, Re'em [Racah Institute for Physics, Hebrew University, Jerusalem 91904 (Israel)

2012-03-10T23:59:59.000Z

224

Solar Wind: Manifestations of Solar Activity E N CYC LO PE D IA O F AS T R O N O MY AN D AS T R O PHYS I C S Solar Wind: Manifestations of Solar  

E-Print Network (OSTI)

Solar Wind: Manifestations of Solar Activity E N CYC LO PE D IA O F AS T R O N O MY AN D AS T R O PHYS I C S Solar Wind: Manifestations of Solar Activity The Sun's outer atmosphere, the corona, is continually heated and expands to create the solar wind. Solar activity waxes and wanes with the 11 yr cycle

Webb, David F.

225

Per Capita Consumption The NMFS calculation of per capita consumption is  

E-Print Network (OSTI)

351 Bessey Hall, Ames, IA 50011, USA 2 Azerbaijan National Academy of Sciences Patamdar 40, Baku AZ1073, Azerbaijan 3 Southern Research Station, USDA Forest Service Athens, GA 30602, USA Abstract

226

Biology, History, Status and Conservation of Sacramento Perch, Archoplites interruptus  

E-Print Network (OSTI)

of freshwater fishery biology. Vol. II. Ames (IA): IowaWassmann Journal of Biology 24:141–160. Cook SJ, Philippmacrochirus. Invasion Biology 1:55-65. Mathews SB. 1962. The

Crain, Patrick K; Moyle, Peter B

2011-01-01T23:59:59.000Z

227

Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells  

E-Print Network (OSTI)

, leaving the oxygen isotope paleother- mometer underdetermined in most geologic applicationsCarbonate clumped isotope compositions of modern marine mollusk and brachiopod shells Gregory A, Baltimore, MD 21218, USA b Department of Geological & Atmospheric Sciences, Iowa State University, Ames, IA

Grossman, Ethan L.

228

Multi-Megawatt Organic Rankine Engine power plant (MORE). Phase IA final report: system design of MORE power plant for industrial energy conservation emphasizing the cement industry  

SciTech Connect

The Multi-Megawatt Organic Rankine Engine (MORE) program is directed towards the development of a large, organic Rankine power plant for energy conservation from moderate temperature industrial heat streams. Organic Rankine power plants are ideally suited for use with heat sources in the temperature range below 1100/sup 0/F. Cement manufacture was selected as the prototype industry for the MORE system because of the range of parameters which can be tested in a cement application. This includes process exit temperatures of 650/sup 0/F to 1110/sup 0/F for suspension preheater and long dry kilns, severe dust loading, multi-megawatt power generation potential, and boiler exhaust gas acid dew point variations. The work performed during the Phase IA System Design contract period is described. The System Design task defines the complete MORE system and its installation to the level necessary to obtain detailed performance maps, equipment specifications, planning of supporting experiments, and credible construction and hardware cost estimates. The MORE power plant design is based upon installation in the Black Mountain Quarry Cement Plant near Victorville, California.

Bair, E.K.; Breindel, B.; Collamore, F.N.; Hodgson, J.N.; Olson, G.K.

1980-01-31T23:59:59.000Z

229

THE POST-MERGER MAGNETIZED EVOLUTION OF WHITE DWARF BINARIES: THE DOUBLE-DEGENERATE CHANNEL OF SUB-CHANDRASEKHAR TYPE Ia SUPERNOVAE AND THE FORMATION OF MAGNETIZED WHITE DWARFS  

SciTech Connect

Type Ia supernovae (SNe Ia) play a crucial role as standardizable cosmological candles, though the nature of their progenitors is a subject of active investigation. Recent observational and theoretical work has pointed to merging white dwarf binaries, referred to as the double-degenerate channel, as the possible progenitor systems for some SNe Ia. Additionally, recent theoretical work suggests that mergers which fail to detonate may produce magnetized, rapidly rotating white dwarfs. In this paper, we present the first multidimensional simulations of the post-merger evolution of white dwarf binaries to include the effect of the magnetic field. In these systems, the two white dwarfs complete a final merger on a dynamical timescale, and are tidally disrupted, producing a rapidly rotating white dwarf merger surrounded by a hot corona and a thick, differentially rotating disk. The disk is strongly susceptible to the magnetorotational instability (MRI), and we demonstrate that this leads to the rapid growth of an initially dynamically weak magnetic field in the disk, the spin-down of the white dwarf merger, and to the subsequent central ignition of the white dwarf merger. Additionally, these magnetized models exhibit new features not present in prior hydrodynamic studies of white dwarf mergers, including the development of MRI turbulence in the hot disk, magnetized outflows carrying a significant fraction of the disk mass, and the magnetization of the white dwarf merger to field strengths {approx}2 Multiplication-Sign 10{sup 8} G. We discuss the impact of our findings on the origins, circumstellar media, and observed properties of SNe Ia and magnetized white dwarfs.

Ji Suoqing; Fisher, Robert T. [University of Massachusetts Dartmouth, Department of Physics, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Garcia-Berro, Enrique [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, c/Esteve Terrades, 5, E-08860 Castelldefels (Spain); Tzeferacos, Petros; Jordan, George; Lee, Dongwook [Center for Astrophysical Thermonuclear Flashes, The University of Chicago, Chicago, IL 60637 (United States); Loren-Aguilar, Pablo [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Cremer, Pascal [Bethe Center for Theoretical Physics, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Behrends, Jan [Fachbereich Physik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin (Germany)

2013-08-20T23:59:59.000Z

230

IA_50m_Wind  

NLE Websites -- All DOE Office Websites (Extended Search)

ISDataTechnologySpecificUnitedStatesWindHighResolutionIowaWindHighResolution.zip> Description: Abstract: Annual average wind resource potential for the state of Iowa at...

231

Consolidative Involved-Node Proton Therapy for Stage IA-IIIB Mediastinal Hodgkin Lymphoma: Preliminary Dosimetric Outcomes From a Phase II Study  

SciTech Connect

Purpose: To compare the dose reduction to organs at risk (OARs) with proton therapy (PT) versus three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) in patients with mediastinal Hodgkin lymphoma (HL) enrolled on a Phase II study of involved-node radiotherapy (INRT). Methods and Materials: Between June 2009 and October 2010, 10 patients were enrolled on a University of Florida institutional review board-approved protocol for de novo 'classical' Stage IA-IIIB HL with mediastinal (bulky or nonbulky) involvement after chemotherapy. INRT was planned per European Organization for Research and Treatment of Cancer guidelines. Three separate optimized plans were developed for each patient: 3D-CRT, IMRT, and PT. The primary end point was a 50% reduction in the body V4 with PT compared with 3D-CRT or IMRT. Results: The median relative reduction with PT in the primary end point, body V4, was 51% compared with 3D-CRT (p = 0.0098) and 59% compared with IMRT (p = 0.0020), thus all patients were offered treatment with PT. PT provided the lowest mean dose to the heart, lungs, and breasts for all 10 patients compared with either 3D-CRT or IMRT. The median difference in the OAR mean dose reduction with PT compared with 3D-CRT were 10.4 Gy/CGE for heart; 5.5 Gy/CGE for lung; 0.9 Gy/CGE for breast; 8.3 Gy/CGE for esophagus; and 4.1 Gy/CGE for thyroid. The median differences for mean OAR dose reduction for PT compared with IMRT were 4.3 Gy/CGE for heart, 3.1 Gy/CGE for lung, 1.4 Gy/CGE for breast, 2.8 Gy/CGE for esophagus, and 2.7 Gy/CGE for thyroid. Conclusions: All 10 patients benefitted from dose reductions to OARs with PT compared with either 3D-CRT or IMRT. It is anticipated that these reductions in dose to OAR will translate into lower rates of late complications, but long-term follow-up on this Phase II INRT study is needed.

Hoppe, Bradford S., E-mail: bhoppe@floridaproton.org [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Flampouri, Stella; Su Zhong; Morris, Christopher G. [University of Florida Proton Therapy Institute, Jacksonville, FL (United States); Latif, Naeem [University of Florida Hematology/Oncology, Jacksonville, FL (United States); Dang, Nam H.; Lynch, James [University of Florida Hematology/Oncology, Gainesville, FL (United States); Li Zuofeng; Mendenhall, Nancy P. [University of Florida Proton Therapy Institute, Jacksonville, FL (United States)

2012-05-01T23:59:59.000Z

232

"Report Date","U.S.",,,"PADD I",,,"PADD IA",,,"PADD IB",,,"PADD IC",,,"PADD II"  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Heating Oil Prices (Before and After Change in Aggregation Methodology)" Residential Heating Oil Prices (Before and After Change in Aggregation Methodology)" "Report Date","U.S.",,,"PADD I",,,"PADD IA",,,"PADD IB",,,"PADD IC",,,"PADD II" ,"Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference","Old Reported Value ($ per Gallon)","New Revised Value ($ per Gallon)","Difference"

233

Microsoft PowerPoint - Joel Riekin.pptx  

NLE Websites -- All DOE Office Websites (Extended Search)

University University Iowa State University of Science and Technology Simplified Powder Processing and Microstructural Control of Fe-based ODS Alloys Support from the Department of Energy-Office of Fossil Energy is gratefully acknowledged through Ames Laboratory contract no. DE-AC02-07CH11358 J. R. Rieken 1 , I.E. Anderson 2 , and M.J. Kramer 2 1 Materials Science and Engineering, Iowa State University, Ames, IA 2 Division of Materials Sciences and Engineering, Ames Laboratory (USDOE), Ames, IA "Fe-Based ODS Alloys: Role and Future Applications" Fabrication, Microstructure Preservation & Mechanical Properties University of California-San Diego: November 18th, 2010, San Diego, CA Iowa State University Iowa State University of Science and Technology Future Generation Power Reactors

234

Ames Lake, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

328784°, -121.9662307° 328784°, -121.9662307° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6328784,"lon":-121.9662307,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

235

Audit of Acquisition of Scientific Research at Ames Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ombudsman FOIA Reports Calendar Year Reports Recovery Act Peer Reviews DOE Directives Performance Strategic Plan Testimony Financial Statements Semiannual Reports Work...

236

Demonstrate Ames Laboratory capability in Probabilistic Risk Assessment (PRA)  

Science Conference Proceedings (OSTI)

In response to the damage which occurred during the Three Mile Island nuclear accident, the Nuclear Regulatory Commission (NRC) has implemented a Probabilistic Risk Assessment (PRA) program to evaluate the safety of nuclear power facilities during events with a low probability of occurrence. The PRA can be defined as a mathematical technique to identify and rank the importance of event sequences that can lead to a severe nuclear accident. Another PRA application is the evaluation of nuclear containment buildings due to earthquakes. In order to perform a seismic PRA, the two conditional probabilities of ground motion and of structural failure of the different components given a specific earthquake are first studied. The first of these is termed probability of exceedance and the second as seismic fragility analysis. The seismic fragility analysis is then related to the ground motion measured in terms of ``g`` to obtain a plant level fragility curve.

