Sample records for amchitka island alaska

  1. Amchitka Island, Alaska, Biological Monitoring Report 2011 Sampling Results

    SciTech Connect (OSTI)

    None

    2013-09-01T23:59:59.000Z

    The Long-Term Surveillance and Maintenance (LTS&M) Plan for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) Amchitka Island sites describes how LM plans to conduct its mission to protect human health and the environment at the three nuclear test sites located on Amchitka Island, Alaska. Amchitka Island, near the western end of the Aleutian Islands, is approximately 1,340 miles west-southwest of Anchorage, Alaska. Amchitka is part of the Aleutian Island Unit of the Alaska Maritime National Wildlife Refuge, which is administered by the U.S. Fish and Wildlife Service (USFWS). Since World War II, Amchitka has been used by multiple U.S. government agencies for various military and research activities. From 1943 to 1950, it was used as a forward air base for the U.S. Armed Forces. During the middle 1960s and early 1970s, the U.S. Department of Defense (DOD) and the U.S. Atomic Energy Commission (AEC) used a portion of the island as a site for underground nuclear tests. During the late 1980s and early 1990s, the U.S. Navy constructed and operated a radar station on the island. Three underground nuclear tests were conducted on Amchitka Island. DOD, in conjunction with AEC, conducted the first nuclear test (named Long Shot) in 1965 to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third nuclear test on Amchitka, was a weapons-related test detonated on November 6, 1971. With the exception of small concentrations of tritium detected in surface water shortly after the Long Shot test, radioactive fission products from the tests remain in the subsurface at each test location As a continuation of the environmental monitoring that has taken place on Amchitka Island since before 1965, LM in the summer of 2011 collected biological and seawater samples from the marine and terrestrial environment of Amchitka Island adjacent to the three detonation sites and at a background or reference site, Adak Island, 180 miles to the east. Consistent with the goals of the Amchitka LTS&M Plan, four data quality objectives (DQOs) were developed for the 2011 sampling event.

  2. amchitka island alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MA August 2005 Prepared for Massachusetts for August 2005 This update summarizes the monthly data results for the Thompson Island monitoring site Island for the month of August...

  3. Human Health and Ecological Risk Assessment Work Plan Mud Pit Release Sites, Amchitka Island, Alaska

    SciTech Connect (OSTI)

    DOE /NV

    2001-03-12T23:59:59.000Z

    This Work Plan describes the approach that will be used to conduct human health and ecological risk assessments for Amchitka Island, Alaska, which was utilized as an underground nuclear test site between 1965 and 1971. During this period, the U.S. Atomic Energy Commission (now the U.S. Department of Energy) conducted two nuclear tests (known as Long Shot and Milrow) and assisted the U.S. Department of Defense with a third test (known as Cannikin). Amchitka Island is approximately 42 miles long and located 1,340 miles west-southwest of Anchorage, Alaska, in the western end of the Aleutian Island archipelago in a group of islands known as the Rat Islands. Historically including deep drilling operations required large volumes of drilling mud, a considerable amount of which was left on the island in exposed mud pits after testing was completed. Therefore, there is a need for drilling mud pit remediation and risk assessment of historical mud pit releases. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the constituents in soil, surface water, and sediment at these former testing sites. Its goal is the collection of data in sufficient quantity and quality to determine current site conditions, support a risk assessment for the site surfaces, and evaluate what further remedial action is required to achieve permanent closure of these three sites that will protect both human health and the environment. Suspected compounds of potential ecological concern for investigative analysis at these sites include diesel-range organics, polyaromatic hydrocarbons, polychlorinated biphenyls, volatile organic compounds, and chromium. The results of these characterizations and risk assessments will be used to evaluate corrective action alternatives to include no further action, the implementation of institutional controls, capping on site, or off-sit e disposal of contaminated waste. The results of this evaluation will be presented in a subsequent corrective action decision document.

  4. Amchitka Island, Alaska, Potential U.S. Department of Energy Site Responsibilities

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    1999-01-22T23:59:59.000Z

    This historical records review report concerns the activities of the US Atomic Energy Commission (AEC) at Amchitka Island, Alaska, over a period extending from 1942 to 1993. The report focuses on AEC activities resulting in known or suspected contamination of the island environment by nonradiological hazardous or toxic materials as discerned through historical records. In addition, the information from historical records was augmented by an August 1998 sampling event. Both the records review and sampling were conducted by IT Corporation on behalf of the US Department of Energy (DOE), the predecessor agency to the AEC. The intent of this investigation was to identify all potentially contaminated sites for which DOE may be responsible, wholly or partially, including all official sites of concern as recognized by the US Fish and Wildlife Service (USFWS). Additionally, potential data gaps that the DOE will need to fill to support the ecological and human health risk assessments performed were identified. A review of the available historical information regarding AEC's activities on Amchitka Island indicates that the DOE is potentially responsible for 11 sites identified by USFWS and an additional 10 sites that are not included in the USFWS database of sites of potential concern.

  5. Amchitka, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2011-12-15T23:59:59.000Z

    Amchitka Island is near the western end of the Aleutian Island chain and is the largest island in the Rat Island Group that is located about 1,340 miles west-southwest of Anchorage, Alaska, and 870 miles east of the Kamchatka Peninsula in eastern Russia. The island is 42 miles long and 1 to 4 miles wide, with an area of approximately 74,240 acres. Elevations range from sea level to more than 1,100 feet above sea level. The coastline is rugged; sea cliffs and grassy slopes surround nearly the entire island. Vegetation on the island is low-growing, meadow-like tundra grasses at lower elevations. No trees grow on Amchitka. The lowest elevations are on the eastern third of the island and are characterized by numerous shallow lakes and heavily vegetated drainages. The central portion of the island has higher elevations and fewer lakes. The westernmost 3 miles of the island contains a windswept rocky plateau with sparse vegetation.

  6. Analysis of Cleanup Alternatives and Supplemental Characterization Data, Amchitka Island, Alaska

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.~

  7. Amchitka, Alaska, Site Fact Sheet

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka, Alaska, Site.

  8. Record of Decision for Amchitka Surface Closure, Alaska

    SciTech Connect (OSTI)

    None

    2008-08-01T23:59:59.000Z

    This Record of Decision has been prepared to document the remedial actions taken on Amchitka Island to stabilize contaminants associated with drilling mud pits generated as a result of nuclear testing operations conducted on the island. This document has been prepared in accordance with the recommended outline in the Alaska Department of Environmental Conservation guidance on decision documentation under the Site Cleanup Rules (18 AAC 75.325-18 AAC 75.390) (ADEC 1999). It also describes the decision-making process used to establish the remedial action plans and defines the associated human health and ecological risks for the remediation.

  9. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05T23:59:59.000Z

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  10. Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site

    SciTech Connect (OSTI)

    None

    2008-09-01T23:59:59.000Z

    This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

  11. Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin

    SciTech Connect (OSTI)

    Ahmed Hassan; Karl Pohlmann; Jenny Chapman

    2002-11-19T23:59:59.000Z

    Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized masses to avoid presenting classified information. As only linear processes are modeled, the results can be readily scaled by the true classified masses for use in the risk assessment. The modeling timeframe for the risk assessment was set at 1,000 years, though some calculations are extended to 2,000 years. This first section of the report endeavors to orient the reader with the environment of Amchitka and the specifics of the underground nuclear tests. Of prime importance are the geologic and hydrologic conditions of the subsurface. A conceptual model for groundwater flow beneath the island is then developed and paired with an appropriate numerical modeling approach in section 2. The parameters needed for the model, supporting data for them, and data uncertainties are discussed at length. The calibration of the three flow models (one for each test) is then presented. At this point the conceptual radionuclide transport model is introduced and its numerical approach described in section 3. Again, the transport parameters and their supporting data and uncertainties are the focus. With all of the processes and parameters in place, the first major modeling phase can be discussed in section 4. In this phase, a parametric uncertainty analysis is performed to determine the sensitivity of the transport modeling results to the uncertainties present in the parameters. This analysis is motivated by the recognition of substantial uncertainty in the subsurface conditions on the island and the need to incorporate that uncertainty into the modeling. The conclusion of the first phase determines the parameters to hold as uncertain through the main flow and transport modeling. This second, main phase of modeling is presented in section 5, with the contaminant breakthrough behavior of each test site addressed. This is followed by a sensitivity analysis in section 6, regarding the importance of additional processes that could not be supported in the main modeling effort due to lack of data. Finally, the results for the individual sites are compared, the sensitivities discussed,

  12. AMCHITICA ISLAND, ALASKA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA

  13. Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1

    SciTech Connect (OSTI)

    Echelard, Tim

    2006-09-01T23:59:59.000Z

    Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud for consolidation in another pit. In addition to the mud pits, the hot mix plant was also remediated. Ongoing monitoring data does not indicate that radionuclides are currently seeping into the marine environment. Additionally, the groundwater modeling results indicate no seepage is expected for tens to thousands of years. If seepage does occur in the future, however, the rich, diverse ecosystems around the island could be at risk, as well as people eating foods from the area. An independent science study was conducted by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in accordance with the Amchitka Independent Science Plan (2003). The study report was published on August 1, 2005. The CRESP study states ''our geophysical and biological analyses did not find evidence of risk from radionuclides from the consumption of marine foods, nor indication of any current radionuclide contaminated migration into the marine environment from the Amchitka test shots''. The study also found evidence supporting the groundwater modeling conclusions of very slow contaminant transport (CRESP, 2005). While no further action is recommended for the subsurface of the Amchitka Site, long-term stewardship of Amchitka Island will be instituted and will continue into the future. This will include institutional controls management and enforcement, post-completion monitoring, performance of five-year reviews, public participation, and records management. Long-term stewardship will be the responsibility of the U.S. Department of Energy Office of Legacy Management. The Department of Energy is recommending completion of the investigation phase of the Amchitka Sites. The recommended remedy for the Amchitka Site is No Further Action with Long-Term Monitoring and Surveillance. The future long-term stewardship actions will be governed by a Long-Term Surveillance and Maintenance Plan. This Plan is currently being developed with input from the State, landowner, and other interested or affected stakeholders.

  14. Amchitka Radiobiological Program progress report, January 1979-December 1979

    SciTech Connect (OSTI)

    Thornberg, L.D.; Sibley, T.H.; Nakatani, R.E.

    1980-07-01T23:59:59.000Z

    The objective of the Amchitka Radiobiological Program for the period 1970-1979 was to determine the extent of radionuclide contamination from world-wide atmospheric fallout and from the detonation of three underground nuclear blasts on Amchitka Island. The objective is achieved, by the collection and radiological analyses of biological and environmental samples and by background radiation measurements. Leakage of radionuclides from the underground sites of the Amchitka nuclear detonations would be suspected if the contamination was significntly greater than would be expected from world fallout. An account of the program from July 1970 to December 1978 has been given in nine previous reports from the Laboratory of Radiation Ecology to the Nevada Operations Office of the US Department of Energy. This report is an account of the program for calendar year 1979. The results of analyses of the samples collected in 1979 lead to the same conclusions as in previous years; i.e., there is no evidence that the radionuclide contamination at Amchitka Island is greater than would be expected from world fallout except for a slight contamination of the Long Shot Mud Pits with tritium.

  15. POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA

    E-Print Network [OSTI]

    Amato, Jeff

    1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geochemical data are used

  16. POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA

    E-Print Network [OSTI]

    Toro, Jaime

    1 POTASSIC MAGMATISM ON ST. LAWRENCE ISLAND, ALASKA, AND CAPE DEZHNEV, NORTHEAST RUSSIA: EVIDENCE island on the Bering Shelf between Russia andAlaska and was the subject of reconnaissance investigations a syenite pluton at Cape Dezhnev on the Chukotka Peninsula of Russia. These geo-chemical data are used

  17. Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska in 2003

    E-Print Network [OSTI]

    Jones, Ian L.

    Impacts of the Norway Rat on the auklet breeding colony at Sirius Point, Kiska Island, Alaska of the Norway rat (Rattus norvegicus) onto Kiska Island, Aleutian Islands, Alaska, in the 1940s (Murie 1959 and to investigate the biology and demography of the Norway rat population. Moors and Atkinson (1984) suggested

  18. Geology and geochemistry of the Geyser Bight Geothermal Area, Umnak Island, Aleutian Islands, Alaska

    SciTech Connect (OSTI)

    Nye, C.J. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst. Alaska Dept. of Natural Resources, Fairbanks, AK (USA). Div. of Geological and Geophysical Surveys); Motyka, R.J. (Alaska Dept. of Natural Resources, Juneau, AK (USA). Div. of Geological and Geophysical Surveys); Turner, D.L. (Alaska Univ., Fairbanks, AK (USA). Geophysical Inst.); Liss, S.A. (Alaska Dept. of Natural Resources, Fairba

    1990-10-01T23:59:59.000Z

    The Geyser Bight geothermal area is located on Umnak Island in the central Aleutian Islands. It contains one of the hottest and most extensive areas of thermal springs and fumaroles in Alaska, and is only documented site in Alaska with geysers. The zone of hot springs and fumaroles lies at the head of Geyser Creek, 5 km up a broad, flat, alluvial valley from Geyser Bight. At present central Umnak is remote and undeveloped. This report describes results of a combined program of geologic mapping, K-Ar dating, detailed description of hot springs, petrology and geochemistry of volcanic and plutonic rock units, and chemistry of geothermal fluids. Our mapping documents the presence of plutonic rock much closer to the area of hotsprings and fumaroles than previously known, thus increasing the probability that plutonic rock may host the geothermal system. K-Ar dating of 23 samples provides a time framework for the eruptive history of volcanic rocks as well as a plutonic cooling age.

  19. adak island alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MA August 2005 Prepared for Massachusetts for August 2005 This update summarizes the monthly data results for the Thompson Island monitoring site Island for the month of August...

  20. akutan island alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MA August 2005 Prepared for Massachusetts for August 2005 This update summarizes the monthly data results for the Thompson Island monitoring site Island for the month of August...

  1. First Regional Super ESPC a Success on Kodiak Island, Alaska...

    Broader source: Energy.gov (indexed) [DOE]

    at Kodiak Island helped pave the way for additional Super ESPC projects at other agencies. "For these projects to be successful, the agency needs to be committed at the site...

  2. Preliminary results of microearthquake survey, Northern Adak Island, Alaska

    SciTech Connect (OSTI)

    Mackelprang, Claron E.

    1982-01-01T23:59:59.000Z

    Nine MEQ-800 portable seismic systems were emplaced and recordings taken during the 30 day period between September 5 to October 4, 1982. During this interval 190 events were correlated on two or more stations by Mincomp. Twenty four of these, seen on four or more stations and considered to be local in origin, yielded, according to Mincomp, reasonable hypocenters and origin times using a homogeneous earth model having a velocity of 5 km/sec. A plot of these hypocenters showed much of the microearthquake activity recorded during the survey to be located beneath Mt. Adagdak. This is different from the events located by the Butler and Keller (1974) microearthquake survey which placed hypocenters beneath the sea in Andrew Bay north and northwest of Mt. Adagdak. Butler and Keller did project a fault plane to the surface which would project southwest through Mt. Adagdak and Andrew Bay Volcano. ESL hypocenter locations using the layered earth model show many of the identified events to occur on the northeast corner of the island at focal depths of 8-10 km. It is not obvious that the observed events are related to a single active fault. If so, the fault must be at a low dip angle as shown by the least-squares-fit to the data on Figure 3. Alternatively, the majority of the events occurring within a fairly restrictive range of focal depths may be more indicative of a magma chamber and the movement of magma. Further interpretation of the microearthquake data obtained during 1982 is, however, outside the scope of this report. The relatively small error ellipses for hypocenter locations, compared to the distribution of hypocenters shown on Plates V and VI lead us to question the validity of the projection of all hypocenters to define a single fault location and orientation. It is apparent that two or more structures could be indicated by the present data and that these structures intersect near the north end of Adak island. The occurrence of most events in a narrow depth range would lead to considerable error in projecting a single fault plane to its surface intersection.

  3. DOE - Office of Legacy Management -- Amchitka

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » SitesNJ 24 FUSRAPAlaska Amchitka,

  4. Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska FINAL REPORT

    SciTech Connect (OSTI)

    Wright, Bruce Albert [Aleutian Pribilof Islands Association] [Aleutian Pribilof Islands Association

    2014-05-07T23:59:59.000Z

    The Aleutian Pribilof Islands Association was awarded a U.S. Department of Energy Tribal Energy Program grant (DE-EE0005624) for the Feasibility of Tidal and Ocean Current Energy in False Pass, Aleutian Islands, Alaska (Project). The goal of the Project was to perform a feasibility study to determine if a tidal energy project would be a viable means to generate electricity and heat to meet long-term fossil fuel use reduction goals, specifically to produce at least 30% of the electrical and heating needs of the tribally-owned buildings in False Pass. The Project Team included the Aleut Region organizations comprised of the Aleutian Pribilof Island Association (APIA), and Aleutian Pribilof Island Community Development Association (APICDA); the University of Alaska Anchorage, ORPC Alaska a wholly-owned subsidiary of Ocean Renewable Power Company (ORPC), City of False Pass, Benthic GeoScience, and the National Renewable Energy Laboratory (NREL). The following Project objectives were completed: collected existing bathymetric, tidal, and ocean current data to develop a basic model of current circulation at False Pass, measured current velocities at two sites for a full lunar cycle to establish the viability of the current resource, collected data on transmission infrastructure, electrical loads, and electrical generation at False Pass, performed economic analysis based on current costs of energy and amount of energy anticipated from and costs associated with the tidal energy project conceptual design and scoped environmental issues. Utilizing circulation modeling, the Project Team identified two target sites with strong potential for robust tidal energy resources in Isanotski Strait and another nearer the City of False Pass. In addition, the Project Team completed a survey of the electrical infrastructure, which identified likely sites of interconnection and clarified required transmission distances from the tidal energy resources. Based on resource and electrical data, the Project Team developed a conceptual tidal energy project design utilizing ORPC’s TidGen® Power System. While the Project Team has not committed to ORPC technology for future development of a False Pass project, this conceptual design was critical to informing the Project’s economic analysis. The results showed that power from a tidal energy project could be provided to the City of False at a rate at or below the cost of diesel generated electricity and sold to commercial customers at rates competitive with current market rates, providing a stable, flat priced, environmentally sound alternative to the diesel generation currently utilized for energy in the community. The Project Team concluded that with additional grants and private investment a tidal energy project at False Pass is well-positioned to be the first tidal energy project to be developed in Alaska, and the first tidal energy project to be interconnected to an isolated micro grid in the world. A viable project will be a model for similar projects in coastal Alaska.

  5. Screening Risk Assessment for Possible Radionuclides in the Amchitka Marine Environment

    SciTech Connect (OSTI)

    NNSA /NV

    2002-10-31T23:59:59.000Z

    As part of its environmental stewardship program the U.S. Department of Energy (DOE) is reevaluating three sites where underground nuclear tests were conducted in the deep subsurface of Amchitka Island, Alaska. The tests (i.e., Long Shot, Milrow, and Cannikin) were conducted in 1965, 1969, and 1971, respectively. Extensive investigations were conducted on these tests and their effect on the environment. Evaluations at the time of testing indicated limited release of radionuclides and absence of risk related to the testing; however, these are being reevaluated under the current DOE environmental stewardship program. A screening risk assessment of potential radionuclide release into the marine environment is an important part of this reevaluation. The risk assessment is one of three interrelated activities: a groundwater model and this screening risk assessment, both of which guide the decisions in the third activity, the site closure plan. Thus, the overall objective of the work is to understand, and subsequently manage, any risk to humans and the environment through a closure and long-term stewardship plan. The objective of this screening risk assessment is to predict whether possible releases of radionuclides at the ocean floor would represent potential risks to Native Alaskans by consumption of marine subsistence species. In addition, risks were predicted for consumers of commercial catches of marine organisms. These risks were calculated beginning with estimates of possible radionuclide release at the seafloor (from a groundwater modeling study), into the seawater, through possible uptake by marine organisms, and finally possible consumption by humans. The risk assessment model has 11 elements, progressing from potential release at the seafloor through water and food chains to human intake. Data for each of these elements were systematically found and synthesized from many sources, and represent the best available knowledge. Whenever precise data were lacking, the most conservative data were selected. Conservative assumptions and values were used for radionuclide uptake factors and for marine food ingestion rates by human receptors. The dispersion of material in the marine environment utilized a U.S. Environmental Protection Agency (EPA)-approved model (CORMIX). In addition, the screening level of 1 x 10{sup -6} or 1 excess cancer in 1 million is considered by the EPA to be below the level of concern. The end result, as presented in this report, is a highly conservative estimate of potential risks that are well below the EPA's most conservative risk threshold for both subsistence users and commercial-catch consumers.

  6. E-Print Network 3.0 - aleutian islands alaska Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bering Sea and Aleutian Islands skates Olav Ormseth, Beth Matta, and Jerry Hoff Summary: 18a. Bering Sea and Aleutian Islands skates Olav Ormseth, Beth Matta, and Jerry Hoff NMFS...

