Powered by Deep Web Technologies
Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515-294-5798 FOR MORE INFORMATION  

E-Print Network [OSTI]

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515 calcium sulfate in the form of hemihydrate (plaster) in the cement (false set) or the uncontrolled early

2

E-Print Network 3.0 - ames iowa date Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Abstract Submitted for the MAR07 Meeting of Summary: & Astronomy, Iowa State University, Ames IA, T.J. WILLIAMS, Ames Laboratoty, Ames IA, D.A....

3

Three-dimensional numerical simulations of Rayleigh-Taylor unstable flames in type Ia supernovae  

E-Print Network [OSTI]

Unstable Flames in Type Ia Supernovae M. Zingale 1 , S. E.Subject headings: supernovae: general ó white dwarfs óame in Type Ia supernovae (SNe Ia) is well recognized (M®

Zingale, M.; Woosley, S.E.; Rendleman, C.A.; Day, M.S.; Bell, J.B.

2005-01-01T23:59:59.000Z

4

SULI at Ames Laboratory  

SciTech Connect (OSTI)

A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

None

2011-01-01T23:59:59.000Z

5

Environmental | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

6

aerospace & mechanical (AME) AME overview programs available  

E-Print Network [OSTI]

22 aerospace & mechanical (AME) AME overview · programs available courses of instruction-thruster (the Free Molecule Micro-Resistojet) and the aerodynamics of ground vehicles. Mechanical Engineering Mechanical Engineers apply scientific methodology to find solutions to mechanical problems and to create

Rohs, Remo

7

Ames Lab 101: Technology Transfer  

ScienceCinema (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2012-08-29T23:59:59.000Z

8

Ames Lab 101: Technology Transfer  

SciTech Connect (OSTI)

Ames Laboratory Associate Laboratory Director, Sponsored Research Administration, Debra Covey discusses technology transfer. Covey also discusses Ames Laboratory's most successful transfer, lead-free solder.

Covey, Debra

2010-01-01T23:59:59.000Z

9

Ames Laboratory Processes Training | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-MadeAmesPersonalAmes

10

Ames repeats as Middle School Science Bowl Champion | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

repeats as Middle School Science Bowl Champion Ames Middle School repeated as champion of the 2015 Ames LaboratoryIowa State University Regional Middle School Science Bowl here on...

11

Ames Laboratory Emergency Plan | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-Made SRF CavityAmes

12

Ames Laboratory Metrics | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-MadeAmes Laboratory

13

nfang | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames3, Issuenfang Ames

14

Ames Lab 101: Magnetic Refrigeration  

ScienceCinema (OSTI)

Vitalij Pecharsky, distinguished professor of materials science and engineering, discusses his research in magnetic refrigeration at Ames Lab.

Pecharsky, Vitalij

2013-03-01T23:59:59.000Z

15

2012 Professional Development Meeting; Ames, IA Research update: Bee health  

E-Print Network [OSTI]

, pumpkins · Cantaloupes, watermelons · Carrots, canola, alfalfa · Almonds, macadamia and other nut crops #12+ million ac), most wheat (24 million ac), canola, cotton, etc. · Rates range from 0.25-1.25 mg

Jurenka, Russell A.

16

Radiation Protection | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

17

johnson2 | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

johnson2 Ames Laboratory Profile Stacie Johnson Lab Assistant-X Environmental & Protective Sciences 5 Spedding Phone Number: 515-294-2069 Email Address: johnson2...

18

aerospace & mechanical (AME) AME overview programs available courses flowcharts  

E-Print Network [OSTI]

of turbulence, computational fluid mechanics, com- bustion and heat transfer and nonlinear dynamics. Recent18 aerospace & mechanical (AME) AME overview · programs available · courses · flowcharts Aerospace-thruster (the Free Molecule Micro- Resistojet) and the aerodynamics of ground vehicles. Mechanical Engineering

Rohs, Remo

19

qslin | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3Images. . . ,qslin Ames

20

rfry | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfry Ames Laboratory

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

riedemann | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfry AmesChilled

22

rodgers | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfryRIGNavalrodgers Ames

23

seliger | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram ConsortiumTHIS CONTRACT IS Aseliger Ames

24

tdball | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU Ctdball Ames Laboratory

25

timma | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofUUse of the 1Areatimma Ames

26

ujjalb | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofUUse of 43Rate1ujjalb Ames

27

vaclav | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent Magnetic FieldrSeptembervaclav Ames

28

valery | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent Magnetic FieldrSeptembervaclavvalery Ames

29

xinyufu | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames Laboratory Profile

30

zdorkowski | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames1 The North

31

zrein | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames17 TheStudy of3 -

32

Ames Site Office Jobs  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News NewsAbout BerkeleyDOE Office of ScienceHome Ames

33

BENSON | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program CumulusA t i o nLiquids Reserve2015BENSON Ames

34

AMEE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights,InformationWind Energy Jump to: navigation, searchAMEE

35

acampos | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionTheto Five6a.acampos Ames

36

ackerman | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionThetoackerman Ames

37

ajcastle | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,Amine Solventafeajcastle Ames

38

angiemcg | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview of SIRS Data Quality atangiemcg Ames

39

baugie | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tiddbaugie Ames Laboratory

40

bcarsten | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tiddbaugiebcarsten Ames

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

bind | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary,Effects of InhomogeneousBig Bendbind Ames

42

bkl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary,Effects of InhomogeneousBig BendbindA Testbkl Ames

43

canfield | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Poweroneidensis . |9canfield Ames

44

carraher | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean Coal Poweroneidensiscarraher Ames

45

ccelania | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage Clean CoalCoal-Biomass Feed andccelania Ames

46

cmarquardt | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of őł1cmarquardt Ames

47

crossm | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert program | credarr.xls 10:42crossm Ames

48

dbaldwin | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert program | credarr.xlscyberdbaldwin Ames

49

deshong | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert programTowards Quantifyingdeshong Ames

50

devo | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert programTowardsdetection |devo Ames

51

eguidez | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert 2S~ Governmenteguidez Ames Laboratory

52

finzell | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3, 2011finzell Ames

53

flanders | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane9a.MarchProject5,3,flanders Ames

54

foughtel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National Nuclear Securityfoughtel Ames

55

gangh | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 A New Engine forgangh Ames

56

gharper | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 A New Allineagharper Ames

57

grootvel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 Agrootvel Ames Laboratory

58

hcelliott | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory Profile

59

herrman | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory

60

jberry | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67Molecularexercises * (Energyjberry Ames

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

jcollier | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67Molecularexercises *jcollier Ames

62

kcho | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE Milestone on Rotationkansaskcho Ames

63

kmh | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE Milestone onRSS Overhaul/2011 0kmh Ames

64

liza | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE MilestoneEddyObservations of1liza Ames

65

makinc | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. Norem October 23, 1984 6makinc Ames

66

mduenas | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. Norem OctoberIII: Themduenas Ames

67

mlthomps | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremI Prepared by.Ice3mlthomps Ames

68

mwiley | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Ames Laboratory Profile

69

naa | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Amesnaa Ames Laboratory

70

nalms | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J. NoremImwiley Amesnaanalms Ames

71

nbarbee | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames Laboratory Profile Nicole

72

perrya | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbeeLargeNHMFL-PFFperrya Ames

73

Sustainability | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAbout ¬ĽLabSustainability Ames Laboratory is committed to

74

About Rare Earth Metals | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Rare Earth Metals What Are Rare Earths? Ames Laboratory's Materials Preparation Center The Ames Process for Purification of Rare Earths USGS Rare Earth Information Rare Earth...

75

AMES Success Stories - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Graphic of a full-grown tree with many leaves. Ames Laboratory Success Stories These success stories highlight some of the effective licensing and partnership activity between Ames...

76

Ames Lab 101: Rare Earths  

ScienceCinema (OSTI)

"Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

Gschneidner, Karl

2012-08-29T23:59:59.000Z

77

Ames Lab 101: Lanthanum Decanting  

ScienceCinema (OSTI)

Ames Laboratory scientist Trevor Riedemann explains the process that allows Ames Laboratory to produce some of the purest lanthanum in the world. This and other high-purity rare-earth elements are used to create alloys used in various research projects and play a crucial role in the Planck satellite mission.

Riedemann, Trevor

2012-08-29T23:59:59.000Z

78

Dust around Type Ia supernovae  

E-Print Network [OSTI]

Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows

Wang, Lifan

2005-01-01T23:59:59.000Z

79

Welcome to the Ames Laboratory  

ScienceCinema (OSTI)

Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

King, Alex

2013-03-01T23:59:59.000Z

80

Purity FAQ | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Purity FAQ Why do we need high purity metals? How pure are Ames Laboratory's rare earth metals? What do you mean by 5N or 3N? What is the basis? Atomic versus weight based...

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Ames Lab 101: Science Bowl 2011  

ScienceCinema (OSTI)

High school students from across Iowa converged on Ames Jan. 30, 2011 to compete in the 21st annual Ames Laboratory/Iowa State University Regional High School Science Bowl.

None

2013-03-01T23:59:59.000Z

82

The Ames Project (1942-1946)  

ScienceCinema (OSTI)

The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

None

2013-06-05T23:59:59.000Z

83

Environmental Survey preliminary report, Ames Laboratory, Ames, Iowa  

SciTech Connect (OSTI)

This report presents the preliminary findings of the first phase of the environmental Survey of the United States Department of Energy's (DOE) Ames Laboratory, conducted April 18 through 22, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are being supplied by private contractors. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the Ames Laboratory. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at the Ames Laboratory, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A plan is being developed by the Idaho National Engineering Laboratory. When S A is completed, the results will be incorporated into the Ames Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 60 refs., 13 figs., 20 tabs.

Not Available

1989-03-01T23:59:59.000Z

84

Hybrid Model Structures Aaron David Ames  

E-Print Network [OSTI]

Hybrid Model Structures by Aaron David Ames B.A. (University of St. Thomas) 2001 B.S. (University of California, Berkeley Fall 2006 #12;Hybrid Model Structures Copyright 2006 by Aaron David Ames #12;Abstract Hybrid Model Structures by Aaron David Ames Masters of Arts in Mathematics University of California

Ames, Aaron

85

Facilties & Engineering Services | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilties & Engineering Services The Facilities Services Group (FSG) is responsible for the facilities and infrastructure of the Ames Laboratory. The group includes custodial...

86

Ames Lab 101: Improving Solar Cell Efficiency  

SciTech Connect (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2011-01-01T23:59:59.000Z

87

Ames Lab 101: Improving Solar Cell Efficiency  

ScienceCinema (OSTI)

Rana Biswas, a scientist with the Ames Laboratory, discusses his team's research in creating more efficient solar cells and working with Iowa Thin Film to produce these cells.

Biswas, Rana

2012-08-29T23:59:59.000Z

88

Ames Lab 101: VE-Suite  

ScienceCinema (OSTI)

Ames Laboratory scientist Mark Bryden talks about virtual engineering and the advantages it gives engineers when they can "walk through" designs visually.

Bryden, Mark

2012-08-29T23:59:59.000Z

89

Ames Laboratory Network Rules of Behavior | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-MadeAmes

90

Ames Laboratory Personal Information Form | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-MadeAmesPersonal

91

Graphic Services | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermalGo BackGrantsGraphics Services Ames

92

Our Organization | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC)Organization Ames Laboratory is a

93

Remote Access | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST31 ORV 15051 ModificationRemote Access Ames

94

Industrial Hygiene | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Nameindustrial SignHygiene Ames

95

Ames Laboratory | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy SystemsAmerican EnergyAmericus, Georgia: EnergyAmes

96

AmesLab-ISUMap2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmes Laboratory Site Sustainability Plan VersionAmesGILMAN

97

ashleye1 | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview ofashleye1 Ames Laboratory Profile

98

Stores Catalog | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBiSiteNeutron Scattering4American'!Stores Catalog The Ames

99

New approaches for modeling type Ia supernovae  

E-Print Network [OSTI]

runaway in Type Ia supernovae: How to run away? oIgnition in Type Ia Supernovae. II. A Three- dimensionalnumber modeling of type Ia supernovae. I. hydrodynamics.

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-01-01T23:59:59.000Z

100

Tiger Team Assessment of the Ames Laboratory  

SciTech Connect (OSTI)

This report documents the Tiger Assessment of the Ames Laboratory (Ames), located in Ames, Iowa. Ames is operated for the US Department of Energy (DOE) by Iowa State University. The assessment was conducted from February 10 to March 5, 1992, under the auspices of the Office of Special Projects, Office of the Assistant Secretary of Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing Environment, Safety, and Health (ES H) disciplines; management practices; and contractor and DOE self-assessments. Compliance with applicable Federal, State of Iowa, and local regulations; applicable DOE Orders; best management practices; and internal requirements at Ames Laboratory were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and the site contractor's management of ES H/quality assurance program was conducted.

Not Available

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ames Lab 101: Reinventing the Power Cable  

ScienceCinema (OSTI)

Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

Russell, Alan

2014-06-04T23:59:59.000Z

102

Ames Lab 101: Next Generation Power Lines  

SciTech Connect (OSTI)

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2010-01-01T23:59:59.000Z

103

Ames Lab 101: Rare-Earth Magnets  

ScienceCinema (OSTI)

Senior Scientist, Bill McCallum, briefly discusses rare-earth magnets and their uses and how Ames Lab is research new ways to save money and energy using magnets.

McCallum, Bill

2012-08-29T23:59:59.000Z

104

Ames Lab 101: Next Generation Power Lines  

ScienceCinema (OSTI)

Ames Laboratory scientist Alan Russell discusses the need to develop new power lines that are stronger and more conductive as a way to address the problem of the nation's aging and inadequate power grid.

Russell, Alan

2012-08-29T23:59:59.000Z

105

Ames Lab 101: Reinventing the Power Cable  

SciTech Connect (OSTI)

Ames Laboratory researchers are working to develop new electrical power cables that are stronger and lighter than the cables currently used in the nation's power grid. Nano Tube animation by Iain Goodyear

Russell, Alan

2013-09-27T23:59:59.000Z

106

UESC Project Overview: NASA Ames Research Center  

Broader source: Energy.gov [DOE]

Presentationógiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingóprovides an overview of the NASA Ames Research Center's Utility Energy Services Contract (UESC) project.

107

Ames Lab 101: osgBullet  

ScienceCinema (OSTI)

Ames Laboratory scientist Doug McCorkle explains osgBullet, a 3-D virtual simulation software, and how it helps engineers design complex products and systems in a realistic, real-time virtual environment.

McCorkle, Doug

2012-08-29T23:59:59.000Z

108

Ames Lab Named an Industry Safety Leader  

ScienceCinema (OSTI)

The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

Wessels, Tom

2013-03-01T23:59:59.000Z

109

Chemical studies of the Ames oxydesulfurization process  

SciTech Connect (OSTI)

The validity of the Ames claim of up to 40% removal of organic sulfur from coal was assessed by subjecting model compounds to the Ames Process which utilizes 0.2 M aqueous Na/sub 2/CO/sub 3/ at 150/sup 0/C under pressure of 300 psi O/sub 2/ for one hour. This type of oxydesulfurization has been described as a two step process involving initial oxidation at sulfur to produce sulfoxides and sulfones. This step is then thought to be followed by the thermal and, in the Ames Process, base assisted extrusion of SO/sub x/. In this concept, the initial oxidation at sulfur facilitates desulfurization by polarizing and weakening the carbon to sulfur bond. The conclusions concerning the oxydesulfurization process are: (1) thiophenols and disulfides are the only groups oxidized at sulfur; (2) sulfides, including thiophenes, are not oxidized at sulfur; (3) reactive sulfides are oxidized at reactive carbon-hydrogen bonds; (4) reactive carbon-hydrogen bonds in functions not containing sulfur also react; (5) the Ames Process is directly analogous to hydrocarbon autoxidation; and (6) more efficient sulfur removal without severe degradation of the coal is not possible under the present process conditions. The success which these model compound studies have had in defining the limits of the efficacy of the Ames oxydesulfurization process encourage one to believe that this approach will be quite valuable in the evaluation of other proposed chemical coal cleaning techniques.

Squires, T.G.; Venier, C.G.; Chang, L.W.; Schmidt, T.E.

1981-03-29T23:59:59.000Z

110

IA Blog Archive  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistoryia/802871 IA Blog Archive en DOE and

111

IA News Archive  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS Cable ProjectsHistoryia/802871 IA Blog Archive en DOE and66

112

The State of the Ames Laboratory Address 2011  

ScienceCinema (OSTI)

Alex King, director of The Ames Laboratory, discusses the budget situation, improvements at Ames Lab and infrastructure improvements during the State of the Lab address on Tuesday, May 24, 2011.

King, Alex

2013-03-01T23:59:59.000Z

113

The State of the Ames Laboratory Address 2011  

SciTech Connect (OSTI)

Alex King, director of The Ames Laboratory, discusses the budget situation, improvements at Ames Lab and infrastructure improvements during the State of the Lab address on Tuesday, May 24, 2011.

King, Alex

2011-01-01T23:59:59.000Z

114

Two start-ups formed from Ames Laboratory's computational tools...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two start-ups formed from Ames Laboratory's computational tools Scientists with ties to the U.S. Department of Energy's Ames Laboratory have created two spin-off companies based on...

115

y27h | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames Laboratoryy27h Ames

116

nordica.maccarty 2 | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames3,nordica.maccarty 2 Ames

117

New approaches for modeling type Ia supernovae  

E-Print Network [OSTI]

ich and J. Stein. On the thermonuclear runaway in Type IaSmall-Scale Stability of Thermonuclear Flames o in Type IaS. E. Woosley. The thermonuclear explosion of chandrasekhar

Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

2007-01-01T23:59:59.000Z

118

Ames Lab 101: Rare-Earth Recycling  

SciTech Connect (OSTI)

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

Ryan Ott

2012-09-05T23:59:59.000Z

119

Ames Lab 101: Rare-Earth Recycling  

ScienceCinema (OSTI)

Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

Ryan Ott

2013-06-05T23:59:59.000Z

120

Ames Lab 101: Single Crystal Growth  

ScienceCinema (OSTI)

Ames Laboratory scientist Deborah Schlagel talks about the Lab's research in growing single crystals of various metals and alloys. The single crystal samples are vital to researchers' understanding of the characteristics of a materials and what gives these materials their particular properties.

Schlagel, Deborah

2014-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Ames Lab 101: C6: Virtual Engineering  

ScienceCinema (OSTI)

Ames Laboratory scientist Doug McCorkle explains the importance of virtual engineering and talks about the C6. The C6 is a three-dimensional, fully-immersive synthetic environment residing in the center atrium of Iowa State University's Howe Hall.

None

2012-08-29T23:59:59.000Z

122

YOUNG JIN LEE, PH D 3756 Gilman, Department of chemistry, Iowa State University, Ames, IA  

E-Print Network [OSTI]

Spectrometry Imaging for the Localization of Plant Lipids in High Spatial Resolution", Young Jin Lee, Gordon, Galveston, TX. 2. "Single Cell Level, High Spatial Resolution Mass Spectrometry Imaging for Plant activated dissociation of some high mass ions; Analysis of mass-analyzed ion kinetic energy peak shapes", Y

Clemmer, David E.

123

DC Optimal Power Flow Formulation in AMES Leigh Tesfatsion  

E-Print Network [OSTI]

@iastate.edu, http://www.econ.iastate.edu/tesfatsi/ Fig. 1. AMES day-ahead energy market activities during each day D wholesale power market testbed. I. AMES TESTBED The latest version of AMES (Agent-based Modeling.econ.iastate.edu/tesfatsi/AMESLMPDetermination.LT.pdf this objective, the ISO operates a day-ahead energy market settled by means of LMP. The welfare of each LSE j

Tesfatsion, Leigh

124

SULI student wins Goldwater Scholarship | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SULI student wins Goldwater Scholarship SULI student Robin Lindemann talks about winning the Goldwater Scholarship and how his internship experience at Ames Laboratory helped him...

125

Ames Lab 101: Improving Materials with Advanced Computing  

ScienceCinema (OSTI)

Ames Laboratory's Chief Research Officer Duane Johnson talks about using advanced computing to develop new materials and predict what types of properties those materials will have.

Johnson, Duane

2014-06-04T23:59:59.000Z

126

ames test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demonstration. Only 2 tests were found Paris-Sud XI, Universit de 4 The AMES Wholesale Power Market Test Bed: A Computational Laboratory for Power Transmission,...

127

ames test progress: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demonstration. Only 2 tests were found Paris-Sud XI, Universit de 4 The AMES Wholesale Power Market Test Bed: A Computational Laboratory for Power Transmission,...

128

ames test communication: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demonstration. Only 2 tests were found Paris-Sud XI, Universit de 4 The AMES Wholesale Power Market Test Bed: A Computational Laboratory for Power Transmission,...

129

Ames Lab 101: Improving Materials with Advanced Computing  

SciTech Connect (OSTI)

Ames Laboratory's Chief Research Officer Duane Johnson talks about using advanced computing to develop new materials and predict what types of properties those materials will have.

Johnson, Duane

2013-09-27T23:59:59.000Z

130

Printing 3D Catalytic Devices | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Printing 3D Catalytic Devices Ames Laboratory scientist Igor Slowing discusses using 3D printers to create new materials, including catalysts...

131

Two Ames Laboratory Science Interns are Awarded Prestigious Scholarshi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the U.S. Department of Energy Office of Science's Science Undergraduate Laboratory Internship (SULI) research program at the DOE's Ames Laboratory have been awarded prestigious...

132

String Landscape and Supernovae Ia  

E-Print Network [OSTI]

We present a model for the triggering of Supernovae Ia (SN Ia) by a phase transition to exact supersymmetry (susy) in the core of a white dwarf star. The model, which accomodates the data on SN Ia and avoids the problems of the standard astrophysical accretion based picture, is based on string landscape ideas and assumes that the decay of the false broken susy vacuum is enhanced at high density. In a slowly expanding susy bubble, the conversion of pairs of fermions to pairs of degenerate scalars releases a significant amount of energy which induces fusion in the surrounding normal matter shell. After cooling, the absence of degeneracy pressure causes the susy bubble to collapse to a black hole of about 0.1 solar mass or to some other stable susy object.

L. Clavelli

2011-10-09T23:59:59.000Z

133

New Employee Forms | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn CyberNeutrons used to studyThe AmesA|New Employee

134

eedug1n | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert 2S~ Government underlS47eedug1n Ames

135

Ames Site Ofice 9800 South Cass Avenue  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance|atp3.orgOffice Investments | 1of Energy Ames

136

Ames Site Office 9800 South Cass Avenue  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, TMOAB, Utah(ASME/SRNL)Ames Lab

137

Submitting Course Completion Materials | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide ThinIon Cooling andStudying Ames FireSubmitting

138

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network [OSTI]

Interactions in Type Ia Supernovae A. J. Aspden 1 , J. B.involved in type Ia supernovae (SN Ia) requires the use of ?generated by RT in type Ia supernovae should obey Bolgiano-

Aspden, Andrew J; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720 (Authors 1, 2 & 3); Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (Author 4); Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (Author 5)

2008-01-01T23:59:59.000Z

139

Ideal bandpasses for type Ia supernova cosmology  

E-Print Network [OSTI]

diversity of type Ia Supernovae, in preparation. Kim, A.error in measurements of supernovae depends on a periodicABSTRACT To use type Ia supernovae as standard candles for

Davis, Tamara M.; Schmidt, Brian P.; Kim, Alex G.

