Powered by Deep Web Technologies
Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

American Solar Technology | Open Energy Information  

Open Energy Info (EERE)

American Solar Technology American Solar Technology Address 5265 Turquoise Drive Place Colorado Springs, Colorado Zip 80918 Sector Solar Product Solar installer Coordinates 38.908071°, -104.742645° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.908071,"lon":-104.742645,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Energizing American Competitiveness in Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This PowerPoint slide deck was originally presented at the 2012 SunShot Grand Challenge Summit and Technology Forum during a plenary session. Entitled "Energizing American Competitiveness in Solar Technologies," this presentation explains why grand challenges are needed and summarizes the goals of the SunShot program. It also identifies manufacturing as playing a key role in the attainment of a clean energy vision.

3

Revitalizing American Competitiveness in Solar Technologies ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the SunShot program, including goals, management structure, funding and various solar energy initiatives, including GEARED, SUNPATH II and the creation of a new solar energy...

4

Revitalizing American Competitiveness in Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

These slides correspond to a presentation given by Oak Ridge National Laboratory Deputy Director for Science and Technology and former SunShot Initiative Director, Dr. Ramamoorthy Ramesh at the...

5

American Way Solar AWS | Open Energy Information  

Open Energy Info (EERE)

navigation, search Name: American Way Solar (AWS) Place: Plzen, Czech Republic Sector: Solar Product: Czech subsidiary of US PV panel manufacturer, American Way Solar (AWS)....

6

Solar Energy Technologies Office  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, the Energy Department's Solar Energy Technologies Office (SETO) became the SunShot Initiative, a collaborative national effort that aggressively drives innovation to make solar energy...

7

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Department of Energy. Solar Technologies Program and LoanRenewable Energy 2008 SOLAR TECHNOLOGIES MARKET REPORTinvestments by solar technology 108 Figure 5.4.

Price, S.

2010-01-01T23:59:59.000Z

8

Solar pond technology  

Science Journals Connector (OSTI)

Solar pond technology has made substantial progress in the last ... . This paper reviews the basic principles of solar ponds and the problems encountered in their ... which influence the technical and economic vi...

J Srinivasan

1993-03-01T23:59:59.000Z

9

Flexible Assembly Solar Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

field and secured on steel pylons. PROJECT DESCRIPTION The research team is applying automation processes to the design of a Flexible Assembly Solar Technology (FAST). FAST is an...

10

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

levelized cost of energy, solar resource, and capacitySolar Energy Technologies Program. www.solaramericacities.energy.gov/resources.Renewable Energy System Analysis, Solar Resource Assessment,

Price, S.

2010-01-01T23:59:59.000Z

11

American Solar Energy Society | Open Energy Information  

Open Energy Info (EERE)

Logo: American Solar Energy Society Name American Solar Energy Society Address 2400 Central Ave Place Boulder, Colorado Zip 80301 Region Rockies Area Website http://www.ases.org/ Notes Nonprofit organization dedicated to increasing the use of solar energy, energy efficiency, and other sustainable technologies in the U.S Coordinates 40.023354°, -105.217421° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.023354,"lon":-105.217421,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

12

Practical solar energy technology  

SciTech Connect

Focusing on the design, installation, and maintenance of solar energy systems, this text covers solar domestic hot water, space heating, and swimming pool heating systems, with information on state-of-the-art flatplate collector technology and the latest solid-state electronic control devices.

Greenwald, M.L.; McHugh, T.K.

1985-01-01T23:59:59.000Z

13

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home to someone by E-mail for the American Home to someone by E-mail Share Building Technologies Office: Building America Research for the American Home on Facebook Tweet about Building Technologies Office: Building America Research for the American Home on Twitter Bookmark Building Technologies Office: Building America Research for the American Home on Google Bookmark Building Technologies Office: Building America Research for the American Home on Delicious Rank Building Technologies Office: Building America Research for the American Home on Digg Find More places to share Building Technologies Office: Building America Research for the American Home on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools

14

Solar Energy Technologies Program: Solar Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy Energy Efficiency and Renewable Energy EERE Home Programs & Offices Consumer Information Solar Multimedia search Home EERE » SunShot Initiative » Solar Multimedia Printable Version Bookmark and Share Feature Photo of 3 solar dishes, which have reflective, square-shaped material that creates a mirror image of the sky and clouds. Each dish is anchored to the ground by a vertical pole. Solar Dish - Albuquerque, New Mexico Credit: Sandia National Laboratories/Randy Montoya Solar Technologies Photovoltaics Photovoltaics Concentrating Solar Power Concentrating Solar Power Solar Applications Residential Residential Commercial Commercial Large Installations Large Installations City and County City and County Federal Federal Manufacturing Manufacturing Development and Testing

15

Alternative Energy Technologies Solar Power  

E-Print Network (OSTI)

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible, Philippines Vanadium ........ Swaziland, Central Africa Zinc ................ Peru, Canada, Mexico Silver

Scott, Christopher

16

Solar probe technology challenges  

Science Journals Connector (OSTI)

A mission close to the sun is only possible if new spacecraft technologies can be developed and incorporated into a state?of?the?art spacecraft concept. The perihelion goal of 4 solar radii requires a shielded spacecraft that can tolerate the almost 3000 suns solar flux while maintaining the electronics components at room temperature. In addition the shield surface should sublimate at a rate of less than 3mg/s at perihelion. Many shield configuration designs have been studied and the most promising is a parabolic shape that functions as both a shield and a large high gain antenna. The shield material chosen for this design is a carbon?carbon material with highly emissive surface properties. A mission requirement for a high telecommunications power stems from the expected interference when attempting to transmit data through the solar corona. It is expected that the large carbon?carbon shield/antenna will have a high power gain even at high temperatures and will return adequate telemetry at the X?band radio frequency chosen for the Solar Probe mission. Other key technology needs include a non?nuclear power subsystem that can function in the extreme environments of the mission from Earth to Jupiter and onward to a 4 solar radii perihelion.

James E. Randolph; Robert N. Miyake; Bill J. Nesmith; Ray B. Dirling Jr.; Richard J. Howard

1996-01-01T23:59:59.000Z

17

2005 the North American Solar Challenge  

SciTech Connect

In July 2005 the North American Solar Challenge (NASC) featured university built solar powered cars ran across the United States into Canada. The competition began in Austin, Texas with stops in Weatherford, Texas; Broken Arrow, Oklahoma; Topeka, Kansas; Omaha, Nebraska; Sioux Falls, South Dakota, Fargo, North Dakota; Winnipeg, Manitoba; Brandon, Manitoba; Regina, Saskatchewan; Medicine Hat, Alberta; mainly following U.S. Highway 75 and Canadian Highway 1 to the finish line in Calgary, Alberta, Canada, for a total distance of 2,500 miles. NASC major sponsors include the U.S. Department of Energy (DOE), Natural Resources Canada and DOEs National Renewable Energy Laboratory. The event is designed to inspire young people to pursue careers in science and engineering. NASCs predecessors, the American Solar Challenge and Sunrayce, generally have been held every two years since 1990. With each race, the solar cars travel faster and further with greater reliability. The NASC promotes: -Renewable energy technologies (specifically photovoltaic or solar cells) -Educational excellence in science, engineering and mathematics -Creative integration of technical and scientific expertise across a wide-range of disciplines -Hands-on experience for students and engineers to develop and demonstrate their technical and creative abilities. Safety is the first priority for the NASC. Each team put its car through grueling qualifying and technical inspections. Teams that failed to meet the requirements were not allowed participate. During the race, each team was escorted by lead and chase vehicles sporting rooftop hazard flashers. An official observer accompanied each solar car team to keep it alert to any safety issues.

Dan Eberle

2008-12-22T23:59:59.000Z

18

Solar Energy Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies.

19

Solar Manufacturing Technology 2  

Energy.gov (U.S. Department of Energy (DOE))

The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization processes, to innovative module packaging and processing. The CSP award demonstrates manufacturability of an innovative CSP reflective-trough receiver. The first round of the SolarMat program was launched in September 2013 supporting five projects. The second round, announced on October 22, 2014, funds ten photovoltaics (PV) and concentrating solar power (CSP) projects that focus on driving down the cost of manufacturing and implementing efficiency-increasing technology in manufacturing processes.

20

Shunda SolarE Technologies | Open Energy Information  

Open Energy Info (EERE)

Shunda SolarE Technologies Jump to: navigation, search Name: Shunda-SolarE Technologies Sector: Solar Product: US-based JV with vertically integrated operations in the solar...

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Implementing Solar Technologies at Airports  

SciTech Connect

Federal agencies, such as the Department of Defense and Department of Homeland Security, as well as numerous private entities are actively pursuing the installation of solar technologies to help reduce fossil fuel energy use and associated emissions, meet sustainability goals, and create more robust or reliable operations. One potential approach identified for siting solar technologies is the installation of solar energy technologies at airports and airfields, which present a significant opportunity for hosting solar technologies due to large amounts of open land. This report focuses largely on the Federal Aviation Administration's (FAA's) policies toward siting solar technologies at airports.

Kandt, A.; Romero, R.

2014-07-01T23:59:59.000Z

22

1366 Technologies Shines a Light on American Innovation | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

366 Technologies Shines a Light on American Innovation 366 Technologies Shines a Light on American Innovation 1366 Technologies Shines a Light on American Innovation December 3, 2010 - 7:09pm Addthis 1366 Technologies Shines a Light on American Innovation John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Earlier this year, we visited 1366 Technologies in North Lexington, Massachusetts to get an inside look at their innovative approach to solar manufacturing and document how a $4 million grant from the Advanced Research Projects Agency-Energy (ARPA-E), through the Recovery Act, was helping to make their ambitious goal of producing "solar at the cost of coal" a reality. A lot has happened since that time, with the company announcing plans to bring its novel wafer manufacturing process into production by 2012, thanks

23

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Solar One PS10 Puertollano Plant Andasol I PS20 Location Technology Type Year Installed Capacity (MW) California,capacity of solar installed in each utility service area. The CaliforniaCalifornia, Hawaii, Indiana, New Hampshire, North Carolina, Michigan, and Vermont do not have limits on the capacity of interconnected solar

Price, S.

2010-01-01T23:59:59.000Z

24

NREL North American Solar Radiation Atlas (Presentation)  

SciTech Connect

This presentation is about NREL's North American Solar Radiation Atlas, which currently includes 48 states (Alaska and Hawaii to be added in the future). It discusses the goals of the Atlas which are to: deliver basic solar performance estimates to general users, deliver a wide variety of additional information to more advanced users, be easy to use, full featured, and extensible.

George, R; Gray-Hann, P.

2001-04-01T23:59:59.000Z

25

Deploying American-Made Clean Energy Technologies in South Africa  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department works with American and international organizations to break down barriers to widely deploying U.S.-made clean energy technologies in countries throughout the world. Learn more about an Energy Department-supported project involving reflective cool roof surfaces, solar water heaters, and other technologies that are helping South Africa reduce energy use and carbon emissions.

26

Advanced Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Advanced Solar Technologies Inc Place: San Diego, California Sector: Solar Product: California-based domestic and commercial designer and installer of solar energy equipment....

27

Parabolic Trough Solar Technology  

Science Journals Connector (OSTI)

Parabolic trough (solar) collectors (PTCs) are technical devices to collect the energy in form of solar radiation and convert it typically into thermal energy at temperature ranges of 150500C at industrial s...

Dr.-Ing. Eckhard Lpfert

2013-01-01T23:59:59.000Z

28

Parabolic Trough Solar Technology  

Science Journals Connector (OSTI)

Parabolic trough (solar) collectors (PTCs) are technical devices to collect the energy in form of solar radiation and convert it typically into thermal energy at temperature ranges of 150500C at industrial s...

Dr.-Ing. Eckhard Lpfert

2012-01-01T23:59:59.000Z

29

Energy Department Announces New Concentrating Solar Power Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Concentrating Solar Power New Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New Concentrating Solar Power Technology Investments to American Industry, Universities June 13, 2012 - 2:28pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Building off investments in innovative solar photovoltaic technologies announced at the SunShot Grand Challenge Summit in Denver, Colorado earlier today, the Energy Department announced new investments for 21 total projects to further advance cutting-edge concentrating solar power technologies (CSP). The awards span 13 states for a total of $56 million over three years, subject to congressional appropriations. The research projects, conducted in partnership with private industry, national

30

Modeling Solar Energy Technology Evolution breakout session ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling Solar Energy Technology Evolution breakout session Modeling Solar Energy Technology Evolution breakout session This presentation summarizes the information given on the...

31

Solar Manufacturing Technology 2 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Manufacturing Technology 2 Solar Manufacturing Technology 2 The PV awards span the supply chain from novel methods to make silicon wafers, to advanced cell and metallization...

32

Solar Decathlon Technology Spotlight: Structural Insulated Panels...  

Energy Savers (EERE)

Solar Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These...

33

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

of Energy. Solar Technologies Program and Loan GuaranteeLoan Guarantee Program 80 4.1.6 Clean Renewable Energy Bonds .. 82 4.1.7 Solarloans. Also, the ARRA removed the $2,000 cap on the ITC for residential solar

Price, S.

2010-01-01T23:59:59.000Z

34

2008 Solar Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

JANUARY 2010 JANUARY 2010 Energy Efficiency & Renewable Energy 2008 SOLAR TECHNOLOGIES MARKET REPORT i Table of Contents Table of Contents ........................................................................................................................... i Figures ........................................................................................................................................... iii Tables ............................................................................................................................................. v Acknowledgments ........................................................................................................................ vi List of Acronyms ......................................................................................................................... vii

35

American Electric Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Electric Technologies Inc Electric Technologies Inc Jump to: navigation, search Name American Electric Technologies Inc Place Houston, Texas Zip TX 77087 Sector Services Product American Electric Technologies (formerly M&I Electric Industries) is a global supplier of power delivery products and services to the traditional and alternative energy industries. References American Electric Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. American Electric Technologies Inc is a company located in Houston, Texas . References ↑ "American Electric Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=American_Electric_Technologies_Inc&oldid=342113"

36

NREL: Technology Deployment - Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

Decathlon Decathlon Photo of a woman assembling the Team Alberta solar-powered house at the Solar Decathlon, with the U.S. Capitol Building in the background. Solar Decathlon is an international competition that challenges collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. NREL has provided technical expertise for this U.S. Department of Energy (DOE) event since its conception in 1999. Considered one of DOE's most successful efforts, the Solar Decathlon helps remove multiple barriers to the adoption of solar energy technologies by: Educating students and the public about the money-saving opportunities and environmental benefits presented by clean-energy products and design solutions Demonstrating to the public the comfort and affordability of homes

37

Floating Solar Chimney Technology: A Solar Proposal for China  

Science Journals Connector (OSTI)

The Floating Solar Chimney (FSC) Technology Power Plants, are made... A large solar collector with a transparent roof that warms the air...

Christos Papageorgiou

2009-01-01T23:59:59.000Z

38

American Solar Energy | Open Energy Information  

Open Energy Info (EERE)

Solar Energy Solar Energy Name American Solar Energy Address 11497 Columbia Drive West, Suite 10 Place Jacksonville, Florida Zip 32258 Sector Solar Product solar energy systems Year founded 1984 Phone number 904-268-8046 Website http://americansolarenergy.com Coordinates 30.159342°, -81.538616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.159342,"lon":-81.538616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

39

SunShot Initiative: Solar Manufacturing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Manufacturing Technology to Solar Manufacturing Technology to someone by E-mail Share SunShot Initiative: Solar Manufacturing Technology on Facebook Tweet about SunShot Initiative: Solar Manufacturing Technology on Twitter Bookmark SunShot Initiative: Solar Manufacturing Technology on Google Bookmark SunShot Initiative: Solar Manufacturing Technology on Delicious Rank SunShot Initiative: Solar Manufacturing Technology on Digg Find More places to share SunShot Initiative: Solar Manufacturing Technology on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment Physics of Reliability: Evaluating Design Insights for Component

40

TOPCAT Solar Cell Alignment & Energy Concentration Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This...

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solar Photovoltaic Technologies Available for Licensing - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Marketing Summaries (126) Solar Thermal Startup America Vehicles and...

42

2003 American Solar Challenge Official Starting Lineup  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Solar Challenge Official Starting Lineup American Solar Challenge Official Starting Lineup Starting Team Car # Time 9:00 Kansas State University 28 9:01 University of Minnesota 35 9:02 University of Missouri - Rolla 42 9:03 University of Missouri - Columbia 43 9:04 University of Toronto 11 9:05 University of Waterloo 24 9:06 North Dakota State University 22 9:07 Auburn University 7 9:08 CalSol 254 9:09 Principia College 32 9:10 Queen's University 100 9:11 Western Michigan University 786 9:12 Purdue University 314 9:13 University of Pennsylvania 76 9:14 Iowa State University 9 9:15 Texas A&M University 12 9:16 McGill University 66 9:17 University of Arizona 8 9:18 Stanford University 16 9:19 California Polytechnic State University - SLO 5

43

American Solar Electric Inc | Open Energy Information  

Open Energy Info (EERE)

American Solar Electric Inc American Solar Electric Inc Place Scottsdale, Arizona Zip 85251 Product US installer of residential, commercial and industrial PV systems. Coordinates 33.494°, -111.920694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.494,"lon":-111.920694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

American Cooler Technologies: Order (2013-CE-5305)  

Energy.gov (U.S. Department of Energy (DOE))

DOE ordered American Cooler Technologies to pay a $8,000 civil penalty after finding American Cooler Technologies had failed to certify that certain models of walk-in coolers or freezers (WICF) components comply with the applicable energy conservation standards.

45

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

46

Solar Energy Technology Basics | Department of Energy  

Energy Savers (EERE)

Technology Basics August 16, 2013 - 4:37pm Addthis Solar energy technologies produce electricity from the energy of the sun. Small solar energy systems can provide electricity for...

47

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Extending Federal Solar Tax Credits. Prepared for the Solar2008). The Solar Investment Tax Credit Frequently Askedtax credit .

Price, S.

2010-01-01T23:59:59.000Z

48

Telio Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Telio Solar Technologies Inc Telio Solar Technologies Inc Jump to: navigation, search Name Telio Solar Technologies Inc Place Los Altos Hills, California Zip 94022 Product A CIGS start-up recently completed the construction of pilot line for manufacturing CIGS cell measuring 300 millimeters by 300. References Telio Solar Technologies Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Telio Solar Technologies Inc is a company located in Los Altos Hills, California . References ↑ "Telio Solar Technologies Inc" Retrieved from "http://en.openei.org/w/index.php?title=Telio_Solar_Technologies_Inc&oldid=352104" Categories: Clean Energy Organizations Companies Organizations

49

NREL: Energy Analysis - Solar Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Technology Analysis Solar Technology Analysis NREL conducts analysis to support research and development done by the Solar Energy Technologies Program in three major technology areas: concentrating solar power; solar electricity, also known as photovoltaics or PV; and solar heating and lighting. For example, in the area of photovoltaics, EERE's systems modeling and analysis activity rigorously assesses the performance, reliability, installed costs, and levelized energy costs (LECs) of a wide variety of flat-plate PV system configurations and applications. R&D goals, which are supported by solar technology analysis, include: Investigating the steps needed to improve the impact of PV technologies in the marketplace through technical R&D, market analyses, and value and policy analyses

50

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

96 4.3.2 Customer Solar Leasefinancing, customer solar lease financing, property-assessedagreement (PPA), the solar lease, and property-assessed

Price, S.

2010-01-01T23:59:59.000Z

51

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

projects, including solar energy projects. The Emergencyinvestment in solar energy projects. The ARRA enhanced thethan $3 billion for solar energy projects with the objective

Price, S.

2010-01-01T23:59:59.000Z

52

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

Commission launched the California Solar Initiative (CSI), aenergy bond California Solar Initiative concentrating solarprograms, such as the California Solar Initiative (CSI) and

Price, S.

2010-01-01T23:59:59.000Z

53

Aspects of solar technology (for teachers)  

Science Journals Connector (OSTI)

An account is given in general terms of the various types of solar powered devices that are now available with present technology. Electrical and non-electrical energy convertors are described as is the possibility of solar power stations.

B E Smith

1978-01-01T23:59:59.000Z

54

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS A thesisADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS Insilicon layers. The technology to add the intrinsic layer

Han, Tao

2014-01-01T23:59:59.000Z

55

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

AND NANO TECHNOLOGY FOR SOLAR CELLS A thesis submitted inMATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS In order tosolar cells have been introduced with this technology.

Han, Tao

2014-01-01T23:59:59.000Z

56

Solar Photovoltaics Technology: The Revolution Begins  

Science Journals Connector (OSTI)

The prospects of solar-photovoltaic (PV) technologies are envisioned, arguing this electricity source is at a tipping point in the complex, worldwide energy outlook. The emphasis of...

Kazmerski, Lawrence L

57

Recording of SERC Monitoring Technologies- Solar Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

This document provides a transcript of the of SERC Monitoring Technologies - Solar Photovoltaics webinar, presented on 10/20/2011 by Peter McNutt.

58

Concentrating Solar Power Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector.

59

Solar Ventilation Preheating Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar ventilation preheating (SVP) technologies supplemented by specific information to apply SVP within the Federal sector.

60

Solar Hot Water Resources and Technologies  

Energy.gov (U.S. Department of Energy (DOE))

This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector.

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thin Film Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Thin Film Solar Technologies Place: South Africa Product: Producers of thin-film copper, indium, gallium, sulphur, selenium modules....

62

Solar Energy Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Solar Energy Technologies Office supports the SunShot Initiative goal to make solar energy technologies cost competitive with conventional energy sources by 2020. Reducing the total installed cost for utility?scale solar electricity by approximately 75% (2010 baseline) to roughly $0.06 per kWh without subsidies will enable rapid, large?scale adoption of solar electricity across the United States. This investment will help re?establish American technological and market leadership in solar energy, reduce environmental impacts of electricity generation, and strengthen U.S. economic competitiveness.

63

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

use of renewable energy sources such as solar. Of the totalin solar energy (New Energy Finance 2009) Source: New Energyin solar energy (New Energy Finance 2009) Source: New Energy

Price, S.

2010-01-01T23:59:59.000Z

64

Solar Decathlon Technology Spotlight: Structural Insulated Panels |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decathlon Technology Spotlight: Structural Insulated Panels Decathlon Technology Spotlight: Structural Insulated Panels Solar Decathlon Technology Spotlight: Structural Insulated Panels September 20, 2011 - 7:13am Addthis These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) These structural insulated panels consist of foam insulation sandwiched between oriented strand boards. (Courtesy of Michael Bacchler) Alexis Powers EDITOR'S NOTE: Originally posted on the Solar Decathlon News Blog on September 19, 2011. Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements

65

The Emerging Technology of Solar Fuels  

Science Journals Connector (OSTI)

The Emerging Technology of Solar Fuels ... (2) The usable capacity of solar power is estimated to be 600 TW,(3) an order of magnitude larger than the projected energy needs of the entire world in 2050, and most of the solar spectrum is delivered at energies that (thermodynamically) can drive water splitting or CO2 reduction. ...

Thomas E. Mallouk

2010-09-16T23:59:59.000Z

66

2008 Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » 2008 Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: 2008 Solar Technologies Market Report Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar PV Topics: Market analysis, Resource assessment Resource Type: Publications Website: www1.eere.energy.gov/solar/pdfs/46025.pdf Cost: Free 2008 Solar Technologies Market Report Screenshot References: 2008 Solar Technologies Market Report[1] Logo: 2008 Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The

67

Applications of solar reforming technology  

SciTech Connect

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

68

Solar Integrated Technologies SIT | Open Energy Information  

Open Energy Info (EERE)

SIT SIT Jump to: navigation, search Name Solar Integrated Technologies (SIT) Place Los Angeles, California Zip 90058 Product California-based manufacturer and installer of PV power systems on flat roofs for relatively large-scale commercial and industrial applications and subsidiary of Energy Conversion Devices (ECD). References Solar Integrated Technologies (SIT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Integrated Technologies (SIT) is a company located in Los Angeles, California . References ↑ "[pointer=1&cHash=a585cf0cd0 Solar Integrated Technologies (SIT)]" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Integrated_Technologies_SIT&oldid=351294

69

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Solar Energy Resources and Technologies to someone by E-mail Share Federal Energy Management Program: Solar Energy Resources and Technologies on Facebook Tweet about Federal Energy Management Program: Solar Energy Resources and Technologies on Twitter Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Google Bookmark Federal Energy Management Program: Solar Energy Resources and Technologies on Delicious Rank Federal Energy Management Program: Solar Energy Resources and Technologies on Digg Find More places to share Federal Energy Management Program: Solar Energy Resources and Technologies on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

70

China Energy Conservation Solar Energy Technologies CECS | Open...  

Open Energy Info (EERE)

CECS Jump to: navigation, search Name: China Energy Conservation Solar Energy Technologies (CECS) Place: China Sector: Solar Product: China-based solar project developer and...

71

Sandia National Laboratories: Planting the "SEEDS" of Solar Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Systems Planting the "SEEDS" of Solar Technology in the Home On June 12, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

72

Solar Environmental Technologies Tianjin Corp aka SETC Cenicom...  

Open Energy Info (EERE)

Tianjin Corp aka SETC Cenicom Solar Etc Jump to: navigation, search Name: Solar & Environmental Technologies (Tianjin) Corp (aka SETC, Cenicom, Solar Etc) Place: Tianjin, Tianjin...

73

SolarMission Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Montana Zip: 59801 Sector: Solar Product: US-based company that owns a licence to solar chimney technology; also manufactures and installs. References: SolarMission...

74

SolarEdge Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

search Name: SolarEdge Technologies Inc Place: Hod Hasharon, Israel Zip: 45240 Sector: Solar Product: Israel-based startup developing a power control system for solar systems,...

75

Americans for Solar Power ASPv | Open Energy Information  

Open Energy Info (EERE)

ASPv ASPv Jump to: navigation, search Name Americans for Solar Power (ASPv) Place Tempe, Arizona Zip 85282 Sector Solar Product Americans for Solar Power (ASPv) strives to make solar power economic and convenient for American electricity consumers to generate and consume their own solar electricity. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45°, -45°, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

77

Advances in solar cell technology  

Science Journals Connector (OSTI)

The advances in solar cell efficiency radiation tolerance and cost over the last decade are reviewed. Potential performance of thin?film solar cells in space are discussed and the cost and the historical trends in production capability of the photovoltaics industry considered with respect to the requirements of satellite solar power systems.

Geoffrey A. Landis; Sheila G. Bailey

1995-01-01T23:59:59.000Z

78

GCL Solar Energy Technology Holdings formerly GCL Silicon aka...  

Open Energy Info (EERE)

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name: GCL Solar Energy Technology Holdings (formerly GCL...

79

Sunworld Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunworld Solar Energy Technology Co Ltd Jump to: navigation, search Name: Sunworld Solar Energy Technology Co Ltd Place: Shanghai, Shanghai Municipality, China Zip: RM1501 Sector:...

80

Ningxia Ninghu Solar Energy Technology Co Ltd | Open Energy Informatio...  

Open Energy Info (EERE)

Ninghu Solar Energy Technology Co Ltd Jump to: navigation, search Name: Ningxia Ninghu Solar Energy Technology Co Ltd Place: Shi Zui Shan, Ningxia Autonomous Region, China Zip:...

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Regional Test Centers for Solar Technologies | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Systems Integration Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Text Alternative At the Regional Test Centers (RTCs) throughout the...

82

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

CRUZ ADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS12 3.2 SILVER NANOHAN ADVANCED MATERIALS AND NANO TECHNOLOGY FOR SOLAR CELLS

Han, Tao

2014-01-01T23:59:59.000Z

83

DOE Announces $87 Million in Funding to Support Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

$87 Million in Funding to Support Solar Energy $87 Million in Funding to Support Solar Energy Technologies DOE Announces $87 Million in Funding to Support Solar Energy Technologies October 8, 2009 - 12:00am Addthis WASHINGTON, DC - At the opening of the U.S. Department of Energy's Solar Decathlon on the National Mall, Energy Secretary Steven Chu announced up to $87 million will be made available to support the development of new solar energy technologies and the rapid deployment of available carbon-free solar energy systems. Of this funding, $50 million comes from the American Recovery and Reinvestment Act. The 47 projects with universities, electric power utilities, DOE's National Laboratories, and local governments have been selected to support use of solar technologies in U.S. cities, help address technical challenges, ensure reliable connectivity

84

Federal Energy Management Program: Solar Energy Resources and Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include: Photovoltaics Concentrating Solar Power Thermal energy technologies include:

85

The Russian-American Gallium solar neutrino Experiment  

SciTech Connect

The Russian-American Gallium solar neutrino Experiment (SAGE) is described. The solar neutrino flux measured by 31 extractions through October, 1993 is presented. The result of 69 {+-} 10{sub {minus}7}{sup +5} SNU is to be compared with a standard solar model prediction of 132 SNU. The status of a {sup 51}Cr neutrino source irradiation to test the overall operation of the experiment is also presented.

Elliott, S.R. [Univ. of Washington, Seattle, WA (United States); Abdurashitov, J.N. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. for Nuclear Research; Bowles, T.J. [Los Alamos National Lab., NM (United States)] [and others

1995-12-31T23:59:59.000Z

86

The Russian-American gallium solar neutrino experiment  

SciTech Connect

The Russian-American Gallium solar neutrino Experiment (SAGE) is described. The solar neutrino flux measured by 31 extractions through October, 1993 is presented. The result of 69 {+-} 10{sub {minus}7}{sup +5} SNU is to be compared with a standard solar model prediction of 132 SNU. The status of a {sup 51}Cr neutrino source irradiation to test the overall operation of the experiment is also presented.