Bluhm, D.; Greimann, L.; Fanous, F.; Challa, R.; Gupta, S.

1993-07-01T23:59:59.000Z

237

Ames Lab Plays Elemental Role in New PBS Special | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and yttrium. But they're ascendant in importance in clean energy technologies like electric cars and the powerful permanent magnets used in efficient electric motors, as...

238

AME: an anyscale many-task computing engine  

Science Conference Proceedings (OSTI)

Many-Task Computing (MTC) is a new application category that encompasses increasingly popular applications in biology, economics, and statistics. The high inter-task parallelism and data-intensive processing capabilities of these applications pose new ... Keywords: data management, load balancing, many-task computing, scheduling, supercomputer systems

Zhao Zhang; Daniel S. Katz; Matei Ripeanu; Michael Wilde; Ian T. Foster

2011-11-01T23:59:59.000Z

239

Low Dose Radiation Research Program: Bruce N. Ames  

NLE Websites -- All DOE Office Websites (Extended Search)

University of California, Berkeley Technical Abstracts 2002 Workshop: Comparison of Low-Dose Radiation, Endogenous Oxidants, and Micronutrient Deficiencies through Analyses of DNA...

240

Ames Laboratory to Lead New Research Effort to Address Shortages...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials. Cross-cutting research, including developing computational tools and supply chain and economic analyses, will also be necessary to support the basic science needs...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Critical Materials and Rare Futures: Ames Laboratory Signs a...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

materials in petroleum refineries and other applications not addressed in last year's report. Other steps are also being taken. ARPA-E has opened a Funding Opportunity...

242

Ames Electric Department - Net Metering (Iowa) | Open Energy...  

Open Energy Info (EERE)

and tidal power. It does not include technologies that rely on fossil fuels, fossil fuel waste products, or waste products from inorganic sources. The use of the word...

243

SciTech Connect: "fuel cells"  

Office of Scientific and Technical Information (OSTI)

fuel cells" Find fuel cells" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

244

SciTech Connect: plasma  

Office of Scientific and Technical Information (OSTI)

plasma Find plasma Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

245

SciTech Connect: "enriched uranium"  

Office of Scientific and Technical Information (OSTI)

enriched uranium" Find enriched uranium" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

246

SciTech Connect: "high temperature superconductivity"  

Office of Scientific and Technical Information (OSTI)

high temperature superconductivity" Find high temperature superconductivity" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office,

247

SciTech Connect: "oil shale"  

Office of Scientific and Technical Information (OSTI)

oil shale" Find oil shale" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

248

SciTech Connect: "higgs boson"  

Office of Scientific and Technical Information (OSTI)

higgs boson" Find higgs boson" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

249

SciTech Connect: "geomagnetic storms"  

Office of Scientific and Technical Information (OSTI)

geomagnetic storms" Find geomagnetic storms" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

250

SciTech Connect: "light emitting diode"  

Office of Scientific and Technical Information (OSTI)

"light emitting diode" Find "light emitting diode" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office,

251

SciTech Connect: enriched uranium  

Office of Scientific and Technical Information (OSTI)

enriched uranium Find enriched uranium Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

252

SciTech Connect: auroras  

Office of Scientific and Technical Information (OSTI)

auroras Find auroras Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

253

SciTech Connect: "plasma science"  

Office of Scientific and Technical Information (OSTI)

plasma science" Find plasma science" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

254

SciTech Connect: "Greenhouse Effect"  

Office of Scientific and Technical Information (OSTI)

Greenhouse Effect" Find Greenhouse Effect" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

255

SciTech Connect: higgs  

Office of Scientific and Technical Information (OSTI)

higgs Find higgs Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

256

Noname manuscript No. (will be inserted by the editor)  

E-Print Network (OSTI)

-mail:akshayd@iastate.edu S. Tirthapura Department of Electrical and Computer Engineering, Iowa State University, Ames, IA diseases [74], political science [20], and historical linguistics [34]. Here we consider the problem.g., horizontal gene transfer, gene duplication, convergent evolution, and varying evolutionary rates) [67]. Here

Sanderson, Michael J.

257

Latin American Section List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryLatin American Section2013 Members208 Members as of October 1, 2013Abril, RubenDSM Nutritional ProductsBoulder, CO, USAAcevedo, NuriaUniversity of GuelphAmes, IA, USAAcosta, EdgarUniversity of TorontoToronto, ON, CanadaA

258

Edible Applications Technology Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryEdible Applications Technology Division2013 Members362 Members as of October 1, 2013Acevedo, NuriaUniversity of GuelphAmes, IA, USAAdam, RoyOilseeds International LtdSan Francisco, CA, USAAdriaenssens, MarkBarry Callebau

259

Development of Enhanced Electric Arc Furnace Models for Transient Analysis Gilsoo Jang  

E-Print Network (OSTI)

University Seoul, Korea Weiguo Wang ESCA-Alstom Tacoma, WA USA G. T. Heydt Ari- zona State Univer- sity Tempe, AZ USA S. S. Venkata Iowa State Uni- versity Ames, IA USA Byongjun Lee Korea University Korea to the interaction of the high demand currents of the loads with the supply system impedance. In order to adequately

260

Food Safety & Functionality Forum Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryFood Structure & Functionality Forum Division2013 Members116 Members as of July 1, 2013Acevedo, NuriaUniversity of GuelphAmes, IA, USAAdriaenssens, MarkBarry CallebautPennsauken, NJ, USAAimutis, WilliamCargill IncWayzata

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Rates and progenitors of type Ia supernovae  

E-Print Network (OSTI)

Propulsion Laboratory, operated under contract NAS7-030001 with the National Aeronautics and SpacePropulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Wood-Vasey, William Michael

2004-01-01T23:59:59.000Z

262

Visualizing Type Ia Supernova Explosions at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Childs1a-Supernovasm.png Deep inside a dying star in a galaxy far, far away, a carbon fusion flame ignites. Ignition may happen in the middle or displaced slightly to one side,...

263

Distributed Flames in Type Ia Supernovae  

E-Print Network (OSTI)

In the distributed burning regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning depends on the turbulent Damkohler number (Da), which steadily declines from much greater than one to less that one as the density decreases to a few 10^6 g/cc. Scaling arguments predict that the turbulent flame speed s, normalized by the turbulent intensity u, follows s/u=Da^1/2 for Da1, and that localized excursions to as much as five times u can occur. The lambda-flame speed and width can be predicted based on the turbulence in the star and the turbulent nuclear burning time scale of the fuel. We propose a practical method for measuring these based on the scaling relations and small-scale computationally-inexpensive simulations. This suggests that a simple turbulent flame model can be easily constructed suitable for large-scale distributed supernovae flames.

Aspden, A J; Woosley, S E; 10.1088/0004-637X/710/2/1654

2011-01-01T23:59:59.000Z

264

1 | EqIA Summary| Diversity Team| 08/12/08 EqIA Summary  

E-Print Network (OSTI)

) Summary of Impact There are no direct or significant adverse impacts on Race, Gender, Disability, Sexual, in particular benefits relating to age as there will be a strong focus on bio energy, which will support fuel

265

SciTech Connect: "light emitting diodes"  

Office of Scientific and Technical Information (OSTI)

light emitting diodes" Find light emitting diodes" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

266

SciTech Connect: "August 2003 blackout"  

Office of Scientific and Technical Information (OSTI)

August 2003 blackout" Find August 2003 blackout" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

267

SciTech Connect: "solar plasma wind"  

Office of Scientific and Technical Information (OSTI)

solar plasma wind" Find solar plasma wind" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

268

SciTech Connect: "gamma ray bursts"  

Office of Scientific and Technical Information (OSTI)

gamma ray bursts" Find gamma ray bursts" Find How should I search Scitech Connect ... Basic or Advanced? Basic Search Advanced × Advanced Search Options Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Title: Subject: Identifier Numbers: Research Org.: Sponsoring Org.: Site: All Alaska Power Administration, Juneau, Alaska (United States) Albany Research Center (ARC), Albany, OR (United States) Albuquerque Complex - NNSA Albuquerque Operations Office, Albuquerque, NM (United States) Amarillo National Resource Center for Plutonium, Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National Laboratory-Advanced Photon Source (United States) Atlanta Regional Office, Atlanta, GA (United States) Atmospheric Radiation Measurement (ARM)

269

Uncertainty Quantification Tools for Multiphase Flow Simulations using MFIX  

NLE Websites -- All DOE Office Websites (Extended Search)

Uncertainty Uncertainty Quantification Tools for Multiphase Flow Simulations using MFIX X. Hu 1 , A. Passalacqua 2 , R. O. Fox 1 1 Iowa State University, Department of Chemical and Biological Engineering, Ames, IA 2 Iowa State University, Department of Mechanical Engineering, Ames, IA Project Manager: Steve Seachman University Coal Research and Historically Black Colleges and Universities and Other Minority Institutions Contractors Review Conference Pittsburgh, June 11 th - 13 th 2013 X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 1 / 44 Outline 1 Introduction and background 2 Project objectives and milestones 3 Technical progress Univariate case Multivariate case Code structure 4 Future work X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 2 / 44 Introduction and background Outline 1 Introduction

270

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Agricultural Mitigation of Greenhouse Gases: Science and Policy Options Keith Paustian (keithp@nrel.colostate.edu; 970-491-1547) Natural Resource Ecology Laboratory Colorado State University Ft. Collins, CO 80523 Bruce Babcock (babcock@iastate.edu; 515-294-6785) Cathy Kling (ckling@iastate.edu; 515-294-5767) Center for Agriculture and Rural Development Iowa State University Ames, IA 50011-1070 Jerry Hatfield (hatfield@nstl.gov; 515-294-5723) USDA - National Soil Tilth Laboratory Ames, IA 50011 Rattan Lal (lal.1@osu.edu; 614-292-9069) School of Natural Resources The Ohio State University Columbus, OH 43210-1085 Bruce McCarl (mccarl@tamu.edu; 979-845-1706) Department of Agricultural Economics Texas A&M University College Station, TX 77843-2124 Sandy McLaughlin (un4@ornl.gov; 865-574-7358)

271

Instrument Development F.P.J. Valero P. Pilewskie NASA Ames Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Moffett Field, CA 94035-1000 Radiative proces,ses in the atmosphere are at the heart of anthropogenically induced climatic changes. High quality measurements of radiative...

272

Ames Site Office Categorical Exclusions | U.S. DOE Office of...  

Office of Science (SC) Website

Safety & Health Organization Chart .pdf file (82KB) Phone Listing .pdf file (129KB) SC Categorical Exclusions and NEPA Documents SLI & SS Budget Contact Information Safety,...

273

*Corresponding author. E-mail address: #ame@zen.phys.columbia.edu (J. Hong).  