2005-01-01T23:59:59.000Z

140

Rates and progenitors of type Ia supernovae  

E-Print Network [OSTI]

Supernovae . . . . . . . . . . . . . . . . . . . .Supernovae Found 5.1 Introduction . . . . . . . . . . . .1.2 Non-Type Ia Supernovae . . . . . . . . . . . . . . . 1.3

Wood-Vasey, William Michael

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ames salmonella test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ames salmonella test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Safranextrakte im Ames-Test. Open...

142

Type Ia Supernova Carbon Footprints  

E-Print Network [OSTI]

We present convincing evidence of unburned carbon at photospheric velocities in new observations of 5 Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 d relative to maximum. Detections are based on the presence of relatively strong C II 6580 absorption "notches" in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the 5 SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibits high-velocity (v > 20,000 km/s) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broad band light curve/color behavior: Three of the 5 have relatively narrow light curves but also blue colors, and a fourth may be a dust-reddened member of this family. Accounting for signal-to-noise and phase, we ...

Thomas, R C; Aragon, C; Antilogus, P; Bailey, S; Baltay, C; Bongard, S; Buton, C; Canto, A; Childress, M; Chotard, N; Copin, Y; Fakhouri, H K; Gangler, E; Hsiao, E Y; Kerschhaggl, M; Kowalski, M; Loken, S; Nugent, P; Paech, K; Pain, R; Pecontal, E; Pereira, R; Perlmutter, S; Rabinowitz, D; Rigault, M; Rubin, D; Runge, K; Scalzo, R; Smadja, G; Tao, C; Weaver, B A; Wu, C; Brown, P J; Milne, P A

2011-01-01T23:59:59.000Z

143

Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andofJuneDOEAlaskaAmesAmesAmes

144

Low Mach Number Modeling of Type Ia Supernovae. II. Energy Evolution  

E-Print Network [OSTI]

Number Modeling of Type Ia Supernovae. II. Energy EvolutionIa. Subject headings: supernovae: general ó white dwarfs óthe ignition of Type Ia supernovae (SNe Ia) is critical to

Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale, Mike

2006-01-01T23:59:59.000Z

145

Ames Lab scientist hopes to improve rare earth purification process...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab scientist hopes to improve rare earth purification process Using the second fastest supercomputer in the world, a scientist at the U.S. Department of Energy's Ames Laboratory...

146

Valley wins High School Science Bowl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley wins High School Science Bowl West Des Moines Valley defeated Bettendorf 72-32 in the championship match to win the 25th Ames LaboratoryIowa State University Regional High...

147

Learning the language of cell life: Ames Laboratory scientists...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to know how plants and microbes in the soil talk to each other," said Marit Nilsen-Hamilton, an Ames Laboratory scientist and professor in the Roy J Carver Department of...

148

New videos debut in February | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New videos debut in February Two new videos debutted on the Ames Laboratory website (and YouTube channel). The first one is a new introductory video featuring Director Adam...

149

ames laboratory: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 AMES Wholesale Power Market Testbed: A Free Open-Source Computational Laboratory for the...

150

ames laboratory site: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 AMES Wholesale Power Market Testbed: A Free Open-Source Computational Laboratory for the...

151

ames quantum laboratory: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 AMES Wholesale Power Market Testbed: A Free Open-Source Computational Laboratory for the...

152

Ames Lab 101: Real-Time 3D Imaging  

ScienceCinema (OSTI)

Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

Zhang, Song

2012-08-29T23:59:59.000Z

153

Turbulent Combustion in Type Ia Supernova Models  

E-Print Network [OSTI]

We review the astrophysical modeling of type Ia supernova explosions and describe numerical methods to implement numerical simulations of these events. Some results of such simulations are discussed.

F. K. Roepke; W. Hillebrandt

2006-09-15T23:59:59.000Z

154

Theoretical cosmic Type Ia supernova rates  

E-Print Network [OSTI]

The aim of this work is the computation of the cosmic Type Ia supernova rates at very high redshifts (z>2). We adopt various progenitor models in order to predict the number of explosions in different scenarios for galaxy formation and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We also computed the Type Ia supernova rate in typical elliptical galaxies of different initial luminous masses and the total amount of iron produced by Type Ia supernovae in each case. It emerges that: it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; the monolithic collapse scenario predicts an increasing trend of the SN Ia rate at high redshifts whereas the predicted rate in the hierarchical scheme drops dramatically at high redshift; for the elliptical galaxies we note that the predicted maximum of the Type Ia supernova rate depends on the initial galactic mass. The maximum occurs earlier (at about 0.3 Gyr) in the most massive ellipticals, as a consequence of downsizing in star formation. We find that different delay time distributions predict different relations between the Type Ia supernova rate per unit mass at the present time and the color of the parent galaxies and that bluer ellipticals present higher supernova Type Ia rates at the present time.

R. Valiante; F. Matteucci; S. Recchi; F. Calura

2009-03-16T23:59:59.000Z

155

E-Print Network 3.0 - ames waltzer mice Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PCDH15 Protocadherin 15 Ames waltzer (av) 6... . L., Kwon, H. Y., Pawlowski, K. S., Wright, C. G., & Woychik, R. P. (2001). The mouse Ames waltzer... , the human homologue of...

156

THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of approx10{sup 10} M{sub sun}, leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing {sup 56}Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the {sup 56}Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between {sup 56}Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age-{sup 56}Ni mass correlations at low and higher redshift imply a luminosity-weighted age threshold of approx3 Gyr for SN Ia hosts, above which they are less likely to produce SNe Ia with {sup 56}Ni masses above approx0.5 M{sub sun}.

Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K. [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Sullivan, Mark [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Conley, Alex [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ONM5S3H8 (Canada); Seibert, Mark; Madore, Barry F. [The Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA, 91101 (United States); Neff, Susan G. [Laboratory for Astronomy and Solar Physics, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Schiminovich, David [Department of Astronomy, Columbia University, New York, NY 10027 (United States); Bianchi, Luciana [Center for Astrophysical Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218 (United States); Donas, Jose; Milliard, Bruno [Laboratoire d'Astrophysique de Marseille, BP 8, Traverse du Siphon, 13376 Marseille Cedex 12 (France); Heckman, Timothy M. [Department of Physics and Astronomy, Johns Hopkins University, Homewood Campus, Baltimore, MD 21218 (United States); Lee, Young-Wook [Center for Space Astrophysics, Yonsei University, Seoul 120-749 (Korea, Republic of); Rich, R. Michael [Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

2009-12-20T23:59:59.000Z

157

Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful2-3, 20063-4,Ames LaboratoryAmes

158

Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andofJuneDOEAlaskaAmesAmes

159

Ethylene ame synthesis of well-aligned multi-walled carbon nanotubes  

E-Print Network [OSTI]

Ethylene ¬Įame synthesis of well-aligned multi-walled carbon nanotubes Liming Yuan a , Kozo Saito a and curved shape multi-walled carbon nanotubes (MWNTs) were harvested from an ethylene¬Īair diusion ¬Įame applied to the nitrogen-diluted ethylene diusion ¬Įame; well-aligned and well-graphitized carbon nanotubes

Chen, Zhi

160

The AMES Wholesale Power Market Test Bed as a Stochastic Dynamic State-Space Game  

E-Print Network [OSTI]

The AMES Wholesale Power Market Test Bed as a Stochastic Dynamic State-Space Game Leigh Tesfatsion.econ.iastate.edu/tesfatsi/ tesfatsi@iastate.edu Last Revised: August 5, 2008 Abstract: The AMES Wholesale Power Market Test Bed wholesale power markets. These notes show how AMES can be recast in more standard state-space equation form

Tesfatsion, Leigh

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Supersoft Sources as SN Ia Progenitors  

E-Print Network [OSTI]

of the existence of supersoft X­ray sources. It is argued that SNe Ia are thermonuclear explosions of accreting C is that they represent thermonuclear disruptions of mass accreting white dwarfs (WDs). Thus, the basic ingredient

Greiner, Jochen

162

ETODOS NUM ERICOS EN INGENIER IA  

E-Print Network [OSTI]

CONSERVATIVOS ENERG #19; IA-MOMENTO Jos#19;e M. Goicolea Ruig#19;omez y Juan Carlos Garc#19;#16;a Orden EscuelaM #19; ETODOS NUM #19; ERICOS EN INGENIER #19; IA R. Abascal, J. Dom#19;#16;nguez y G. Bugeda (Eds.upm.es Palabras clave: Din#19;amica no lineal, mecanismos, sistemas multicuerpo exibles, energ#19;#16;a- momento

Romero, Ignacio

163

Renewable Energy Microgrid Testbed at NASA Ames Research  

E-Print Network [OSTI]

Renewable Energy Microgrid Testbed at NASA Ames Research Center Joel Kubby, Dan O'Leary, Zachary #12;Goals · Set-up a unique microgrid test-bed for renewable energy generation, monitoring and storage · Use the facility for testing systems integration, optimization and control of new renewable energy

Lee, Herbie

164

Ames Laboratory site environmental report, calendar year 1995  

SciTech Connect (OSTI)

This report summarizes the environmental status of Ames Laboratory for calendar year 1995. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs.

NONE

1997-01-01T23:59:59.000Z

165

ames test mutagenicity: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ames test mutagenicity First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Evolutionary Ensemble for In...

166

Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters  

E-Print Network [OSTI]

Applied to Type Ia supernovae, my strategy provides adata sets. Subject headings: Supernovae: Data Analysis andhomogeneous nature of Type Ia supernovae (SNe Ia) makes them

Kim, Alex G

2011-01-01T23:59:59.000Z

167

Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra  

E-Print Network [OSTI]

Utility of Type Ia Supernovae: Implications of a Dispersionheadings: surveys Ė supernovae: general Ė cosmologicalparameters Introduction Supernovae of Type Ia (SNe Ia) are

2008-01-01T23:59:59.000Z

168

Ames Laboratory annual site environmental report, calendar year 1996  

SciTech Connect (OSTI)

This report summarizes the environmental status of Ames Laboratory for calendar year 1996. It includes descriptions of the Laboratory site, its mission, the status of its compliance with applicable environmental regulations, its planning and activities to maintain compliance, and a comprehensive review of its environmental protection, surveillance and monitoring programs. Ames Laboratory is located on the campus of Iowa State University (ISU) and occupies twelve buildings owned by the Department of Energy (DOE). The Laboratory also leases space in ISU owned buildings. Laboratory activities involve less than ten percent of the total chemical use and approximately one percent of the radioisotope use on the ISU campus. In 1996, the Office of Assurance and Assessment merged with the Environment, Safety and Health Group forming the Environment, Safety, Health and Assurance (ESH and A) office. In 1996, the Laboratory accumulated and disposed of wastes under US Environmental Protection Agency (EPA) issued generator numbers. Ames Laboratory submitted a Proposed Site Treatment Plan to EPA in December 1995. This plan complied with the Federal Facilities Compliance Act (FFCA). It was approved by EPA in January 1996. The consent agreement/consent order was issued in February 1996. Pollution awareness, waste minimization and recycling programs, implemented in 1990 and updated in 1994, continued through 1996. Included in these efforts were a waste white paper and green computer paper recycling program. Ames Laboratory also continued to recycle salvageable metal and used oil, and it recovered freon for recycling. All of the chemical and nearly all of the radiological legacy wastes were properly disposed by the end of 1996. Additional radiological legacy waste will be properly disposed during 1997.

NONE

1998-04-01T23:59:59.000Z

169

Closest Type Ia Supernova in Decades Solves a Cosmic Mystery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PTF 11kly as it appeared in the nearby M101 galaxy. (Images: Peter Nugent) Type Ia supernovae (SN Ia's) are the extraordinarily bright and remarkably similar "standard candles"...

170

Probing Cosmological Isotropy With Type IA Supernovae  

E-Print Network [OSTI]

We investigate the validity of the Cosmological Principle by mapping the cosmological parameters $H_0$ and $q_0$ through the celestial sphere. In our analysis, performed in a low-redshift regime to follow a model-independent approach, we use two compilations of type Ia Supernovae (SNe Ia), namely the Union2.1 and the JLA datasets. Firstly, we show that the angular distributions for both SNe Ia datasets are statistically anisotropic at high confidence level ($p$-value $<$ 0.0001), in particular the JLA sample. Then we find that the cosmic expansion and acceleration are mainly of dipolar type, with maximal anisotropic expansion [acceleration] pointing towards $(l,b) \\simeq (326^{\\circ},12^{\\circ})$ [$(l,b) \\simeq (174^{\\circ},27^{\\circ})$], and $(l,b) \\simeq (58^{\\circ},-60^{\\circ})$ [$(l,b) \\simeq (225^{\\circ},51^{\\circ})$] for the Union2.1 and JLA data, respectively. Secondly, we use a geometrical method to test the hypothesis that the non-uniformly distributed SNe Ia events could introduce anisotropic imp...

Bengaly, C A P; Alcaniz, J S

2015-01-01T23:59:59.000Z

171

China Today IAS 2123.001  

E-Print Network [OSTI]

China Today IAS 2123.001 Kevin Carrico Tuesdays & Thursdays 10:30 am -11:45 am Approved for Non-Western culture credit Everyone knows that China today is a "rising superpower," but the real story of China's modern history is considerably more complex. This course looks beyond the headlines to rediscover China

Oklahoma, University of

172

E-Print Network 3.0 - amee guide supplements Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tour of the moon was given by Ames' Brian Day as his telescope... guide NASA and Palo Alto Humane Society Partner for Animal Protection animals. ... Source: Srivastava, Deepak -...

173

E-Print Network 3.0 - ames procedural requirements Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Unit Report on Performance... are detailed in the current Academic Regulations & Procedures Handbook at http... on the Annual Monitoring Exercise (AME) within the Handbook has...

174

E-Print Network 3.0 - ames human resources Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agents Gregory Dorais... NASA Ames Research Center David Kortenkamp NASA Johnson Space Center ... Source: Kortenkamp, David - Texas Robotics and Automation Center...

175

E-Print Network 3.0 - ames research center Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: ames research center Page: << < 1 2 3 4 5 > >> 1 Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical, Summary: boundaries,...

176

E-Print Network 3.0 - ames collaborative study Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

results for: ames collaborative study Page: << < 1 2 3 4 5 > >> 1 Aerospace and Mechanical Engineers design and build unique, complex mechanical, optical, Summary: studies. No...

177

E-Print Network 3.0 - ames research library Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: ames research library Page: << < 1 2 3 4 5 > >> 1 Aerospace and Mechanical Engineers design and build unique, complex mechanical-optical- Summary: synthesizing...

178

E-Print Network 3.0 - ames dwarf mice Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and RICHARD E. YOUNG9 ABSTRACT Stable, hydrogen-burning, M dwarf... Institute; and 14Ball Aerospace & Technologies Corporation, Boulder, Colorado. 9NASA Ames Research ......

179

Comparison of Recent SnIa datasets  

E-Print Network [OSTI]

We rank the six latest Type Ia supernova (SnIa) datasets (Constitution (C), Union (U), ESSENCE (Davis) (E), Gold06 (G), SNLS 1yr (S) and SDSS-II (D)) in the context of the Chevalier-Polarski-Linder (CPL) parametrization $w(a)=w_0+w_1 (1-a)$, according to their Figure of Merit (FoM), their consistency with the cosmological constant ($\\Lambda$CDM), their consistency with standard rulers (Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillations (BAO)) and their mutual consistency. We find a significant improvement of the FoM (defined as the inverse area of the 95.4% parameter contour) with the number of SnIa of these datasets ((C) highest FoM, (U), (G), (D), (E), (S) lowest FoM). Standard rulers (CMB+BAO) have a better FoM by about a factor of 3, compared to the highest FoM SnIa dataset (C). We also find that the ranking sequence based on consistency with $\\Lambda$CDM is identical with the corresponding ranking based on consistency with standard rulers ((S) most consistent, (D), (C), (E), (U), (G) least consistent). The ranking sequence of the datasets however changes when we consider the consistency with an expansion history corresponding to evolving dark energy $(w_0,w_1)=(-1.4,2)$ crossing the phantom divide line $w=-1$ (it is practically reversed to (G), (U), (E), (S), (D), (C)). The SALT2 and MLCS2k2 fitters are also compared and some peculiar features of the SDSS-II dataset when standardized with the MLCS2k2 fitter are pointed out. Finally, we construct a statistic to estimate the internal consistency of a collection of SnIa datasets. We find that even though there is good consistency among most samples taken from the above datasets, this consistency decreases significantly when the Gold06 (G) dataset is included in the sample.

J. C. Bueno Sanchez; S. Nesseris; L. Perivolaropoulos

2009-10-01T23:59:59.000Z

180

Ames Laboratory Scientist Receives Award for Advancing Diversity |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy| Department ofAmes Lab

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Human Resources at Ames Laboratory | Critical Materials Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas inPortalAllBPAHydrazide Chemistry,Ames Laboratory

182

AME:NDMENT OF SOLICITATION/MODIFICATION OF CONTRACT  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 Sandia National005-2010 or 1 PAGE 1AME:NDMENT

183

Former Ames Laboratory Science Intern Wins Prestigious Fellowship | The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: SincePlant Name: (MM)) (YYYY)Formation ofAmes

184

City of Ames, Iowa (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamont City of Place: IllinoisAmes, Iowa

185

Subject: Ames Blue Alert - X-ray Shutter Maintenance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium Oxide ThinIon Cooling andStudying Ames Blue Alert -

186

Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful2-3, 20063-4,Ames Laboratory

187

Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andofJuneDOEAlaska RegionsAmes

188

Ames Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andofJuneDOEAlaskaAmes

189

Ames Laboratory Technology Marketing Summaries - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross Blood Drive Hanford HealthLab,Ames

190

SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA  

SciTech Connect (OSTI)

The mode of explosive burning in Type Ia supernovae (SNe Ia) remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the delayed detonation transition, DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (approx20 keV) lasting approx10{sup -2} s with a total radiated energy of approx10{sup 40} erg, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M{sub V} approx -9 to -10 at approx1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m = 24) will see it out to a distance of approx80 Mpc, giving a maximum rate of approx60 yr{sup -1}. Archival data sets can also be used to study the early rise dictated by the shock heating (at approx20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion-induced collapse to a neutron star, but with a lower occurrence rate.

Piro, Anthony L.; Chang, Philip; Weinberg, Nevin N., E-mail: tpiro@astro.berkeley.ed, E-mail: pchang@astro.berkeley.ed, E-mail: nweinberg@astro.berkeley.ed [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)

2010-01-01T23:59:59.000Z

191

The AMES Wholesale Power Market Test Bed: A Computational Laboratory for  

E-Print Network [OSTI]

1 The AMES Wholesale Power Market Test Bed: A Computational Laboratory for Research, Teaching, and Training Hongyan Li, Student Member, IEEE, and Leigh Tesfatsion, Member, IEEE Abstract--Wholesale power suitable for the objective study of this restructuring process. This study reports on the AMES Wholesale

Tesfatsion, Leigh

192

Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames  

E-Print Network [OSTI]

LBNL-6033E Transforming BIM to BEM: Generation of Building Geometry for the NASA Ames by Tobias Maile and expanded by Cody Rose. #12;Transforming BIM to BEM: Generation of Building Geometry Ames project and was the enabling software that facilitated semi-automated data transformations. GST

193

Type Ia Supernova Hubble Residuals and Host-Galaxy Properties  

E-Print Network [OSTI]

magnitudes of type Ia supernovae from multi-band lightsuch an analysis on the supernovae of the Nearby Supernovaheadings: distance scale, supernovae: general 1 Physics

Kim, A. G.

2014-01-01T23:59:59.000Z

194

K-corrections and spectral templates of Type Ia supernovae  

E-Print Network [OSTI]

templates of Type Ia supernovae E. Y. Hsiao 1 , A. Conleyobservations of low-redshift supernovae are less a?ected byobservations, stars: supernovae Department of Physics and

Hsiao, E. Y.

2008-01-01T23:59:59.000Z

195

Constraining Cosmic Evolution of Type Ia Supernovae  

SciTech Connect (OSTI)

We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.

2008-02-13T23:59:59.000Z

196

Category:Mason, IA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAdd a newISGANMagnetotelluricsIA"

197

Rolling Hills (IA) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It isRockwall,SectorIA) Jump to:

198

Steamboat IA Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA RegionSpringviewNameGeothermal Facility JumpIA

199

DOE - Office of Legacy Management -- Iowa State University Ames Laboratory  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison- NY 38 Rare- IA 01

200

Plasma Redshift, Time Dilation, and Supernovas Ia  

E-Print Network [OSTI]

The measurements of the absolute magnitudes and redshifts of supernovas Ia show that conventional physics, which includes plasma redshift, fully explains the observed magnitude-redshift relation of the supernovas. The only parameter that is required is the Hubble constant, which in principle can be measured independently. The contemporary theory of the expansion of the universe (Big Bang) requires in addition to the Hubble constant several adjustable parameters, such as an initial explosion, the dark matter parameter, and a time adjustable dark energy parameter for explaining the supernova Ia data. The contemporary Big Bang theory also requires time dilation of distant events as an inherent premise. The contention is usually that the light curves of distant supernovas show or even prove the time dilation. In the present article, we challenge this assertion. We document and show that the previously reported data in fact indicate that there is no time dilation. The data reported by Riess et al. in the Astrophysical Journal in June 2004 confirm the plasma redshift, the absence of time dilation, dark matter, and dark energy.

Ari Brynjolfsson

2004-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies  

E-Print Network [OSTI]

Host Galaxies of Type Ia Supernovae Introduction SN Ia Hosts109 C HAPTER 1 Cosmology, Type Ia Supernovae and HostGalaxies Observations of supernovae have played a role in

Meyers, Joshua Evan

2012-01-01T23:59:59.000Z

202

Diversity of Type Ia Supernovae Imprinted in Chemical Abundances  

E-Print Network [OSTI]

A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit a SN Ia-like elemental feature including a very low [Mg/Fe] (~-1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr,Mn,Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth, and gives a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nice...

Tsujimoto, Takuji

2012-01-01T23:59:59.000Z

203

Intermediate-band Photometry of Type Ia Supernovae  

E-Print Network [OSTI]

We present optical light curves of five Type Ia supernovae (2002er, 2002fk, 2003cg, 2003du, 2003fk). The photometric observations were performed in a set of intermediate-band filters. SNe 2002er, 2003du appear to be normal SN Ia events with similar light curve shapes, while SN 2003kf shows the behavior of a brighter SN Ia with slower decline rate after maximum. The light curves of SN 2003cg is unusual; they show a fast rise and dramatic decline near maximum and do not display secondary peak at longer wavelengths during 15-30 days after maximum light. This suggests that SN 2003cg is likely to be an intrinsically subluminous, 91bg-like SN Ia. Exploration of SN Ia feature lines through intermediate-band photometry is briefly discussed.

Wang, X; Zhang, T; Li, Z; Wang, Xiaofeng; Zhou, Xu; Zhang, Tianmeng; Li, Zongwei

2004-01-01T23:59:59.000Z

204

E-Print Network 3.0 - ames wind tunnel Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

wind tunnel Search Powered by Explorit Topic List Advanced Search Sample search results for: ames wind tunnel Page: << < 1 2 3 4 5 > >> 1 IOWA STATE UNIVERSITY WIND SIMULATION AND...