Elliott, S.R.; Wilkerson, J.F. [Univ. of Washington, Seattle, WA (United States); Abdurashitov, J.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute of Nuclear Research] [and others

1995-08-01T23:59:59.000Z

87

NREL: Learning - Solar Photovoltaic Technology Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player This video provides an overview of NREL's research in solar photovoltaic technology. Text Version Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process of converting light (photons) to electricity (voltage), which is called the PV effect. The PV effect was discovered in 1954, when scientists at Bell Telephone discovered that silicon (an element found in sand) created an electric charge when exposed to sunlight. Soon solar cells were being used to power space satellites and smaller items like calculators and watches. Today, thousands of people power their homes and businesses with individual

88

Lotus Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Solar Technologies Solar Technologies Jump to: navigation, search Name Lotus Solar Technologies Place Cairo, Egypt Sector Solar, Wind energy Product Solar and wind energy consultants and contractors. Coordinates 30.08374°, 31.25536° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.08374,"lon":31.25536,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

ICP Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

ICP Solar Technologies Inc ICP Solar Technologies Inc Jump to: navigation, search Name ICP Solar Technologies Inc Place Montreal, Quebec, Canada Zip H3N 1W5 Sector Solar Product Manufactures amorphous silicon solar PV cells, and battery chargers using these cells. Coordinates 45.512293°, -73.554407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.512293,"lon":-73.554407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

in Albuquerque, New Mexico. Barclays. (2009). Solar Energysolar development on the public lands of six states (Arizona, California, Colorado, New Mexico,

Price, S.

2010-01-01T23:59:59.000Z

91

Monitoring SERC Technologies Solar Photovoltaics  

Energy.gov (U.S. Department of Energy (DOE))

A webinar by National Renewable Energy Laboratory's Market Transformation Center electrical engineer Peter McNutt about Solar Photovoltaics and how to properly monitor its installation.

92

Flexible Assembly Solar Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assembly Solar Technology Fact Sheet explains a 2012 SunShot CSP R&D award project led by a team from BrightSource Industries. They will design and deploy a prototype of...

93

Solar Green Technology S p A SGT | Open Energy Information  

Open Energy Info (EERE)

A SGT Jump to: navigation, search Name: Solar Green Technology S.p.A. (SGT) Place: Italy Sector: Solar Product: Italy-based solar system integrator. References: Solar Green...

94

DOE Solar Decathlon: Team Canada: Advancing Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Northern Lights on the Concordia University campus. Enlarge image Northern Lights on the Concordia University campus. Enlarge image Team Canada's house features solar panels used as a roofing material and triple-glazed, south-facing windows to take advantage of the winter sun that shines on Concordia University's campus. (Courtesy of Concordia University) Who: Team Canada What: Northern Lights Where: Concordia University Loyola Campus 7141 Sherbrooke St. West Montréal, Quebec, Canada H4B 1R6 Map This House Public tours: Not available Solar Decathlon 2005 Team Canada: Advancing Solar Technologies The lone Canadian entry in the U.S. Department of Energy Solar Decathlon 2005 returned to the Loyola campus of Concordia University in Montreal, Quebec, following the competition. The solar-powered house, called Northern Lights, remains in good working order. It is used primarily for research.

95

Entech Solar Inc formerly WorldWater Solar Technologies | Open Energy  

Open Energy Info (EERE)

WorldWater Solar Technologies WorldWater Solar Technologies Jump to: navigation, search Name Entech Solar Inc. (formerly WorldWater & Solar Technologies) Place Fort Worth, Texas Zip 76177 Sector Solar Product Texas-based solar energy systems manufacturer. References Entech Solar Inc. (formerly WorldWater & Solar Technologies)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Entech Solar Inc. (formerly WorldWater & Solar Technologies) is a company located in Fort Worth, Texas . References ↑ "Entech Solar Inc. (formerly WorldWater & Solar Technologies)" Retrieved from "http://en.openei.org/w/index.php?title=Entech_Solar_Inc_formerly_WorldWater_Solar_Technologies&oldid=344989

96

EPOD Solar Wales Ltd formerly ICP Solar Technologies Ltd | Open Energy  

Open Energy Info (EERE)

Wales Ltd formerly ICP Solar Technologies Ltd Wales Ltd formerly ICP Solar Technologies Ltd Jump to: navigation, search Name EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) Place Mid Glamorgan, United Kingdom Zip CF31 3YN Sector Solar Product Research, development, manufacturing,marketing and sales of leading-edge solar energy products. References EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd) is a company located in Mid Glamorgan, United Kingdom . References ↑ "EPOD Solar (Wales) Ltd (formerly ICP Solar Technologies Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=EPOD_Solar_Wales_Ltd_formerly_ICP_Solar_Technologies_Ltd&oldid=34508

97

2008 Solar Technologies Market Report  

E-Print Network (OSTI)

s largest PV incentive program (Xcel Energys Solar Rewards25% by 2025* MN: 25% by 2025 (Xcel: 30% by 2020) VT: (1) REpartnership between SunEdison and Xcel Energy. Courtesy of

Price, S.

2010-01-01T23:59:59.000Z

98

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd |  

Open Energy Info (EERE)

SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd SolarIsland aka Yinghua Taian Dazheng Hengyuan Solar Technology Co Ltd Jump to: navigation, search Name SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) Place Nanguan, Shandong Province, China Zip 271000 Sector Solar Product Manufacturer and exporter of solar passive water heating systems and PV-powered solar road lighting, torches and lamps. References SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar Technology Co Ltd) is a company located in Nanguan, Shandong Province, China . References ↑ "[ SolarIsland (aka Yinghua, Taian Dazheng Hengyuan Solar

99

2008 Solar Technologies Market Report: January 2010  

SciTech Connect

This report focuses on the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report provides an overview of global and U.S. installation trends. It also presents production and shipment data, material and supply chain issues, and solar industry employment trends. It also presents cost, price, and performance trends; and discusses policy and market drivers such as recently passed federal legislation, state and local policies, and developments in project financing. The final chapter provides data on private investment trends and near-term market forecasts.

Not Available

2010-01-01T23:59:59.000Z

100

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Trony Solar Corporation formerly Shenzhen Trony Science Technology...  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name Trony Solar Corporation (formerly Shenzhen Trony Science &...

102

Optics and Photonics in Solar Thermal Energy Technologies  

Science Journals Connector (OSTI)

The complex optical diagnostics employed in the development and application of solar thermal and wind energy technologies are reviewed, with application in particle receivers, solar...

Nathan, G J 'Gus'; Alwahabi, Zeyad; Dally, Bassam B; Medwell, Paul R; Arjomandi, Maziar; Sun, Zhiwei; Lau, Timothy C; van Eyk, Philip

103

Solar Energy Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types....

104

Expansion and Improvement of Solar Water Heating Technology in...  

Open Energy Info (EERE)

Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name: Expansion and Improvement of Solar Water Heating...

105

Concentrating Solar Power: Technology Overview  

SciTech Connect

Concentrating Solar Power (CSP) has the potential to contribute significantly to the generation of electricity by renewable energy resources in the U.S.. Thermal storage can extend the duty cycle of CSP beyond daytime hours to early evening where the value of electricity is often the highest. The potential solar resource for the southwest U.S. is identified, along with the need to add power lines to bring the power to consumers. CSP plants in the U.S. and abroad are described. The CSP cost of electricity at the busbar is discussed. With current incentives, CSP is approaching competiveness with conventional gas-fired systems during peak-demand hours when the price of electricity is the highest. It is projected that a mature CSP industry of over 4 GWe will be able to reduce the energy cost by about 50%, and that U.S. capacity could be 120 GW by 2050.

Mehos, M.

2008-01-01T23:59:59.000Z

106

NREL-Solar Technologies Market Report | Open Energy Information  

Open Energy Info (EERE)

NREL-Solar Technologies Market Report NREL-Solar Technologies Market Report Jump to: navigation, search Tool Summary Name: NREL-Solar Technologies Market Report Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar Topics: Market analysis, Technology characterizations Website: www.nrel.gov/analysis/pdfs/46025.pdf NREL-Solar Technologies Market Report Screenshot References: NREL Solar Tech Market Report[1] Logo: NREL-Solar Technologies Market Report "The focus of this report is the U.S. solar electricity market, including photovoltaic (PV) and concentrating solar power (CSP) technologies. The report is organized into five chapters. Chapter 1 provides an overview of global and U.S. installation trends. Chapter 2 presents production and shipment data, material and supply chain issues, and solar industry

107

Zhangzhou Guolv Solar Science and Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Zhangzhou Guolv Solar Science and Technology Co Ltd Zhangzhou Guolv Solar Science and Technology Co Ltd Jump to: navigation, search Name Zhangzhou Guolv Solar Science and Technology Co Ltd Place Fujian Province, China Zip 363600 Sector Solar Product A company engaged in producing solar PV-based products such as solar lights and signposts. References Zhangzhou Guolv Solar Science and Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Zhangzhou Guolv Solar Science and Technology Co Ltd is a company located in Fujian Province, China . References ↑ "Zhangzhou Guolv Solar Science and Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Zhangzhou_Guolv_Solar_Science_and_Technology_Co_Ltd&oldid=353481"

108

Holographic technology could increase solar efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency Holographic technology could increase solar efficiency October 12, 2010 - 1:00pm Addthis Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Luminit's co-generation technology could combine photovoltaics (shown in this file photo) and solar thermal energy. | File photo Lorelei Laird Writer, Energy Empowers Co-generation technology could combine photovoltaics and solar thermal Luminit's technology bends and redirects sunlight to produce energy Research funded by Small Business Innovation Research grant There are two major technologies in solar energy: photovoltaics and solar thermal. Most people are more familiar with photovoltaics (PV) - the flat solar

109

Premier Solar Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Technologies Jump to: navigation, search Logo: Premier Solar Technologies Name Premier Solar Technologies Place Dubai, United Arab Emirates Sector Renewable Energy Product Integrated Storage Collector Website http://premiersolartechnologie Coordinates 24.985960773822°, 55.194025039673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.985960773822,"lon":55.194025039673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

110

NREL: Technology Deployment - Portland, Oregon Grassroots Solarize...  

NLE Websites -- All DOE Office Websites (Extended Search)

30% News Watch a video on the Solarize movement Pallets of PV: Communities Purchase Solar and Drive Down Costs Together Solarize Portland Solarize New York Solarize...

111

Wuxi Jiacheng Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jiacheng Solar Energy Technology Co Ltd Place: Yi Xing, Jiangsu Province, China Zip: 214251 Sector: Solar Product: A high-tech company which designs,makes and sells solar panels....

112

The Actuality and Prospect of Solar Collector Technology in China  

Science Journals Connector (OSTI)

The development tendency and the future of the solar heater utilization product are going to determine the solar energy collector technology development. The vacuum tube solar water heater development direction i...

Luo Yunjun; Liu Airong

2009-01-01T23:59:59.000Z

113

NREL: Technology Deployment - Solar Technical Assistance Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Team Technical Assistance Team Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions Recent NREL analysis of state policies revealed that the sequence of policy implementation can accelerate solar photovoltaic (PV) markets-and that policy change doesn't have to be costly. Download the full report or summary to learn more, or view the webinar. The Solar Technical Assistance Team (STAT) gathers NREL solar technology and deployment experts to provide information on solar policies, regulations, financing, and other issues for state and local government decision makers. The team provides a variety of technical assistance, including: Quick Response. For state and local governments that require a fast turnaround in response to a time-sensitive question or expert testimony on

114

NREL: Technology Deployment - Solar Deployment and Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

115

Building design guidelines for solar energy technologies  

SciTech Connect

There are two main objectives to this publication. The first is to find out the communalities in the experience gained in previous studies and in actual applications of solar technologies in buildings, residential as well as nonresidential. The second objective is to review innovative concepts and products which may have an impact on future developments and applications of solar technologies in buildings. The available information and common lessons were collated and presented in a form which, hopefully, is useful for architects and solar engineers, as well as for teachers of solar architecture'' and students in Architectural Schools. The publication is based mainly on the collection and analysis of relevant information. The information included previous studies in which the performance of solar buildings was evaluated, as well as the personal experience of the Author and the research consultants. The state of the art, as indicated by these studies and personal experience, was summarized and has served as basis for the development of the Design Guidelines. In addition to the summary of the state of the art, as was already applied in solar buildings, an account was given of innovative concepts and products. Such innovations have occurred in the areas of thermal storage by Phase Change Materials (PCM) and in glazing with specialized or changeable properties. Interesting concepts were also developed for light transfer, which may enable to transfer sunlight to the core areas of large multi story nonresidential buildings. These innovations may have a significant impact on future developments of solar technologies and their applications in buildings. 15 refs., 19 figs., 3 tabs.

Givoni, B.

1989-01-01T23:59:59.000Z

116

Solar Thin Films Inc formerly American United Global Inc | Open Energy  

Open Energy Info (EERE)

Films Inc formerly American United Global Inc Films Inc formerly American United Global Inc Jump to: navigation, search Name Solar Thin Films Inc (formerly American United Global Inc) Place New York, New York Zip 10038 Sector Solar Product A US-based solar manufacturing equipment supplier. References Solar Thin Films Inc (formerly American United Global Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Thin Films Inc (formerly American United Global Inc) is a company located in New York, New York . References ↑ "Solar Thin Films Inc (formerly American United Global Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Thin_Films_Inc_formerly_American_United_Global_Inc&oldid=351338

117

Maharishi Solar Technology Pvt Ltd | Open Energy Information  

Open Energy Info (EERE)

Maharishi Solar Technology Pvt Ltd Maharishi Solar Technology Pvt Ltd Jump to: navigation, search Name Maharishi Solar Technology Pvt Ltd Place New Delhi, Andhra Pradesh, India Zip 110044 Sector Solar Product Vertically integrated PV manufacturer with annual production of 2.5MW, under expansion to 10.0MW, also makes solar passive products. References Maharishi Solar Technology Pvt Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Maharishi Solar Technology Pvt Ltd is a company located in New Delhi, Andhra Pradesh, India . References ↑ "Maharishi Solar Technology Pvt Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Maharishi_Solar_Technology_Pvt_Ltd&oldid=348592

118

CEEG Shanghai Solar Science Technology | Open Energy Information  

Open Energy Info (EERE)

Shanghai Solar Science Technology Shanghai Solar Science Technology Jump to: navigation, search Name CEEG (Shanghai) Solar Science & Technology Place Shanghai Municipality, China Zip 200335 Sector Services, Solar Product Shanghai-based PV module manufacturer integrates services including the research, development, production, sales of polysilicon solar panel References CEEG (Shanghai) Solar Science & Technology[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEEG (Shanghai) Solar Science & Technology is a company located in Shanghai Municipality, China . References ↑ "CEEG (Shanghai) Solar Science & Technology" Retrieved from "http://en.openei.org/w/index.php?title=CEEG_Shanghai_Solar_Science_Technology&oldid=343327"

119

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar | Open Energy  

Open Energy Info (EERE)

Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Nantong Qiangsheng Photovoltaic Technology Co Ltd QS Solar Jump to: navigation, search Name Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) Place Shanghai Municipality, China Zip 200336 Sector Solar Product Chinese amorphous thin-film solar cell maker. References Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar) is a company located in Shanghai Municipality, China . References ↑ "[ Nantong Qiangsheng Photovoltaic Technology Co Ltd (QS Solar)]" Retrieved from "http://en.openei.org/w/index.php?title=Nantong_Qiangsheng_Photovoltaic_Technology_Co_Ltd_QS_Solar&oldid=349037

120

SunShot Initiative: Flexible Assembly Solar Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Assembly Solar Flexible Assembly Solar Technology to someone by E-mail Share SunShot Initiative: Flexible Assembly Solar Technology on Facebook Tweet about SunShot Initiative: Flexible Assembly Solar Technology on Twitter Bookmark SunShot Initiative: Flexible Assembly Solar Technology on Google Bookmark SunShot Initiative: Flexible Assembly Solar Technology on Delicious Rank SunShot Initiative: Flexible Assembly Solar Technology on Digg Find More places to share SunShot Initiative: Flexible Assembly Solar Technology on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Beijing Sunda Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Sunda Solar Energy Technology Co Ltd Sunda Solar Energy Technology Co Ltd Jump to: navigation, search Name Beijing Sunda Solar Energy Technology Co Ltd Place Beijing, Beijing Municipality, China Zip 100083 Sector Solar Product Manufacturer of solar thermal water systems, for customers to install themselves. References Beijing Sunda Solar Energy Technology Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Beijing Sunda Solar Energy Technology Co Ltd is a company located in Beijing, Beijing Municipality, China . References ↑ "Beijing Sunda Solar Energy Technology Co Ltd" Retrieved from "http://en.openei.org/w/index.php?title=Beijing_Sunda_Solar_Energy_Technology_Co_Ltd&oldid=342639

122

Test results, Industrial Solar Technology parabolic trough solar collector  

SciTech Connect

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

123

Helping Ensure High-Quality Installation of Solar Power Technologies...  

Energy Savers (EERE)

Ensure High-Quality Installation of Solar Power Technologies Helping Ensure High-Quality Installation of Solar Power Technologies April 15, 2013 - 12:00am Addthis The Midwest...

124

Solar and Wind Technologies for Hydrogen Production Report to Congress  

Fuel Cell Technologies Publication and Product Library (EERE)

DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills t

125

E-Print Network 3.0 - american technology initiative Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Illinois Institute of Technology. Male Female Birthdate State... . American Indian or Alaskan Native Asian American Black or African American ... Source: Heller,...

126

GT Solar Technologies formerly GT Equipment Technologies | Open Energy  

Open Energy Info (EERE)

GT Solar Technologies formerly GT Equipment Technologies GT Solar Technologies formerly GT Equipment Technologies Jump to: navigation, search Name GT Solar Technologies (formerly GT Equipment Technologies) Place Merrimack, New Hampshire Zip 3054 Product US-based manufacturer of turnkey multicrystalline PV wafer, cell, and module fabrication lines; also offers EFG and dentritic growth furnaces. Coordinates 42.872517°, -71.490603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.872517,"lon":-71.490603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

A review of solar photovoltaic technologies  

Science Journals Connector (OSTI)

Global environmental concerns and the escalating demand for energy, coupled with steady progress in renewable energy technologies, are opening up new opportunities for utilization of renewable energy resources. Solar energy is the most abundant, inexhaustible and clean of all the renewable energy resources till date. The power from sun intercepted by the earth is about 1.8נ1011MW, which is many times larger than the present rate of all the energy consumption. Photovoltaic technology is one of the finest ways to harness the solar power. This paper reviews the photovoltaic technology, its power generating capability, the different existing light absorbing materials used, its environmental aspect coupled with a variety of its applications. The different existing performance and reliability evaluation models, sizing and control, grid connection and distribution have also been discussed.

Bhubaneswari Parida; S. Iniyan; Ranko Goic

2011-01-01T23:59:59.000Z

128

The Integrative Application Study on Solar Energy Technology Used In a Student Dormitory  

E-Print Network (OSTI)

ICEBO2006, Shenzhen, China Re newable Energy Resources and a Greener Future Vol.VIII-5-3 The Integrative Application Study on Solar Energy Technology Used In a Student Dormitory 1 Yibing Xue Chongjie Wang Associate...] Chongjie Wang Wenjing He Yibing Xue. Application of Solar Wall in European and American Architecture Designing[J]. Architecture journal,2004,8:76-78. ICEBO2006, Shenzhen, China Re newable Energy Resources and a Greener Future Vol.VIII-5...

Xue, Y.; Wang, C.

2006-01-01T23:59:59.000Z

129

Revitalizing American Competitiveness in Solar Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(kWh) MURI HOT Fluids CSP SunShot FOA ARPA-E Baseload FOA Thermal Storage In Germany, residential PV systems are sold at 2.44W RFI on the street that asks the...

130

PROCEEDINGS OF THE 1998 AMERICAN SOLAR ENERGY SOCIETY ANNUAL CONFERENCE  

NLE Websites -- All DOE Office Websites (Extended Search)

1998 1998 AMERICANSOLARENERGYSOClliTY ANNUAL CONFERENCE Albuquerque, NM June 14 - 17, 1998 Editors: R. Campbell-Howe T. Cortez B. Wilkins-Crowder American Solar Energy Society 2400 Central Aven ue, Suite G-l Boulder, Colorado 80301 Printed on recycled paper A CLIMATOLOGICAL SOLAR RADIATION MODEL Eugene L. Maxwell, Consultant 5520 Fossil Creek Dr. Fort Collins, CO 80526 e-mail: elm@net-plus.com ABSTRACT In 1995 the National Renewable Energy Laboratory (NREL) initiated the Data Grid Task under the U.S. Department of Energy Resource Assessment Program. The primary objective of the Data Grid Task is to estimate climatological averages of daily-total solar radiation at each point (cell) on a high-resolution (e.g., 40-km) uniform grid, using climatological parameters as input to a solar

131

Photovoltaics: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

Not Available

2009-10-01T23:59:59.000Z

132

Market Transformation: Solar Energy Technologies Program (SETP) (Fact Sheet)  

SciTech Connect

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

Not Available

2009-10-01T23:59:59.000Z

133

Ascent Solar Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Technologies Inc Technologies Inc Jump to: navigation, search Name Ascent Solar Technologies Inc Place Littleton, Colorado Zip 80127-4107 Sector Solar Product Ascent Solar develops and plans to manufacture CIGS thin-film solar cells and modules for the satellite and high-altitude airship (“HAA”) markets. Coordinates 39.697285°, -80.51095° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.697285,"lon":-80.51095,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

134

Bosch Solar Sustainable Energy Technologies JV | Open Energy...  

Open Energy Info (EERE)

Sustainable Energy Technologies JV Jump to: navigation, search Name: Bosch Solar & Sustainable Energy Technologies JV Place: Ontario, Canada Product: Canada-based JV to distribute...

135

Silicon Ink Technology Offers Path to Higher Efficiency Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

startup companies cross technological barriers to commercialization while encouraging private investment. The Solar Energy Technologies Office (SETO) focuses on achieving the...

136

Solar Energy Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resources and Technologies Solar Energy Resources and Technologies Solar Energy Resources and Technologies October 7, 2013 - 9:21am Addthis Photo of a square, tracking, standalone photovoltaic array stands in front of a tree and body of water. The Environmental Protection Agency uses this photovoltaic array as part of its Manchester Laboratory Solar Project. Solar energy provides electricity, heating, and cooling for Federal facilities through four primary technology types. The four technologies are broken into two categories; technologies for electricity production and thermal energy technologies. The following pages provide a brief overview of each solar energy technology supplemented by specific information to apply solar energy within the Federal sector. Technologies for electricity production include:

137

American Cooler Technologies: Proposed Penalty (2013-CE-5305) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cooler Technologies: Proposed Penalty (2013-CE-5305) Cooler Technologies: Proposed Penalty (2013-CE-5305) American Cooler Technologies: Proposed Penalty (2013-CE-5305) January 31, 2013 DOE alleged in a Notice of Proposed Civil Penalty that American Cooler Technologies failed to certify walk-in coolers and freezers as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. American Cooler Technologies: Proposed Penalty (2013-CE-5305) More Documents & Publications American Cooler Technologies: Order (2013-CE-5305)

138

Technology projections for solar dynamic power  

Science Journals Connector (OSTI)

Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency long life without performance degradation and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite a low power Space Based Radar and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA DOD and commercial missions.

Lee S. Mason

1999-01-01T23:59:59.000Z

139

American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, 2011 SHORT-TERM IRRADIANCE VARIABILITY  

E-Print Network (OSTI)

© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, 2011 SHORT, as hypothesized in Hoff and Perez's optimum point. #12;© American Solar Energy Society ­ Proc. ASES Annual is the factor that determines whether the combined relative fluctuations of two solar systems add up when

Perez, Richard R.

140

American Solar Energy Society Proc. ASES Annual Conference, Raleigh, NC, EVALUATION OF NUMERICAL WEATHER PREDICTION  

E-Print Network (OSTI)

© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, EVALUATION;© American Solar Energy Society ­ Proc. ASES Annual Conference, Raleigh, NC, irradiance forecasts over OF NUMERICAL WEATHER PREDICTION SOLAR IRRADIANCE FORECASTS IN THE US Richard Perez ASRC, Albany, NY, Perez

Perez, Richard R.

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

RFID Technology Creating Jobs, Impacting Americans With Increasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RFID Technology Creating Jobs, Impacting Americans With Increasing RFID Technology Creating Jobs, Impacting Americans With Increasing Frequency RFID Technology Creating Jobs, Impacting Americans With Increasing Frequency October 11, 2011 - 11:15am Addthis RFID technology is a prime example of how targeted Research & Development can enable the development of a core technology – making information mobile – that has commercial potential as far as the imagination can take you. RFID technology is a prime example of how targeted Research & Development can enable the development of a core technology - making information mobile - that has commercial potential as far as the imagination can take you. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? RFID technology is a prime example of how targeted Research &

142

American Solar Energy Society ASES | Open Energy Information  

Open Energy Info (EERE)

ASES ASES Jump to: navigation, search Name American Solar Energy Society (ASES) Place Boulder, Colorado Zip 80301 Sector Solar Product Dedicated to advancing the use of solar energy for the benefit of U.S. citizens and the global environment. Coordinates 42.74962°, -109.714163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.74962,"lon":-109.714163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Berkeley Mist Sealant Technology: Potential to Save Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans $5B Per Year Breakthrough Berkeley Mist Sealant Technology: Potential to Save Americans $5B Per Year November 7, 2011 - 4:33pm Addthis A diagram of the Aeroseal sealant technology. | Image courtesy of Aeroseal LLC A diagram of the Aeroseal sealant technology. | Image courtesy of Aeroseal LLC Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What does this mean for me? Air duct system leaks cost Americans $5 billion every year. A simple mist now on the market -- developed by Berkeley Lab -- can seal thousands of leaks in 4 to 8 hours, saving a home owner on average $600 to $850 per year. Who knew leaks could be costing Americans $5 billion every year? And that's

144

Breakthrough Cutting Technology Promises to Reduce Solar Costs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs Breakthrough Cutting Technology Promises to Reduce Solar Costs March 1, 2010 - 4:34am Addthis Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Using SiGen's new cutting process, less material is wasted in creating solar products like this, a breakthrough that is expected to help make solar power more affordable. | Photo courtesy SiGen Joshua DeLung Silicon Genesis is a San Jose, Calif., company that is advancing the field of solar energy by developing a process that will virtually eliminate all waste when cutting materials needed to implement solar technology.

145

Solar Hot Water Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies Solar Hot Water Resources and Technologies October 7, 2013 - 11:49am Addthis Photo of a standalone solar hot water system standing in front of a clothesline with a backdrop of evergreen trees. This solar hot water system tracks sunlight using a standalone, single-axis mount to optimize hot water production for residential applications. This page provides a brief overview of solar hot water (SHW) technologies supplemented by specific information to apply SHW within the Federal sector. Overview Although a large variety of solar hot water systems exist, the basic technology is simple. A collector absorbs and transfers heat from the sun to water, which is stored in a tank until needed. Active solar heating systems use circulating pumps and controls. These are more expensive but

146

Chemical technology news from across RSC Publishing. Printing solar panels  

E-Print Network (OSTI)

Publishing Chemical technology news from across RSC Publishing. Printing solar panels 22 January size) silicon microcells that connect together to form flexible solar panels. By stamping hundreds solar panels 2/8/2010http://www.rsc.org/Publishing/ChemTech/Volume/2010/02/printing_solar.asp #12;Page 2

Rogers, John A.

147

Sestar Technologies, LLC Revolutionar y Solar Energy Products  

E-Print Network (OSTI)

Sestar Technologies, LLC Revolutionar y Solar Energy Products Sestar Technologies, LLC (SESTAR) is developing revolutionary solar energy products that will be integral components in the ultimate solution to the world's current and future energy pro- grams. It will lead to paradigm shifts in a number of solar

Jawitz, James W.

148

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

149

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Spotlights Technology Spotlights Below you will find Solar Decathlon news from the Technology Spotlights archive, sorted by date. Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry,

150

Solar refractive secondary concentrator technology overview  

Science Journals Connector (OSTI)

Refractive secondary concentrators coupled with advanced primary concentrators can efficiently convert solar energy to heat for a wide variety of space applications including power generation thermal propulsion and furnaces. These applications typically require very high temperatures (as high as 2000 K) and high concentration ratios (10 000 to 1). To enable concentration systems that meet these requirements the NASA Glenn Research Center is developing the refractive secondary concentrator which uses refraction and total internal reflection to concentrate and direct solar energy. Presented is an overview of the refractive secondary concentrator technology development effort including a description of benefits past accomplishments and future plans. Highlighted is a recent proof-of-concept test of a prototype sapphire refractive secondary concentrator performed in a solar vacuum environment that demonstrated throughput efficiency of 87%. It is anticipated that the application of an optical coating to the inlet surface of the refractive secondary to reduce the reflection losses at this surface can improve the throughput efficiency to 93%. Plans to conduct additional solar thermal vacuum tests to demonstrate high temperatures and high throughput power are also presented (up to 2000 K and 5 kW).

Wayne A. Wong

2001-01-01T23:59:59.000Z

151

DOE Solar Decathlon: Stevens Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Stevens Institute of Technology Stevens Institute of Technology Ecohabit www.stevens.edu/sd2013/ Ecohabit, the U.S. Department of Energy Solar Decathlon 2013 entry from Stevens Institute of Technology, addresses sustainability in all facets-from form, through construction, to the dynamics of its use. The house adapts to its occupants' needs and provides them with feedback on ways to reduce energy use to live more sustainably. Its L shape maximizes views of, and access to, the generous outdoor living space. Design Philosophy Ecohabit aims to redefine the relationship between a house and its occupants. Intelligent energy systems monitor the house, its occupants' behaviors, and regional climate information. In doing so, Ecohabit "cohabits" with its occupants-enabling house and user to learn from each

152

SunShot Initiative: Making Solar Energy Affordable for All Americans (Fact Sheet)  

SciTech Connect

Through SunShot, DOE supports efforts by private companies, universities, and national laboratories to drive down the cost of solar electricity to $0.06 per kilowatt-hour, making solar energy affordable for more American families and businesses.

Not Available

2013-10-01T23:59:59.000Z

153

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

DOE Data Explorer (OSTI)

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

154

Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)  

SciTech Connect

Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

Wilcox, S.; Andreas, A.

2011-02-11T23:59:59.000Z

155

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

156

Advancing Solar Through Photovoltaic Technology Innovations | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder David Moore Presidential Management Fellow, Office of Energy Efficiency & Renewable Energy

157

Solar Lanterns: Technology Adoption Model for Indian Villages  

Science Journals Connector (OSTI)

Photovoltaic technology is one of the most promising ways ... in some villages, and so off grid solar power sources are necessary for providing electricity. ... the drivers and barriers for the adoption of solar ...

