National Library of Energy BETA

Sample records for ambient temperature deg

  1. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  2. Discharge temperature higher than 30 deg C

    SciTech Connect (OSTI)

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30°C from the NMBGMR Aquifer Mapping database

  3. Discharge temperature higher than 30 deg C

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shari Kelley

    2015-06-16

    This submission includes three files from two sources. One file is derived from USGS data and includes a series of manipulations to evaluate only shallow wells with high estimated geothermal gradients. Two other files are springs and wells with discharge temperatures above 30C from the NMBGMR Aquifer Mapping database

  4. Ambient temperature modelling with soft computing techniques

    SciTech Connect (OSTI)

    Bertini, Ilaria; Ceravolo, Francesco; Citterio, Marco; Di Pietra, Biagio; Margiotta, Francesca; Pizzuti, Stefano; Puglisi, Giovanni; De Felice, Matteo

    2010-07-15

    This paper proposes a hybrid approach based on soft computing techniques in order to estimate monthly and daily ambient temperature. Indeed, we combine the back-propagation (BP) algorithm and the simple Genetic Algorithm (GA) in order to effectively train artificial neural networks (ANN) in such a way that the BP algorithm initialises a few individuals of the GA's population. Experiments concerned monthly temperature estimation of unknown places and daily temperature estimation for thermal load computation. Results have shown remarkable improvements in accuracy compared to traditional methods. (author)

  5. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP)

  6. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP) Refrigerants project was aimed to develop an understanding ...

  7. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  8. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test conditions (outdoor temperature 55°C and indoor temperature 29°C). Image: ORNL. Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test conditions (outdoor temperature 55°C and

  9. Threshold of photoelectron emission from CN{sub x} films deposited at room temperature and at 500 deg. C

    SciTech Connect (OSTI)

    Sago, Genki; Li Wanyan; Goto, Keisuke; Ichikawa, Yo; Ishida, Yoshihisa; Kohiki, Shigemi

    2004-10-15

    The threshold of photoelectron emission was measured for amorphous CN{sub x} films deposited at room temperature (RT) and at 500 deg. C. The x values of the films deposited at RT and at 500 deg. C by magnetron sputtering of a graphite target in a mixed N{sub 2}/Ar gas were 0.6 and 0.3, respectively. Ratios of the sp{sup 2}- to sp{sup 3}-hybridized components of both C and N for the film deposited at 500 deg. C were larger by {approx_equal}4 times than those for the film deposited at RT. The onsets of the electron emission by photon irradiation were 5.0 and 4.7 eV for the films deposited at RT and at 500 deg. C, respectively.

  10. Polymeric electrolytes for ambient temperature lithium batteries

    SciTech Connect (OSTI)

    Farrington, G.C. . Dept. of Materials Science and Engineering)

    1991-07-01

    A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

  11. Water vapor and temperature inversions near the 0 deg C level over the tropical western Pacific. Master's thesis

    SciTech Connect (OSTI)

    Hart, K.A.

    1994-01-01

    During the Intensive Observation Period (IOP), several periods of water vapor and temperature inversions near the 0 deg C level were observed. Satellite and radiosonde data from TOGA COARE are used to document the large-scale conditions and thermodynamic and kinematic structures present during three extended periods in which moisture and temperature inversions near the freezing level were very pronounced. Observations from each case are synthesized into schematics which represent typical structures of the inversion phenomena. Frequency distributions of the inversion phenomena along with climatological humidity and temperature profiles are calculated for the four-month IOP.

  12. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    536 Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Omar Abdelaziz Som Shrestha Jeffrey Munk Randall Linkous William Goetzler Matthew Guernsey Theo Kassuga October 2015 Approved for public release. Distribution is unlimited. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/

  13. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOE Patents [OSTI]

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  14. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOE Patents [OSTI]

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  15. Evaluating alternative refrigerants for high ambient temperature environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdelaziz, Omar; Shrestha, Som S.

    2016-01-01

    According to the Montreal Protocol, developing countries have started the phase out schedule of the ozone depleting substances, including HCFC refrigerants, in 2015 and expect them to reach 35% reduction in 2020. This commitment to the start the phase out of HCFC refrigerants, especially R-22, in developing countries is seen as an opportunity to introduce lower Global Warming Potential (GWP) refrigerants. Furthermore, this paper summarizes an investigation into the performance of lower GWP refrigerants in high ambient temperature environments, experienced in some of the developed countries, in mini-split air conditioning units.

  16. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOE Patents [OSTI]

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  17. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Energy Savers [EERE]

    test conditions (outdoor temperature 55C and indoor temperature 29C). Image: ORNL. Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test ...

  18. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  19. Composition of motor-vehicle organic emissions under elevated-temperature summer driving conditions (75 to 105 deg F)

    SciTech Connect (OSTI)

    Stump, F.D.; Knapp, K.T.; Ray, W.D.; Snow, R.; Burton, C.