205

Making Stuff Outreach at the Ames Laboratory and Iowa State University  

SciTech Connect (OSTI)

The U. S. Department of Energy's Ames Laboratory in Ames, Iowa was a coalition partner for outreach activities connected with NOVA's Making Stuff television series on PBS. Volunteers affiliated with the Ames Laboratory and Iowa State University, with backgrounds in materials science, took part in activities including a science-themed Family Night at a local mall, Science Cafes at the Science Center of Iowa, teacher workshops, demonstrations at science nights in elementary and middle schools, and various other events. We describe a selection of the activities and present a summary of their outcomes and extent of their impact on Ames, Des Moines and the surrounding communities in Iowa. In Part 2, results of a volunteer attitude survey are presented, which shed some light on the volunteer experience and show how the volunteers participation in outreach activities has affected their views of materials education.

Ament, Katherine; Karsjen, Steven; Leshem-Ackerman, Adah; King, Alexander

2011-04-01T23:59:59.000Z

206

Direct numerical simulations of type Ia supernovae flames I: The landau-darrieus instability  

E-Print Network [OSTI]

Simulations of Type Ia Supernovae Flames I: The Landau-Subject headings: supernovae: general ó white dwarfs ócould occur in Type Ia supernovae (Niemeyer & Woosley 1997),

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2003-01-01T23:59:59.000Z

207

DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES  

SciTech Connect (OSTI)

A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

Tsujimoto, Takuji [National Astronomical Observatory of Japan, Mitaka-shi, Tokyo 181-8588 (Japan); Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

2012-12-01T23:59:59.000Z

208

Tracked Flame Simulation for Type Ia Yongmin Zhang1  

E-Print Network [OSTI]

tracking of the ame front which is critically important to the accurate modeling of turbulent thermonuclear, and the strength and brightness of the burning are all determined by the speed of thermonuclear burning 12, 13 needs to model the propagation of thermonuclear burning inside the exploding star. The mech- anism

New York at Stoney Brook, State University of

209

The Photometric Properties of Nearby Type Ia Supernovae  

E-Print Network [OSTI]

The Rise-Time Distribution of Nearby Type Ia Supernovae 3.1Highlight: The Physics of Supernovae, ed. W. Hillebrandt &1.1 Supernovae . . . . . . . . . . . . . . 1.1.1

Ganeshalingam, Mohan

2012-01-01T23:59:59.000Z

210

Single-Degenerate Type Ia Supernovae Are Preferentially Overluminous  

E-Print Network [OSTI]

Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly-accreting Chandrasekhar mass white dwarfs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass white dwarfs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are gen...

Fisher, Robert

2015-01-01T23:59:59.000Z

211

CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2013-06-20T23:59:59.000Z

212

TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM  

SciTech Connect (OSTI)

Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew; Graham, Melissa L. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R. [Cahill Center for Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Chornock, Ryan; Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Coil, Alison L. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Griffith, Christopher V. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kasliwal, Mansi M., E-mail: jsilverman@astro.as.utexas.edu [Observatories of the Carnegie Institution of Science, Pasadena, CA 91101 (United States); and others

2013-07-01T23:59:59.000Z

213

EARLY EMISSION FROM TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a {approx}10{sup 3} s long UV/optical flash with a luminosity of {approx}1 to {approx}3 Multiplication-Sign 10{sup 39} erg s{sup -1}. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t{sub drop} {approx} 1 hr due to the deviation from pure radiation domination.

Rabinak, Itay; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Livne, Eli, E-mail: itay.rabinak@weizmann.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

2012-09-20T23:59:59.000Z

214

National Aeronautics and Space Administration,Ames Research Center,Moffett Field,CA www.nasa.gov  

E-Print Network [OSTI]

National Aeronautics and Space Administration,Ames Research Center,Moffett Field,CA July 2008 www Conference held in July at the center. developed at Ames and satellite data from Goddard Space Flight Center to heighten awareness of center management's concern for security at the center. Computer programs

215

Published in 2009 by John Wiley & Sons, Ltd Correspondence to: David A. Laird, USDA, ARS, National Soil Tilth Laboratory, 2110 University Blvd., Ames IA 50011-3120, USA.  

E-Print Network [OSTI]

quantities of renewable bioenergy while simultaneously reducing emissions of greenhouse gases. At the present time, the pyrolysis platform is economically marginal because markets for bio-oil and biochar bioenergy industry has been promoted as a means of simultaneously improving energy secu- rity, improving

Lehmann, Johannes

216

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515-294-5798 FOR MORE INFORMATION  

E-Print Network [OSTI]

on a paving project.To effectively monitor the uniformity of the cementitious materials,it is necessary (SCMs) are delivered to the project.This test should not be used to accept or reject materials,monitoring the heat generated by paste mixtures prepared from project materials can identify whether changes

217

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515-294-5798 FOR MORE INFORMATION  

E-Print Network [OSTI]

-294-5798 FOR MORE INFORMATION Concrete Property Test www.cptechcenter.org Workability 1-3: Concrete Slump Purpose 143,the Standard Test Method for Slump of Hydraulic-Cement Concrete,determines how much a concrete and testing procedures for concrete produced at a central mix plant and transported in nonagitating trucks

218

CP Tech Center I Iowa State University I 2711 S. Loop Dr. Suite 4700,Ames, IA 50010-8664 I 515-294-5798 FOR MORE INFORMATION  

E-Print Network [OSTI]

make this possible.Best practice for AVA use as a quality control tool include monitoring the specific attached to a hand drill.A 20-cc portion of the mortar sample is injected into the instrument. An AASHTO standard is currently being developed for the AVA. Test Apparatus (figure 1) Portable drill

219

Transition from participant to spectator fragmentation in Au+Au reaction between 60 AMeV and 150 AMeV  

E-Print Network [OSTI]

Using the quantum molecular dynamics approach, we analyze the results of the recent INDRA Au+Au experiments at GSI in the energy range between 60 AMeV and 150 AMeV. It turns out that in this energy region the transition toward a participant-spectator scenario takes place. The large Au+Au system displays in the simulations as in the experiment simultaneously dynamical and statistical behavior which we analyze in detail: The composition of fragments close to midrapidity follows statistical laws and the system shows bi-modality, i.e. a sudden transition between different fragmentation pattern as a function of the centrality as expected for a phase transition. The fragment spectra at small and large rapidities, on the other hand, are determined by dynamics and the system as a whole does not come to equilibrium, an observation which is confirmed by FOPI experiments for the same system.

Zbiri, K; Aichelin, J; Reisdorf, W; Gulminelli, F; Lynen, U; MŁller, W F J; Orth, H; Schwarz, C; Sfienti, C; Trautmann, W; Turzů, K; Zwieglinski, B; Auger, G; Charvet, J L; Chbihi, A; Dayras, R; Durand, D; Frankland, J D; Legrain, R; Le Neindre, N; Lůpez, O; Nalpas, L; P‚rlog, M; Rivet, M F; Rosato, E; Vient, E; Vigilante, M; Volant, C; Wieleczko, J P

2006-01-01T23:59:59.000Z

220

Simulations of Turbulent Thermonuclear Burning in Type Ia Supernovae  

E-Print Network [OSTI]

Type Ia supernovae have recently received considerable attention because it appears that they can be used as "standard candles" to measure cosmic distances out to billions of light years away from us. Observations of type Ia supernovae seem to indicate that we are living in a universe that started to accelerate its expansion when it was about half its present age. These conclusions rest primarily on phenomenological models which, however, lack proper theoretical understanding, mainly because the explosion process, initiated by thermonuclear fusion of carbon and oxygen into heavier elements, is difficult to simulate even on supercomputers. Here, we investigate a new way of modeling turbulent thermonuclear deflagration fronts in white dwarfs undergoing a type Ia supernova explosion. Our approach is based on a level set method which treats the front as a mathematical discontinuity and allows for full coupling between the front geometry and the flow field. New results of the method applied to the problem of type Ia supernovae are obtained. It is shown that in 2-D with high spatial resolution and a physically motivated subgrid scale model for the nuclear flames numerically "converged" results can be obtained, but for most initial conditions the stars do not explode. In contrast, simulations in 3-D, do give the desired explosions and many of their properties, such as the explosion energies, lightcurves and nucleosynthesis products, are in very good agreement with observed type Ia supernovae.

W. Hillebrandt; M. Reinecke; W. Schmidt; F. K. Roepke; C. Travaglio; J. C. Niemeyer

2004-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

SciTech Connect:  

Office of Scientific and Technical Information (OSTI)

Amarillo, TX (United States) Ames Laboratory (AMES), Ames, IA (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) Argonne National...

222

Diagnosing multiplicative error by lensing magnification of type Ia supernovae  

E-Print Network [OSTI]

Weak lensing causes spatially coherent fluctuations in flux of type Ia supernovae (SNe Ia). This lensing magnification allows for weak lensing measurement independent of cosmic shear. It is free of shape measurement errors associated with cosmic shear and can therefore be used to diagnose and calibrate multiplicative error. Although this lensing magnification is difficult to measure accurately in auto correlation, its cross correlation with cosmic shear and galaxy distribution in overlapping area can be measured to significantly higher accuracy. Therefore these cross correlations can put useful constraint on multiplicative error, and the obtained constraint is free of cosmic variance in weak lensing field. We present two methods implementing this idea and estimate their performances. We find that, with $\\sim 1$ million SNe Ia that can be achieved by the proposed D2k survey with the LSST telescope (Zhan et al. 2008), multiplicative error of $\\sim 0.5\\%$ for source galaxies at $z_s\\sim 1$ can be detected and la...

Zhang, Pengjie

2015-01-01T23:59:59.000Z

223

K-corrections and extinction corrections for Type Ia supernovae  

SciTech Connect (OSTI)

The measurement of the cosmological parameters from Type Ia supernovae hinges on our ability to compare nearby and distant supernovae accurately. Here we present an advance on a method for performing generalized K-corrections for Type Ia supernovae which allows us to compare these objects from the UV to near-IR over the redshift range 0 < z < 2. We discuss the errors currently associated with this method and how future data can improve upon it significantly. We also examine the effects of reddening on the K-corrections and the light curves of Type Ia supernovae. Finally, we provide a few examples of how these techniques affect our current understanding of a sample of both nearby and distant supernovae.

Nugent, Peter; Kim, Alex; Perlmutter, Saul

2002-05-21T23:59:59.000Z

224

SCHOOLING AND PARENTAL DEATH Paul Gertler, David I. Levine, and Minnie Ames*  

E-Print Network [OSTI]

nations have always lost parents to accidents, childbirth, and illness. Unfortunately, the scourge of HIV African children under the age of 15 has lost one or both parents (Hunter & Williamson, 2000SCHOOLING AND PARENTAL DEATH Paul Gertler, David I. Levine, and Minnie Ames* Abstract

Sadoulet, Elisabeth

225

High-resolution fracture aperture mapping using optical profilometry Pasha Ameli,1  

E-Print Network [OSTI]

High-resolution fracture aperture mapping using optical profilometry Pasha Ameli,1 Jean E. Elkhoury] Fractures play an important role in the Earth's crust, often controlling both mechanical and transport of fracture surfaces and the contacts and void spaces between fracture surfaces at high spatial resolution (10

Elkhoury, Jean

226

Mutagenicity of anthraquinone and hydroxylated antrhaquinones in the Ames/Salmonella microsome system  

SciTech Connect (OSTI)

The mutagenicity of anthracene, anthraquinone, and four structurally similar compounds of each was evaluated in the Ames/Salmonella microsome assay.Anthraquinone was shown to be mutagenic for strains TA1537, TA1538, and TA98 in the absence of rat liver homogenate. The four anthraqunione derivatives tested were mutagenic for TA1537 exclusively. None of the anthracenes exhibited mutagenic activity.

Liberman, D.F. (Massachusetts Inst. of Tech., Cambridge); Fink, R.C.; Schaefer, F.L.; Mulcahy, R.J.; Stark, A.-A.

1982-06-01T23:59:59.000Z

227

AME 514 Applications of Combustion and Reacting Flows -Spring 2015 Instructor: Paul Ronney  

E-Print Network [OSTI]

transpiration 3) Turbulent combustion (3 lectures) i) Premixed-gas flames ii) Non premixed flames iii) EdgeAME 514 ­ Applications of Combustion and Reacting Flows - Spring 2015 Instructor: Paul Ronney of Combustion) to new and rapidly evolving science and technology areas including microscale reacting flows

228

Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry  

E-Print Network [OSTI]

Hybrid Geometric Reduction of Hybrid Systems Aaron D. Ames and Shankar Sastry Abstract-- This paper presents a unifying framework in which to carry out the hybrid geometric reduction of hybrid systems, generalizing classical reduction to a hybrid setting. I. INTRODUCTION The reduction of mechanical systems

Sastry, S. Shankar

229

SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT  

SciTech Connect (OSTI)

This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), Todai Institutes for Advanced Study, the University of Tokyo, 277-8583 Kashiwa (Japan); Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Hamuy, Mario; Anderson, Joseph P. [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Krzeminski, Wojtek [N. Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warszawa (Poland); Stritzinger, Maximilian [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Prieto, Jose L. [Department of Astrophysical Sciences, Princeton University, 4 Ivy Ln., Princeton, NJ 08544 (United States); Suntzeff, Nicholas B.; Krisciunas, Kevin, E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); and others

2013-08-10T23:59:59.000Z

230

UV Spectroscopy of Type Ia Supernovae at Low- and High-Redshift  

E-Print Network [OSTI]

Spectroscopy of Type Ia Supernovae at Low- and High-RedshiftUV properties of Type Ia Supernovae. The low-redshift studyULDA Access Guide No. 6: Supernovae, The Netherlands: ESA

Nugent, Peter

2005-01-01T23:59:59.000Z

231

Feasibility of Measuring the Cosmological Constant [LAMBDA] and Mass Density [Omega] using Type Ia Supernovae  

E-Print Network [OSTI]

at z = 1. uncertainty for supernovae at z = 1. mR Adding theMass Density .Q Using Type Ia Supernovae A. Goobar and S.Density Q Using Type Ia Supernovae Ariel Goobar l and Saul

Goobar, A.

2008-01-01T23:59:59.000Z

232

Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae  

E-Print Network [OSTI]

1.3.2 Thermonuclear Supernovae . . . . . . . . 1.4 Why WriteIa are the result of thermonuclear explosions of C/O whiteIa are the result of thermonuclear explosions of C/O white

Silverman, Jeffrey Michael

2011-01-01T23:59:59.000Z

233

Nearby Supernova Factory Observations of SN 2006D: On Sporadic Carbon Signatures in Early Type Ia Supernova Spectra  

E-Print Network [OSTI]

with low volume-?lling factor. Subject headings: supernovae:general ó supernovae: individual (SN 2006D)Introduction Type Ia supernovae (SNe Ia) make valuable

2006-01-01T23:59:59.000Z

234

Innovation Academy Change of Major Form (Out of IA) College of Agricultural and Life Sciences  

E-Print Network [OSTI]

Innovation Academy Change of Major Form (Out of IA) College of Agricultural and Life Sciences Academy Change of Major Form (Out of IA) College of Agricultural and Life Sciences SECTION 3: TO BE COMPLETED BY THE INNOVATION ACADEMY ADVISER IA Adviser's Comments/Conditions (circle

Jawitz, James W.

235

HOSPITALITY AND TOURISM MANAGEMENT MAJOR Virgu1iaTech  

E-Print Network [OSTI]

Hospitality Facilities Planning and Methods I (3) Management (3) #HTM 3484 Socio-Cultural Impacts of Tourism 4414 Food and Beverage Management (Pre: HTM 3414) * #HTM 4464 Human Resources Management in HospHOSPITALITY AND TOURISM MANAGEMENT MAJOR Virgu1iaTech Panplil College of BusIness Department

Virginia Tech

236

Could there be a hole in type Ia supernovae?  

SciTech Connect (OSTI)

In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

2004-04-23T23:59:59.000Z

237

Probing the Type Ia environment with Light Echoes  

E-Print Network [OSTI]

In general, Light Echoes (LE) are beautiful, rather academical and therefore unavoidably useless phenomena. In some cases, however, they can give interesting information about the environment surrounding the exploding star. After giving a brief introduction to the subject, I describe its application to the case of Type Ia Supernovae and discuss the implications for progenitors and their location within the host galaxies.

F. Patat

2004-11-19T23:59:59.000Z

238

Signatures of Explosion Models for SN ~Ia & Cosmology  

E-Print Network [OSTI]

We give an overview of the current understanding of Type Ia supernovae relevant for their use as cosmological distance indicators. We present the physical basis to understand their homogeneity of the observed light curves and spectra and the observed correlations. SNe Ia have been well established as distance indicators on the 10 % level. However, the quest for the nature of the dark energy requires improvements in the accuracy to the 2 to 3 % level, we must understand the diversity within the SNe Ia population, and its evolution with redshift. Based on detailed models for the progenitors, explosions, light curves and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. We emphasize the relation between LC properties and spectra because, for local SNe~Ia, the diversity becomes apparent the combination of spectra and LCs whereas, by enlarge, we have to for high-z objects. At some examples, we show how we can actually probe the properties of the progenitor, its environment, and details of the explosion physics.

P. Hoeflich

2004-09-07T23:59:59.000Z

239

Effect of nuclear structure on Type Ia supernova nucleosynthesis  

E-Print Network [OSTI]

The relationship among nuclear structure, the weak processes in nuclei, and astrophysics becomes quite apparent in supernova explosion and nucleosynthesis studies. In this brief article, I report on progress made in the last few years on calculating electron capture and beta-decay rates in iron-group nuclei. I also report on applications of these rates to Type-Ia nucleosynthesis studies.

D. J. Dean

2000-12-08T23:59:59.000Z

240

Thermonuclear supernova models, and observations of Type Ia supernovae  

E-Print Network [OSTI]

In this paper, we review the present state of theoretical models of thermonuclear supernovae, and compare their predicitions with the constraints derived from observations of Type Ia supernovae. The diversity of explosion mechanisms usually found in one-dimensional simulations is a direct consequence of the impossibility to resolve the flame structure under the assumption of spherical symmetry. Spherically symmetric models have been successful in explaining many of the observational features of Type Ia supernovae, but they rely on two kinds of empirical models: one that describes the behaviour of the flame on the scales unresolved by the code, and another that takes account of the evolution of the flame shape. In contrast, three-dimensional simulations are able to compute the flame shape in a self-consistent way, but they still need a model for the propagation of the flame in the scales unresolved by the code. Furthermore, in three dimensions the number of degrees of freedom of the initial configuration of the white dwarf at runaway is much larger than in one dimension. Recent simulations have shown that the sensitivity of the explosion output to the initial conditions can be extremely large. New paradigms of thermonuclear supernovae have emerged from this situation, as the Pulsating Reverse Detonation. The resolution of all these issues must rely on the predictions of observational properties of the models, and their comparison with current Type Ia supernova data, including X-ray spectra of Type Ia supernova remnants.

E. Bravo; C. Badenes; D. Garcia-Senz

2004-12-07T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cosmic Supernova Rate History and Type Ia Supernova Progenitors  

E-Print Network [OSTI]

Adopting a single degenerate scenario for Type Ia supernova progenitors with the metallicity effect, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in spiral and elliptical galaxies, and compare with the recent observational data up to z ~ 0.55.

Chiaki Kobayashi; Ken'ichi Nomoto; Takuji Tsujimoto

2001-02-14T23:59:59.000Z

242

Low-Metallicity Inhibition of Type Ia Supernovae and Galactic and Cosmic Chemical Evolution  

E-Print Network [OSTI]

We introduce a metallicity dependence of Type Ia supernova (SN Ia) rate into the Galactic and cosmic chemical evolution models. In our SN Ia progenitor scenario, the accreting white dwarf (WD) blows a strong wind to reach the Chandrasekhar mass limit. If the iron abundance of the progenitors is as low as [Fe/H] 1-2, SNe Ia can be found only in the environments where the timescale of metal enrichment is sufficiently short as in starburst galaxies and ellipticals. The low-metallicity inhibition of SNe Ia can shed new light on the following issues: 1) The limited metallicity range of the SN Ia progenitors would imply that ``evolution effects'' are relatively small for the use of high redshift SNe Ia to determine the cosmological parameters. 2) WDs of halo populations are poor producers of SNe Ia, so that the WD contribution to the halo mass is not constrained from the iron abundance in the halo. 3) The abundance patterns of globular clusters and field stars in the Galactic halo lack of SN Ia signatures in spite of their age difference of several Gyrs, which can be explained by the low-metallicity inhibition of SNe Ia. 4) It could also explain why the SN Ia contamination is not seen in the damped Ly\\alpha systems for over a wide range of redshift.

Chiaki Kobayashi; Takuji Tsujimoto; Ken'ich Nomoto; Izumi Hachisu; Mariko Kato

1998-06-25T23:59:59.000Z

243

An Analysis of Department of Defense Instruction 8500.2 'Information Assurance (IA) Implementation.'  

SciTech Connect (OSTI)

The Department of Defense (DoD) provides its standard for information assurance in its Instruction 8500.2, dated February 6, 2003. This Instruction lists 157 'IA Controls' for nine 'baseline IA levels.' Aside from distinguishing IA Controls that call for elevated levels of 'robustness' and grouping the IA Controls into eight 'subject areas' 8500.2 does not examine the nature of this set of controls, determining, for example, which controls do not vary in robustness, how this set of controls compares with other such sets, or even which controls are required for all nine baseline IA levels. This report analyzes (1) the IA Controls, (2) the subject areas, and (3) the Baseline IA levels. For example, this report notes that there are only 109 core IA Controls (which this report refers to as 'ICGs'), that 43 of these core IA Controls apply without variation to all nine baseline IA levels and that an additional 31 apply with variations. This report maps the IA Controls of 8500.2 to the controls in NIST 800-53 and ITGI's CoBIT. The result of this analysis and mapping, as shown in this report, serves as a companion to 8500.2. (An electronic spreadsheet accompanies this report.)

Campbell, Philip LaRoche

2012-01-01T23:59:59.000Z

244

Type Ia Supernova Spectral Line Ratios as LuminosityIndicators  

SciTech Connect (OSTI)

Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

2005-12-07T23:59:59.000Z

245

Learning from the scatter in type Ia supernovae  

SciTech Connect (OSTI)

Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here we probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub 8}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub 8} to within 5% with observations of 2000 Type Ia Supernovae. We identify three sources of systematic error - evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing - which will make this measurement difficult.

Dodelson, Scott [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States); Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637-1433 (United States); Vallinotto, Alberto [Particle Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500 (United States); Department of Physics, The University of Chicago, Chicago, Illinois 60637-1433 (United States)

2006-09-15T23:59:59.000Z

246

CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS  

SciTech Connect (OSTI)

A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

Ma, H.; Woosley, S. E.; Malone, C. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Almgren, A.; Bell, J. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

2013-07-01T23:59:59.000Z

247

Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae  

E-Print Network [OSTI]

The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, ^56 Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of t...

Brown, Peter J; Milne, Peter; Roming, Peter W A; Wang, Lifan

2015-01-01T23:59:59.000Z

248

The type Ia supernovae and the Hubble's constant  

E-Print Network [OSTI]

The Hubble's constant is usually surmised to be a constant; but the experiments show a large spread and conflicting estimates. According to the plasma-redshift theory, the Hubble's constant varies with the plasma densities along the line of sight. It varies then slightly with the direction and the distance to a supernova and a galaxy. The relation between the magnitudes of type Ia supernovae and their observed redshifts results in an Hubble's constant with an average value in intergalactic space of 59.44 km per s per Mpc. The standard deviation from this average value is only 0.6 km per s per Mpc, but the standard deviation in a single measurement is about 8.2 km per s per Mpc. These deviations do not include possible absolute calibration errors. The experiments show that the Hubble's constant varies with the intrinsic redshifts of the Milky Way galaxy and the host galaxies for type Ia supernovae, and that it varies with the galactic latitude. These findings support the plasma-redshift theory and contradict the contemporary big-bang theory. Together with the previously reported absence of time dilation in type Ia supernovae measurements, these findings have profound consequences for the standard cosmological theory.