Ashok Bhatla; Parisa Ghafoori

2013-01-01T23:59:59.000Z

158

Solar Sail Propulsion: An Enabling Technology for Fundamental Physics Missions  

Science Journals Connector (OSTI)

Solar sails enable a wide range of high- ... system. They are also an enabling propulsion technology for two types of deep-space missions ... and the large-scale gravitational field of the solar system: the first...

Bernd Dachwald; Wolfgang Seboldt; Claus Lammerzahl

2008-01-01T23:59:59.000Z

159

Heterojunction solar cells produced by porous silicon layer transfer technology  

Science Journals Connector (OSTI)

In this paper, we present the result of heterojunction solar cells based on porous silicon layer transfer technology. a-Si/c-Si structured solar cells were prepared in which the c-Si ... was investigated. The spe...

Zhihao Yue; Honglie Shen; Lei Zhang; Bin Liu; Chao Gao; Hongjie Lv

2012-09-01T23:59:59.000Z

160

A High Efficiency Silicon Solar Cell Production Technology  

Science Journals Connector (OSTI)

BP Solar have developed a cost-effective production technology for the manufacture of high efficiency laser grooved buried grid (LGBG) crystalline silicon solar cells. The process has demonstrated 1718% ... a ne...

N. B. Mason; D. Jordan; J. G. Summers

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative technology used to manufacture semitransparent monocrystalline silicon solar cells  

Science Journals Connector (OSTI)

This paper presents the manufacturing technology of a new semitransparent solar cell that can be used for building integrated ... anisotropic etching. The efficiency of the semitransparent solar cell is 6.12% in...

Enik? Bndy; Mrta Rencz

2013-06-01T23:59:59.000Z

162

Johanna Solar Technology GmbH JST | Open Energy Information  

Open Energy Info (EERE)

Product: German manufacturer of copper-indium-gallium-sulphide-selenium (CIGSSe) thin-film solar modules. References: Johanna Solar Technology GmbH (JST)1 This article is a...

163

Concentrating Solar Power Resources and Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies Concentrating Solar Power Resources and Technologies October 7, 2013 - 11:47am Addthis Photo of a CSP dish glistening in the sun. Multiple solar mirrors reflect sunlight onto a collector. CSP systems concentrate solar heat onto a collector, which powers a turbine to generate electricity. This page provides a brief overview of concentrating solar power (CSP) technologies supplemented by specific information to apply CSP within the Federal sector. Overview Concentrating solar power technologies produce electricity by concentrating the sun's energy using reflective devices, such as troughs or mirror panels, to reflect sunlight onto a receiver. The resulting high-temperature heat is used to power a conventional turbine to produce electricity.

164

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

'Technology Spotlights' 'Technology Spotlights' Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry, Self-Reliance, had two roof-mounted solar hot water collector arrays (right) that circulated glycol through vacuum-insulated borosilicate glass

165

Research & Development Needs for Building-Integrated Solar Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Building Integrated Solar Technologies (BIST) can help achieve the Building Technologies Office goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

166

Big Data Projects on Solar Technology Evolution and Diffusion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting Graphic showing a web of people with energy bolts connecting them. Through the SEEDS program, seven projects...

167

Solar Energy Technologies FY'14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

Solar Energy Technologies FY'14 Budget At-a-Glance, a publication of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy.

168

Wuxi Jiacheng Solar Energy Technology Co JC Solar | Open Energy Information  

Open Energy Info (EERE)

Wuxi Jiacheng Solar Energy Technology Co JC Solar Wuxi Jiacheng Solar Energy Technology Co JC Solar Jump to: navigation, search Name Wuxi Jiacheng Solar Energy Technology Co (JC Solar) Place Yixing, Jiangsu Province, China Zip 214200 Sector Solar Product A Chinese solar PV module and solar water heater manufacturer. Coordinates 31.36261°, 119.816643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.36261,"lon":119.816643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

IEA-Technology Roadmap: Concentrating Solar Power | Open Energy Information  

Open Energy Info (EERE)

IEA-Technology Roadmap: Concentrating Solar Power IEA-Technology Roadmap: Concentrating Solar Power Jump to: navigation, search Tool Summary Name: IEA-Technology Roadmap: Concentrating Solar Power Agency/Company /Organization: International Energy Agency Sector: Energy Focus Area: Solar, - Concentrating Solar Power Topics: Implementation, Pathways analysis Resource Type: Guide/manual Website: www.iea.org/papers/2010/csp_roadmap.pdf Cost: Free IEA-Technology Roadmap: Concentrating Solar Power Screenshot References: IEA-CSP Roadmap[1] "This roadmap identifies technology, economy and policy goals and milestones needed to support the development and deployment of CSP, as well as ongoing advanced research in CSF. It also sets out the need for governments to implement strong, balanced policies that favour rapid

170

New Wire Silicon Slicing Technology for Solar Cell  

Science Journals Connector (OSTI)

Firstly a prototype machine using Multicutting wire technology (MCWT) is described. The influence of ... and damaged layer are suitable for the present solar cell technology. Further decreasing cost steps are com...

H. Lauvray; A. Talpied; J. P. Besselere

1981-01-01T23:59:59.000Z

171

DOE Solar Decathlon: New York Institute of Technology: Instituting  

NLE Websites -- All DOE Office Websites (Extended Search)

New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. Enlarge image Green Machine/Blue Space relies on a hydrogen fuel cell to convert and store energy collected by the house's photovoltaic system. (Courtesy of Kevin Rodgers/U.S. Merchant Marine Academy) Who: New York Institute of Technology What: Green Machine/ Blue Space Where: U.S. Merchant Marine Academy 300 Steamboat Road Kings Point, NY 11024 Map This House Public tours: Not available Solar Decathlon 2005 New York Institute of Technology: Instituting Technology New York Institute of Technology partnered with the U.S. Merchant Marine Academy to develop a solar-powered house for the U.S. Department of Energy Solar Decathlon 2005. The house, called Green Machine/Blue Space, was

172

Pennsylvania Company Develops Solar Cell Printing Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology Pennsylvania Company Develops Solar Cell Printing Technology April 15, 2010 - 4:20pm Addthis Joshua DeLung What does this project do? The technology uses Plextronics' conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper. This method is much less expensive than many others in terms of raw materials and manufacturing costs. Pittsburgh-based Plextronics, plans to commercialize low-cost solar power globally with its conductive ink technologies, a goal that has been helped by a government incubator program focused on finding marketable prototypes by 2012. "For any technology to be truly successful, you have to enable a new

173

Solar Sail Technology for Nanosatellites Michael D. Souder  

E-Print Network (OSTI)

Solar Sail Technology for Nanosatellites Michael D. Souder Stanford University, Stanford, CA, 94305, USA Matthew West University of Illinois, Urbana, IL, 61801, USA Solar sailing is an attractive means. This allows a solar sail spacecraft to accomplish new classes of missions that would otherwise require

West, Matthew

174

An Overview of Solar Cell Technology Mike McGehee  

E-Print Network (OSTI)

An Overview of Solar Cell Technology Mike McGehee Materials Science and Engineering Global ClimateWatt and Evergreen Solar went bankrupt Jon Stewart, The Daily Show Solyndra, SpectraWatt and Evergreen Solar went provide 20 % of that. It takes a panel rated at 5 W, to average 1 W of power through the day and year, sog

McGehee, Michael

175

NREL: Technology Deployment - Solar Technical Assistance Team  

NLE Websites -- All DOE Office Websites (Extended Search)

City Finance Technical Assistance Requested: Assistance finding funding sources for solar development Results: NREL provided information on solar financing options 2014...

176

Sandia National Laboratories: innovative solar technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

177

Energy Secretary Announces $13 Million to Expand Solar Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Announces $13 Million to Expand Solar Energy Energy Secretary Announces $13 Million to Expand Solar Energy Technologies Energy Secretary Announces $13 Million to Expand Solar Energy Technologies October 12, 2006 - 9:08am Addthis ST. LOUIS, MO - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced more than $13 million to fund new research in solar technologies. This funding, part of President Bush's $148 million Solar America Initiative, will support the development of more efficient solar panels, known as photovoltaic devices. "This investment is a major step in our mission to bring clean, renewable solar power to the nation," Secretary Bodman said. "If we are able to harness more of the sun's power and use it to provide energy to homes and businesses, we can increase our energy diversity and strengthen our

178

Energy Secretary Announces $13 Million to Expand Solar Energy Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Secretary Announces $13 Million to Expand Solar Energy Energy Secretary Announces $13 Million to Expand Solar Energy Technologies Energy Secretary Announces $13 Million to Expand Solar Energy Technologies October 12, 2006 - 9:08am Addthis ST. LOUIS, MO - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced more than $13 million to fund new research in solar technologies. This funding, part of President Bush's $148 million Solar America Initiative, will support the development of more efficient solar panels, known as photovoltaic devices. "This investment is a major step in our mission to bring clean, renewable solar power to the nation," Secretary Bodman said. "If we are able to harness more of the sun's power and use it to provide energy to homes and businesses, we can increase our energy diversity and strengthen our

179

Photo of the Week: Boosting Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Photo of the Week: Boosting Solar Technology Photo of the Week: Boosting Solar Technology Photo of the Week: Boosting Solar Technology April 15, 2013 - 4:47pm Addthis Concentrated solar panels are getting a power boost. This summer, Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system -- one that can help natural gas power plants reduce their fuel usage by up to 20 percent. PNNL has developed a system that uses a thermochemical conversion device to convert natural gas and sunlight into a more energy-rich fuel called syngas. By installing the pictured device in front of a concentrating solar power dish, power plants can burn less fuel. Learn more about concentrated solar energy at PNNL. | Photo courtesy of Pacific Northwest National Laboratory.

180

New and Underutilized Technology: Solar Water Heating | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Water Heating Solar Water Heating New and Underutilized Technology: Solar Water Heating October 7, 2013 - 9:02am Addthis The following information outlines key deployment considerations for solar water heating within the Federal sector. Benefits Solar water heating uses solar thermal collectors to heat water. Application Solar water heating is applicable in most building categories. Climate and Regional Considerations Solar water heating is best in regions with high insolation. Key Factors for Deployment The Energy Independence and Security Act (EISA) of 2007 requires 30% of hot water demand in new Federal buildings and major renovations to be met with solar water heating equipment providing it is life-cycle cost effective. Federal agencies must consider collector placement location to optimize

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Proceedings of the American Solar Energy Society Solar 2000 Conference. 2000. Madison, WI (June): 81-85  

E-Print Network (OSTI)

Proceedings of the American Solar Energy Society Solar 2000 Conference. 2000. Madison, WI (June, Kyung-Jin Boo, Young-Doo Wang and Gerard Alleng Center for Energy and Environmental Policy University of Delaware Newark, DE, 19716 Email: jbbyrne@udel.edu ABSTRACT In recent years, the Center for Energy

Delaware, University of

182

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Sharing the Sun, Solar Technology in the Seventies, K, W,Sharing the Sun, Solar Technology in the 70's, Ed. K. W.ll , Sharing the Sun, Solar Technology in the 70's K, W,

Viswanathan, R.

2011-01-01T23:59:59.000Z

183

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Team website: solarhouse.mst.edu Photo of members of the Missouri University of Science and Technology Solar Decathlon 2013 team standing in front of a solar-powered house. Enlarge image The Missouri University of Science and Technology Solar Decathlon 2013 team (Courtesy of the Missouri University of Science and Technology Solar Decathlon 2013 team) he Missouri University of Science and Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors,

184

Shanghai ST Solar Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

ST Solar Technology Co Ltd ST Solar Technology Co Ltd Jump to: navigation, search Name Shanghai ST Solar Technology Co Ltd Place Jiading, Shanghai Municipality, China Zip 201800 Sector Solar Product A company engaged in a-Si and crystalline silicon solar module production, solar system design, production and sale. Coordinates 31.3825°, 121.2603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3825,"lon":121.2603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Alternative Application of Solar Sail Technology  

Science Journals Connector (OSTI)

The development of Gossamer sail structures for solar sails contributes to a large field of future space applications like thin film solar generators, membrane antennas and drag sails. ... the development of a dr...

Nino Wolff; Patric Seefeldt; Wolfgang Bauer

2014-01-01T23:59:59.000Z

186

Some Recent Research on Solar Energy Technology  

Science Journals Connector (OSTI)

Mexico is located in the Earths sunbelt, where solar energy is plentiful for potential applications of solar energy conversion systems. According to several estimations (Renn et al. 2000...), the average insola...

Camilo A Arancibia-Bulnes; Antonio E Jimnez; Oscar A Jaramillo

2007-01-01T23:59:59.000Z

187

Appropriate Technology Approach to Solar Energy Conversion  

Science Journals Connector (OSTI)

When we want to introduce Solar Energy into the energy system, there are two main approaches possible. The first one consists in transforming Solar energy into some traditional primary or secondary energy form...

B. Bartoli

1980-01-01T23:59:59.000Z

188

Understanding the adoption of solar power technologies in the UK domestic sector.  

E-Print Network (OSTI)

??The aim of this thesis was to provide new insights into the adoption of solar power technologies. Policy has identified solar technologies capable of providing (more)

Faiers, Adam

2009-01-01T23:59:59.000Z

189

Technological assessment of light-trapping technology for thin-film Si solar cell.  

E-Print Network (OSTI)

??The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was (more)

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

190

Indian Solar Thermal Technology Technology to Protect Environment and Ecology  

Science Journals Connector (OSTI)

Rising fuel costs and global warming are pushing the development of renewable energy supplies. Solar energy is most promising as unlike wind ... and more predictable. 1 % of the solar energy received on earth wou...

Deepak Gadhia

2011-01-01T23:59:59.000Z

191

Native American Training Program in Petroleum Technology  

SciTech Connect

This report outlines a comprehensive training program for members of Native American tribes whose lands have oil and gas resources. The program has two components: short courses and internships. Programs are proposed for: (1) adult tribes representatives who are responsible for managing tribal mineral holdings, setting policy, or who work in the oil and gas industry; (2) graduate and undergraduate college students who are tribal members and are studying in the appropriate fields; and (3) high school and middle school teachers, science teachers. Materials and program models already have been developed for some components of the projects. The plan is a coordinated, comprehensive effort to use existing resources to accomplish its goals. Partnerships will be established with the tribes, the BIA, tribal organizations, other government agencies, and the private sector to implement the program.

Ho, Winifred M.; Kokesh, Judith H.

1999-04-27T23:59:59.000Z

192

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlines Research Needed to Improve Solar Energy Technologies Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year. "The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE's Office of Science. "This research

193

Dongguan Yecool Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongguan Yecool Solar Energy Technology Co Ltd Dongguan Yecool Solar Energy Technology Co Ltd Jump to: navigation, search Name Dongguan Yecool Solar Energy Technology Co Ltd Place Dongguan, Guangdong Province, China Zip 523460 Sector Solar Product A hi-tech corporation that produces solar energy photoelectrical products. Coordinates 23.046499°, 113.735817° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.046499,"lon":113.735817,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

Kinmac Solar formerly Lucky Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Kinmac Solar formerly Lucky Power Technology Co Ltd Kinmac Solar formerly Lucky Power Technology Co Ltd Jump to: navigation, search Name Kinmac Solar (formerly Lucky Power Technology Co Ltd) Place Hsinchu, Taiwan Sector Solar Product Taiwan-based manufacturer of solar modules, chargers, inverters, batteries and related products. Coordinates 24.69389°, 121.148064° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.69389,"lon":121.148064,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

MAGI Solar Energy Technology Co | Open Energy Information  

Open Energy Info (EERE)

MAGI Solar Energy Technology Co MAGI Solar Energy Technology Co Jump to: navigation, search Name MAGI Solar Energy Technology Co Place Yixing, Jiangsu Province, China Zip 214203 Sector Solar Product Chinese PV cell and module manufacturer adopts the technoloy from Germany GP Solar. Coordinates 31.36261°, 119.816643° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.36261,"lon":119.816643,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

196

Shanshan Ulica Solar Energy Science Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Shanshan Ulica Solar Energy Science Technology Co Ltd Shanshan Ulica Solar Energy Science Technology Co Ltd Jump to: navigation, search Name Shanshan Ulica Solar Energy Science&Technology Co Ltd Place Shanghai, Shanghai Municipality, China Sector Solar Product A solar PV cell and PV module manufacturer Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Aide Solar Jiangsu Aide Solar Energy Technology Co Ltd Jump to: navigation, search Name Aide Solar (Jiangsu Aide Solar Energy Technology Co Ltd) Place Xuzhou, Jiangsu Province, China Product Chinese manufacturer of PV cells and modules. Coordinates 34.255489°, 117.190201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.255489,"lon":117.190201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200??C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

199

Technological assessment of light-trapping technology for thin-film Si solar cell  

E-Print Network (OSTI)

The proposed light trapping technology of Distributed Bragg Reflector (DBR) with Diffraction Grating (DG) and Anti-Reflection Coating (ARC) for thin film Si solar cell was analyzed from the technology, market, and ...

Susantyoko, Rahmat Agung

2009-01-01T23:59:59.000Z

200

DOE Solar Decathlon: Team Austria: Vienna University of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Austria: Vienna University of Technology Austria: Vienna University of Technology Team website: www.solardecathlon.at Photo collage of members of the Vienna University of Technology Solar Decathlon 2013 team. The LISI logo is in the middle. Enlarge image The Vienna University of Technology Solar Decathlon 2013 team (Courtesy of the Vienna University of Technology Solar Decathlon 2013 team) he Vienna University of Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors, or their employees make any warranty, express or implied, or assume any

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Monitoring SERC Technologies Solar Hot Water  

Energy.gov (U.S. Department of Energy (DOE))

A webinar by National Renewable Energy Laboratory analyst Eliza Hotchkiss on Solar Hot Water systems and how to properly monitor their installation.

202

Sandia National Laboratories: solar thermal electric technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

203

Gossamer Roadmap Technology Reference Study for a Solar Polar Mission  

Science Journals Connector (OSTI)

A technology reference study for a solar polar mission is presented. The study uses novel analytical methods to quantify the mission design space including the required sail performance to achieve a given sola...

M. Macdonald; C. McGrath; T. Appourchaux; B. Dachwald

2014-01-01T23:59:59.000Z

204

Process Technology and Advanced Concepts: Organic Solar Cells (Fact Sheet)  

SciTech Connect

Capabilities fact sheet for the National Center for Photovoltaics: Process Technology and Advanced Concepts: Organic Solar Cell that includes scope, core competencies and capabilities, and contact/web information.

Not Available

2011-06-01T23:59:59.000Z

205

Advanced cost-effective crystalline silicon solar cell technologies  

Science Journals Connector (OSTI)

An overview is given concerning current industrial technologies, near future improvements and medium-term developments in the field of industrially viable crystalline silicon terrestrial solar cell fabrication (without concentration).

J.F Nijs; J Szlufcik; J Poortmans; S Sivoththaman; R.P Mertens

2001-01-01T23:59:59.000Z

206

Solar electricity-a low power technology  

Science Journals Connector (OSTI)

The author examines the future potential of solar power with regard to its applications. He suggests that although the large size and small power output of solar cell electric systems are obstacles to high power usage, realistic low power applications can make a valuable contribution to world energy needs

L.B. Harris

1982-01-01T23:59:59.000Z

207

SEMATECH: A Model for Advancing Solar Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology SEMATECH: A Model for Advancing Solar Technology May 24, 2011 - 11:22am Addthis SEMATECH brings 14 companies together to help them share and collaborate in their most expensive and difficult manufacturing development projects. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs One of the hardest parts for start-up companies producing an emerging technology is the cost to test and develop more efficient manufacturing processes -- and to win the clean energy race, energy technologies not only need to be invented in America, but made in America too. That's why consortiums like SEMATECH in Albany, New York, are so important. Back in the '80s and '90s, SEMATECH breathed new life into the

208

Solar Cells, Wound Repair Winning GVC Technologies | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Cells, Wound Repair Winning GVC Technologies Solar Cells, Wound Repair Winning GVC Technologies March 26, 2010 Graduate student teams from the University of Arkansas and the University of Maryland earned first place in the energy and security categories at the 2010 GVC hosted by ORNL March 24-26. The competition, in its fourth year, attracts students developing new technologies and venture investors with expertise in the market. The first-prize winners each received $25,000. Douglas Hutchings, Stephen Ritterbush, and Seth Shumate from Arkansas won first place in the energy division for Silicon Solar Solutions. "Our method replaces the expensive top layer of solar cells with a thinner, large-grain polysilicon at lower temperatures, which reduces cost and is appealing to manufacturers," said Ritterbush.

209

SunShot Initiative: Regional Test Centers for Solar Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Test Centers for Solar Technologies Regional Test Centers for Solar Technologies Get the Adobe Flash Player to see this video. Text Alternative At the Regional Test Centers (RTCs) throughout the United States, DOE provides photovoltaic (PV) and concentrating photovoltaic (CPV) validation testing and systems monitoring for businesses and other industry stakeholders. The primary mission of the RTCs is to develop standards and guidelines for validating the performance and operation of PV modules and systems. The RTCs also serve as test beds for large-scale systems and provide independent validation of PV performance and reliability. By establishing the technical basis for bankability, the RTCs serve to increase investor confidence in PV technologies. These efforts support the SunShot Initiative's goal to increase the penetration of large-scale solar energy systems to enable solar-generated power to account for 15% to 18% of America's electricity generation by 2030.

210

26 September/October 2013 SOLAR TODAY solartoday.org Copyright 2013 by the American Solar Energy Society Inc. All rights reserved. eat powers theworld econo-  

E-Print Network (OSTI)

26 September/October 2013 SOLAR TODAY solartoday.org Copyright © 2013 by the American Solar Energy, carbon-free production of energy -- in different and com- plementary ways. Photovoltaic solar collectors solarcollectors.Usingsolarheattogenerateelec- tricityhasbeenproventhrough30yearsofopera- tion of the Solar Energy

211

Application of lasers in solar cell technologies  

Science Journals Connector (OSTI)

The possibilities for applying lasers to the fabrication of solar cells (the laser texturing of silicon surfaces and pulsed laser deposition of indium tin oxide (ITO) thin films) are demonstrated.

D. A. Zuev; A. A. Lotin; O. A. Novodvorsky

2012-10-01T23:59:59.000Z

212

Environmental Energy Technologies Division An Evaluation of Solar Valuation  

NLE Websites -- All DOE Office Websites (Extended Search)

An Evaluation of Solar Valuation An Evaluation of Solar Valuation Methods Used in Utility Planning and Procurement Processes Andrew Mills and Ryan Wiser Lawrence Berkeley National Laboratory - Report Summary - December 2012 The work described in this presentation was funded by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy and Office of Electricity Delivery and Energy Reliability 2 Environmental Energy Technologies Division Motivation and scope * Motivations: * As the cost of solar generation falls, solar is being considered as one of many viable options for supplying electricity * Recognizing and evaluating the economic value of solar will become progressively important for justifying its expanded use * Objectives: * Analyze the treatment of solar in current planning studies and

213

Technology transfer: solar power and distributed rural electrification  

Science Journals Connector (OSTI)

The research objective is to assess and transfer high efficiency multi-junction photovoltaic cell technology developed at the National Renewable Energy Lab to a start-up venture. The technology integrates a rooftop satellite-dish sized reflector that tracks and concentrates solar energy onto the target cell. There are still rural communities in the world where

Stephen W. Jordan; Tugrul U. Daim

2012-01-01T23:59:59.000Z

214

Shanghai Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd |  

Open Energy Info (EERE)

Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Comtec Solar Technology Ltd aka Comtec Solar System Group Ltd Jump to: navigation, search Name Shanghai Comtec Solar Technology Ltd (aka Comtec Solar System Group Ltd) Place Shanghai, Shanghai Municipality, China Zip 201300 Sector Solar Product Chinese manufacturer of monocrystalline silicon ingots and wafers for solar-use. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Shenzhen Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd | Open  

Open Energy Info (EERE)

Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd Xintian Solar Technology Co Ltd Sun Tech Solar Co Ltd Jump to: navigation, search Name Shenzhen Xintian Solar Technology Co Ltd (Sun Tech Solar Co Ltd) Place Shenzhen, Guangdong Province, China Sector Solar Product A company that specializes in research and manufacturing of solar PV products and a wide range of related applications. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Building Technologies Office: Building America Research for the American  

NLE Websites -- All DOE Office Websites (Extended Search)

for the American Home for the American Home The U.S. Department of Energy's (DOE) Building America program is helping to engineer American homes for better energy performance, durability, quality, affordability, and comfort. Loading the player ... Watch the video to learn more about how DOE's Building America program is helping to bridge the gap between homes with high energy costs and homes that are healthy, durable, and energy efficient. View the text version of the audio. Building America is a cost-shared industry partnership research program working with national laboratories and building science research teams to accelerate the development and adoption of advanced building energy technologies and practices in new and existing homes. The program works closely with industry partners to develop innovative, real-world solutions that achieve significant energy and cost savings for homeowners, builders, and contractors. Research is conducted on individual measures and systems, test houses, and community-scale housing in order to validate the reliability, cost-effectiveness, and marketability of technologies in new construction and home improvement projects. Find expert building science information based on Building America research in the Solution Center.

217

Beijing Four Seasons Solar Power Technology Co Ltd | Open Energy  

Open Energy Info (EERE)

Beijing Four Seasons Solar Power Technology Co Ltd Beijing Four Seasons Solar Power Technology Co Ltd Place Beijing, Beijing Municipality, China Sector Solar Product Company involved in selling solar power equipment in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

cracking problem in silicon cell technology," says Budiman. "The ALS provides us with a light that allows us to measure and characterize molecular stress in a very quantitative...

219

American Science and Technology Corporation AST | Open Energy Information  

Open Energy Info (EERE)

Technology Corporation AST Technology Corporation AST Jump to: navigation, search Name American Science and Technology Corporation (AST) Place Chicago, Illinois Zip 60622 Sector Services Product Illinois-based clean energy company providing research, development, manufacturing and business consultancy services to clients. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

China Singyes Solar Technologies Holdings Ltd formerly known as Singyes  

Open Energy Info (EERE)

Singyes Solar Technologies Holdings Ltd formerly known as Singyes Singyes Solar Technologies Holdings Ltd formerly known as Singyes Curtain Wall Engineering Jump to: navigation, search Name China Singyes Solar Technologies Holdings Ltd (formerly known as Singyes Curtain Wall Engineering) Place Zhuhai, Guangdong Province, China Sector Solar Product The company China Singyes is a curtain wall engineering company that has partnered with Solar Thin Films to build solar module capacity in China for the domestic BIPV market. Coordinates 22.277°, 113.556808° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.277,"lon":113.556808,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Eti Solar Energy Technologies Inc | Open Energy Information  

Open Energy Info (EERE)

Eti Solar Energy Technologies Inc Eti Solar Energy Technologies Inc Jump to: navigation, search Name Eti Solar Energy Technologies Inc. Place Edmonton, Canada Zip T5S 2K9 Sector Renewable Energy, Solar Product ETI SOLAR is a renewable energy company specializing in designing, manufacturing, marketing and installing solar power systems. Coordinates 36.979335°, -85.610864° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.979335,"lon":-85.610864,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

222

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

223

Breakout Session: Disruptive Solar Technologies: Frontiers in New Materials and Approaches  

Energy.gov (U.S. Department of Energy (DOE))

Disruptive solar technologies entering the PV and CSP landscape today hold the potential to greatly impact the future of solar energy conversion. This session will highlight new techniques,...

224

E-Print Network 3.0 - advanced technology solar Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

physics. Wafer silicon photovoltaic technology. Survey... Photovoltaics: Advanced Solar Energy Conversion, by M. A. Green (Springer, 2006) Solar Electricity, by T... Spring 2012...