E-Print Network (OSTI)

Nuclear Instruments and Methods in Physics Research A 540 (2005) 464­469 Fusion neutron detector calibration using a table-top laser generated plasma neutron source R. Hartkea , D.R. Symesa,?, F. Buersgensa, Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA b Sandia National

274

WC_1990_007_CLASS_WAIVER_for_AMES_LABORATORY_US_Goverment_an...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07CLASSWAIVERforAMESLABORATORYUSGovermentan.pdf WC1990007CLASSWAIVERforAMESLABORATORYUSGovermentan.pdf WC1990007CLASSWAIVERforAMESLABORATORYUSGovermenta...

275

Part I--A Rational Aerodynamic Design Procedure  

E-Print Network (OSTI)

'The design of a turbine stage is described in which all leading parameters (stage loading, flow coefficient, pitch/chord ratio, blade profile shape and aspect ratio) have been selected conservatively to accord with current ideas for ensuring a reasonably high level of aerodynamic efficiency. From consideration of the influence of stage loading KpAT V~ U,2, flow coefficient ~ and rotor exit swirl angle c ~ 3, the stage design was selected such that these parameters were 1.15, 0.65 and 10 degrees respectively. At the design speed of U ~ = 34 the resulting stage pressure ratio is approximately 1.65. Such a stage duty is 'light ' by aero engine standards but very comparable to much industrial gas turbine design practice. Blade spacing and profile shapes are 'finally selected in such a way as to preclude severe opposing pressure gradients on the suction surface which might result in local separation of the boundary layer from the blade surfaces. The methods applied and described for predicting blade surface velocities are simple and approximate only, and might readily be imitated by designers not wishing or able to exploit more elaborate and complex digital techniques.

M. No; D. J. L. Smith; I. H. Johnston; D. J. L. Smith; D. J. Fullbrook; D. J. L. Smith; I. H. Johnston

1967-01-01T23:59:59.000Z

276

K-corrections and spectral templates of Type Ia supernovae  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Hsiao, E. Y.

2008-01-01T23:59:59.000Z

277

The complete mitochondrial genome of Articulate Brachiopod Terebratal ia transversa  

SciTech Connect

We have sequenced the complete mitochondrial DNA (mtDNA) of the articulate brachiopod Terebratalia transversa. The circular genome is 14,291 bp in size, relatively small compared to other published metazoan mtDNAs. The 37 genes commonly found in animal mtDNA are present; the size decrease is due to the truncation of several tRNA, rRNA, and protein genes, to some nucleotide overlaps, and to a paucity of non-coding nucleotides. Although the gene arrangement differs radically from those reported for other metazoans, some gene junctions are shared with two other articulate brachiopods, Laqueus rubellus and Terebratulina retusa. All genes in the T. transversa mtDNA, unlike those in most metazoan mtDNAs reported, are encoded by the same strand. The A+T content (59.1 percent) is low for a metazoan mtDNA, and there is a high propensity for homopolymer runs and a strong base-compositional strand bias. The coding strand is quite G+T-rich, a skew that is shared by the confamilial (laqueid) specie s L. rubellus, but opposite to that found in T. retusa, a cancellothyridid. These compositional skews are strongly reflected in the codon usage patterns and the amino acid compositions of the mitochondrial proteins, with markedly different usage observed between T. retusa and the two laqueids. This observation, plus the similarity of the laqueid non-coding regions to the reverse complement of the non-coding region of the cancellothyridid, suggest that an inversion that resulted in a reversal in the direction of first-strand replication has occurred in one of the two lineages. In addition to the presence of one non-coding region in T. transversa that is comparable to those in the other brachiopod mtDNAs, there are two others with the potential to form secondary structures; one or both of these may be involved in the process of transcript cleavage.

Helfenbein, Kevin G.; Brown, Wesley M.; Boore, Jeffrey L.

2001-07-01T23:59:59.000Z

278

IA/Cyber Defense Brief for USAREUR Land EXPO  

Science Conference Proceedings (OSTI)

... Duty, Honor, Country. The Unholy Alliances. Spam Entrepreneurs; Adware / Spyware Providers; File Sharers; Phishers; Porn Purveyors; Hackers. ...

2007-11-15T23:59:59.000Z

279

www.ias.edu/rise Science Initiative Group  

E-Print Network (OSTI)

funds. He has an ally in Heneri Dzinotyiweyi, the Minister for Science and Technology Development as a regional research facility and as the coordinating hub of a regional network. The 60 computer users ­ staff

280

The SN Ia Rate in High-Redshift Galaxy Clusters  

NLE Websites -- All DOE Office Websites (Extended Search)

Lin, Y.-T. & Mohr, J. J. 2004, ApJ, 617, 879 Livio, M. 2001, in Supernovae and Gamma-Ray Bursts: the Greatest Explosions since the Big Bang, ed. M. Livio, N. Panagia, & K....

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

UMore Ph IA CR Report 7-8-10.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with construction of the wind turbine, 34.5 kV interconnect line, meteorologic tower, and associated roads and laydown areas, which encompasses approximately 33.25 acres...

282

Next-Generation Petascale Simulations of Type Ia Supernovae ...  

NLE Websites -- All DOE Office Websites (Extended Search)

deflagration to detonation transition model Deflagration to detonation transition model. Min lOng, Dan van Rossum, Sean Couch, George Jordan, Brad Gallagher, Don Lamb, University...

283

Closest Type Ia Supernova in Decades Solves a Cosmic Mystery  

NLE Websites -- All DOE Office Websites (Extended Search)

use to measure cosmic growth, a technique that in 1998 led to the discovery of dark energy - and 13 years later to a Nobel Prize, "for the discovery of the accelerating...

284

UNU-IAS Policy Report Biofuels in Africa  

E-Print Network (OSTI)

. Currently, liquid biofuels (e.g. bioethanol and biodiesel) produced from edible plants or animal fats/power generation (FAO, 2009; IEA, 2004). Currently, liquid biofuels (e.g. bioethanol and biodiesel) are by far) and conversion technology used, biofuels can be distinguished as first- and second-generation biofuels.2 First

285

Distributed Flames in Type Ia Supernovae A. J. Aspden1  

E-Print Network (OSTI)

generator trip controller AEC Canada, Ont. Hydro Nuclear reactor controller Argonne Token­based ACS of axioms of the logical theory. Part 2, 32.1.6 In summary, the practical options for Formal Arguments Case Studies: Verification Software Domain SACEM (Paris metro) GEC Alsthom, RATP Darlington nuclear

286

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Gasoline and Diesel Fuel Update (EIA)

accomplishments accomplishments are impressive in themselves, and associ- ated with each milestone is the expansion of future produc- tion opportunities as another technical barrier is overcome. The extension of recovery opportunities into deep water has established the deep offshore as an area of considerable national significance. A second source of increased supply is gas from coalbed formations. Natural gas production from coalbed methane fields continued to grow in 1996 as projects initiated mainly in the early to mid 1990's matured through the dewatering phase into higher rates of gas production. Coalbed forma- tions contribute almost 1 trillion cubic feet, roughly 5 per- cent, to total U.S. production. Continued production growth from coalbeds is not likely in light of the precipitous drop in new wells completed in coalbed formations since the termination of the production tax

287

NJ WY AK AL CA AR CO CT DE FL GA HI ID KS IL IN IA IA KY LA  

Annual Energy Outlook 2012 (EIA)

857, "Monthly Report of Natural Gas Purchases and Deliveries to Consumers." 0.00-1.99 2.00-2.99 3.00-3.99 4.00-4.99 5.00-5.99 6.00-6.99 7.00+ 15. Average City Gate Price of Natural...

288

Gcb0511 800..812  

NLE Websites -- All DOE Office Websites (Extended Search)

Interannual Interannual variability in global soil respiration, 1980±94 J A M E S W . R A I C H * , C H R I S T O P H E R S . P O T T E R { and D W I P E N B H A G A W A T I {,1 *Department of Botany, Iowa State University, Ames, IA, 50011, USA; {Ecosystem Science and Technology Branch, NASA-Ames Research Center, Moffett Field, CA 94035, USA; {Department of Civil and Construction Engineering, Iowa State University, Ames, IA, 50011 USA Abstract We used a climate-driven regression model to develop spatially resolved estimates of soil-CO 2 emissions from the terrestrial land surface for each month from January 1980 to December 1994, to evaluate the effects of interannual variations in climate on global soil- to-atmosphere CO 2 fluxes. The mean annual global soil-CO 2 flux over this 15-y period was estimated to be 80.4 (range 79.3±81.8) Pg C. Monthly variations in global soil-CO 2 emissions followed closely the mean temperature

289

201107861 1..6  

NLE Websites -- All DOE Office Websites (Extended Search)

Kinetically Kinetically inhibited order in a diamond-lattice antiferromagnet Gregory J. MacDougall a,1 , Delphine Gout a,b,c , Jerel L. Zarestky d , Georg Ehlers a , Andrey Podlesnyak a , Michael A. McGuire b , David Mandrus b,e , and Stephen E. Nagler a a Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; c Jülich Centre for Neutron Science-Spallation Neutron Source, Forschungszentrum Jülich, 52425 Jülich, Germany; d Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011; and e Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996 Edited* by M. Brian Maple, University of California, San Diego, La Jolla, CA, and approved August 2, 2011 (received for review May 17, 2011) Frustrated

290

Other Participants 1995 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

5 5 National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Past High School National Science Bowl Winners (1991 - 2012) Other Participants 1995 Print Text Size: A A A RSS Feeds FeedbackShare Page Aberdeen Central High School , Aberdeen , SD Ames High School , Ames , IA Armand Hammer United World College , Montezuma , NM

291

Jong-Woo Kim  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Jong-Woo Kim Argonne National Laboratory 9700 S. Cass Ave 432/B008 Argonne, Il 60439 Phone: 252-0248 Fax: 252-7392 E-Mail: jwkim@aps.anl.gov Education/Experience: 2007 - present: Assistant Physicist, Advanced Photon Source, Argonne National Lab. 2005-2007: Postdoctoral Research Associate, APS/μ-CAT, Ames Laboratory, Argonne, IL. Ph. D. Condensed Matter Physics; Iowa State University, Ames, IA; 2005 M.S. Physics; Yongsei University, Seoul, Korea; 2000

292

Selecting a Host DOE Laboratory | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Selecting a Host DOE Laboratory Selecting a Host DOE Laboratory Visiting Faculty Program (VFP) VFP Home Eligibility Benefits Participant Obligations How to Apply Selecting a Host DOE Laboratory Developing a Research Proposal Recommender Information Student Participants Submitting a Proposal to DOE Application Selection Process and Notification Key Dates Frequently Asked Questions Contact WDTS Home How to Apply Selecting a Host DOE Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page FY 2013 Participating DOE Laboratories and Contacts DOE Laboratory Laboratory VFP Contact Ames Laboratory - Ames, IA Steve Karsjen, karsjen@ameslab.gov Argonne National Laboratory - Argonne, IL Lou Harnisch, Lharnisch@anl.gov Brookhaven National Laboratory - Upton, NY Noel Blackburn, blackburn@bnl.gov Fermi National Accelerator Laboratory - Batavia, IL Marge Bardeen, mbardeen@fnal.gov