  7. Verification and Uncertainty Reduction of Amchitka Underground Nuclear Testing Models

    SciTech Connect (OSTI)

    Ahmed Hassan; Jenny Chapman

    2006-02-01T23:59:59.000Z

    The modeling of Amchitka underground nuclear tests conducted in 2002 is verified and uncertainty in model input parameters, as well as predictions, has been reduced using newly collected data obtained by the summer 2004 field expedition of CRESP. Newly collected data that pertain to the groundwater model include magnetotelluric (MT) surveys conducted on the island to determine the subsurface salinity and porosity structure of the subsurface, and bathymetric surveys to determine the bathymetric maps of the areas offshore from the Long Shot and Cannikin Sites. Analysis and interpretation of the MT data yielded information on the location of the transition zone, and porosity profiles showing porosity values decaying with depth. These new data sets are used to verify the original model in terms of model parameters, model structure, and model output verification. In addition, by using the new data along with the existing data (chemistry and head data), the uncertainty in model input and output is decreased by conditioning on all the available data. A Markov Chain Monte Carlo (MCMC) approach is adapted for developing new input parameter distributions conditioned on prior knowledge and new data. The MCMC approach is a form of Bayesian conditioning that is constructed in such a way that it produces samples of the model parameters that eventually converge to a stationary posterior distribution. The Bayesian MCMC approach enhances probabilistic assessment. Instead of simply propagating uncertainty forward from input parameters into model predictions (i.e., traditional Monte Carlo approach), MCMC propagates uncertainty backward from data onto parameters, and then forward from parameters into predictions. Comparisons between new data and the original model, and conditioning on all available data using MCMC method, yield the following results and conclusions: (1) Model structure is verified at Long Shot and Cannikin where the high-resolution bathymetric data collected by CRESP yield profiles matching those used to construct the Long Shot and Cannikin model cross sections in 2002. (2) Distributions of model input parameters (recharge, conductivity, and recharge-conductivity ratio) used in 2002 for the three sites are verified where the new data indicate distributions with narrower ranges (smaller uncertainty) but within the range employed in the 2002 model. (3) As a conservative approach, distribution of fracture porosity used in 2002 was deliberately skewed toward lower values. New CRESP data indicate that the selected porosity range was overly conservative. In addition, the range of porosity values obtained from the analysis of the MT data is found to generally be about three orders of magnitude lower than range of values used in the 2002 model, though the values themselves are much larger from the MT data. (4) Distributions of the flow model output (head distribution, salinity distribution, groundwater fluxes) resulting from the 2002 model for the three sites are verified where the new model output after conditioning on the data lie within the range of the 2002 model output. (5) Cannikin model output at location of well UAe-1 is not fully verified where the new model results for small salinity values are not fully enclosed by the uncertainty bounds of the original model output. (6) With the new porosities developed from the analysis of MT data, radionuclides require thousands of years to reach the seafloor. No breakthrough resulted for any of the three sites within the 2000 year model timeframe, despite ignoring all retardation mechanisms (sorption, radionuclide trapping in glass, matrix diffusion, and radioactive decay). (7) The no-breakthrough results verify the original model in the sense that this result lies within the uncertainty bounds of the 2002 model expressed as + 2 {sigma}{sub Q} and - 2 {sigma}{sub Q}. The lower bound, - 2 {sigma}{sub Q}, in the 2002 model gave negative values implying that the bound is essentially zero. The current results of no-breakthrough match this lower bound. (8) Si

  8. Amchitka Archived Soil & Groundwater Master Reports | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of EnergyAboutAlbuquerqueEnergyVehicles &Amchitka

  9. An Alaska fur seal family on St. Paul Island, Pribilof Group, Alaska . (Photo: V.B . Scheffe SEC. STANS REPORTS FAVORABLY ON

    E-Print Network [OSTI]

    Pribilof Isl ands off Alaska in the Bering iea on July 8 and 9. He went to observe fur-seal management, I onservation practices, and to review har- esting methods because of recent criticisms. He consulted with 6 CLUSIO S liAs a result of my meetings and my per- sonal review of the situation, II he said, "I can

  10. ISLANDER

    Energy Science and Technology Software Center (OSTI)

    003251WKSTN00 Genomic Island Identification Software v 1.0  http://bioinformatics.sandia.gov/software 

  11. DOE - Office of Legacy Management -- Amchitka Island Test Center - AK 01

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home » SitesNJ 24 FUSRAPAlaska

  12. RADIONUCLIDES IN MARINE FISHES AND BIRDS FROM AMCHITKA AND KISKA ISLANDS IN THE ALEUTIANS:

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1%AU62 & 199344S.

  13. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments through expert panel discussions, stakeholder dialogue, and training.

  14. E-Print Network 3.0 - amchitka radiobiological program Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ; Environmental Sciences and Ecology 26 I . . Alaska Fisheries Science Summary: and Ecosystem Modeling Program collected fish stomach samples during this survey. Sample...

  15. E-Print Network 3.0 - alaska native women Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 National Center for Education Statistics IPEDS Data Center Summary: Women Nonresident alien Black, non-Hispanic American IndianAlaska Native AsianPacific Islander... Total men...

  16. Auklet (Charadriiformes: Alcidae, Aethia spp.) chick meals from the Aleutian Islands, Alaska, have a very low incidence of plastic marine debris

    E-Print Network [OSTI]

    Jones, Ian L.

    , have a very low incidence of plastic marine debris Alexander L. Bond a,*, Ian L. Jones a , Jeffrey C t i c l e i n f o Keywords: Plastic Marine debris North Pacific Ocean Auklet Aethia Aleutian Islands a b s t r a c t The ingestion of plastic marine debris is a chronic problem for some of the world

  17. Arctic ice islands

    SciTech Connect (OSTI)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01T23:59:59.000Z

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  18. Alaska Open-file Report 144 Assessment of Thermal Springs Sites Aleutian Arc, Atka Island to Becherof Lake -- Preliminary Results and Evaluation

    SciTech Connect (OSTI)

    Motyka, R.J.; Moorman, M.A.; Liss, S.A.

    1981-12-01T23:59:59.000Z

    Twenty of more than 30 thermal spring areas reported to exist in the Aleutian arc extending from Atka Island to Becherof Lake were investigated during July and August, 1980. Thermal activity of three of these sites had diminished substantially or no longer existed. At least seven more sites where thermal-spring activity is probable or certain were not visited because of their remoteness or because of time constraints. The existence of several other reported thermal spring sites could not be verified; these sites are considered questionable. On the basis of geothermometry, subsurface reservoir temperatures in excess of 150 C are estimated for 10 of the thermal spring sites investigated. These sites all occur in or near regions of Recent volcanism. Five of the sites are characterized by fumaroles and steaming ground, indicating the presence of at least a shallow vapor-dominated zone. Two, the Makushin Valley and Glacier Valley thermal areas, occur on the flanks of active Mukushin Volcano located on Unalaska Island, and may be connected to a common source of heat. Gas geothermometry suggests that the reservoir feeding the Kliuchef thermal field, located on the flanks of Kliuchef volcano of northeast Atka Island, may be as high as 239 C.

  19. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    Organized and sponsored by the Alaska Energy Authority and the Alaska Center for Energy and Power, the Alaska Rural Energy Conference is a three-day event featuring a wide array of technical...

  20. Alaska BIA Providers Conference

    Broader source: Energy.gov [DOE]

    The Alaska Bureau of Indian Affairs (BIA) is hosting the 24th Annual BIA Tribal Providers Conference in Anchorage, Alaska, Dec. 1-5, 2014.

  1. E-Print Network 3.0 - amsterdam island southeastern Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Amsterdam Island 189 iv 12;Rapporteurs' Reports Trillmich... Shelf near Kodiak Island, Alaska, by Arthur W. Kendall, Jr., and Jean R. Dunn. January 1985, 89 p. 21... of...

  2. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    rankings of Alaska’s oil investment favorability. Source:it would increase oil company investment in Alaska, neededGovernment Support Oil & Gas Investment Tax Credits Other

  3. The Outlier State: Alaska’s FY 2012 Budget

    E-Print Network [OSTI]

    McBeath, Jerry; Corbin, Tanya Buhler

    2012-01-01T23:59:59.000Z

    State: Alaska’s FY 2012 Budget themselves Alaskans United toJ. (2011) “What Recession? Alaska’s 2011 Budget,” in AnnualWestern States Budget Review, and California Journal of

  4. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    2011) “The Outlier State: Alaska’s FY 2012 Budget,” AnnualWestern States Budget Review. New York Times, selectedAbundance: Alaska’s FY 2013 Budget Process Abstract: This

  5. Wind Power in Alaska

    Broader source: Energy.gov [DOE]

    In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

  6. Alaska Rural Energy Conference

    Broader source: Energy.gov [DOE]

    The Alaska Rural Energy Conference is a three-day event offering a large variety of technical sessions covering new and ongoing energy projects in Alaska, as well as new technologies and needs for...

  7. Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    The Alaska Forum on the Environment is Alaska's largest statewide gathering of environmental professionals from government agencies, non-profit and for-profit businesses, community leaders, Alaskan...

  8. Renewable Energy in Alaska

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This report examines the opportunities, challenges, and costs associated with renewable energy implementation in Alaska and provides strategies that position Alaska's accumulating knowledge in renewable energy development for export to the rapidly growing energy/electric markets of the developing world.

  9. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01T23:59:59.000Z

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  10. What Recession? Alaska's FY 2011 Budget

    E-Print Network [OSTI]

    McBeath, Jerry

    2011-01-01T23:59:59.000Z

    Recession? Alaska’s FY 2011 Budget Jerry McBeath Universityexplaining Alaska’s FY 2011 budget process and out- comes.It introduces the governor’s budget requests, legislative

  11. Alaska Renewable Energy Fair

    Office of Energy Efficiency and Renewable Energy (EERE)

    The 10th annual Alaska Renewable Energy Fair on the downtown parkstrip in Anchorage is fun for the whole family! Come down and enjoy the live music, crafts, great local food, informational booths,...

  12. Pilgrim Hot Springs, Alaska

    Broader source: Energy.gov [DOE]

    Residents in rural Alaska may someday have the option of replacing diesel generators with clean renewable geothermal energy. Alaskans face some of the harshest weather conditions in America, and in...

  13. Interconnection Guidelines (Alaska)

    Broader source: Energy.gov [DOE]

    In October 2009, the Regulatory Commission of Alaska (RCA) approved net metering regulations. These rules were finalized and approved by the lieutenant governor in January 2010 and became effective...

  14. Alaska Workshop: Workforce Development

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

  15. america project alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences & Haugeberg LLC CPA's State of Alaska...

  16. Alaska: Alaska's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Alaska.

  17. amchitka3.cdr

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C.Greentnv~ronmenrar ivronrrorrng L V ~ /!i

  18. Development of an Autonomous Underwater Vehicle for Sub-Ice Environmental Monitoring in Prudhoe Bay, Alaska

    E-Print Network [OSTI]

    Wood, Stephen L.

    Alaska's northern coast. Of particular interest are the impacts of construction of offshore gravel the effects of offshore gravel-island based oil development on the marine environment. As part effects on marine plant life, due to decreased light transmission through the water column. In order

  19. Applications for Alaska Strategic Technical Assistance Response...

    Energy Savers [EERE]

    Alaska START is aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

  20. anchorage alaska installation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FORUM UNIVERSITY of ALASKA ANCHORAGE Physics Websites Summary: ALASKA JUSTICE FORUM UNIVERSITY of ALASKA ANCHORAGE A PUBLICATION OF THE JUSTICE CENTER Andr B Justice...

  1. alaska forest service: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Airlines NANA Management Services Biology and Medicine Websites Summary: Alaska Tour Company Alaska Center for Energy and Power Norton Sound Health Corp Alaska Earth Sciences...

  2. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    August 2008. Monthly Electric Utility Sales and Revenue Data Short Name 2008-08 Utility Company Alaska Electric Light&Power Co (Alaska) Place Alaska Start Date 2008-08-01 End Date...

  3. AMF Deployment, Oliktok, Alaska

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory:CONTR.l\CTIndia GangesAlaska

  4. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    extreme dependence on depleting oil reserves and on federaldependence on depleting oil reserves and federal governmentReserve-Alaska (NPR-A), regarded as the most likely on-shore oil

  5. Planning Amid Abundance: Alaska’s FY 2013 Budget Process

    E-Print Network [OSTI]

    McBeath, Jerry

    2013-01-01T23:59:59.000Z

    on liquefied natural gas (LNG). He met with the Alaska CEOsof the companies’ position on LNG exports with the state’s (unclear whether a large LNG project would be feasible and

  6. Alaska Renewable Energy Fund Grants for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    The Alaska Energy Authority is offering grants for renewable energy projects funded by the Alaska State Legislature.

  7. Kodiak Island Borough, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz e

  8. The Geyser Bight Geothermal Area, Umnak Island, Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:Information 'Grand Paris'Book:OpenOpen

  9. Graduate Programs University of AlaskaFairbanks

    E-Print Network [OSTI]

    Geology Graduate Programs University of AlaskaFairbanks Fairbanks, Alaska 997755780 Program Program: Geology http://www.auburn.edu/academic/science_math/geology/docs/graddrg.htm Brigham Young University Provo, Utah 846024606 Program: Geology http://geologyindy.byu.edu/programs

  10. Alaska Rural Energy Conference | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Rural Energy Conference Alaska Rural Energy Conference September 23, 2014 12:00PM EDT to September 25, 2014 9:00PM EDT Fairbanks, AK http:www.akruralenergy.org...

  11. Island Energy Snapshots

    Office of Energy Efficiency and Renewable Energy (EERE)

    These energy snapshots highlight the energy landscape of islands in the Caribbean and the surrounding area.

  12. A Heart Health Alaska Natives

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Honoring the Gift of Heart Health A Heart Health Educator's Manual for Alaska Natives U . S . D E Health Service Office of Prevention, Education, and Control #12;Honoring the Gift of Heart Health A Heart National Heart, Lung, and Blood Institute and Indian Health Service NIH Publication No. 06-5218 Revised

  13. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

  14. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Bethel Alaska Native Village Renewable Energy Project Development Workshop in Bethel March 23, 2015 8:00AM AKDT to March 25, 2015 5:00PM AKDT Bethel, Alaska University of Alaska...

  15. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Juneau Alaska Native Village Renewable Energy Project Development Workshop in Juneau March 30, 2015 8:00AM AKDT to April 1, 2015 5:00PM AKDT Juneau, Alaska University of Alaska...

  16. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for July 2008. Monthly...

  17. Status, behavior and demography of Whiskered Auklets (Aethia pygmaea) at Egg Island, Aleutian Islands, Alaska

    E-Print Network [OSTI]

    Jones, Ian L.

    representative Whiskered Auklet breeding habitat present. These were: Area A (53º 51.920' N 166º 03.288' W), Area B (53º 51.924' N 166º 03.217' W), Area C (53º 51.929' N 166º 03.324' W), and Area D (53º 51.924' N). Whiskered Auklet colonies in the Unimak pass area of the eastern Aleutians represent the eastern edge

  18. Federal Agencies Collaborate to Expedite Construction of Alaska...

    Broader source: Energy.gov (indexed) [DOE]

    Collaborate to Expedite Construction of Alaska Natural Gas Pipeline Federal Agencies Collaborate to Expedite Construction of Alaska Natural Gas Pipeline June 29, 2006 - 2:44pm...

  19. DOE Alaska Native Village Renewable Energy Project Development...

    Energy Savers [EERE]

    Alaska Native Village Renewable Energy Project Development Workshop DOE Alaska Native Village Renewable Energy Project Development Workshop March 30, 2015 9:00AM AKDT to April 1,...

  20. Geothermal Exploration In Pilgrim, Alaska- First Results From...

    Open Energy Info (EERE)

    Pilgrim, Alaska- First Results From Remote Sensing Studies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Poster: Geothermal Exploration In Pilgrim, Alaska- First...

  1. Climate, Conservation, and Community in Alaska and Northwest Canada

    Broader source: Energy.gov [DOE]

    Climate, Conservation, and Community in Alaska and Northwest Canada is a joint Landscape Conservation Cooperative (LCC) and Alaska Climate Science Center (AK CSC) conference scheduled for November...

  2. Alaska Village Initiatives Rural Small Business Conference

    Broader source: Energy.gov [DOE]

    The Alaska Village Initiatives 23rd Annual Rural Small Business Conference will bring together rural businesses and leaders and provide them with networking opportunities, training, and technical...

  3. Alaska: a guide to geothermal energy development

    SciTech Connect (OSTI)

    Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

    1980-06-01T23:59:59.000Z

    Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

  4. Alaska START Round 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunity aimed at achieving the following goals: Reducing the cost and use of energy for rural Alaska consumers and communities Increasing local capacity, energy...

  5. Alaska | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

  6. E-Print Network 3.0 - alaska installation restoration Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    role in the history of Alaska. Salmon, along with mining, timber, and furs, were the keystone... of residents and visitors to Alaska. Alaska native peoples and their heritage...

  7. Recovery Act State Memos Alaska

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|Updated July 2010Alaska

  8. Microsoft Word - S08833_BMR.docx

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. .09Annual10Amchitka Island, Alaska,

  9. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    November 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for November 2008. Monthly Electric Utility Sales...

  10. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for December 2008. Monthly Electric Utility Sales...

  11. 2013 Alaska Federation of Natives Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  12. Alaska Federation of Natives Annual Convention

    Broader source: Energy.gov [DOE]

    The Alaska Federation of Natives (AFN) Convention is the largest representative annual gathering in the United States of any Native peoples. Delegates are elected on a population formula of one...

  13. Alaska Native Village Energy Development Workshop

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy and Tribal Energy Program, this workshop is designed to help Alaska Native villages and corporations understand the range of energy efficiency and...

  14. Alaska Village Initiatives Rural Business Conference

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Village Initiative, the 24th Annual Rural Small Business Conference brings together rural businesses and leaders to provide them with networking opportunities, training, and technical information.

  15. DOE Alaska Native Village Renewable Energy Workshop

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Indian Energy Policy and Programs and Office of Energy Efficiency and Renewable Energy Tribal Energy Program are offering a 2-day workshop for Alaska Native...

  16. Advancing Efforts to Energize Native Alaska (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-04-01T23:59:59.000Z

    This brochure describes key programs and initiatives of the DOE Office of Indian Energy Policy and Programs to advance energy efficiency, renewable energy, and energy infrastructure projects in Alaska Native villages.

  17. Alaska Strategic Energy Plan and Planning Handbook

    Broader source: Energy.gov (indexed) [DOE]

    AEA Alaska Energy Authority Btu British thermal unit DOE U.S. Department of Energy EERE Office of Energy Efficiency and Renewable Energy kW kilowatt kWh kilowatt-hour LCOE...

  18. Heavy oil production from Alaska

    SciTech Connect (OSTI)

    Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31T23:59:59.000Z

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  19. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring

  20. Alaska

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: Shale natural

  1. Conservation Strategy for Sable Island

    E-Print Network [OSTI]

    Jones, Ian L.

    Towards a Conservation Strategy for Sable Island Environment Canada, Canadian Wildlife Service, Atlantic Region #12;SABLE ISLAND CONSERVATION STRATEGY page - i March, 1998 A CONSERVATION STRATEGY FOR SABLE ISLAND PREPARED BY This Conservation Strategy for Sable Island was prepared for Environment Canada

  2. Energy Department Moves Forward on Alaska Natural Gas Pipeline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program Energy Department Moves Forward on Alaska Natural Gas Pipeline Loan Guarantee Program May 26, 2005 - 1:03pm...

  3. alaska north slope: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and accurate manner; and managing the AKSC office and staffAlaska Seafood Cooperative Report to the North Pacific Fishery Management 10 UNIVERSITY OF ALASKA MUSEUM OF THE NORTH...

  4. Alaska Native Village Renewable Energy Project Development Workshop...

    Office of Environmental Management (EM)

    Dillingham Alaska Native Village Renewable Energy Project Development Workshop in Dillingham March 26, 2015 8:00AM AKDT to March 27, 2015 5:00PM AKDT Dillingham, Alaska University...

  5. Interconnection Guidelines (Rhode Island)

    Broader source: Energy.gov [DOE]

    Rhode Island enacted legislation (HB 6222) in June 2011 to standardize the application process for the interconnection of customer-sited renewable-energy systems to the state’s distribution grid....

  6. Forestry Policies (Rhode Island)

    Broader source: Energy.gov [DOE]

    Rhode Island's forests cover over half of the state's land area, and are managed by the Department of Environmental Management, Division of Forest Environment. The State issued its "Forest...

  7. Aleutian Pribilof Islands Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Bruce A. Wright

    2012-03-27T23:59:59.000Z

    Under this project, the Aleutian Pribilof Islands Association (APIA) conducted wind feasibility studies for Adak, False Pass, Nikolski, Sand Point and St. George. The DOE funds were also be used to continue APIA's role as project coordinator, to expand the communication network quality between all participants and with other wind interest groups in the state and to provide continued education and training opportunities for regional participants. This DOE project began 09/01/2005. We completed the economic and technical feasibility studies for Adak. These were funded by the Alaska Energy Authority. Both wind and hydro appear to be viable renewable energy options for Adak. In False Pass the wind resource is generally good but the site has high turbulence. This would require special care with turbine selection and operations. False Pass may be more suitable for a tidal project. APIA is funded to complete a False Pass tidal feasibility study in 2012. Nikolski has superb potential for wind power development with Class 7 wind power density, moderate wind shear, bi-directional winds and low turbulence. APIA secured nearly $1M from the United States Department of Agriculture Rural Utilities Service Assistance to Rural Communities with Extremely High Energy Costs to install a 65kW wind turbine. The measured average power density and wind speed at Sand Point measured at 20m (66ft), are 424 W/m2 and 6.7 m/s (14.9 mph) respectively. Two 500kW Vestas turbines were installed and when fully integrated in 2012 are expected to provide a cost effective and clean source of electricity, reduce overall diesel fuel consumption estimated at 130,000 gallons/year and decrease air emissions associated with the consumption of diesel fuel. St. George Island has a Class 7 wind resource, which is superior for wind power development. The current strategy, led by Alaska Energy Authority, is to upgrade the St. George electrical distribution system and power plant. Avian studies in Nikolski and Sand Point have allowed for proper wind turbine siting without killing birds, especially endangered species and bald eagles. APIA continues coordinating and looking for funding opportunities for regional renewable energy projects. An important goal for APIA has been, and will continue to be, to involve community members with renewable energy projects and energy conservation efforts.

  8. Chariot, Alaska Site Fact Sheet

    SciTech Connect (OSTI)

    None

    2013-01-16T23:59:59.000Z

    The Chariot site is located in the Ogotoruk Valley in the Cape Thompson region of northwest Alaska. This region is about 125 miles north of (inside) the Arctic Circle and is bounded on the southwest by the Chukchi Sea. The closest populated areas are the Inupiat villages of Point Hope, 32 miles northwest of the site, and Kivalina,41 miles to the southeast. The site is accessible from Point Hope by ATV in the summer and by snowmobile in the winter. Project Chariot was part of the Plowshare Program, created in 1957 by the U.S. Atomic Energy Commission (AEC), a predecessor agency of the U.S. Department of Energy (DOE), to study peaceful uses for atomic energy. Project Chariot began in 1958 when a scientific field team chose Cape Thompson as a potential site to excavate a harbor using a series of nuclear explosions. AEC, with assistance from other agencies, conducted more than40 pretest bioenvironmental studies of the Cape Thompson area between 1959 and 1962; however, the Plowshare Program work at the Project Chariot site was cancelled because of strong public opposition. No nuclear explosions were conducted at the site.