    1992-01-01

    Emissions from seven late-model popular V-6 and V-8 motor vehicles were characterized at three test temperatures. The Urban Dynamometer Driving Schedule was used for vehicle tailpipe testing. Six vehicles fueled by port fuel injection (PFI) and one vehicle with a carbureted fuel system were tested at temperatures of 75, 90, and 105 F with unleaded regular summer grade gasoline. Tailpipe and evaporative emissions were determined at each test temperature. Measured emissions were the total hydrocarbons (THCs), speciated hydrocarbons, speciated aldehydes, carbon monoxide (CO), oxides of nitrogen (NOx), benzene, and 1,3-butadiene. In general, tailpipe emissions of THC, benzene, and 1,3-butadiene from the vehicles were not temperature sensitive, but the CO and NOx emissions showed some temperature sensitivity. Formaldehyde, acetaldehyde, and total aldehyde emissions from the PFI vehicles were also not temperature dependent, while formaldehyde emissions from the carbureted vehicle decreased slightly with increasing test temperature. Evaporative THC emissions generally increased with increasing test temperature. Hydrocarbon emissions saturated and broke through the evaporative carbon canister of one PFI vehicle during the 105 F hot soak while the other six vehicles showed no hydrocarbon breakthrough.

  20. Dependence of electric strength on the ambient temperature

    SciTech Connect (OSTI)

    ?aja, Alexander, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of ilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitn 1, 010 26 ilina (Slovakia)

    2014-08-06

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling.

  1. Sorption Capacity of Europium for Media #1 and Media #2 from Solution at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-16

    This dataset shows the capacity for Europium of media #1 and media #2 in a shakertable experiment. The experimental conditions were 150mL of 500ppm Eu solution, 2g of media, pH of 3.2, at ambient temperature.

  2. Dynamic Column Extraction for Europium on Media #1 at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-04-07

    This is a dataset for a 200ppm europium solution sent through a column with 12g of media #1 at pH of 3.2. This column experiment was run at ambient temperature at a flow rate of 2mL/min.

  3. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  4. Annealing behavior between room temperature and 2000 deg. C of deep level defects in electron-irradiated n-type 4H silicon carbide

    SciTech Connect (OSTI)

    Alfieri, G.; Monakhov, E.V.; Svensson, B.G.; Linnarsson, M.K.

    2005-08-15

    The annealing behavior of irradiation-induced defects in 4H-SiC epitaxial layers grown by chemical-vapor deposition has been systematically studied by means of deep level transient spectroscopy (DLTS). The nitrogen-doped epitaxial layers have been irradiated with 15-MeV electrons at room temperature and an isochronal annealing series from 100 to 2000 deg. C has been performed. The DLTS measurements, which have been carried out in the temperature range from 120 to 630 K after each annealing step, revealed the presence of six electron traps located in the energy range of 0.45-1.6 eV below the conduction-band edge (E{sub c}). The most prominent and stable ones occur at E{sub c}-0.70 eV (labeled Z{sub 1/2}) and E{sub c}-1.60 eV(EH{sub 6/7}). After exhibiting a multistage annealing process over a wide temperature range, presumably caused by reactions with migrating defects, a significant fraction of both Z{sub 1/2} and EH{sub 6/7} (25%) still persists at 2000 deg. C and activation energies for dissociation in excess of 8 and {approx}7.5 eV are estimated for Z{sub 1/2} and EH{sub 6/7}, respectively. On the basis of these results, the identity of Z{sub 1/2} and EH{sub 6/7} is discussed and related to previous assignments in the literature.

  5. FABRICATION AND TESTING OF MICROWAVE SINTERED SOL-GEL SPRAY-ON BISMUTH TITANATE-LITHIUM NIOBATE BASED PIEZOELECTRIC COMPOSITE FOR USE AS A HIGH TEMPERATURE (>500 deg. C) ULTRASONIC TRANSDUCER

    SciTech Connect (OSTI)

    Searfass, C. T.; Baba, A.; Tittmann, B. R.; Agrawal, D. K.

    2010-02-22

    Bismuth titanate-lithium niobate based ultrasonic transducers have been fabricated using a sol-gel spray-on deposition technique. These transducers were then tested to determine their potential as high temperature ultrasonic transducers. Fabricated transducers were capable of operating to 1000 deg. C in pulse-echo mode; however, the exposure to such extreme temperatures appears to be destructive to the transducers.

  6. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, S.