293

Other Participants 1994 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

4 4 National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Past High School National Science Bowl Winners (1991 - 2012) Other Participants 1994 Print Text Size: A A A RSS Feeds FeedbackShare Page Air Academy High School, Colorado Springs, CO Ames High School , Ames , IA Baldwin Senior High School , Baldwin , NY

294

Other Participants 1996 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

6 6 National Science Bowl® (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Past High School National Science Bowl Winners (1991 - 2012) Other Participants 1996 Print Text Size: A A A RSS Feeds FeedbackShare Page Ames High School , Ames , IA Arcadia High School , Arcadia , CA Armand Hammer United World College , Montezuma , NM

295

Doug Robinson  

NLE Websites -- All DOE Office Websites (Extended Search)

MM-Group Home MM-Group Home MMG Advisory Committees Beamlines 4-ID-C Soft Spectroscopy 4-ID-D Hard Spectroscopy 6-ID-B,C Mag. Scattering 6-ID-D HighE Scattering 29-ID IEX - ARPES,RSXS Getting Beamtime Sector Orientation Sector 4 Orientation Sector 6 Orientation Publications (4-ID) Publications (6-ID) Contact Us APS Ring Status Current APS Schedule Doug Robinson Argonne National Laboratory 9700 S. Cass Ave 432/B007 Argonne, Il 60439 Phone: 252-0247 Fax: 252-7392 E-Mail: drobinsn@aps.anl.gov Education/Experience: 2009 - present: Physicist, Argonne National Lab. 1997 -2009: Beamline Scientist, APS/μ-CAT, Ames Laboratory, Argonne, IL. 1988-1997: Staff Scientist, Microelectronics Research Center, Iowa State University, Ames, IA Ph.D. Condensed Matter Physics, University of Illinois, Urbana,

296

COMMUNICATIONS OF THE ACM January 2002/Vol. 45, No. 1 43 ameBots [1] is a virtual reality  

E-Print Network (OSTI)

is available in Tcl/Tk, Java, C/C++, and more. Tools for visualiz- ing the terrain in which agents interact

Kaminka, Gal A.

297

Gibson Grove A.M.E. Zion Church Gone But Not Forgotten: The Archaeology of an African American Church  

E-Print Network (OSTI)

I chose to conduct further investigations into the historyI want to conduct further investigations into this fraternalI would conduct the archaeological investigations for the

Jones, Alexandra

2010-01-01T23:59:59.000Z

298

Initial orientation effect and selecting desired events in 520AMeV/u U-U collisions  

E-Print Network (OSTI)

How to select out those collisions with the desired geometry such as tip-tip and/or body-body in experiment is one key point for performing high energy UU collisions. With a relativistic transport model, we performed a simulation for deformed UU collision with vast different orientations at CSR energy area corresponding to the high net-baryon density region in QCD phase diagram. By investigating the centrality and initial collision orientation dependence of the center baryon density, we found that the tip-tip like UU collisions with extended high density phase, which is very important for studying the nuclear EoS of high baryon density matter and the possible end-point of the phase boundary, are those events with small initial orientations ($\\leq20^{0}$) for bath projectile and target in reaction plane and small impact parameter ($\\leq2.6fm$). We pointed out quantificationally two observations -- multiplicity of forward neutron and nuclear stopping power that both allows us to select out those most interesting events (i.e. tip-tip like), which will be very helpful for the future experiments at performing UU collisions.

K. J. Wu; F. Liu; N. Xu

2008-11-19T23:59:59.000Z

299

AME 514 Applications of Combustion -Spring 2013 Assignment #5: "Due" Friday 5/3/13 but assignments will be accepted  

E-Print Network (OSTI)

on mediatorless microbial fuel cells). M. V. Kök, G. Guner, S. Bagci, Oil Shale, Vol. 25, No. 2, pp. 217­225 (2008). Paper on in situ combustion of oil shale for oil production. Kocha, S. S. Yang, J. D., Yi, J. S. (2006

300

Gibson Grove A.M.E. Zion Church Gone But Not Forgotten: The Archaeology of an African American Church  

E-Print Network (OSTI)

of 10 YR 5/4 yellowish brown sandy silt loam with about 30%of 10 YR 5/4 yellowish brown sandy silt loam with about 30%loam 30% rock 2) 10YR 5/6 sandy loam STP No: 3 Location: W

Jones, Alexandra

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Iowa | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 21, 2011 Nanomaterials Safety Implementation Plan, Ames Laboratory Ames Laboratory has limited activities involving nanomaterials. Potential hazards associated with...

302

Third Century Third Century  

Science Conference Proceedings (OSTI)

... Daniel T. Ames Ames on Forgery 1900 ... This laboratory was modeled after multidisciplinary European laboratories and included a ...

2013-06-12T23:59:59.000Z

303

DLMF: Chapter 19 Elliptic Integrals  

Science Conference Proceedings (OSTI)

... B. C. Carlson. Mathematics Department and Ames Laboratory (US Department of Energy), Iowa State University, Ames, Iowa. ...

2013-05-03T23:59:59.000Z

304

QCL IA 2009-2012 Proposed Research The QCL IA has several major themes around which our individual research projects are organized.  

E-Print Network (OSTI)

)a 1970 2 015 424 ­ Cemet factory expansion (1972­1973)d ; sugar cane mill (1974); PEMEX oil refinery (1978) 1980 2 369 076 Miguel de la Madrid (1988) PEMEX oil refinery expansion (1981, 1983)e ; PEMEX

Texas at Austin, University of

305

Sensitivity analysis of world oil prices. Analysis report AR/IA/79-47  

SciTech Connect

An analysis of the impact of the political disruption in Iran on the world oil market is presented. During the first quarter of 1979, this disruption caused a loss of approximately 5 million barrels per day (MMBD) of oil production available for export from Iran to the rest of the world. This loss of production and the political climate in Iran have caused much speculation concerning future Iranian oil production and total Organization of Petroleum Exporting Countries (OPEC) oil production in the nearterm and midterm. The analysis describes these issues in terms of two critical factors: the world oil price and the level of OPEC oil production in the nearterm and midterm. A detailed comparison of the Central Intelligence Agency (CIA) and Energy Information Agency (EIA) forecasting models of world oil prices is presented. This comparison consists of examining reasons for differences in the price forecasts of the CIA model by using CIA assumptions within the EIA model. The CIA and EIA model structures and major parameters are also compared. It is important to note that this analysis is not all encompassing. In particular, the analysis does not provide data on crude oil prices in the spot market, but does provide information on the average crude oil price; and does not permit rationing of oil, since the market is forced to clear only through changes in oil prices. Throughout this paper, world oil prices are defined in terms of real 1978 dollars per barrel of crude oil delivered to the East Coast of the United States net of any import fees.

Rodekohr, M.; Cato, D.

1979-09-01T23:59:59.000Z

306

The A2iA Arabic Handwritten Text Recognition System at the ...  

Science Conference Proceedings (OSTI)

... This two- step training schedule greatly helped to reduce convergence times ... This pro- cedure requires the construction of a decoding graph that ...

2013-08-19T23:59:59.000Z

307

Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Garavini, G.; Supernova Cosmology Project

2008-01-01T23:59:59.000Z

308

Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

Meyers, Joshua Evan

2012-01-01T23:59:59.000Z

309

SUSTAINABILITY EXCELLENTIA CoLumbIA ENgINEErINg130  

E-Print Network (OSTI)

. Journal of "Solar Energy Materials and Solar Cells". Proceedings of IEEE Photovoltaic Specialist Conferences. Proceedings of European Photovoltaic Solar Energy Conferences. #12;Module 2/Photovoltaics, Wiley, 1995. R.H.Bube, Photovoltaic Materials, Imperial College Press, 1998. Journal of "Solar Energy

310

_ _i_i Association for ,nformation and Image Management i; _ J , IA Spring, Maryland 20310  

E-Print Network (OSTI)

the maximum pressure needed to lift the overburden (``the fracture pressure''), and new CO2 injection wells (MMscf) of natural gas burned to generate elec- tricity (n3045us2a.xls). All these data are posted generation has been calculated from the DOE EIA files epmxlfile4_1.xls (Report DOE/EIA-0226) for coal, and n

Hazen, Terry

311

Prospects for Type Ia Supernova explosion mechanism identification with gamma rays  

E-Print Network (OSTI)

The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of of radioactive nuclei are produced during these events and they are expected to be strong gamma-ray emitters. In the past, several authors have investigated the use of this gamma-ray emission as a diagnostic tool. In this paper we have done a complete study of the gamma-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-center detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estim...

Gmez-Gomar, J; Jean, P; Gomez-Gomar, Jordi; Isern, Jordi; Jean, Pierre

1997-01-01T23:59:59.000Z

312

OS and compiler considerations in the design of the IA-64 architecture  

Science Conference Proceedings (OSTI)

Increasing demands for processor performance have outstripped the pace of process and frequency improvements, pushing designers to find ways of increasing the amount of work that can be processed in parallel. Traditional RISC architectures use hardware ...

Rumi Zahir; Jonathan Ross; Dale Morris; Drew Hess

2000-12-01T23:59:59.000Z

313

Pacific Northwest National Laboratory: INstItute for INterfacIaL cataLysIs  

E-Print Network (OSTI)

shell (biomass) cellulosa type of reaction flash pyrolysis pyrolysis flash pyrolysis slow pyrolysis. Scott, J. Piskorz, D. Radlein; Liquid Products from the Continuous Flash Pyrolysis of Biomass, Ind. Eng; The Continous Flash Pyrolysis of Biomass, The Canadian Journal of Chemical Engineering, 1984, 62, 404-412 #12

314

Regional Initiative in Science and Education www.ias.edu/rise  

E-Print Network (OSTI)

funds. He has an ally in Heneri Dzinotyiweyi, the Minister for Science and Technology Development as a regional research facility and as the coordinating hub of a regional network. The 60 computer users ­ staff

315

SUSTAINABILITY EXCELLENTIA CoLumbIA ENgINEErINg102  

E-Print Network (OSTI)

when carbon dioxide is introduced into thermal conversion processes such as the gasification of coal to syngas, leaving behind only a carbonless char. Castaldi estimates that if the biomass were used

316

Pacific Northwest National Laboratory: INstItute for INterfacIaL cataLysIs  

E-Print Network (OSTI)

of Chemistry University of Calgary,Alberta, Canada T2N 1N4 New Orleans National Meeting Modeling the Fischer-Tropsch study Fischer-Tropsch synthesis: An Introduction First discovered by Sabatier and Sanderens in 1902: CO + H2 CH4 Ni,Fe,Co Fischer and Tropsch reported in 1923 the synthesis of liquid hydrocarbons with high

317

Targeted Energy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA  

SciTech Connect

This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

2013-03-01T23:59:59.000Z

318

SUSTAINABILITY EXCELLENTIA CoLumbIA ENgINEErINg 141  

E-Print Network (OSTI)

- onry is also crucial to their safe storage. Plutonium, an active ingredient in nuclear weap- ons, has to determine how the electrons within these materials will behave. "The plutonium in the weapons ages, and we have to be able to predict the proper- ties of plutonium under a variety of conditions," Chris

319

From Convection to Explosion: End-to-End Simulation of Type Ia Supernovae  

E-Print Network (OSTI)

INCITE award at the Oak Ridge Leadership Computational Facility (OLCF) at Oak Ridge National Laboratory

Bell, John B.