  9. Permian fusulinids from Pacific northwest and Alaska

    E-Print Network [OSTI]

    Skinner, J. W.; Wilde, G. L.

    1966-05-23T23:59:59.000Z

    THE UNIVERSITY OF KANSAS PALEONTOLOGICAL CONTRIBUTIONS May 23, 1966 Paper 4 PERMIAN FUSULINIDS FROM PACIFIC NORTHWEST AND ALASKA By JoHN W. SKINNER and GARNER L. WILDE Plumbic Oil & Rcfining Company, Midland, Texas CONTENTS PAGE Part 1 PERMIAN... varies Skinner & Wilde—Permian Fusulinids from Pacific Northwest and Alaska 5 FEET FEET FEET 800 1600 111) 7001500IV& 1.1 600 Nev - 9 1400 1111 nibORD NMI ENDMONS rub WINE M- amaimam wom.wen Imo%1111/10 Minh Nev -20 NNW=NM 200 MOD 1000NNW NIPMOM Nev...

  10. Depositional environments of the Kodiak Shelf, Alaska

    E-Print Network [OSTI]

    Burbach, Stuart Peter

    1977-01-01T23:59:59.000Z

    'te ?eel i 9/I !, . jor S h!est; O? anoo! aphJ DEPOSITIONAL ENVIRONMENTS OF THE KODIAK SHELF, ALASKA A Thesis by STUART PETER BURBACH Approved as to sty1e and content by: (Chairman of Committee ( ead of Department) (Member) (Member) December 1977... -'DSTRRCT Depositional Environments of the Kodiak ', elf, Alaska. (December 1977) Stuart Peter Burbach, B. P, . , University of Ifisconsin at Iililv!aukee Chairman of Cidvfsory Committee: Dr. I!illiam B. Bryant Four depositional environments are defined...

  11. Alaska Electric Light&Power Co (Alaska) EIA Revenue and Sales...

    Open Energy Info (EERE)

    EIA Monthly Electric Utility Sales and Revenue Data for Alaska Electric Light&Power Co for February 2009. Monthly Electric Utility Sales and Revenue Data Short Name 2009-02 Utility...

  12. EA-1183: Coal-fired Diesel Generator University of Alaska, Fairbanks, Alaska

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to provide funds to support the construction and operation of a coal-fired diesel generator at the University of Alaska, Fairbanks.

  13. Long Island Solar Farm

    SciTech Connect (OSTI)

    Anders, R.

    2013-05-01T23:59:59.000Z

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  14. UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY

    E-Print Network [OSTI]

    Wagner, Diane

    UNIVERSITY OF ALASKA FAIRBANKS ENGINEERING FACILITY PROGRAMMING AND SITE SELECTION REPORT FINAL 09 SUMMARY 2. PROGRAMMING PARTICIPANTS & DESIGN TEAM 3. CODES & REGULATIONS 4. PROGRAM 5. SITE 6. PLAN ORGANIZATIONAL DIAGRAMS 7. CIVIL ENGINEERING 8. STRUCTURAL SYSTEMS 9. MECHANICAL SYSTEMS 10. PLUMBING SYSTEMS 11

  15. GREEN HOMES LONG ISLAND

    E-Print Network [OSTI]

    Kammen, Daniel M.

    energy bill, reduce your carbon footprint... at little or no cost to you. #12;A Message From Supervisor energy-efficient and reduce our community's carbon footprint. Why do we call it Long Island Green Homes to yourevery day. By making basic improvements to yourevery day home, you can reduce your carbon footprint

  16. Indicators of recent environmental change in Alaska

    SciTech Connect (OSTI)

    Jacoby, G.C.; D`Arrigo, R.D.; Juday, G.

    1997-12-31T23:59:59.000Z

    Climate models predict that global warming due to the effects of increasing trace gases will be amplified in northern high latitude regions, including Alaska. Several environmental indicators, including tree-ring based temperature reconstructions, borcal forest growth measurements and observations of glacial retreat all indicate that the general warming of the past century has been significant relative to prior centuries to millenia. The tree-ring records for central and northern Alaska indicate that annual temperature increased over the past century, peaked in the 1940s, and are still near the highest level for the past three centuries (Jacoby and D`Arrigo 1995). The tree-ring analyses also suggest that drought stress may now be a factor limiting growth at many northern sites. The recent warming combined with drier years may be altering the response of tree growth to climate and raising the likelihood of forest changes in Alaska and other boreal forests. Other tree-ring and forest data from southern and interior Alaska provide indices of the response of vegetation to extreme events (e.g., insect outbreaks, snow events) in Alaska (Juday and marler 1996). Historical maps, field measurements and satellite imagery indicate that Alaskan glaciers have receded over the past century (e.g., Hall and Benson 1996). Severe outbreaks of bark beetles may be on the increase due to warming, which can shorten their reproductive cycle. Such data and understanding of causes are useful for policy makers and others interested in evaluation of possible impacts of trace-gas induced warming and environmental change in the United States.

  17. E-Print Network 3.0 - alaska marine mammal Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delphinapterus leucas, Distribution and Survey Effort in the Gulf of Alaska Summary: . Rugh are with the National Marine Mammal Laboratory, Alaska Fisheries Science Center,...

  18. E-Print Network 3.0 - alaska power administration Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and political power of migrants to Alaska... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in the...

  19. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    Alaska Department of Transportation and Public Facilities - ApplicationRenewal for Encroachment Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  20. Executive Order 13592: Improving American Indian and Alaska Native...

    Office of Environmental Management (EM)

    America, I hereby order as follows: Section 1. Policy. The United States has a unique political and legal relation- ship with the federally recognized American Indian and Alaska...

  1. ,"Alaska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"6302009" ,"Release...

  2. Title 11 Alaska Administrative Code 87 Geothermal Drilling and...

    Open Energy Info (EERE)

    Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

  3. alaska fairbanks fairbanks: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    goals? Disability Information In your own Ickert-Bond, Steffi 12 Organic Chemistry II Syllabus University of Alaska Fairbanks Environmental Sciences and Ecology Websites Summary: 1...

  4. Alaska Administrative Code - Title 17, Chapter 10, Section 12...

    Open Energy Info (EERE)

    RegulationRegulation: Alaska Administrative Code - Title 17, Chapter 10, Section 12 - Approval Requirements for EncroachmentsLegal Abstract This section describes the...

  5. Chemical Hygiene Planh UNIVERSITY OF AlASKA

    E-Print Network [OSTI]

    Hartman, Chris

    Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO........................................................................................................ 8 F Reactive Chemicals

  6. Alaska Energy Workshop Tour Creates Rich Opportunities for Knowledge...

    Energy Savers [EERE]

    Sharing April 16, 2015 - 11:11am Addthis Sherry Stout presents at the Native Village Renewable Energy Project Development workshop in Dillingham, Alaska. Photo by Sherry Stout,...

  7. anwr northeastern alaska: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 Late Pleistocene and Holocene glaciation of the Fish Lake valley, northeastern Alaska Range, Geosciences Websites Summary: in the...

  8. alaska seafood processing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sammler - NOAANational Weather Service ten Brink, Uri S. 131 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  9. Alaska Energy in Action: Akiak Reaps Benefits of PCE Technical...

    Office of Environmental Management (EM)

    electric utility customers and the procurement costs incurred by the 184 isolated diesel microgrid utilities scattered across rural Alaska. Importing fossil fuels by barge or...

  10. Alaska Natives Benefit from First-Ever Community Energy Development...

    Office of Environmental Management (EM)

    village councils to regional housing authorities and Native corporations and nonprofits. "Rural Alaska is facing an energy crisis that makes rural community and regional economic...

  11. DOE to Host Alaska Native Village Energy Development Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Alaska Native villages, the workshop agenda will cover topics such as: Strategic energy planning Clean energy project development and financing Technology updates Energy...

  12. DOE - Office of Legacy Management -- Amchitka

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r.x-L*Aliquippa - PA

  13. Alaska North Slope National Energy Strategy initiative: Analysis of five undeveloped fields

    SciTech Connect (OSTI)

    Thomas, C.P.; Allaire, R.B.; Doughty, T.C.; Faulder, D.D.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1993-05-01T23:59:59.000Z

    The US Department of Energy was directed in the National Energy Strategy to establish a federal interagency task force to identify specific technical and regulatory barriers to the development of five undeveloped North Slope Alaska fields and make recommendations for their resolution. The five fields are West Sak, Point Thomson, Gwydyr Bay, Seal Island/Northstar, and Sandpiper Island. Analysis of environmental, regulatory, technical, and economic information, and data relating to the development potential of the five fields leads to the following conclusions: Development of the five fields would result in an estimated total of 1,055 million barrels of oil and 4.4 trillion cubic feet of natural gas and total investment of $9.4 billion in 1992 dollars. It appears that all five of the fields will remain economically marginal developments unless there is significant improvement in world oil prices. Costs of regulatory compliance and mitigation, and costs to reduce or maintain environmental impacts at acceptable levels influence project investments and operating costs and must be considered in the development decision making process. The development of three of the fields (West Sak, Point Thomson, and Gwydyr Bay) that are marginally feasible would have an impact on North Slope production over the period from about 2000 to 2014 but cannot replace the decline in Prudhoe Bay Unit production or maintain the operation of the Trans-Alaska Pipeline System (TAPS) beyond about 2014 with the assumption that the TAPS will shut down when production declines to the range of 400 to 200 thousand barrels of oil/day. Recoverable reserves left in the ground in the currently producing fields and soon to be developed fields, Niakuk and Point McIntyre, would range from 1 billion to 500 million barrels of oil corresponding to the time period of 2008 to 2014 based on the TAPS shutdown assumption.

  14. Preserving Alaska's early Cold War legacy.

    SciTech Connect (OSTI)

    Hoffecker, J.; Whorton, M.

    1999-03-08T23:59:59.000Z

    The US Air Force owns and operates numerous facilities that were constructed during the Cold War era. The end of the Cold War prompted many changes in the operation of these properties: missions changed, facilities were modified, and entire bases were closed or realigned. The widespread downsizing of the US military stimulated concern over the potential loss of properties that had acquired historical value in the context of the Cold War. In response, the US Department of Defense in 1991 initiated a broad effort to inventory properties of this era. US Air Force installations in Alaska were in the forefront of these evaluations because of the role of the Cold War in the state's development and history and the high interest on the part of the Alaska State Historic Preservation Officer (SHPO) in these properties. The 611th Air Support Group (611 ASG) owns many of Alaska's early Cold War properties, most were associated with strategic air defense. The 611 ASG determined that three systems it operates, which were all part of the integrated defense against Soviet nuclear strategic bomber threat, were eligible for the National Register of Historic Places (NRHP) and would require treatment as historic properties. These systems include the Aircraft Control and Warning (AC&W) System, the Distant Early Warning (DEW) Line, and Forward Operating Bases (FOBs). As part of a massive cleanup operation, Clean Sweep, the 611 ASG plans to demolish many of the properties associated with these systems. To mitigate the effects of demolition, the 611 ASG negotiated agreements on the system level (e.g., the DEW Line) with the Alaska SHPO to document the history and architectural/engineering features associated with these properties. This system approach allowed the US Air Force to mitigate effects on many individual properties in a more cost-effective and efficient manner.

  15. Nuiqsut, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to: navigation,

  16. Nulato, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:

  17. Nulato, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska: Energy Resources Jump to:8.1030556°

  18. Kodiak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,GeorgeKlimaschutz eKodiak, Alaska: Energy

  19. Alaska Native Villages | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orA BRIEF HISTORYAgency FinancialEnergy DevelopmentAlaska

  20. Alaska Renewable Energy Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska

  1. Homer, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: Energy Resources Jump to: navigation,

  2. Hope, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska: EnergyHooker County, Nebraska:Hope

  3. Akhiok, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy Information LightningAikenAkan, Wisconsin:Akhiok, Alaska:

  4. Kachemak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 Climate ZoneJeromeCountyKGRA Energy LLCKachemak, Alaska:

  5. Alternative Fuels Data Center: Alaska Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNaturalAlaska Information to

  6. Culturing revolution : the local Communists of China's Hainan Island

    E-Print Network [OSTI]

    Murray, Jeremy Andrew

    2011-01-01T23:59:59.000Z

    One: Deserted Treasure Island……………………………………………….13 ChapterChapter One Deserted Treasure Island: The Social Ecology andIsolated Island/Treasure Island – Gudao / Baodao Social and

  7. Rhode Island Stormwater Design and Installation Standards Manual (Rhode Island)

    Broader source: Energy.gov [DOE]

    Rhode Island's stormwater design and installation standards manual has been developed to describe mandatory and suggested stormwater design and performance criteria for applicants to the Department...

  8. Minnesota Nuclear Profile - Prairie Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Prairie Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  9. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  13. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  14. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  15. B I OENV I RONMENTAL FEATURES OF THE OGOTORUK CREEK AREA, CAPE THOMPSON, ALASKA

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I-Amchitka,Ashtabula,\ l

  16. Alaska oil and gas: Energy wealth or vanishing opportunity

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Faulder, D.D.; Harrison, W.E.; Irving, J.S.; Jamison, H.C.; White, G.J.

    1991-01-01T23:59:59.000Z

    The purpose of the study was to systematically identify and review (a) the known and undiscovered reserves and resources of arctic Alaska, (b) the economic factors controlling development, (c) the risks and environmental considerations involved in development, and (d) the impacts of a temporary shutdown of the Alaska North Slope Oil Delivery System (ANSODS). 119 refs., 45 figs., 41 tabs.

  17. Control Strategies for Late Blight in the Alaska Potato Crop

    E-Print Network [OSTI]

    Wagner, Diane

    Control Strategies for Late Blight in the Alaska Potato Crop PMC-00339 Late blight is a devastating disease of both tomatoes and potatoes that is occasionally found in Alaska. There is no "cure" for the disease and there are very few re- sistant varieties of potatoes, so disease management strategies

  18. alaska native people: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    alaska native people First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Alaska Native People Shaping...

  19. Galveston Island and erosion

    E-Print Network [OSTI]

    Bolleter, Jim Mason

    1985-01-01T23:59:59.000Z

    . VITA 73 74 80 85 97 101 115 LIST OF TABLES Table Page 1. Ai rphoto Scale Determination with the Aid of a Base Map . . 16 2. Actual-vs-l4easured Photo Scale and Resulting Error 3. Tropical Cyclones Affecting the Texas Coast from 1952-1983... 17 64 4. Projected Sea-level Rise 72 5. Potential Sand Sources and Sinks for Galveston Island . . . . 80 Al. Vegetation-line Changes on West Beach from July 3, 1977 to September 22, 1983; Impact of Recent Storm Events AZ. Changes...

  20. Islands in the landscape

    E-Print Network [OSTI]

    T. Clifton; Andrei Linde; Navin Sivanandam

    2007-01-10T23:59:59.000Z

    The string theory landscape consists of many metastable de Sitter vacua, populated by eternal inflation. Tunneling between these vacua gives rise to a dynamical system, which asymptotically settles down to an equilibrium state. We investigate the effects of sinks to anti-de Sitter space, and show how their existence can change probabilities in the landscape. Sinks can disturb the thermal occupation numbers that would otherwise exist in the landscape and may cause regions that were previously in thermal contact to be divided into separate, thermally isolated islands.

  1. Nauru Island Effect Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1, 2007 (nextNauru Island Effect Study S. A.

  2. Comments, Protests and Interventions for Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    Alaska Region-Granite Construction Company,  Michael D. Miller, Business Development Manager/Estimator 

  3. ABR, Inc KPMG LLP Alaska Air National Guard Mikunda, Cottrell & Co

    E-Print Network [OSTI]

    Wagner, Diane

    Administration Cook & Haugeberg LLC CPA's Solar Turbines Inc Cook Inlet Aquaculture Association State of Alaska

  4. Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-04-01T23:59:59.000Z

    This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

  5. Thematic Review Conservation of Biodiversity on Islands

    E-Print Network [OSTI]

    Thematic Review Conservation of Biodiversity on Islands: The contribution of the United Kingdom............................................................................................. 11 3. THE BIODIVERSITY OF ISLANDS INVOLVED WITH DI PROJECTS ........................................................................................... 49 6. THE DARWIN INITIATIVE'S CONTRIBUTION TO THE CBD'S ISLAND BIODIVERSITY PROGRAMME OF WORK

  6. Small-Scale Solar Grants (Rhode Island)

    Broader source: Energy.gov [DOE]

    The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

  7. Energy Transition Initiative: Islands Playbook (Book) | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Energy Transition Initiative: Islands Playbook (Book) Re-direct Destination: The Island Energy Playbook (the Playbook) provides an action-oriented guide to successfully initiating,...

  8. 137Cs and 210Po in Pacific Walrus and Bearded Seal from St. Lawrence Island, Alaska

    SciTech Connect (OSTI)

    Hamilton, T F; Seagars, D J; Jokela, T; Layton, D

    2005-02-02T23:59:59.000Z

    The activity concentration of Cesium-137 ({sup 137}Cs) and naturally-occurring Polonium-210 ({sup 210}Po) were measured in the muscle tissue, kidney and liver of Pacific walrus (Odobenus rosmarus divergens) and bearded seal (Erignathus barbatus) collected by native hunters from the Bering Sea. The mean {sup 137}Cs concentrations in muscle, liver and kidney of Pacific walrus were 0.07, 0.09 and 0.07 Bq kg{sup -1} (N= 5, wet weight), respectively, and 0.17, 0.10, and 0.17 Bq kg{sup -1} (N=2, wet weight), respectively, in bearded seal. In general, {sup 137}Cs tissue concentrations are significantly lower than those previously reported for mammals from other regions. By comparison, {sup 210}Po activity concentrations appear to be higher than those reported elsewhere but a larger variation. The mean {sup 210}Po concentration in the muscle tissue, liver and kidney of Pacific walrus (N=5, wet weight) were 28.7, 189, and 174 Bq kg{sup -1}, respectively. This compares with {sup 210}Po concentration values (N=2, wet weight) of 27, 207, and 68 Bq kg{sup -1} measured in the muscle tissue, liver and kidney, of bearded seal, respectively. Estimated bioaccumulation factors--as defined by the radionuclide concentration ratio between the target tissue to that in sea water--were two to three orders of magnitude higher for {sup 210}Po that those of {sup 137}Cs. We conclude from radiological dose estimates that ingestion of {sup 137}Cs in foods derived from walrus and seal will pose no threat to human health. This work has important implications for assessing health risks to Alaskan coastal communities concerned about the dumping of nuclear waste in the Russia Arctic.

  9. The influence of diet and ocean conditions on productivity of auklets on St Lawrence Island, Alaska

    E-Print Network [OSTI]

    SHEFFIELD GUY, L.M., ROBY, D.D., GALL, A.E., IRONS, D.B. & ROSE, I.C. Journal:  Marine Ornithology ...

  10. U.S. Coast Guard, Kodiak Island, Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1:

  11. Categorical Exclusion Determinations: Alaska | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 2014 CX-100126A5 CategoricalManufacturingAlaska

  12. Cohoe, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy, -105.3774934°Coda BatteryCohoe, Alaska: Energy

  13. Alaska Natural Gas Gross Withdrawals and Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ecTotalnerrSpring: ShaleAlaska

  14. Nenana, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenter Jump to:2 Rules,Nellis AFB SolarNenana, Alaska:

  15. Alaska Energy Authority | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand and Water Jump to:GasAlaska

  16. Alatna, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuri BiomassWheelerLand andAlatna, Alaska: Energy

  17. Salamatof, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solar PowerSaftEnergy Roadmap andSalamatof, Alaska:

  18. Adak, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasil Jump to: navigation,DiagramAdak, Alaska: Energy Resources

  19. Alaska Power Telephone Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska Power

  20. Alaska coal geology, resources, and coalbed methane potential

    SciTech Connect (OSTI)

    Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

    2005-11-15T23:59:59.000Z

    Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

  1. Financing Opportunities for Renewable Energy Development in Alaska

    SciTech Connect (OSTI)

    Ardani, K.; Hillman, D.; Busche, S.

    2013-04-01T23:59:59.000Z

    This technical report provides an overview of existing and potential financing structures for renewable energy project development in Alaska with a focus on four primary sources of project funding: government financed or supported (the most commonly used structure in Alaska today), developer equity capital, commercial debt, and third-party tax-equity investment. While privately funded options currently have limited application in Alaska, their implementation is theoretically possible based on successful execution in similar circumstances elsewhere. This report concludes that while tax status is a key consideration in determining appropriate financing structure, there are opportunities for both taxable and tax-exempt entities to participate in renewable energy project development.

  2. EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

  3. Long Island Solar Farm Project Overview

    E-Print Network [OSTI]

    Ohta, Shigemi

    Long Island Solar Farm #12;Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power and construct arrays ~ 2 years of output (88,000 MWh equivalent) Long Island Solar Farm #12;Other Pollutants

  4. Island Political Economy Geoff Bertram & Bernard Poirine

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    323 Chapter 10 Island Political Economy Geoff Bertram & Bernard Poirine Introduction In this chapter we build on the observation that island economies, and especially small ones (population below one of development strategies. Common elements of "islandness" may serve to define island economies as a general

  5. Climate Action Plan (Rhode Island)

    Broader source: Energy.gov [DOE]

    In the fall of 2001, the Department of Environmental Management (DEM), the RI State Energy Office (SEO), and the Governor's office convened the Rhode Island Greenhouse Gas Stakeholder Project in...