225

Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd | Open Energy  

Open Energy Info (EERE)

Chengjiyongxin Solar Technology Engineering Co Ltd Chengjiyongxin Solar Technology Engineering Co Ltd Jump to: navigation, search Name Guangxi Chengjiyongxin Solar Technology Engineering Co Ltd Place Nanning, Guangxi Autonomous Region, China Zip 530022 Sector Solar Product Mainly engages in the research, production, sale, installing, maintenance of solar technology and integration of energy-saving engineering. Coordinates 23.26252°, 108.648003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.26252,"lon":108.648003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

226

Apricus Solar Co Ltd aka Focus Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd aka Focus Technology Co Ltd Ltd aka Focus Technology Co Ltd Jump to: navigation, search Name Apricus Solar Co Ltd (aka Focus Technology Co Ltd) Place Nanjing, Jiangsu Province, China Zip 210061 Sector Solar Product Designs, manufactures and exports solar tube thermal solar collectors, solar storage tanks, waste heat recovery systems, solar controllers and related components. References Apricus Solar Co Ltd (aka Focus Technology Co Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Apricus Solar Co Ltd (aka Focus Technology Co Ltd) is a company located in Nanjing, Jiangsu Province, China . References ↑ "Apricus Solar Co Ltd (aka Focus Technology Co Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Apricus_Solar_Co_Ltd_aka_Focus_Technology_Co_Ltd&oldid=342253

227

Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc | Open Energy  

Open Energy Info (EERE)

Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc Jump to: navigation, search Name Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc) Place Sarasota, Florida Zip 34243 Sector Solar Product Developing PV encapsulates, next generation solar cells, solar power storage, and LED lightings. References Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc) is a company located in Sarasota, Florida . References ↑ "Sunovia Energy Technologies Inc (formerly Sun Energy Solar Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Sunovia_Energy_Technologies_Inc_formerly_Sun_Energy_Solar_Inc&oldid=351820"

228

GCL Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu  

Open Energy Info (EERE)

Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Solar Energy Technology Holdings formerly GCL Silicon aka Jiangsu Zhongneng Polysilicon Jump to: navigation, search Name GCL Solar Energy Technology Holdings (formerly GCL Silicon, aka Jiangsu Zhongneng Polysilicon) Place Xuzhou, Jiangsu Province, China Zip 221131 Sector Solar Product China-based solar grade polysilicon producer. Coordinates 34.255489°, 117.190201° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.255489,"lon":117.190201,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

229

Trony Solar Corporation formerly Shenzhen Trony Science Technology  

Open Energy Info (EERE)

Trony Solar Corporation formerly Shenzhen Trony Science Technology Trony Solar Corporation formerly Shenzhen Trony Science Technology Development Co Ltd Jump to: navigation, search Name Trony Solar Corporation (formerly Shenzhen Trony Science & Technology Development Co Ltd) Place Shenzhen, Guangdong Province, China Zip 518029 Sector Solar Product China-based manufacturer of amorphous and crystalline solar cells, modules, and related application products. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

230

Shanghai Chaori Solar Energy Science Technology Development Co Ltd | Open  

Open Energy Info (EERE)

Shanghai Chaori Solar Energy Science Technology Development Co Ltd Shanghai Chaori Solar Energy Science Technology Development Co Ltd Jump to: navigation, search Name Shanghai Chaori Solar Energy Science & Technology Development Co Ltd Place Shanghai, Shanghai Municipality, China Zip 200063 Sector Solar Product Manufacturer of solar PV cells based on outsourced CRM mono-crystalline and CRM multi-crystalline materials, as well as lighting and other PV systems. Coordinates 31.247709°, 121.472618° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.247709,"lon":121.472618,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

Expansion and Improvement of Solar Water Heating Technology in China  

Open Energy Info (EERE)

Improvement of Solar Water Heating Technology in China Improvement of Solar Water Heating Technology in China Project Management Office Jump to: navigation, search Name Expansion and Improvement of Solar Water Heating Technology in China Project Management Office Place Beijing, Beijing Municipality, China Zip 100038 Sector Buildings, Solar Product The programme focuses on the development of high-quality and attractive-looking model designs for integrating solar water heaters (SWH) into buildings in China. Coordinates 39.90601°, 116.387909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.90601,"lon":116.387909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

232

Xiamen Topunive Technology Co Ltd TP Solar | Open Energy Information  

Open Energy Info (EERE)

Xiamen Topunive Technology Co Ltd TP Solar Xiamen Topunive Technology Co Ltd TP Solar Jump to: navigation, search Name Xiamen Topunive Technology Co Ltd (TP Solar) Place Xiamen, Fujian Province, China Zip 361022 Sector Solar Product Produce thin-film PV module based flexible solar lighting system, portable and mobile power supplier and other related products. Coordinates 24.45252°, 118.079117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.45252,"lon":118.079117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Federal technology alert. Parabolic-trough solar water heating  

SciTech Connect

Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

NONE

1998-04-01T23:59:59.000Z

234

Proceedings of the 1998 American Solar Energy Society annual conference  

SciTech Connect

The 91 papers in these proceedings are arranged under the following topical sections: Renewable energy in Latin America; PV research and development; PV systems and applications; PV array performance; Wind energy; Grid connection and net metering; PV utility issues; Rural and remote electrification; Concentrators and thermal power; Solar water heating systems; Solar water heating programs and evaluation; New concepts in collectors; Water treatment and distillation; Cooling and refrigeration; Cooking and drying; Solar chemistry and alternative fuels; Transportation; Measurement of solar radiation; Government and institutional programs; and Government issues of policy and finance. Papers have been processed separately for inclusion on the data base.

Campbell-Howe, R.; Cortez, T.; Wilkins-Crowder, B. (eds.)

1998-01-01T23:59:59.000Z

235

Vehicle Technologies Office Merit Review 2014: North American Power Electronics Supply Chain Analysis  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Synthesis Partners at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American power...

236

SolarBridge Technologies formerly SmartSpark Energy Systems | Open Energy  

Open Energy Info (EERE)

SolarBridge Technologies formerly SmartSpark Energy Systems SolarBridge Technologies formerly SmartSpark Energy Systems Jump to: navigation, search Name SolarBridge Technologies (formerly SmartSpark Energy Systems) Place Austin, Texas Zip 78731 Sector Solar Product Developing a micro-inverter for residential solar panels, and charge equalisers to improve life for battery-powered equipment. References SolarBridge Technologies (formerly SmartSpark Energy Systems)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarBridge Technologies (formerly SmartSpark Energy Systems) is a company located in Austin, Texas . References ↑ "SolarBridge Technologies (formerly SmartSpark Energy Systems)" Retrieved from "http://en.openei.org/w/index.php?title=SolarBridge_Technologies_formerly_SmartSpark_Energy_Systems&oldid=351355"

237

Solar Technology Acceleration Center (SolarTAC): Cooperative Research and Development Final Report, CRADA Number CRD-07-259  

SciTech Connect

This agreement allowed NREL to serve as an advisor on SolarTAC - a collaborative effort between Xcel Energy, NREL, and the University of Colorado at Boulder. The collaboration was formed to accelerate pre-commercial and early commercial solar energy technologies to the marketplace. Through this CRADA, NREL participated in the deployment of solar energy generation technologies and related solar equipment for research, testing, validation, and demonstration purposes.

Kramer, W.

2011-10-01T23:59:59.000Z

238

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Chameleon House solarhouse.mst.edu Missouri University of Science and Technology designed Chameleon House for the U.S. Department of Energy Solar Decathlon 2013 to epitomize an adaptable living environment. With versatile features that form a chameleon skin-and spaces designed to maximize flexibility, comfort, and convenience-the Chameleon House flexes easily to meet as many market and regional needs as possible. Design Philosophy Chameleon House rejects a paradigm of technology for technology's sake. Instead, its creators were guided by the belief that technology is important only to the extent that it significantly enhances a user's experience. The design avoids unnecessary complexity in favor of a simple approach that uses seamless engineering of systems to prove that

239

U.S. Department of Energy Solar Energy Technologies Program | Open Energy  

Open Energy Info (EERE)

Department of Energy Solar Energy Technologies Program Department of Energy Solar Energy Technologies Program Jump to: navigation, search Logo: U.S. Department of Energy Solar Energy Technologies Program Name U.S. Department of Energy Solar Energy Technologies Program Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Solar Topics Policies/deployment programs, Technology characterizations Website http://en.openei.org/wiki/Gate References U.S. Department of Energy Solar Energy Technologies Program[1] This article is a stub. You can help OpenEI by expanding it. References ↑ "U.S. Department of Energy Solar Energy Technologies Program" Retrieved from "http://en.openei.org/w/index.php?title=U.S._Department_of_Energy_Solar_Energy_Technologies_Program&oldid=375298"

240

Applying Chance Discovery with Dummy Event in Technology Monitoring of Solar Cell  

Science Journals Connector (OSTI)

One of the green energy, solar cell, is growing rapidly; the monitoring of ... scenarios, and to explain the overview of solar cell technology. Finally, the relationships between technology and companies, between...

Tzu-Fu Chiu; Chao-Fu Hong; Ming-Yeu Wang

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SOLAR ENERGY: ITS TECHNOLOGIES AND APPLICATIONS P  

NLE Websites -- All DOE Office Websites (Extended Search)

ENERGY: ENERGY: ITS TECHNOLOGIES AND APPLICATIONS P a u l C . Auh June 1978 BNL- 24832 7go75;a S o l a r Technology Group Department of Energy and Environment Brookhaven N a t i o n a l L a b o r a t o r y Upton, New York 11973 _ . . NOTICE ma report was prepared as an account of work sponsored by the United Stater Government. Neither the United Stater nor the United Stater Department of Encrw, nor any of their employees, nor any of their contractors, subcontractors, or their employees. makes any warranty, express or mplied, or assumes any legal liability or rcrponribdity far the accuracy. completeness or usefulness of any dormallon. apparatus, product or p r o w s daclased, or reprcsenU that 81s use would no1 infringe privately owned 6ghU. Date, Gs DISCLAIMER This report was prepared as an account of work sponsored by an

242

Solar grade silicon: Technology status and industrial trends  

Science Journals Connector (OSTI)

Abstract Crystalline silicon remains (all variants included) the dominant technology to manufacture solar cells. Currently (20122013) more than 90% of all solar cells produced are based on this vast group of technologies. The availability, the cost and the quality to the silicon feedstock is therefore a strategic issue of paramount importance for the entire photovoltaic sector. The silicon demand/supply balance has evolved from a situation of shortage with rocketing sales prices, in the years 20052008, to currently (20122013) an oversupply situation with record low price level for virgin polysilicon. Between these two extreme periods, production capacity has been multiplied by a factor of nearly 10. A better understanding of the prevailing dynamics in the polysilicon/silicon industry is needed in order for all players in the solar cell industry to make proper planning. In light of the past developments as well as the constraints imposed by a sound competition, the present article reviews the market trends for solar grade silicon including capacity, supply, demand and price. Furthermore, the article reviews the competing commercial technologies i.e. Siemens polysilicon, fluidized bed reactor/FBR polysilicon and upgraded metallurgical/UMG silicon and compares them in terms of maturity, improvement potential, product morphology, purity, applications and cost (actual vs. potential).

Gran Bye; Bruno Ceccaroli

2014-01-01T23:59:59.000Z

243

A Review of Sloped Solar Updraft Power Technology  

Science Journals Connector (OSTI)

Abstract The Solar Updraft Power Plant (SUPP) concept was successfully proven in the last few decades through many experimental and analytical approaches. However, the high investment cost compared to the plant efficiency and the limited height of the chimney due to the technological constraints are considered the main disadvantages of the SUPP. In order to overcome these problems, many novel concepts were proposed; One being the Sloped Solar Updraft Power Plant (SSUPP). This paper provides a comprehensive overall review for all SSUPP researches up-to-date including the principle with a description of the plant, physical process, theoretical and experimental studies.

Shadi Kalash; Wajih Naimeh; Salman Ajib

2014-01-01T23:59:59.000Z

244

Enabling Technologies for High Penetration of Wind and Solar Energy  

SciTech Connect

High penetration of variable wind and solar electricity generation will require modifications to the electric power system. This work examines the impacts of variable generation, including uncertainty, ramp rate, ramp range, and potentially excess generation. Time-series simulations were performed in the Texas (ERCOT) grid where different mixes of wind, solar photovoltaic and concentrating solar power provide up to 80% of the electric demand. Different enabling technologies were examined, including conventional generator flexibility, demand response, load shifting, and energy storage. A variety of combinations of these technologies enabled low levels of surplus or curtailed wind and solar generation depending on the desired penetration of renewable sources. At lower levels of penetration (up to about 30% on an energy basis) increasing flexible generation, combined with demand response may be sufficient to accommodate variability and uncertainty. Introduction of load-shifting through real-time pricing or other market mechanisms further increases the penetration of variable generation. The limited time coincidence of wind and solar generation presents increasing challenges as these sources provide greater than 50% of total demand. System flexibility must be increased to the point of virtually eliminating must-run baseload generators during periods of high wind and solar generation. Energy storage also becomes increasingly important as lower cost flexibility options are exhausted. The study examines three classes of energy storage - electricity storage, including batteries and pumped hydro, hybrid storage (compressed-air energy storage), and thermal energy storage. Ignoring long-distance transmission options, a combination of load shifting and storage equal to about 12 hours of average demand may keep renewable energy curtailment below 10% in the simulated system.

Denholm, P.

2011-01-01T23:59:59.000Z

245

The technology development status of the Solar Probe  

Science Journals Connector (OSTI)

The continuing development of new spacecraft technologies promises to enable the Solar Probe to be the first mission to travel in the atmosphere or corona of the sun. The most significant technology challenge is the thermal shield that would protect the spacecraft from the flux of 3000 suns (400? W/cm ? ** ??2) at the perihelion radius of 4 solar radii while allowing the spacecraft subsystems to operate at near room temperature. One of the key design issues of the shield is not simply surviving but operating at temperatures well above 2000K while minimizing the sublimation from the shield surface. Excessive sublimation could cause interference with the plasma science experiments that are fundamental to the Solar Probes scientific objectives of measuring the birth and development of the solar wind. The selection of a special type of carbon-carbon as the shield material seems assured at this time. Tests of this material in late 1996 were designed to confirm its optical surface properties and mass loss characteristics and the results are encouraging. The shield concept incorporates dual functions as a thermal shield and as a large high gain antenna. This latter function is important because of the difficult communications environment encountered within the solar corona. A high temperature feed concept under development is discussed here. The NASA guideline requiring non-nuclear power sources has introduced the requirement for alternative power sources. The current concept uses high temperature photovoltaic arrays as well as high energy low mass batteries to provide power during the perihelion phase of the mission. Testing of photovoltaic cells at high sun angles was completed in 1996 and the results are presented here. Finally a miniaturized science payload which relies on the latest advances in analyzer and detector technologies will be developed to minimize mass and power requirements.

James E. Randolph; Juan A. Ayon; Geoffrey D. Harvey; William A. Imbriale; Robert N. Miyake; Robert L. Mueller; Bill J. Nesmith; P. Richard Turner; Ray B. Dirling Jr.; Jeffrey C. Preble; Suraj Rawal; Wallace L. Vaughn

1997-01-01T23:59:59.000Z

246

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Water Heating Solar Water Heating http://www.solardecathlon.gov/blog/archives/2504 http://www.solardecathlon.gov/blog/archives/2504#comments Sat, 28 Sep 2013 00:49:13 +0000 http://www.solardecathlon.gov/blog/?p=2504 http://www.solardecathlon.gov/blog/archives/2504/feed 0 Technology Spotlight: Structural Insulated Panels http://www.solardecathlon.gov/blog/archives/1530 http://www.solardecathlon.gov/blog/archives/1530#comments Mon, 19 Sep 2011 17:42:18 +0000 http://www.solardecathlon.gov/blog/?p=1530 http://www.solardecathlon.gov/blog/archives/1530/feed 1 Technology Spotlight: Radiant Heating Systems http://www.solardecathlon.gov/blog/archives/1418 http://www.solardecathlon.gov/blog/archives/1418#comments Thu, 15 Sep 2011 19:52:35 +0000 http://www.solardecathlon.gov/blog/?p=1418

247

DOE Solar Decathlon: Team Austria: Vienna University of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Austria: Vienna University of Technology Austria: Vienna University of Technology LISI www.solardecathlon.at Team Austria's U.S. Department of Energy Solar Decathlon 2013 entry is a simple, smart, and sustainable house. Powered by a rooftop solar photovoltaic system, Living Inspired by Sustainable Innovation (LISI) generates more power than it uses over the course of a year. The house adapts to a range of climate zones and flexes to meet a variety of lifestyles. Design Philosophy In developing LISI, Team Austria was guided by a vision for a healthy, sustainable future and a concept that could adapt to many lifestyles and climates. Viewing the house as a "social creature" eager to find its place in a richly diverse community, Team Austria honors a sense of stewardship in the use of our planet's most precious resources.

248

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

249

The Department of Energy's Solar Industrial Program: New ideas for American industry  

SciTech Connect

As society becomes more and more sensitive to the environment, and energy supplies become more scarce, the application of solar energy is expanding into new areas. The industrial sector is one of the most difficult for solar energy to impact because of its technical diversity and economic requirements. However, the opportunities are still abundant. The Department of Energy's Solar Industrial Program is dedicated to advancing the applications of solar energy in this sector. Research and technology development activities are currently focused in three areas: solar process heat, advanced materials manufacturing, and destruction of chemical wastes. The Solar Energy Research Institute manages these activities for DOE with close interactions with other federal agencies, private industry, and universities. 7 figs.

Anderson, J.V.; Hauser, S.G.; Clyne, R.J.

1991-07-01T23:59:59.000Z

250

Science and Technology of BOREXINO: A Real Time Detector for Low Energy Solar Neutrinos SOLAR NEUTRINOS  

E-Print Network (OSTI)

BOREXINO, a real-time device for low energy neutrino spectroscopy is nearing completion of construction in the underground laboratories at Gran Sasso, Italy (LNGS). The experiment's goal is the direct measurement of the flux of 7Be solar neutrinos of all flavors via neutrino-electron scattering in an ultra-pure scintillation liquid. Seeded by a series of innovations which were brought to fruition by large scale operation of a 4-ton test detector at LNGS, a new technology has been developed for BOREXINO. It enables sub-MeV solar neutrino spectroscopy for the first time. This paper describes the design of BOREXINO, the various facilities essential to its operation, its spectroscopic and background suppression capabilities and a prognosis of the impact of its results towards resolving the solar neutrino problem. BOREXINO will also address several other frontier questions in particle physics, astrophysics and geophysics.

Borexino Collaboration; G. Alimonti

2000-12-11T23:59:59.000Z

251

Comparisons of technological innovation capabilities in the solar photovoltaic industries of Taiwan, China, and Korea  

Science Journals Connector (OSTI)

This paper investigates the technological innovation capabilities of the three Asian latecomers--namely Taiwan, China, and Korea--in the emergent solar photovoltaic industry. For this study, I deploy a new dataset of 75,540 solar photovoltaic patents ... Keywords: Catch-up, Innovation capability, Patent, Photovoltaic (PV), Solar, Technology platform

Ching-Yan Wu

2014-01-01T23:59:59.000Z

252

Co-authorship Networks in Development of Solar Cell Technology: International and Regional Knowledge Interaction  

Science Journals Connector (OSTI)

This paper examines the development of new science-based technology in the research area of nanostructured solar cells development a science-based technology with potential for advancing renewable energy technology

Katarina Larsen

2009-01-01T23:59:59.000Z

253

Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Municipality, China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV...

254

DOE Solar Decathlon: News Blog » Blog Archive » Technology Spotlight:  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Spotlight: Solar Water Heating Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry, Self-Reliance, had two roof-mounted solar hot water collector arrays (right) that circulated glycol through vacuum-insulated borosilicate glass

255

Near-Earth Asteroid Flyby Survey Mission Using Solar Sailing Technology  

Science Journals Connector (OSTI)

The purpose of this paper is to investigate the possibility of on asteroid (NEA) survey mission enabled by advanced solar sailing technology. The study is focused not on the solar sail spacecraft itself but on it...

Mai Bando; Hiroshi Yamakawa

2011-10-01T23:59:59.000Z

256

Trend Detection on Thin-Film Solar Cell Technology Using Cluster Analysis and Modified Data Crystallization  

Science Journals Connector (OSTI)

Thin-film solar cell, one of green energies, is growing ... . To detect the potential trends of this technology is essential for companies and relevant industries ... patterns, the potential trends of thin-film solar

Tzu-Fu Chiu; Chao-Fu Hong; Yu-Ting Chiu

2010-01-01T23:59:59.000Z

257

Multiple EFG Silicon Ribbon Technology as the Basis for Manufacturing Low-Cost Terrestrial Solar Cells  

Science Journals Connector (OSTI)

The development of a technology for production of low-cost silicon sheet substrates for solar cells based on the EFG process has been...2) solar cells prepared from this 10 cm wide ribbon...

B. Mackintosh; J. P. Kalejs; C. T. Ho; F. V. Wald

1981-01-01T23:59:59.000Z

258

Diesel Engine Strategy & North American Market Challenges, Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Hydrogen Shift Reaction Electricity Heat Renewables (Solar, Wind, Hydro) Nuclear Energy Carrier Propulsion System Conversion Electrification Electrification Energy...

259

Apollo Solar Energy Technology Holdings Ltd former RBI Holdings Ltd | Open  

Open Energy Info (EERE)

Ltd former RBI Holdings Ltd Ltd former RBI Holdings Ltd Jump to: navigation, search Name Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd) Place Kowloon, Hong Kong Sector Solar Product Hong Kong-based manufacturer of silicon-based thin film solar PV modules. References Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd) is a company located in Kowloon, Hong Kong . References ↑ "Apollo Solar Energy Technology Holdings Ltd (former RBI Holdings Ltd)" Retrieved from "http://en.openei.org/w/index.php?title=Apollo_Solar_Energy_Technology_Holdings_Ltd_former_RBI_Holdings_Ltd&oldid=342234

260

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

Therefore, solar energy is a very promising resource toand the solar energy is a sort of inexhaustible resource. In

Han, Tao

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

262

SAGE: Solar Neutrino Data from SAGE, the Russian-American Gallium Solar Neutrino Experiment  

DOE Data Explorer (OSTI)

SAGE is a solar neutrino experiment based on the reaction 71Ga + n goes to 71Ge + e-. The 71Ge atoms are chemically extracted from a 50-metric ton target of Ga metal and concentrated in a sample of germane gas mixed with xenon. The atoms are then individually counted by observing their decay back to 71Ga in a small proportional counter. The distinguishing feature of the experiment is its ability to detect the low-energy neutrinos from proton-proton fusion. These neutrinos, which are made in the primary reaction that provides the Sun's energy, are the major component of the solar neutrino flux and have not been observed in any other way. To shield the experiment from cosmic rays, it is located deep underground in a specially built facility at the Baksan Neutrino Observatory in the northern Caucasus mountains of Russia. Nearly 100 measurements of the solar neutrino flux have been made during 1990-2000, and their combined result is a neutrino capture rate that is well below the prediction of the Standard Solar Model. The significant suppression of the solar neutrino flux that SAGE and other solar neutrino experiments have observed gives a strong indication for the existence of neutrino oscillations. [copied from the SAGE homepage at http://ewi.npl.washington.edu/SAGE/SAGE.html

SAGE Collaboration

263

Stevens Institute of Technology Solar Decathlon 2011 Menu and Recipes  

NLE Websites -- All DOE Office Websites (Extended Search)

A taste of our home Hoboken, New Jersey 2 Stevens Institute of Technology Ecohabit Dinner Party Welcome WElcoME To oUR hoME The team from Stevens Institute of Technology in Hoboken, NJ, is delighted to share both our home and our favorite foods as a part of the U.S. Department of Energy Solar Decathlon 2013 competition. In 2012, our state endured the severe devastation to both our shores and local communities from Hurricane Sandy. In an effort to celebrate the seasonal treasures of our state's cuisine, and revive the "down the shore" tradition, our two menus feature the best of New Jersey produce, local delights, and historic boardwalk treats. Each of our menu items presents a unique blend of local, seasonal ingredients infused with

264

Salinity gradient solar pond technology applied to potash solution mining  

SciTech Connect

A solution mining facility at the Eddy Potash Mine, Eddy County, New Mexico has been proposed that will utilize salinity gradient solar pond (SGSP) technology to supply industrial process thermal energy. The process will include underground dissolution of potassium chloride (KCl) from pillars and other reserves remaining after completion of primary room and pillar mining using recirculating solutions heated in the SGSP. Production of KCl will involve cold crystallization followed by a cooling pond stage, with the spent brine being recirculated in a closed loop back to the SGSP for reheating. This research uses SGSP as a renewable, clean energy source to optimize the entire mining process, minimize environmental wastes, provide a safe, more economical extraction process and reduce the need for conventional processing by crushing, grinding and flotation. The applications of SGSP technology will not only save energy in the extraction and beneficiation processes, but also will produce excess energy available for power generation, desalination, and auxiliary structure heating.

Martell, J.A.; Aimone-Martin, C.T.

2000-06-12T23:59:59.000Z

265

NREL: TroughNet - Parabolic Trough Technology Solar Resource Data and Tools  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data and Tools Solar Resource Data and Tools Here you'll find resources on solar radiation data and tools for siting parabolic trough power plants. This includes solar radiation data for power plants in the United States and worldwide. You'll also find resources for direct solar radiation instrumentation. For an overview on solar resource terms and direct beam radiation used for concentrating solar power technologies, see NREL's Shining On Web site. U.S. Solar Radiation Resource Data The following resources include maps, and hourly metrological and solar resource data for parabolic trough power plants sites in the United States. NREL Concentrating Solar Power Resource Maps Features direct normal solar radiation maps of the southwestern United States, including state maps for Arizona, California, Colorado, New Mexico,

266

Force-optimized alignment for optical control of the Advanced Technology Solar Telescope  

Science Journals Connector (OSTI)

We present formalism and analysis of three active alignment reconstruction techniques applied to the Advanced Technology Solar Telescope. The three reconstructors generate optical...

Upton, Robert; Cho, Myung; Rimmele, Thomas

2010-01-01T23:59:59.000Z

267

Study of Mono or Polycrystalline Solar Cell Process Using Screen Printing Technology  

Science Journals Connector (OSTI)

The objectives of this contract were to develop a cost effective process for solar cell manufacturing. Dry etching technologies and general use of screen printing have...

J. Donon; H. Lauvray; P. Loubly; P. Aubril

1983-01-01T23:59:59.000Z

268

Big Data Projects on Solar Technology Evolution and Diffusion: Kickoff Meeting  

Energy.gov (U.S. Department of Energy (DOE))

Through the SEEDS program, seven projects are investigating strategies to accelerate the pace of change for solar energy technologies using cutting-edge analytical and computational tools, real...

269

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems  

Energy.gov (U.S. Department of Energy (DOE))

Advanced Heat/Mass Exchanger Technology for Geothermal and solar Renewable Energy Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

270

North American SynchroPhasor Initiative (NASPI) Technical Report- Synchrophasor Technology and Renewables Integration  

Energy.gov (U.S. Department of Energy (DOE))

This technical report was developed in June 2012 by the North American SynchroPhasor Initiative, a collaboration between the North American electric industry (utilities, grid operators, vendors and consultants), the North American Electric Reliability Corporation, academics, and the U.S. Department of Energy, to advance and accelerate the development and use of synchrophasor technology for grid reliability and efficiency. The material was produced for a renewables integration workshop, one of a series of NASPI technical workshops intended to educate and document the stakeholder community on the state of the art for key synchrophasor technology issues.

271

The Solar Power Tower Jlich A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbzl; G. Koll

2009-01-01T23:59:59.000Z

272

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

and V.U. Ho?mann. Photovoltaic Solar Energy Gen- eration.e?ciency for photovoltaic solar energy collections, reviewedenergy sources, the manufacturing of solar cells and photovoltaic

Wang, Chunhua

2011-01-01T23:59:59.000Z

273

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

glass. . . 18 Figure 2.4: IV curve of a solar cell. . . . .+ 05, Ric06]. IV curve The IV curve of a solar cell is thesuperposition of the IV curve of the solar cell diode in the

Wang, Chunhua

2011-01-01T23:59:59.000Z

274

Advanced Technology Solar Telescope 4.2 m Off-axis Primary Mirror Fabrication  

Science Journals Connector (OSTI)

Advanced optical surfacing technologies are applied for the Advanced Technology Solar Telescope 4.2 m off-axis primary mirror fabrication. A newly developed Stressed lap and IR...

Kim, Dae Wook; Oh, Chang Jin; Su, Peng; Burge, James H

275

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

276

China Singyes Solar Technologies Holdings Ltd formerly known...  

Open Energy Info (EERE)

with Solar Thin Films to build solar module capacity in China for the domestic BIPV market. Coordinates: 22.277, 113.556808 Show Map Loading map......

277

Efficiency enhancement of luminescent solar concentrations for photovoltaic technologies  

E-Print Network (OSTI)

Diaz, Chair Solar energy is a prominent renewable source ofalternative energy sources [Abb11]. Solar energy, radiantsolar energy will become a very prominent renewable source

Wang, Chunhua

2011-01-01T23:59:59.000Z

278

DOE to Provide up to $2.5 Million to Implement Solar Energy Technologies in  

NLE Websites -- All DOE Office Websites (Extended Search)

Image layout spacer Printer-friendly icon Printer-Friendly June 20, 2007 DOE to Provide up to $2.5 Million to Implement Solar Energy Technologies in Utah Salt Lake City, Utah, named 2007 Solar America City NEW YORK, NY � U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will make available nearly $2.5 million to thirteen cities to increase the use of solar power across the country, building on the President�s commitment to further the development of clean, renewable energy technologies. Cities selected for the Solar America Cities cooperative agreements will receive awards to promote solar-powered technologies throughout Salt Lake City, UT. These awards will further President Bush�s Solar America Initiative (SAI), which seeks to make solar energy cost-competitive with conventional sources of electricity by 2015.

279

Overview and Challenges of Thin Film Solar Electric Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

and Challenges of Thin and Challenges of Thin Film Solar Electric Technologies H.S. Ullal Presented at the World Renewable Energy Congress X and Exhibition 2008 Glasgow, Scotland, United Kingdom July 19-25, 2008 Conference Paper NREL/CP-520-43355 December 2008 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

280

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up to $17.6 Million for Solar Photovoltaic Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015. Increasing the use of alternative and clean energy technologies such as

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New GE Plant to Produce Thin Film PV Solar Panels Based on NREL New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology New GE Plant to Produce Thin Film PV Solar Panels Based on NREL Technology April 22, 2011 - 10:17am Addthis Photo courtesy of General Electric Photo courtesy of General Electric Minh Le Minh Le Program Manager, Solar Program Earlier this month, General Electric announced plans to enter the global marketplace for solar photovoltaic (PV) panels in a big way - and to do it, they will be using technology pioneered at the Department of Energy's National Renewable Energy Lab (NREL). The record-breaking Cadmium-Telluride (CdTe) thin film photovoltaic technology GE has chosen for its solar panels was originally developed more than a decade ago by a team of scientists led by NREL's Xuanzhi Wu, and

282

Advanced Methods for Incorporating Solar Energy Technologies into Electric Sector Capacity-Expansion Models: Literature Review and Analysis  

SciTech Connect

Because solar power is a rapidly growing component of the electricity system, robust representations of solar technologies should be included in capacity-expansion models. This is a challenge because modeling the electricity system--and, in particular, modeling solar integration within that system--is a complex endeavor. This report highlights the major challenges of incorporating solar technologies into capacity-expansion models and shows examples of how specific models address those challenges. These challenges include modeling non-dispatchable technologies, determining which solar technologies to model, choosing a spatial resolution, incorporating a solar resource assessment, and accounting for solar generation variability and uncertainty.

Sullivan, P.; Eurek, K.; Margolis, R.

2014-07-01T23:59:59.000Z

283

Solar Hot Water Technology: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings Program Buildings Program Office of Solar Energy Technologies Every home, commercial building, and indus- trial facility requires hot water. An enormous amount of energy is consumed in the United States producing and maintaining our supply of on-demand hot water; the residential and commercial sectors combined use 3 quads (quadrillion Btus) of energy per year, roughly 3% of the total U.S. energy consumption. As of 1998, 1.2 million systems have been installed on homes in the United States, with 6000 currently being added each year. Yet the potential for growth is huge, as solar hot water systems are supplying less than 2% of the nation's hot water. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors which are being installed in increasing numbers in

284

Wireless electricity (Power) transmission using solar based power satellite technology  

Science Journals Connector (OSTI)

In the near future due to extensive use of energy, limited supply of resources and the pollution in environment from present resources e.g. (wood, coal, fossil fuel) etc, alternative sources of energy and new ways to generate energy which are efficient, cost effective and produce minimum losses are of great concern. Wireless electricity (Power) transmission (WET) has become a focal point as research point of view and nowadays lies at top 10 future hot burning technologies that are under research these days. In this paper, we present the concept of transmitting power wirelessly to reduce transmission and distribution losses. The wired distribution losses are 70 75% efficient. We cannot imagine the world without electric power which is efficient, cost effective and produce minimum losses is of great concern. This paper tells us the benefits of using WET technology specially by using Solar based Power satellites (SBPS) and also focuses that how we make electric system cost effective, optimized and well organized. Moreover, attempts are made to highlight future issues so as to index some emerging solutions.