320

Teor'ia de Grupos y Mec'anica Qu'antica Luis A. Seco  

E-Print Network (OSTI)

armonicos desacoplados. 7. El ' atomo de hidr'ogeno. 8. El helio y los otros 'atomos. 9. Mol'eculas. 10

Seco, Luis A.

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

INFORMATION EXCELLENTIA CoLumbIA ENgINEErINg238  

E-Print Network (OSTI)

that bends and twists. "Computers, geometry, and physics are my ingredients. I mix them up in a bowl and what science as well. B.A.Sc., University of Toronto (Canada), 1997; M.S., California Institute of TechnologySPUn Associate Professor of Computer Science #12;

Hone, James

322

Targeted Eneregy Efficiency Expert Evaluation Report: Neal Smith Federal Building, Des Moines, IA  

SciTech Connect

This report summarizes the energy efficiency measures identified and implemented, and an analysis of the energy savings realized using low-cost/no-cost control system measures identified.

Fernandez, Nicholas; Goddard, James K.; Underhill, Ronald M.; Gowri, Krishnan

2013-03-01T23:59:59.000Z

323

REPORT OF THE PRESIDENT,~ -01 OF THE UNIVERSITY OF BRITISH COLm~IA~ -  

E-Print Network (OSTI)

38 R~port of the Instructor in Physical Education for Women 39 g~portof the Office!: Co Second Yearoo.....eoQ....oo........... Third Year.....OOO..OO..O.............Fourth Ye~.O..O.O.OIO; Engineer 134; Farmer 75; Inspector 21; Insurance 34; Lawyer 39; Lumberman 33; Manager 54; Merchant 97

Pulfrey, David L.

324

2901 South Loop Drive, Suite 3100 ~ Ames, Iowa 50010-8634 IowaStateUniversity~Universityof Missouri-Columbia~LincolnUniversity  

E-Print Network (OSTI)

in selecting maintenance strategies. Typically, a roadway management system includes a set of analysis tools-Swailmi (1994) introduces the framework for municipal maintenance management systems. It is focused for use for a maintenance management system (MMS). Then, it is combined with city's subsystem to eliminate conflicts between

Beresnev, Igor

325

Introductory Notes on AgentIntroductory Notes on Agent--Based Modeling,Based Modeling, AgentAgent--Oriented Programming, & AMESOriented Programming, & AMES  

E-Print Network (OSTI)

with methods that act on this data -Global regularities arise from the interactions of distributed agents #12,...) - Physical entities (weather, landscape, electric grids,...) #12;5 Partial depiction of agents a system as a collection of interacting "agents" -Each agent is an entity encapsulating data together

Tesfatsion, Leigh

326

Just What is a Supernova?  

NLE Websites -- All DOE Office Websites (Extended Search)

Matter transfer in a binary system Distances to Type Ia Supernovae Slide 8 Supernova "CAT Scan" Type Ia Supernova lightcurves Type Ia Supernovae and Cosmology Type Ia Supernovae...

327

IS-M  

Office of Scientific and Technical Information (OSTI)

IS-M IS-M 796 Methods and Opportunities in the Recycling of Rare Earth Based Materials T. W. Ellis, F. A. Schmidt, and L. L. Jones Metallurgy and Ceramics Division Ames Laboratory, U.S.D.0.E AES , IA, 5001 1-3020 U.S.A. Abstract Rare Earth based materials are increasingly being utilized in industrial and commercial practice. Large volume production of permanent magnet materials, Nd2Fei4B, SmCo5, Sm2Col7, and rechargeable Ni/Metal Hydride batteries, LaNi5, has increased the amount of rare earth based materials in the waste stream. Both for economic and environmental reasons, recycling and reuse of a l l materials is desirable. Unfortunately, the recycling methodology for these materials is in its infancy. In this paper the present "state of the art" in recycling of rare earth based materials will be

328

Microsoft PowerPoint - Proceedings Cover Sheets  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Agricultural and Rural Development Assessment of Baseline Soil Carbon Sequestration Assessment of Baseline Soil Carbon Sequestration Using an Econometrically Estimated Model of Conservation Tillage Catherine L. Kling Catherine L. Kling Center for Agricultural and Rural Development (CARD) Department of Economics Iowa State University Ames, IA 50011-1070 (ckling@iastate.edu) Introduction Conservation tillage (CT) is regarded as one of the most effective practices for increasing carbon content in many agricultural soils. Since many farmers use CT without any policy intervention, a key question associated with any policy designed to increase the adoption of CT to induce higher carbon sequestration is the amount of carbon that can be directly credited to the program versus that which would

329

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid  

NLE Websites -- All DOE Office Websites (Extended Search)

Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Global Patterns of Carbon Dioxide Emissions from Soils on a 0.5 Degree Grid Cell Basis (DB-1015) DOI: 10.3334/CDIAC/lue.db1015 This data has been updated. Please see NDP-081. Contributed by: James W. Raich 1 and Christopher S. Potter2 1Department of Botany Iowa State University Ames, IA 50011 USA Email: jraich@iastate.edu 2NASA Ames Research Center MS 242-2 Moffett Field, CA 94035 USA Email: cpotter@gaia.arc.nasa.gov Prepared by L.M. Olsen. Carbon Dioxide Information Analysis Center Date Published: March, 1996 (Revised for the web: 2002) The Carbon Dioxide Information Analysis Center is a part of the Environmental Sciences Division of the OAK RIDGE NATIONAL LABORATORY (ORNL) and is located in Oak Ridge, Tennessee 37831-6290. The ORNL is managed by University of Tennessee-Battelle, LLC for the U.S. DEPARTMENT OF ENERGY

330

Synthesis of Superconducting MgB2 Wire, Tapes and Films - Energy ...  

Electricity Transmission Synthesis of Superconducting MgB2 Wire, Tapes and Films Ames Laboratory. Contact AMES About This Technology Technology Marketing ...

331

Office of the Chief Financial Officer Annual Report 2007  

E-Print Network (OSTI)

Financial Information is Available Acronym Ames ANL BNL FNAL LANL LBNL LLNL ORNLFinancial Information is Available Acronym Ames ANL BNL FNAL LANL LBNL LLNL ORNL

Fernandez, Jeffrey

2008-01-01T23:59:59.000Z

332

Resources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Resources Ames Site Office (AMSO) AMSO Home About AMSO Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Ames Site Office...

333

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011-annual-planning-summary-ames-site-office-ames Article Tandem Catalysis in Nanocrystal Interfaces http:energy.govarticlestandem-catalysis-nanocrystal-interfaces...

334

Instrument Schedule for dcs  

Science Conference Proceedings (OSTI)

... 2004, 4, 4612, Energy levels of the giant {Mo72Fe30} magnetic molecule, Garlea* Nagler Zarestky, Vaknin* and Stassis, Ames Lab ORNL Ames Lab ...

335

liljegren(4)-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Observations of Integrated Water Vapor and Cloud Liquid Water at SHEBA J. C. Liljegren Ames Laboratory Ames, Iowa Introduction In the arctic, water vapor and clouds influence the...

336

DOE Site HSPD-12 Card Issuance Performance Measures 10-8-10...  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations Office New Brunswick Laboratory Brookhaven Site Office Brookhaven National Laboratory Ames Area Office Ames Laboratory Argonne Site Office Argonne National...

337

liljegren(2)-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

and Millimeter Cloud Radar to Improve Integrated Liquid Water Retrievals J. C. Liljegren Ames Laboratory Ames, Iowa Introduction The present statistical retrieval, with which the...

338

Feature | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

and its array of science programs. Explore the resources and get quick links to nearby Ames Laboratory and its community college programs. Ames is managed by Iowa State...

339

WC)-90-007 STATEMENT OF CONSIDERATIONS CLASS WAIVER OF THE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

considers its Government-owned, Contractor-operated (GOCOs) laboratories, such as the Ames Laboratory (Ames) national resources capable of providing significant contribution to...

340

liljegren(1)-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

Automatic Self-Calibration of ARM Microwave Radiometers J. C. Liljegren Ames Laboratory Ames, Iowa Introduction The Atmospheric Radiation Measurement (ARM) Program has deployed...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Dynamic Whitelist Generation for Automated Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Methodology Methodology Results Dynamic Whitelist Generation for Automated Response Chris Strasburg, Josh Adams Ames Laboratory, US DOE cstras@ameslab.gov, jadams@ameslab.gov The Ames Laboratory, US DOE 1 Dynamic Whitelist Generation for Automated Response Introduction Methodology Results Outline 1 Introduction About Ames Laboratory Motivation 2 Methodology Data Classifiers Experiments 3 Results The Ames Laboratory, US DOE 2 Dynamic Whitelist Generation for Automated Response Introduction Methodology Results About Ames Laboratory Motivation Ames Physical Environment The Ames Laboratory, US DOE 3 Dynamic Whitelist Generation for Automated Response Introduction Methodology Results About Ames Laboratory Motivation Ames Network Environment The Ames Laboratory, US DOE 4 Dynamic Whitelist Generation for Automated Response Introduction Methodology Results About Ames

342

Closed Sessions Program The closed session program plan is given in detail in Appendix I-A. The program started  

E-Print Network (OSTI)

for enhancing renewable energy usage · Assist in education and research in renewable energy · Changing behavior on "Energy for Sustainable Development: Perspectives from the Arab Region", followed by 20-minute presentations by participating Middle East Universities on their country specific energy profiles, with emphasis

343

Automotive Stirling Engine Market and Industrial Readiness Program (MIRP). Final report for Phase IA, September 15, 1982-July 31, 1984  

SciTech Connect

A brief history of the project is presented. Included in appendices are the scope of work, management and cost plans, major milestones, and the digital engine control spare parts' list. (MHR)

Not Available

1984-08-01T23:59:59.000Z

344

Analysis of the Thermal Performance of Tierra I--A Low-Energy High-Mass Residence  

DOE Green Energy (OSTI)

A low-energy concrete house was designed using passive solar strategies to consume 70% less heating and cooling energy than a base case that conformed to the 1996 Home Energy Rating System (HERS) and the 1995 Model Energy Code (MEC). The performance of this house was then evaluated using computer simulations and measured data. The house, Tierra I, was monitored from July 22, 1996, through October 14, 1997. A Short Term Energy Monitoring (STEM) test was done November 19 to December 10, 1996. Computer simulations of the house were done using SUNREL, an updated version of the hourly data simulation package SERI-RES. The SUNREL model of the house was calibrated using both short- and long-term data. The house achieved energy savings of 56%, below the goal of 70%. The lower than expected savings resulted from problems with the window modeling. As a result, during the design phase the solar gains were overestimated causing an underestimate in the level of insulation necessary to achieve the savings goal. For very low-energy passive solar buildings, it is apparent that very accurate window modeling is required. It also became apparent that accurate ground models are required as well because ground-heat loss accounts for a significant portion of the total heat loss in low-energy buildings.