Ari Brynjolfsson

2004-07-20T23:59:59.000Z

249

Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA  

E-Print Network [OSTI]

Experto Universitario Java Enterprise ¬© 2012-2013 Depto. Ciencia de la Computaci√≥n e IA Lenguaje Lenguaje Java Avanzado ¬© 2012-2013 Depto. Ciencia de la Computaci√≥n e IA Lenguaje Java 2 √ćndice. Ciencia de la Computaci√≥n e IA Lenguaje Java 3 Java ¬∑ Java es un lenguaje OO creado por Sun Microsystems

Escolano, Francisco

250

Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA  

E-Print Network [OSTI]

Experto Universitario Java Enterprise © 2012-2013 Depto. Ciencia de la Computación e IA Lenguaje Avanzado © 2012-2013 Depto. Ciencia de la Computación e IA Depuración y logs - 2 · El depurador de Eclipse Enterprise Lenguaje Java Avanzado © 2012-2013 Depto. Ciencia de la Computación e IA Depuración y logs - 3 El

Escolano, Francisco

251

Teor'ia de Grupos y Mec'anica Qu'antica Luis A. Seco  

E-Print Network [OSTI]

determinado por el Hamiltoniano de la energ'ia, un operador que, actuando sobre una funci'on /(x 1 ; : : : ; xTeor'ia de Grupos y Mec'anica Qu'antica Luis A. Seco Universidad de Toronto. Notas del curso; Teor'ia de Grupos y Mec'anica Cu'antica, L. Seco. U.I.M.P. La Coru~na, 27 Junio -- 1 Julio, 1994

Seco, Luis A.

252

Timescale stretch parameterization of Type Ia supernova B-band light curves  

E-Print Network [OSTI]

the light curve of Type Ia supernovae discovered by theof the high-redshift supernovae. This work was supported inobjects. Subject headings: supernovae: general Ė cosmology:

2001-01-01T23:59:59.000Z

253

Direct numerical simulations of type Ia supernovae flames II: The rayleigh-taylor instability  

E-Print Network [OSTI]

Weaver, T. A. 1994, in Supernovae, Les Houches, Session LIV,Simulations of Type Ia Supernovae Flames II: The Rayleigh-Subject headings: supernovae: general ó white dwarfs ó

Bell, J.B.; Day, M.S.; Rendleman, C.A.; Woosley, S.E.; Zingale, M.

2004-01-01T23:59:59.000Z

254

THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

Kistler, Matthew D. [California Institute of Technology, Mail Code 350-17, Pasadena, CA 91125 (United States); Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Prieto, Jose L. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

2013-06-20T23:59:59.000Z

255

HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY  

SciTech Connect (OSTI)

We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

2013-06-20T23:59:59.000Z

256

Multi-layered Spectral Formation in SNe Ia Around Maximum Light  

E-Print Network [OSTI]

stars: atmospheres ó supernovae DISCLAIMER This document wasIntroduction Type Ia supernovś have been used as ďspanning the ďnormalĒ supernovś blue magnitudes. Single Ion

Bongard, Sebastien

2008-01-01T23:59:59.000Z

257

High-Redshift Type Ia Supernova Rates in Galaxy Cluster and Field Environments  

E-Print Network [OSTI]

29 Candidates classified as supernovae . . . . . . . .1.1 Type Ia Supernovae as Standard Candles . . . . . . . .4.2.3 Supernovae . . . . . . . . . . . . . . . . 4.2.4

Barbary, Kyle Harris

2011-01-01T23:59:59.000Z

258

Ames Site Office CX Determinations | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLightAllen J.Ames Site

259

Ames Lab Plays Elemental Role in New PBS Special | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy| Department ofAmes Lab Plays

260

Turbulence-Flame Interactions in Type Ia Supernovae  

E-Print Network [OSTI]

The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to $8 \\times 10^7$ g cm$^{-3}$, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and $3 \\times 10^7$ g cm$^{-3}$ where the nature of the burning changes qualitatively. By $1 \\times 10^7$ g cm$^{-3}$, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, $D_T \\sim u' l$, where $u'$ is the turbulent intensity and $l$ is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

A. J. Aspden; J. B. Bell; M. S. Day; S. E. Woosley; M. Zingale

2008-11-17T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

In the single-degenerate scenario for Type Ia supernovae (SNe Ia), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, M{sub crit}, needed for explosion. When M{sub crit} is higher than the maximum mass achieved by the WD, the central regions of the WD must spin down before it can explode. This introduces super-Chandrasekhar single-degenerate explosions, and a delay between the completion of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-M{sub Ch} WDs in either wide binaries with WD companions or cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post-explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNe Ia.

Stefano, R. Di [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Voss, R. [Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Claeys, J. S. W. [Sterrekundig Instituut, Universiteit Utrecht, P.O. Box 800000, 3508 TA Utrecht (Netherlands)

2011-09-01T23:59:59.000Z

262

Reflections on Reflexions: I. Light Echoes in Type Ia Supernovae  

E-Print Network [OSTI]

In the last ten years, observational evidences about a possible connection between Type Ia Supernovae (SNe) properties and the environment where they explode have been steadily growing. In this paper I discuss, from a theoretical point of view but with an observer's perspective, the usage of light echoes (LEs) to probe the CSM around SNe of Type Ia since, in principle, they give us a unique opportunity of getting a three-dimensional description of the SN environment. In turn, this can be used to check the often suggested association of some Ia's with dusty/star forming regions, which would point to a young population for the progenitors. After giving a brief introduction to the LE phenomenon in single scattering approximation, I derive analytical and numerical solutions for the optical light and colour curves for a few simple dust geometries. A fully 3D multiple scattering treatment has also been implemented in a Monte Carlo code, which I have used to investigate the effects of multiple scattering. In particular, I have explored in detail the LE colour dependency from time and dust distribution, since this is a promising tool to determine the dust density and derive the effective presence of multiple scattering from the observed properties. Finally, again by means of Monte Carlo simulations, I have studied the effects of multiple scattering on the LE linear polarization, analyzing the dependencies from the dust parameters and geometry. Both the analytical formalism and MC codes described in this paper can be used for any LE for which the light curve of the central source is known.

F. Patat

2004-09-28T23:59:59.000Z

263

Tension in the Recent Type Ia Supernovae Datasets  

E-Print Network [OSTI]

In the present work, we investigate the tension in the recent Type Ia supernovae (SNIa) datasets Constitution and Union. We show that they are in tension not only with the observations of the cosmic microwave background (CMB) anisotropy and the baryon acoustic oscillations (BAO), but also with other SNIa datasets such as Davis and SNLS. Then, we find the main sources responsible for the tension. Further, we make this more robust by employing the method of random truncation. Based on the results of this work, we suggest two truncated versions of the Union and Constitution datasets, namely the UnionT and ConstitutionT SNIa samples, whose behaviors are more regular.

Hao Wei

2010-04-07T23:59:59.000Z

264

Closest Type Ia Supernova in Decades Solves a Cosmic Mystery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVailCloistered JuneLabClosest Type Ia

265

Modelos Matem'aticos Discretos Gu'ia de Controles Resueltos con Indicaciones  

E-Print Network [OSTI]

estudiantes de la carrera de Ingenier'ia Civil Matem'atica (los cuales sol'ian tomarlo durante su sexto para los estudiantes de la carrera de Ingenier'ia Civil Matem'atica (pero ahora se recomienda que el

Rapaport, Iv√°n

266

Type Ia supernova rate studies from the SDSS-II Supernova Study  

SciTech Connect (OSTI)

The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered {approx} 500 spectroscopically confirmed SNe Ia with densely sampled (once every {approx} 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents {approx} 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

Dilday, Benjamin; /Chicago U.

2008-08-01T23:59:59.000Z

267

Analytical Expressions For Light-Curves Of Ordinary And Superluminous Supernovae Type Ia  

E-Print Network [OSTI]

Ordinary supernovae of type Ia (SNeIa) may be produced by the thermonuclear explosion of white dwarfs (WDs), which after their nascence in proto-planetary nebulae accrete fall-back matter and approach the Chandrasekhar mass limit. If the detonation continues into the fall-back layer and/or if the SNIa debris collide with it, they may produce a super Chandrasekhar SNIa. A few underlying physical assumptions of such model yield a very simple master formula that reproduces quite well the bolometric light-curves of both ordinary and supeluminous SNeIa. Other main properties of SNeIa, including the empirical 'brighter-slower' Philipps' relation that was used to standardize ordinary SNeIa as distance indicators and led to the discovery of the accelerating expansion of the universe are also reproduced.

Shlomo Dado; Arnon Dar

2014-02-06T23:59:59.000Z

268

Measurement of Omega_m, Omega_Lambda from a blind analysis of Type Ia supernovae with CMAGIC: Using color information to verify the acceleration of the Universe  

E-Print Network [OSTI]

analysis of Type Ia supernovae with CMAGIC: Using colorof 21 high redshift supernovae using a new technique (lightcurves of Type Ia supernovae, ?rst introduced in Wang

2006-01-01T23:59:59.000Z

269

Polarisation spectral synthesis for Type Ia supernova explosion models  

E-Print Network [OSTI]

We present a Monte Carlo radiative transfer technique for calculating synthetic spectropolarimetry for multi-dimensional supernova explosion models. The approach utilises "virtual-packets" that are generated during the propagation of the Monte Carlo quanta and used to compute synthetic observables for specific observer orientations. Compared to extracting synthetic observables by direct binning of emergent Monte Carlo quanta, this virtual-packet approach leads to a substantial reduction in the Monte Carlo noise. This is vital for calculating synthetic spectropolarimetry (since the degree of polarisation is typically very small) but also useful for calculations of light curves and spectra. We first validate our approach via application of an idealised test code to simple geometries. We then describe its implementation in the Monte Carlo radiative transfer code ARTIS and present test calculations for simple models for Type Ia supernovae. Specifically, we use the well-known one-dimensional W7 model to verify tha...

Bulla, M; Kromer, M

2015-01-01T23:59:59.000Z

270

HOST GALAXIES OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY  

SciTech Connect (OSTI)

We present photometric and spectroscopic observations of galaxies hosting Type Ia supernovae (SNe Ia) observed by the Nearby Supernova Factory. Combining Galaxy Evolution Explorer (GALEX) UV data with optical and near-infrared photometry, we employ stellar population synthesis techniques to measure SN Ia host galaxy stellar masses, star formation rates (SFRs), and reddening due to dust. We reinforce the key role of GALEX UV data in deriving accurate estimates of galaxy SFRs and dust extinction. Optical spectra of SN Ia host galaxies are fitted simultaneously for their stellar continua and emission lines fluxes, from which we derive high-precision redshifts, gas-phase metallicities, and H{alpha}-based SFRs. With these data we show that SN Ia host galaxies present tight agreement with the fiducial galaxy mass-metallicity relation from Sloan Digital Sky Survey (SDSS) for stellar masses log(M{sub *}/M{sub Sun }) > 8.5 where the relation is well defined. The star formation activity of SN Ia host galaxies is consistent with a sample of comparable SDSS field galaxies, though this comparison is limited by systematic uncertainties in SFR measurements. Our analysis indicates that SN Ia host galaxies are, on average, typical representatives of normal field galaxies.

Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J. [Laboratoire de Physique Nucleaire et des Hautes Energies, Universite Pierre et Marie Curie Paris 6, Universite Paris Diderot Paris 7, CNRS-IN2P3, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Baltay, C. [Department of Physics, Yale University, New Haven, CT 06250-8121 (United States); Buton, C.; Kerschhaggl, M.; Kowalski, M. [Physikalisches Institut, Universitaet Bonn, Nussallee 12, D-53115 Bonn (Germany); Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon (France); Universite de Lyon 1, Villeurbanne (France); CNRS/IN2P3, Institut de Physique Nucleaire de Lyon (France); and others

2013-06-20T23:59:59.000Z

271

Type Ia Supernovae Rates and Galaxy Clustering from the CFHT Supernova Legacy Survey  

E-Print Network [OSTI]

The Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS) has created a large homogeneous database of intermediate redshift (0.2 rates, properties, and host galaxy star formation rates. The SNLS SN Ia database has now been combined with a photometric redshift galaxy catalog and an optical galaxy cluster catalog to investigate the possible influence of galaxy clustering on the SN Ia rate, over and above the expected effect due to the dependence of SFR on clustering through the morphology-density relation. We identify three cluster SNe Ia, plus three additional possible cluster SNe Ia, and find the SN Ia rate per unit mass in clusters at intermediate redshifts is consistent with the rate per unit mass in field early-type galaxies and the SN Ia cluster rate from low redshift cluster targeted surveys. We also find the number of SNe Ia in cluster environments to be within a factor of two of expectations from the two component SNIa rate model.

M. L. Graham; C. J. Pritchet; M. Sullivan; S. D. J. Gwyn; J. D. Neill; E. Y. Hsiao; P. Astier; D. Balam; C. Balland; S. Basa; R. G. Carlberg; A. Conley; D. Fouchez; J. Guy; D. Hardin; I. M. Hook; D. A. Howell; R. Pain; K. Perrett; N. Regnault; S. Baumont; J. Le Du; C. Lidman; S. Perlmutter; P. Ripoche; N. Suzuki; E. S. Walker; T. Zhang

2008-01-31T23:59:59.000Z

272

Stellar Populations and the White Dwarf Mass Function: Connections To Supernova Ia Luminosities  

E-Print Network [OSTI]

We discuss the luminosity function of SNe Ia under the assumption that recent evidence for dispersion in this standard candle is related to variations in the white dwarf mass function (WDMF) in the host galaxies. We develop a simple parameterization of the WDMF as a function of age of a stellar population and apply this to galaxies of different morphological types. We show that this simplified model is consistent with the observed WDMF of Bergeron et al. (1992) for the solar neighborhood. Our simple models predict that WDMF variations can produce a range of more than 1.8 mag in M$_B$(SN Ia), which is comparable to the observed value using the data of Phillips (1993) and van den Bergh (1996). We also predict a galaxy type dependence of M$_B$(SN Ia) under standard assumptions of the star formation history in these galaxies and show that M$_B$(SN Ia) can evolve with redshift. In principle both evolutionary and galaxy type corrections should be applied to recover the intrinsic range of M$_B$(SN Ia) from the observed values. Our current inadequate knowledge of the star formation history of galaxies coupled with poor physical understanding of the SN Ia mechanism makes the reliable estimation of these corrections both difficult and controversial. The predictions of our models combined with the observed galaxy and redshift correlations may have the power to discriminate between the Chandrasekhar and the sub-Chandrasekhar progenitor scenarios for SNe Ia.

Ted von Hippel; G. D. Bothun; R. A. Schommer

1997-06-11T23:59:59.000Z

273

Tension and Systematics in the Gold06 SnIa Dataset  

E-Print Network [OSTI]

The Gold06 SnIa dataset recently released in astro-ph/0611572 consists of five distinct subsets defined by the group or instrument that discovered and analyzed the corresponding data. These subsets are: the SNLS subset (47 SnIa), the HST subset (30 SnIa), the HZSST subset (41 SnIa), the SCP subset (26 SnIa) and the Low Redshift (LR) subset (38 SnIa). These subsets sum up to the 182 SnIa of the Gold06 dataset. We use Monte-Carlo simulations to study the statistical consistency of each one of the above subsets with the full Gold06 dataset. In particular, we compare the best fit $w(z)$ parameters (w_0,w_1) obtained by subtracting each one of the above subsets from the Gold06 dataset (subset truncation), with the corresponding best fit parameters (w^r_0,w^r_1) obtained by subtracting the same number of randomly selected SnIa from the same redshift range of the Gold06 dataset (random truncation). We find that the probability for (w^r_0,w^r_1)=(w_0,w_1) is large for the Gold06 minus SCP (Gold06-SCP) truncation but is less than 5% for the Gold06-SNLS, Gold06-HZSST and Gold06-HST truncations. This result implies that the Gold06 dataset is not statistically homogeneous. By comparing the values of the best fit (w_0,w_1) for each subset truncation we find that the tension among subsets is such that the SNLS and HST subsets are statistically consistent with each other and `pull' towards LCDM (w_0=-1,w_1=0) while the HZSST subset is statistically distinct and strongly `pulls' towards a varying w(z) crossing the line $w=-1$ from below (w_00). We also isolate six SnIa that are mostly responsible for this behavior of the HZSST subset.

S. Nesseris; L. Perivolaropoulos

2007-01-09T23:59:59.000Z

274

, SEYMOUR AND MacGREGOR COGNlTlYb NEUROPSYCHOLOGY. IdyslexIa. Brain. 102. 4363.  

E-Print Network [OSTI]

.T. (1980) Word-form dyslexIa. Brain. 102. 4363. REFERENCENOTES On Reducing Language to Biology I. Holmes. J. M. (1973) Dyslexia: a lIeurolinguistic study 0/ traumatic and developmental disorders 0/ reading

Mehler, Jacques

275

Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study  

E-Print Network [OSTI]

Highlight - The Physics of Supernovae, ESO/MPA/MPE Workshop,Evolution in high-redshift supernovae Fig. 8 ďCa ii H&KĒSN 1991T/SN 1999aa-like supernovae. 1. Introduction Type Ia

Garavini, G.; Supernova Cosmology Project

2008-01-01T23:59:59.000Z

276

Constructing a cosmological model-independent Hubble diagram of type Ia supernovae with cosmic chronometers  

E-Print Network [OSTI]

We apply two methods to reconstruct the Hubble parameter $H(z)$ as a function of redshift from 15 measurements of the expansion rate obtained from age estimates of passively evolving galaxies. These reconstructions enable us to derive the luminosity distance to a certain redshift $z$, calibrate the light-curve fitting parameters accounting for the (unknown) intrinsic magnitude of type Ia supernova (SNe Ia) and construct cosmological model-independent Hubble diagrams of SNe Ia. In order to test the compatibility between the reconstructed functions of $H(z)$, we perform a statistical analysis considering the latest SNe Ia sample, the so-called JLA compilation. We find that, while one of the reconstructed functions leads to a value of the local Hubble parameter $H_0$ in excellent agreement with the one reported by the Planck collaboration, the other requires a higher value of $H_0$, which is consistent with recent measurements of this quantity from Cepheids and other local distance indicators.

Li, Zhengxiang; Yu, Hongwei; Zhu, Zong-Hong; Alcaniz, J S

2015-01-01T23:59:59.000Z

277

EVIDENCE FOR TYPE Ia SUPERNOVA DIVERSITY FROM ULTRAVIOLET OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE  

E-Print Network [OSTI]

We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This ...

Lewin, Walter H. G.

278

Type Ia supernova rate at a redshift of ~ 0.1  

E-Print Network [OSTI]

We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

Blanc, G; Alard, C; Albert, J N; Aldering, G; Amadon, A; Andersen, J; Ansari, R; Aubourg, E; Balland, C; Bareyre, P; Beaulieu, J P; Charlot, X; Conley, A; Coutures, C; Dahlen, T; Derue, F; Fan, X; Ferlet, R; Folatelli, G; Fouquť, P; Garavini, G; Glicenstein, J F; Goldman, B; Goobar, A; Gould, A; Graff, D; Gros, M; HaÔssinski, J; Hamadache, C; Hardin, D; Hook, I M; De Kat, J; Kent, S; Kim, A; Lasserre, T; Le Guillou, Laurent; Lesquoy, E; Loup, C; Magneville, C; Marquette, J B; Maurice, E; Maury, A; Milsztajn, A; Moniez, M; Mouchet, M; Newberg, H; Nobili, S; Palanque-Delabrouille, Nathalie; Perdereau, O; PrťvŰt, L; Rahal, Y R; Regnault, N; Rich, J; Ruiz-Lapuente, P; Spiro, M; Tisserand, P; Vidal-Madjar, A; Vigroux, L; Walton, N A; Zylberajch, S

2004-01-01T23:59:59.000Z

279

Type Ia supernova rate at a redshift of ~ 0.1  

E-Print Network [OSTI]

We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift ~ 0.13. The result is $0.125^{+0.044+0.028}_{-0.034-0.028} h_{70}^2$ SNu where 1 SNu = 1 SN / $10^{10} L_{sun}^B$ / century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

G. Blanc; C. Afonso; C. Alard; J. N. Albert; G. Aldering; A. Amadon; J. Andersen; R. Ansari; E. Aubourg; C. Balland; P. Bareyre; J. P. Beaulieu; X. Charlot; A. Conley; C. Coutures; T. Dahlen; F. Derue; X. Fan; R. Ferlet; G. Folatelli; P. Fouque; G. Garavini; J. F. Glicenstein; B. Goldman; A. Goobar; A. Gould; D. Graff; M. Gros; J. Haissinski; C. Hamadache; D. Hardin; I. M. Hook; J. deKat; S. Kent; A. Kim; T. Lasserre; L. LeGuillou; E. Lesquoy; C. Loup; C. Magneville; J. B. Marquette; E. Maurice; A. Maury; A. Milsztajn; M. Moniez; M. Mouchet; H. Newberg; S. Nobili; N. Palanque-Delabrouille; O. Perdereau; L. Prevot; Y. R. Rahal; N. Regnault; J. Rich; P. Ruiz-Lapuente; M. Spiro; P. Tisserand; A. Vidal-Madjar; L. Vigroux; N. A. Walton; S. Zylberajch

2004-05-11T23:59:59.000Z

280

Hipparcos calibration of the peak brightness of four SNe Ia and the value of Ho  

E-Print Network [OSTI]

Hipparcos geometrical parallaxes allowed us to calibrate the Cepheid Period-Luminosity relation and to compute the true distance moduli of 17 galaxies. Among these 17 galaxies, we selected those which generated type Ia Supernovae (SNe Ia). We found NGC 5253, parent galaxy of 1895B and 1972E, IC 4182 and NGC 4536 parents of 1937C and 1981B, respectively. We used the available B-band photometry to determine the peak brightness of these four SNe Ia. We obtained = -19.65 \\pm 0.09. Then, we built a sample of 57 SNe Ia in order to plot the Hubble diagram and determine its zero-point. Our result (ZP_{B} = -3.16 \\pm 0.10) is in agreement with other determinations and allows us to derive the following Hubble constant : Ho = 50 \\pm 3 (internal) km.s^-1.Mpc^-1.

P. Lanoix

1997-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Structural studies of allosteric regulation in the class Ia Ribonucleotide reductase from Escherichia coli  

E-Print Network [OSTI]

Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, the building blocks for DNA replication and repair. The E. coli class Ia enzyme requires two subunits to catalyze the radical-based reduction ...