  6. Pacific Islands Region News Release

    E-Print Network [OSTI]

    Pacific Islands Region News Release Contact: Wende Goo FOR IMMEDIATE RELEASE 808-721-4098 May 27 of these unique twins by contributing more than 100 hours of work to construct a holding pen for the young seal

  7. Island Cosmology in the Landscape

    E-Print Network [OSTI]

    Yun-Song Piao

    2008-06-11T23:59:59.000Z

    In the eternally inflationary background driven by the metastable vacua of the landscape, it is possible that some local quantum fluctuations with the null energy condition violation can be large enough to stride over the barriers among different vacua, so that create some islands full of radiation in new vacua, and then these emergently thermalized islands will enter into the evolution of standard big bang cosmology. In this paper, we calculate the spectrum of curvature perturbation generated during the emergence of island. We find that generally the spectrum obtained is nearly scale invariant, which can be well related to that of slow roll inflation by a simple duality. This in some sense suggests a degeneracy between their scalar spectra. In addition, we also simply estimate the non-Gaussianity of perturbation, which is naturally large, yet, can lie well in the observational bound. The results shown here indicate that the island emergently thermalized in the landscape can be consistent with our observable universe.

  8. The Long Island Solar Farm

    Broader source: Energy.gov [DOE]

    In November 2011, a utility-scale solar array became operational in the most unlikely of places: at Brookhaven National Laboratory on densely populated Long Island, New York. Now the largest...

  9. Chikurachki volcano (Kurile Islands, Russia)

    E-Print Network [OSTI]

    Belousov, Alexander

    Chikurachki volcano (Kurile Islands, Russia) the unique volcano with frequent basaltic plinian-Kamchatsky, Russia #12;#12;Historical eruptions of Chikurachki Year 1853-59 1958 1961 1964 1973 1986 2002 Column

  10. QER- Comment of Alaska Department of Natural Resources

    Broader source: Energy.gov [DOE]

    To Whom It May Concern: Attached please find the State of Alaska Department of Natural Resources’ official comments on the Quadrennial Energy Review being conducted by the Department of Energy pursuant to Presidential Memorandum of January 9, 2014.

  11. Mesoscale Eddies in the Gulf of Alaska: Observations and Implications

    E-Print Network [OSTI]

    Rovegno, Peter

    2012-01-01T23:59:59.000Z

    M. T. , Lohan, M. C. , & Bruland, K. W. 2011. Reactive ironChair Professor Kenneth W. Bruland Professor Raphael Kudelaof Alaska as a whole. The Bruland Lab, drawing on data taken

  12. State of Alaska Department of Transportation and Public Facilities...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Form: State of Alaska Department of Transportation and Public Facilities - Utility Permit Abstract This document is an example of a...

  13. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

  14. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  15. Alaska LNG Project LLC- 14-96-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on July 18, 2014, by, Alaska LNG Project LLC submits this application requesting long-term authorization to export 20...

  16. Climate Change Adaptation for an At Risk Community – Shaktoolik Alaska

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Norton Sound village of Shaktoolik faces serious threats of erosion and flooding resulting from climate change.  University of Alaska Sea Grant agent Terry Johnson and consultant Glenn Gray...

  17. Alaska Native People Shaping Health Care 2011Malcolm Baldrige

    E-Print Network [OSTI]

    Magee, Joseph W.

    Optometry Pediatrics Outpatient Physical Therapy Radiology Valley Native Primary Care Center Screening and Genecology Pediatrics Inpatient Pharmacy Rural Anchorage Service Unit Operational Support Office Primary Care Automated Annual Planning Tool AAPP All Alaska Pediatric Partnership ACE Advancing Customer Excellence AFN

  18. alaska initiative fact: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 121 Large-Scale Climate Controls of Interior Alaska River Ice Breakup PETER A. BIENIEK AND UMA S. BHATT...

  19. Alaska Workshop: Renewable Energy Technologies and Case Studies

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Indian Energy is hosting two workshops at the Alaska Village Initiatives Rural Small Business Conference on Wednesday, February 12, 2014. Each workshop will...

  20. Energy Ambassadors to Provide Front Line Support for Alaska Native...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  1. DOE to Host Three Alaska Native Village Renewable Energy Project...

    Office of Environmental Management (EM)

    in an the initial facilitation workshop for Alaska Energy Ambassadors held at the U.S. Fish & Wildlife Service Regional Office in Anchorage in September. Photo by Jared Temanson,...

  2. Title 5 Alaska Administrative Code Chapter 95 Protection of Fish...

    Open Energy Info (EERE)

    Chapter 95 Protection of Fish and Game Habitat Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 5 Alaska...

  3. Ecology of Zooplankton of the Cape Thompson Area Alaska

    E-Print Network [OSTI]

    Tash, Jerry C.; Armitage, Kenneth

    1967-01-01T23:59:59.000Z

    . Until recently (Ed- mondson 1955; Comita 1956), detailed studies of zooplankton in arctic Alaska had not been made. Most published works are short-term species sur- veys (Comita 1952; Johnson 1961; Juday and Muttkowski 1915; Marsh 1920; Reed 1962...-September and typically lasted until mid-May or early June. RESULTS During ice-free periods, physicoclhemical values found in aquatic habitats at Cape Thompson were simlilar to those recorded for other areas of Alaska (Comita and Edmondson 1953; Edmondson 1956...

  4. Understanding Energy Code Acceptance within the Alaska Building Community

    SciTech Connect (OSTI)

    Mapes, Terry S.

    2012-02-14T23:59:59.000Z

    This document presents the technical assistance provided to the Alaska Home Financing Corporation on behalf of PNNL regarding the assessment of attitudes toward energy codes within the building community in Alaska. It includes a summary of the existing situation and specific assistance requested by AHFC, the results of a questionnaire designed for builders surveyed in a suburban area of Anchorage, interviews with a lender, a building official, and a research specialist, and recommendations for future action by AHFC.

  5. Alaska Sea Grant Marine Advisory Program Webinar: Climate Change Adaptation for an at-Risk Community in Shaktoolik, Alaska

    Broader source: Energy.gov [DOE]

    Hosted by the Alaska Sea Grant Marine Advisory Program, this webinar will cover the Norton Sound Village of Shaktoolik, which faced serious threats of erosion and flooding resulting from climate change.

  6. Site response at Treasure and Yerba Buena Islands, California

    E-Print Network [OSTI]

    Baise, L G; Glaser, Steven D; Dreger, D

    2003-01-01T23:59:59.000Z

    array at the Treasure Island Naval Station. ’’ Loma Prietadamage in Oakland, Treasure Island, and San Francisco. ’’C. H. ?1969?. ‘‘Treasure Island ?ll. ’’ Bay mud developments

  7. igure 1. Map of N. Alaska and NW Canada Showing the Locations...

    Gasoline and Diesel Fuel Update (EIA)

    1. Map of Northern Alaska and Northwestern Canada Showing the Locations of the National Petroleum Reserve-Alaska (NPR-A), Arctic National Wildlife Refuge (ANWR), 1002 Area, Current...

  8. Running head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska

    E-Print Network [OSTI]

    Scheel, David

    January 2009. This paper researches the possibility of using geothermal energy as an alternative energy Energy Investment cost .................................................... 40 Geothermal use in AlaskaRunning head: GEOTHERMAL POWER PRODUCTION 1 Geothermal Power Production for Emmonak, Alaska Anthony

  9. E-Print Network 3.0 - alaska river Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: alaska river Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: the production and harvest of beaver in the upper...

  10. E-Print Network 3.0 - arctic alaska r4d Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: arctic alaska r4d Page: << < 1 2 3 4 5 > >> 1 revised 122010 Alaska Cooperative Fish and Wildlife Research Unit Summary: . 1966. The recreational potential of the Arctic...

  11. E-Print Network 3.0 - alaska linking wildlife Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Life Sciences Summary: of the state and federal agencies in Alaska (e.g. U.S. Fish and Wildlife Service, Alaska Department of Fish... in FY08, close to 75 percent are...

  12. E-Print Network 3.0 - anchorage alaska usa Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4101 University Drive, Anchorage, AK 99508, U.S.A... in Ecological, Traditional, and Ecotourism Values 2001 May 15-16; Anchorage, Alaska 12;USDA Forest Service... in Alaska add up...

  13. Indigenous frameworks for observing and responding to climate change in Alaska

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    . Excluding the oil-rich North Slope, rural Alaska is the most extensive area of poverty in the United States

  14. APPENDIX B Alaska, Hawaii, and US Possessions Per Diem Rates Effective October 1, 2012

    E-Print Network [OSTI]

    41$ 10$ 51$ ALASKA PORT ALEXANDER 1-Jan 31-Dec 34$ 9$ 43$ ALASKA PORT ALSWORTH 1-Jan 31-Dec 70$ 18-Oct 14-May 70$ 18$ 88$ ALASKA UMIAT 1-Jan 31-Dec 51$ 13$ 64$ ALASKA VALDEZ 16-May 14-Sep 71$ 18$ 89 TELE AREA 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. DERUSSEY 1-Jan 31-Dec 101$ 25$ 126$ HAWAII FT. SHAFTER

  15. Tax policy can change the production path: A model of optimal oil extraction in Alaska

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    production units (fields) on Alaska's North Slope. We use adjustment cost and discount rate to calibrate approach was to simulate economically optimal production paths for units on the Alaska North Slope, compare production for the seven individual units on Alaska's North Slope: Prudhoe Bay, Kuparuk River, Milne Point

  16. Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

    E-Print Network [OSTI]

    542 Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By Roger J. ReedKernan, Director Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska By ROGER J. REED Literature cited 14 #12;#12;Some Effects of DDT on the Ecology of Salmon Streams in Southeastern Alaska

  17. Rhode Island Renewable Energy Fund (RIREF)

    Broader source: Energy.gov [DOE]

    Rhode Island's Public Utilities Restructuring Act of 1996 created the nation's first public benefits fund (PBF) for renewable energy and demand-side management (DSM). The Rhode Island Renewable...

  18. Coastal mesoscale changes on Matagorda Island

    E-Print Network [OSTI]

    Lariscy, Kevin William

    2001-01-01T23:59:59.000Z

    on the coastal geomorphology of Matagorda Island. Based on the statistical and morphometric analysis of the coastal landforms, the island was divided into three distinct sub-environments: an erosional eastern zone, a transitional mixed zone, and a depositional...

  19. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01T23:59:59.000Z

    pollution San Nicolas Island Atmospheric Sciences/Meteorology/Nuclear Science/Radioactivity/Atmospheric Sciences/Radioactivity/Radioactive Wastes/pollution/

  20. Islands and Our Renewable Energy Future (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Gevorgian, V.; Kelley, K.; Conrad, M.

    2012-05-01T23:59:59.000Z

    Only US Laboratory Dedicated Solely to Energy Efficiency and Renewable Energy. High Contribution Renewables in Islanded Power Systems.

  1. Mass Wasting in the Western Galapagos Islands

    E-Print Network [OSTI]

    Hall, Hillary

    2012-10-19T23:59:59.000Z

    the Hawaiian Islands, the western Galapagos Islands appear to be characterized by small slump sheets existing along the steep shallow submarine flanks of the island and by debris flows that are flanked by rift zones and extend off the platform. This study...

  2. Close Encounters Treasure Island: Sequencing Moorea

    E-Print Network [OSTI]

    Wildermuth, Mary C

    Close Encounters Also... Treasure Island: Sequencing Moorea Devon Zagory on Food Safety College Features 12 CLOSE ENCOUNTERS by Claire Cain Miller Passing earth science to the next generation 20 TREASURE ISLAND by Erika Check Barcoding CNR's island research station Departments 2 L

  3. A Compilation and Review of Alaska Energy Projects

    SciTech Connect (OSTI)

    Arlon Tussing; Steve Colt

    2008-12-31T23:59:59.000Z

    There have been many energy projects proposed in Alaska over the past several decades, from large scale hydro projects that have never been built to small scale village power projects to use local alternative energy sources, many of which have also not been built. This project was initially intended to review these rejected projects to evaluate the economic feasibility of these ideas in the light of current economics. This review included contacting the agencies responsible for reviewing and funding these projects in Alaska, including the Alaska Energy Authority, the Denali Commission, and the Arctic Energy Technology Development Laboratory, obtaining available information about these projects, and analyzing the economic data. Unfortunately, the most apparent result of this effort was that the data associated with these projects was not collected in a systematic way that allowed this information to be analyzed.

  4. National Park Service- San Miguel Island, California

    Broader source: Energy.gov [DOE]

    San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must be shipped in from the mainland to generate electricity.

  5. Magnetic island evolution in hot ion plasmas

    SciTech Connect (OSTI)

    Ishizawa, A.; Nakajima, N. [National Institute for Fusion Science, Toki 509-5292 (Japan); Waelbroeck, F. L.; Fitzpatrick, R.; Horton, W. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2012-07-15T23:59:59.000Z

    Effects of finite ion temperature on magnetic island evolution are studied by means of numerical simulations of a reduced set of two-fluid equations which include ion as well as electron diamagnetism in slab geometry. The polarization current is found to be almost an order of magnitude larger in hot than in cold ion plasmas, due to the strong shear of ion velocity around the separatrix of the magnetic islands. As a function of the island width, the propagation speed decreases from the electron drift velocity (for islands thinner than the Larmor radius) to values close to the guiding-center velocity (for islands of order 10 times the Larmor radius). In the latter regime, the polarization current is destabilizing (i.e., it drives magnetic island growth). This is in contrast to cold ion plasmas, where the polarization current is generally found to have a healing effect on freely propagating magnetic island.

  6. Floating Cities, Islands and States

    E-Print Network [OSTI]

    Bolonkin, Alexander

    2008-01-01T23:59:59.000Z

    Many small countries are in need of additional territory. They build landfills and expensive artificial islands. The ocean covers 71 per cent of the Earth surface. Those countries (or persons of wealth) starting the early colonization of the ocean may obtain advantages through additional territory or creating their own independent state. An old idea is building a big ship. The best solution to this problem, however, is the provision of floating cities, islands, and states. The author idea is to use for floating cities, islands, and states a cheap floating platform created from a natural ice field taken from the Arctic or Antarctic oceans. These cheap platforms protected by air-film (bottom and sides) and a conventional insulating cover (top) and having a cooling system can exist for an unlimited time. They can be increased in number or size at any time, float in warm oceans, travel to different continents and countries, serve as artificial airports, harbors and other marine improvements, as well as floating c...

  7. Quantification of total mercury in liver and heart tissue of Harbor Seals (Phoca vitulina) from Alaska USA

    SciTech Connect (OSTI)

    Marino, Kady B. [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States)] [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States); Hoover-Miller, Anne; Conlon, Suzanne; Prewitt, Jill [Alaska SeaLife Center, City of Seward, AK (United States)] [Alaska SeaLife Center, City of Seward, AK (United States); O'Shea, Stephen K., E-mail: soshea@rwu.edu [Department of Chemistry, Roger Williams University, Bristol, RI 02809 (United States)

    2011-11-15T23:59:59.000Z

    This study quantified the Hg levels in the liver (n=98) and heart (n=43) tissues of Harbor Seals (Phoca vitulina) (n=102) harvested from Prince William Sound and Kodiak Island Alaska. Mercury tissue dry weight (dw) concentrations in the liver ranged from 1.7 to 393 ppm dw, and in the heart from 0.19 to 4.99 ppm dw. Results of this study indicate liver and heart tissues' Hg ppm dw concentrations significantly increase with age. Male Harbor Seals bioaccumulated Hg in both their liver and heart tissues at a significantly faster rate than females. The liver Hg bioaccumulation rates between the harvest locations Kodiak Island and Prince William Sound were not found to be significantly different. On adsorption Hg is transported throughout the Harbor Seal's body with the partition coefficient higher for the liver than the heart. No significant differences in the bio-distribution (liver:heart Hg ppm dw ratios (n=38)) values were found with respect to either age, sex or geographic harvest location. In this study the age at which Hg liver and heart bioaccumulation levels become significantly distinct in male and female Harbor Seals were identified through a Tukey's analysis. Of notably concern to human health was a male Harbor Seal's liver tissue harvested from Kodiak Island region. Mercury accumulation in this sample tissue was determined through a Q-test to be an outlier, having far higher Hg concentrarion (liver 392 Hg ppm dw) than the general population sampled. - Highlights: Black-Right-Pointing-Pointer Mercury accumulation in the liver and heart of seals exceed food safety guidelines. Black-Right-Pointing-Pointer Accumulation rate is greater in males than females with age. Black-Right-Pointing-Pointer Liver mercury accumulation is greater than in the heart tissues. Black-Right-Pointing-Pointer Mercury determination by USA EPA Method 7473 using thermal decomposition.

  8. Rope Culture of the Kelp Laminaria groenlandica in Alaska

    E-Print Network [OSTI]

    Rope Culture of the Kelp Laminaria groenlandica in Alaska ROBERT J. ELLIS and NATASHA I. CALVIN beach and subtidal area. Introduction The brown seaweed or kelp, Lam- inaria groenlandica, which, Clupea harengus pallasi, eggs on kelp in Prince William Sound. In British Columbia, L. groen- landica

  9. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  10. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  11. Alaska Native Community Energy Planning and Projects (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    This fact sheet provides information on the Alaska Native villages selected to receive assistance from the U.S. Department of Energy Office of Indian Energy 2013 Strategic Technical Assistance Response Team (START) Program, which provides technical expertise to support the development of next-generation energy projects on tribal lands.

  12. Environmental assessment: Kotzebue Wind Installation Project, Kotzebue, Alaska

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    The DOE is proposing to provide financial assistance to the Kotzebue Electric Association to expand its existing wind installation near Kotzebue, Alaska. Like many rural Alaska towns, Kotzebue uses diesel-powered generators to produce its electricity, the high cost of which is currently subsidized by the Alaska State government. In an effort to provide a cost effective and clean source of electricity, reduce dependence on diesel fuel, and reduce air pollutants, the DOE is proposing to fund an experimental wind installation to test commercially available wind turbines under Arctic conditions. The results would provide valuable information to other Alaska communities experiencing similar dependence on diesel-powered generators. The environmental assessment for the proposed wind installation assessed impacts to biological resources, land use, electromagnetic interference, coastal zone, air quality, cultural resources, and noise. It was determined that the project does not constitute a major Federal action significantly affecting the quality of the human environment. Therefore, the preparation of an environmental impact statement is not required, and DOE has issued a Finding of No Significant Impact.

  13. Summer Program for Undergraduate Research Alaska Oregon Research Training Alliance

    E-Print Network [OSTI]

    Oregon, University of

    in SPUR Oregon-Chile International REU Program University of Oregon, Eugene OR 97403-1254 phone (541 Undergraduate Researchers in SPUR (OURS) spur.uoregon.edu Oregon-Chile International REU Program (OC-iREU) spurSummer Program for Undergraduate Research Alaska Oregon Research Training Alliance NSF REU Site

  14. ABR, Inc Morning Star Ranch Alaska Airlines NANA Management Services

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    Pipeline Riverboat Discovery Baker Hughes RJG, A Professional Corporation Big Brothers Big Sisters Conservation Association Design Alaska Tanana Chiefs Conference Dolin Gold TDL Staffing, Inc Doyon Utilities, Inc U.S. National Park Services Glacier Services U.S. Navy Granite Construction U.S. Peace Corps

  15. Summer Internship Program for American Indian & Native Alaska College Students

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  16. NGEE Arctic Webcam Photographs, Barrow Environmental Observatory, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Bob Busey; Larry Hinzman

    The NGEE Arctic Webcam (PTZ Camera) captures two views of seasonal transitions from its generally south-facing position on a tower located at the Barrow Environmental Observatory near Barrow, Alaska. Images are captured every 30 minutes. Historical images are available for download. The camera is operated by the U.S. DOE sponsored Next Generation Ecosystem Experiments - Arctic (NGEE Arctic) project.

  17. Status Review of Southeast Alaska Herring (Clupea pallasi)

    E-Print Network [OSTI]

    of extinction throughout all or a significant portion of its range." The term threatened species is definedStatus Review of Southeast Alaska Herring (Clupea pallasi) Threats Evaluation and Extinction Risk of this report. NMFS gratefully acknowledges the commitment and efforts of the Extinction Risk Assessment (ERA

  18. Continuous Snow Depth, Intensive Site 1, Barrow, Alaska

    SciTech Connect (OSTI)

    Cable, William; Romanovsky, Vladimir; Hinzman, Larry; Busey, Bob

    2014-11-06T23:59:59.000Z

    Continuous Snow depth data are being collected at several points within four intensive study areas in Barrow, Alaska. These data are being collected to better understand the energy dynamics above the active layer and permafrost. They complement in-situ snow and soil measurements at this location. The data could also be used as supporting measurements for other research and modeling activities.

  19. Alaska Native Village Renewable Energy Project Development Workshop in Dillingham

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  20. Alaska Native Village Renewable Energy Project Development Workshop in Bethel

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  1. Alaska Native Village Renewable Energy Project Development Workshop in Juneau

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy with support from DOE’s National Renewable Energy Laboratory, this interactive workshop will walk participants through the process of developing renewable energy and energy efficiency projects in rural Alaska and highlight the potential opportunities and challenges involved.

  2. ABC Allowable Biological Catch AFSC Alaska Fisheries Science Center

    E-Print Network [OSTI]

    and Industrial Re- search Organization (Australia) DAS ­ Days At Sea EBM ­ Ecosystem-Based Management EBS GLOBEC ­ GLOBal ocean ECosystem dynamics GOA ­ Gulf of Alaska GOM ­ Gulf of Mexico HMS ­ Highly Migratory NMFS ­ National Marine Fisheries Service NOAA ­ National Oceanic and Atmospheric Administration NRC

  3. UniversityofHouston AlaskaUniversityTransportationCenter

    E-Print Network [OSTI]

    Hartman, Chris

    UniversityofHouston AlaskaUniversityTransportationCenter Impact of Embedded Carbon Fiber Heating (LEAVE BLANK) 2. REPORT DATE December 2012 3. REPORT TYPE AND DATES COVERED Final Report (7/1/2011-12/31/2012 4. TITLE AND SUBTITLE Impact of Embedded Carbon Fiber Heating Panel on the Structural/ Mechanical

  4. SENSE AND NONSENSE MORE ALASKA PRODUCTION ACT (MAPA)

    E-Print Network [OSTI]

    Pantaleone, Jim

    , a modest increase in oil investment would create more state revenues under SB21 than ACES. ·New money #12;Switch to MAPA & New Investment #12;Job Creation in the Oil Patch #12;Job Creation from State into the oil patch creates long lasting jobs and increased consumer purchasing power. #12;Alaska Constitution

  5. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    2010-03-05T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  6. Summer Internship Program for American Indian & Native Alaska College Students

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Argonne National Laboratory's Summer Internship Program for American Indian & Native Alaska College Students. Supported by the Office of Indian Energy and Economic Development (IEED) in partnership with the Council of Energy Resource Tribes (CERT) and the U.S. Department of Energy.