Smith, M. W.

2001-05-31T23:59:59.000Z

345

IA-SDSS: A GIS-based land use decision support system with consideration of carbon sequestration  

Science Conference Proceedings (OSTI)

Land use, land use change and forestry (LULUCF) can play a positive role in mitigating global warming by sequestering carbon from the atmosphere into vegetation and soils. Local entities (e.g. local government, community, stockholders) have been making ... Keywords: Carbon models, Carbon sequestration, GIS, Integrated assessment, Land-use planning, RS, SDSS

Jun Wang; Jingming Chen; Weimin Ju; Manchun Li

2010-04-01T23:59:59.000Z

346

On October 15, 2010, the University of Memphis Center for Information Assurance (CfIA) hosted the 3rd  

E-Print Network (OSTI)

digital devices, and we encourage you to read the excellent summary from the National Counter-Intelligence for an unspecified period of time. This policy applies to anyone entering the country, including US citizens

Memphis, University of

347

Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ~; 0.5  

E-Print Network (OSTI)

A. 1999, ApJ, 525, 583 Balbi, A. , Ade, P. , Bock, J. etJa?e, A.H. , Ade, P.A. , Balbi, A. et al. , 2001, Phys. Rev.

2005-01-01T23:59:59.000Z

348

Ab initio formation energies of FeCr alloys P. Olsson a,*, I.A. Abrikosov b  

E-Print Network (OSTI)

University, Box 534, SE-75121 Uppsala, Sweden c Department of Nuclear and Reactor Physics, Royal Institute Uppsala, Sweden b Condensed Matter Theory Group, Physics Department, AAngstroom Laboratory, Uppsala reactors, face centered cubic (fcc) and hexagonal close packed (hcp) phases were considered in order

349

Baldrige Award Recipients 19882012  

Science Conference Proceedings (OSTI)

... Marriott International); Granite Rock Co. (now Graniterock); Eastman Chemical Company; Ames Rubber Corporation; AT&T ...

2013-05-09T23:59:59.000Z

350

Process for Fabrication of Efficient Solar Cells - Energy ...  

Ames Laboratory researchers have developed a process for fabrication of solar cells with increased efficiency.

351

NIST Manuscript Publication Search  

Science Conference Proceedings (OSTI)

... Title: Radiometric Validation of NASA's Ames Research Center's Sensor Calibration Laboratory. Published: Date Unknown. Abstract: ...

2012-04-09T23:59:59.000Z

352

Summer Internships 2008  

Science Conference Proceedings (OSTI)

... Ames Research Center + Dryden Flight Research ... CUA/Astrochemistry Lab Gunther Kletetschka Tomoko ... Atmospheric Experiments Laboratory ...

2010-10-28T23:59:59.000Z

353

Workshop Attendees  

Science Conference Proceedings (OSTI)

... Jerry Simmons Sandia National Laboratories ... Niki Werkheiser NASA Ames Research Center ... Debora Wolfenbarger Jet Propulsion Laboratory ...

2012-10-12T23:59:59.000Z

354

AME 514 -Applications of Combustion -Spring 2013 Homework #2 Due Friday 3/15/13, 4:30 pm in the drop box in OHE 430N (Xerox room). If you're off  

E-Print Network (OSTI)

- and macroscale vacuum pump without moving parts or fluids," Journal of Vacuum Science and Technology A, Vol. 17 day late. Part 1: paper review Read one of the research papers below. For your convenience, most., "Combustion in heat exchangers," Proc. Roy. Soc. Lond. A. 360:97-115 (1978). (Modeling of Swiss roll

355

Des Moines Area Community College | .EDUconnections  

NLE Websites -- All DOE Office Websites (Extended Search)

Ames Laboratory Ames Laboratory is one of DOE's 10 Office of Science world-class research laboratories, located on the Iowa State University campus just 35 miles from the Des Moines Area Community College. Ames Lab is operated by Iowa State University. Ames Laboratory Ames Laboratory is one of DOE's 10 Office of Science world-class research laboratories, located on the Iowa State University campus just 35 miles from the Des Moines Area Community College. Ames Lab is operated by Iowa State University. Scientific Programs Science Undergraduate Laboratory Internships at Ames Lab Pre-Service Teacher Program DOE Ames Lab Faculty and Student Program (FaST) DOE Ames Lab Community College Institute Program Des Moines Area Community College Des Moines Area Community College Des Moines, Iowa DOE Applauds DMACC's Science and Technical Programs Agri/Natural Resources Biology Biomass Operations Biotechnology Environmental Science Information Technology Manufacturing Technology Microcomputers Civil Engineering Pre-Medical Telecommunications

356

Office of the Chief Financial Officer Annual Report 2007  

E-Print Network (OSTI)

FNAL LANL LBNL LLNL ORNL PNNL PPPL SLAC SNL a. Ames-Overheadmodi?ed cost base. n. PNNL-Distribution base and overheadFNAL LANL LBNL LLNL ORNL PNNL PPPL SLAC SNL a. Ames-Overhead

Fernandez, Jeffrey

2008-01-01T23:59:59.000Z

357

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

NLE Websites -- All DOE Office Websites (Extended Search)

of gas turbine combustor swirling flows and their effects on the combustion linerdomeshield surface heat transfer. Robin W. Ames Digitally signed by Robin W. Ames DN: cnRobin W....

358

Stochastic algorithms for the analysis of numerical flame simulations  

E-Print Network (OSTI)

methane/air ?ames. Combust. Flame, 123:522546, 2000. [7] J.reactants. Combust. Flame, 121:395417, [21] R. Hilbert, F.ame burning rate. Combust. Flame, [29] H. N. Najm and P. S.

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

2004-01-01T23:59:59.000Z

359

Audit Report: OAS-M-05-05 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: OAS-M-05-05 May 10, 2005 Management Controls over Patent and Royalty Income at Ames Laboratory The Ames Laboratory did not control royalty income resulting from the...

360

Effects of a Rare Earth Addition on Unitemp(TM) 901  

Science Conference Proceedings (OSTI)

of Common Metals", Ames Laboratory,. ERDA, Iowa State University,. Ames, Iowa , 1976. W. G. Wilson, D. A. R. Kay and A. Vahed, J. Met., May 1974, pp. 14-23.

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mailing Addresses for National Laboratories and Technology Centers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory 311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S....

362

October 23, 2003, Board Public Meeting - Lessons Learned from...  

NLE Websites -- All DOE Office Websites (Extended Search)

case in point. Scott Hubbard, who runs Ames NASA Ames Research Center. Then we've got Roger Tetrault that some of you may know from DOE. He was the chairman of McDermott...

363

NP Research | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

364

Springtime and Sparkling Films | U.S. DOE Office of Science ...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

365

SciDAC HEP FAQ | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

366

Burton Richter, 2010 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

367

"Printing" Tiny Batteries | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

368

LPE Staff | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

369

2009 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

370

Breaking Ground and Driving Discovery | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

371

2007 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

372

How Accelerator Physicists Save Time | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

373

February 2012| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

374

Energy Department Issues Draft Request for Proposals for Operation...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

375

Facilities and Infrastructure | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

376

2013 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

377

A Nanoscale "Tune-Up" for Fuel Cells | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

378

Recovery Act | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

379

DOE National Laboratories Train the Scientist of Tomorrow | U...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

380

Current Projects | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon Nanotubes and Nano-Structure Manufacturing at TJNAF |...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

382

In Focus | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

383

2012 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

384

ASCR Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

385

Other Participants 1991 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

386

High School Students | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

387

Dog Days and "Dark Matter"  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

388

Magnetic Resonance Imaging at Princeton, UofV, and UNH | U.S...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

389

In the News | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

390

FREQUENTLY ASKED QUESTIONS - mathfaq | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

391

Boron-Nitride (BN) Nanotubes (BNNT) at TJNAF| U.S. DOE Office...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

392

Superfast Search Engine Speeds Past the Competition | U.S. DOE...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

393

Fresh Air That's as Good as Gold  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

394

Middle School Students | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

395

Virginia Regional Science Bowl | U.S. DOE Office of Science ...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

396

High Performance Computing at TJNAF| U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

397

Softening Switchgrass | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

398

Mimicking Nature Backwards and Forwards | U.S. DOE Office of...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

399

ESnet 4 Helps Researchers Seeking the Origins of Matter | U.S...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

400

DOE Funded Research Projects Win 31 R D 100 Awards for 2007 October...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Magellan additional information | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

402

QCDOC -Quantum Chromodynamics on a Chip at BNL | U.S. DOE Office...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

403

Dented Diamonds, Carbon Cages and Exceptional Potential | U.S...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

404

Workshops & Conferences Archive | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

405

Frequently Asked Questions For Computer Science Solicitations...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

406

FES Funding Opportunities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

407

"Nano-Tweezers" Made of Light | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

408

Frequently Asked Questions - Co-Design | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

409

DOE Funded Research Projects Win 30 R&D 100 Awards for 2008 ...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

410

Amazing Mirrors and Superlative Supercomputers | U.S. DOE Office...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

411

Energy Recovered Light Source Technology at TJNAF | U.S. DOE...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

412

Energy Sciences Network (ESnet) | U.S. DOE Office of Science...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

413

Reporting SBIR/STTR Fraud | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

414

Free Electron Laser Program Program at TJNAF| U.S. DOE Office...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

415

High Purity Germanium Detectors at LBNL | U.S. DOE Office of...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

416

DOE National Laboratory Research Projects Win 31 R&D 100 Awards...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

417

U.S. Department of Energy Awards Contract for Management and...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National...

418

Iron Catalysis in Oxidations by Ozone - Energy Innovation Portal  

Wind Energy; Partners (27) Visual Patent Search; Success Stories; News; Events; Industrial Technologies Iron Catalysis in Oxidations by Ozone Ames ...

419

Fabrication of Emissible Metallic Layer-by-Layer Photonic ...  

Iowa State University and Ames Laboratory researchers have developed a method for increasing the efficiency of conventional incandescent light bulbs.

420

About the Ninth International Conference on Metal Organic Vapor ...  

Science Conference Proceedings (OSTI)

... Dept. of Chemical Engineering, Building 66-566, 25 Ames Street, Cambridge, ... Packard Laboratories; Jerry Olson, National Renewable Energy Laboratory;...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

SHPE NYC Regional Science Bowl | U.S. DOE Office of Science ...  

Office of Science (SC) Website

and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National Laboratory Brookhaven...