Zimanyi, Christina Marie

2013-01-01T23:59:59.000Z

282

~ VII -ATTiVIT EDILIZIE .. Servizio di Ateneo per lEnergIa  

E-Print Network [OSTI]

~ VII - ATTiVIT√? EDILIZIE n'p. .' .. Servizio di Ateneo per lEnergIa - N AlJZ43 ¬∑¬∑¬∑¬∑¬∑¬∑¬∑¬∑ - .¬∑:tri

Di Pillo, Gianni

283

Infrastructure Assessment Mission: USACE Infrastructure Assessment (IA) Planning and Response Teams (PRTs) have two main  

E-Print Network [OSTI]

, and structural engineering applications; urban search & rescue (US&R) support; and water/wastewater) include pre- and post-declaration support for deploying an IA management cell, water/wastewater assessment

US Army Corps of Engineers

284

University Engagement and Outreach Committee Chair: PVC (IA), Prof. M Cardew-Hall  

E-Print Network [OSTI]

University Engagement and Outreach Committee Chair: PVC (IA), Prof. M Cardew-Hall Alternate Chair: PVC (IO), Dr. Erik Lithander Secretary: Ms. Jan O'Connor (Jan.OConnor@anu.edu.au) / Ms. Joanne Gash

Botea, Adi

285

2010-2011 Depto. Ciencia de la Computacin e IA Especialista Universitario Java Enterprise  

E-Print Network [OSTI]

© 2010-2011 Depto. Ciencia de la Computación e IA Especialista Universitario Java Enterprise Struts Sesión 4: Introducción a Struts 2 #12;© 2010-2011 Depto. Ciencia de la Computación e IA Especialista · Taglibs · Internacionalización · Validación · Conceptos nuevos en Struts 2 #12;© 2010-2011 Depto. Ciencia

Escolano, Francisco

286

Experto Universitario Java Enterprise 2012-2013 Depto. Ciencia de la Computacin e IA  

E-Print Network [OSTI]

Experto Universitario Java Enterprise © 2012-2013 Depto. Ciencia de la Computación e IA Lenguaje Java Avanzado Sesión 3: Tratamiento de errores #12;Lenguaje Java Avanzado © 2012-2013 Depto. Ciencia de · Tipos genéricos #12;Lenguaje Java Avanzado © 2012-2013 Depto. Ciencia de la Computación e IA Errores - 3

Escolano, Francisco

287

Gamma-rays from Type Ia supernova SN2014J  

E-Print Network [OSTI]

The whole set of INTEGRAL observations of type Ia supernova SN2014J, covering the period 16-162 days after the explosion has being analyzed. For spectral fitting the data are split into early and late periods covering days 16-35 and 50-162, respectively, optimized for Ni-56 and Co-56 lines. As expected for the early period much of the gamma-ray signal is confined to energies below $\\sim$200 keV, while for the late period it is most strong above 400 keV. In particular, in the late period Co-56 lines at 847 and 1248 keV are detected at 4.7 and 4.3 sigma respectively. The lightcurves in several representative energy bands are calculated for the entire period. The resulting spectra and lightcurves are compared with a subset of models. We confirm our previous finding that the gamma-ray data are broadly consistent with the expectations for canonical 1D models, such as delayed detonation or deflagration models for a near-Chandrasekhar mass WD. Late optical spectra (day 136 after the explosion) show rather symmetric ...

Churazov, E; Isern, J; Bikmaev, I; Bravo, E; Chugai, N; Grebenev, S; Jean, P; KnŲdlseder, J; Lebrun, F; Kuulkers, E

2015-01-01T23:59:59.000Z

288

CIMAT, VIII Escuela de verano, 30 de julio -12 de agos* Introducci'on a la Geometr'ia de la Mec'anic*  

E-Print Network [OSTI]

* *fluencia de una fuerza F(x) se define su energ'ia (como funci'on de su posici'on y velocidad) por E = T +* * V donde la energ'ia cin'etica T = m(x`)2=2 y la energ'ia potencial V (x) es una funci'on que(x) entonces su energ* *'ia E se mantiene constante en el tiempo (la Ley de Conservaci'on de Energ'ia

Bor, Gil

289

Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum  

E-Print Network [OSTI]

Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions are how the explosion actually proceeds and whether accretion occurs from a companion or via the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a SN Ia in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the yet unknown exact spectroscopic type of SN 1572 is crucial to relate these results to the diverse population of SNe Ia. Here we report an optical spectrum of Tycho Brahe's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light of the explosion swept past Earth. We find that SN 1572 belongs to the majority class of normal SNe Ia. The presence of a strong Ca II IR feature at velocities exceeding 20,000 km/s, which is similar to the previously observed polarized features in other SNe Ia, suggests asphericity in SN 1572.

Oliver Krause; Masaomi Tanaka; Tomonori Usuda; Takashi Hattori; Miwa Goto; Stephan Birkmann; Ken'ichi Nomoto

2008-10-28T23:59:59.000Z

290

THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914  

SciTech Connect (OSTI)

We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify this object as a SN Ia by comparing its light curve and spectrum with those of a large sample of Type Ia and core-collapse SNe. Its apparent magnitude is consistent with that expected from the {Lambda}CDM concordance cosmology. We discuss the use of spectral evidence for classification of z > 1.5 SNe Ia using HST grism simulations, finding that spectral data alone can frequently rule out SNe II, but distinguishing between SNe Ia and SNe Ib/c can require prohibitively long exposures. In such cases, a quantitative analysis of the light curve may be necessary for classification. Our photometric and spectroscopic classification methods can aid the determination of SN rates and cosmological parameters from the full high-redshift CANDELS SN sample.

Jones, David O.; Rodney, Steven A.; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Dahlen, Tomas; Casertano, Stefano; Koekemoer, Anton [Space Telescope Science Institute, Baltimore, MD 21218 (United States); McCully, Curtis; Keeton, Charles R.; Patel, Brandon [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); Frederiksen, Teddy F.; Hjorth, Jens [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Strolger, Louis-Gregory [Department of Physics, Western Kentucky University, Bowling Green, KY 42101 (United States); Wiklind, Tommy G. [Joint ALMA Observatory, ESO, Santiago (Chile); Challis, Peter [Harvard/Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Graur, Or [School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel); Hayden, Brian; Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); and others

2013-05-10T23:59:59.000Z

291

Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa  

SciTech Connect (OSTI)

The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the target contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.

Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

1996-03-01T23:59:59.000Z

292

Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect (OSTI)

We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2008-02-28T23:59:59.000Z

293

Utilizing Type Ia Supernovae in a Large, Fast, Imaging Survey to Constrain Dark Energy  

E-Print Network [OSTI]

We study the utility of a large sample of type Ia supernovae that might be observed in an imaging survey that rapidly scans a large fraction of the sky for constraining dark energy. We consider information from the traditional luminosity distance test as well as the spread in SNeIa fluxes at fixed redshift induced by gravitational lensing. We include a treatment of photometric redshift uncertainties in our analysis. Our primary result is that the information contained in the mean distance moduli of SNeIa and the dispersion among SNeIa distance moduli complement each other, breaking a degeneracy between the present dark energy equation of state and its time variation without the need for a high-redshift supernova sample. To address photometric redshift uncertainties, we present dark energy constraints as a function of the size of an external set of spectroscopically-observed SNeIa that may be used for redshift calibration, nspec. We find that an imaging survey can constrain the dark energy equation of state at the epoch where it is best constrained with a 1-sigma error of sigma(wpiv)~0.03-0.09$, depending upon various assumptions. In addition, the marginal improvement in the error sigma(wpiv) from an increase in the spectroscopic calibration sample drops once nspec ~ 10^3. This result is important because it is of the order of the size of calibration samples likely to be compiled in the coming decade and because, for samples of this size, the spectroscopic and imaging surveys individually place comparable constraints on the dark energy equation of state. In all cases, it is best to calibrate photometric redshifts with a set of spectroscopically-observed SNeIa with relatively more objects at high redshift than the parent sample of imaging SNeIa.

Andrew R. Zentner; Suman Bhattacharya

2008-12-01T23:59:59.000Z

294

A New Determination of the High Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys  

E-Print Network [OSTI]

Schmidt, B. P. , 2003, in Supernovae and Gamma Ray Bursts,for identifying Type Ia supernovae (although spectroscopicfor future high-statistics supernovae searches in which

2008-01-01T23:59:59.000Z

295

The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star  

E-Print Network [OSTI]

magnitudes of Type IA supernovae. Astrophys. J. Lett. 413,from 42 High-Redshift Supernovae. Astrophys. J. 517, 565ĖObservational Evidence from Supernovae for an Accelerating

2008-01-01T23:59:59.000Z

296

COMPARING THE LIGHT CURVES OF SIMULATED TYPE Ia SUPERNOVAE WITH OBSERVATIONS USING DATA-DRIVEN MODELS  

SciTech Connect (OSTI)

We propose a robust, quantitative method to compare the synthetic light curves of a Type Ia supernova (SN Ia) explosion model with a large set of observed SNe Ia, and derive a figure of merit for the explosion model's agreement with observations. The synthetic light curves are fit with the data-driven model SALT2 which returns values for stretch, color, and magnitude at peak brightness, as well as a goodness-of-fit parameter. Each fit is performed multiple times with different choices of filter bands and epoch range in order to quantify the systematic uncertainty on the fitted parameters. We use a parametric population model for the distribution of observed SN Ia parameters from large surveys, and extend it to represent red, dim, and bright outliers found in a low-redshift SN Ia data set. We discuss the potential uncertainties of this population model and find it to be reliable given the current uncertainties on cosmological parameters. Using our population model, we assign each set of fitted parameters a likelihood of being observed in nature, and a figure of merit based on this likelihood. We define a second figure of merit based on the quality of the light curve fit, and combine the two measures into an overall figure of merit for each explosion model. We compute figures of merit for a variety of one-, two-, and three-dimensional explosion models and show that our evaluation method allows meaningful inferences across a wide range of light curve quality and fitted parameters.

Diemer, Benedikt; Kessler, Richard; Graziani, Carlo; Jordan, George C. IV; Lamb, Donald Q.; Long, Min; Van Rossum, Daniel R., E-mail: bdiemer@oddjob.uchicago.edu [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States)

2013-08-20T23:59:59.000Z

297

Strong near-infrared carbon in the Type Ia supernova iPTF13ebh  

E-Print Network [OSTI]

We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {\\lambda}1.0693 {\\mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {\\Delta}m15(B) = 1.79 $\\pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categ...

Hsiao, E Y; Contreras, C; HŲflich, P; Sand, D; Marion, G H; Phillips, M M; Stritzinger, M; GonzŠlez-GaitŠn, S; Mason, R E; Folatelli, G; Parent, E; Gall, C; Amanullah, R; Anupama, G C; Arcavi, I; Banerjee, D P K; Beletsky, Y; Blanc, G A; Bloom, J S; Brown, P J; Campillay, A; Cao, Y; De Cia, A; Diamond, T; Freedman, W L; Gonzalez, C; Goobar, A; Holmbo, S; Howell, D A; Johansson, J; Kasliwal, M M; Kirshner, R P; Krisciunas, K; Kulkarni, S R; Maguire, K; Milne, P A; Morrell, N; Nugent, P E; Ofek, E O; Osip, D; Palunas, P; Perley, D A; Persson, S E; Piro, A L; Rabus, M; Roth, M; Schiefelbein, J M; Srivastav, S; Sullivan, M; Suntzeff, N B; Surace, J; Wo?nia, P R; Yaron, O

2015-01-01T23:59:59.000Z

298

SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators  

E-Print Network [OSTI]

We present an empirical model of Type Ia supernovae spectro-photometric evolution with time. The model is built using a large data set including light-curves and spectra of both nearby and distant supernovae, the latter being observed by the SNLS collaboration. We derive the average spectral sequence of Type Ia supernovae and their main variability components including a color variation law. The model allows us to measure distance moduli in the spectral range 2500-8000 A with calculable uncertainties, including those arising from variability of spectral features. Thanks to the use of high-redshift SNe to model the rest-frame UV spectral energy distribution, we are able to derive improved distance estimates for SNe Ia in the redshift range 0.8supernovae.

J. Guy; P. Astier; S. Baumont; D. Hardin; R. Pain; N. Regnault; S. Basa; R. G. Carlberg; A. Conley; S. Fabbro; D. Fouchez; I. M. Hook; D. A. Howell; K. Perrett; C. J. Pritchet; J. Rich; M. Sullivan; P. Antilogus; E. Aubourg; G. Bazin; J. Bronder; M. Filiol; N. Palanque-Delabrouille; P. Ripoche; V. Ruhlmann-Kleider

2007-01-29T23:59:59.000Z

299

[O I] ??6300, 6364 IN THE NEBULAR SPECTRUM OF A SUBLUMINOUS TYPE Ia SUPERNOVA  

SciTech Connect (OSTI)

In this Letter, a late-phase spectrum of SN 2010lp, a subluminous Type Ia supernova (SN Ia), is presented and analyzed. As in 1991bg-like SNe Ia at comparable epochs, the spectrum is characterized by relatively broad [Fe II] and [Ca II] emission lines. However, instead of narrow [Fe III] and [Co III] lines that dominate the emission from the innermost regions of 1991bg-like supernovae (SNe), SN 2010lp shows [O I] ??6300, 6364 emission, usually associated with core-collapse SNe and never previously observed in a subluminous thermonuclear explosion. The [O I] feature has a complex profile with two strong, narrow emission peaks. This suggests that oxygen is distributed in a non-spherical region close to the center of the ejecta, severely challenging most thermonuclear explosion models discussed in the literature. We conclude that, given these constraints, violent mergers are presently the most promising scenario to explain SN 2010lp.

Taubenberger, S.; Kromer, M.; Hillebrandt, W. [Max-Planck-Institut fŁr Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany)] [Max-Planck-Institut fŁr Astrophysik, Karl-Schwarzschild-Str. 1, D-85741 Garching (Germany); Pakmor, R. [Heidelberger Institut fŁr Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany)] [Heidelberger Institut fŁr Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Pignata, G. [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile)] [Departamento de Ciencias Fisicas, Universidad Andres Bello, Avda. Republica 252, Santiago (Chile); Maeda, K. [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan)] [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Hachinger, S. [Julius-Maximilians-Universitšt WŁrzburg, Emil-Fischer-Str. 31, D-97074 WŁrzburg (Germany)] [Julius-Maximilians-Universitšt WŁrzburg, Emil-Fischer-Str. 31, D-97074 WŁrzburg (Germany); Leibundgut, B. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)] [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

2013-10-01T23:59:59.000Z

300

THE LATE-TIME REBRIGHTENING OF TYPE Ia SN 2005gj IN THE MID-INFRARED  

SciTech Connect (OSTI)

A growing number of observations reveal a subset of Type Ia supernovae undergoing circumstellar interaction (SNe Ia-CSM). We present unpublished archival Spitzer Space Telescope data on SNe Ia-CSM 2002ic and 2005gj obtained >1300 and 500 days post-discovery, respectively. Both SNe show evidence for late-time mid-infrared (mid-IR) emission from warm dust. The dust parameters are most consistent with a preexisting dust shell that lies beyond the forward-shock radius, most likely radiatively heated by optical and X-ray emission continuously generated by late-time CSM interaction. In the case of SN 2005gj, the mid-IR luminosity more than doubles after 1 yr post-discovery. While we are not aware of any late-time optical-wavelength observations at these epochs, we attribute this rebrightening to renewed shock interaction with a dense circumstellar shell.

Fox, Ori D.; Filippenko, Alexei V., E-mail: ofox@berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

2013-07-20T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models  

E-Print Network [OSTI]

We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

2006-03-03T23:59:59.000Z

302

Leopold Center for Sustainable Agriculture, 209 Curtiss Hall, Iowa State University, Ames, IA 50011 Get this newsletter every month by e-mail -sign up on the web: www.leopold.iastate.edu/forms/mailing.php  

E-Print Network [OSTI]

Faux of Tripoli are assessing their 14-acre vegetable and poultry farm for solar power. The group this year, will coordinate the new Local Food and Farm Initiative for Iowa. Funds for the first year, and was recommended in the Iowa Local Food and Farm Plan prepared for the Iowa Legislature by the Leopold Center

Debinski, Diane M.

303

CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of {approx}< 0.03 mag in BVr'i', {approx}< 0.06 mag in u', and {approx}< 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of {approx}0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.

Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Rest, Armin [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Cramer, Claire E. [NIST (National Institute of Standards and Technology), Gaithersburg, MD 20899 (United States); Wood-Vasey, W. Michael [Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Currie, Thayne [NASA, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); De Kleer, Kathy [Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Esquerdo, Gil; Everett, Mark, E-mail: mhicken@cfa.harvard.edu [Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719 (United States); and others

2012-06-01T23:59:59.000Z

304

The Study of Mass Distribution of products in 7.0 AMeV U238+U238 Collisions  

E-Print Network [OSTI]

Within the Improved Quantum Molecular Dynamics (ImQMD) Model incorporating the statistical decay Model, the reactions of U238+U238 at the energy of 7.0 AMeV have been studied. The charge, mass and excitation energy distributions of primary fragments are investigated within the ImQMD model and de-excitation processes of those primary fragments are described by the statistical decay model. The mass distribution of the final products in U238+U238 collisions is obtained and compared with the recent experimental data.

Kai Zhao; Xizhen Wu; Zhuxia Li

2009-10-29T23:59:59.000Z

305

Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD  

E-Print Network [OSTI]

Sanchez and Lacombe have ever developed a lattice fluid theory based on a well-defined statistical mechanical model. Taking the lattice fluid as a candidate of dark energy, we investigate the cosmic evolution of this fluid. Using the combined observational data of Type Ia Supernova (SNe Ia), Baryon Acoustic Oscillations (BAO) and Observational Hubble Data (OHD), we find the best fit value of the parameter in the model, $A = -0.3_{-0.1}^{+0.1}$. Then the cosmological implications of the model are presented.

Duan, Xiaoxian; Gao, Changjun

2011-01-01T23:59:59.000Z

306

Constraining the Lattice Fluid Dark Energy from SNe Ia, BAO and OHD  

E-Print Network [OSTI]

Sanchez and Lacombe have ever developed a lattice fluid theory based on a well-defined statistical mechanical model. Taking the lattice fluid as a candidate of dark energy, we investigate the cosmic evolution of this fluid. Using the combined observational data of Type Ia Supernova (SNe Ia), Baryon Acoustic Oscillations (BAO) and Observational Hubble Data (OHD), we find the best fit value of the parameter in the model, $A = -0.3_{-0.1}^{+0.1}$. Then the cosmological implications of the model are presented.

Xiaoxian Duan; Yichao Li; Changjun Gao

2011-11-15T23:59:59.000Z

307

A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS  

SciTech Connect (OSTI)

We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.

Rodney, Steven A.; Riess, Adam G.; Jones, David O. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Strolger, Louis-Gregory [Department of Physics, Western Kentucky University, Bowling Green, KY 42101 (United States); Hjorth, Jens; Frederiksen, Teddy F. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Weiner, Benjamin J. [Department of Astronomy, University of Arizona, Tucson, AZ 85721 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Challis, Peter; Kirshner, Robert P. [Harvard/Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Faber, S. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 92064 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter; Hayden, Brian [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Graur, Or [Department of Astrophysics, Tel Aviv University, 69978 Tel Aviv (Israel); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers, State University of New Jersey, Piscataway, NJ 08854 (United States); and others

2012-02-10T23:59:59.000Z

308

Multi-color light curves of type Ia supernovae on the color-magnitude diagram: A novel step toward more precise distance and extinction estimates  

E-Print Network [OSTI]

Date is earlier than for supernovae with smaller ?m 15 . SeeLight Curves of Type Ia Supernovae on the Color-Magnituderelation of Type Ia supernovae after optical maximum can

Wang, Lifan; Goldhaber, Gerson; Aldering, Greg; Perlmutter, Saul

2003-01-01T23:59:59.000Z

309

CIMAT, VIII Escuela de verano, 30 de julio -12 de ago* Introducci'on a la Geometr'ia de la Mec'ani*  

E-Print Network [OSTI]

con un valor fijo de la energ* *'ia corresponden a secciones del cono del inciso (a) por * *energ'ia tienen el mismo semi-eje mayor. 11.Demuestra la tercera ley de Kepler: toda soluci'on peri Introducci'on a la Geometr'ia de la Mec'ani* *ca Cl'asica Problemas 7 - 12

Bor, Gil

310

Revealing progenitors of type Ia supernovae from their light curves and spectra  

E-Print Network [OSTI]

In the single degenerate (SD) scenario of type Ia supernovae (SNe Ia), the collision of the ejecta with its companion results in stripping hydrogen rich matter from the companion star. This hydrogen rich matter might leave its trace in the light curves and/or spectra. In this paper, we perform radiation hydrodynamical simulations of this collision for three binary systems. As a result, we find that the emission from the shock-heated region is not as strong as in the previous study. This weak emission, however, may be a result of our underestimate of the coupling between the gas and radiation in the shock interaction. Therefore, though our results suggest that the observed early light curves of SNe Ia can not rule out binary systems with a short separation as the progenitor system, more elaborate numerical studies will be needed to reach a fair conclusion. Alternatively, our results indicate that the feature observed in the early phase of a recent type Ia SN 2014J might result from interaction of the ejecta wi...

Kutsuna, Masamichi

2015-01-01T23:59:59.000Z

311

ON THE LIRA LAW AND THE NATURE OF EXTINCTION TOWARD TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We have studied the relation between the color evolution of Type Ia supernovae (SNe Ia) from maximum light to the Lira law regime and the presence of narrow absorption features. Based on a nearby sample of 89 SNe Ia, we have found that the rate of change of B - V colors at late phases (between 35 and 80 days after maximum) varies significantly among different SNe Ia. At maximum light, faster Lira law B - V decliners have significantly higher equivalent widths of blended Na I D1 and D2 narrow absorption lines, redder colors, and lower R{sub V} reddening laws. We do not find faster Lira law B - V decliners to have a strong preference for younger galaxy environments, where higher interstellar material (ISM) column densities would be expected. We interpret these results as evidence for the presence of circumstellar material. The differences in colors and reddening laws found at maximum light are also present 55 days afterward, but unlike the colors at maximum they show a significant variation among different host galaxy morphological types. This suggests that the effect of ISM on the colors is more apparent at late times. Finally, we discuss how the transversal expansion of the ejecta in an inhomogeneous ISM could mimic some of these findings.

Foerster, Francisco; Gonzalez-Gaitan, Santiago [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Folatelli, Gaston [Kavli Institute for the Physics and Mathematics of the Universe, Todai Institutes for Advanced Study (TODIAS), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Morrell, Nidia [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile)

2013-07-20T23:59:59.000Z

312

METALLICITY DIFFERENCES IN TYPE Ia SUPERNOVA PROGENITORS INFERRED FROM ULTRAVIOLET SPECTRA  

SciTech Connect (OSTI)

Two ''twin'' Type Ia supernovae (SNe Ia), SNe 2011by and 2011fe, have extremely similar optical light-curve shapes, colors, and spectra, yet have different ultraviolet (UV) continua as measured in Hubble Space Telescope spectra and measurably different peak luminosities. We attribute the difference in the UV continua to significantly different progenitor metallicities. This is the first robust detection of different metallicities for SN Ia progenitors. Theoretical reasoning suggests that differences in metallicity also lead to differences in luminosity. SNe Ia with higher progenitor metallicities have lower {sup 56}Ni yields and lower luminosities for the same light-curve shape. SNe 2011by and 2011fe have different peak luminosities ({Delta}M{sub V} Almost-Equal-To 0.6 mag), which correspond to different {sup 56}Ni yields: M{sub 11fe}({sup 56}Ni) / M{sub 11by}({sup 56}Ni) = 1.7{sup +0.7}{sub -0.5}. From theoretical models that account for different neutron-to-proton ratios in progenitors, the differences in {sup 56}Ni yields for SNe 2011by and 2011fe imply that their progenitor stars were above and below solar metallicity, respectively. Although we can distinguish progenitor metallicities in a qualitative way from UV data, the quantitative interpretation in terms of abundances is limited by the present state of theoretical models.