M Maqsood; M Nauman Nasir

2013-01-01T23:59:59.000Z

285

Technology Roadmap for Optical Communication A North American Perspective  

Science Journals Connector (OSTI)

Many things have changed since Optoelectronics Industry Development Association(OIDA) issued its first Roadmap Report on Optical Communication Technologies in 1993.[1] Major advances occurred in communication technologies

Arpad A. Bergh

1999-01-01T23:59:59.000Z

286

Liquid Propane Injection Technology Conductive to Today's North American Specification  

Energy.gov (U.S. Department of Energy (DOE))

Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil

287

Techno-economic evaluation of hybrid energy storage technologies for a solarwind generation system  

Science Journals Connector (OSTI)

Huazhong University of Science and Technology is planning to establish a hybrid solarwind generation dynamic simulation laboratory. Energy storage technologies will be vital to this system for load leveling, power quality control and stable output. In this paper, the technical feasibility of energy storage technologies for renewable intermittent sources like wind and solar generation is analyzed. Furthermore, the different combination modes of energy storage technologies are proposed. The involved energy storage technologies include superconducting magnetic energy storage systems (SMESs), flywheels (FWs), electrochemical super-capacitors (SCs) and redox flow batteries (RFBs). Based on that, the economic analysis of hybrid energy storage technologies is conducted.

L. Ren; Y. Tang; J. Shi; J. Dou; S. Zhou; T. Jin

2013-01-01T23:59:59.000Z

288

And the Award Goes to... Silicon Ink Solar Technology Supported by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And the Award Goes to... Silicon Ink Solar Technology Supported by And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator July 19, 2011 - 5:00pm Addthis Innovalight’s silicon ink technology | Photo courtesy of Innovalight Innovalight's silicon ink technology | Photo courtesy of Innovalight What does this mean for me? Pioneering startup Innovalight partnered with NREL to invent the first liquid silicon on the market. When paired with Innovalight's industrial screen printing process, this silicon ink technology offers a novel path to producing solar cells with higher conversion efficiencies at lower cost. A pair of presenters approach the microphone carrying a sealed envelope, a faint drum roll is heard, cameras zoom in on the anxious faces of the

289

And the Award Goes to... Silicon Ink Solar Technology Supported by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

And the Award Goes to... Silicon Ink Solar Technology Supported by And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator And the Award Goes to... Silicon Ink Solar Technology Supported by SunShot's PV Incubator July 19, 2011 - 5:00pm Addthis Innovalight’s silicon ink technology | Photo courtesy of Innovalight Innovalight's silicon ink technology | Photo courtesy of Innovalight What does this mean for me? Pioneering startup Innovalight partnered with NREL to invent the first liquid silicon on the market. When paired with Innovalight's industrial screen printing process, this silicon ink technology offers a novel path to producing solar cells with higher conversion efficiencies at lower cost. A pair of presenters approach the microphone carrying a sealed envelope, a faint drum roll is heard, cameras zoom in on the anxious faces of the

290

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Provide Up to $17.6 Million for Solar Photovoltaic DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015.

291

New World Record Achieved in Solar Cell Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

World Record Achieved in Solar Cell Technology World Record Achieved in Solar Cell Technology New World Record Achieved in Solar Cell Technology December 5, 2006 - 9:34am Addthis New Solar Cell Breaks the "40 Percent Efficient" Sunlight-to-Electricity Barrier WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner today announced that with DOE funding, a concentrator solar cell produced by Boeing-Spectrolab has recently achieved a world-record conversion efficiency of 40.7 percent, establishing a new milestone in sunlight-to-electricity performance. This breakthrough may lead to systems with an installation cost of only $3 per watt, producing electricity at a cost of 8-10 cents per kilowatt/hour, making solar electricity a more cost-competitive and integral part of our nation's

292

CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology  

E-Print Network (OSTI)

CERN News - A major contract has been signed for the supply of solar panels derived from CERN technology

CERN Video Productions; Marion Viguier

2012-01-01T23:59:59.000Z

293

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network (OSTI)

solar thermal technologies. ..Advances in solar thermal electricity technology. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

294

Solar Site Survey for the Advanced Technology Solar Telecope. I. Analysis of the Seeing Data  

E-Print Network (OSTI)

The site survey for the Advanced Technology Solar Telescope concluded recently after more than two years of data gathering and analysis. Six locations, including lake, island and continental sites, were thoroughly probed for image quality and sky brightness. The present paper describes the analysis methodology employed to determine the height stratification of the atmospheric turbulence. This information is crucial because day-time seeing is often very different between the actual telescope aperture (~30 m) and the ground. Two independent inversion codes have been developed to analyze simultaneously data from a scintillometer array and a solar differential image monitor. We show here the results of applying them to a sample subset of data from May 2003, which was used for testing. Both codes retrieve a similar seeing stratification through the height range of interest. A quantitative comparison between our analysis procedure and actual in situ measurements confirms the validity of the inversions. The sample data presented in this paper reveal a qualitatively different behavior for the lake sites (dominated by high-altitude seeing) and the rest (dominated by near-ground turbulence).

H. Socas-Navarro; J. Beckers; P. Brandt; J. Briggs; T. Brown; W. Brown; M. Collados; C. Denker; S. Fletcher; S. Hegwer; F. Hill; T. Horst; M. Komsa; J. Kuhn; A. Lecinski; H. Lin; S. Oncley; M. Penn; T. Rimmele; K. Streander

2005-08-31T23:59:59.000Z

295

Solar Hot Water Technology and Approach to Popularise the same  

Science Journals Connector (OSTI)

Indian scientists had realised the importance of solar energy just after Independence when a beginning to develop solar thermal devices was made at the National Physical Laboratory in early 1950s. At that time...

G. D. Sootha

1986-01-01T23:59:59.000Z

296

In Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar panels and a styl-  

E-Print Network (OSTI)

with a discussion about technology and nature. A field of solar panels to produce economic revenue to consider technology and energy, a Solar Garden exists among the panels. In contrast, an Asian-inspired PondIn Solis Pacem Dialogue between modern technology and nature is developed through celebrating solar

Goodman, Robert M.

297

Showcasing Solar Technologies from San Jos Companies at the Tech Museum of Innovation  

Energy.gov (U.S. Department of Energy (DOE))

In May 2007, the City of San Jos won a Solar America Showcase award from the US Department of Energy. This award offers technical assistance to help the City realize its ambitious solar technology deployment goals on large buildings and complexes mainly in the revitalized downtown area. In July 2007, a DOE Tiger Team led by Ccile Warner of the National Renewable Energy Laboratory (NREL) met with numerous city officials to discuss the Citys solar plans in detail and visit the various sites under consideration for solar technology adoption.

298

Americans for Solar Power PV Manufacturers Alliance ASPv PVMA | Open Energy  

Open Energy Info (EERE)

Manufacturers Alliance ASPv PVMA Manufacturers Alliance ASPv PVMA Jump to: navigation, search Name Americans for Solar Power-PV Manufacturers Alliance ((ASPv-PVMA) Place Tempe, Arizona Zip 85282 Sector Solar Product A non-profit research and education body aimed at creating the right market structures and programs to enable residential, commercial, governmental and industrial electricity consumers to have solar power options. Coordinates 33.42551°, -111.937419° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.42551,"lon":-111.937419,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output  

SciTech Connect

Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products.

Dinetta, L.C.; Hannon, M.H.

1995-10-01T23:59:59.000Z

300

Diesel Engine Strategy & North American Market Challenges, Technology and Growth  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rising Solar Energy Science and Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Rising Solar Energy Science and Technology Co Ltd Rising Solar Energy Science and Technology Co Ltd Jump to: navigation, search Name Rising Solar Energy Science and Technology Co Ltd Place Qinhuangdao, Hebei Province, China Zip 66600 Sector Solar Product Chinese solar module laminator manufacturer Coordinates 39.931011°, 119.597221° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.931011,"lon":119.597221,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

Shen Zhen Bico Solar Energy Technology Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Shen Zhen Bico Solar Energy Technology Co Ltd Shen Zhen Bico Solar Energy Technology Co Ltd Jump to: navigation, search Name Shen Zhen Bico Solar Energy Technology Co Ltd Place Shenzhen, China Zip 518000 Sector Solar Product A company engaged in research, manufacture and sales of Solar products. Coordinates 22.546789°, 114.112556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.546789,"lon":114.112556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

303

American Recovery and Reinvestment Act of 2009: Bioenergy Technologies Office Investments  

Energy.gov (U.S. Department of Energy (DOE))

The Bioenergy Technologies Office rewarded about $178 million in American Recovery and Reinvestment Act of 2009 funds; the projects accelerate advanced biofuels RD&D, speed the deployment of commercialization of biofuels, and further the U.S. bioindustry through market transformation.

304

Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

12/19/2013 eere.energy.gov 12/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel Cell Technologies Office * National trade association: Fuel Cell & Hydrogen Energy Association * State Coalition Example: Ohio Fuel Cell Coalition 3 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov * Clean Energy Patent Growth Index

305

Polymer solar cell as an emerging PV technology  

Science Journals Connector (OSTI)

In the presentation, I will present progresses in polymer solar cell in recent years. Advances in material, device structure, morphology are the focus of the talk. ...

Li, Gang

306

Advanced Materials and Nano Technology for Solar Cells  

E-Print Network (OSTI)

for public use." Photovoltaic Energy Conversion, 2003.and challenges." Photovoltaic Energy Conversion, ConferencePhotovoltaic Effect using a specific potential barrier and convert the solar energy

Han, Tao

2014-01-01T23:59:59.000Z

307

Applications of salinity gradient solar technologies in the Southwest -- An overview  

SciTech Connect

This paper is an overview of recent applications of salinity gradient solar technologies (SGST) in the Southwest and especially in the State of Texas. SGST is a generic title for using a salinity gradient in a body of water to suppress convection and collect solar energy for a desired application, for example, salinity gradient solar ponds. Following initial work in the early 1980s at the El Paso Solar Pond project and funding of the Texas Solar Pond Consortium by the State of Texas and the Bureau of Reclamation, several applications involving the use of salinity gradient solar technologies have emerged. These applications include a biomass waste to energy project using heat from a solar pond at Bruce Foods Corporation; an industrial process heat application for sodium sulfate mining near Seagraves, Texas; overwintering thermal refuges for mariculture in Palacios, Texas; a potential salt management project on the Brazos River near Abilene, Texas; and use of solar ponds for brine disposal at a water desalting project in a small colonia east of El Paso. This paper discusses salinity gradient solar technology requirements and the abundance of resources available in Texas and the Southwest which makes this an attractive location for the commercial development of salinity gradient projects. Barriers to development as well as catalysts are discussed before a brief overview of the projects listed above is provided.

Swift, A.H.P.; Lu, H. [Univ. of Texas, El Paso, TX (United States)

1996-12-31T23:59:59.000Z

308

Access to glacial and subglacial environments in the Solar System by melting probe technology  

Science Journals Connector (OSTI)

The use of power intensive devices such as ice-melting probes in the outer Solar System strongly points to radioactive units for ... traditional space application RHU (Radioactive Heater Unit) technology is based...

Stephan Ulamec; Jens Biele; Oliver Funke

2007-08-01T23:59:59.000Z

309

Introduction Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells  

Science Journals Connector (OSTI)

Although photovoltaic solar energy technology (PV) is not the sole answer to the challenges posed by the ever-growing energy consumption worldwide, this renewable energy option can make an important contributi...

Wilfried van Sark; Lars Korte

2012-01-01T23:59:59.000Z

310

Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar  

Energy.gov (U.S. Department of Energy (DOE))

The SunShot Physics of Reliability: Evaluating Design Insights for Component Technologies in Solar (PREDICTS) program is taking a physics- and chemistry-based approach to identifying failure modes...

311

Simulation of a green wafer fab featuring solar photovoltaic technology and storage system  

Science Journals Connector (OSTI)

A semiconductor wafer fab requires a significant amount of energy to maintain its daily operations. Solar photovoltaics (PV) is a clean and renewable technology that can be potentially used to power large wafer fabs. There exist some critical factors ...

Leann Sanders; Stephanie Lopez; Greg Guzman; Jesus Jimenez; Tongdan Jin

2012-12-01T23:59:59.000Z

312

Vienna University of Technology Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

,29 ,29 6 13,10 32 3 2,02 2 1,68 1,68 1,68 1,68 1,69 2,04 5 30 34 3 2,19 3 7 4 28 1,57 1,52 1,52 1,52 1,62 6 28 15 7 3,83 2 30 9 1,52 1,52 1,52 1,52 1,62 1 2 3 4 5 6 7 A B C D E 1 2 3 4 5 6 7 A B C D E SHEET TITLE LOT NUMBER: DRAWN BY: CHECKED BY: COPYRIGHT: CLIENT U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 WWW.SOLARDECATHLON.GOV TEAM NAME: ADDRESS: CONTACT: CONSULTANTS VIENNA UNIVERSITY OF TECHNOLOGY TEAM AUSTRIA CHECKER ALL PLANS ARE DRAWN IN METRIC SYSTEM (M/CM) 23.08.2013 05:02:04 A-101 SITE PLAN 109 VUT TEAM AUSTRIA FLORAGASSE 7 / 4 / ZI 407 1040 VIENNA AUSTRIA OFFICE@SOLARDECATHLON.AT WWW.SOLARDECATHLON.AT 0 2' 4' 8' MARK DATE DESCRIPTION 1 : 48 1 SITE PLAN ERSTELLT MIT DER STUDENTENVERSION EINES PRODUKTS VON AUTODESK ERSTELLT MIT DER STUDENTENVERSION EINES PRODUKTS VON AUTODESK E R S T E L L T M I T D E R S T U D E N T E N V E R S I O N E I N E S P R O D U K T S V O N A U T O D E S

313

OSEGT Eligibility Listing Procedure Updated 6/2/14 Other solar electric generating technologies (OSEGTs) are defined as all technologies other than  

E-Print Network (OSTI)

OSEGT Eligibility Listing Procedure Updated 6/2/14 Other solar of full safety certification. The eligibility process for other solar electric generating technologies suitable estimates of capacity and energy production prior to reservation of funds. #12;OSEGT

314

NREL: Technology Deployment - Updated Solar Resource Maps Available for  

NLE Websites -- All DOE Office Websites (Extended Search)

Updated Solar Resource Maps Available for India Updated Solar Resource Maps Available for India July 15, 2013 Through funding from the U.S. Department of Energy and U.S. Department of State, and in collaboration with India's Ministry of New and Renewable Energy, NREL has updated its 10-kilometer (km) solar resource maps for India. The new maps incorporate updated 10-km hourly solar resource data developed using weather satellite measurements combined with site-time specific solar modeling. Additionally, the maps expand the time of analysis by four years, from 2002-2007 to 2002-2011 and include enhanced aerosols information to improve estimates of direct normal irradiance. The data is available in both geographic information system and static map formats on NREL's website for both global horizontal irradiance and

315

Technical assessment of solar thermal energy storage technologies  

Science Journals Connector (OSTI)

Solar energy is recognized as one of the most promising alternative energy options. On sunny days, solar energy systems generally collect more energy than necessary for direct use. Therefore, the design and development of solar energy storage systems, is of vital importance and nowadays one of the greatest efforts in solar research. These systems, being part of a complete solar installation, provide an optimum tuning between heat demand and heat supply. This paper reviews the basic concepts, systems design, and the latest developments in (sensible and latent heat) thermal energy storage. Parameters influencing the storage system selection, the advantages and disadvantages of each system, and the problems encountered during the systems operation are highlighted.

Hassan E.S. Fath

1998-01-01T23:59:59.000Z

316

Rapid Deposition Technology Holds the Key for the World's Largest Manufacturer of Thin-Film Solar Modules (Fact Sheet)  

SciTech Connect

First Solar, Inc. has been collaborating with NREL since 1991, advancing its thin-film cadmium telluride solar technology to grow from a startup company to become one of the world's largest manufacturers of solar modules, and the world's largest manufacturer of thin-film solar modules.

Not Available

2013-08-01T23:59:59.000Z

317

Socio-economic prospects of solar technology utilization in Abbottabad, Pakistan  

Science Journals Connector (OSTI)

Abstract Social evaluation is placed at low levels of the technical architecture, for this reason the findings of this study would be useful. This study evaluates the socio-economic prospects of solar technology utilization (STU) in Abbottabad, Pakistan. The objective of the study is to underline the variables of existing and inclined trends for alternate technology that come into consideration to assess the potential for STU by the consumers. The study finds out the type of need of the consumers have that solar technology could address to enhance the quality of life. On the bases of income, comparative user friendliness and comparative cost analysis, the study suggests the STU is the best market competitive technologies available. The potential for STU exists at 65% as frequency distribution of the survey showed. This study is a contribution to practical knowledge of solar technology to mitigate the energy crisis in Pakistan.

Musarrat Jabeen; Muhammad Umar; Muhammad Zahid; Masood Ur Rehaman; Rubeena Batool; Khalid Zaman

2014-01-01T23:59:59.000Z

318

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994.  

E-Print Network (OSTI)

"Diffusion of Innovation: Solar Oven Use in Lesotho (Africa)." Grundy, William and Roy Grundy. Advances in Solar Cooking: Proceedings of the 2nd International Conference on Solar Cooker Use and Technology. Shyam S. Nandwani, ed. July 12-15, 1994. pp. 240-247. 1 DIFFUSION OF INNOVATION: SOLAR OVEN USE

Noble, William Stafford

319

Solar sail technology development and application to fast missions to the outer heliosphere  

Science Journals Connector (OSTI)

Solar sail technology holds the promise of significantly enhancing the interplanetary infrastructure for low-cost space exploration missions in the new millennium by exploiting the freely available space resource of solar radiation pressure for primary propulsion. Although the basic idea behind solar sailing appears simple challenging engineering problems have to be solved. Based on promising results obtained during system studies by DLR (in cooperation with NASA/JPL) and ESA a joint effort for the development and demonstration of the critical technologies on a co-funding basis was initiated in mid 1998. As a first major milestone in terms of demonstration a 20? m20?m breadboard model was developed manufactured and tested in December 1999. It demonstrates the feasibility of a fully deployable lightweight solar sail structure in simulated 0-g environment under ambient environmental conditions. The paper summarizes the main results of the ground testing and recommends next steps in solar sail technology development. In addition trajectory options for advanced solar sails utilizing the increased solar radiation pressure during a solar photonic assist near the Sun to realize fast flights to the outer heliosphere are outlined.

Manfred Leipold

2001-01-01T23:59:59.000Z

320

Project Profile: Forecasting and Influencing Technological Progress in Solar Energy  

Energy.gov (U.S. Department of Energy (DOE))

The University of North Carolina at Charlotte, along with their partners at Arizona State University and the University of Oxford, under theSolar Energy Evolution and Diffusion Studies (SEEDS)...

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of Inorganic Solar Cells by Nano-technology  

Science Journals Connector (OSTI)

Inorganic solar cells, as durable photovoltaic devices for harvesting electric energy from sun light, have received tremendous attention due to the fear of exhausting the earths energy resources and damaging ...

Yafei Zhang; Huijuan Geng; Zhihua Zhou; Jiang Wu; Zhiming Wang

2012-06-01T23:59:59.000Z

322

Physics and technologies of superhigh-efficiency tandem solar cells  

Science Journals Connector (OSTI)

The present status of superhigh-efficiency tandem solar cells has been reviewed and the key issues for realizing superhigh-efficiency have been discussed. The mechanical, stacked, three-junction cells of monol...

M. Yamaguchi

1999-09-01T23:59:59.000Z

323

Solar Trough Power Plants: Office of Power Technologies (OPT) Success Stories Series Fact Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Program Concentrating Solar Power Program Office of Solar Energy Technologies operate for 80% of the summer mid-peak hours and 66% of the winter mid-peak hours. A natural gas backup system supplements the solar capacity and contributes 25% of the plants' annual output. The SEGS plants use parabolic-trough solar collectors to capture the sun's energy and convert it to heat. In the SEGS design, the curved solar collectors focus sunlight onto a receiver pipe. Mechanical controls slowly rotate the collectors during the day, keeping them aimed at the sun as it travels across the sky. Synthetic oil flowing through the receiver pipe serves as the heat transfer medium. The collectors concentrate sunlight 30 to 60 times the normal intensity on the receiver, heating the oil as high as 735°F (390°C).

324

Concentrating Solar Power Program Technology Overview (Fact Sheet)  

SciTech Connect

Concentrating solar power systems use the heat from the sun's rays to generate electricity. Reflective surfaces concentrate the sun's rays up to 10,000 times to heat a receiver filled with a heat-exchange fluid, such as oil. The heated fluid is then used to generate electricity in a steam turbine or heat engine. Mechanical drives slowly turn the reflective surfaces during the day to keep the solar radiation focused on the receiver.

Not Available

2001-04-01T23:59:59.000Z

325

Technology of preparing anode films and the effect of co-sensitization in dye-sensitized solar cells  

Science Journals Connector (OSTI)

In recent years, with the increasing development of science and technology, solar cells have become a hot study. Especially,...-sensitized solar cells (DSSCs) have attracted much attention for...-cost and flexibl...

Jingchang Zhang; Zhenhai Fu; qian lv

2012-09-01T23:59:59.000Z

326

Development of a Technology Roadmap for Solar Thermal Cooling in Austria  

Science Journals Connector (OSTI)

Aim of the project was the development of a technology roadmap for solar thermal cooling in Austria involving the relevant market players. The main contents of the technology roadmap are the compilation of the initial position in terms of existing solar thermal cooling plants as well as relevant R&D results, identification of market potentials, technology development and the necessary measures for it. The technology developments are described in short term, medium term, and long term objectives as well as the connected market relevance for Austria and the economic development of this technology. Scenarios for a useful interaction with other sustainable thermal cooling technologies like cooling with district heating are analyzed to clarify the future position of solar thermal cooling in the Austrian energy supply. The market player of this technology reach from component manufactures (solar thermal collector, ab-/-adsorption chillers, ventilation systems, storages, control, etc.), business enterprises (hotels, breweries, laundries, supermarkets, etc.), building developers and consultancy engineers to research institutions, energy agencies and political decision makers. All of these groups were involved in the development of the technology roadmap by expert workshops and interviews.

Anita Preisler; Tim Selke; Hilbert Focke; Nicole Hartl; Georg Geissegger; Erich Podesser; Alexander Thr

2012-01-01T23:59:59.000Z

327

FCTO Announces Plenary Talk at American Society of Mechanical Engineers Energy Sustainability and Fuel Cell Technology Conference  

Energy.gov (U.S. Department of Energy (DOE))

The Fuel Cell Technologies Office announces a plenary talk by Dr. Sunita Satyapal, Director, Fuel Cell Technologies Office at the American Society of Mechanical Engineers (ASME) Energy Sustainability and Fuel Cell Technology Conference in Boston, Massachusetts, between June 30 and July 2, 2014.

328

Science, technology, environment, and competitiveness in a North American context  

SciTech Connect

Most economic activities pollute. Environmental regulations should serve the public good by providing incentives to reduce pollution caused by economic activity. Economic incentives include pollution taxes, subsidies for pollution abatement, and tradeable permits or allowances to pollute. Because of the political unacceptability of taxes and permits, much regulation imposes command and control measures and provides less incentive to minimize pollution. Efficient incentives would encourage pollution abatement up to the point where the cost of abatement equals the social and private benefit from the improvements in the environment. While these costs and benefits are difficult to measure, many analysts contend that the way environmental laws have been formulated and implemented in the US leads to very inefficient pollution control. This inefficiency can contribute to a decline in economic competitiveness in the long run, although economic studies do not support the pollution haven'' hypothesis. Better analysis (foresight) of the cost of transboundary pollution, significant in the Great Lakes region and along the US- Mexico border, as well as in rivers that flow between countries, is needed to formulate more effective policies and avoid sorry hindsight. Also, application of communal experience, technologies, and methods applied to shared problems can avoid costly duplication of searches for the optimal pollution abatement measures. 14 refs.

Trocki, L.K.

1991-01-01T23:59:59.000Z

329

Suitability of salt-gradient solar ponds for electrical power generation in the US Trust Territory of the Pacific Islands, Guam, and American Samoa  

SciTech Connect

The procedures and findings of a study to assess the suitability of salt-gradient solar ponds for base-load (firm) electricity generation in the US Trust Territory of the Pacific Islands (TTPI), Guam and American Samoa are described. The general conclusion is that solar pond power plants (SPPPs) are viable both technically and economically for some applications, possibly including atolls. The most practical immediate application would be to small and intermediate power users such as villages and airports. It is recommended that (1) at least one small SPPP be built immediately on a dry land site such as for the main village on Peleliu, Palau, (considered in this report) or at other identified feasible sites, and (2) that a design study be conducted to adapt the technology to atoll sites. This study was carried out by first reviewing all available literature on solar ponds and the regions concerned. All the regions in question were visited. Several sites were selected for specific study and SPPP conceptual designs were developed for these sites. These sites are (1) North Peleliu, Palau, with (2) Peleliu airport as an auxiliary site, (3) Aimeliik, Palau, and (4) atoll environments. Cultural, political, environmental and legal considerations were given equal weight with technical and economic factors, and locally resident persons were used as interpreters and liaisons. There exists strong support in the government and the community to develop these proposed site-specific SPPPs and land is available. Power needs were defined, construction and operation costs were calculated and performance was predicted for the site-specific designs. The results of the Palau site-specific studies were generalized to other areas and environments in the TTPI, Guam and American Samoa. An economic analysis of the SPPP conceptual design developed for Palau was made using the discounted cash flow method.

McCord, T.B.; Bathen, K.H.; Boesgaard, H.; Fanale, F.P.; McCord, C.S.; Scudder, R.J.; Weeks, D.D.; Yuen, J.W.L.

1982-11-01T23:59:59.000Z

330

Status, Technology and Development of Silicon Solar Cells at Iner  

Science Journals Connector (OSTI)

The current solar cells processing at INER are single crystal silicon with 1.22.8 ?-cm resistivity. They are thermal diffused n on p or p on n type cells with Ti/Pd/Ag metallization and Ta2O5 AR coating. Some wo...

S. S. Jao; H. H. Tseng; C. Cheng; Y. C. Tzeng

1981-01-01T23:59:59.000Z

331

DOE/EA-1622: Final Environmental Assessment for University of Nevada, Las Vegas Research Foundation Solar Technology Center (January 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Nevada, Las Vegas University of Nevada, Las Vegas Research Foundation SOLAR TECHNOLOGY CENTER January 2009 Final Environmental Assessment and Finding of No Significant Impact DOE/EA-1622 U.S. Department of Energy Golden Field Office National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 This Environmental Assessment was prepared on behalf of the U.S. Department of Energy by the University of Nevada, Las Vegas Research Foundation with contractual assistance from Ninyo & Moore, Inc. and MBP Consulting, LLC. Finding of No Significant Impact Solar Technology Center January 2009 Finding of No Significant Impact Solar Technology Center January 2009 Finding of No Significant Impact Solar Technology Center

332

A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology  

Science Journals Connector (OSTI)

Abstract The huge amount of solar energy available on Earth?s surface has heightened awareness in Concentrating Solar Power, and more particularly in hybrid concepts. The integrated solar combined cycle system (ISCCS) is one of the more promising hybrid configurations for converting solar energy into electricity and it might become the technology of choice in the near future. This article reviews the R&D activities and published studies since the introduction of such a concept in the 1990s. The review includes the current status and describes different hybridizations of solar energy with natural gas, coal and other renewable energy sources. Furthermore, it provides in-depth analysis of real and expected R&D finding.

Omar Behar; Abdallah Khellaf; Kamal Mohammedi; Sabrina Ait-Kaci

2014-01-01T23:59:59.000Z

333

BIPV technology application: Highlighting advances, tendencies and solutions through Solar Decathlon Europe houses  

Science Journals Connector (OSTI)

Abstract One of the main characteristics of the Solar Decathlon Europe houses is that they run exclusively on solar energy, as part of the requirements of this worldwide competition for universities. This obligation stimulates the university Teams to search for innovative solutions to integrate photovoltaic technologies in their houses, searching for the best options that combine design with energy efficiency, energy performance and construction. The main tendencies, advances and solutions are presented.

Joara Cronemberger; Monica Almagro Corpas; Isabel Cern; Estefana Caamao-Martn; Sergio Vega Snchez

2014-01-01T23:59:59.000Z

334

Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies  

Science Journals Connector (OSTI)

Domestic solar hot water heaters for residential use in the Phoenix metropolitan area, as well as throughout the state of Arizona, are eligible for tax rebates at the state and federal level, in addition to incentive programs through local utilities. ... All of these studies have focused on utilizing solar hot water heaters in European countries, with most focusing only on the environmental aspect (8-10) and very limited prior works examining both the economic and environmental impacts (7). ... The nanofluid collector is expected to have the same lifetime as the conventional solar collector since it utilizes the same material technologies as a conventional collector. ...

Todd P. Otanicar; Jay S. Golden

2009-06-23T23:59:59.000Z

335

Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

"This PowerPoint presentation was originally given by Dylan Grogan, principal investigator at Abengoa Solar, during a SunShot Initiative Concentrating Solar Power program review on April 24, 2013. The project, Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants, seeks to determine whether the inorganic fluids (molten salts) offer a sufficient reduction in levelized energy costs to pursue further development, and to develop the components required for their use. The presentation focuses on presenting conclusions from Phase 1 of the program and looks ahead to review Phase 2 activities."

336

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

SciTech Connect

Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam.

Mendelsohn, M.; Lowder, T.; Canavan, B.

2012-04-01T23:59:59.000Z

337

Sandia National Laboratories: Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

On April 4, 2012, in Current activates have built upon past efforts, most notably the Solar American Cities (now Communities) program in recent years. Solar American Cities...