422

Linearly Polarized Thermal Emitter for More Efficient Thermophotovoltaic Devices  

Ames Laboratory researchers have developed fabrication methods for a polarized thermal emitter than can be used to create more efficient ...

423

Mechanochemical Preparation of Phosphonium Salts and ...  

Researchers at Iowa State University and Ames Laboratory have developed a unique, solvent-free mechanochemical preparation method to prepare ...

424

Significance Test in Speaker Recognition Data Analysis with ...  

Science Conference Proceedings (OSTI)

... and Computational Mathematics Division, Information Technology Laboratory, National Institute ... fourth ed., Iowa State University Press, Ames, (1988 ...

2012-10-16T23:59:59.000Z

425

nasa-award  

Science Conference Proceedings (OSTI)

... hours on the Columbia supercomputer at NASA Ames Research Center. ... Nicos Martys and Edward Garboczi of The NIST Engineering Laboratory. ...

2010-12-10T23:59:59.000Z

426

NuGrain Laboratories Case Study  

Science Conference Proceedings (OSTI)

... and Psychology Martha Ames Student Resource ... moved to the farmlands in the regional laboratories. All laboratory locations are near collaborating ...

2012-10-25T23:59:59.000Z

427

New Model Systems for Studying Highly Frustrated Magnetism  

Science Conference Proceedings (OSTI)

... New Model Systems for Studying Highly Frustrated Magnetism. Ovidiu Garlea, Ames Laboratory. In the field of frustrated ...

428

Color Tests and Analytical Difficulties with Emerging Drugs of ...  

Science Conference Proceedings (OSTI)

... This work was funded by subcontract SC-12- 370 through Ames Laboratory and the Midwest Forensic Resource Center Page 36.

2013-04-29T23:59:59.000Z

429

DLMF: ProfileBille C. Carlson  

Science Conference Proceedings (OSTI)

... in Cambridge, Massachusetts) is Professor Emeritus in the Department of Mathematics and Associate of the Ames Laboratory (US Department of ...

2013-05-03T23:59:59.000Z

430

DOE Office of Science - Chicago Office  

NLE Websites -- All DOE Office Websites (Extended Search)

LABORATORY COMMUNITY INVOLVEMENT PROGRAMS Ames Laboratory's Education and Outreach Programs Argonne National Laboratory Community and Environment Brookhaven National Laboratory...

431

NCNR Seminar Archives 2004  

Science Conference Proceedings (OSTI)

... James B. Ames, Center for Advanced Research in ... Speaker: Samed Halilov, Naval Research Laboratory. ... by neutron scattering and lab methods. ...

432

U.S. Department of Energy Research News  

NLE Websites -- All DOE Office Websites (Extended Search)

LABS Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Idaho National Laboratory Lawrence Berkeley National...

433

NIST: Electron-Impact Cross Section Database  

Science Conference Proceedings (OSTI)

... of Chemistry, Washington, DC 20059 5: NIST, Physics Laboratory, Office of ... are gratefully acknowledged: WM Huo, NASA Ames Research Center ...

434

Nanoscale Vise Puts the Squeeze on Ferroelectric Materials  

Science Conference Proceedings (OSTI)

May 26, 2009... State University, Northwestern University, Motorola, Ames Laboratory, Intel Corporation, and Tricorn Tech contributed to this development.

435

ANOMA TERIALS  

Science Conference Proceedings (OSTI)

... Materials Science and Engineering Laboratory ... Design, NIST, various national laboratories (Sandia, Air Force Research Lab, Ames, Los Alamos ...

2012-10-02T23:59:59.000Z

436

General Phase Transformations - Non-Ferrous: Part III  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Location: Henry B. Gonzalez Convention Center Session Chair: Matthew Kramer, Ames Laboratory; Greg Thompson, University of Alabama...

437

Publications Portal  

Science Conference Proceedings (OSTI)

... Radiometric Validation of NASA's Ames Research Center's Sensor Calibration Laboratory Published: Date unknown Authors: Steven W Brown ...

2012-09-17T23:59:59.000Z

438

Measurement of Omega_m, Omega_Lambda from a blind analysis of Type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the Universe  

E-Print Network (OSTI)

Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space

2006-01-01T23:59:59.000Z

439

OES-IA Annex IV: Environmental Effects of Marine and Hydrokinetic Devices - Report from the Experts Workshop September 27th 28th 2010 Clontarf Castle, Dublin Ireland  

SciTech Connect

An experts' workshop was convened in Dublin Ireland September 27th 28th 2010 in support of IEA Ocean Energy Systems Implementing Agreement Annex IV. PNNL was responsible for organizing the content of the workshop, overseeing the contractors (Irish Marine Institute) hosting the event, presenting material on Annex IV and materials applicable to the workshop intent. PNNL is also overseeing a contractor (Wave Energy Center/University of Plymouth WEC/UP) in the collection and analysis of the Annex IV data. Fifty-eight experts from 8 countries attended the workshop by invitation, spending two days discussing the needs of Annex IV. Presentations by DOE (background on Annex IV), PNNL (process for developing Annex IV; presentation of the draft database for PNNL project, plans for incorporating Annex IV data), WEC/UP on the environmental effect matrix, and four MHK developers (two from the UK, one from Ireland and one from Sweden; each discussing their own projects and lessons learned for measuring and mitigating environmental effects, as well as interactions with consenting [permitting] processes) helped provide background. The workshop participants worked part of the time in the large group and most of the time in four smaller breakout groups. Participants engaged in the process and provided a wealth of examples of MHK environmental work, particularly in the European nations. They provided practical and actionable advice on the following: Developing the Annex IV database, with specific uses and audiences Strong consensus that we should collect detailed metadata on available data sets, rather than attempting to draw in copious datasets. The participants felt there would then be an opportunity to then ask for specific set of data as needed, with specific uses and ownership of the data specified. This is particularly important as many data collected, particularly in Europe but also in Canada, are proprietary; developers were not comfortable with the idea of handing over all their environmental effects data, but all said they would entertain the request if they specifics were clear. The recommendation was to collect metadata via an online interactive form, taking no more than one hour to complete. Although the idea of cases representing the best practices was recognized as useful, the participants pointed out that there are currently so few MHK projects in the water, that any and all projects were appropriate to highlight as cases. There was also discomfort at the implication that best practices implied lesser practices; this being unhelpful to a new and emerging industry. Workshop participants were asked if they were willing to continue to engage in the Annex IV process; all expressed willingness. The workshop was successful in adequately addressing its objectives and through participation and interaction in the breakout sessions around the various topics. As a result of the workshop, many delegates are now better informed and have a greater understanding of the potential environmental effects of MHK devices on the marine environment. There is now a greater sense of understanding of the issues involved and consensus by those regulators, developers and scientists who attended the workshop. A strong network has also been built over the two days between European and US/Canadian technical experts in wave and tidal energy.

Copping, Andrea E.; O'Toole, Michael J.

2010-12-02T23:59:59.000Z

440

??eia e e et ??? oa0 to 3i5ontinBoB5 PieeFi5e Hinea tiTiUation ...  

E-Print Network (OSTI)

Analysis and Simplicial Subdivision,?l k ?????? ? ransactions onvd ircuits ... Ordered Sets: A Polyhedral Approach,%q h atC? ematicalG? ro?? ram-.

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gene F. Parkin, P.E. B.S.C.E. University of Iowa, Iowa City, IA; 1970 (with High Distinction)  

E-Print Network (OSTI)

Stimulation of Anaerobic Digestion," Water Research, 17, 677 (1983). 11. Hergenroeder, R. and Parkin, G of Anaerobic Toxicity by Batch and Semi-Continuous Assays," Jour. Water Pollution Control Fed., 52, 720 (1980 Anaerobic Reactors: Response to Toxic Substances," Water Science and Tech., 15, 261 (1983). #12;2 13.

Stanier, Charlie

442

50,000-Watt AM Stations IA | MB | MI | MN | NE | ND | ON | SD | WI | Station News | Owners | TV Captures | Links  

E-Print Network (OSTI)

2) and the concentration of 65Cu2+ estimated by the speciation model WHAM (1.0 (28)), we could]e^ equals zero and that [65 Cu2+ ] was constant (i.e., nominal [65 Cu2+ ] ) 5.2-µg L-1). That is, WHAM the speciation model WHAM (28) assuming that the lake water has a pH near 8 (30), a dissolved organic carbon

Allen, Gale

443

IEEE IAS Annual Meeting, Oct. 6-10, 1996, San Diego, CA, pp. 2333-2339 Survey of Harmonics Measurements in Electrical Distribution Systems  

E-Print Network (OSTI)

be 1.0 [7]. Form Factor I I RMS _ = 1 (5) Symmetrical components is a mathematical tool used to analyze of several buildings in the three Department of Energy (DOE) Oak Ridge plants in Tennessee has yielded), variable frequency drives, switch mode power supplies, and uninterruptible power supplies. A discussion

Tolbert, Leon M.

444

Bell L a b s , NE C Re s e ar ch I n stit u t e a nd Telco r d ia ... - CECM  

E-Print Network (OSTI)

i nfo r m ation doe s no t t ell u s t he loc ation of t he co rr e sp ond i ng f ra gmen t on t he tar ge t D N A , only s ome t h i ng a bou t t he r el ative o r de r of t he...

445

Targeted Energy Efficiency Expert Evaluation (E4) Report: Iowa City Federal Building and U.S. Post Office, Iowa City, IA  

SciTech Connect

Final report summarizing Targeted E4 measures and energy savings analysis for the Iowa City Federal Building and Post Office.

Goddard, James K.; Fernandez, Nicholas; Underhill, Ronald M.; Gowri, Krishnan

2013-03-01T23:59:59.000Z

446

--No Title--  

NLE Websites -- All DOE Office Websites (Extended Search)

Diversity of Type Ia Supernovae in the Near-Infrared Eric Hsiao University of Victoria ABSTRACT The photometric studies of Type Ia supernovae (SNe Ia) in the optical have...