  7. PERFORMANCE '13University of Alaska Anchorage TOM CASE, Chancellor

    E-Print Network [OSTI]

    Pantaleone, Jim

    PERFORMANCE '13University of Alaska Anchorage #12;TOM CASE, Chancellor ELISHA ("BEAR") R. BAKER IV, Interim President (3/2012-4/2013) Jacob Ng, President (effective 7/2013) UNIVERSITY GOVERNANCE FACULTY on Diversity 28 Focus on Safety #12;ELISHA "BEAR" R. BAKER IV, Ph.D., was named provost and vice chancellor

  8. Pathogenicity island mobility and gene content.

    SciTech Connect (OSTI)

    Williams, Kelly Porter

    2013-10-01T23:59:59.000Z

    Key goals towards national biosecurity include methods for analyzing pathogens, predicting their emergence, and developing countermeasures. These goals are served by studying bacterial genes that promote pathogenicity and the pathogenicity islands that mobilize them. Cyberinfrastructure promoting an island database advances this field and enables deeper bioinformatic analysis that may identify novel pathogenicity genes. New automated methods and rich visualizations were developed for identifying pathogenicity islands, based on the principle that islands occur sporadically among closely related strains. The chromosomally-ordered pan-genome organizes all genes from a clade of strains; gaps in this visualization indicate islands, and decorations of the gene matrix facilitate exploration of island gene functions. A %E2%80%9Clearned phyloblocks%E2%80%9D method was developed for automated island identification, that trains on the phylogenetic patterns of islands identified by other methods. Learned phyloblocks better defined termini of previously identified islands in multidrug-resistant Klebsiella pneumoniae ATCC BAA-2146, and found its only antibiotic resistance island.

  9. A signature for turbulence driven magnetic islands

    SciTech Connect (OSTI)

    Agullo, O.; Muraglia, M.; Benkadda, S. [Aix-Marseille Université, CNRS, PIIM, UMR 7345 Marseille (France); France-Japan Magnetic Fusion Laboratory, LIA 336 CNRS, Marseille (France); Poyé, A. [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence (France); Yagi, M. [Plasma Theory and Simulation Gr., JAEA, Rokkasho (Japan); Garbet, X. [IRFM, CEA, St-Paul-Lez-Durance 13108 (France); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

    2014-09-15T23:59:59.000Z

    We investigate the properties of magnetic islands arising from tearing instabilities that are driven by an interchange turbulence. We find that such islands possess a specific signature that permits an identification of their origin. We demonstrate that the persistence of a small scale turbulence maintains a mean pressure profile, whose characteristics makes it possible to discriminate between turbulence driven islands from those arising due to an unfavourable plasma current density gradient. We also find that the island poloidal turnover time, in the steady state, is independent of the levels of the interchange and tearing energy sources. Finally, we show that a mixing length approach is adequate to make theoretical predictions concerning island flattening in the island rotation frame.

  10. Two-fluid magnetic island dynamics in slab geometry: I -Isolated islands

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    that there be zero net electromagnetic force acting on the island. Finally, the ion polarization current correction determination of the island phase-velocity, and the calculation of the ion and electron fluid flow profiles

  11. Pennsylvania Nuclear Profile - Three Mile Island

    U.S. Energy Information Administration (EIA) Indexed Site

    Three Mile Island" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  12. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01T23:59:59.000Z

    atmospheres/Radioactive isotopes/Air/Sampling/Monitoring/Atmospheric chemistry/Radon 222/San Nicolas Island/Atmospheric Sciences/Radioactivity/Radioactive Wastes/pollution/

  13. Nauru Island Effect Detection Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Long, Chuck

    During Nauru99 it was noted that the island was producing small clouds that advected over the ARM site. The Nauru Island Effect Study was run for 1.5 years and the methodology developed to detect the occurrence. Nauru ACRF downwelling SW, wind direction, and air temperature data are used, along with downwelling SW data from Licor radiometers located on the southern end of the island near the airport landing strip. A statistical analysis and comparison of data from the two locations is used to detect the likely occurrence of an island influence on the Nauru ACRF site data

  14. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  15. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  16. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  17. Energy Transition Initiative: Islands Playbook (Book) | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Energy Transition Initiative: Islands Playbook (Book) Re-direct Destination: Temp Data Fields Not Available Temp Data Storage 3: National Renewable Energy Laboratory (NREL),...

  18. Three Mile Island: then and now

    SciTech Connect (OSTI)

    Trauger, D.B.

    1980-01-01T23:59:59.000Z

    A review of the Three Mile Island Unit 2 accident is presented. Current activities to clean up the reactor are described.

  19. Northern Mariana Islands - Territory Energy Profile Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    islands of Pagan and Saipan - unique in Micronesia in having abundant geothermal energy potential, and CNMI has excellent resources for both wind and solar power. CNMI enacted a...

  20. Aeromagnetic Survey And Interpretation, Ascention Island, South...

    Open Energy Info (EERE)

    Interpretation, Ascention Island, South Atlantic Ocean Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Aeromagnetic Survey And Interpretation,...

  1. Morphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George Island, Florida

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    of the barrier island are analyzed, along with the short-term post-storm recovery of secondary dunes. ResultsMorphological barrier island changes and recovery of dunes after Hurricane Dennis, St. George September 2009 Keywords: Dune recovery LiDAR Overwash Hurricane Dennis Barrier island During the summer

  2. HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    Commission on the Accident at Three Mile Island (Fabrikant,Commission on the Accident at Three Mile Island. (Fahrikant,Commission on the Accident at Three Mile Island. (Fabrikant,

  3. E-Print Network 3.0 - augustine volcano alaska Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    volcanic eruption on weather and climate Summary: for surface albedo impacted from ash fall data was established based on data provided by the Alaska Volcano... at elevated...

  4. Title 20 Alaska Administrative Code Section 25.112 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Plugging Requirements Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code...

  5. Title 20 Alaska Administrative Code Section 25.105 Oil & Gas...

    Open Energy Info (EERE)

    Oil & Gas Well Abandonment Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 20 Alaska Administrative Code Section...

  6. E-Print Network 3.0 - alaska arm climate Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Assistant drparkerson@alaska.edu 6016 John Walsh President's Professor of Climate Change... UnitDepartment Name Title EMail Phone ... Source: Wagner, Diane -...

  7. E-Print Network 3.0 - alaska natives gocadan Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as food, sharing... for personal or family consumption as food, or for customary trade. Alaska Native Tribe means, for purposes... of the subsistence fishery for Pacific...

  8. 1983 annual report on Alaska's mineral resources. Geological Survey Circular 908

    SciTech Connect (OSTI)

    Not Available

    1983-01-01T23:59:59.000Z

    This report describes activity during 1982 in Alaska relating to oil and gas, uranium, coal and peat, geothermal resources, and non-fuel, critical and strategic minerals. (ACR)

  9. Energy Project Development and Financing Strategy for Native Alaska (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-04-01T23:59:59.000Z

    This DOE Office of Indian Energy fact sheet describes the energy project development process with a focus on Alaska Native villages and regional corporations.

  10. Title 5 Alaska Administrative Code Section 95.011 Waters Important...

    Open Energy Info (EERE)

    Alaska Administrative Code Section 95.011 Waters Important to Anadromous Fish Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  11. Environmental and Hydrologic Overview of the Yukon River Basin, Alaska and Canada

    E-Print Network [OSTI]

    , Alaska and Canada By Timothy P. Brabets, Bronwen Wang, and Robert H. Meade Editor L-L. Harris, Cartographic Technician For additional information: Copies of this report may

  12. E-Print Network 3.0 - alaska pollack theragra Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (P Summary: and early larval stages of the Alaska pollack, Theragra chalcogramma (Pallas). Bull. Fac. Fish., Hokkaido... development of the fish, Theragra chalcogramma...

  13. YOU ARE CORDIALLY INVITED 2011 Long Island

    E-Print Network [OSTI]

    Danforth, Bryan Nicholas

    and success of the green industry on Long Island. Thanks to Fred Soviero, this year's Leader's Forum, country sausage, seasoned potatoes, coffee, tea, and assorted fruit juices. Following breakfast, the two, and announcements to New York's green industry. Thanks to the Friends of Long Island Horticulture and the NSLGA

  14. Biofuel Feedstock Inter-Island Transportation

    E-Print Network [OSTI]

    Biofuel Feedstock Inter-Island Transportation Prepared for the U.S. Department of Energy Office agency thereof. #12;A Comparison of Hawaii's Inter-Island Maritime Transportation of Solid Versus Liquid of Honolulu Advertiser ISO Tank Container, courtesy of Hawaii Intermodal Tank Transport Petroleum products

  15. Island-finding ability of marine turtles

    E-Print Network [OSTI]

    Hays, Graeme

    of the equatorial Atlantic. To test the hypothesis that turtles use wind-borne cues to locate Ascension Island we back to the island. These find- ings strongly support the hypothesis that wind-borne cues are used that hatch- ling loggerhead turtles (Caretta caretta) have the ability to perceive the inclination

  16. Observation of energetic electrons within magnetic islands

    E-Print Network [OSTI]

    Loss, Daniel

    that energetic electron fluxes peak at sites of compressed density within islands, which imposes a new constraintLETTERS Observation of energetic electrons within magnetic islands L.-J. CHEN1 *, A. BHATTACHARJEE1, University of New Hampshire, Durham, New Hampshire 03824, USA 2 National Astronomical Observatory of Japan, 2

  17. Conversion economics for Alaska North Slope natural gas

    SciTech Connect (OSTI)

    Thomas, C.P.; Robertson, E.P.

    1995-07-01T23:59:59.000Z

    For the Prudhoe Bay field, this preliminary analysis provides an indication that major gas sales using a gas pipeline/LNG plant scenario, such as Trans Alaska Gas System, or a gas-to-liquids process with the cost parameters assumed, are essentially equivalent and would be viable and profitable to industry and beneficial to the state of Alaska and the federal government. The cases are compared for the Reference oil price case. The reserves would be 12.7 BBO for the base case without major gas sales, 12.3 BBO and 20 Tcf gas for the major gas sales case, and 14.3 BBO for the gas-to-liquids conversion cases. Use of different parameters will significantly alter these results; e.g., the low oil price case would result in the base case for Prudhoe Bay field becoming uneconomic in 2002 with the operating costs and investments as currently estimated.

  18. The Biogeography of Globally Threatened Seabirds and Island Conservation Opportunities

    E-Print Network [OSTI]

    Spatz, Dena R.

    2013-01-01T23:59:59.000Z

    and North Islands, Hispaniola, etc. ). The conservation ofand North Islands, Hispaniola, etc. ). The conservation ofGreater Antilles (Hispaniola) Lesser Antilles Galapagos

  19. Power Plant Options Report for Thompson Island prepared by the

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ....................................................................... 2 2.2. Thompson Island electric load.......................................................................... 4 2.3. Thompson Island heating load....................................................................... 7 3. Grid-connected and Autonomous Renewable Power Systems ................................ 9 3

  20. Energy Transformation in the U.S. Virgin Islands | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About Us Initiatives & Projects Energy Transition Initiative Energy Transformation in the U.S. Virgin Islands Energy Transformation in the U.S. Virgin Islands Click on the...

  1. Bainbridge Island Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Bainbridge Island Summary of Reported Data Summary of data for Bainbridge Island, a partner in the U.S. Department of Energy's Better Buildings...

  2. Commercial-Scale Renewable-Energy Grants (Rhode Island)

    Broader source: Energy.gov [DOE]

    The Rhode Island Economic Development Corporation (RIEDC) provides incentives for renewable-energy projects. Incentive programs are funded by the Rhode Island Renewable Energy Fund (RIREF) and...

  3. North Pole, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole, Alaska: Energy Resources Jump

  4. 2014 Alaska Native Village Energy Development Workshop | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation32013Energy Alaska

  5. Moose Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 Climate ZoneMontrose, Wisconsin: EnergyMoodyMoose Creek, Alaska:

  6. Lowell Point, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska: Energy Resources Jump to: navigation,

  7. MHK Projects/Alaska 17 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 -

  8. MHK Projects/Alaska 25 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85

  9. Fritz Creek, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URI DBpediaFredonia,IowaFriendshipAlaska: Energy

  10. RAPID/BulkTransmission/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacityPulaski County, Kentucky:County,Quogue isRAPID/BulkTransmission/Alaska

  11. RAPID/Geothermal/Water Use/Alaska | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPID RegulatoryRAPID/Geothermal/Water Use/Alaska < RAPID‎ |

  12. City of Chefornak, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (Utility Company) Jump to: navigation,Caliente,Locks,Chefornak, Alaska

  13. City of Manokotak, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhio (UtilityHolyrood, KansasLampasas,Luverne Place:Madison,Manokotak, Alaska

  14. City of Petersburg, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (Utility Company) JumpPaullina, IowaPetersburg, Alaska

  15. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, IllinoisSchulenburg, Texas (UtilitySeward, Alaska (Utility

  16. City of Tenakee Springs, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (Utility Company) JumpAlaska (Utility Company)

  17. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31T23:59:59.000Z

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  18. The future of oil and gas in Northern Alaska

    SciTech Connect (OSTI)

    Bird, K.J.; Cole, F.; Howell, D.G.; Magoon, L.B. [Geological Survey, Menlo Park, CA (United States)

    1995-04-01T23:59:59.000Z

    The North Slope accounts for about 98 percent of Alaska`s total oil production or about 1.6 MMBOPD (million barrels of oil per day). This makes Alaska the number two oil-producing State, contributing about 25% of the Nation`s daily oil production. Cumulative North Slope production at year-end 1993 was 9.9 BBO (billion barrels of oil). Natural gas from the North Slope is not marketable for lack of a gas transportation system. At year-end 1993, North Slope reserves as calculated by the State of Alaska stood at 6.1 BBO and 26.3 TCFG. By 1988, production from Prudhoe Bay and three other oil fields peaked at 2 MMBOPD; since then production has declined to the current rate of 1.6 MMBOPD in spite of six more oil fields coming into production. Undiscovered, economically recoverable oil resources, as of 1987, were estimated at 0-26 BBO (mean probability, 8 BBO) for the onshore region and adjacent State waters by USGS and 0-5 BBO (mean probability, Alaska Pipeline System). Recent studies by the U.S. Department of Energy have assumed a range of minimum throughput rates to to illustrate the effects of a shutdown of TAPS. Using reserve and production rate numbers from existing fields, a TAPS shutdown is predicted for year-end 2014 assuming minimum rates of 200 MBOPD. In both cases, producible oil would be left in the ground: 1,000 MMBO for the 2008 scenario and 500 MMBO for the 2014 scenario. Because the time between field discovery or decision-to-develop and first production is about 10 years, new or discovered fields may need to be brought into production by 1998 to assure continued operation of the pipeline and maximum oil recovery.

  19. Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations

    E-Print Network [OSTI]

    Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden, University of Sheffield, Sheffield S10 2TN, UK, zAbisko Scientific Research Station, SE 981-07 Abisko, Sweden-level experiments near Toolik Lake, Alaska, and Abisko, Sweden. We quantified aboveground biomass responses

  20. Alaska Community & Facility Scale Tribal Renewable Energy Project Development and Finance Workshop

    Broader source: Energy.gov [DOE]

    Presented by the DOE Office of Indian Energy and Tribal Energy Program, with support from DOE's National Renewable Energy Laboratory, this interactive workshop will walk participants through five steps to help Alaska Native villages and Alaska Native corporations understand the process for and potential pitfalls of developing community- and facility-scale renewable energy projects.

  1. Emergently Thermalized Islands in the Landscape

    E-Print Network [OSTI]

    Yun-Song Piao

    2008-01-08T23:59:59.000Z

    In this note, we point out that in the eternal inflation driven by the metastable vacua of the landscape, it might be possible that some large and local quantum fluctuations with the null energy condition violation can stride over the barriers between different vacua and straightly create some islands with radiation and matter in new vacua. Then these thermalized islands will evolve with the standard cosmology. We show that such islands may be consistent with our observable universe, while has some distinctly observable signals, which may be tested in coming observations.

  2. Energy Audits on Prince Edward Island

    E-Print Network [OSTI]

    Hall, N. G.; Gillis, D.

    1980-01-01T23:59:59.000Z

    High energy costs and uncertain supplies force industrial operators to seek out energy waste to keep costs down. The Enersave for Industry and Commerce program assists Prince Edward Island industries through an energy audit and grant program. A...

  3. US Virgin Islands renewable energy future

    E-Print Network [OSTI]

    Oldfield, Brian (Brian K.)

    2013-01-01T23:59:59.000Z

    The US Virgin Islands must face drastic changes to its electrical system. There are two problems with electricity production in the USVI-it's dirty and it's expensive. Nearly one hundred percent of the electricity in these ...

  4. Solar School Program in Reunion Island

    E-Print Network [OSTI]

    David, M.; Adelard, L.

    2004-01-01T23:59:59.000Z

    system efficiency. In Réunion Island, the industrial engineering laboratory is involved in the regional solar school program. Its aim is to gather some local construction actors (city technical offices, architects, civil engineers, specialized university...

  5. CAYMAN ISLANDS National Biodiversity Action Plan

    E-Print Network [OSTI]

    Exeter, University of

    down to us by those who went before, the natural wealth and beauty which is ours. John F. Kennedy environment for the Cayman Islands. CH2M Hill "Study on the Provision of Construction Aggregate and Fill

  6. Bainbridge Island Data Dashboard | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The data dashboard for Bainbridge Island, a partner in the U.S. Department of Energy's Better Buildings Neighborhood Program. bban0003805pmcdashboardy13-q3.xls More Documents...

  7. Metromorphosis : evolution on the urban island

    E-Print Network [OSTI]

    Vezina, Kenrick (Kenrick Freitas)

    2011-01-01T23:59:59.000Z

    Cities are very much alive. Like islands, they provide a natural testing ground for evolution. With more than half of the world's population living in urban areas now, the influence cities have on the planet's life is ...

  8. N. Mariana Islands- Renewables Portfolio Standard

    Broader source: Energy.gov [DOE]

    The Commonwealth of the Northern Mariana Islands enacted its Renewables Portfolio Standard in September 2007, in which a certain percentage of its net electricity sales must come from renewable...

  9. Macroalgal distribution at Lee Stocking Island, Bahamas

    E-Print Network [OSTI]

    Roberts, Jill Christie

    1997-01-01T23:59:59.000Z

    from the reef community, macroalgae have been increasing in abundance on the reefs surrounding Lee Stocking Island (LSI), Bahamas. Macroalgal patches prevent coral recruitment and growth, thereby restructuring the reef. In such cases, coral and algal...

  10. Qualifying RPS State Export Markets (Rhode Island)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Rhode Island as eligible sources towards their RPS targets or goals. For specific...

  11. 11 Life on Herbert Island (part 2)

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 11 Length of track 45 minutes Title of track Life on Herbert Island (part 2) Translation...

  12. 13 Life on Herbert Island (part 3)

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 13 Length of track 30 minutes Title of track Life on Herbert Island (part 3) Translation...

  13. 12 Life on Herbert Island (part 1)

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 12 Length of track 1 hour 35 minutes Title of track Life on Herbert Island (part 1...

  14. DYER ISLAND CONSERVATION TRUST LETTER OF CONCERN

    E-Print Network [OSTI]

    de Villiers, Marienne

    ..........................................................................................................................8 4 GENERAL POTENTIAL IMPACTS OF THE NPS ON THE MARINE ENVIRONMENTDYER ISLAND CONSERVATION TRUST LETTER OF CONCERN ASSOCIATED WITH THE ESTABLISHMENT OF A NUCLEAR....................................................................................................................................6 3 THE MARINE ENVIRONMENT SURROUNDING BANTAMSKLIP

  15. U.S. Virgin Islands- Net Metering

    Broader source: Energy.gov [DOE]

    In February 2007, the U.S. Virgin Islands Public Services Commission approved a limited net-metering program for residential and commercial photovoltaic (PV), wind-energy or other renewable energy...

  16. H. R. 3277: Trans-Alaska Pipeline System Reform Act of 1989. Introduced in the House of Representatives, One Hundredth First Congress, First Session, September 14, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The bill would improve Federal laws relating to the Trans-Alaska Pipeline System in light of the recent Valdez oil spill and its environmental consequences. The bill explains provisions for the Trans-Alaska Pipeline System fund and liability; the Trans-Alaska Pipeline System trust fund; improvement of the pipeline system (establishes a Presidential task force); Alaska oil spill recovery institute; penalties; provisions applicable to Alaska natives; and state laws and programs.

  17. Remote-site power generation opportunities for Alaska

    SciTech Connect (OSTI)

    Jones, M.L.

    1997-03-01T23:59:59.000Z

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power, reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  18. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  19. Application of PDC bits in the Kuparuk River Field, Alaska

    SciTech Connect (OSTI)

    Balkenbush, R.J.; Onisko, J.E.

    1983-10-01T23:59:59.000Z

    In soft to medium hard clays and shales, PDC bits have proven to be economically successful in the Kuparuk River Field, Alaska. Through the redesign and modification of PDC bits and rig equipment, the necessary operating parameters have been achieved and the use of PDC bits has become routine. These bits are typically run with a standpipe pressure of 4000 psi, pump rate of 400 to 450 gpm, and a rotary speed of 150 to 200 rpm. Using these high operating parameters, a savings of about $50,000 per PDC bit is being achieved when compared to roller cone bits.