Foley, Ryan J.; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2013-05-20T23:59:59.000Z

313

Tycho Brahe's 1572 supernova as a standard type Ia explosion revealed from its light echo spectrum  

E-Print Network [OSTI]

Type Ia supernovae (SNe Ia) are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions are how the explosion actually proceeds and whether accretion occurs from a companion or via the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a SN Ia in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the yet unknown exact spectroscopic type of SN 1572 is crucial to relate these results to the diverse population of SNe Ia. Here we report an optical spectrum of Tycho Brahe's supernova near maximum brightness, obtained from a scatter...

Krause, Oliver; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

2008-01-01T23:59:59.000Z

314

SEASONAL V A R IA TIONS IN STRUCTURE AND CIRCULATION IN THE RED SEA  

E-Print Network [OSTI]

SEASONAL V A R IA TIONS IN STRUCTURE AND CIRCULATION IN THE RED SEA A DISSERTATION SUBMITTE D and surface circulation in the Red Sea, occur r ing along the north-south axis of the Sea and extending fr om on in the northern Red Sea is frorn the nor th-northwest throughout the year' during the winter ( fr om October

Luther, Douglas S.

315

Seminar Ia, cetrti letnik, stari program LONGITUDINAL DYNAMICS OF PARTICLES IN ACCELERATORS  

E-Print Network [OSTI]

Seminar Ia, cetrti letnik, stari program LONGITUDINAL DYNAMICS OF PARTICLES IN ACCELERATORS Author motion of charged particles in particle accelerators. The technique of acceleration by electromagnetic waves is explored and the stability of motion under such acceleration is inspected. The seminar

¬?umer, Slobodan

316

Section I. Summary of Project Activities Section I-A. 2008-2009 Project Summary  

E-Print Network [OSTI]

Section I. Summary of Project Activities Section I-A. 2008-2009 Project Summary University year, we accomplished the following: · Established a dual career opportunity procedure vetted to address, communicate procedures for the new daycare facility, and to explore the potential

Farritor, Shane

317

On the thermonuclear runaway in Type Ia supernovae: How to run away  

E-Print Network [OSTI]

Type Ia Supernovae are thought to be thermonuclear explosions of massive white dwarfs (WD). We present the first study of multi-dimensional effects during the final hours prior to the thermonuclear runaway which leads to the explosion. The calculations utilize an implicit, 2-D hydrodynamical code

P. HŲflich; J. Stein

2002-01-01T23:59:59.000Z

318

Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1  

E-Print Network [OSTI]

Turbulent Oxygen Flames in Type Ia Supernovae A. J. Aspden1 , J. B. Bell1 , and S. E. Woosley2 oxygen flames. The two aims of the paper are to examine the response of the inductive oxygen flame to intense levels of turbulence, and to explore the possibility of transition to detonation in the oxygen

319

High-Velocity Features of Calcium and Silicon in the Spectra of Type Ia Supernovae  

E-Print Network [OSTI]

"High-velocity features" (HVFs) are spectral features in Type Ia supernovae (SNe Ia) that have minima indicating significantly higher (by greater than about 6000 km/s) velocities than typical "photospheric-velocity features" (PVFs). The PVFs are absorption features with minima indicating typical photospheric (i.e., bulk ejecta) velocities (usually ~9000-15,000 km/s near B-band maximum brightness). In this work we undertake the most in-depth study of HVFs ever performed. The dataset used herein consists of 445 low-resolution optical and near-infrared (NIR) spectra (at epochs up to 5 d past maximum brightness) of 210 low-redshift SNe Ia that follow the "Phillips relation." A series of Gaussian functions is fit to the data in order to characterise possible HVFs of Ca II H&K, Si II {\\lambda}6355, and the Ca II NIR triplet. The temporal evolution of the velocities and strengths of the PVFs and HVFs of these three spectral features is investigated, as are possible correlations with other SN Ia observables. We f...

Silverman, Jeffrey M; Marion, G H; Wheeler, J Craig; Barna, Barnabas; Szalai, Tamas; Mulligan, Brian; Filippenko, Alexei V

2015-01-01T23:59:59.000Z

320

The superconducting spin valve and triplet superconductivity I.A. Garifullin a,n  

E-Print Network [OSTI]

The superconducting spin valve and triplet superconductivity I.A. Garifullin a,n , P.V. Leksin s t r a c t A review of our recent results on the spin valve effect is presented. We have used coefficient DF and the exchange splitting I of the conduction band in the F layer [1]. For pure Fe the value

Fominov, Yakov

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig  

SciTech Connect (OSTI)

We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup Ė1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between Ė14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = Ė19.46 mag and ?m{sub 15}(B) = 0.90 mag). Similarly, the Si II ?6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup Ė1}). The Ė14 days and Ė13 days spectra clearly resolve HVF from Si II ?6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From Ė12 days to Ė6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup Ė1}. After Ė6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before Ė10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II ?6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Hsiao, Eric Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Brown, Peter J. [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, 4242 AMU, College Station, TX 77843 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States); Landsman, Wayne B. [Adnet Systems, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Parrent, Jerod T. [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pritchard, Tyler A.; Roming, Peter W. A. [Department of Astronomy and Astrophysics, Penn State University, 525 Davey Lab, University Park, PA 16802 (United States); Wang, Xiaofeng, E-mail: gmarion@cfa.harvard.edu [Physics Department and Tsinghua Center for Astrophysics (THCA), Tsinghua University, Beijing 1,00084 (China)

2013-11-01T23:59:59.000Z

322

Fluoride (F) is not taken up by Salmonella typhimurium TA98 (TA98), used for Ames mutagenicity test, unless aluminum (Al) is present  

SciTech Connect (OSTI)

TA98 is commonly used for the Ames test to detect frame-shift mutations. Ames test results for fluoride mutagenicity are controversial. Since Al and F, both present in finished drinking water, form a stable complex, the authors determined the effect of Al on F uptake by TA98 to evaluate any Al effect on Ames test results for F. A known number of TA98 in 0.1M potassium phosphate buffer was incubated with various concentrations of Al, F or aluminum fluoride for 1 hr at 37C in a shaking incubator. The cells were washed twice in potassium phosphate buffer and then resuspended in water. After breaking the cells open by sonication, the resulting supernatant was analyzed for Al by graphite furnace atomic absorption and for F using a F ion-selective electrode. Al accumulated in a concentration-dependent manner to 4.5 ppm then decreased rapidly as the Al was increased to 9 ppm. Intracellular F was below the limit of detection even when the medium contained 590 ppm F. However, F was taken up from media containing greater than 200 ppm F, providing that aluminum was also present. The authors conclude that the Ames test, using TA98, is not suitable for the detection of F mutagenicity.

Ahn, H.W.; Jeffery, E.H. (Univ. of Illinois, Urbana (United States))

1991-03-11T23:59:59.000Z

323

COSMOLOGY WITH PHOTOMETRICALLY CLASSIFIED TYPE Ia SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY  

SciTech Connect (OSTI)

We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat {Lambda}CDM cosmological model, we find that our photometric sample alone gives {Omega} {sub m} = 0.24{sup +0.07} {sub -0.05} (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on {Omega} {sub m} and {Omega}{sub {Lambda}}, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H {sub 0}, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96{sup +0.10} {sub -0.10}, {Omega} {sub m} = 0.29{sup +0.02} {sub -0.02}, and {Omega} {sub k} = 0.00{sup +0.03} {sub -0.02} (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.

Campbell, Heather; D'Andrea, Chris B; Nichol, Robert C.; Smith, Mathew; Lampeitl, Hubert [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom)] [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States)] [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Olmstead, Matthew D.; Brown, Peter; Dawson, Kyle S. [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112 (United States)] [Department of Physics and Astronomy, University of Utah, 115 South 1400 East 201, Salt Lake City, UT 84112 (United States); Bassett, Bruce [Mathematics Department, University of Cape Town, Rondebosch, Cape Town (South Africa)] [Mathematics Department, University of Cape Town, Rondebosch, Cape Town (South Africa); Biswas, Rahul; Kuhlmann, Steve [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)] [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States); Cinabro, David [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48126 (United States)] [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48126 (United States); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States)] [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, CA 93117 (United States); Foley, Ryan J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)] [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Frieman, Joshua A. [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)] [Department of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Garnavich, Peter [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States)] [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Hlozek, Renee [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)] [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Jha, Saurabh W. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States)] [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Kunz, Martin, E-mail: Heather.Campbell@port.ac.uk [African Institute for Mathematical Sciences, Muizenberg, 7945, Cape Town (South Africa)] [African Institute for Mathematical Sciences, Muizenberg, 7945, Cape Town (South Africa); and others

2013-02-15T23:59:59.000Z

324

1 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames Research Center Computational, Data, and  

E-Print Network [OSTI]

1 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames@computer.org 2 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames;3 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames Research

325

1 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames Research Center Computational, Data, and  

E-Print Network [OSTI]

1 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames@computer.org 2 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames Research

326

1 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames Research Center Computational, Data, and  

E-Print Network [OSTI]

1 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames@computer.org #12;2 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames;3 (Grids_Overview.v.11.VG.fm, 4/14/00)wejohnston@lbl.gov, www.itg.lbl.gov/~wej LBNL and NASA Ames Research

327

Restframe I-band Hubble diagram for type Ia supernovae up to redshift z ~; 0.5  

E-Print Network [OSTI]

in STScI Symposium Ser. 13, Supernovae and gamma-ray bursts:Highlight: The Physics of Supernovae, ed. W. Hillebrandt &diagram for type Ia supernovae up to redshift z ? 0.5 ? S.

2005-01-01T23:59:59.000Z

328

Mechanistic studies of proton-coupled electron transfer in aminotyrosine- and fluorotyrosine- substituted class Ia Ribonucleotide reductase  

E-Print Network [OSTI]

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleotides to 2'- deoxynucleotides in all organisms. The class Ia RNR from Escherichia coli is active as an a2p2 complex and utilizes an unprecedented mechanism ...

Minnihan, Ellen Catherine

2012-01-01T23:59:59.000Z

329

Function of the Diiron Cluster of Escherichia coli Class Ia Ribonucleotide Reductase in Proton-Coupled Electron Transfer  

E-Print Network [OSTI]

The class Ia ribonucleotide reductase (RNR) from Escherichia coli employs a free-radical mechanism, which involves bidirectional translocation of a radical equivalent or ďholeĒ over a distance of ~35 Ň from the stable ...

WŲrsdŲrfer, Bigna

330

In vivo cofactor biosynthesis and maintenance in the class Ia ribonucleotide reductase small subunit of Escherichia coli  

E-Print Network [OSTI]

The small subunit ([beta]2) of Escherichia coli class Ia ribonucleotide reductases (RNRs) contains a diferric tyrosyl radical (Y*) cofactor essential for the conversion of nucleotides to deoxynucleotides that are needed ...

Wu, Chia-Hung, Ph. D. Massachusetts Institute of Technology

2009-01-01T23:59:59.000Z

331

On the small-scale stability of thermonuclear flames in Type Ia supernovae  

E-Print Network [OSTI]

We present a numerical model which allows us to investigate thermonuclear flames in Type Ia supernova explosions. The model is based on a finite-volume explicit hydrodynamics solver employing PPM. Using the level-set technique combined with in-cell reconstruction and flux-splitting schemes we are able to describe the flame in the discontinuity approximation. We apply our implementation to flame propagation in Chandrasekhar-mass Type Ia supernova models. In particular we concentrate on intermediate scales between the flame width and the Gibson-scale, where the burning front is subject to the Landau-Darrieus instability. We are able to reproduce the theoretical prediction on the growth rates of perturbations in the linear regime and observe the stabilization of the flame in a cellular shape. The increase of the mean burning velocity due to the enlarged flame surface is measured. Results of our simulation are in agreement with semianalytical studies.

F. K. Roepke; J. C. Niemeyer; W. Hillebrandt

2003-05-02T23:59:59.000Z

332

TIDAL TAIL EJECTION AS A SIGNATURE OF TYPE Ia SUPERNOVAE FROM WHITE DWARF MERGERS  

SciTech Connect (OSTI)

The merger of two white dwarfs may be preceded by the ejection of some mass in ''tidal tails,'' creating a circumstellar medium around the system. We consider the variety of observational signatures from this material, which depend on the lag time between the start of the merger and the ultimate explosion (assuming one occurs) of the system in a Type Ia supernova (SN Ia). If the time lag is fairly short, then the interaction of the supernova ejecta with the tails could lead to detectable shock emission at radio, optical, and/or X-ray wavelengths. At somewhat later times, the tails produce relatively broad NaID absorption lines with velocity widths of the order of the white dwarf escape speed ({approx}1000 km s{sup -1}). That none of these signatures have been detected in normal SNe Ia constrains the lag time to be either very short ({approx}< 100 s) or fairly long ({approx}> 100 yr). If the tails have expanded and cooled over timescales {approx}10{sup 4} yr, then they could be observable through narrow NaID and Ca II H and K absorption lines in the spectra, which are seen in some fraction of SNe Ia. Using a combination of three-dimensional and one-dimensional hydrodynamical codes, we model the mass loss from tidal interactions in binary systems, and the subsequent interactions with the interstellar medium, which produce a slow-moving, dense shell of gas. We synthesize NaID line profiles by ray casting through this shell, and show that in some circumstances tidal tails could be responsible for narrow absorptions similar to those observed.

Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

2013-07-20T23:59:59.000Z

333

Especialista Universitario Java Enterprise 2010-2011 Depto. Ciencia de la Computacin e IA  

E-Print Network [OSTI]

Especialista Universitario Java Enterprise © 2010-2011 Depto. Ciencia de la Computación e IA Sesión 1: Introducción a JMS #12;Servicios de Mensajes con JMS © 2010-2011 Depto. Ciencia de la Computación · Una Aplicación JMS · PTP · Pub/Sub #12;Servicios de Mensajes con JMS © 2010-2011 Depto. Ciencia de la

Escolano, Francisco

334

IA --"-IScience Service Featuse 'I WHY T i E IJEAYIiER ?  

E-Print Network [OSTI]

No. 591 April 3 IA --"-IScience Service Featuse 'I WHY T i E IJEAYIiER ? II city located oa the Ice.pp';g a% Bidialo, The ice c h i l l s a t h i n laye:. of a i r aver the Sake aridto laewwd. NOW$ vhen r may be srrfficionl t o produce a sheet cloud and g i ~ eBuffalo a day not oalg dwnt arid chilly Lu

335

Experto Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 1  

E-Print Network [OSTI]

Experto Universitario Java Enterprise Componentes de presentación © 2012-2013 Depto. Ciencia de la Universitario Java Enterprise Componentes de presentación © 2012-2013 Depto. Ciencia de la Computación e IA Componentes de presentación © 2012-2013 Depto. Ciencia de la Computación e IA Sesión 1 Experto Universitario

Escolano, Francisco

336

Especialista Universitario Java Enterprise Componentes de presentacin 2012-2013 Depto. Ciencia de la Computacin e IA Sesin 4  

E-Print Network [OSTI]

Especialista Universitario Java Enterprise Componentes de presentación © 2012-2013 Depto. Ciencia presentación © 2012-2013 Depto. Ciencia de la Computación e IA Sesión 4 Experto Universitario Java Enterprise Componentes de presentación © 2012-2013 Depto. Ciencia de la Computación e IA Sesión 4 Experto Universitario

Escolano, Francisco

337

Is the X-ray pulsating companion of HD 49798 a possible type Ia supernova progenitor?  

E-Print Network [OSTI]

HD 49798 (a hydrogen depleted subdwarf O6 star) with its massive white dwarf (WD) companion has been suggested to be a progenitor candidate of type Ia supernovae (SNe Ia). However, it is still uncertain whether the companion of HD 49798 is a carbon-oxygen (CO) WD or an oxygen-neon (ONe) WD. A CO WD will explode as an SN Ia when its mass grows approach to Chandrasekhar mass, while the outcome of an accreting ONe WD is likely to be a neutron star. We followed a series of Monte Carlo binary population synthesis approach to simulate the formation of ONe WD + He star systems. We found that there is almost no orbital period as large as HD 49798 with its WD companion in these ONe WD + He star systems based on our simulations, which means that the companion of HD 49798 might not be an ONe WD. We suggest that the companion of HD 49798 is most likely a CO WD, which can be expected to increase its mass to the Chandrasekhar mass limit by accreting He-rich material from HD 49798. Thus, HD 49798 with its companion may prod...

Liu, Dong-Dong; Wu, Cheng-Yuan; Wang, Bo

2015-01-01T23:59:59.000Z

338

Evaluation of copper for divider subassembly in MCO Mark IA and Mark IV scrap fuel baskets  

SciTech Connect (OSTI)

The K Basin Spent Nuclear Fuel (SNF) Project Multi-Canister Overpack (MCO) subprojection eludes the design and fabrication of a canister that will be used to confine, contain, and maintain fuel in a critically safe array to enable its removal from the K Basins, vacuum drying, transport, staging, hot conditioning, and interim storage (Goldinann 1997). Each MCO consists of a shell, shield plug, fuel baskets (Mark IA or Mark IV), and other incidental equipment. The Mark IA intact and scrap fuel baskets are a safety class item for criticality control and components necessary for criticality control will be constructed from 304L stainless steel. It is proposed that a copper divider subassembly be used in both Mark IA and Mark IV scrap baskets to increase the safety basis margin during cold vacuum drying. The use of copper would increase the heat conducted away from hot areas in the baskets out to the wall of the MCO by both radiative and conductive heat transfer means. Thus copper subassembly will likely be a safety significant component of the scrap fuel baskets. This report examines the structural, cost and corrosion consequences associated with using a copper subassembly in the stainless steel MCO scrap fuel baskets.

Graves, C.E.

1997-09-29T23:59:59.000Z

339

Observations of Type Ia Supernova 2014J with FLITECAM/SOFIA  

E-Print Network [OSTI]

We present medium resolution near-infrared (NIR) spectra, covering 1.1 to 3.4 microns, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument aboard SOFIA approximately 17-25 days after maximum B light. Our 2.8-3.4 micron spectra may be the first ~3 micron spectra of a SN Ia ever published. The spectra spanning the 1.5-2.7 micron range are characterized by a strong emission feature at ~1.77 microns with a full width at half maximum of ~11,000-13,000 km/s. We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. (2014) and find that the models agree with the spectra remarkably well in the 1.5-2.7 micron wavelength range. Based on this comparison we identify the ~1.77 micron emission peak as a blend of permitted lines of Co II. Other features seen in the 2.0 - 2.5 micron spectra are also identified as emission from permitted transitions of Co II. However, the models are not as successful at reproducing the spectra in the 1....

Vacca, William D; Savage, Maureen; Shenoy, Sachindev; Becklin, E E; McLean, Ian S; Logsdon, Sarah E; Gehrz, R D; Spyromilio, J; Garnavich, P; Marion, G H; Fox, O D

2015-01-01T23:59:59.000Z

340

Observational constraints from SNe Ia and Gamma-Ray Bursts on a clumpy universe  

E-Print Network [OSTI]

The luminosity distance describing the effect of local inhomogeneities in the propagation of light proposed by Zeldovich-Kantowski-Dyer-Roeder (ZKDR) is tested with two probes for two distinct ranges of redshifts: supernovae Ia (SNe Ia) in 0.015 gamma-ray bursts (GRBs) in 1.547 < z < 3.57. Our analysis is performed by a Markov Chain Monte Carlo (MCMC) code that allows us to constrain the matter density parameter \\Omega_m as well as the smoothness parameter $\\alpha$ that measures the inhomogeneous-homogeneous rate of the cosmic fluid in a flat \\LambdaCDM model. The obtained best fits are (\\Omega_m=0.285^{+0.019}_{-0.018}, \\alpha= 0.856^{+0.106}_{-0.176}) from SNe Ia and (\\Omega_m=0.259^{+0.028}_{-0.028}, \\alpha=0.587^{+0.201}_{-0.202}) from GRBs, while from the joint analysis the best fits are (\\Omega_m=0.284^{+0.021}_{-0.020}, \\alpha= 0.685^{+0.164}_{-0.171}) with a \\chi^2_{\\rm red}=0.975. The value of the smoothness parameter $\\alpha$ indicates a clumped universe however it does not have an impact on the amount of dark energy (cosmological constant) needed to fit observations. This result may be an indication that the Dyer-Roeder approximation does not describe in a precise form the effects of clumpiness in the expansion of the universe.

Nora Bretůn; Ariadna Montiel

2013-03-06T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Subclasses of Type Ia Supernovae as the origin of [\\alpha/Fe] ratios in dwarf spheroidal galaxies  

E-Print Network [OSTI]

Recent extensive observations of Type Ia Supernovae (SNe Ia) have revealed the existence of a diversity of SNe Ia, including SN 2002cx-like objects (also called SN Iax). We introduce two possible channels in the single degenerate scenario: 1) double detonations in sub-Chandrasekhar (Ch) mass CO white dwarfs (WDs), where a thin He envelope is developed with relatively low accretion rates after He novae even at low metallicities, and 2) carbon deflagrations in Ch-mass possibly hybrid C+O+Ne WDs, where WD winds occur at [Fe/H] ~ -2.5 at high accretion rates. These subclasses of SNe Ia are rarer than `normal' SNe Ia and do not affect the chemical evolution in the solar neighborhood, but can be very important in metal-poor systems with stochastic star formation. In dwarf spheroidal galaxies in the Local Group, the decrease of [\\alpha/Fe] ratios at [Fe/H] ~ -2 to -1.5 can be produced depending on the star formation history. SNe Iax give high [Mn/Fe], while sub-Ch-mass SNe Ia give low [Mn/Fe], and thus a model inclu...

Kobayashi, Chiaki; Hachisu, Izumi

2015-01-01T23:59:59.000Z

342

CIMAT, VI Escuela de verano, 25 de julio 7 de agosto 1999 Introducci'on a la Geometr'ia de la Mec'anica Cl'asica  

E-Print Network [OSTI]

parametrizada por (x(t); ‚?? x(t)): (d) Dibujar las gr'aficas de su energ'ia cin'etica T = ( ‚?? x) 2 =2 y potencial¬≠ vaci'on de energ'ia, E = T + V = constante: (e) Repetir los 4 incisos anteriores con x(1) = 2; ‚?? x(0CIMAT, VI Escuela de verano, 25 de julio ¬≠ 7 de agosto 1999 Introducci'on a la Geometr'ia de la Mec

Bor, Gil

343

CIMAT, VI Escuela de verano, 25 de julio -7 de agosto 1999 Introducci'on a la Geometr'ia de la Mec'anica Cl'asica  

E-Print Network [OSTI]

(t), `x(t)). (d)Dibujar las gr'aficas de su energ'ia cin'etica T = (x`)2=2 y potencial* * V = x2- vaci'on de energ'ia, E = T + V = constante. (e)Repetir los 4 incisos anteriores con x(1) = 2, `x CIMAT, VI Escuela de verano, 25 de julio - 7 de agosto 1999 Introducci'on a la Geometr'ia de la

Bor, Gil

344

About Ames Lab | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuel Production ASU is aAboutAboutHPCAbout

345

Ames Lab Directory | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools Printable Version Share thisTools

346

Ames Laboratory Research Reactor Facility Ames, Iowa  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r. aw wL2--\ AP_I ,, *' ;

347

Ames Laboratory Logos | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurityhere!American-Made

348

Ames Lab Org Chart | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross Blood Drive Hanford Health and

349

Ames Laboratory Hot Canyon | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail ShareRed Cross Blood Drive Hanford HealthLab,

350

IS WX CEN A POSSIBLE TYPE Ia SUPERNOVA PROGENITOR WITH WIND-DRIVEN MASS TRANSFER?  