447

DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

its Ames Laboratory its Ames Laboratory DOE Issues Request for Proposals Seeking a Contractor to Manage and Operate its Ames Laboratory June 29, 2006 - 2:48pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued its Request for Proposals (RFP) for the competitive selection of a management and operating (M&O) contractor to operate Ames Laboratory, a DOE Office of Science (SC) research facility in Ames, Iowa. This competition for a contractor is the first in the history of the laboratory. Ames is a laboratory that has been funded at approximately $30 million annually by the Office of Science, other government agencies, and private industry. "Ames Laboratory provides leadership in basic research across a broad spectrum of science, with great expertise in biology, chemistry, physics

448

Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR)  

NLE Websites -- All DOE Office Websites (Extended Search)

Ames: Phil Russell, Jens Redemann, NASA Ames: Phil Russell, Jens Redemann, Ames: Phil Russell, Jens Redemann, NASA Ames: Phil Russell, Jens Redemann, Steve Dunagan, Roy Johnson: Steve Dunagan, Roy Johnson: Battelle PND: Connor Flynn, Beat Schmid, Battelle PND: Connor Flynn, Beat Schmid, Evgueni Kassianov Evgueni Kassianov NASA GSFC: Alexander Sinyuk, Brent NASA GSFC: Alexander Sinyuk, Brent Holben Holben , , & AERONET Team & AERONET Team Collaboration involving: Collaboration involving: NASA Ames, Battelle PND, NASA GSFC NASA Ames, Battelle PND, NASA GSFC 4S 4S TAR TAR : : S S pectrometer for pectrometer for S S ky ky - - S S canning, canning, S S un un - - T T racking racking A A tmospheric tmospheric R R esearch esearch 4STAR: 4STAR: Spectrometer Spectrometer for for Sky Sky - - Scanning Scanning , , Sun Sun - - Tracking Tracking Atmospheric Research Atmospheric Research

449

Dislocations II  

Science Conference Proceedings (OSTI)

Feb 17, 2010... Youhong Li1; Mikhail Mendelev3; Michael Luton1; 1ExxonMobil Research and Engineering; 2University of Pennsylvania; 3Ames Laboratory

450

Slide22 | OSTI, US Dept of Energy, Office of Scientific and Technical...  

Office of Scientific and Technical Information (OSTI)

http:www.osti.govEDUconnections http:www.osti.govEDUconnectionsccc Iowa State University, Ames Laboratory Connection. (http:www.osti.govEDUconnectionsiastate)....

451

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy.govnepadownloadsnanomaterials-safety-implementation-plan-ames-laboratory Page Manhattan Project Signature Facilities The Department of Energy, in the mid-1990s,...

452

THE A.EROSPACE CORPORATION Suite 4000, 955 L'Enfk Plaza, S. W...  

Office of Legacy Management (LM)

IOWA STATE COLLEGE,) AMES, IOWA INTRUDUCTIUN The purpose of this review is to present information per work performed under spoflsorship of the Atomic Energy Commiss the...

453

Rare Earth Shortages Addressed in New Research Initiative  

Science Conference Proceedings (OSTI)

Jan 8, 2013 ... Other national labs partnering with Ames include Idaho National Laboratory, Lawrence Livermore National Laboratory, and Oak Ridge National...

454

1  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Cloud Overlap and Inhomogeneity on Climate Simulations X. Wu Sunwook Park Department of Geological and Atmospheric Sciences Iowa State University Ames, Iowa X.-Z. Liang...

455

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Rebate Programs The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial customers. The...

456

Introduction  

Science Conference Proceedings (OSTI)

...S. Chumbley Ames Laboratory Carl Czajkowski Brookhaven National Laboratory Daniel R. Danks Danks Tribological Services Daniel P. Dennies The Boeing Company Bill Dobson Binary Egnineering Associates,

457

Y-STRs:  

Science Conference Proceedings (OSTI)

... characterization of a polymorphic 3-Mb deletion at chromosome Yp11.2 containing the AMELY locus in Singapore and Malaysia populations.Hum ...

2008-04-28T23:59:59.000Z

458

Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Cynthia Regnier, Kristen Parrish, and Vladimir Bazjanac. Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM., 2013. 2012...

459

Transforming BIM to BEM: Generation of Building Geometry for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames Sustainability Base BIM NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are...

460

EERE News: New Innovation Hub Will Address Shortages in Critical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

interests," said David Danielson, Assistant Secretary for Energy Efficiency and Renewable Energy. "The Ames Lab is the nation's premier research center for rare earth materials'...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

2012 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National Laboratory...

462

Land Mine Detection at TJNAF | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National Laboratory...

463

Department of Energy to Compete Management and Operating Contract...  

Office of Science (SC) Website

for Teachers and Scientists Small Business Innovation Research and Small Business Technology Transfer Project Assessment Laboratories Ames Laboratory Argonne National Laboratory...

464

Alloy Development for Clean and Efficient Energy Technologies  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Support from the Department of Energy, Office of Fossil Energy through Ames Laboratory (DE-AC02-07CH11358) and ORNL is gratefully...

465

View / Download  

Science Conference Proceedings (OSTI)

Anderson Leads Research on Magnets for Electric Motors. TMS Member Iver Anderson is lead- ing a research team at the U.S. Depart- ment of Energy's Ames

466

A Topological Framework for the Interactive Exploration of Large Scale Turbulent Combustion  

E-Print Network (OSTI)

comparison of terascale combustion simulation data. Mathe-premixed hydrogen ?ames. Combustion and Flame, [7] J. L.of Large Scale Turbulent Combustion Peer-Timo Bremer 1 ,

Bremer, Peer-Timo

2010-01-01T23:59:59.000Z

467

A Process for the Conversion of Cyclic Amines Into Lactams ...  

Ames Laboratory researchers have developed a process for the conversion of cyclic amines into lactams, which may have utility for the production of nylons and other ...

468

Conversion of Cyclic Amines into Lactams for Synthesis of Nylons and Other Polymers  

Ames Laboratory researchers have developed a process for the conversion of cyclic amines into lactams, which may have utility for the production of nylons and other industrial polymers.

469

Header with Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

AL05205018 - Analysis of Gas Turbine Thermal Performance FACT SHEET I. PROJECT PARTICIPANTS Ames National Laboratory Oak Ridge National Laboratory (funded separately) II. PROJECT...

470

The Department of Energy's Other Major Laboratories and Facilities  

Office of Scientific and Technical Information (OSTI)

THE DEPARTMENT OF ENERGY'S Other Major Laboratories and Facilities All Major Laboratories and Facilities Achievements History Ames Laboratory (ANL) Achievements History The New...

471

DOE Office of Science - Chicago Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Visitor's Guide (pdf) The following provides maps and directions for use when visiting Office of Science Sites: Argonne National Laboratory Ames Laboratory Brookhaven National...

472

DOE Office of Science - Chicago Office  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE OFFICE OF SCIENCE LABORATORIES DOE Office of Science Laboratories Pacific Northwest National Laboratory Ames Laboratory Stanford Linear Accelerator Center Lawrence Berkeley...

473

DOE Office of Science - Chicago Office  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Broad Categories of Systems of Records under the cognizance of DOE's Chicago Office (CH): DOE-CH (Including Ames, Argonne, Berkeley, Brookhaven, Fermi, Princeton and New...

474

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Energy Efficiency Rebate Programs The Ames Electric Department provides free energy audits and multiple energy efficiency rebates for commercial and industrial...

475

Regenerator for Magnetic Refrigerants  

Ames Laboratory researchers have developed a new magnetic material that can be used at low temperatures (sub liquid hydrogen) for magnetic refrigerators.

476

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing  

E-Print Network (OSTI)

of Utah with the combustion of biomass has shown that thegas, studies of the combustion of biomass by N A S A Ames

2002-01-01T23:59:59.000Z

477

Stochastic algorithms for the analysis of numerical flame simulations  

E-Print Network (OSTI)

dimensional premixed ? ames. Sandia National LaboratoriesReport SAND85-8240, Sandia National Laboratories, Livermore,chemical and plasma kinetics. Sandia National Laboratories

Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

2004-01-01T23:59:59.000Z

478

Chggo Operations and Reglonal Offlce 9000 South Cass Avenue  

Office of Legacy Management (LM)

tritium concentration. A study conducted 'by Ames personnel indicates that the No. g "hot spot" penetrates laterally for several feet, but does not extend to the floor surface...

479

,"Kansas Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals and Production",11,"Annual",2012,"6301967" ,"Release Date:","1212...

480

,"Nevada Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301991" ,"Release Date:","1212...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

,"Oregon Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301979" ,"Release Date:","1212...

482

,"Alaska Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Gross Withdrawals and Production",10,"Annual",2012,"6301967" ,"Release Date:","1212...

483

BASALT ALTERATION AND BASALT-WASTE INTERACTION IN THE PASCO BASIN OF WASHINGTON STATE  

E-Print Network (OSTI)

REFERENCES Ames, L. L. , Hanford basalt flow mineralogy, inProgress report for the Hanford Waste Isolation Project,ST-137, Atlantic Richfield Hanford Company, Richland, Wa. ,

Benson, L.V.

2011-01-01T23:59:59.000Z

484

Melatonin and the aging brain  

E-Print Network (OSTI)

mitochondrial decay of aging. Mol. Aspects Med. 26, Ames,the degenerative diseases of aging. Proc. Natl. Acad. Sci.2004. Retardation of brain aging by chronic treatment with

BONDY, S; SHARMAN, E

2007-01-01T23:59:59.000Z

485

Iowa Powder Atomization Technologies, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Iowa Powder Atomization Technologies, Inc. America's Next Top Energy Innovator Challenge 6067 likes Iowa Powder Atomization Technologies, Inc. Ames Laboratory Iowa Powder...

486

Fabrication of Emissible Metallic Layer-by-Layer Photonic Crystals Using Microtransfer Molding with Electro-Deposition  

Photonic crystals are optical materials that can be used to control and manipulate the flow of light. Ames Laboratoryresearchers have developed a ...

487

,"U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

488

,"U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2011 ,"Release Date:","812013"...

489

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6301989"...

490

,"U.S. Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

491

,"U.S. Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

492

,"U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet)",1,"Annual",2011 ,"Release...

493

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

494

Internal Site Office Operations | U.S. DOE Office of Science...  

Office of Science (SC) Website

(113KB) Federal Stewardship Internal Site Office Operations Current Projects Contract Management Environment, Safety and Health (ES&H) Resources Contact Information Ames Site...

495

High Strength Gold Wire for Microelectronics Miniaturization ...  

ISU and Ames Laboratory researchers have developed a high strength gold wire for use in microelectronics that can maintain its electrical and mechanical properties ...

496

U.S. Department of Energy Awards Contract for Management and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

maximum possible 20 years. At the forefront of current materials research, high-performance computing, and environmental science and management efforts, Ames Laboratory seeks...

497

1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast  

E-Print Network (OSTI)

Keywords NCS Ncs1p Fission yeast Calcium EF-hand Takeda K, Ames JB (2004) Fission yeast homolog of neuronal

Lim, Sunghyuk; Ames, James B.

2009-01-01T23:59:59.000Z

498

Efficient Polymer Solar Cells - Energy Innovation Portal  

Ames Laboratory researchers have developed a process for producing more efficient polymer solar cells by increasing light absorption through a thin ...

499

High temperature X-ray diffraction characterization of alnico 8 made ...  

Science Conference Proceedings (OSTI)

Funded by USDOE-EERE-VT-PEEM and Propulsion Materials program through Ames Lab contract no. DE-AC02-07CH11358. Proceedings Inclusion? Planned: ...

500

Role of Alloying Elements in Improvement of Alnico Permanent ...  

Science Conference Proceedings (OSTI)

Funding provided by DOE-EERE-FCVT Office through Ames lab Contract DE- AC02-07CH11358. Proceedings Inclusion? Planned: A print-only volume...