  20. Alaska Electric Light&Power Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-Energy LLCAir EnergyTayyarAlaska Electric

  1. Diamond Ridge, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1Dering Harbor, NewRidge, Alaska: Energy Resources Jump to:

  2. Alaska Town Invests in Energy Efficiency | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of TS NOTMethaneBtuAlaska

  3. CT Scans of Cores Metadata, Barrow, Alaska 2015

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Katie McKnight; Tim Kneafsey; Craig Ulrich

    Individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, throughout 2013 and 2014. Cores were drilled along different transects to sample polygonal features (i.e. the trough, center and rim of high, transitional and low center polygons). Most cores were drilled around 1 meter in depth and a few deep cores were drilled around 3 meters in depth. Three-dimensional images of the frozen cores were constructed using a medical X-ray computed tomography (CT) scanner. TIFF files can be uploaded to ImageJ (an open-source imaging software) to examine soil structure and densities within each core.

  4. Alaska Energy Champion: David Pelunis-Messier | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOENuclearAdverseDepartmentAlaska Energy

  5. Alaska Feature Articles and Blogs | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaska Feature Articles and Blogs Alaska

  6. The 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 and NbSe2 .2004 North Slope of Alaska Arctic Winter

  7. Energy Efficiency and Renewable Energy Technologies for Alaska

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sitesEERE Technologies for Alaska Day 1

  8. MHK Projects/Alaska 35 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects Jump

  9. MHK Projects/Alaska 7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:Luz IILynnM Setek85 < MHK Projects

  10. Port Graham, Alaska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc Jump to:Venture,149.Pope CountyGraham, Alaska:

  11. Alaska Power and Telephone Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End Date 2008-06-01EnergyAlaska

  12. Alaska Public Participation in APDES Permitting Process | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska Public

  13. Alaska Request for SHPO Section 106 Review | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation Alaska

  14. Alaska Sample Special Area Permit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

  15. Alaska Special Area Permit Application | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 End DateInformation AlaskaSpecial

  16. City of Atka, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuoCatalystPathwaysAltamont CityKansas (UtilityAtka, Alaska

  17. Alaska Forum on the Environment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts1-034 Advance| DepartmentBurden RFIAlan Yu About UsAlaska

  18. City of Akutan, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake SouthChroma ATEEnergy LLC Place:Akutan, Alaska

  19. Alaska - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, Average RefinerEnergy SupplyU.S. Offshore U.S.:Alaska

  20. ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION NORTHERN REGIONAL OFFICZ ,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March_ ,'I- i.(ALASKA DEPARTMENT OF

  1. Plant community composition and vegetation height, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Sloan, Victoria; Norby, Richard; Siegrist, Julia; Iversen, Colleen; Brooks, Jonathan; Liebig, Jennifer; Wood, Sarah

    2014-04-25T23:59:59.000Z

    This dataset contains i) the results of field surveys of plant community composition and vegetation height made between 17th and 29th July 2012 in 48, 1 x 1 m plots located in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska and ii) results of a mapping exercise undertaken in August 2013 using two perpendicular transects across each polygon containing vegetation plots to determine the boundaries of vegetation communities described in 2012.

  2. amchitka underground nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific...

  3. Biological Monitoring at Amchitka Appears to Show Impacts from...

    Energy Savers [EERE]

    of the monitoring showed that Dolly Varden (a type of freshwater char, a trout-like fish), rockweed (littoral-zone algae), and to a lesser extent, Irish Lord (a small...

  4. Scientists Assess Damage Caused by Earthquake near Amchitka | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolvingPerformance | Department ofBowl |

  5. Nevada Environmental Restoration Project Amchitka Mud Pit Sites

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*.MSE Cores" _ ,' ,:.' :r-2 .

  6. amchitka marine environment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    monitor and assess radioactivity in the marine environment for its protection, and use nuclear techniques and environmental isotopes to understand better and assess marine...

  7. Biological Monitoring at Amchitka Appears to Show Impacts from Fukushima

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing,Energy and NaturalBethelNovemberEnergy myth versus2012

  8. Snakes of the Lake ErieSnakes of the Lake Erie IslandsIslands

    E-Print Network [OSTI]

    King, Richard B.

    and were modified by human activities suchand were modified by human activities such as quarrying and farmingas quarrying and farming #12;Attempts were made to eradicate snakes from the islands #12;#12;...and;· Found throughout Ohio · Locally found in the quarries of Kelleys island and on the shoreline of Johnson

  9. Alaska Power Administration combined financial statements, schedules and supplemental reports, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Alaska Power Administration`s (Alaska) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on Alaska`s internal control structure and on compliance with laws and regulations are also provided. The Alaska Power Administration operates and maintains two hydroelectric projects that include five generator units, three power tunnels and penstocks, and over 88 miles of transmission line. Additional information about Alaska Power Administration is provided in the notes to the financial statements. The 1995 financial statement audit was made under the provisions of the Inspector General Act (5 U.S.C. App.), as amended, the Chief Financial Officers (CFO) Act (31 U.S.C. 1500), and Office of Management and Budget implementing guidance to the CFO Act. The auditor`s work was conducted in accordance with generally accepted government auditing standards. To fulfill the audit responsibilities, the authors contracted with the independent public accounting firm of KPMG Peat Marwick (KPMG) to conduct the audit for us, subject to review. The auditor`s report on Alaska`s internal control structure disclosed no reportable conditions that could have a material effect on the financial statements. The auditor also considered the overview and performance measure data for completeness and material consistency with the basic financial statements, as noted in the internal control report. The auditor`s report on compliance with laws and regulations disclosed no instances of noncompliance by Alaska.

  10. Migration and oil industry employment of north slope Alaska natives. Technical report (Final)

    SciTech Connect (OSTI)

    Marshall, D.

    1993-01-01T23:59:59.000Z

    This study has two purposes: To find out why people migrate to and within the North Slope; To find out if working for the oil industry at Prudhoe Bay or Kuparuk makes North Slope Natives more likely to migrate. This is the first study of Alaska Native migration based on interviews of Alaska North Slope Native migrants, of non-Native migrants, and of Alaska North Slope Natives who are oil industry employees. It has two major chapters: one on household migration and the other on oil industry employment. The report is based on interviews conducted in March 1992.

  11. Pick any region of the US from Alaska to Florida to New Mexico, and determine

    E-Print Network [OSTI]

    Auerbach, Scott M.

    Research: Pick any region of the US from Alaska to Florida to New Mexico, and determine the most to store this energy effectively. Therefore, your task is to think of new ways to store renewable energy

  12. E-Print Network 3.0 - alaska science center Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science center Search Powered by Explorit Topic List Advanced Search Sample search results for: alaska science center Page: << < 1 2 3 4 5 > >> 1 UnitDepartment Name Title EMail...

  13. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    SciTech Connect (OSTI)

    Wiita, Joanne

    2013-07-30T23:59:59.000Z

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paid OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.

  14. The Dropout/Graduation Crisis Among American Indian and Alaska Native Students

    E-Print Network [OSTI]

    Faircloth, Susan C.; Tippeconnic, John W. III

    2010-01-01T23:59:59.000Z

    8th grader, state of Oklahoma 1st place in the 6 th - 8 thCarolina, North Dakota, Oklahoma, Oregon, South Dakota,Student Population Alaska Oklahoma Montana New Mexico South

  15. Reconstructing long term sediment flux from the Brooks Range, Alaska, using edge clinoforms

    E-Print Network [OSTI]

    Kaba, Christina Marie

    2004-01-01T23:59:59.000Z

    Laterally extensive, well-developed clinoforms have been mapped in Early Cretaceous deposits located in the northeastern 27,000 km2 of the Colville Basin, North Slope of Alaska. Using public domain 2-D seismic data, well ...

  16. E-Print Network 3.0 - alaska bering sea Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Figure 1. No groundfish resources erere alloca... -specific.r' Descriptions of other terms employed will be given in later sections. 12;2 ... Source: Alaska Fisheries Science...

  17. Agency Responses to Comments Received during the 2011 Alaska Forum on the Environment

    Broader source: Energy.gov [DOE]

    Agency Responses to Comments Received during the 2011 Alaska Forum on the EnvironmentEnvironmental Justice Interagency Working Group Community DialogueAnchorage, AKFebruary 7-11, 2011

  18. Alaska: Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project is benefiting tribal communities in Alaska with fuel savings, increased revenues to local utilities, reduced heating cost, as well as enabling utilities and customers to control costs.

  19. Title 46 Alaska Statutes Section 03.380 Registration of Tanks...

    Open Energy Info (EERE)

    Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska Statutes Section 03.380...

  20. Title 46 Alaska Statutes Section 03.385 Registration Fee for...

    Open Energy Info (EERE)

    Registration Fee for Registration of Tanks and Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 46 Alaska...

  1. Weatherization Savings Peak in Alaska: Weatherization Assistance Close-Up Fact Sheet

    SciTech Connect (OSTI)

    D& R International

    2001-10-10T23:59:59.000Z

    Alaska demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

  2. Photovoltaic applications for remote-island needs

    SciTech Connect (OSTI)

    Schaller, D.A.

    1983-01-01T23:59:59.000Z

    Electric power supply options available to many of the central and south Pacific island governments are severely constrained by remoteness, limited infrastructures, a corrosive natural environment, and the high delivered costs of many conventional energy sources. Photovoltaic energy systems offer a currently available, practical, and cost-effective source of electricity for many stand-alone applications in remote areas of the Pacific. Photovoltaic system definitions and cost analyses are provided for selected applications in the Republic of Palau, the Federated States of Micronesia, the Republic of the Marshall Islands, and the Territory of American Samoa.

  3. Perceptions of nature in the Caribbean island of Dominica 

    E-Print Network [OSTI]

    Yarde, Therese Natalie

    2012-11-29T23:59:59.000Z

    The Commonwealth of Dominica has acquired a reputation as the nature island of the Caribbean. This thesis sets out to explore how Dominicans perceive and relate to nature in their nature island. It considers these perceptions ...

  4. U.S. Virgin Islands- Renewables Portfolio Targets

    Broader source: Energy.gov [DOE]

    In July 2009, the Virgin Islands passed Act 7075. Among other provisions, the legislation establishes that the "peak demanded generating capacity" of the Virgin Islands Water and Power Authority*...

  5. Community Economic Development Business Program (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    The Community Economic Development Business (CEDB) program has been created as part of the Prince Edward Island Rural Action Plan to support local investment in innovative Prince Edward Island...

  6. Rural Alaska Coal Bed Methane: Application of New Technologies to Explore and Produce Energy

    SciTech Connect (OSTI)

    David O. Ogbe; Shirish L. Patil; Doug Reynolds

    2005-06-30T23:59:59.000Z

    The Petroleum Development Laboratory, University of Alaska Fairbanks prepared this report. The US Department of Energy NETL sponsored this project through the Arctic Energy Technology Development Laboratory (AETDL) of the University of Alaska Fairbanks. The financial support of the AETDL is gratefully acknowledged. We also acknowledge the co-operation from the other investigators, including James G. Clough of the State of Alaska Department of Natural Resources, Division of Geological and Geophysical Surveys; Art Clark, Charles Barker and Ed Weeks of the USGS; Beth Mclean and Robert Fisk of the Bureau of Land Management. James Ferguson and David Ogbe carried out the pre-drilling economic analysis, and Doug Reynolds conducted post drilling economic analysis. We also acknowledge the support received from Eric Opstad of Elko International, LLC; Anchorage, Alaska who provided a comprehensive AFE (Authorization for Expenditure) for pilot well drilling and completion at Fort Yukon. This report was prepared by David Ogbe, Shirish Patil, Doug Reynolds, and Santanu Khataniar of the University of Alaska Fairbanks, and James Clough of the Alaska Division of Geological and Geophysical Survey. The following research assistants, Kanhaiyalal Patel, Amy Rodman, and Michael Olaniran worked on this project.

  7. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01T23:59:59.000Z

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Genomic islands predict functional adaptation in marine actinobacteria

    E-Print Network [OSTI]

    Penn, Kevin

    2010-01-01T23:59:59.000Z

    Ecological adaptations among bacterial populations have been linked to genomic islands, strain-specific regions of DNA that house

  9. Rapan lifeways : society and history on a Polynesian island

    E-Print Network [OSTI]

    Hanson, F. Allan

    2006-01-01T23:59:59.000Z

    RAPAN LIFEWAYS Society and history on a Polynesian island F. Allan Hanson RAPAN LIFEWAYS Society and History on a Polynesian Island ? % * ^Oahu ? Hawaii 1 1 1 - s PACIFIC OCEAN FRENCH r~ | MARQUESAS :" | ISLANDS ' 1 TUAto0Tu Tahiti ?:"._., Rurutu... ^^-j 1 Rimatara a * Tubl?'' "% 160" Ra'ivavae ^ ^ RAPA 1 TROPIC OF CANCER POLYNESIA v iii ii ii ii i " ???? -?? ! TROPIC OF CAPRICORN y 0? / Pitcaira RAPAN LIFEWAYS Society and History on a Polynesian Island F ALLAN HANSON The University of Kansas...

  10. Azania XLII 2007 East Africa, the Comoros Islands and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Azania XLII 2007 East Africa, the Comoros Islands and Madagascar before the sixteenth century interior and on outlying islands (Comoros, Madagascar) or were composed of lower classes in urban expansion and private enterprise. #12;16 East Africa, the Comoros Islands and Madagascar before

  11. current encounters a large island (main islands of Palau) basin-scale currents are driven by winds

    E-Print Network [OSTI]

    Johnston, Shaun

    Summary · current encounters a large island (main islands of Palau) · basin-scale currents are driven by winds · strong boundary currents like Gulf Stream · Palau has a boundary current · current

  12. Energy Transition Initiative: Islands Playbook (Book)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    The Island Energy Playbook (the Playbook) provides an action-oriented guide to successfully initiating, planning, and completing a transition to an energy system that primarily relies on local resources to eliminate a dependence on one or two imported fuels. It is intended to serve as a readily available framework that any community can adapt to organize its own energy transition effort.

  13. US Army Corps of Engineers Caribbean Islands Region Version 2.0 WETLAND DETERMINATION DATA FORM Caribbean Islands Region

    E-Print Network [OSTI]

    US Army Corps of Engineers

    US Army Corps of Engineers Caribbean Islands Region ­ Version 2.0 WETLAND DETERMINATION DATA FORM ­ Caribbean Islands Region Project/Site: Municipality/Town: Sampling Date: Applicant/Owner: PR or USVI or problematic. Hydrophytic Vegetation Present? Yes No Remarks: #12;US Army Corps of Engineers Caribbean Islands

  14. Dear Fellow Columbian, Join alumni and friends in Alaska from June 24-July 1, 2013 on an 8-day exploration of

    E-Print Network [OSTI]

    Lazar, Aurel A.

    and stunning Sandhill Cranes. · The emergence of Alaska's beautiful wildflowers, such as lupine and fireweed history. After tonight's welcome dinner, we'll visit the famous Alaska Pipeline. Overnight at Pike

  15. Grey Island Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer County is a county in Oklahoma. Its FIPSGresham Park,Grey Island

  16. Lessons Learned in Islands | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformation ResourcesIsland EnergyLabLeadership

  17. Coccidia (Apicomplexa: Eimeriidae) Infecting Cricetid Rodents from Alaska, U.S.A., and Northeastern Siberia, Russia, and Description of a

    E-Print Network [OSTI]

    Siberia, Russia, and Description of a New Eimeria Species from Myodes rutilus, the Northern Red, and 16 species of rodents in Alaska, U.S.A. (N¼1,711), and Siberia, Russia (N¼239) were examined, all from Alaska, 0/5 Erethizon dorsatum had oocysts when examined. In the Muridae, all from Russia, 0

  18. 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge

    E-Print Network [OSTI]

    Wagner, Diane

    Nixle 401 Rasmuson Library 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West 450-8300 102 Butrovich UAF Main Campus helpdesk@alaska.edu UAF West Ridge 4. Enter a Location Enter of Certified Government Agencies & Organizations will load. #12;3 Nixle 401 Rasmuson Library 450-8300 102

  19. Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska University of Massachusetts Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Analysis of Loads and Wind Energy Potential for Remote Power Stations in Alaska Mia Devine@avec.org ABSTRACT This report addresses the potential of utilizing wind energy in remote communities of Alaska. This report evaluates the village electric usage patterns, wind energy resource potential, and wind

  20. Resuspension studies in the Marshall Islands

    SciTech Connect (OSTI)

    Shinn, J.H.; Homan, D.N.; Robison, W.L. [Lawrence Livermore National Lab., CA (United States)

    1997-07-01T23:59:59.000Z

    The contribution of inhalation exposure to the total dose for residents of the Marshall Islands was monitored at occasions of opportunity on several islands in the Bikini and Enewetak Atolls. To determine the long-term potential for inhalation exposure, and to understand the mechanisms of redistribution and personal exposure, additional investigations were undertaken on Bikini Island under modified and controlled conditions. Experiments were conducted to provide key parameters for the assessment of inhalation exposure from plutonium-contaminated dust aerosols: characterization of the contribution of plutonium in soil-borne aerosols as compared to sea spray and organic aerosols, determination of plutonium resuspension rates as measured by the meteorological flux-gradient method during extreme conditions of a bare-soil vs. a stabilized surface, determination of the approximate individual exposures to resuspended plutonium by traffic, and studies of exposures to individuals in different occupational environments simulated by personal air sampling of workers assigned to a variety of tasks. Enhancement factors (defined as ratios of the plutonium-activity), of suspended aerosols relative to the plutonium-activity of the soil were determined to be less than 1 (typically 0.4 to 0.7) in the undisturbed, vegetated areas, but greater than 1 (as high as 3) for the case studies of disturbed bare soil, roadside travel, and for occupational duties in fields and in and around houses. 12 refs., 5 figs., 8 tabs.

  1. Suggested guidelines for anti-islanding screening.

    SciTech Connect (OSTI)

    Ellis, Abraham; Ropp, Michael

    2012-02-01T23:59:59.000Z

    As increasing numbers of photovoltaic (PV) systems are connected to utility systems, distribution engineers are becoming increasingly concerned about the risk of formation of unintentional islands. Utilities desire to keep their systems secure, while not imposing unreasonable burdens on users wishing to connect PV. However, utility experience with these systems is still relatively sparse, so distribution engineers often are uncertain as to when additional protective measures, such as direct transfer trip, are needed to avoid unintentional island formation. In the absence of such certainty, utilities must err on the side of caution, which in some cases may lead to the unnecessary requirement of additional protection. The purpose of this document is to provide distribution engineers and decision makers with guidance on when additional measures or additional study may be prudent, and also on certain cases in which utilities may allow PV installations to proceed without additional study because the risk of an unintentional island is extremely low. The goal is to reduce the number of cases of unnecessary application of additional protection, while giving utilities a basis on which to request additional study in cases where it is warranted.

  2. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01T23:59:59.000Z

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  3. A Step Towards Conservation for Interior Alaska Tribes

    SciTech Connect (OSTI)

    Kimberly Carlo

    2012-07-07T23:59:59.000Z

    This project includes a consortium of tribes. The tribes include Hughes (representing the consortium) Birch Creek, Huslia, and Allakaket. The project proposed by Interior Regional Housing Authority (IRHA) on behalf of the villages of Hughes, Birch Creek, Huslia and Allakaket is to develop an energy conservation program relevant to each specific community, educate tribe members and provide the tools to implement the conservation plan. The program seeks to achieve both energy savings and provide optimum energy requirements to support each tribe's mission. The energy management program will be a comprehensive program that considers all avenues for achieving energy savings, from replacing obsolete equipment, to the design and construction of energy conservation measures, the implementation of energy saving operation and maintenance procedures, the utilization of a community-wide building energy management system, and a commitment to educating the tribes on how to decrease energy consumption. With the implementation of this program and the development of an Energy Management Plan, these communities can then work to reduce the high cost of living in rural Alaska.

  4. Options for Gas-to-Liquids Technology in Alaska

    SciTech Connect (OSTI)

    Robertson, Eric Partridge

    1999-10-01T23:59:59.000Z

    The purposes of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10 percent. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinquish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  5. Options for gas-to-liquids technology in Alaska

    SciTech Connect (OSTI)

    Robertson, E.P.

    1999-12-01T23:59:59.000Z

    The purpose of this work was to assess the effect of applying new technology to the economics of a proposed natural gas-to-liquids (GTL) plant, to evaluate the potential of a slower-paced, staged deployment of GTL technology, and to evaluate the effect of GTL placement of economics. Five scenarios were economically evaluated and compared: a no-major-gas-sales scenario, a gas-pipeline/LNG scenario, a fast-paced GTL development scenario, a slow-paced GTL development scenario, and a scenario which places the GTL plant in lower Alaska, instead of on the North Slope. Evaluations were completed using an after-tax discounted cash flow analysis. Results indicate that the slow-paced GTL scenario is the only one with a rate of return greater than 10%. The slow-paced GTL development would allow cost saving on subsequent expansions. These assumed savings, along with the lowering of the transportation tariff, combine to distinguish this option for marketing the North Slope gas from the other scenarios. Critical variables that need further consideration include the GTL plant cost, the GTL product premium, and operating and maintenance costs.

  6. A Statistical Model of Magnetic Islands in a Large Current Layer

    E-Print Network [OSTI]

    Fermo, R L; Swisdak, M

    2009-01-01T23:59:59.000Z

    We develop a statistical model describing the dynamics of magnetic islands in very large current layers that develop in space plasma. Two parameters characterize the island distribution: the flux contained in the island and the area it encloses. We derive an integro-differential evolution equation for this distribution function, based on rules that govern the small-scale generation of secondary islands, the rates of island growth, and island merging. Our numerical solutions of this equation produce island distributions relevant to the magnetosphere and corona. We also derive and analytically solve a differential equation for large islands that explicitly shows the role merging plays in island growth.

  7. Bringing Alaska North Slope Natural Gas to Market (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    At least three alternatives have been proposed over the years for bringing sizable volumes of natural gas from Alaska's remote North Slope to market in the lower 48 states: a pipeline interconnecting with the existing pipeline system in central Alberta, Canada; a gas-to-liquids (GTL) plant on the North Slope; and a large liquefied natural gas (LNG) export facility at Valdez, Alaska. The National Energy Modeling System (NEMS) explicitly models the pipeline and GTL options. The what if LNG option is not modeled in NEMS.

  8. Pacific Northwest and Alaska Bioenergy Program Year Book; 1992-1993 Yearbook with 1994 Activities.

    SciTech Connect (OSTI)

    Pacific Northwest and Alaska Bioenergy Program (U.S.); United States. Bonneville Power Administration.