338

Solar Thermionic Space Power Technology Testing: A Historical Perspective  

Science Journals Connector (OSTI)

This paper provides a brief overview of both the past and recent efforts aimed at the development and testing of solar thermionic space power systems. Recently the Air Force has been investigating the feasibility of developing a thermionic generator heated with a large inflatable solar concentrator for orbital space power missions with electrical power requirements that exceed 50 kWe. This concept analysis follows a similar study by the NASA Jet Propulsion Laboratory in the 1960s where the objective was a 500 We power generator for interplanetary probes. Details of the potential missions system designs and power specifications as well as results of ground tests and demonstrations are detailed and compared for each era.

Steven F. Adams

2006-01-01T23:59:59.000Z

339

Building Technologies Office: U.S. Department of Energy Solar Decathlon  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Solar Decathlon U.S. Department of Energy Solar Decathlon Photo of the Solar Village from 2011 Visitors tour the U.S. Department of Energy Solar Decathlon 2011 held in Washington, D.C., in September 2011. Credit: Stefano Paltera/U.S. Department of Energy Solar Decathlon The U.S. Department of Energy Solar Decathlon is an award-winning program that challenges 20 collegiate teams to design, build, and operate solar-powered houses that are cost-effective, energy-efficient, and attractive. In addition to showcasing the cost savings and environmental benefits of market-ready solar technologies, the event encourages participating students to think in new ways about incorporating practical, affordable clean-energy solutions into residential applications. The next event will take place October 3-13, 2013, at Orange County Great Park in Irvine, California. The competition houses will be open to visitors on eight days over two weekends:

340

Development of new materials for solar cells in Nagoya Institute of Technology  

Science Journals Connector (OSTI)

Solar cells with high efficiency and low price have long been desired, however, the commercially available solar cells are still expensive and the efficiencies of them are not high enough yet. A tandem solar cell was fabricated to develop a high-efficiency solar cell, and amorphous carbon solar cells were fabricated to develop a low-price solar cell.An AlGaAs/Si tandem solar cell was successfully fabricated by heteroepitaxial growth of AlGaAs on Si substrate. At first, a pn junction was formed in Si substrate by the impurity diffusion method. Then, an AlGaAs pn junction was grown by MOCVD. Since the AlGaAs pn junction has a graded band gap emitter, the photo-excited minority carriers can be collected efficiently. The energy conversion efficiency of AlGaAs/Si tandem solar cell was 21.4% (AM0) in spite of large lattice mismatch and difference in thermal expansion coefficients between AlGaAs and Si.Solar cells were fabricated by using amorphous carbon films deposited by Ion Beam Sputtering and Pulse Laser Deposition (PLD). The highest efficiency of 1.82% (AM0) was attained with a-C(IBS)/p-C(pyrolysis)/p-Si structure. Solar cells using a-C:H were also fabricated by PLD and Plasma CVD, and the efficiencies of them were 2.1% (AM1.5) and 0.04% (AM0), respectively.Other research activities on solar cells in Nagoya Institute of Technology are briefly mentioned.

Takashi Jimbo; Tetsuo Soga; Yasuhiko Hayashi

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A case study of the feasibility of using solar concentrating technologies for manufacturing ceramics  

Science Journals Connector (OSTI)

Abstract The goal of this case study is to determine for the first time the feasibility of using concentrated solar radiation as the source of thermal energy for the various high-temperature thermal processes involved in the manufacturing of construction ceramics. A specific test device, consisting of a volumetric-type solar receiver and a treatment chamber, has been designed and built for this purpose. This has been installed and operated in the 60 kWth solar furnace at the R&D Center Plataforma Solar de Almera. The methodology followed consisted of testing the device for the lowest temperature cycles first to go then for the higher ones successively. It has been concluded that the maximum temperature needed for thermal processes such as drying of raw materials, third-firing or double-firing is achievable with this solar technology (up to 1050 C). Further development of this solar device has turned out to be necessary to meet the requirements of higher-temperature processes like the single-firing one (1150 C) and to improve other aspects like the achievable heating and cooling rates or the uniformity of the thermal treatment over the sample, as well. This project studies the energy transfer processes between a non-conventional, high-quality energy source (concentrated solar radiation), a thermal fluid and a solid matter piece in the search of very specific optical and mechanical properties which confer it a commercial value. Though it iswas considered some time ago for the production of the so-called solar fuels (hydrogen, pure metals, etc..), this project explores for the first time the integration of very high-temperature solar energy technology into existing ceramics manufacturing industrial process.

Diego Martinez Plaza; Inmaculada Caadas Martinez; Gustavo Mallol Gasch; Flix Tllez Sufrategui; Jos Rodrguez Garca

2014-01-01T23:59:59.000Z

342

MHK Technologies/Sea Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Plant < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Technology Resource Click here Ocean Thermal Energy Conversion (OTEC) Technology Type Click here Closed-cycle Technology Description A stationary floating plant skims off a small percentage of the surface layer to use as the heat source. For the heat sink, the plant has a large diameter submerged pipe to pump up the heavier frigid water below. A small amount of heat is extracted from the warm water and a lesser amount is put into the cold water. The net difference in energy flow is turned into electricity and fresh water and/or fuels and other useful products. Electricity is transmitted to shore through an underwater cable.The warm surface ocean water is pumped to the boiler, which transfers heat to the working fluid, turning it into a high-pressure vapor. The turbine generator spins as the vapor rushes through it to reach the low-pressure condenser, which is cooled by the nearly freezing water brought up from the ocean depths. After condensing, the working fluid is sent back to the boiler to be reused and to repeat the cycle.

343

Capturing the Sun, Creating a Clean Energy Future (Brochure), SunShot, Solar Energy Technologies Program (SETP), U.S. Department of Energy (DOE)  

Energy.gov (U.S. Department of Energy (DOE))

Through partnerships with industry academia, and national laboratories, the DOE Solar Energy Technologies Program sponsors research and development (R&D) in addition to activities designed to accelerate solar market development and reduce the cost of solar power.

344

Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013  

SciTech Connect

The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

Lian, Tianquan [PI, Emory Univ.

2013-09-01T23:59:59.000Z

345

Chance discovery and scenario analysis for trend exploration on solar cell technology  

Science Journals Connector (OSTI)

It is essential for managers and stakeholders to well understand the trends of a certain technology so that managers can enhance the performance of a company and stakeholders can make appropriate decisions for investment. Solar cell, one of renewable energies, is growing at a fast pace with its unexhausted and non-polluted natures. Meanwhile, the patent data contains plentiful technical information from which is worth exploring to extract further knowledge. Therefore, an integrated approach of chance discovery and scenario analysis has been proposed so as to analyse the patent data, to form the scenarios and to explore the trends of solar cell technology. Finally, the technical topics of solar cell have been realised, the relation patterns between topics have been identified, the scenarios and trends of each topic have been revealed and the tendency of overall situation have also been observed.

Tzu-Fu Chiu

2011-01-01T23:59:59.000Z

346

2009 Technical Risk and Uncertainty Analysis of the U.S. Department of Energy's Solar Energy Technologies Program Concentrating Solar Power and Photovoltaics R&D  

SciTech Connect

The U.S. Department of Energy (DOE) Solar Energy Technologies Program (SETP) conducted a 2009 Technical Risk and Uncertainty Analysis to better assess its cost goals for concentrating solar power (CSP) and photovoltaic (PV) systems, and to potentially rebalance its R&D portfolio. This report details the methodology, schedule, and results of this technical risk and uncertainty analysis.

McVeigh, J.; Lausten, M.; Eugeni, E.; Soni, A.

2010-11-01T23:59:59.000Z

347

Stevens Institute of Technology Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

SHEET TITLE SHEET TITLE LOT NUMBER DRAWN BY CHECKED BY COPYRIGHT TEAM NAME ADDRESS CONTACT CONSULTANTS NONE: PROJECT IS PUBLIC DOMAIN MARK DATE DESCRIPTION CLIENT US DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 WWW.SOLARDECATHLON.GOV 1 OCT. 11, 2012 DESIGN DEVELOPMENT ARCHITECT OF RECORD NASTASI ARCHITECTS 321 NEWARK STREET HOBOKEN, NJ 07030 (P) (201) 653-2577 (F) (201) 698-0920 STRUCTURAL ENGINEER OF RECORD CRAFT ENGINEERING STUDIO CONSULTING STRUCTURAL ENGINEERS 350 ALBANY ST, SUITE 15D NEW YORK, NY 10280 (P) (646) 912-9867 2 NOV 26, 2012 DD RESUBMISSION 3 FEB 14, 2013 CONSTRUCTION DOCUMENTS MEP CONSULTING ENGINEERS BURO HAPPOLD CONSULTING ENGINEERS P.C. 100 BROADWAY NEW YORK, NY 10005 (P) (212) 334-2025 (F) (212) 334-5528

348

Historical development of concentrating solar power technologies to generate clean electricity efficiently A review  

Science Journals Connector (OSTI)

Abstract The conventional ways for generating electricity around the world face two main problems, which are gradual increase in the earth?s average surface temperature (global warming) and depleting fossil fuel reserves. So switching to renewable energy technologies is an urgent need. Concentrating solar power (CSP) technologies are one of renewable technologies that are able to solve the present and future electricity problems. In this paper the historical evolution for the cornerstone plants of CSP technologies to generate clean electricity was reviewed and the current projects worldwide of CSP technologies were presented to show that the CSP technologies are technically and commercially proven and have the possibility for hybridization with fossil fuel or integration with storage systems to sustain continuous operation similar to conventional plants. Among all solar thermal technologies parabolic trough is the most technically and commercially proven. It also has the possibility for hybridization since it is proven by operating in several commercial projects for more than 28 years. It has a high maturity level and able to provide the required operating heat energy either as a stand-alone or in hybrid systems at the lowest cost and lower economic risks. For this reason, this technology is dominant in the operational and under-construction projects. However, currently there is a trend toward employing the other CSP technologies in the future projects as a result of the improvement in their performance. The use of PTC technology in the operational CSP projects is 95.7% and has decreased to 73.4% for the under-construction projects. Meanwhile, the uses of Fresnel collector (LFC), Tower power (TSP) and Stirling dish (SDC) technologies in the operational projects are 2.07%, 2.24%, and 0% respectively and have increased to 5.74%, 20.82% and 0.052% respectively for the under-construction projects. For the development projects, the use of TSP technology has reached to 71.43%, compared to 28.57% for PTC.

Dhyia Aidroos Baharoon; Hasimah Abdul Rahman; Wan Zaidi Wan Omar; Saeed Obaid Fadhl

2015-01-01T23:59:59.000Z

349

Mass production of high efficiency selective emitter crystalline silicon solar cells employing phosphorus ink technology  

Science Journals Connector (OSTI)

Abstract Phosphorus ink technology has been demonstrated as a simple and cheap method to realize selective emitter (SE) crystalline silicon solar cells through mass production in a professional photovoltaic company. We have achieved an average conversion efficiency (?) of 19.01% with peak ? of 19.27% for the SE solar cells based on commercial-grade p-type silicon substrate, much higher than that of the homogeneous emitter counterparts whose average ? is 18.56%. The standard deviation of the performance for these SE solar cells is also smaller, indicating better repeatability of the phosphorus ink SE technology. Moreover, the SE silicon solar cells can well adapt to various Ag pastes while preserving high cell performance, which offers an opportunity to choose a cheap Ag paste as front metallization material. With the aid of PC1D, we have shown that the ? of the SE solar cells can be further improved as the sheet resistance in the illuminated area increases from the present value of 70 to 120?/?.

Sihua Zhong; Wenzhong Shen; Feng Liu; Xiang Li

2013-01-01T23:59:59.000Z

350

Planar micro-optic solar concentration  

E-Print Network (OSTI)

designs. 1.2. Solar Cell Technologies Solar technologiesinstallations [5]. A new solar cell technology layers III-Va 1cm 2 multijunction solar cell (Cyrium Technologies). The

Karp, Jason Harris

2010-01-01T23:59:59.000Z

351

Funding Opportunity Announcement: SunShot Technology to Market Incubator 10, SolarMat 3, and SUNPATH 2  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy SunShot Initiative is pleased to release the funding opportunity announcement (FOA) entitled SunShot Technology to Market SunShot Incubator 10, SolarMat 3, SUNPATH 2. This funding program will enable the widespread market penetration of highly impactful solar energy technologies and solutions through technology research, development, and demonstration to overcome technical, institutional and market challenges.

352

Solar energy prediction using linear and non-linear regularization models: A study on AMS (American Meteorological Society) 201314 Solar Energy Prediction Contest  

Science Journals Connector (OSTI)

Abstract In 2013, American Meteorological Society Committees on AI (artificial intelligence) Applications organized a short-term solar energy prediction competition aiming at predicting total daily solar energy received at 98 solar farms based on the outputs of various weather patterns of a numerical weather prediction model. In this paper, a methodology to solve this problem has been explained and the performance of ordinary LSR (least-square regression), regularized LSR and ANN(artificial neural network) models has been compared. In order to improve the generalization capability of the models, more experiments like variable segmentation, subspace feature sampling and ensembling of models have been conducted. It is observed that model accuracy can be improved by proper selection of input data segments. Further improvements can be obtained by ensemble of forecasts of different models. It is observed that the performance of an ensemble of ANN and LSR models is the best among all the proposed models in this work. As far as the competition is concerned, Gradient Boosting Regression Tree has turned out to be the best algorithm. The proposed ensemble of ANN and LSR model is able to show a relative improvement of 7.63% and 39.99% as compared to benchmark Spline Interpolation and Gaussian Mixture Model respectively.

S.K. Aggarwal; L.M. Saini

2014-01-01T23:59:59.000Z

353

Solar pond technology for large-scale heat processing in a Chilean mine  

Science Journals Connector (OSTI)

Coppermining is the largest industrial activity in Northern Chile a region that relies mostly on imported energy resources thus making the mining sector vulnerable to the rising cost of fuel oil and electricity. The extraction of copper is mostly accomplished by hydrometallurgy a three-step low energy process consisting of heap leaching concentration by solvent extraction and metal recovery by electro-winning. Since the content of copper in its ore tends to degrade as the mining operation proceeds higher leaching temperatures would be needed along with increasing energy requirements. In order to address this demand and considering that the region has one of the highest levels of solar radiation and clear skies the authors assessed the solar pond technology for rising the temperature of the leaching stream. The working principle of such technology is presented as well as its mathematical formulation restrictions and assumptions aiming to simulate the performance of a solar pond and to size a suitable setup. The results indicate that this technology can provide sufficient heat to raise the temperature to a range of 50 to 70?C throughout the year with an annual gross thermal supply of 626?GWh. In order to minimize the loss of water and salt from the pond a closed salt cycle is suggested. Savings of up to 59 000 tons of diesel oil per year and the avoidance of 164 000 tons of CO2 per year could be achieved with a solar pond effective area of 1.43 km2 reaching an average efficiency of 19.4%. Thus solar pond technology is suitable for attaining the goal of increasing the leaching temperature while diminishing fuel costs and greenhouse emissions.

F. Garrido; R. Soto; J. Vergara; M. Walczak; P. Kanehl; R. Nel; J. Garca

2012-01-01T23:59:59.000Z

354

Protecting Solar Rights in California Through an Exploration of the California Water Doctrine  

E-Print Network (OSTI)

solaraccess,rooftopsolartechnologyincludingtheinterestinrooftopsolartechnology. Thenumberofsolarsinvestmentinsolar technology. Additionally,theSolar

Fedman, Anna

2011-01-01T23:59:59.000Z

355

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

356

Bright Ideas in Solar Energy  

E-Print Network (OSTI)

J. (2014). New solar cell technology captures high-energyarticles/new-solar-cell- technology-captures-high-energy-solar concentrator surfaces. International Journal of Precision Technology,

Melville, Jo

2014-01-01T23:59:59.000Z

357

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network (OSTI)

in all thin-film solar cell technologies is that absorbancecells. These emerging solar cell technologies have undergonethe various solar cell technologies and their progress as

Phuyal, Dibya

2012-01-01T23:59:59.000Z

358

Solar Decathlon 2009 Highlights of Team Innovations and Cutting-Edge Building Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Solar Decathlon 2009 Highlights of Team Innovations and Cutting-Edge Building Technologies Cornell University * The house is built around a centralized core with all engineering systems in the mechanical / electrical closet at the center of the house. * The electrical energy is produced using 40 solar panels yielding 8kW nominally. * Thermal energy is collected by a system of 30 Silicon Solar SunMaxx U-30 evacuated tube collectors mounted on the south sides of two cylinders; this is the house's primary means of generating heat. * Exterior of house is CorTen corrugated steel. Copper pipes running behind the corrugations are heated by conduction, which then heats water as it passes in proximity to fill the hot water tank. This system

359

Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Concentrating Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Technical Report NREL/TP-6A20-51137 April 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview Michael Mendelsohn, Travis Lowder, and Brendan Canavan Prepared under Task No. SM10.2442

360

Exclusively Thermal Donor-doped Cz Wafers for Silicon Heterojunction Solar Cell Technology  

Science Journals Connector (OSTI)

Abstract In this paper, a first evaluation of the compatibility between thermal donor-doped Czochralski silicon and the hydrogenated amorphous Silicon/crystalline Silicon heterojunction technology, is presented. The wafers resistivity was adjusted thanks to the controlled thermal donors generation through 450C anneals of calculated durations, following a model detailed in this paper. Minority carrier lifetimes higher than 2 milliseconds, matching the requirements of the heterojunction technology used, were demonstrated. The solar cells were manufactured and efficiencies comparable to cells based on high quality Float-Zone substrates were obtained. The stability of the solar cells performances under illumination and temperature was also assessed, and revealed no degradation of the bulk quality even after prolonged illumination.

Frdric Jay; Jordi Veirman; Nora Najid; Delfina Muoz; Sbastien Dubois; Anis Jouini

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Assessing thermal energy storage technologies of concentrating solar plants for the direct coupling with chemical processes. The case of solar-driven biomass gasification  

Science Journals Connector (OSTI)

Abstract Dynamic simulation, design improvements and control issues in solar power plants might compete with special considerations on energy storing techniques. In order to provide the stability in production of power or chemical commodities in spite of discontinuity in the source of energy, i.e., sun, overall concerns in the details of solar power plant, competition and comparison of common storing technologies should be taken into account to ensure the effectiveness and continuity of the supply. This research activity is aimed at extending the study from the power generation purpose to the solar-supplied chemical commodities production, highlighting the limitations of certain well-established thermal energy storage techniques when concentrating solar is directly coupled with chemical processes. The (intrinsically dynamic and closed-loop) simulation of solar power plants and direct thermal energy storage technologies is performed for the direct thermal energy storage technologies and, only for the case of thermocline, it is coupled with computational fluid-dynamic (CFD) studies for the proper assessment of molten salt and steam temperature trends. To investigate benefits/restrictions of the storage technologies, the solar steam generation is integrated with the gasification of biomasses for syngas production. Also, first-principles dynamic model for the biomass gasifier is provided.

Flavio Manenti; Andres R. Leon-Garzon; Zohreh Ravaghi-Ardebili; Carlo Pirola

2014-01-01T23:59:59.000Z

362

Use of Municipal Assistance Programs to Advance the Adoption of Solar Technologies (Note: Real One)  

Energy.gov (U.S. Department of Energy (DOE))

This report serves as a tool for municipalities and organizations that are exploring programs to facilitate the installation of solar energy technologies at the local level. The report discusses programs being implemented in Berkeley, San Francisco, and Madison. Program design considerations, lessons learned from program administrators, and recommendations to consider when designing a municipal assistance program are included, but no program design is prescribed. Recommendations should be customized to serve the needs of a specific market.

363

DOE Solar Decathlon: News Blog » Blog Archive » Technology Spotlight:  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Spotlight: Structural Insulated Panels Technology Spotlight: Structural Insulated Panels Monday, September 19, 2011 Alexis Powers Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Structural insulated panels (SIPs) are prefabricated structural elements used to build walls, ceilings, floors, and roofs. Made of foam insulation sandwiched between two layers of structural board, SIPs provide a more airtight dwelling than a standard stud-frame house. This creates a quieter and more energy-efficient interior space. Various types of insulation can be used in SIPs in homes. The most common insulating material is polystyrene or polyisocyanurate foam. Foam insulation is added between two sheets of oriented strand board (an

364

ECr Technologies Inc formerly GeoSolar Energy Corporation | Open Energy  

Open Energy Info (EERE)

ECr Technologies Inc formerly GeoSolar Energy Corporation ECr Technologies Inc formerly GeoSolar Energy Corporation Jump to: navigation, search Name ECr Technologies Inc (formerly GeoSolar Energy Corporation) Place Lakeland, Florida Zip 33811 Sector Geothermal energy Product Manufactures and markets the GeoExchange geothermal heat pump systems. Coordinates 35.264796°, -89.724114° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.264796,"lon":-89.724114,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

The Relationship Between Teachers' Preparation and Perceived Level of Technology Use in Mathematics With Middle School African American Males  

E-Print Network (OSTI)

THE RELATIONSHIP BETWEEN TEACHERS PREPARATION AND PERCEIVED LEVEL OF TECHNOLOGY USE IN MATHEMATICS WITH MIDDLE SCHOOL AFRICAN AMERICAN MALES A Dissertation by SHERRIE DEE MASON Submitted to the Office of Graduate Studies of Texas A...&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2011 Major Subject: Curriculum and Instruction THE RELATIONSHIP BETWEEN TEACHERS PREPARATION AND PERCEIVED LEVEL OF TECHNOLOGY USE IN MATHEMATICS...

Mason, Sherrie Dee

2012-10-19T23:59:59.000Z

366

Approaches for identifying consumer preferences for the design of technology products : a case study of residential solar panels  

E-Print Network (OSTI)

This thesis investigates ways to obtain consumer preferences for technology products to help designers identify the key attributes that contribute to a product's market success. A case study of residential solar PV panels ...

Chen, Heidi Qianyi

2012-01-01T23:59:59.000Z

367

Low-Cost Photovoltaics: Luminescent Solar Concentrators And Colloidal Quantum Dot Solar Cells  

E-Print Network (OSTI)

vacuum technology that is required in crystalline solar cellTechnologies, Inc. SolarWindow Quantum Dot Solar Cells

Leow, Shin Woei

2014-01-01T23:59:59.000Z

368

Novel integration options of concentrating solar thermal technology with fossil-fuelled and CO2 capture processes  

Science Journals Connector (OSTI)

Concentrating solar thermal (CST) technology has been commercially proven in utility-scale power plants that have been in operation since the 1980s. CST uses reflecting surfaces to focus solar energy onto collectors, generating extreme heat than can be used for a variety of purposes. The current focus of CST is large-scale electrical power generation. However, new applications, such as solar fuels, are quickly gaining momentum. One key shortcoming of CST technology is its sensitivity to disruptions in sunlight availability over time. CST systems require either thermal energy storage or backup systems to operate during heavy cloud periods or at night. On the other hand, fossil-based energy systems have high availability and reliability, but they generate substantial CO2 emissions compared to equivalent CST processes. A novel solution would combine the benefits of CST technology and of fossil-fueled energy systems. Such a solar-fossil hybrid system would guarantee energy availability in the absence of sunlight or stored solar energy. The addition of carbon capture to these systems could reduce their carbon intensity to almost zero. This paper introduces three important solar-fossil hybrid energy systems: (1) Integrated Solar Combined Cycle (ISCC), (2) Solar-assisted post-combustion capture (SAPCAP), and (3) Solar gasification with CO2 capture. These novel concepts have great potential to overcome the inherent limitations of their component technologies and to achieve superior greenhouse gas mitigation techno-economic performance in large-scale applications. The paper describes the features of the three solar-fossil hybrid systems described earlier, discusses its advantages and disadvantages, and provides examples of applications. The goal of this manuscript is to introduce experts in the CCS and CST fields to the opportunities of integration between these technologies and their potential benefits.

Guillermo Ordorica-Garcia; and Alfonso Vidal Delgado; Aranzazu Fernandez Garcia

2011-01-01T23:59:59.000Z

369

Evaluation of remedial alternatives for the Solar Ponds Plume, Rocky Flats Environmental Technology Site  

SciTech Connect

This paper describes the process used to select a remedial alternative for handling contaminated groundwater emanating from the Solar Evaporation Ponds (Solar Ponds) at the Rocky Flats Environmental Technology Site (RFETS) and prevent it from reaching the nearest surface water body, North Walnut Creek. Preliminary results of field investigations conducted to provide additional information for the alternatives analysis are also presented. The contaminated groundwater is referred to as the Solar Ponds Plume (SPP). The primary contaminants in the SPP are nitrate and uranium; however, some metals exceed the site action levels at several locations and volatile organic compounds, originating from other sources, also have been detected. Currently the SPP, local surface water runoff, and infiltrated precipitation are collected by a trench system located downgradient of the Solar Ponds and pumped to three storage tanks. The water (two to three million gallons annually) is then pumped to an on-site treatment plant for evaporation at an approximate cost of $7.57 per liter.

Hranac, K.C. [Morrison Knudsen Corp., Golden, CO (United States). Rocky Flats Environmental Technology Site; Chromec, F.W.; Fiehweg, R. [Rocky Mountain Remediation Services, Golden, CO (United States). Rocky Flats Environmental Technology Site; Hopkins, J. [Rocky Mountain Remediation Services, Los Alamos, NM (United States)

1998-07-01T23:59:59.000Z

370

Bright Ideas in Solar Energy  

E-Print Network (OSTI)

J. (2014). New solar cell technology captures high-energyarticles/new-solar-cell- technology-captures-high-energy-

Melville, Jo

2014-01-01T23:59:59.000Z

371

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Energy's Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,Mexico Solar Irrigation Project. REVI a thermal storage subsystem in a solar total energy

Viswanathan, R.

2011-01-01T23:59:59.000Z

372

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

to the solar assisted water-to-water heat pump and using athan the solar assisted water-to-water heat pump, The solar

Viswanathan, R.

2011-01-01T23:59:59.000Z

373

A review of solar cooling technologies for residential applications in Canada  

Science Journals Connector (OSTI)

In the last two decades, the demand for residential cooling has increased exponentially, creating a significant demand on the electrical grid during the summer months. Between 1990 and 2008, the total Canadian residential floor area that requires cooling has almost tripled, while the total energy consumed for space cooling has more than doubled. The implementation of solar cooling systems could assist in reducing this energy consumption, and consequently, reduce greenhouse gas emissions released into the atmosphere as a result of the generation of the required electricity to power typical air conditioners. This paper presents a review of the solar cooling technologies that have been developed and implemented for use in residential and commercial applications. Related work conducted under the International Energy Agency is also described and a review of cooling installations both worldwide and Canada are discussed.

Christopher Baldwin; Cynthia A. Cruickshank

2012-01-01T23:59:59.000Z

374

The Catholic University of America, George Washington University, and American University Solar Decathlon 2011 Project Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 U.S. DEPARTMENT OF ENERGY SOLAR DECATHLON 2013 PRIMARY FACULTY CONTACT Bill Jelen School of Architecture and Planning The Catholic University of America 620 Michigan Ave., NE Washington, D.C. 20064 jelen@cua.edu (202) 344-5513 PRIMARY STUDENT CONTACT Kyle Noell School of Architecture and Planning The Catholic University of America 620 Michigan Ave., NE Washington, D.C. 20064 91noell@cardinalmail.cua.edu (301) 648-0506 As Built Project Manual 22 August 2013 Harvest Team Capitol dc www.teamcapitoldc.org Construction Documents Project Manual Published 8/22/2013 U.S. D.O.E. Solar Decathlon 2013 Page - 2 TABLE OF CONTENTS Table of Contents .................................................................................................................................................................. 2

375

The status of the solar neutrino problem and the Russian-American gallium experiment (SAGE)  

SciTech Connect

Perhaps the most outstanding discrepancy between prediction and measurements in current particle physics comes from the solar neutrino problem, in which a large deficit of high-energy solar neutrinos is observed. Many Nonstandard Solar Models have been invoked to try to reduce the predicted flux, but all have run into problems in trying to reproduce other measured parameters (e.g., the luminosity) of the Sun. Other explanations involving new physics such as neutrino decay and neutrino oscillations, etc. have also been proffered. Again, most of these explanations have been ruled out by either laboratory or astrophysical measurements. It appears that perhaps the most likely particle physics solution is that of matter enhanced neutrino oscillation, the Mikheyev-Smirnov-Wolfenstein (MSW) oscillations. Two new radiochemical gallium experiments, which have a low enough threshold to be sensitive to the dominant flux of low-energy p-p neutrinos, now also report a deficit and also favor a particle physics solution.

Bowles, T.J.

1994-04-01T23:59:59.000Z

376

Comparative analysis of concentrating solar power and photovoltaic technologies: Technical and environmental evaluations  

Science Journals Connector (OSTI)

Solar energy is an important alternative energy source to fossil fuels and theoretically the most available energy source on the earth. Solar energy can be converted into electric energy by using two different processes: by means of thermodynamic cycles and the photovoltaic conversion. Solar thermal technologies, sometimes called thermodynamic solar technologies, operating at medium (about 500C) and high temperatures (about 1000C), have recently attracted a renewed interest and have become one of the most promising alternatives in the field of solar energy utilization. Photovoltaic conversion is very interesting, although still quite expensive, because of the absence of moving components and the reduced operating and management costs. The main objectives of the present work are: to carry out comparative technical evaluations on the amount of electricity produced by two hypothetical plants, located on the same site, for which a preliminary design was made: a solar thermal power plant with parabolic trough collectors and a photovoltaic plant with a single-axis tracking system; to carry out a comparative analysis of the environmental impact derived from the processes of electricity generation during the whole life cycle of the two hypothetical power plants. First a technical comparison between the two plants was made assuming that they have the same nominal electric power and then the same total covered surface. The methodology chosen to evaluate the environmental impact associated with the power plants is the Life Cycle Assessment (LCA). It allows to analyze all the phases of the life cycle of the plants, from the extraction of raw materials until their disposal, following the from cradle to grave perspective. The environmental impact of the two power plants was simulated by using the software SimaPro 7.1, elaborated by PR Consultants and using the Eco-Indicator 99 methodology. Finally, the results of the analysis of the environmental impact are used to calculate the following parameters associated to the power plants: EPBT (Energy Pay-Back Time), CO2 emissions and GWP100 (Global Warming Potential over a 100year time horizon).