SciTech Connect (OSTI)

WX Cen is one of a few compact binary supersoft X-ray sources (CBSS) in the Galaxy that is a possible Type Ia supernova (SN Ia) progenitor. The supersoft X-ray radiation is explained as hydrostatic nuclear burning on the surface of the white dwarf component that is accreting hydrogen from a stellar companion at a high rate. If the mass donor in this system has a low mass, as has been suggested in the literature, one would expect a high wind-driven mass transfer rate. In that case, the orbital period of the system should increase. To test this theoretical prediction, we have monitored the system photometrically since 2010. By using four newly determined eclipse timings together with those collected from the literature, we discovered that the orbital period is decreasing at a rate of dP/dt = -5.15 Multiplication-Sign 10{sup -7} days yr{sup -1}. The long-term decrease in the orbital period is contrary to the prediction that the system is powered by wind-driven accretion. It therefore seems plausible that the mass donor could be more massive than the white dwarf, and that the mass transfer is driven by the thermal instability of the donor star. This finding suggests that WX Cen is a key object to check the physical mechanisms of mass accretion in CBSS. The corresponding timescale of the period change is about P/P-dot {approx} 0.81 x 10{sup 6} yr, indicating that WX Cen may evolve into an SNe Ia within one million years in the Galaxy.

Qian, S.-B.; Shi, G.; Zhu, L.-Y.; Liu, L.; Zhao, E.-G.; Li, L.-J. [Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, 650011 Kunming (China); Fernandez Lajus, E.; Di Sisto, R. P., E-mail: qsb@ynao.ac.cn [Facultad de Ciencias Astronomicas y Geofisicas, Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires (Argentina)

2013-08-01T23:59:59.000Z

351

On the thermonuclear runaway in Type Ia supernovae: How to run away  

E-Print Network [OSTI]

Type Ia Supernovae are thought to be thermonuclear explosions of massive white dwarfs (WD). We present the first study of multi-dimensional effects during the final hours prior to the thermonuclear runaway which leads to the explosion. The calculations utilize an implicit, 2-D hydrodynamical code. Mixing and the ignition process are studied in detail. We find that the initial chemical structure of the WD is changed but the material is not fully homogenized. In particular, the exploding WD sustains a central region with a low C/O ratio. This implies that the explosive nuclear burning will begin in a partially carbon-depleted environment. The thermonuclear runaway happens in a well defined region close to the center. It is induced by compressional heat when matter is brought inwards by convective flows. We find no evidence for multiple spot or strong off-center ignition. Convective velocities in the WD are of the order of 100 km/sec which is well above the effective burning speeds in SNe Ia previously expected right after the runaway. For ? 0.5 to 1 sec, the speed of the burning front will neither be determined by the laminar speed nor the Rayleigh-Taylor instabilities but by convective flows produced prior to the runaway. The consequences are discussed for our understanding of the detailed physics of the flame propagation, the deflagration detonation transition, and the nucleosynthesis in the central layers. Our results strongly suggest the pre-conditioning of the progenitor as a key factor for our understanding of the diversity in Type Ia Supernovae.

P. HŲflich; J. Stein

2002-01-01T23:59:59.000Z

352

On the Thermonuclear Runaway in Type Ia Supernovae: How to run away?  

E-Print Network [OSTI]

Type Ia Supernovae are thought to be thermonuclear explosions of massive white dwarfs (WD). We present the first study of multi-dimensional effects during the final hours prior to the thermonuclear runaway which leads to the explosion. The calculations utilize an implicit, 2-D hydro code.Mixing and the ignition process are studied in detail. We find that the initial chemical structure of the WD is changed but the material is not fully homogenized. The exploding WD sustains a central region with a low C/O ratio. This implies that the explosive nuclear burning will begin in a partially C-depleted environment. The thermonuclear runaway happens in a well defined region close to the center. It is induced by compressional heat when matter is brought inwards by convective flows. We find no evidence for multiple spot or strong off-center ignition. Convective velocities are of the order of 100 km/sec which is well above the effective burning speeds in SNe Ia previously expected right after the runaway. For about 0.5 to 1 sec, the speed of the burning front will neither be determined by the laminar speed nor the Rayleigh-Taylor instabilities but by convective flows produced prior to the runaway. The consequences are discussed for our under- standing of the detailed physics of the flame propagation, the deflagration detonation transition, and the nucleosynthesis in the central layers. Our results strongly suggest the pre-conditioning of the progenitor as a key-factor for our understanding of the diversity in SNeIa.

P. Hoeflich; J. Stein

2001-12-07T23:59:59.000Z

353

The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-masswhite dwarf star  

SciTech Connect (OSTI)

The acceleration of the expansion of the universe, and theneed for Dark Energy, were inferred from the observations of Type Iasupernovae (SNe Ia) 1;2. There is consensus that SNeIa are thermonuclearexplosions that destroy carbon-oxygen white dwarf stars that accretematter from a companion star3, although the nature of this companionremains uncertain. SNe Ia are thought to be reliable distance indicatorsbecause they have a standard amount of fuel and a uniform trigger theyare predicted to explode when the mass of the white dwarf nears theChandrasekhar mass 4 - 1.4 solar masses. Here we show that the highredshift supernova SNLS-03D3bb has an exceptionally high luminosity andlow kinetic energy that both imply a super-Chandrasekhar mass progenitor.Super-Chandrasekhar mass SNeIa shouldpreferentially occur in a youngstellar population, so this may provide an explanation for the observedtrend that overluminous SNe Ia only occur in young environments5;6. Sincethis supernova does not obey the relations that allow them to becalibrated as standard candles, and since no counterparts have been foundat low redshift, future cosmology studies will have to considercontamination from such events.

Howell, D.Andrew; Sullivan, Mark; Nugent, Peter E.; Ellis,Richard S.; Conley, Alexander J.; Le Borgne, Damien; Carlberg, RaymondG.; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook,Isobel M.; Hsiao, Eric Y.; Neill, James D.; Pain, Reynald; Perrett,Kathryn M.; Pritchet, Christopher J.

2006-02-01T23:59:59.000Z

354

A super-Eddington wind scenario for the progenitors of type Ia supernovae: binary population synthesis calculations  

E-Print Network [OSTI]

The super-Eddington wind scenario has been proposed as an alternative way for producing type Ia supernovae (SNe Ia). The super-Eddington wind can naturally prevent the carbon--oxygen white dwarfs (CO WDs) with high mass-accretion rates from becoming red-giant-like stars. Furthermore, it works in low-metallicity environments, which may explain SNe Ia observed at high redshifts. In this article, we systematically investigated the most prominent single-degenerate WD+MS channel based on the super-Eddington wind scenario. We combined the Eggleton stellar evolution code with a rapid binary population synthesis (BPS) approach to predict SN Ia birthrates for the WD+MS channel by adopting the super-Eddington wind scenario and detailed mass-accumulation efficiencies of H-shell flashes on the WDs. Our BPS calculations found that the estimated SN Ia birthrates for the WD+MS channel are ~0.009-0.315*10^{-3}{yr}^{-1} if we adopt the Eddington accretion rate as the critical accretion rate, which are much lower than that of ...

Wang, Bo; Liu, Dongdong; Liu, Zhengwei; Wu, Chengyuan; Zhang, Jujia; Han, Zhanwen

2015-01-01T23:59:59.000Z

355

Testing the isotropy of the Universe by using the JLA compilation of type-Ia supernovae  

E-Print Network [OSTI]

We probe the possible anisotropy in the accelerated expanding Universe by using the JLA compilation of type-Ia supernovae. We constrain the amplitude and direction of anisotropy in the anisotropic cosmological models. For the dipole-modulated $\\Lambda$CDM model, the anisotropic amplitude has an upper bound $D<1.04\\times10^{-3}$ at the $68\\%$ confidence level. Similar results are found in the dipole-modulated $w$CDM and CPL models. Our studies show that there are no significant evidence for the anisotropic expansion of the Universe. Thus the Universe is still well compatible with the isotropy.

Lin, Hai-Nan; Chang, Zhe; Li, Xin

2015-01-01T23:59:59.000Z

356

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae  

E-Print Network [OSTI]

Summary. The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilizationówhich is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanismóis studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that a deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here. 1

F. K. RŲpke; W. Hillebr

2004-01-01T23:59:59.000Z

357

Reconstruction of Hessence Dark Energy and the Latest Type Ia Supernovae Gold Dataset  

E-Print Network [OSTI]

Recently, many efforts have been made to build dark energy models whose equation-of-state parameter can cross the so-called phantom divide $w_{de}=-1$. One of them is the so-called hessence dark energy model in which the role of dark energy is played by a non-canonical complex scalar field. In this work, we develop a simple method based on Hubble parameter $H(z)$ to reconstruct the hessence dark energy. As examples, we use two familiar parameterizations for $H(z)$ and fit them to the latest 182 type Ia supernovae Gold dataset. In the reconstruction, measurement errors are fully considered.

Hao Wei; Ningning Tang; Shuang Nan Zhang

2007-02-28T23:59:59.000Z

358

Reconstruction of a Deceleration Parameter from the Latest Type Ia Supernovae Gold Dataset  

E-Print Network [OSTI]

In this paper, a parameterized deceleration parameter $q(z)= 1/2 - a/(1 + z)^b$ is reconstructed from the latest type Ia supernovae gold dataset. It is found out that the transition redshift from decelerated expansion to accelerated expansion is at $z_T=0.35^{+0.14}_{-0.07}$ with $1\\sigma$ confidence level in this parameterized deceleration parameter. And, the best fit values of parameters in $1\\sigma$ errors are $a=1.56^{+0.99}_{-0.55}$ and $b=3.82^{+3.70}_{-2.27}$.

Lixin Xu; Chengwu Zhang; Baorong Chang; Hongya Liu

2007-01-17T23:59:59.000Z

359

Gamma-Rays as Probes for the Multi-Dimensionality of Type Ia Supernovae  

E-Print Network [OSTI]

We present $\\gamma $-ray spectra for a set of Type Ia supernovae models. Our study is based on a detailed Monte Carlo transport scheme for both spherical and full 3-D geometries. Classical and new challenges of the $\\gamma $ ray astronomy are addressed. We find that $\\gamma $-rays are very suitable to reveal the structure of the envelope and, thus, they allow to probe properties of the nuclear burning front and the progenitor, namely its central density and global asphericities. The potential problems are discussed for the quantitative comparison between theoretical and observed line fluxes during the first few months after the explosion.

P. Hoeflich

2001-10-03T23:59:59.000Z

360

On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae  

E-Print Network [OSTI]

The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.

F. K. Roepke; W. Hillebrandt

2004-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

IA REP0 SAND85-2809 Unlimited Release UC-92A  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATINGI _ _ ORNL-6161 OAK*I.IA

362

File:USDA-CE-Production-GIFmaps-IA.pdf | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf Jump to: navigation,storage plan reviewformP2.pdfFL.pdfIA.pdf

363

Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa  

SciTech Connect (OSTI)

The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

Not Available

1990-05-01T23:59:59.000Z

364

Inference for the dark energy equation of state using Type IA supernova data  

E-Print Network [OSTI]

The surprising discovery of an accelerating universe led cosmologists to posit the existence of "dark energy"--a mysterious energy field that permeates the universe. Understanding dark energy has become the central problem of modern cosmology. After describing the scientific background in depth, we formulate the task as a nonlinear inverse problem that expresses the comoving distance function in terms of the dark-energy equation of state. We present two classes of methods for making sharp statistical inferences about the equation of state from observations of Type Ia Supernovae (SNe). First, we derive a technique for testing hypotheses about the equation of state that requires no assumptions about its form and can distinguish among competing theories. Second, we present a framework for computing parametric and nonparametric estimators of the equation of state, with an associated assessment of uncertainty. Using our approach, we evaluate the strength of statistical evidence for various competing models of dark energy. Consistent with current studies, we find that with the available Type Ia SNe data, it is not possible to distinguish statistically among popular dark-energy models, and that, in particular, there is no support in the data for rejecting a cosmological constant. With much more supernova data likely to be available in coming years (e.g., from the DOE/NASA Joint Dark Energy Mission), we address the more interesting question of whether future data sets will have sufficient resolution to distinguish among competing theories.

Christopher Genovese; Peter Freeman; Larry Wasserman; Robert Nichol; Christopher Miller

2009-05-18T23:59:59.000Z

365

Variable Selection for Modeling the Absolute Magnitude at Maximum of Type Ia Supernovae  

E-Print Network [OSTI]

We discuss what is an appropriate set of explanatory variables in order to predict the absolute magnitude at the maximum of Type Ia supernovae. In order to have a good prediction, the error for future data, which is called the "generalization error," should be small. We use cross-validation in order to control the generalization error and LASSO-type estimator in order to choose the set of variables. This approach can be used even in the case that the number of samples is smaller than the number of candidate variables. We studied the Berkeley supernova database with our approach. Candidates of the explanatory variables include normalized spectral data, variables about lines, and previously proposed flux-ratios, as well as the color and light-curve widths. As a result, we confirmed the past understanding about Type Ia supernova: i) The absolute magnitude at maximum depends on the color and light-curve width. ii) The light-curve width depends on the strength of Si II. Recent studies have suggested to add more va...

Uemura, Makoto; Kawabata, S; Ikeda, Shiro; Maeda, Keiichi

2015-01-01T23:59:59.000Z

366

Smoothed Particle Hydrodynamics simulations of the core-degenerate scenario for Type Ia supernovae  

E-Print Network [OSTI]

The core-degenerate (CD) scenario for type Ia supernovae (SN Ia) involves the merger of the hot core of an asymptotic giant branch (AGB) star and a white dwarf, and might contribute a non-negligible fraction of all thermonuclear supernovae. Despite its potential interest, very few studies, and based on only crude simplifications, have been devoted to investigate this possible scenario, compared with the large efforts invested to study some other scenarios. Here we perform the first three-dimensional simulations of the merger phase, and find that this process can lead to the formation of a massive white dwarf, as required by this scenario. We consider two situations, according to the mass of the circumbinary disk formed around the system during the final stages of the common envelope phase. If the disk is massive enough, the stars merge on a highly eccentric orbit. Otherwise, the merger occurs after the circumbinary disk has been ejected and gravitational wave radiation has brought the stars close to the Roche...

Aznar-SiguŠn, G; Lorťn-Aguilar, P; Soker, N; Kashi, A

2015-01-01T23:59:59.000Z

367

Spectroscopic Observations and Analysis of the Unusual Type Ia SN1999ac  

SciTech Connect (OSTI)

The authors present optical spectra of the peculiar Type Ia supernova (SN Ia) 1999ac. The data extend from -15 to +42 days with respect to B-band maximum and reveal an event that is unusual in several respects. prior to B-band maximum, the spectra resemble those of SN 1999aa, a slowly declining event, but possess stronger Si II and Ca II signatures (more characteristic of a spectroscopically normal SN). Spectra after B-band maximum appear more normal. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from the Iron lines appear to be lower than average; whereas, the expansion velocity inferred from Calcium H and K are higher than average. The expansion velocities inferred from Si II are among the slowest ever observed, though SN 1999ac is not particularly dim. The analysis of the parameters v{sub 10}(Si II), R(Si II), v, and {Delta}m{sub 15} further underlines the unique characteristics of SN 1999ac. They find convincing evidence of C II {lambda}6580 in the day -15 spectrum with ejection velocity v > 16,000 km s{sup -1}, but this signature disappears by day -9. This rapid evolution at early times highlights the importance of extremely early-time spectroscopy.

Garavini, G.; Aldering, G.; Amadon, A.; Amanullah, R.; Astier,P.; Balland, C.; Blanc, G.; Conley, A.; Dahlen, T.; Deustua, S.E.; Ellis,R.; Fabbro, S.; Fadeyev, V.; Fan, X.; Folatelli, G.; Frye, B.; Gates,E.L.; Gibbons, R.; Goldhaber, G.; Goldman, B.; Goobar, A.; Groom, D.E.; Haissinski, J.; Hardin, D.; Hook, I.; Howell, D.A.; Kent, S.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Kuznetsova, N.; Lee, B.C.; Lidman, C.; Mendez,J.; Miller, G.J.; Moniez, M.; Mouchet, M.; Mourao, A.; Newberg, H.; Nobili, S.; Nugent, P.E.; Pain, R.; Perdereau, O.; Perlmutter, S.; Quimby, R.; Regnault, N.; Rich, J.; Richards, G.T.; Ruiz-Lapuente, P.; Schaefer, B.E.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

2005-07-12T23:59:59.000Z

368

Constraining the Type Ia Supernova Progenitor: The Search for Hydrogen in Nebular Spectra  

E-Print Network [OSTI]

Despite intense scrutiny, the progenitor system(s) that gives rise to Type Ia supernovae remains unknown. The favored theory invokes a carbon-oxygen white dwarf accreting hydrogen-rich material from a close companion until a thermonuclear runaway ensues that incinerates the white dwarf. However, simulations resulting from this single-degenerate, binary channel demand the presence of low-velocity H-alpha emission in spectra taken during the late nebular phase, since a portion of the companion's envelope becomes entrained in the ejecta. This hydrogen has never been detected, but has only rarely been sought. Here we present results from a campaign to obtain deep, nebular-phase spectroscopy of nearby Type Ia supernovae, and include multi-epoch observations of two events: SN 2005am (slightly subluminous) and SN 2005cf (normally bright). No H-alpha emission is detected in the spectra of either object. An upper limit of 0.01 M_Sun of solar abundance material in the ejecta is established from the models of Mattila et al. which, when coupled with the mass-stripping simulations of Marietta et al. and Meng et al. effectively rules out progenitor systems for these supernovae with secondaries close enough to the white dwarf to be experiencing Roche lobe overflow at the time of explosion. Alternative explanations for the absence of H-alpha emission, along with suggestions for future investigations necessary to confidently exclude them as possibilities, are critically evaluated.

Douglas C. Leonard

2007-10-16T23:59:59.000Z

369

First Evidence of Globular Cluster Formation from the Ejecta of Prompt Type Ia Supernovae  

E-Print Network [OSTI]

Recent spectroscopic observations of globular clusters (GCs) in the Large Magellanic Cloud (LMC) have discovered that one of the intermediate-age GC, NGC 1718 with [Fe/H]=-0.7 has an extremely low [Mg/Fe] ratio of ~-0.9. We propose that NGC 1718 was formed from the ejecta of type Ia supernovae (SNe Ia) mixed with very metal-poor ([Fe/H] <-1.3) gas about ~ 2 Gyr ago. The proposed scenario is shown to be consistent with the observed abundances of Fe-group elements such as Cr, Mn, and Ni. In addition, compelling evidence for asymptotic giant branch stars playing a role in chemical enrichment during this GC formation is found. We suggest that the origin of the metal-poor gas is closely associated with the efficient gas-transfer from the outer gas disk of the Small Magellanic Cloud to the LMC disk. We anticipate that the outer part of the LMC disk contains field stars exhibiting significantly low [Mg/Fe] ratios, formed through the same process as NGC 1718.

Tsujimoto, Takuji

2012-01-01T23:59:59.000Z

370

Verifying the Cosmological Utility of Type Ia Supernovae:Implications of a Dispersion in the Ultraviolet Spectra  

SciTech Connect (OSTI)

We analyze the mean rest-frame ultraviolet (UV) spectrum ofType Ia Supernovae(SNe) and its dispersion using high signal-to-noiseKeck-I/LRIS-B spectroscopyfor a sample of 36 events at intermediateredshift (z=0.5) discoveredby the Canada-France-Hawaii TelescopeSupernova Legacy Survey (SNLS). Weintroduce a new method for removinghost galaxy contamination in our spectra,exploiting the comprehensivephotometric coverage of the SNLS SNe and theirhost galaxies, therebyproviding the first quantitative view of the UV spectralproperties of alarge sample of distant SNe Ia. Although the mean SN Ia spectrumhas notevolved significantly over the past 40 percent of cosmic history,preciseevolutionary constraints are limited by the absence of acomparable sample ofhigh quality local spectra. The mean UV spectrum ofour z 0.5 SNe Ia and itsdispersion is tabulated for use in futureapplications. Within the high-redshiftsample, we discover significant UVspectral variations and exclude dust extinctionas the primary cause byexamining trends with the optical SN color. Although progenitormetallicity may drive some of these trends, the variations we see aremuchlarger than predicted in recent models and do not follow expectedpatterns.An interesting new result is a variation seen in the wavelengthof selected UVfeatures with phase. We also demonstrate systematicdifferences in the SN Iaspectral features with SN lightcurve width inboth the UV and the optical. Weshow that these intrinsic variations couldrepresent a statistical limitation in thefuture use of high-redshift SNeIa for precision cosmology. We conclude thatfurther detailed studies areneeded, both locally and at moderate redshift wherethe rest-frame UV canbe studied precisely, in order that future missions canconfidently beplanned to fully exploit SNe Ia as cosmological probes.

Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam,A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.G.; Conley,A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

2007-11-02T23:59:59.000Z

371

CIMAT, VIII Escuela de verano, 30 de julio -10 de ago* Introducci'on a la Geometr'ia de la Mec'ani*  

E-Print Network [OSTI]

conservativo. 18.Sea A(E) el 'area dentro de una curva de fase cerrada que corresponde a nive* *l de energ'ia Introducci'on a la Geometr'ia de la Mec'ani* *ca Cl'asica Problemas 13 - 19

Bor, Gil

372

Nebular spectra and abundance tomography of the type Ia supernova SN 2011fe: a normal SN Ia with a stable Fe core  

E-Print Network [OSTI]

A series of optical and one near-infrared nebular spectra covering the first year of the Type Ia supernova SN 2011fe are presented and modelled. The density profile that proved best for the early optical/ultraviolet spectra, "rho-11fe", was extended to lower velocities to include the regions that emit at nebular epochs. Model rho-11fe is intermediate between the fast deflagration model W7 and a low-energy delayed-detonation. Good fits to the nebular spectra are obtained if the innermost ejecta are dominated by neutron-rich, stable Fe-group species, which contribute to cooling but not to heating. The correct thermal balance can thus be reached for the strongest [FeII] and [FeIII] lines to be reproduced with the observed ratio. The 56Ni mass thus obtained is 0.47 +/- 0.05 Mo. The bulk of 56Ni has an outermost velocity of ~8500 km/s. The mass of stable iron is 0.23 +/- 0.03 Mo. Stable Ni has low abundance, ~10^{-2} Mo. This is sufficient to reproduce an observed emission line near 7400 A. A sub-Chandrasekhar exp...