    1994-04-01T23:59:59.000Z

    The U.S. Department of Energy administers five Regional Bioenergy Programs to encourage regionally specific application of biomass and municipal waste-to-energy technologies to local needs, opportunities and potentials. The Pacific Northwest and Alaska region has taken up a number of applied research and technology projects, and supported and guided its five participating state energy programs. This report describes the Pacific Northwest and Alaska Regional Bioenergy Program, and related projects of the state energy agencies, and summarizes the results of technical studies. It also considers future efforts of this regional program to meet its challenging assignment.

  9. Celebrating Asian American Pacific Islander Heritage Month at...

    Energy Savers [EERE]

    Asian Americans, Native Hawaiians, and Pacific Islanders at the Energy Department, in the energy workforce, and throughout history. Headquarter employees and members of the general...

  10. ,"Grand Island, NY Natural Gas Pipeline Imports From Canada ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Imports From Canada (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Grand Island,...

  11. Hypersonic drift-tearing magnetic islands in tokamak plasmas

    SciTech Connect (OSTI)

    Fitzpatrick, R.; Waelbroeck, F. L. [Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2007-12-15T23:59:59.000Z

    A two-fluid theory of long wavelength, hypersonic, drift-tearing magnetic islands in low-collisionality, low-{beta} plasmas possessing relatively weak magnetic shear is developed. The model assumes both slab geometry and cold ions, and neglects electron temperature and equilibrium current gradient effects. The problem is solved in three asymptotically matched regions. The 'inner region' contains the island. However, the island emits electrostatic drift-acoustic waves that propagate into the surrounding 'intermediate region', where they are absorbed by the plasma. Since the waves carry momentum, the inner region exerts a net force on the intermediate region, and vice versa, giving rise to strong velocity shear in the region immediately surrounding the island. The intermediate region is matched to the surrounding 'outer region', in which ideal magnetohydrodynamic holds. Isolated hypersonic islands propagate with a velocity that lies between those of the unperturbed local ion and electron fluids, but is much closer to the latter. The ion polarization current is stabilizing, and increases with increasing island width. Finally, the hypersonic branch of isolated island solutions ceases to exist above a certain critical island width. Hypersonic islands whose widths exceed the critical width are hypothesized to bifurcate to the so-called 'sonic' solution branch.

  12. Validation in Genomics: CpG Island Methylation Revisited

    E-Print Network [OSTI]

    Segal, Mark R

    2006-01-01T23:59:59.000Z

    analysis. In: Functional Genomics: Methods and Protocols, M.Segal: Validation in Genomics: CpG Island Methylationpackage and applications to genomics. Bioinformatics and

  13. Commonwealth of Northern Mariana Islands Initial Technical Assessment

    SciTech Connect (OSTI)

    Baring-Gould, I.; Hunsberger, R.; Visser, C.; Voss, P.

    2011-07-01T23:59:59.000Z

    This document is an initial energy assessment for the Commonwealth of the Northern Mariana Islands (CNMI), the first of many steps in developing a comprehensive energy strategy.

  14. Energy Office Grant Helps the Virgin Islands Environmental Resource...

    Office of Environmental Management (EM)

    Energy Office Grant Helps the Virgin Islands Environmental Resource Station Install Solar Panels, Improve Efficiency, and Cut Monthly Energy Use Nearly 30% Energy Office Grant...

  15. U.S. Virgin Islands Leadership Embraces Inclusiveness to Ensure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leadership Embraces Inclusiveness to Ensure Community Ownership of Clean Energy Vision U.S. Virgin Islands Leadership Embraces Inclusiveness to Ensure Community Ownership of Clean...

  16. Comparison of Secondary Islands in Collisional Reconnection to Hall Reconnection

    SciTech Connect (OSTI)

    Shepherd, L. S.; Cassak, P. A. [Department of Physics, West Virginia University, Morgantown, West Virginia, 26506 (United States)

    2010-07-02T23:59:59.000Z

    Large-scale resistive Hall-magnetohydrodynamic simulations of the transition from Sweet-Parker (collisional) to Hall (collisionless) magnetic reconnection are presented; the first to separate secondary islands from collisionless effects. Three main results are described. There exists a regime with secondary islands but without collisionless effects, and the reconnection rate is faster than Sweet-Parker, but significantly slower than Hall reconnection. This implies that secondary islands do not cause the fastest reconnection rates. The onset of Hall reconnection ejects secondary islands from the vicinity of the X line, implying that energy is released more rapidly during Hall reconnection. Coronal applications are discussed.

  17. antilles island arc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The morphology of the underthrust oceanic crust controls the mag matic activity of the island arc, and particularly the development, in space and time, of "arc compartments." Denis...

  18. Long Island Power Authority- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Long Island Power Authority offers a variety of incentives for its non-residential customers to increase the energy efficiency of facilities through the Commercial Efficiency Program. Major...

  19. Economics of Alaska North Slope gas utilization options

    SciTech Connect (OSTI)

    Thomas, C.P.; Doughty, T.C.; Hackworth, J.H.; North, W.B.; Robertson, E.P.

    1996-08-01T23:59:59.000Z

    The recoverable natural gas available for sale in the developed and known undeveloped fields on the Alaskan North Slope (ANS) total about 26 trillion cubic feet (TCF), including 22 TCF in the Prudhoe Bay Unit (PBU) and 3 TCF in the undeveloped Point Thomson Unit (PTU). No significant commercial use has been made of this large natural gas resource because there are no facilities in place to transport this gas to current markets. To date the economics have not been favorable to support development of a gas transportation system. However, with the declining trend in ANS oil production, interest in development of this huge gas resource is rising, making it important for the U.S. Department of Energy, industry, and the State of Alaska to evaluate and assess the options for development of this vast gas resource. The purpose of this study was to assess whether gas-to-liquids (GTL) conversion technology would be an economic alternative for the development and sale of the large, remote, and currently unmarketable ANS natural gas resource, and to compare the long term economic impact of a GTL conversion option to that of the more frequently discussed natural gas pipeline/liquefied natural gas (LNG) option. The major components of the study are: an assessment of the ANS oil and gas resources; an analysis of conversion and transportation options; a review of natural gas, LNG, and selected oil product markets; and an economic analysis of the LNG and GTL gas sales options based on publicly available input needed for assumptions of the economic variables. Uncertainties in assumptions are evaluated by determining the sensitivity of project economics to changes in baseline economic variables.

  20. Interconnecting gold islands with DNA origami

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for and NovelFEG-SEM with0,Interconnecting gold islands

  1. Marshall Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJunoMedanos EnergyMMalawi:Manassas is aisIslands: Energy

  2. Solomon Islands: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to:InformationSolergy Power JumpIslands: Energy Resources Jump to:

  3. Recovery Act State Memos Mariana Islands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 SectionGeorgia ForIowaMariana Islands

  4. Recovery Act State Memos Virgin Islands

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09Jersey ForDakota ForVirgin Islands For

  5. Alternative Fuels Data Center: Rhode Island Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill SafetyVehicleRhode Island

  6. Offshore Islands Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico:CommunityNorthwest BasinOahu,12 YeomanIslands Ltd Region:

  7. Alpine field, Alaska: openhole completion and wellbore cleanup methods in an Artic environment

    E-Print Network [OSTI]

    Leeftink, Gerrit J.

    2001-01-01T23:59:59.000Z

    This study compares the practices used to drill and complete three horizontal, openhole wells in the Alpine field on the north slope of Alaska. This study is a continuation of the work performed in conjunction with CEA-73. In the first phase of CEA...

  8. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Chowdhury, Taniya; Graham, David

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  9. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Chowdhury, Taniya; Graham, David

    2013-12-08T23:59:59.000Z

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  10. Soil Physicochemical Characteristics from Ice Wedge Polygons, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Chowdhury, Taniya

    2014-03-24T23:59:59.000Z

    This dataset provides details about soil cores (active layer and permafrost) collected from ice-wedge polygons during field expeditions to Barrow Environmental Observatory, Alaska in April, 2012 and 2013. Core information available are exact core locations; soil horizon descriptions and characteristics; and fundamental soil physico-chemical properties.

  11. Akiak School 2009 We are a small school in Western Alaska.

    E-Print Network [OSTI]

    Pantaleone, Jim

    Akiak School 2009 We are a small school in Western Alaska. Students are predominantly Yupik. We engagement in a network have on your school improvement efforts? ·It helped us focus on what our school of leadership have become visible:.. a. in your direct work at your school? ·We have paraprofessionals covering

  12. Foraging behavior of juvenile steller sea lions in the Gulf of Alaska

    E-Print Network [OSTI]

    Schrader, Wendy Jane

    2007-09-17T23:59:59.000Z

    and locations in the Gulf of Alaska via satellite telemetry. Twelve of the 17 had experienced 1-3 months of temporary captivity. Effects of temporary captivity on endurance, habitat use and development of diving and ranging behavior were tested. Diving...

  13. Age of Pre-late-Wisconsin Glacial-Estuarine Sedimentation, Bristol Bay, Alaska

    E-Print Network [OSTI]

    Ingólfsson, �lafur

    stimu- lated and thermoluminescence (IRSL and TL) techniques. Analy- sis of modern and 14 C-dated of northeastern Bristol Bay, southwestern Alaska, was dated using a variety of approaches, including infrared techniques. IRSL seems to be especially well suited for dating, with resolution on time scales of

  14. Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora

    E-Print Network [OSTI]

    Lummerzheim, Dirk

    36 #12;37 Alaska Park Science, Volume 8, Issue 1 The Colors of the Aurora By Dirk Lummerzheim Abstract The aurora has fascinated observers at high latitudes for centuries, but only recently have we that are responsible for the colors of the aurora. Observations of color balance in aurora can provide us

  15. EIS-0139: Trans-Alaska Gas System Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    This EIS analyzes the Yukon Pacific Corporation (YPC) proposed construction of the Trans-Alaska Gas System (TAGS) a 796.5 mile long 36-inch diameter pipeline to transport High Pressured Natural Gas between Prudhoe Bay and a Tidewater terminal and LNG Plant near Anderson Bay, AK.

  16. Presented at the 28 IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17-22, 2000

    E-Print Network [OSTI]

    Sites, James R.

    Presented at the 28 th IEEE Photovoltaics Specialists Conference, Anchorage Alaska, September 17. Tarrant, Siemens Solar Industries, Camarillo, CA 93012 ABSTRACT Many thin-film CIS photovoltaic devices behavior. INTRODUCTION The modest transient behavior exhibited by many thin-film CIS photovoltaic devices

  17. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  18. Wind-Diesel Hybrid Options for Remote Villages in Alaska Dr. James Manwell

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    -Gould National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 email: ian, and particulates. To address these issues, Alaska energy representatives are looking to renewable energy technologies to reduce the costs of power production in rural areas, the dependence on imported fuels

  19. Wave Energy Resources Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Energy Resources for Representative Sites Around the Hawaiian Islands Prepared by: Luis A. Vega Ph.D October 11, 2010 #12;Wave Power Resources off the Hawaiian Islands October 11, 2010 1 Foreword This report provides wave energy resource information required to select coastal segments

  20. Hierarchical Control Scheme for Voltage Unbalance Compensation in Islanded Microgrids

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Hierarchical Control Scheme for Voltage Unbalance Compensation in Islanded Microgrids Mehdi@et.aau.dk Abstract-- The concept of microgrid hierarchical control is presented, recently. In this paper, a hierarchical scheme which includes primary and secondary control levels is proposed for islanded microgrids

  1. Drift-tearing magnetic islands in tokamak plasmas

    SciTech Connect (OSTI)

    Fitzpatrick, R.; Waelbroeck, F. L. [Institute for Fusion Studies, Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2008-01-15T23:59:59.000Z

    A systematic fluid theory of nonlinear magnetic island dynamics in conventional low-{beta}, large aspect-ratio, circular cross-section tokamak plasmas is developed using an extended magnetohydrodynamics model that incorporates diamagnetic flows, ion gyroviscosity, fast parallel electron heat transport, the ion sound wave, the drift wave, and average magnetic field-line curvature. The model excludes the compressible Alfven wave, geodesic field-line curvature, neoclassical effects, and ion Landau damping. A collisional closure is used for plasma dynamics parallel to the magnetic field. Two distinct branches of island solutions are found, namely the 'sonic' and 'hypersonic' branches. Both branches are investigated analytically, using suitable ordering schemes, and in each case the problem is reduced to a relatively simple set of nonlinear differential equations that can be solved numerically via iteration. The solution determines the island phase velocity, relative to the plasma, and the effect of local currents on the island stability. Sonic islands are relatively wide, flatten both the temperature and density profiles, and tend to propagate close to the local ion fluid velocity. Hypersonic islands, on the other hand, are relatively narrow, only flatten the temperature profile, radiate drift-acoustic waves, and tend to propagate close to the local electron fluid velocity. The hypersonic solution branch ceases to exist above a critical island width. Under normal circumstances, both types of island are stabilized by local ion polarization currents.

  2. Introduction The island of Hispaniola has reduced its malaria burden,

    E-Print Network [OSTI]

    Klein, Ophir

    Introduction The island of Hispaniola has reduced its malaria burden, with parasite prevalence feasible. The risk of imported malaria cases to the island of Hispaniola appears extremely low, e.g., fewer than 10 infections were imported from outside Hispaniola to the Dominican Republic in 2012. Based

  3. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    of the biological contamination of waters that have been used for the last 100 years have been shown to lack certainVirgin Islands Water Resources Research Institute Annual Technical Report FY 2000 Introduction The Virgin Islands Water Resources Research Institute (WRRI) is a unit of the University of the Virgin

  4. Island Bellwether: Climate Change and Energy Policy Strategy

    E-Print Network [OSTI]

    Delaware, University of

    responsible for current and forecast global warming · Fossil fuel energy systems are the primary cause of GHGa) Island Bellwether: Climate Change and Energy Policy Strategy for Small Island Developing States John Byrne, Leigh Glover, Vernese Inniss and Gerard Alleng Center for Energy and Environmental Policy

  5. Virgin Islands Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    water is a concern, so too is proper disposal of wastewater. The Virgin Islands Water Resources Research with cistern water quality, treatment of wastewater from aquaponic systems and sediment export from watersheds is a major concern in the Territory of the US Virgin Islands. As part of our endeavour to do a detailed

  6. A Distributed Generation Control Architecture for Islanded AC Microgrids

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    1 A Distributed Generation Control Architecture for Islanded AC Microgrids Stanton T. Cady, Student Member, IEEE Abstract In this paper, we propose a distributed architecture for generation control in islanded ac microgrids with both synchronous generators and inverter-interfaced power supplies. Although

  7. Forensic identification: the Island Problem and its generalisations

    E-Print Network [OSTI]

    Meester, Ronald

    Forensic identification: the Island Problem and its generalisations Klaas Slooten and Ronald Meester April 26, 2010 Abstract In forensics it is a classical problem to determine, when a suspect by a likelihood ratio. Keywords: Island problem, Forensic identification, Weight of evidence, Posterior odds

  8. E-Print Network 3.0 - abruka island west Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    << < 1 2 3 4 5 > >> 41 William W. Hay Railroad Engineering Seminar Summary: 12;Powerhouse Island Powerhouse Island West Bank West Bank Kentucky Lake Kentucky Lake...

  9. E-Print Network 3.0 - autonomous island networks Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the communities on Lord Howe Island and Norfolk Island is highly connected social networks. Research participants... confidentiality) would be received by the communities...

  10. Final Report: Weatherization and Energy Conservation Education and Home Energy and Safety Review in the Aleutian Islands

    SciTech Connect (OSTI)

    Bruce Wright

    2011-08-30T23:59:59.000Z

    Aleutian/Pribilof Islands Association, Inc. (APIA) hired three part-time local community members that desire to be Energy Technicians. The energy technicians were trained in methods of weatherization assistance, energy conservation and home safety. They developed a listing of homes in the region that required weatherization, and conducted on-site weatherization and energy conservation education and a home energy and safety reviews in the communities of Akutan, False Pass, King Cove and Nelson Lagoon. Priority was given to these smaller communities as they tend to have the residences most in need of weatherization and energy conservation measures. Local residents were trained to provide all three aspects of the project: weatherization, energy conservation education and a home energy and safety review. If the total energy saved by installing these products is a 25% reduction (electrical and heating, both of which are usually produced by combustion of diesel fuel), and the average Alaska home produces 32,000 pounds of CO2 each year, so we have saved about: 66 homes x 16 tons of CO2 each year x .25 = 264 tons of CO2 each year.

  11. Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu Wave Resources for Representative Sites Around the Hawaiian Islands

    E-Print Network [OSTI]

    Wave Power Resources off the Hawaiian Islands luisvega@hawaii.edu 1 Wave Resources for Representative Sites Around the Hawaiian Islands Table of Contents Summary p2 Background: Wave Power Conversion p3 Licensing and Permitting p3 Challenges and Barriers p4 Wave Power Resources: Previous Work p5 Wave

  12. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  13. Three Mile Island: the financial fallout

    SciTech Connect (OSTI)

    Not Available

    1980-07-07T23:59:59.000Z

    The nuclear accident at Three Mile Island raised serious questions about the financial ability of the electric utility company owners to clean up and repair the damaged reactor facilities while continuing to provide reliable electric service to customers. Financial insolvency of the companies is not imminent and power supplies are assured for the immediate future. However, the loss of earnings capability by the Metropolitan Edison Company makes it questionable whether it can fund its share of the clean-up costs and maintain system reliability without large rate increases or some external financial assistance. The accident has shown that the utilities and Federal and State regulatory agencies were not prepared to deal with recovery from such a large financial loss. The Department of Energy should move swiftly to assess the financial needs of the affected utilities and develop plans for meeting them.

  14. Three Mile Island: meltdown of democracy

    SciTech Connect (OSTI)

    Walsh, E.J.

    1983-03-01T23:59:59.000Z

    Strong local opposition to a start-up of Unit 1 at Three Mile Island continues because citizen distrust of General Public Utilities was found in post-accident studies to have been justified. Several citizen groups have monitored the Unit 2 clean-up activities and have not been reassured by either the President's Commission or the Nuclear Regulatory Commission. Efforts to improve public relations by distributing radiation kits or other strategies have been outweighed by evidence of government manipulation of early bomb test data and poor industry planning. Arguments over who is responsible for the accident and who is liable for the cost have further undermined credibility. Area residents have received three recent legal signals that their position may prevail. (DCK)

  15. Subsidence at the Weeks Island SPR Facility

    SciTech Connect (OSTI)

    Bauer, S.J.

    1999-01-01T23:59:59.000Z

    The elevation change data measured at the Weeks Island SPR site over the last 16+ years has been studied and analyzed. The subsidence rate is not constant with time and while the subsidence rate may have increased slightly during the past several years, recently the rate has increased more dramatically. The most recent increase comes at a time when the Strategic Petroleum Reserve (SPR) storage mine had been emptied of oil and was in the process of being refilled with brine. Damage to surface structures that has been observed during the past 12-18 months is attributed to the continued subsidence and dtierential subsidence across structures. The recent greater subsidence rates were unanticipated according to analysis results and will be used to aid further subsidence model development.

  16. The Marshall Islands Data Management Program

    SciTech Connect (OSTI)

    Stoker, A.C.; Conrado, C.L.

    1995-09-01T23:59:59.000Z

    This report is a resource document of the methods and procedures used currently in the Data Management Program of the Marshall Islands Dose Assessment and Radioecology Project. Since 1973, over 60,000 environmental samples have been collected. Our program includes relational database design, programming and maintenance; sample and information management; sample tracking; quality control; and data entry, evaluation and reduction. The usefulness of scientific databases involves careful planning in order to fulfill the requirements of any large research program. Compilation of scientific results requires consolidation of information from several databases, and incorporation of new information as it is generated. The success in combining and organizing all radionuclide analysis, sample information and statistical results into a readily accessible form, is critical to our project.

  17. Neural network analysis of sparse datasets ?? an application to the fracture system in folds of the Lisburne Formation, northeastern Alaska

    E-Print Network [OSTI]

    Bui, Thang Dinh

    2005-11-01T23:59:59.000Z

    with conventional statistical analysis, were used to examine the effects of folding, bed thickness, structural position, and lithology on the fracture properties distributions in the Lisburne Formation, folded and exposed in the northeastern Brooks Range of Alaska...

  18. Design of a model pipeline for testing of piezoelectric micro power generator for the Trans-Alaska Pipeline System

    E-Print Network [OSTI]

    Lah, Mike M. (Mike Myoung)

    2007-01-01T23:59:59.000Z

    In order to provide a reliable corrosion detection system for the Trans-Alaska Pipeline System (TAPS), a distributed wireless self-powered sensor array is needed to monitor the entire length of the pipeline at all times. ...

  19. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  20. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  1. Alaska coal gasification feasibility studies - Healy coal-to-liquids plant

    SciTech Connect (OSTI)

    Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

    2007-07-15T23:59:59.000Z

    The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

  2. North Providence, Rhode Island: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole, Alaska: Energy500997°,

  3. MHK Projects/Treat Island Tidal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClickKembla < MHKSEAREVMessinaTreat

  4. Influence of air conditioning management on heat island in Paris air street temperatures

    E-Print Network [OSTI]

    Ribes, Aurélien

    Influence of air conditioning management on heat island in Paris air street temperatures Brice 2012 Available online 13 March 2012 Keywords: Air conditioning Heat island mitigation Urban heat island killer'', is exacerbated in urban areas owing to the heat island effect. Air conditioning (A/C) is a key

  5. Island biogeography Much of our current understanding of how many species occupy a community comes from

    E-Print Network [OSTI]

    Creel, Scott

    a balance between ongoing immigration of new species to the island and continuous extinction of species') and E is the maximum rate of extinction (the rate of extinction when the number of species on the island there are no species on the island (logically). But extinction rate increases with increasing species on the island

  6. Determination of marine migratory behavior and its relationship to selected physical traits for least cisco (Coregonus sardinella) of the western Arctic coastal plain, Alaska.

    E-Print Network [OSTI]

    Seigle, John C.