U. Desideri; F. Zepparelli; V. Morettini; E. Garroni

2013-01-01T23:59:59.000Z

377

Performance of the Second Generation Solar Heating System in the Solar House of the Eindhoven University of Technology  

Science Journals Connector (OSTI)

Summer 1981 a new solar heating system has been installed in the Solar House at the E.U.T. The principal features of the system are Philips VTR 261 evacuated tube collectors, integration of the auxiliary heate...

R. W. G. Bisschops; C. W. J. van Koppen

1984-01-01T23:59:59.000Z

378

An Update on White House Solar Panels and Our Solar Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

White House Solar Panels and Our Solar Program White House Solar Panels and Our Solar Program An Update on White House Solar Panels and Our Solar Program June 20, 2011 - 6:11pm Addthis Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program We cannot win the future without winning the clean energy race, which is why President Obama laid out a clear goal to increase our nation's clean energy share and continue to build a 21st century clean energy economy. Last fall, to underscore the Obama Administration's commitment to clean and renewable energy, Energy Secretary Steven Chu and CEQ Chair Nancy Sutley announced that the Energy Department would lead a project to install American solar photovoltaic panels and a solar hot water heater on the roof of the White House.

379

An Update on White House Solar Panels and Our Solar Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Update on White House Solar Panels and Our Solar Program An Update on White House Solar Panels and Our Solar Program An Update on White House Solar Panels and Our Solar Program June 20, 2011 - 6:11pm Addthis Ramamoorthy Ramesh Former Director, SunShot Initiative & Solar Energy Technologies Program We cannot win the future without winning the clean energy race, which is why President Obama laid out a clear goal to increase our nation's clean energy share and continue to build a 21st century clean energy economy. Last fall, to underscore the Obama Administration's commitment to clean and renewable energy, Energy Secretary Steven Chu and CEQ Chair Nancy Sutley announced that the Energy Department would lead a project to install American solar photovoltaic panels and a solar hot water heater on the roof of the White House.

380

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

associated wi the DOE/New Mexico Solar Irrigation Project.Solar Total Energy lity Sandia Laboratories, Albuquerque. New Mexico,

Viswanathan, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Project Profile: Plug-and-Play Solar Photovoltaics for American Homes  

Energy.gov (U.S. Department of Energy (DOE))

Fraunhofer USA, Inc., Center for Sustainable Energy Systems and its partners, under the Plug-and-Play Photovoltaics FOA, are developing technologies, components, systems, and standards that enable...

382

Solar Energy | Department of Energy  

Office of Environmental Management (EM)

Solar Energy Solar Energy Below are resources for Tribes on solar energy technologies. A Guide to Community Solar: Utility, Private, and Nonprofit Project Development A resource...

383

Solar Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Blog Solar Blog Solar Blog RSS January 16, 2014 The installation of this 2,244-panel photovoltaic system on Pinnacle Charter School in Denver, Colorado was fully funded by 456 American investors in 10 days. The project is expected to save the school $1.6 million in electricity costs over the next ten years.| Photo courtesy of Mosaic Simplifying Solar Project Financing Sunshot Incubator awardees such as Mosaic are revolutionizing America's solar landscape and helping the nation move to cleaner, more sustainable forms of energy that lower costs for consumers. October 22, 2013 Workers from Clean Power Research review a software platform that aims to lower the costs associated with connecting distributed solar electricity generation to the grid. The platform is one of several projects funded through the Energy Department's SunShot Incubator Program, which provides early-stage assistance to help small businesses cross technological barriers to commercialization. | Photo courtesy of Clean Power Research

384

New American Home 2010: Las Vegas, Nevada, Building Technologies Program (Brochure)  

SciTech Connect

This brochure details the New American Home 2010, which demonstrates the use of innovative building materials, cutting-edge design, and the latest construction techniques.

Not Available

2009-12-01T23:59:59.000Z

385

Preventing type 2 diabetes among Hispanic Americans: opportunities for optimizing mobile phone technology.  

E-Print Network (OSTI)

??The number of Americans diagnosed with diabetes is projected to double over the next fifty years (qtd. in Geiss and Cowie 25). The Centers for (more)

Lavayen, Stephanie Magdalena

2012-01-01T23:59:59.000Z

386

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

photovoltaic (PV) solar cell technology. It is defined asWEIGHT SOLAR CELLS Current solar array technologies provide

Shao, Qinghui

2009-01-01T23:59:59.000Z

387

Concentrating Solar Power SunShot Research and Development |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Assembly Solar Technology Jet Propulsion Laboratory: Low-Cost, Lightweight Solar Concentrators Massachusetts Institute of Technology: Concentrated Solar...

388

Development of Commercial Technology for Thin Film Silicon Solar Cells on Glass: Cooperative Research and Development Final Report, CRADA Number CRD-07-209  

SciTech Connect

NREL has conducted basic research relating to high efficiency, low cost, thin film silicon solar cell design and the method of making solar cells. Two patents have been issued to NREL in the above field. In addition, specific process and metrology tools have been developed by NREL. Applied Optical Sciences Corp. (AOS) has expertise in the manufacture of solar cells and has developed its own unique concentrator technology. AOS wants to complement its solar cell expertise and its concentrator technology by manufacturing flat panel thin film silicon solar cell panels. AOS wants to take NREL's research to the next level, using it to develop commercially viable flat pane, thin film silicon solar cell panels. Such a development in equipment, process, and metrology will likely produce the lowest cost solar cell technology for both commercial and residential use. NREL's fundamental research capability and AOS's technology and industrial background are complementary to achieve this product development.

Sopori, B.

2013-03-01T23:59:59.000Z

389

Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems  

Science Journals Connector (OSTI)

Abstract Building-Integrated (BI) solar thermal are systems which are integrated into the building, are a new tendency in the building sector and they provide multiple advantages in comparison with the Building-Added (BA) solar thermal configurations. The present investigation is a critical review about Life Cycle Analysis (LCA) studies of solar systems. Emphasis is given on the BI solar thermal installations. Studies about BA configurations and systems which produce electrical (or electrical/thermal) energy are also presented in order to provide a more complete overview of the literature. The influence of the BI solar thermal systems on building environmental profile is also examined. Critical issues such as ongoing standardization and environmental indicators are discussed. The results reveal that there is a gap in the field of LCA about real BI solar thermal (and solar thermal/electrical) installations. Thus, there is a need for more LCA studies which examine the BI solar thermal system itself and/or in conjunction with the building. Active systems which could provide energy for the building would be interesting to be studied. Investigations about the influence of the BI solar thermal systems on building life-cycle performance could also provide useful information in the frame of a more sustainable built environment.

Chr. Lamnatou; D. Chemisana; R. Mateus; M.G. Almeida; S.M. Silva

2015-01-01T23:59:59.000Z

390

Homeowners Guide to Financing a Grid-Connected Solar Electric System (Brochure), Solar Energy Technologies Program (SETP)  

Energy.gov (U.S. Department of Energy (DOE))

This guide provides an overview of the financing options that may be available to homeowners who are considering installing a solar electric system on their house.

391

Simplifying Solar Project Financing | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Simplifying Solar Project Financing Simplifying Solar Project Financing Simplifying Solar Project Financing January 16, 2014 - 10:05am Addthis The installation of this 2,244-panel photovoltaic system on Pinnacle Charter School in Denver, Colorado was fully funded by 456 American investors in 10 days. The project is expected to save the school $1.6 million in electricity costs over the next ten years.| Photo courtesy of Mosaic The installation of this 2,244-panel photovoltaic system on Pinnacle Charter School in Denver, Colorado was fully funded by 456 American investors in 10 days. The project is expected to save the school $1.6 million in electricity costs over the next ten years.| Photo courtesy of Mosaic Victor Kane Victor Kane Technology Manager, Solar Energy Technologies Office MORE RESOURCES

392

The White House Goes Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The White House Goes Solar The White House Goes Solar The White House Goes Solar October 5, 2010 - 9:53am Addthis Secretary Chu Secretary Chu Former Secretary of Energy As you know, President Obama has a strong commitment to American leadership in solar technologies and the jobs they will create. Through the Recovery Act, we're supporting the deployment of today's solar technologies. And we will double our renewable energy generation capacity by 2012. We're also investing in the next generation of solar power through the R&D programs at the Department of Energy. Today, we're taking an important next step. As we move toward a clean energy economy, the White House will lead by example. I'm pleased to announce that, by the end of this spring, there will be solar panels and a solar hot water heater on the roof of the White House.

393

The White House Goes Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The White House Goes Solar The White House Goes Solar The White House Goes Solar October 5, 2010 - 9:53am Addthis Secretary Chu Secretary Chu Former Secretary of Energy As you know, President Obama has a strong commitment to American leadership in solar technologies and the jobs they will create. Through the Recovery Act, we're supporting the deployment of today's solar technologies. And we will double our renewable energy generation capacity by 2012. We're also investing in the next generation of solar power through the R&D programs at the Department of Energy. Today, we're taking an important next step. As we move toward a clean energy economy, the White House will lead by example. I'm pleased to announce that, by the end of this spring, there will be solar panels and a solar hot water heater on the roof of the White House.

394

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Problems in Solar, Nuclear and Storage of Energy", N78-Heat Transfer in Solar Energy Storage", ASME Paper 77-HT-1976). ':' tion to Solar Heat Storage Systemsl! s N772665 3)

Viswanathan, R.

2011-01-01T23:59:59.000Z

395

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Heat Transfer in Solar Energy Storage", ASME Paper 77-HT-Liao, "Research on Solar Energy Storage Subsystems UtilizingA. Gauss, Jr. , "Solar Energy Storage", N77 17605 (1,976).

Viswanathan, R.

2011-01-01T23:59:59.000Z

396

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

1\\1, Touchais, "Solar Production of Electrical Energy", AD Boverall production cost of converting solar energy into aproduction processes, REVIEW: This paper describes many different types of collection systems for solar energy

Viswanathan, R.

2011-01-01T23:59:59.000Z

397

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Problems in Solar, Nuclear and Storage of Energy", N78-If the problems are going to exist in solar energy systems,and solar energy is used to thaw out the PCM during the summer, Major problems

Viswanathan, R.

2011-01-01T23:59:59.000Z

398

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

of Thin Film, Solar Thermal Energy Converters", N7728613, PBsts of Collectors of Solar Thermal Energy, A Steel Flat Platcharacteristics a solar thermal energy utili ng water l1ed

Viswanathan, R.

2011-01-01T23:59:59.000Z

399

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Long Life Terrestrial Solar Panel", 7 8N 24649, DOE/ JPLUno, "High Efficiency Solar Panel (HESP)! ', N78 10572, AD AOptically table for Flat Solar Panels", N78 17477 (1977). J.

Viswanathan, R.

2011-01-01T23:59:59.000Z

400

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

TI Reflective Solar Control Film on Windows Gains AcceptancelReflective Solar Control Film on Windows Gains Acceptance",optical window shutter, the cholesteric liquid crystal film

Viswanathan, R.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

source heat pump to the solar assisted water-to-water heathas a higher COP than the solar assisted water-to-water heat

Viswanathan, R.

2011-01-01T23:59:59.000Z

402

Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan Jos

403

Optical and Thermal Characterization of High Reflection Surfaces with Applcations in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and a high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan Jos

404

New solar cell technology captures high-energy photons more efficientl...  

NLE Websites -- All DOE Office Websites (Extended Search)

spectrum inefficiently. This is because blue photons - incoming particles of light that strike the solar cell - actually have excess energy that a conventional solar...

405

Ivanpah: World's Largest Concentrating Solar Power Plant  

Energy.gov (U.S. Department of Energy (DOE))

The Ivanpah Solar Energy Generating System has the capacity to generate 392 megawattsof clean electricity -- enough to power 94,400 average American homes. As the first commercial deployment of innovative power tower CSP technology in the United States, the Ivanpah project was the recipient of a $1.6 billion loan guarantee from the Departments Loan Programs Office (LPO).

406

The Catholic University of America, George Washington University, and American University Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

NONE: PROJECT IS NONE: PROJECT IS PUBLIC DOMAIN ARCHITECT OF RECORD WILLIAM JELEN, AIA 620 MICHIGAN AVE NE CROUGH CENTER WASHINGTON, DC 20064 TEL: 202.344.5513 STRUCTURAL ENGINEER BOB ALLISON, PE ARUP ENGINEERING 1120 CONNECTICUT AVENUE, NW., SUITE 200 WASHINGTON, DC 20036 TEL: 202.729.8220 MEP ENGINEER ARUP ENGINEERING 1120 CONNECTICUT AVENUE, NW., SUITE 200 WASHINGTON, DC 20036 TEL: 202.729.8220 TEAM CAPITOL DC TEAM CAPITOL DC 8/22/2013 4:49:57 PM CS-001 COVER SHEET 115 Team Capitol dc THE CATHOLIC UNIVERSITY OF AMERICA SCHOOL OF ARCHITECTURE 620 MICHIGAN AVENUE, NE. WASHINGTON, DC 20064 TEAM CAPITOL DC SOLAR DECATHLON 2013 PROJECT INFORMATION PROJECT NAME: HARVEST LOCATION: ORANGE COUNTY NATIONAL GREAT PARK IRVINE, CA OCCUPANCY: RESIDENTIAL CONSTRUCTION TYPE: TYPE V BUILDING TYPE: NEW SINGLE STORY MODULAR HOME

407

Environmental Assessment and Metrics for Solar: Case Study of SolFocus Solar Concentrator Systems  

E-Print Network (OSTI)

investment metric for solar technologies is discussed as afresnel concentrator solar technology in 2005 [13], one ofone installed to the grid; solar technology installed at the

Reich-Weiser, Corinne; Dornfeld, David; Horne, Steve

2008-01-01T23:59:59.000Z

408

Southern California Institute of Architecture and California Institute of Technology Solar Decathlon 2011 Construction Drawings  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 WWW.SOLARDECATHLON.GOV SOUTHERN CALIFORNIA INSTITUTE OF ARCHITECTURE scical2013@gmail.com www.scical2013.com SCI-ARC / CALTECH #101 DATE: 08.22.2013 SUBMISSIONS: CALIFORNIA INSTITUTE OF TECHNOLOGY TEAM SCI-ARC / CALTECH 960 EAST 3RD STREET LOS ANGELES, CA 90013 1200 EAST CALIFORNIA BOULEVARD PASADENA, CA 91125 STRUCTURAL ENGINEERS BURO HAPPOLD CONSULTING ENGINEERS, INC. 9601 JEFFERSON BLVD. STE B CULVER CITY, CA 90232. TEL: 310.945.4800 BUILDING CONSTRUCTION RJC BUILDERS, INC. 3509 W 6TH ST. LOS ANGELES, CA 90020 TEL: 213.388.9327 REVISIONS: DESIGN DOCUMENTATION SET 10/11/2012 Dynamic Augmented Living Environment SHEET TITLE A B C D E 1 2 3 4 5 6 7 CONSTRUCTION DOCUMENTATION SET 02/14/2013 AS-BUILT SET 08/22/2013 8/22/2013 3:35:22 PM G-000 COVER DANIEL LEE SCI-ARC/CALTECH SOLAR DECATHLON 2013

409

Solar thermal upper stage technology demonstrator liquid hydrogen storage and feed system test program  

Science Journals Connector (OSTI)

The Solar Thermal Upper Stage Technology Demonstrator (STUSTD) Liquid Hydrogen Storage and Feed System (LHSFS) Test Program is described. The test program consists of two principal phases. First an engineering characterization phase includes tests performed to demonstrate and understand the expected tank performance. This includes fill and drain; baseline heat leak; active Thermodynamic Vent System (TVS); and flow tests. After the LHSFS performance is understood and performance characteristics are determined a 30 day mission simulation test will be conducted. This test will simulate a 30 day transfer mission from low earth orbit (LEO) to geosynchronous equatorial orbit (GEO). Mission performance predictions based on the results of the engineering characterization tests will be used to correlate the results of the 30 day mission simulation.

E. C. Cady

1997-01-01T23:59:59.000Z

410

Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)  

SciTech Connect

Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

Jorgenson, J.; Denholm, P.; Mehos, M.

2014-06-01T23:59:59.000Z

411

Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard  

SciTech Connect

Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brown has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.

Jorgenson, J.; Denholm, P.; Mehos, M.

2014-05-01T23:59:59.000Z

412

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Systems for Solar Thermionic Converters!! , AD 922869 (Performance of a Thermionic Converter Module Utilizing

Viswanathan, R.

2011-01-01T23:59:59.000Z

413

Acciona Solar Technology Performance Evaluation: Cooperative Research and Development Final Report, CRADA Number CRD-10-384  

SciTech Connect

Under this agreement, NREL will work with Acciona to conduct joint testing, evaluation, and data collection related to Acciona's solar technologies and systems. This work includes, but is not limited to, testing and evaluation of solar component and system technologies, data collection and monitoring, performance evaluation, reliability testing, and analysis. This work will be conducted at Acciona's Nevada Solar One (NSO) power plant and NREL test facilities. Specific projects will be developed on a task order basis. Each task order will identify the name of the project and deliverables to be produced under the task order. Each task order will delineate an estimated completion date based on a project's schedule. Any reports developed under this CRADA must be reviewed by both NREL and Acciona and approved by each organization prior to publication of results or documents.

Mehos, M. S.

2014-01-01T23:59:59.000Z

414

Solar assisted cooling with sorption systems: status of the research in Mexico and Latin America  

Science Journals Connector (OSTI)

Solar refrigeration projects both national and international with sorption and other refrigeration systems have been developed in Mexico and other Latin American countries in the last 15 years. A review of the main projects, both for solar cooling and refrigeration and the results obtained are presented in this paper. A methodology where 19 solar technologies for cooling were identified is also presented. Although solar cooling is still not an economically viable technology, the advances made and the experience gained in the projects described and the improved systems envisaged, will make solar refrigeration systems play an important role in the future.

Roberto Best; Isaac Pilatowsky

1998-01-01T23:59:59.000Z

415

Rapid Deposition Technology Holds the Key for the World's Largest Solar Manufacturer (Fact Sheet)  

SciTech Connect

Thanks in part to years of collaboration with the National Renewable Energy Laboratory (NREL), a manufacturer of thin-film solar modules has grown from a small garage-type operation to become the world's largest manufacturer of solar modules. First Solar, Inc. now manufactures cadmium telluride (CdTe) solar modules throughout the world, but it began in Ohio as a small company called Solar Cells, Inc.

Not Available

2010-10-01T23:59:59.000Z

416

Energy Department Announces $9 Million to Lower Costs, Increase Performance of Solar Energy Systems  

Office of Energy Efficiency and Renewable Energy (EERE)

Supporting the Administrations effort to make solar energy more affordable and accessible for all Americans, the Energy Department today announced more than $9 million in funding for breakthrough research and development projects that will advance the reliability and durability of solar photovoltaic (PV) technologies.

417

Integrating bibliometrics and roadmapping methods: A case of dye-sensitized solar cell technology-based industry in China  

Science Journals Connector (OSTI)

Abstract Emerging industries are attracting increasing attention as they engage in innovation activities that transgress the boundaries of science and technology. Policy makers and industrial communities use roadmapping methods to predict future industrial growth, but the existing bibliometric/workshop methods have limitations when analyzing the full-lifecycle industrial emergence, including the transitions between science, technology, application, and the mass market. This paper, therefore, proposes a framework that integrates bibliometrics and a technology roadmapping (TRM) workshop approach to strategize and plan the future development of the new, technology-based industry. The dye-sensitized solar cell technology-based industry in China is selected as a case study. In this case, the bibliometrics method is applied to analyze the existing position of science and technology, and TRM workshops are used to strategize the future development from technology to application and marketing. Key events and impact on the development of the new, technology-based industry have been identified. This paper will contribute to the roadmapping and foresight methodology, and will be of interest to solar photovoltaic industry researchers.

Xin Li; Yuan Zhou; Lan Xue; Lucheng Huang

2014-01-01T23:59:59.000Z

418

Subscriber access provided by RICE UNIV Environmental Science & Technology is published by the American Chemical  

E-Print Network (OSTI)

energy generation, and medical imaging applications. Most QDs consist of a heavy metal core/shell coated delivery, solid state lighting, and solar cells (1-5). They are available in various sizes and compositions

Alvarez, Pedro J.

419

Solar Physics A Journal for Solar and Solar-  

E-Print Network (OSTI)

. With society's increased dependence on space-based technology, much of which is at risk due to solar activity1 23 Solar Physics A Journal for Solar and Solar- Stellar Research and the Study of Solar-010-9653- x Solar Polar Fields During Cycles 21??? 23: Correlation with Meridional Flows #12;1 23 Your article

Padmanabhan, Janardhan

420

State of Art of Small Scale Solar Powered ORC Systems: A Review of the Different Typologies and Technology Perspectives  

Science Journals Connector (OSTI)

Abstract Solar thermoelectric, even for small sizes, is continuing to garner more attention, by virtue of maturation of small size organic Rankine cycle generators, and of small size absorption chiller even if cost and reliability are still not optimal. Indeed, solar thermal power technology improvement would consent to stimulate an ambit already present in Europe and Italy with a well-known tradition and established leadership and efforts focused on a single solar technology would bring to positive effects concerning controllable electric and thermal energy uses. In this context, the present work tries to summarize the possible cycles and fluids that can be applied in a small solar thermal power plant. Despite a plethora of simulated and experimental cycles and fluids, the simplest cycle using near isentropic fluids seems to be the best choice for a small ORC-based CHP system, even if particular attention has to be done to all the sizing parameters (electricity, heating and cooling demand; area and type of solar collector; flow and temperature of the thermal carrier; flow, temperature and pressure of the working fluid; storage volumes; etc.). Indeed, efficiency and reliability of the reported systems are very different, but, it seems that global efficiency of even more than 10% and global cost of even less than 10,000 /kW can be obtained even at size of few kW if adequate systems are constructed and managed.

M. Villarini; E. Bocci; M. Moneti; A. Di Carlo; A. Micangeli

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Polymer and organic solar cells viewed as thin film technologies: What it will take for them to become a success outside academia  

Science Journals Connector (OSTI)

Abstract The polymer and organic solar cell technology is critically presented in the context of other thin film technologies with a specific focus on what it will take to make them a commercial success. The academic success of polymer and organic solar cells far outweigh any other solar cell technology when judging by the number of scientific publications whereas the application of polymer and organic solar cells in real products is completely lacking. This aspect is viewed as a sign of the polymer and organic solar cell field as being more complex and less mature and it raises the question of whether an organic analog to a successful inorganic technology is forcibly needed and indeed whether it is at all worth exploring beyond academia.

Frederik C. Krebs; Mikkel Jrgensen

2013-01-01T23:59:59.000Z

422

Reaching Grid Parity Using BP Solar Crystalline Silicon Technology: A Systems Class Application  

SciTech Connect

The primary target market for this program was the residential and commercial PV markets, drawing on BP Solar's premium product and service offerings, brand and marketing strength, and unique routes to market. These two markets were chosen because: (1) in 2005 they represented more than 50% of the overall US PV market; (2) they are the two markets that will likely meet grid parity first; and (3) they are the two market segments in which product development can lead to the added value necessary to generate market growth before reaching grid parity. Federal investment in this program resulted in substantial progress toward the DOE TPP target, providing significant advancements in the following areas: (1) Lower component costs particularly the modules and inverters. (2) Increased availability and lower cost of silicon feedstock. (3) Product specifically developed for residential and commercial applications. (4) Reducing the cost of installation through optimization of the products. (5) Increased value of electricity in mid-term to drive volume increases, via the green grid technology. (6) Large scale manufacture of PV products in the US, generating increased US employment in manufacturing and installation. To achieve these goals BP Solar assembled a team that included suppliers of critical materials, automated equipment developers/manufacturers, inverter and other BOS manufacturers, a utility company, and University research groups. The program addressed all aspects of the crystalline silicon PV business from raw materials (particularly silicon feedstock) through installation of the system on the customers site. By involving the material and equipment vendors, we ensured that supplies of silicon feedstock and other PV specific materials like encapsulation materials (EVA and cover glass) will be available in the quantities required to meet the DOE goals of 5 to 10 GW of installed US PV by 2015 and at the prices necessary for PV systems to reach grid parity in 2015. This final technical report highlights the accomplishments of the BP Solar technical team from 2006 to the end of the project in February 2010. All the main contributors and team members are recognized for this accomplishment and their endeavors are recorded in the twelve main tasks described here.

Cunningham, Daniel W; Wohlgemuth, John; Carlson, David E; Clark, Roger F; Gleaton, Mark; Posbic, John P; Zahler, James

2010-12-06T23:59:59.000Z

423

Solar disinfection: an approach for low-cost household water treatment technology in Southwestern Ethiopia  

Science Journals Connector (OSTI)

Disinfection of contaminated water using solar radiation (SODIS) is known to inactivate ... study was aiming to test the efficiency of solar disinfection using different water parameters as low-cost household wat...

Awrajaw Dessie; Esayas Alemayehu

2014-01-01T23:59:59.000Z

424

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

Conversion of Solar Energy, THEM Project", Trans. ofOrtega, "Solar Total Energy "I" Test Facility Project Testsolar energy for large scale electrical generational" even for more modest projects

Viswanathan, R.

2011-01-01T23:59:59.000Z

425

The PROMISE of 2002 American Chemical Society NOVEMBER 1, 2002 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 423 A  

E-Print Network (OSTI)

The PROMISE of #12;© 2002 American Chemical Society NOVEMBER 1, 2002 / ENVIRONMENTAL SCIENCE on microbe transport during bank filtra- tion a daunting task. Aside from quantifying the effectiveness guidelines to water utilities to help ensure ac- ceptable drinking water quality. In the United States, EPA

Ryan, Joe

426

RFID TECHNOLOGY FOR AVI: FIELD DEMONSTRATION OF A WIRELESS SOLAR POWERED E-ZPASS1  

E-Print Network (OSTI)

mark of the Port Authority of New York and New Jersey #12;- 2 - ROADWAY SIDE MOUNT SOLAR PANEL OUTPUT Bluetooth GROUND/POLE-MOUNT CABINET CHARGER BATTERY ARRAY MGATE I READER OVERHEAD SOLAR PANEL (POLE MOUNTGateTM tag reader, antenna, solar panel, batteries and charger, enclosure and a pocket PC (PPC). A schematic

Mitchell, John E.

427

An Analysis of Solar Thermal Technologies Integrated into a Canadian Office Building  

Science Journals Connector (OSTI)

Abstract This paper presents an analysis of three innovative solar heating and cooling systems integrated into a typical high performance office building in Montreal, Qubec, Canada. A base case energy model of the office is first created in TRNSYS and used to determine the building thermal loads and the end use energy use distribution. This model then serves as the base for the analysis of several reference cases and innovative solar systems, including solar driven absorption chiller and heat pump designs. Results highlight the importance of operating the solar system in both heating and cooling modes. A combination of a GSHP with a solar driven chiller and direct solar heating was found to achieve the highest primary energy savings, with a 76% reduction relative to a standard reference system. The highest solar fractions were obtained for a solar driven absorption heat pump, with the system achieving an annual solar fraction of 0.31 while meeting nearly the entire heating load and a significant portion of the cooling load of a typical building floor through solar energy. It was concluded that the most practical application of solar energy for this building type and climate involved using solar energy to supplement a highly efficient base mechanical system such as a heat pump. Future work will examine additional climate regions and control strategies for system operations.

Justin Tamasauskas; Martin Kegel; Roberto Sunye

2014-01-01T23:59:59.000Z

428

Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology  

Science Journals Connector (OSTI)

Abstract Despite the many advantages of thin-film silicon (Si) solar cells, their low efficiencies remain a challenge that must be overcome. Efficient light utilization across the solar spectrum is required to achieve efficiencies over 15%, allowing them to be competitive with other solar cell technologies. To produce high-efficiency thin-film Si solar cells, we have developed triple-junction solar cell structures to enhance solar spectrum utilization. To maximize the light management, in-house ZnO:Al layers with high haze ratios and high transmittances were developed. In addition, novel doping layers, such as n-type microcrystalline silicon oxide (c-SiOx:H), which has a very low refractive index, and p-type microcrystalline silicon oxide (c-SiOx:H), which has a wide bandgap, were successfully applied to the optical reflector and the window layer, respectively. Thin-film quality control techniques for the deposition of hydrogenated amorphous silicon (a-Si:H) in the top cell, hydrogenated amorphous silicon-germanium (a-SiGe:H) or hydrogenated microcrystalline silicon (?c-Si:H) in the middle cell, and hydrogenated microcrystalline silicon (?c-Si:H) in the bottom cell were also important factors leading to the production of high-efficiency triple-junction solar cells. As a result of this work, an initial efficiency of 16.1% (in-house measurement) in the a-Si:H/a-SiGe:H/?c-Si:H stack and a stabilized efficiency of 13.4% (confirmed by NREL) in the a-Si:H/?c-Si:H/?c-Si:H stack were successfully achieved in a small-area triple-junction solar cell with dimensions of 1cm1cm.

Soohyun Kim; Jin-Won Chung; Hyun Lee; Jinhee Park; Younho Heo; Heon-Min Lee

2013-01-01T23:59:59.000Z

429

SOLAR ENERGY PROGRAM. CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1978  

E-Print Network (OSTI)

demonstratin\\:J existing solar technology. Technical supportand Storage Systems (Central Solar Technology-Solar Thermaland Distributed Solar Technology-Photovolaics Branch). A

authors, Various

2011-01-01T23:59:59.000Z

430

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network (OSTI)

edge of disruptive solar technology that could replace thewe develop a new solar technology and a suite of analysisin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

431

Industrial high performance crystalline silicon solar cells and modules based on rear surface passivation technology  

Science Journals Connector (OSTI)

Abstract Stimulated by the extreme market conditions, the increase in performance and the reduction of manufacturing costs of standard crystalline silicon solar cells and modules have been quite significant in the last years. This progress was achieved mainly by process and material improvements avoiding additional process complexity. As todays cells are predominantly limited by optical and recombination losses at the rear surface, dielectric rear surface passivation represents an obvious approach to overcome the limitations. In recent years several concepts have been developed to implement dielectric rear side passivation into industrial-scale mass production. In this paper a short review is given about the evolution of dielectric rear side passivation technologies as well as on state-of-the-art cell and module results. Simple and cost effective cell and module designs utilizing standard as well as innovative manufacturing technologies are presented. Furthermore, it is shown that for all major steps multiple process options are available to further reduce the manufacturing costs. Using an optimized emitter and screen-printed metallization on commercially available 156mm156mm p-type Czochralski-grown crystalline silicon wafers best cell efficiencies of 19.9% without dielectric rear surface passivation and 21.0% with dielectric rear surface passivation are demonstrated. Replacing the screen-printed front contacts by electroplated nickelcopper contacts record efficiencies of up to 21.3% are reached. By optimizing the module design and materials to reduce the resistive and optical losses, a peak module power of up to 306W and 19.5% aperture area efficiency are achieved.