Mazzali, P A; Filippenko, A V; Garnavich, P M; Clubb, K I; Maguire, K; Pan, Y -C; Shappee, R; Silverman, J M; Benetti, S; Hachinger, S; Nomoto, K; Pian, E

2015-01-01T23:59:59.000Z

373

A Generalized {ital K} Correction for Type Ia Supernovae: Comparing {ital R}-band Photometry Beyond {ital z=9.2} with B,V, and {ital R}-band Nearby Photometry  

E-Print Network [OSTI]

spectroscopically peculiar supernovae, and to search for anyK Correction for Type Ia Supernovae: Comparing R-bandK Correction for Type Ia Supernovae: Comparing R-band

Goodbar, Ariel

2008-01-01T23:59:59.000Z

374

LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx  

SciTech Connect (OSTI)

PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by H{alpha} emission (with widths of full width at half-maximum intensity Almost-Equal-To 2000 km s{sup -1}), strong Ca II emission features ({approx}10,000 km s{sup -1} wide), and a blue 'quasi-continuum' due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The H{alpha} emission appears to increase in strength with time for {approx}1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.

Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States); Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100 (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Howell, D. Andrew [Las Cumbres Observatory Global Telescope Network, Goleta, CA 93117 (United States); Pan, Yen-Chen; Hook, Isobel M., E-mail: jsilverman@astro.as.utexas.edu [Department of Physics (Astrophysics), University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)

2013-08-01T23:59:59.000Z

375

Utilizing the Updated Gamma-Ray Bursts and Type Ia Supernovae to Constrain the Cardassian Expansion Model and Dark Energy  

E-Print Network [OSTI]

We update gamma-ray burst (GRB) luminosity relations among certain spectral and light-curve features with 139 GRBs. The distance modulus of 82 GRBs at $z>1.4$ can be calibrated with the sample at $z\\leq1.4$ by using the cubic spline interpolation method from the Union2.1 Type Ia supernovae (SNe Ia) set. We investigate the joint constraints on the Cardassian expansion model and dark energy with 580 Union2.1 SNe Ia sample ($z<1.4$) and 82 calibrated GRBs data ($1.4Ia significantly improves the constrain on $\\Omega_{m}-\\Omega_{\\Lambda}$ plane. In the Cardassian expansion model, the best fit is $\\Omega_{m}= 0.24_{-0.15}^{+0.15}$ and $n=0.16_{-0.52}^{+0.30}$ $(1\\sigma)$, which is consistent with the $\\Lambda$CDM cosmology $(n=0)$ in the $1\\sigma$ confidence region. We also discuss two dark energy models in which the equation of state $w(z)$ is parametrized as $w(z)=w_{0}$ and $w(z)=w_{0}+w_{1}z/(1+z)$, respectively. Based on o...

Wei, Jun-Jie; Wu, Xue-Feng

2015-01-01T23:59:59.000Z

376

Experto Universitario Java Enterprise Validacin e internacionalizacin 2012-2013 Depto. Ciencia de la Computacin e IA Spring  

E-Print Network [OSTI]

Experto Universitario Java Enterprise Validación e internacionalización © 2012-2013 Depto. Ciencia #12;Experto Universitario Java Enterprise Validación e internacionalización © 2012-2013 Depto. Ciencia Java Enterprise Validación e internacionalización © 2012-2013 Depto. Ciencia de la Computación e IA

Escolano, Francisco

377

RESULTS OF THE LICK OBSERVATORY SUPERNOVA SEARCH FOLLOW-UP PHOTOMETRY PROGRAM: BVRI LIGHT CURVES OF 165 TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

We present BVRI light curves of 165 Type Ia supernovae (SNe Ia) from the Lick Observatory Supernova Search follow-up photometry program from 1998 through 2008. Our light curves are typically well sampled (cadence of 3-4 days) with an average of 21 photometry epochs. We describe our monitoring campaign and the photometry reduction pipeline that we have developed. Comparing our data set to that of Hicken et al., with which we have 69 overlapping supernovae (SNe), we find that as an ensemble the photometry is consistent, with only small overall systematic differences, although individual SNe may differ by as much as 0.1 mag, and occasionally even more. Such disagreement in specific cases can have significant implications for combining future large data sets. We present an analysis of our light curves which includes template fits of light-curve shape parameters useful for calibrating SNe Ia as distance indicators. Assuming the B - V color of SNe Ia at 35 days past maximum light can be presented as the convolution of an intrinsic Gaussian component and a decaying exponential attributed to host-galaxy reddening, we derive an intrinsic scatter of {sigma} = 0.076 {+-} 0.019 mag, consistent with the Lira-Phillips law. This is the first of two papers, the second of which will present a cosmological analysis of the data presented herein.

Ganeshalingam, Mohan; Li Weidong; Filippenko, Alexei V.; Anderson, Carmen; Foster, Griffin; Griffith, Christopher V.; Joubert, Niels; Leja, Joel; Macomber, Brent; Pritchard, Tyler; Thrasher, Patrick; Winslow, Dustin [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Gates, Elinor L.; Grigsby, Bryant J.; Lowe, Thomas B. [Lick Observatory, P.O. Box 85, Mount Hamilton, CA 95140 (United States)

2010-10-15T23:59:59.000Z

378

CS3600 Lab Manual CyberCIEGE is an information assurance (IA) training tool that illustrates computer and  

E-Print Network [OSTI]

CS3600 Lab Manual Lab SSL CyberCIEGE is an information assurance (IA) training tool. The CyberCIEGE SSL scenario illustrates the use of SSL to authenticate the identity of web servers. This scenario explores the following concepts: ∑ SSL is a means of authenticating a server (e.g., a web server

379

ANALYSIS OF LIMIT CYCLE STABILITY IN A TAP-CHANGING TRANSFORMER V. Donde I.A. Hiskens  

E-Print Network [OSTI]

ANALYSIS OF LIMIT CYCLE STABILITY IN A TAP-CHANGING TRANSFORMER V. Donde I.A. Hiskens Department of transformer tap changing and load dynamics. Lin- earization of a Poincar¬īe map is used to prove local of the region of attraction can then be obtained. 1. INTRODUCTION Interactions between tap-changing transformers

Hiskens, Ian A.

380

Type Ia Supernova Intrinsic Magnitude Dispersion and the Fitting of Cosmological Parameters  

SciTech Connect (OSTI)

I present an analysis for fitting cosmological parameters from a Hubble Diagram of a standard candle with unknown intrinsic magnitude dispersion. The dispersion is determined from the data themselves, simultaneously with the cosmological parameters. This contrasts with the strategies used to date. The advantages of the presented analysis are that it is done in a single fit (it is not iterative), it provides a statistically founded and unbiased estimate of the intrinsic dispersion, and its cosmological-parameter uncertainties account for the intrinsic dispersion uncertainty. Applied to Type Ia supernovae, my strategy provides a statistical measure to test for sub-types and assess the significance of any magnitude corrections applied to the calibrated candle. Parameter bias and differences between likelihood distributions produced by the presented and currently-used fitters are negligibly small for existing and projected supernova data sets.

Kim, Alex G

2010-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data  

E-Print Network [OSTI]

Consistency between Carnegie Supernova Project (CSP) and SDSS-II supernova (SN) survey ugri measurements has been evaluated by comparing SDSS and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 magnitude level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 magnitudes in ugri, with rms scatter ranging from 0.043 to 0.077 magnitudes. The u band agreement is promising, with the caveat that only four of the nine supernovae are well-observed in u and these four exhibit an 0.038 magnitude supernova-to-supernova scatter in this filter.

Mosher, J; Corlies, L; Folatelli, G; Frieman, J; Holtzman, J; Jha, S W; Kessler, R; Marriner, J; Phillips, M M; Stritzinger, M; Morrell, N; Schneider, D P

2012-01-01T23:59:59.000Z

382

Small-scale Interaction of Turbulence with Thermonuclear Flames in Type Ia Supernovae  

E-Print Network [OSTI]

Microscopic turbulence-flame interactions of thermonuclear fusion flames occuring in Type Ia Supernovae were studied by means of incompressible direct numerical simulations with a highly simplified flame description. The flame is treated as a single diffusive scalar field with a nonlinear source term. It is characterized by its Prandtl number, Pr << 1, and laminar flame speed, S_L. We find that if S_L ~ u', where u' is the rms amplitude of turbulent velocity fluctuations, the local flame propagation speed does not significantly deviate from S_L even in the presence of velocity fluctuations on scales below the laminar flame thickness. This result is interpreted in the context of subgrid-scale modeling of supernova explosions and the mechanism for deflagration-detonation-transitions.

J. C. Niemeyer; W. K. Bushe; G. R. Ruetsch

1999-05-07T23:59:59.000Z

383

Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey  

SciTech Connect (OSTI)

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

Dilday, Benjamin; /Rutgers U., Piscataway /Chicago U. /KICP, Chicago; Smith, Mathew; /Cape Town U., Dept. Math. /Portsmouth U.; Bassett, Bruce; /Cape Town U., Dept. Math. /South African Astron. Observ.; Becker, Andrew; /Washington U., Seattle, Astron. Dept.; Bender, Ralf; /Munich, Tech. U. /Munich U. Observ.; Castander, Francisco; /Barcelona, IEEC; Cinabro, David; /Wayne State U.; Filippenko, Alexei V.; /UC, Berkeley; Frieman, Joshua A.; /Chicago U. /Fermilab; Galbany, Lluis; /Barcelona, IFAE; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

2010-01-01T23:59:59.000Z

384

Sensitivity study of explosive nucleosynthesis in Type Ia supernovae: I. Modification of individual thermonuclear reaction rates  

E-Print Network [OSTI]

We explore the sensitivity of the nucleosynthesis due to type Ia supernovae with respect to uncertainties in nuclear reaction rates. We have adopted a standard one-dimensional delayed detonation model of the explosion of a Chandrasekhar-mass white dwarf, and have post-processed the thermodynamic trajectories of every mass-shell with a nucleosynthetic code, with increases (decreases) by a factor of ten on the rates of 1196 nuclear reactions. We have computed as well hydrodynamic models for different rates of the fusion reactions of 12C and of 16O. For selected reactions, we have recomputed the nucleosynthesis with alternative prescriptions for their rates taken from the JINA REACLIB database, and have analyzed the temperature ranges where modifications of their rates have the strongest effect on nucleosynthesis. The nucleosynthesis resulting from the Type Ia supernova models is quite robust with respect to variations of nuclear reaction rates, with the exception of the reaction of fusion of 12C nuclei. The energy of the explosion changes by less than \\sim4%. The changes in the nucleosynthesis due to the modification of the rates of fusion reactions are as well quite modest, for instance no species with a mass fraction larger than 0.02 experiences a variation of its yield larger than a factor of two. We provide the sensitivity of the yields of the most abundant species with respect to the rates of the most intense reactions with protons, neutrons, and alphas. In general, the yields of Fe-group nuclei are more robust than the yields of intermediate-mass elements. Among the charged particle reactions, the most influential on supernova nucleosynthesis are 30Si + p \\rightleftarrows 31P + {\\gamma}, 20Ne + {\\alpha} \\rightleftarrows 24Mg + {\\gamma}, and 24Mg + {\\alpha} \\rightleftarrows 27Al + p. The temperatures at which a modification of their rate has a larger impact are in the range 2 < T < 4 GK. (abridged)

Eduardo Bravo; Gabriel MartŪnez-Pinedo

2012-04-09T23:59:59.000Z

385

Incompatibility of a comoving Ly-alpha forest with supernova-Ia luminosity distances  

E-Print Network [OSTI]

Recently Perlmutter et al. suggested a positive value of Einstein's cosmological constant Lambda on the basis of luminosity distances from type-Ia supernovae. However, Lambda world models had earlier been proposed by Hoell & Priester and Liebscher et al. on the basis of quasar absorption-line data. Employing more general repulsive fluids ("dark energy") encompassing the Lambda component we quantitatively compare both approaches with each other. Fitting the SN-data by a minimum-component model consisting of dark energy + dust yields a closed universe with a large amount of dust exceeding the baryonic content constrained by big-bang nucleosynthesis. The nature of the dark energy is hardly constrained. Only when enforcing a flat universe there is a clear tendency to a dark-energy Lambda fluid and the `canonical' value Omega_M = 0.3 for dust. Conversely, fitting the quasar-data by a minimum-component model yields a sharply defined, slightly closed model with a low dust density ruling out significant pressureless dark matter. The dark-energy component obtains an equation-of-state P = -0.96 epsilon close to that of a Lambda-fluid. Omega_M = 0.3 or a precisely flat spatial geometry are inconsistent with minimum-component models. It is found that quasar and supernova data sets cannot be reconciled with each other via (repulsive ideal fluid+dust+radiation)-world models. Compatibility could be reached by drastic expansion of the parameter space with at least two exotic fluids added to dust and radiation as world constituents. If considering such solutions as far-fetched one has to conclude that the quasar absorption line and the SN-Ia constraints are incompatible.

Jens Thomas; Hartmut Schulz

2001-03-18T23:59:59.000Z

386

DUST IN A TYPE Ia SUPERNOVA PROGENITOR: SPITZER SPECTROSCOPY OF KEPLER'S SUPERNOVA REMNANT  

SciTech Connect (OSTI)

Characterization of the relatively poorly understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's supernova remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 {mu}m infrared (IR) spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 {mu}m, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the asymptotic giant branch stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength Infrared Spectrograph and Infrared Array Camera data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally heated dust emission from fast shocks (>1000 km s{sup -1}) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are {approx}80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km s{sup -1}) into moderate density material (n{sub 0} {approx} 50-250 cm{sup -3}) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

Williams, Brian J.; Borkowski, Kazimierz J.; Reynolds, Stephen P. [Physics Department, North Carolina State University, Raleigh, NC 27695-8202 (United States); Ghavamian, Parviz [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States); Blair, William P. [Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 (United States); Long, Knox S. [STScI, 3700 San Martin Dr., Baltimore, MD 21218 (United States); Sankrit, Ravi, E-mail: brian.j.williams@nasa.gov [SOFIA/USRA, NASA Ames Research Center, M/S N211-3, Moffett Field, CA 94035 (United States)

2012-08-10T23:59:59.000Z

387

EVOLUTION OF POST-IMPACT REMNANT HELIUM STARS IN TYPE Ia SUPERNOVA REMNANTS WITHIN THE SINGLE-DEGENERATE SCENARIO  

SciTech Connect (OSTI)

The progenitor systems of Type Ia supernovae (SNe Ia) are still under debate. Based on recent hydrodynamics simulations, non-degenerate companions in the single-degenerate scenario (SDS) should survive the supernova (SN) impact. One way to distinguish between the SDS and the double-degenerate scenario is to search for the post-impact remnant stars (PIRSs) in SN Ia remnants. Using a technique that combines multi-dimensional hydrodynamics simulations with one-dimensional stellar evolution simulations, we have examined the post-impact evolution of helium-rich binary companions in the SDS. It is found that these helium-rich PIRSs (He PIRSs) dramatically expand and evolve to a luminous phase (L {approx} 10{sup 4} L{sub Sun }) about 10 yr after an SN explosion. Subsequently, they contract and evolve to become hot blue-subdwarf-like (sdO-like) stars by releasing gravitational energy, persisting as sdO-like stars for several million years before evolving to the helium red-giant phase. We therefore predict that a luminous OB-like star should be detectable within {approx}30 yr after the SN explosion. Thereafter, it will shrink and become an sdO-like star in the central regions of SN Ia remnants within star-forming regions for SN Ia progenitors evolved via the helium-star channel in the SDS. These He PIRSs are predicted to be rapidly rotating (v{sub rot} {approx}> 50 km s{sup -1}) and to have high spatial velocities (v{sub linear} {approx}> 500 km s{sup -1}). Furthermore, if SN remnants have diffused away and are not recognizable at a later stage, He PIRSs could be an additional source of single sdO stars and/or hypervelocity stars.

Pan, Kuo-Chuan; Ricker, Paul M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Taam, Ronald E., E-mail: kpan2@illinois.edu, E-mail: pmricker@illinois.edu, E-mail: r-taam@northwestern.edu [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)

2013-08-10T23:59:59.000Z

388

HELIUM-IGNITED VIOLENT MERGERS AS A UNIFIED MODEL FOR NORMAL AND RAPIDLY DECLINING TYPE Ia SUPERNOVAE  

SciTech Connect (OSTI)

The progenitors of Type Ia supernovae (SNe Ia) are still unknown, despite significant progress during the past several years in theory and observations. Violent mergers of two carbon-oxygen (CO) white dwarfs (WDs) are a candidate scenario suggested to be responsible for at least a significant fraction of normal SNe Ia. Here, we simulate the merger of two CO WDs using a moving-mesh code that allows for the inclusion of thin helium (He) shells (0.01 M{sub Sun }) on top of the WDs at an unprecedented numerical resolution. The accretion of He onto the primary WD leads to the formation of a detonation in its He shell. This detonation propagates around the CO WD and sends a converging shock wave into its core, known to robustly trigger a second detonation, as in the well-known double-detonation scenario for He-accreting CO WDs. However, in contrast to that scenario where a massive He shell is required to form a detonation through thermal instability, here the He detonation is ignited dynamically. Accordingly the required He-shell mass is significantly smaller, and hence its burning products are unlikely to affect the optical display of the explosion. We show that this scenario, which works for CO primary WDs with CO- as well as He-WD companions, has the potential to explain the different brightness distributions, delay times, and relative rates of normal and fast declining SNe Ia. Finally, we discuss extensions to our unified merger model needed to obtain a comprehensive picture of the full observed diversity of SNe Ia.

Pakmor, R.; Springel, V. [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Kromer, M. [Kavli Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8583 (Japan); Taubenberger, S. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

2013-06-10T23:59:59.000Z

389

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sunday, February 1, 2015 Prev Next Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28...

390

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sunday, March 1, 2015 Prev Next Sun Mon Tue Wed Thu Fri Sat 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4...

391

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thursday, January 1, 2015 Prev Next Sun Mon Tue Wed Thu Fri Sat 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31...

392

Publications | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"Approaching quantum criticality in a partially geometrically frustrated heavy-fermion metal," Physical Review B89 (5), 054416 (2014). 6 C. L. Wang, J. D. Zou, J. Liu, Y. Mudryk,...

393

Highlights | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate,Highlights Highlights Below is a

394

Highlights | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate,Highlights Highlights Below is a

395

Contract | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User GroupInformationE-Gov ContactsContract Management SLACContract

396

Tours | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"Topo II: AnLAr STours Visitor

397

Training | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler Tina ButlerToday inm"TopoTrackingEmergency

398

Travel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButlerTransportation From modeling andTransuranicTravel

399

pmberge | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions ProgramA R etrospec+ve

400

ppezzini | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions ProgramAEarlyppezzini

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

rberrett | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3Images. . .3 A5rberrett

402

rdanders | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3Images. . .3

403

rluyendi | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfryRIG SPECIFICATIONS

404

rmalmq | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfryRIG

405

rofox | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrectiveResearchrfryRIGNavalrodgersrofox

406

rshouk | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram Consortium - RPSEA Publicationsrshouk

407

sadow | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram Consortium - RPSEAo/2AL\AJ[-&2sadow

408

samalv | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram Consortium -| National Nuclear

409

schon | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram Consortium -| NationalGhost

410

shrotriy | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram ConsortiumTHIS CONTRACT7 The3

411

smhipple | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgram ConsortiumTHIS CONTRACT7toTesting

412

sumitc | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU C L E AA

413

szhou | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU C LSystems and

414

tchou | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofU C

415

tlemons | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofUUse of the

416

trvsst | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofUUse of 4 . .-:fromT1trvsst

417

umesse | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 JointProgramApplication ofUUse of 43Rate1ujjalb

418

vanmarel | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent Magnetic FieldrSeptembervaclavvalery

419

vdahl | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent Magnetic

420

weverett | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,1996 http://www.eia.doe.gov Nweverett

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

whuang | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,1996

422

witt | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963 Radiometer Calibrations0

423

Projects | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home DesignPresentationsSRSStewardshipUniversity

424

Purchasing | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for1 2011 Publications Wood, V., Panzer,

425

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In LaunchWhen the

426

Operations | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat CornellInternships,(SC) Laboratories ¬Ľ OPM Home

427

Partnerships | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to the Pacific NorthwestPartnerships

428

Research | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch AreasResearch Gene Odum forest

429

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluoriteSediments andThe

430

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluoriteSediments andThe The

431

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluoriteSediments andThe The News

432

Haugen | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960 TheHas Driving Come

433

SDS | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards ,# , on behalf ofSCPD BudgetSC12SDS

434

Accounting | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTestAccounting - What happened with

435

Impacts | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLCBasicsScienceRadiationproperties

436

Muncrief | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment SurfacesResource ProgramModificationEnzyme-Functionalized Gold

437

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlpha Project:

438

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlpha Project:Monday, June

439

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlpha Project:Monday,

440

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlpha

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeek Day Year(active

442

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeek Day

443

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeek DayWednesday,

444

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeek

445

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeek Day(active

446

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeek

447

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeekWeek Day

448

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeekWeek Day The

449

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeekWeek Day

450

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeekWeek

451

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North SlopeAlphaWeekWeekWeekMonday,

452

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North

453

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab) Day Year Week of

454

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab) Day Year Week

455

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab) Day Year

456

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab) Day YearInternal

457

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab) Day

458

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab)

459

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active tab)Directory:

460

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(active

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 NorthWeek(activeDirectory: Office of

462

Highlights | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlastics -‚ź§,of Energy 4

463

Highlights | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlastics -‚ź§,of Energy 4 Highlights

464

Environmental | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance Environmental PolicyEnvironmental The

465

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipmentPool

466

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance EnvironmentalEnzymeEnzymeCr1stEquipmentPoolPhilips

467

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance

468

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton Stanat rolling mill 75 Ton Wabash Platten

469

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton Stanat rolling mill 75 Ton Wabash

470

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton Stanat rolling mill 75 Ton WabashZeiss

471

Equipment | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100 ton Stanat rolling mill 75 Ton

472

Education | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for the Future ofTroubleStrategic

473

Initiatives | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in the VicinitySrTiO3(100).Initiatives GRACE

474

Instructions | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface EmissivityInstrillment Development‚ėÖto Print

475

Home | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portal SolarAbout Energy.gov ScienceCinema

476

Inquiry | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutInINNOVATION OurInquiry

477

Biofuels | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I.ProgramBig SolBiofilm assembly BiofilmBiofuels

478

Factsheets | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5FacilitiesFacilityAbout ¬Ľ

479

Directory | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirections TheMadison Physics

480

Disclaimers | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. The DesertDirections TheMadison

Note: This page contains sample records for the topic "ames ia 630-252-3721" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Metamaterials | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping theEnergy StorageAdvancedMetamaterials Research Personnel Updates

482

Services | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlightsSeminars Seminars at

483

abhranil | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionTheto Five Six to Ten

484

aboesenb | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss, VersionTheto Five Six to

485

adf | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,

486

admin | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,

487

ajotehan | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,Amine Solventafeajcastle

488

aklekner | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,Amine Solventafeajcastleaklekner

489

ambrose | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,AmineBroadbandLight-Duty Vehicles

490

amdavis | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,AmineBroadbandLight-Duty

491

amt | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, part 2Zenoss,AmineBroadbandLight-DutyCarbonams

492

anderegg | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview of SIRS Data Quality at the

493

andersoi | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview of SIRS Data Quality at theandersoi

494

andresg | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview of SIRS Data Quality at

495

antropov | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview of SIRS Data Quality atangiemcg

496

baik | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tidd

497

bartine | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tidd Optical

498

bastaw | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tidd OpticalFermilabbastaw

499

bbergman | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tiddbaugie Amesbbergman

500

bboote | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste andAnniversary, partReview64,783 56,478Tiddbaugie