    2003-01-01T23:59:59.000Z

    ??With increased resource development on the western Arctic coastal plain of Alaska (especially within the oil extraction industry) it is important to understand the basic… (more)

  7. Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten the work season in northern regions. Add

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Alaska District, lab partner on cold regions work Subzero temperatures and limited daylight shorten and innovative solutions in engineering, construction and operations in cold regions. The partnership between

  8. Temporal Variation in Fish Communities Off Santa Cruz Island, California

    E-Print Network [OSTI]

    Larson, Ralph

    2008-01-01T23:59:59.000Z

    at sub-tidal reefs and kelp beds at Santa Cruz Island in theand/or by the loss of giant kelp, which occurs during warm-diminishing the extent of giant kelp beds. Student Michelle

  9. A Simple Technique for Islanding Detection with Negligible Nondetection Zone

    E-Print Network [OSTI]

    Kirtley Jr, James L.

    Although active islanding detection techniques have smaller nondetection zones than passive techniques, active methods could degrade the system power quality and are not as simple and easy to implement as passive methods. ...

  10. ambrym island vanuatu: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subpicosecond carrier dynamics C. Kadowa) Materials; accepted for publication 5 October 1999 We report the growth of self-assembled ErAs islands embedded in GaAs by molecular beam...

  11. anticosti island laurentia: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subpicosecond carrier dynamics C. Kadowa) Materials; accepted for publication 5 October 1999 We report the growth of self-assembled ErAs islands embedded in GaAs by molecular beam...

  12. aegna island tallinn: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subpicosecond carrier dynamics C. Kadowa) Materials; accepted for publication 5 October 1999 We report the growth of self-assembled ErAs islands embedded in GaAs by molecular beam...

  13. Rules and Regulations for Sewage Sludge Management (Rhode Island)

    Broader source: Energy.gov [DOE]

    The purpose of these rules and regulations is to ensure that sewage sludge that is treated, land applied, disposed, distributed, stockpiled or transported in the State of Rhode Island is done so in...

  14. HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    occurred during the nuclear accident, and probably noHEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT MILE ISLAND JacobENG-48 HEALTH EFFECTS OF THE NUCLEAR ACCIDENT A T THREE MILE

  15. THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE

    E-Print Network [OSTI]

    Rhode Island, University of

    THE UNIVERSITY OF RHODE ISLAND FRINGE BENEFIT AVERAGE RATE FY 2015 Allocation Cost or Classified.2% URI Budget & Financial Planning Office 9.17.14 Office:fringebenefits:office of sponsored projects: FY2015 Allocation #12;

  16. FISH AND WILDLIFE SERVICE Pacific Islands Fish and Wildlife Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Interior FISH AND WILDLIFE SERVICE Pacific Islands Fish and Wildlife Office 300 Ala Moana Boulevard, Room 3-122, Box 50088 Honolulu, Hawaii 96850 In Reply Refer To: 20 lO-F...

  17. Quaternary morphology and paleoenvironmental records of carbonate islands

    E-Print Network [OSTI]

    Toomey, Michael (Michael Ryan)

    2014-01-01T23:59:59.000Z

    Here I use a simple numerical model of reef profile evolution to show that the present-day morphology of carbonate islands has developed largely in response to late Pleistocene sea level oscillations in addition to variable ...

  18. Demonstration of Black Liquor Gasification at Big Island

    SciTech Connect (OSTI)

    Robert DeCarrera

    2007-04-14T23:59:59.000Z

    This Final Technical Report provides an account of the project for the demonstration of Black Liquor Gasification at Georgia-Pacific LLC's Big Island, VA facility. This report covers the period from May 5, 2000 through November 30, 2006.

  19. Distribution, Growth, and Disturbance of Catalina Island Rhodoliths

    E-Print Network [OSTI]

    Tompkins, Paul Anthony

    2011-01-01T23:59:59.000Z

    seasonality. Sedimentology 41: 963-984 Friewald A (1998)Godinez-Orta L (2006) Sedimentology and acoustic mapping ofIsland, New Zealand. Sedimentology 55: 249-274 Orth RJ (

  20. Quantitative analysis of forest island pattern in selected Ohio landscapes

    SciTech Connect (OSTI)

    Bowen, G.W.; Burgess, R.L.

    1981-07-01T23:59:59.000Z

    The purpose of this study was to quantitatively describe the various aspects of regional distribution patterns of forest islands and relate those patterns to other landscape features. Several maps showing the forest cover of various counties in Ohio were selected as representative examples of forest patterns to be quantified. Ten thousand hectare study areas (landscapes) were delineated on each map. A total of 15 landscapes representing a wide variety of forest island patterns was chosen. Data were converted into a series of continuous variables which contained information pertinent to the sizes, shape, numbers, and spacing of woodlots within a landscape. The continuous variables were used in a factor analysis to describe the variation among landscapes in terms of forest island pattern. The results showed that forest island patterns are related to topography and other environmental features correlated with topography.

  1. Qualifying RPS Market States (Prince Edward Island, Canada)

    Broader source: Energy.gov [DOE]

    This entry lists the states with RPS policies that accept generation located in Prince Edward Island, Canada as eligible sources towards their Renewable Portfolio Standard targets or goals. For...

  2. assateague island national: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OF THE DEPARTMENT OF VERTEBRATE ZOOLOGY NATIONAL MUSEUM OF NATURAL surveys of the Marshall and Marianas Islands by L. P. Schultz and colleagues. Vic went on to exceed all...

  3. aeolian islands italy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 14 Natural Hazards and Earth System Sciences Tsunami generation in Stromboli island and impact on the CiteSeer Summary: Abstract. Stromboli is one of the most active...

  4. 46 Various stories from life on Hebert Island (part 1)

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 46 Length of track 1 hour 53 minutes Title of track Various stories from life on Hebert Island...

  5. 47 Various stories from life on Hebert Island (part 2)

    E-Print Network [OSTI]

    Leonard, Stephen Pax

    last updated on Monday, 4 April 2011 Accession Form for Individual Recordings: Collection / Collector Name Stephen Leonard Tape No. / Track / Item No. 48 Length of track 2 hour 2 minutes Title of track Various stories from life on Hebert Island...

  6. Visual Modeling for Aqua Ventus I off Monhegan Island, ME

    SciTech Connect (OSTI)

    Hanna, Luke A.; Whiting, Jonathan M.; Copping, Andrea E.

    2013-11-27T23:59:59.000Z

    To assist the University of Maine in demonstrating a clear pathway to project completion, PNNL has developed visualization models of the Aqua Ventus I project that accurately depict the Aqua Ventus I turbines from various points on Monhegain Island, ME and the surrounding area. With a hub height of 100 meters, the Aqua Ventus I turbines are large and may be seen from many areas on Monhegan Island, potentially disrupting important viewsheds. By developing these visualization models, which consist of actual photographs taken from Monhegan Island and the surrounding area with the Aqua Ventus I turbines superimposed within each photograph, PNNL intends to support the project’s siting and permitting process by providing the Monhegan Island community and various other stakeholders with a probable glimpse of how the Aqua Ventus I project will appear.

  7. Renewable Energy and Inter-Island Power Transmission (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2011-05-01T23:59:59.000Z

    This presentation summarizes recent findings pertaining to inter-island connection of renewable and other energy sources, in particular, as these findings relate cable options, routing, specifications, and pros and cons.

  8. Rules and Regulations for Groundwater Quality (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

  9. Solar Water Heater Rebate Program (U.S. Virgin Islands)

    Broader source: Energy.gov [DOE]

    The Virgin Islands Energy Office currently offers rebates to residents for purchasing solar water heaters from local vendors. The program will cover residential, solar water heaters of 120 gallons...

  10. A wave refraction analysis for an axially symmetrical island

    E-Print Network [OSTI]

    Forst, Ronald John

    1966-01-01T23:59:59.000Z

    A WAVE REFRACTION ANALYSIS FOR AN AXIALLY SYMMETRICAL ISLAND A Thesis By LIEUTENANT RONALD J FORST UNITED STATES NAVY Submitted to the Graduate College of the Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE l966 Major Subject Oceanography A WAVE REFRACTION ANALYSIS FOR AN AXIALLY SYMMETRICAL ISLAND A Thesis By LIEUTENANT RONALD J FORST UNITED STATES NAVY Approved as to style and content by; ( airma Committee) Head of Dep rtme t...

  11. Tsunami response at Wake Island: azimuthal mode analysis

    E-Print Network [OSTI]

    Creswell, Wiltie Austin

    1987-01-01T23:59:59.000Z

    TSUNAMI RESPONSE AT WAKE ISLAND: AZIMUTIIAL MODE ANALYSIS A Thesis by WILTIE AUSTIN CRESWELL III Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE... December 1987 Major Subject: Oceanography TSUNAMI RESPONSE AT WAKE ISLAND: AZIMUTHAL MODE ANALYSIS A Thesis by WILTIE AUSTIN CRESWELL III Approved as to style and content by: Andrew C. Vastano (Chairman of Committee) Robert O. Reid (Member) Guy...

  12. An updated dose assessment for Rongelap Island

    SciTech Connect (OSTI)

    Robison, W.L.; Conrado, C.L.; Bogen, K.T.

    1994-07-01T23:59:59.000Z

    We have updated the radiological dose assessment for Rongelap Island at Rongelap Atoll using data generated from field trips to the atoll during 1986 through 1993. The data base used for this dose assessment is ten fold greater than that available for the 1982 assessment. Details of each data base are presented along with details about the methods used to calculate the dose from each exposure pathway. The doses are calculated for a resettlement date of January 1, 1995. The maximum annual effective dose is 0.26 mSv y{sup {minus}1} (26 mrem y{sup {minus}1}). The estimated 30-, 50-, and 70-y integral effective doses are 0.0059 Sv (0.59 rem), 0.0082 Sv (0.82 rem), and 0.0097 Sv (0.97 rem), respectively. More than 95% of these estimated doses are due to 137-Cesium ({sup 137}Cs). About 1.5% of the estimated dose is contributed by 90-Strontium ({sup 90}Sr), and about the same amount each by 239+240-Plutonium ({sup 239+240}PU), and 241-Americium ({sup 241}Am).

  13. Ophiolitic terranes of northern and central Alaska and their correlatives in Canada and northeastern Russia

    SciTech Connect (OSTI)

    Patton, W.W. Jr. (Geological Survey, Menlo Park, CA (United States))

    1993-04-01T23:59:59.000Z

    All of the major ophiolitic terranes (Angayucham, Tozitna, Innoko, Seventymile, and Goodnews terranes) in the northern and central Alaska belong to the Tethyan-type' of Moores (1982) and were obducted onto Paleozoic and Proterozoic continental and continental margin terranes in Mesozoic time. Tethyan-type' ophiolitic assemblages also occur in the Slide Mountain terrane in the Canadian Cordillera and extend from western Alaska into northeastern Russia. Although investigators have suggested widely different ages from their times of abduction onto the continent, these ophiolitic terranes display some remarkably similar features: (1) they consist of a stack of imbricated thrust slices dominated by ocean floor sediments, basalt, and high-level gabbro of late Paleozoic and Triassic age; (2) their mafic-ultramafic complexes generally are confined to the uppermost thrust sheets; (3) they lack the large tectonic melanges zones and younger accretionary flysch deposits associated with the ophiolitic terranes of southern Alaska and the Koryak region of northeastern Russia; (4) blueschist mineral assemblages occur in the lower part of these ophiolite terranes and (or) in the underlying continental terranes; and (5) they are bordered on their outboard' side by Mesozoic intraoceanic volcanic arc terranes. Recent geochemical and geologic studies of the mafic-ultramafic complexes in the Anagayucham and Tozitna terranes strongly suggest they were generated in a supra-subduction zone (SSZ) and that they are directly overlain by volcanic rocks of the Koyukuk terrane.

  14. PO Box 86 2050 Venia Minor Road St. Paul Island Alaska 99660 907-546-3200 (Main) 907-546-3254 (Fax) http://www.tribaleco.com/cm

    E-Print Network [OSTI]

    been prepared to satisfy the reporting requirements of the National Marine Fisheries Service Contract

  15. Cultural contributions to the island of St. John, United States Virgin Islands: underwater historical archaeology at Cruz Bay

    E-Print Network [OSTI]

    Marquez, Carmen M

    1995-01-01T23:59:59.000Z

    the seventeenth century, the French, English and Dutch contested the Virgin Islands, realizing their strategic and commercial importance, and Denmark attempted to settle St. Thomas in 1672. The first permanent Danish colony was established in 1717 at Coral Bay...

  16. Amphibians and Reptiles, Luzon Island, Aurora Province and Aurora Memorial National Park, Northern Philippines: New island distribution records

    E-Print Network [OSTI]

    Brown, Rafe M.

    2011-01-01T23:59:59.000Z

    We report 35 new amphibian and reptile distribution records for two regions within the southern Sierra Madre Mountain Range, Aurora Province, central Luzon Island, Philippines. Together with results of our previous survey work in Aurora, our new...

  17. Numerical Simulations of Island Effects on Airflow and Weather during the Summer over the Island of Oahu

    E-Print Network [OSTI]

    Chen, Yi-Leng

    , Honolulu, Hawaii FRANCIS FUJIOKA Pacific Southwest Research Station, USDA Forest Service, Riverside flow from the open ocean is distorted and disrupted by the mountains, hills, and valleys of the islands

  18. Textural criteria for the discrimination of water-laid and wind-laid barrier island sands: a North Padre Island, Texas example

    E-Print Network [OSTI]

    Cunningham, David

    1985-01-01T23:59:59.000Z

    -Laid Barrier Island Sands: A North Padre Island, Texas Example (August 1985) David Cunningham, B. S. ; The University of Texas at Austin Chairman of Advisory Committee: Dr. James M. Mazzullo The grain size and grain shape characteristics of 63, 200 quartz... sand grains were analyzed from 158 samples systematically collected along three transects across North Padre Island. Sampled subenviron- ments included the forebeach, backbeach, foredune ridge, eolian flat, back-island dunes, and wind-tidal flats...

  19. MHK Projects/Island 35 Bend | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick here Current /TidalITRI WECBend

  20. MHK Projects/Pike Island | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowell Point, Alaska:LuzClick hereInformationPaimpol Ohio

  1. Statistics of the Island-Around-Island Hierarchy in Hamiltonian Phase Space

    E-Print Network [OSTI]

    Or Alus; Shmuel Fishman; James D. Meiss

    2014-12-10T23:59:59.000Z

    The phase space of a typical Hamiltonian system contains both chaotic and regular orbits, mixed in a complex, fractal pattern. One oft-studied phenomenon is the algebraic decay of correlations and recurrence time distributions. For area-preserving maps, this has been attributed to the stickiness of boundary circles, which separate chaotic and regular components. Though such dynamics has been extensively studied, a full understanding depends on many fine details that typically are beyond experimental and numerical resolution. This calls for a statistical approach, the subject of the present work. We calculate the statistics of the boundary circle winding numbers, contrasting the distribution of the elements of their continued fractions to that for uniformly selected irrationals. Since phase space transport is of great interest for dynamics, we compute the distributions of fluxes through island chains. Analytical fits show that the "level" and "class" distributions are distinct, and evidence for their universality is given.

  2. Morphological stability of electromigration-driven vacancy islands

    E-Print Network [OSTI]

    Frank Hausser; Philipp Kuhn; Joachim Krug; Axel Voigt

    2007-02-20T23:59:59.000Z

    The electromigration-induced shape evolution of two-dimensional vacancy islands on a crystal surface is studied using a continuum approach. We consider the regime where mass transport is restricted to terrace diffusion in the interior of the island. In the limit of fast attachment/detachment kinetics a circle translating at constant velocity is a stationary solution of the problem. In contrast to earlier work [O. Pierre-Louis and T.L. Einstein, Phys. Rev. B 62, 13697 (2000)] we show that the circular solution remains linearly stable for arbitrarily large driving forces. The numerical solution of the full nonlinear problem nevertheless reveals a fingering instability at the trailing end of the island, which develops from finite amplitude perturbations and eventually leads to pinch-off. Relaxing the condition of instantaneous attachment/detachment kinetics, we obtain non-circular elongated stationary shapes in an analytic approximation which compares favorably to the full numerical solution.

  3. An early Miocene age for a high-temperature event in gneisses from Zabargad Island (Red Sea, Egypt): mantle diapirism?

    E-Print Network [OSTI]

    Demouchy, Sylvie

    An early Miocene age for a high-temperature event in gneisses from Zabargad Island (Red Sea, Egypt outcropping on Zabargad Island (Red Sea, Egypt). This island, though of limited size (& 4 km2 ), has an almost

  4. Energy Department Helps Advance Island Clean Energy Goals (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    This U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) fact sheet highlights a June 2012 solar power purchase agreement between the Virgin Islands Water and Power Authority and three corporations. The fact sheet describes how financial support from DOE and technical assistance from DOE's National Renewable Energy Laboratory enabled the U.S. Virgin Islands to realistically assess its clean energy resources and identify the most viable and cost-effective solutions to its energy challenges--resulting in a $65 million investment in solar energy in the territory.

  5. The Potential for Biomass District Energy Production in Port Graham, Alaska

    SciTech Connect (OSTI)

    Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

    2008-05-08T23:59:59.000Z

    This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

  6. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  7. Soil temperature, soil moisture and thaw depth, Barrow, Alaska, Ver. 1

    SciTech Connect (OSTI)

    Sloan, V.L.; J.A. Liebig; M.S. Hahn; J.B. Curtis; J.D. Brooks; A. Rogers; C.M. Iversen; R.J. Norby

    2014-01-10T23:59:59.000Z

    This dataset consists of field measurements of soil properties made during 2012 and 2013 in areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) weekly measurements of thaw depth, soil moisture, presence and depth of standing water, and soil temperature made during the 2012 and 2013 growing seasons (June - September) and ii) half-hourly measurements of soil temperature logged continuously during the period June 2012 to September 2013.

  8. Price of Alaska Natural Gas Exports (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998through 1996)DecadeYear Jan670,174per ThousandperperAlaska Natural

  9. 2015 ALASKA REGIONAL ENERGY WORKSHOPS Facility- and Community-Scale Project Development

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 HouseCoveredAir ConditionersLamps;40901W WeALASKA

  10. Anchorage Borough, Alaska ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperiments | OpenThe Tomoves Active|Information Alaska

  11. 20 AAC 25 Alaska Oil and Gas Conservation Commission | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEditWisconsin:YBR14Information 20 AAC 25 Alaska Oil

  12. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume 1. Executive summary

    SciTech Connect (OSTI)

    Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

    1984-02-01T23:59:59.000Z

    This report summarizes the primary results of a three-part study involving the effects of connecting a MOD-OA wind turbine generator to an isolated diesel power system. The subject utility is that owned and operated by the Block Island Power Company (BIPCO). The MOD-OA installation here was the third of four experimental nominal 200 kW wind turbines connected to various utilities under the Federal Wind Energy Program. The BIPCO installation was characterized by the highest wind energy penetration levels of four sites and, as such, was adjudged the best candidate for conducting the data acquisition and analysis effort that is the subject of this study. The three-phases of the study analysis address: (1) fuel displacement, (2) dynamic interaction, and (3) three modes of reactive power control. These analyses all have as their basis the results of the data acquisition program conducted during 1982 from February into April on Block Island, Rhode Island.

  13. Wind turbine generator interaction with conventional diesel generators on Block Island, Rhode Island. Volume II. Data analysis

    SciTech Connect (OSTI)

    Wilreker, V.F.; Stiller, P.H.; Scott, G.W.; Kruse, V.J.; Smith, R.F.

    1984-02-01T23:59:59.000Z

    In order to assess the performance of a MOD-OA horizontal axis wind turbine when connected to an isolated diesel utility, a comprehensive data measurement program was conducted on the Block Island Power Company installation on Block Island, Rhode Island. This report presents the detailed results of that program focusing on three principal areas of (1) fuel displacement (savings), (2) dynamic interaction between the diesel utility and the wind turbine, (3) effects of three modes of wind turbine reactive power control. The approximate two month duration of the data acquisition program conducted in the winter months (February into April 1982) revealed performance during periods of highest wind energy penetration and hence severity of operation. It is concluded that even under such conditions fuel savings were significant resulting in a fuel reduction of 6.7% while the MOD-OA was generating 10.7% of the total electrical energy. Also, electrical disturbance and interactive effects were of an acceptable level.

  14. E-Print Network 3.0 - asian pacific islanders Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asian or Pacific Islander, you need to select a new category If you are a nonresident alien... or Other Pacific Islander (A person having origins in any of the original peoples...

  15. Two-fluid magnetic island dynamics in slab geometry Richard Fitzpatrick

    E-Print Network [OSTI]

    Fitzpatrick, Richard

    . Moreover, the island propaga- tion velocity is uniquely specified by the condition that there be zero net determination of the island propagation velocity, and the calculation of the ion and electron fluid flow

  16. The Rhode Island state house--the competition (1890-1892)

    E-Print Network [OSTI]

    Lewis, Hilary A. (Hilary Ann)

    1988-01-01T23:59:59.000Z

    This is a study of the design competition for the new State House in Providence, Rhode Island, which began in 1890 and ended in 1892. The competition was supervised by the Rhode Island State House Commission, a body formed ...

  17. E-Print Network 3.0 - area north island Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Madison Collection: Environmental Sciences and Ecology ; Biology and Medicine 56 Island wakes in the Southern California Bight R. M. A. Caldeira,1,2 Summary: north of the island...

  18. Working Groups Collaborate on U.S. Virgin Islands Clean Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map Working Groups Collaborate on U.S. Virgin Islands Clean Energy Vision and Road Map A diverse set...

  19. E-Print Network 3.0 - ammassalik island se Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To assess the likely extent of Delta island... and repair decisions for 34 major subsided agricultural islands that make up most of the Delta's Primary Zone... and include all...

  20. Modeling Microgrid Islanding Problems as DCOPs Saurabh Gupta, William Yeoh, Enrico Pontelli

    E-Print Network [OSTI]

    Yeoh, William

    , we formulate the microgrid islanding problem as distributed constraint optimization problem (DCOP. Index Terms--Microgrid, Islanding, Distributed Constraint Optimization. I. INTRODUCTION Every year residential and commercial facilities with controllable loads and distributed generation sources; loads