Axel Metz; Dennis Adler; Stefan Bagus; Henry Blanke; Michael Bothar; Eva Brouwer; Stefan Dauwe; Katharina Dressler; Raimund Droessler; Tobias Droste; Markus Fiedler; Yvonne Gassenbauer; Thorsten Grahl; Norman Hermert; Wojtek Kuzminski; Agata Lachowicz; Thomas Lauinger; Norbert Lenck; Mihail Manole; Marcel Martini; Rudi Messmer; Christine Meyer; Jens Moschner; Klaus Ramspeck; Peter Roth; Ruben Schnfelder; Berthold Schum; Jrg Sticksel; Knut Vaas; Michael Volk; Klaus Wangemann

2014-01-01T23:59:59.000Z

432

Solar Energy in the United States | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Energy American Businesses Commit to Choose Solar Energy Since May 2014, over 300 private and public sector organizations have committed to choose solar energy,...

433

Study of solar-assisted thermoelectric technology for automobile air conditioning  

SciTech Connect

An analytical study was conducted to determine the feasibility of employing solar energy assisted thermoelectric (TE) cooling technology in automobile air conditioners. The study addressed two key issues -- power requirements and availability of thermoelectric materials. In this paper a mathematical model was developed to predict the performance of TE air conditioners and to analyze power consumption. Results show that the power required to deliver a cooling capacity of 4 kW (13,680 Btu/h) in a 38 C (100 F) environment will be 9.5 kW electric. Current TE modules suitable for air conditioning are made of bismuth telluride. The element tellurium is expected to be in short supply if TE cooling is widely implemented for auto air conditioning; some options available in this regard were studied and presented in this paper. The photovoltaic (PV) cells, assumed to cover the roof area of a compact car can only generate about 225 W. However, this is more than enough to power a fan to provide air ventilation to the car interior which significantly reduces the peak cooling load when the car is parked in bright sunlight.

Mei, V.C.; Chen, F.C. [Oak Ridge National Lab., Oak Ridge, TN (United States); Mathiprakasam, B.; Heenan, P. [Midwest Research Inst., Kansas City, MO (United States)

1993-11-01T23:59:59.000Z

434

Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States  

E-Print Network (OSTI)

solar collector, Solar & Wind Technology. 4 (1987) 407-410.to the solar azimuth. While other tracking technologies such

Lave, Matthew; Kleissl, Jan

2011-01-01T23:59:59.000Z

435

The Market Value and Cost of Solar Photovoltaic Electricity Production  

E-Print Network (OSTI)

in crystalline silicon solar technologies have occurred overthe current solar PV technology, even after adjusting forde?cit of the current solar PV technology with the potential

Borenstein, Severin

2008-01-01T23:59:59.000Z

436

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

437

NANOCOMPOSITE ENABLED SENSITIZED SOLAR CELL  

E-Print Network (OSTI)

is mostly thin- film solar technology, such as CdTe and CuInimportant. Thin film solar technology such as CIGS (Copper,in all thin-film solar cell technologies is that absorbance

Phuyal, Dibya

2012-01-01T23:59:59.000Z

438

An Evolutionary Path for Concentrating Thermal Solar Power Technologies: A New Approach for Modeling CSP Power Costs and Potential  

SciTech Connect

Concentrating thermal solar power (CSP) technology is a potentially competitive power generation option, particularly in arid regions where direct sunlight is abundant. We examine the potential role of CSP power plants and their contribution to carbon emissions reduction. The answers to these questions depend on the cost of electricity generated by CSP plants. Although a few studies have projected future CSP costs based on assumptions for technology advancement and the effect of economies of scale and learning curves, few studies have considered the combined effects of intermittency, solar irradiance changes by season, and diurnal and seasonal system load changes. Because the generation of a solar plant varies over a day and by season, the interactions between CSP generators and other generators in the electric system can play an important role in determining costs. In effect, CSP electricity generation cost will depend on the CSP market penetration. This paper examines this relationship and explores possible evolutionary paths for CSP technologies with and without thermal storage.

Zhang, Yabei; Smith, Steven J.

2008-05-08T23:59:59.000Z

439

Energy efficient building with the use of passive solar heating technology  

Science Journals Connector (OSTI)

The configuration of a building after redesign for passive solar heating is described. The results of experimental studies of the temperature regimes for various weather conditions are presented.

M. M. Zakhidov

2007-06-01T23:59:59.000Z

440

Micro-scale concentrated photovoltaics: A technologically disruptive approach to flat-panel solar cells?  

Science Journals Connector (OSTI)

The potential benefits of solar cell architectures that exploit integrated micro-optical concentration are examined. An associated new development thrust at the US Department of...

Haney, Michael W

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Silicon Ink Technology Offers Path to Higher Efficiency Solar Cells at Lower Cost  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of the first liquid silicon on the market that offers a novel path to producing more efficient solar cells at lower cost.

442

AEROSPACE TECHNOLOGY REVIEW FOR LBL WINDOW/PASSIVE SOLAR PROGRAM FINAL REPORT  

E-Print Network (OSTI)

comparing the air source heat pump to the solar assisted~ indicates that the air source heat pump has a higher COP

Viswanathan, R.

2011-01-01T23:59:59.000Z

443

Dye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light-  

E-Print Network (OSTI)

light-to -electricity conversion efficiency in early implementations under AM1.5 solar light. EasyDye-Sentitized Solar Cells (DSSCs) are an emerging low-cost third generation photovoltaic technology particularly suited for efficient light- to-electricity conversion in indoors low-light

444

Algeria-Clean Technology Fund (CTF) | Open Energy Information  

Open Energy Info (EERE)

Algeria-Clean Technology Fund (CTF) Algeria-Clean Technology Fund (CTF) Jump to: navigation, search Name Algeria-Clean Technology Fund (CTF) Agency/Company /Organization African Development Bank, Asian Development Bank, European Bank for Reconstruction and Development, Inter-American Development Bank, World Bank Sector Climate, Energy Focus Area Renewable Energy, Solar, - Concentrating Solar Power Topics Background analysis, - Energy Security, Finance, Implementation, Low emission development planning, -LEDS, Market analysis, Policies/deployment programs, Technology characterizations Website https://www.climateinvestmentf Country Algeria UN Region South-Eastern Asia References Middle East and North Africa Regional Program (Algeria, Egypt, Jorban, Morroco, Tunisia)-Clean Technology Fund (CTF)[1]

445

Edge photoluminescence of single-crystal silicon with a p-n junction: Structures produced by high-efficiency solar cell technology  

Science Journals Connector (OSTI)

The systematic features and kinetics of edge photoluminescence of silicon structures produced by the high-efficiency solar cell technology is studied at different voltages applied to...p-n junction. It is shown t...

A. M. Emelyanov

2011-06-01T23:59:59.000Z

446

Solar Innovator | Alta Devices  

SciTech Connect

Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

Mattos, Laila; Le, Minh

2012-01-01T23:59:59.000Z

447

INL Technology Transfer  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Transfer Through collaboration with industry partners, INL's Technology Deployment office makes available to American agencies and international organizations unique...

448

A Case Study of Solar Technologies Adoption: Criteria for BIPV Integration in Sensitive Built Environment  

Science Journals Connector (OSTI)

Solar Photovoltaics is one of the core technologies for a paradigm shift of our electric infrastructure towards distributed generation. In 2011 Italy became the first world market; however, Germany has even the primacy of accumulated power. The installed capacity amounted to 10.000 MW according to data of Italian Manager of Energy Services (GSE) against 1.000 MW in 2010 and 3.000 the beginning of 2011. The projections of GSE include the achievement of the 12.000 MW by the end of the year with more than 350.000 running plants. In a nearly mature market, cost related issues and technical difficulties are encountered in particular in the successful integration within a sensitive and consolidated built environment. The research presented aims to investigate the possible results of an effective use of Building Integrated Photovoltaics (BIPV), choosing existing buildings in the city of Bellinzona (Canton Ticino, CH) as case studies. Bellinzona presents similar characteristics to small Northern Italian cities in terms of built environment characteristic and climate conditions. The theoretical framework for the analysis is the one proposed initially for low energy and nearly net zero energy buildings (NZEB). Although this type of analysis has been developed, in particular, for building with high penetration of renewable energy sources generation (up to 100% of the energy consumed), it seems worth investigating the dynamic interaction of building energy demand, on-site generation and grid with similar tools, because of the necessity of achieving low energy demand also in retrofitted existing buildings in a near future.

Francesco Frontini; Massimiliano Manfren; Lavinia Chiara Tagliabue

2012-01-01T23:59:59.000Z

449

Solar Policy Environment: Boston  

Energy.gov (U.S. Department of Energy (DOE))

City of Bostons objective in creating Solar Boston is to maximize solar technologys role in the Citys sustainable development, educational and emergency preparedness policies. Solar Bostons objective is the installation of solar technology on all feasible and appropriate locations throughout Boston.

450

Solar Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

451

Liquid Propane Injection Technology Conductive to Today's North...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

452

Technology Transfer from the Solar R & D Community to the European Building Professions: SOLINFO  

Science Journals Connector (OSTI)

The CEC R & D sub-programme, Solar Energy Applications in Buildings, faces an unusually difficult task in the dissemination of its results because of the diversity and size of its target audience. SOLINFO aims...

J. Owen Lewis; Shane OToole

1988-01-01T23:59:59.000Z

453

Technology and Design of Classical and Heterojunction Back Contacted Silicon Solar Cells  

Science Journals Connector (OSTI)

Ever since the first proposal of Interdigitated Back Contact (IBC) silicon solar cells in 1975, this type of cell has been under development as a means to reach high energy conversion efficiencies. Since no me...

Niels E. Posthuma; Barry J. OSullivan

2012-01-01T23:59:59.000Z

454

Interaction between process technology and material quality during the processing of multicrystalline silicon solar cells  

Science Journals Connector (OSTI)

Multicrystalline silicon is the most used material for the production of silicon solar cells. The quality of the as grown material depends on the quality of the feedstock and the crystallization process. Bulk ...

Dietmar Borchert; Markus Rinio

2009-01-01T23:59:59.000Z

455

P+N N+ and Pin Low Cost Silicon Solar Cell Technology  

Science Journals Connector (OSTI)

The results of a study which has as its main goal the fabrication of silicon solar cell panels using only the most simple techniques is presented. Spin-on diffusion sources were used to form the junctions, whi...

O. Leistiko; Y. Safir; W. G. Proctor

1987-01-01T23:59:59.000Z

456

Cost-Effective Porous Silicon Technology For Solar Cell Industrial Applications  

Science Journals Connector (OSTI)

For porous silicon (PS) layer preparation, only the electrochemical method of DC- anodizing in HF-based electrolytes and the chemical method using HF/HNO3 electrolytes are widely used. In solar cell applications,...

V. Yerokhov; M. Lipinski; A. Mylyanych

2002-01-01T23:59:59.000Z

457

A Grassroots Initiative to Disseminate Solar Energy Technologies in Ethiopia: Implications to Climate Change Education  

Science Journals Connector (OSTI)

As a tropical country, Ethiopia has an enormous potential to develop and use environment-friendly sources of energy like solar power. Despite such huge potential to tap electricity form the sun (not to mention...

Aklilu Dalelo

2011-01-01T23:59:59.000Z

458

Performance and Policy Evaluation of Solar Energy Technologies for Domestic Application in Ireland.  

E-Print Network (OSTI)

?? The aim of this research is to investigate the techno-economic and environmental performance of domestic scale grid-connected photovoltaic (PV) and forced circulation solar water (more)

Ayompe, Lacour, (Thesis)

2011-01-01T23:59:59.000Z

459

Southern California Institute of Architecture and California Institute of Technology Solar Decathlon 2011 Project Manual  

NLE Websites -- All DOE Office Websites (Extended Search)

Manual Manual U.S. Department of Energy Solar Decathlon 2013 SCI-Arc/Caltech DALE 2013-08-22 Primary Student Contact: Matt Pool - matt_pool@sciarc.edu DALE 2013 Project Manual SCI-Arc/Caltech As-Built Set Published 8/22/2013 U.S. DOE Solar Decathlon 2013 2 Contents COVER PAGE ....................................................................................................................................................................... 1 SUMMARY OF CHANGES .................................................................................................................................................. 3 2-14-2013 REVISION ................................................................................................................................................................................... 3

460

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250C and 700C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report  

SciTech Connect

Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the projects Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50/kWhe , which achieved the Phase 2 Go/No Go target of less than 0.12/kWhe. Abengoa Solar has high confidence that the primary risk areas have been addressed in the project and a commercial plant utilizing molten salt is economically and technically feasible. The strong results from the Phase 1 and 2 research, testing, and analyses, summarized in this report, led Abengoa Solar to recommend that the project proceed to Phase 3. However, a commercially viable collector interconnection was not fully validated by the end of Phase 2, combined with the uncertainty in the federal budget, forced the DOE and Abengoa Solar to close the project. Thus the resources required to construct and operate a molten salt pilot plant will be solely supplied by Abengoa Solar.

Grogan, Dylan C. P.

2013-08-15T23:59:59.000Z

462

To Construct a Technology Roadmap for Technical Trend Recognition on Thin-Film Solar Cell  

Science Journals Connector (OSTI)

To recognize technical trends is essential for the interested parties to understand the development directions of a technology at the industry level. Therefore, a research design has been formed for conducting technology

Tzu-Fu Chiu; Chao-Fu Hong; Leuo-hong Wang

2011-01-01T23:59:59.000Z

463

Thin-film solar cells: review of materials, technologies and commercial status  

Science Journals Connector (OSTI)

As apparent from Table1..., showing the production volume for different manufacturers of these thin-film technologies over the past 3years, rapidly-growing ... are also increasing rapidly, the thin-film technologies

Martin A. Green

2007-10-01T23:59:59.000Z

464

Solar capabilities : promoting, technological learning in South Africa's photovoltaic supply industry  

E-Print Network (OSTI)

I explore the mechanisms through which technological capabilities have been built in the market for photovoltaic (PV) module and balance of system (BOS) manufacture in South Africa. Drawing on the literature on technology ...

Wright, Janelle N., 1978-

2003-01-01T23:59:59.000Z

465

A review of thermal energy storage technologies and control approaches for solar cooling  

Science Journals Connector (OSTI)

Abstract This paper presents a review of thermal storage media and system design options suitable for solar cooling applications. The review covers solar cooling applications with heat input in the range of 60250C. Special attention is given to high temperature (>100C) high efficiency cooling applications that have been largely ignored in existing reviews. Sensible and latent heat storage materials have been tabulated according to their suitability for double effect and triple effect chillers. A summary of system designs for water storage (sensible heat), and phase change material storage (latent heat) has been provided. The article summarizes literature related to solar thermal air-conditioning systems from a material level as well as plant level considerations. This includes evaluating various control strategies for managing the thermal store, that aid in optimal functioning of a solar air conditioning plant. Modeling approaches are reviewed for sizing the solar thermal store, highlighting the large difference seen in specific storage size when applied in different applications.

Sergio Pintaldi; Cristian Perfumo; Subbu Sethuvenkatraman; Stephen White; Gary Rosengarten

2015-01-01T23:59:59.000Z

466

Solar Policy Environment: Pittsburgh  

Energy.gov (U.S. Department of Energy (DOE))

In this project, Pittsburgh plans to build on its reputation as a national leader in green practices. Its Solar America Cities project will develop a distributed approach to adoption of solar energy technologies. Pittsburghs partnership includes universities, non-profit organizations, and business, labor and foundation communities. The city plans to transform the solar energy market and stimulate early adoption of solar technology, to show that solar technology works in a northern city.

467

Polish - American Heritage, Italian - American Heritage, German...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Polish - American Heritage, Italian - American Heritage, German - American Heritage Months Polish - American Heritage, Italian - American Heritage, German - American Heritage...

468

Making Strides to Boost the Use of Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy November 12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? As the price of installing residential solar drops, more Americans can tap into this renewable resource.

469

Making Strides to Boost the Use of Solar Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy Making Strides to Boost the Use of Solar Energy November 12, 2012 - 11:04am Addthis This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions This photograph features the 6-kilowatt (kw) rooftop photovoltaic system that Mercury Solar Systems installed in the Lower Kensington neighborhood of Philadelphia.| Photo courtesy of Mercury Solar Solutions Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? As the price of installing residential solar drops, more Americans can tap into this renewable resource.

470

Mandating Solar Hot Water by California Local Governments: Legal Issues  

E-Print Network (OSTI)

Legal Obstacles to Decentralized Solar Energy Technologies:Legal Obstacles to Decentralized Solar Energy Technologies,of solar energy systems and to remove obstacles thereto."

Hoffman,, Peter C.

1981-01-01T23:59:59.000Z

471

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

and Photovoltaic Solar Energy Converters, American ChemicalNocera D. G. , 2010, Solar Energy Supply and Storage forof Abiotic Photo-chemical Solar Energy Storage Systems,

Coso, Dusan

2013-01-01T23:59:59.000Z

472

Solar For Schools: A Case Study in Identifying and Implementing Solar Photovoltaic (PV) Projects in Three California School Districts: Preprint  

SciTech Connect

The Department of Energy's (DOE) Solar America Showcase program seeks to accelerate demand for solar technologies among key end use market sectors. As part of this activity the DOE provides Technical Assistance through its national laboratories to large-scale, high-visibility solar installation projects. The Solar Schools Assessment and Implementation Project (SSAIP) in the San Francisco Bay area was selected for a 2009 DOE Solar American Showcase award. SSAIP was formed through the efforts of the nonprofit Sequoia Foundation and includes three school districts: Berkeley, West Contra Costa, and Oakland Unified School Districts. This paper summarizes the technical assistance efforts that resulted from this technical assistance support. It serves as a case study and reference document detailing the steps and processes that could be used to successfully identify, fund, and implement solar PV projects in school districts across the country.

Kandt, A.

2011-04-01T23:59:59.000Z

473

Solar ADEPT: Efficient Solar Energy Systems  

SciTech Connect

Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

None

2011-01-01T23:59:59.000Z

474

Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants  

E-Print Network (OSTI)

This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

Leitgab, Martin

2013-01-01T23:59:59.000Z

475

Solar Technical Assistance Team | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(NREL) Solar Technical Assistance Team (STAT). STAT leverages the expertise of NREL solar energy technology and deployment experts in order to provide information on solar...

476

NREL: Learning - Student Resources on Solar Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy The following resources can provide you with more information on solar energy. Solar Energy Technology Basics U.S. Department of Energy Office of Energy Efficiency &...

477

Solar Energy Glossary | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary Solar Energy Glossary The solar glossary contains definitions for technical terms related to solar power and photovoltaic (PV) technologies, including terms having to do...

478

SOLAR ENERGY PROGRAM: CHAPTER FROM THE ENERGY AND ENVIRONMENT ANNUAL REPORT 1979  

E-Print Network (OSTI)

Division of Distributed Solar Technology Contractors' Pro-Division of Distributed Solar Technology Insolation Assess-demonstrating existing solar technology. DOE's San Francisco

Authors, Various

2010-01-01T23:59:59.000Z

479

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network (OSTI)

development of passive solar technology. The tasks have beencommercialization of solar energy technology, Certainpast building technology innovations and passive solar and

Authors, Various

2012-01-01T23:59:59.000Z

480

Investigation of the Role of Trap States in Solar Cell Reliability using Photothermal Deflection Spectroscopy  

E-Print Network (OSTI)

for introduction of solar technology due to the high radiantcutting edge of solar technology, which generally includea lot of potential in solar technology since it is easier to

Bezryadina, Anna Sergeyevna

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "american solar technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

AN EVALUATION OF SOLAR VALUATION METHODS USED IN UTILITY PLANNING AND PROCUREMENT PROCESSES  

E-Print Network (OSTI)

and procurement 3. SOLAR TECHNOLOGIES CONSIDERED IN PLANNINGCategory TABLE 2: SOLAR TECHNOLOGIES INCLUDED IN ASSESSMENTcredit assigned to solar technologies by the LSE determines

Mills, Andrew D.

2014-01-01T23:59:59.000Z

482

Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design  

E-Print Network (OSTI)

of next-generation solar technologies. Part II approachesfor next-generation solar technologies. Conclusions Thislimit for any solar cell technology will require light

Miller, Owen Dennis

2012-01-01T23:59:59.000Z

483

Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design  

E-Print Network (OSTI)

limit for any solar cell technology will require lightof next-generation solar cell technologies, examining thes prospects as a solar cell technology. There is a well-

Miller, Owen Dennis

2012-01-01T23:59:59.000Z

484

Core/Shell heterojunction nanowire solar cell fabricated by lithographically patterned nanowire electrodeposition method  

E-Print Network (OSTI)

in state of the art solar cell technology and how we canand second generation solar cell technology and currentof the present solar cell technology by synthesizing metal/

Ghosh, Somnath

2012-01-01T23:59:59.000Z

485

Future exploration of the outer solar system  

Science Journals Connector (OSTI)

......the convection cell. (NASA/JPL-Caltech...found in the solar system, and...with relevant technology development...choice, but new technologies combining solar and chemical...crucial, with solar panel technology sufficient for......

Leigh Fletcher

2013-04-01T23:59:59.000Z

486

Solar Energy  

Science Journals Connector (OSTI)

...Arizona) noted results achieved with the Puerto Penasco Solar Desalination Plant, Sonora, Mexico. This plant, operated in cooperation...State Univ., Jniversity Park) 22-25. American Home Economics As-oc., 56th annual, Atlantic City, N.J. (Mrs...

Peter E. Glaser

1965-05-21T23:59:59.000Z

487

Technology of Computational Fluid Dynamics in space engines and solar-gravity draught power plants  

Science Journals Connector (OSTI)

Non-isentropic discontinuous, unsteady flows with energy addition or extraction, during ignition of solid propellant rocket motors or tall solar towers heating transients are approached through a wave front method, initially developed by Zannetti for isentropic flows in aerodynamics. Its application in discontinuous flows with zones of different behaviour and energy extraction proves highly efficient. Computational efficiency is demonstrated by Computational Fluid Dynamics simulation of the starting transients in ADDA Solid Rocket Engines (SRE) and in the SEATTLER solar mirror tower. The code is exclusively directed to unsteady flow simulations in slender channels. The wave front model scheme covers the dual behaviour of fully non-isentropic flow with mass addition and mixing in the thrust chamber or blunt heat addition in a heater and fully isentropic through the exhaust nozzle or gravity draught in a tall tower. Along the tower of the solar-gravity draught power plants, small perturbation discontinuous flows are covered. Code robustness is demonstrated during runs on the PC. The 1D numerical scheme is based on the resolution of gasdynamic discontinuities within the enhanced method of Zannetti.

Radu Dan Rugescu

2008-01-01T23:59:59.000Z

488

Large resource development projects as markets for passive solar technologies. Final report  

SciTech Connect

A basic premise of this study is that large resource development projects provide a major market opportunity for passive solar manufactured buildings. The primary objectives of the work are to document selected resource development projects and identify their potential housing needs and development schedules, to contact resource industry representatives and assess some of the processes and motivations behind their involvement in housing decisions, and to provide passive solar manufactured buildings producers with results of these steps as early initial market intelligence. The intent is to identify not only the industries, location of their planned projects, and their likely worker housing needs, but also the individuals involved in making housing-related decisions. The 56 identified projects are located within 18 states and cover 11 types of resources. The report documents individual projects, provides protections of total worker-related housing needs, and presents overviews of resource development company involvement in the new construction market. In addition, the report profiles three organizations that expressed a strong interest in implementing the use of low-cost passive solar manufactured buildings in resource-development-related activities.

Roze-Benson, R V

1980-12-01T23:59:59.000Z

489

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Solar Solar Learn how a fourth grade classroom solar project is contributing to the clean energy revolution. | Photo courtesy of Aaron Sebens. Learn how a fourth grade classroom solar project is contributing to the clean energy revolution. | Photo courtesy of Aaron Sebens. The tremendous growth in the U.S. solar industry is helping to pave the way to a cleaner, more sustainable energy future. Over the past few years, the cost of a solar energy system has dropped significantly -- helping to give more American families and business access to affordable, clean energy. Through a portfolio of R&D efforts, including the SunShot Initiative, the

490

Secretary Jewell Announces Approval of Second Utility-Scale Solar Energy Project on American Indian Trust Land  

Energy.gov (U.S. Department of Energy (DOE))

As part of the Obama Administrations efforts to build strong and prosperous tribal communities and the Climate Action Plan to cut carbon pollution and create clean energy jobs, Secretary of the Interior Sally Jewell announced on May 7, 2014, the approval of the 200-megawatt Moapa Solar Energy Center Project on tribal trust land in Nevada and that nine federally recognized tribes have been awarded Tribal Energy Development Capacity grants totaling over $700,000.

491

Connectable solar air collectors Solar Energy Centre Denmark  

E-Print Network (OSTI)

Connectable solar air collectors Solar Energy Centre Denmark Danish Technological Institute SEC-R-22 #12;Connectable solar air collectors Søren ?stergaard Jensen Miroslav Bosanac Solar Energy Centre Søren ?stergaard Jensen and Miroslav Bosanac Solar Energy Centre, Danish Technological Institute

492

Early growth technology analysis : case studies in solar energy and geothermal energy  

E-Print Network (OSTI)

Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, ...

Kaya Firat, Ayse

2010-01-01T23:59:59.000Z

493

Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the EV project:...

494

Monocrystalline Silicon Sheet Production for Solar Cells by Advanced Ingot Technology  

Science Journals Connector (OSTI)

Recent technological advances in Czochralski crystal growth and ingot wafering by I.D. slicing have improved the economic picture of mono-crystalline sheet material production considerably to the extent that ingo...

G. Fiegl

1981-01-01T23:59:59.000Z

495

Virtual Solar System Project: Learning Through a Technology-Rich, Inquiry-Based, Participatory Learning Environment  

Science Journals Connector (OSTI)

In this manuscript we describe an introductory astronomy course for undergraduate students in which we moved from the large-lecture format to one in which students were immersed in a technologically-rich, inquiry...

Sasha A. Barab; Kenneth E. Hay; Kurt Squire

2000-03-01T23:59:59.000Z

496

Highly Efficient Multi-crystalline Solar Cells Using Rear Surface Passivation Technology  

Science Journals Connector (OSTI)

Abstract In this work, we have successfully demonstrated the rear side passivation technology applied to multi-crystalline p-type wafers. The AlOx/SiNx stack was selected as rear side passivation layer combined with suitable laser opening source and metallization materials. The performance of multi-crystalline cell reached an efficiency level of 18%-19% applying this technology and the light induced degradation and module power output performance are attractive compared with current cell type.

Yan-Kai Chiou; Hung-Ming Lin; Kuang-Hui Hung; Cheng-Yu Ko; Chia-Hung Wu; Hsieng-Chen Yen; Shyuan-Fang Chen; Nai-Tien Ou; Walt K.W. Huang

2014-01-01T23:59:59.000Z

497

Solar Technology Assessment Project. Volume IX. Heliostat systems: technical and economic assessment  

SciTech Connect

An extensive review of the literature is provided on heliostat central receiver systems including subsystem design and research experiments, full scale system designs, assessments, evaluations, rankings, application and marketing studies, and heliostat manufacturing studies. The current status of heliostat system development is reviewed and assessed. Recent design reports are examined, and expected economic and performance improvements are reported. Recommendations are made for the role that government can play in heliostat systems development, and for state and federal policies for development of solar commercialization and the formation of heating utilities. (LEW)

Hildebrandt, A.F.; Laurence, C.L.

1981-04-01T23:59:59.000Z

498

NREL: Climate Neutral Research Campuses - Solar Thermal  

NLE Websites -- All DOE Office Websites (Extended Search)

cooling system in 2006. Back to Top Technology Basics The following resources explain the fundamentals of solar thermal technologies: NREL Solar Energy Basics: Descriptive overview...

499

Secretary Jewell Announces Approval of Second Utility-Scale Solar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Jewell Announces Approval of Second Utility-Scale Solar Energy Project on American Indian Trust Land Secretary Jewell Announces Approval of Second Utility-Scale Solar...

500

Chapter IB-3 - Low-Cost Industrial Technologies for Crystalline Silicon Solar Cells  

Science Journals Connector (OSTI)

Publisher Summary Silicon substrates used in commercial solar cell processes contain a near-surface saw-damaged layer, which has to be removed at the beginning of the process. Thickness of the damage depends on the technique used in wafering of the ingot. A layer with thickness of 20 to 30 ?m has to be etched from both sides of wafers cut by an inner-diameter blade saw, while only 10 to 200 ? m is enough when a wire saw is used. The etching process has to be slightly modified when applied to multicrystalline substrates. Too fast or prolonged etching can produce steps at grain boundaries. This can lead to problems with interruptions of metal contacts. This problem can be avoided by an isotropic etching based on a mixture of nitric, acetic, and hydrofluoric acids. However, a strong exothermic reaction makes this etching process difficult to control and toxicity of the solution creates safety and waste disposal problems. The silicon surface after saw damage etching is shiny and reflects more than 35% of incident light. The reflection losses in commercial solar cells are reduced mainly by random chemical texturing. Surface texturing reduces the optical reflection from the single crystalline silicon surface to less than 10% by allowing the reflected ray to be recoupled into the cell.

Jozef Szlufcik; S. Sivoththaman; Johan F. Nijs; Robert P. Mertens; Roger Van Overstraeten

2012-01-01T23:59:59.000Z