    1994-06-21

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  7. Effect of metal Additions on the Hydrogen Uptake of Microporous Carbon at Near-Ambient Temperature

    SciTech Connect (OSTI)

    Contescu, Cristian I; Gallego, Nidia C; Bhat, Vinay V

    2010-01-01

    Enhancing the hydrogen sorption capacity of microporous carbon materials at near-ambient temperature continue to be a challenge and the subject of intense research. Physisorption alone on microporous carbons is not strong enough to provide the desired levels of hydrogen uptake. Modifying carbons with small amounts of metals has been proven effective to increase the amounts adsorbed. However, very different mechanisms may be involved when the promoters are transition metals or alkali metals. In this presentation we compare the effect of additions of palladium and/or alkali metals on the hydrogen uptake of microporous carbons, in an attempt to differentiate between the possible mechanisms leading to enhanced hydrogen capacity and fast kinetics.

  8. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, Solomon

    1994-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  9. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods

    DOE Patents [OSTI]

    Zaromb, Solomon

    2001-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  10. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  11. Electrical characteristics of multilayer MoS{sub 2} transistors at real operating temperatures with different ambient conditions

    SciTech Connect (OSTI)

    Kwon, Hyuk-Jun; Grigoropoulos, Costas P.; Jang, Jaewon Subramanian, Vivek; Kim, Sunkook

    2014-10-13

    Atomically thin, two-dimensional (2D) materials with bandgaps have attracted increasing research interest due to their promising electronic properties. Here, we investigate carrier transport and the impact of the operating ambient conditions on back-gated multilayer MoS{sub 2} field-effect transistors with a thickness of ?50?nm at their realistic working temperatures and under different ambient conditions (in air and in a vacuum of ?10{sup ?5}?Torr). Increases in temperature cause increases in I{sub min} (likely due to thermionic emission at defects), and result in decreased I{sub on} at high V{sub G} (likely due to increased phonon scattering). Thus, the I{sub on}/I{sub min} ratio decreases as the temperature increases. Moreover, the ambient effects with working temperatures on field effect mobilities were investigated. The adsorbed oxygen and water created more defect sites or impurities in the MoS{sub 2} channel, which can lead another scattering of the carriers. In air, the adsorbed molecules and phonon scattering caused a reduction of the field effect mobility, significantly. These channel mobility drop-off rates in air and in a vacuum reached 0.12?cm{sup 2}/V s K and 0.07?cm{sup 2}/V s K, respectively; the rate of degradation is steeper in air than in a vacuum due to enhanced phonon mode by the adsorbed oxygen and water molecules.

  12. Testing an e2v CCD230-42 sensor for dark current performance at ambient temperatures - Final Paper

    SciTech Connect (OSTI)

    Dungee, Ryan

    2015-08-20

    The design of the Guidance Focus and Alignment (GFA) system for the Dark Energy Spectroscopic Instrument (DESI) project calls for a set of charge-coupled devices (CCDs) which operate at ambient temperature. Here we assess the performance of these CCDs under such conditions. Data was collected from –21°C to 28°C and used to determine the effect of temperature on the effectiveness of dark current subtraction. Comparing the dark current uncertainty to our expected signal has shown that the DESI design specifications will be met without need for significant changes.

  13. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  14. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  15. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  16. Coolant and ambient temperature control for chillerless liquid cooled data centers

    DOE Patents [OSTI]

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  17. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less

  18. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    SciTech Connect (OSTI)

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devices with high Voc values at 25C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.

  19. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    SciTech Connect (OSTI)

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devices with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.

  20. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect (OSTI)

    Kck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Kltzer, Bernhard; Penner, Simon

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  1. Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds

    DOE Patents [OSTI]

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1987-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

  2. Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru)

    SciTech Connect (OSTI)

    Ferrer, I. Gamiz, M.

    2009-01-15

    Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.

  3. Electrochemistry in neutral ambient-temperature ionic liquids. 1. Studies of iron (III), neodymium (III), and lithium(I)

    SciTech Connect (OSTI)

    Osteryoung, R.A.

    1985-01-01

    An ambient-temperature neutral ionic liquid composed of aluminum chloride and either N-1-butylpyridinium or 1-methyl-3-ethylimidazolium chloride, BuPyCl or ImCl, respectively, was employed in studies that take advantage of their unusual properties. These include an extended electrochemical window, readily controlled additions of excess chloride (base) or aluminum chloride (acid), and the fact that the physical properties of the neutral melt do not change about the 1:1 mole ratio of AlCl/sub 3/ to RCl. Li/sup +/ was found to be reducible in the neutral AlCl/sub 3/-ImCl melt, and its diffusion coefficient was found to be .00000086 sq cm/s. The stoichiometry of the complex formed between Nd(III) and Cl/sup +/ in the molten salt system was investigated by what is essentially an amperometric titration and was found to be NdC/sub 6/(3-). The structure of the Fe(III) chloro complex that exists in basic or acidic melts just slightly varying in composition from the neutral melt was also investigated; a constant value for the diffusion coefficient-viscosity product in both systems suggests no change in structure.

  4. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  5. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  6. Ambient and elevated temperature fracture and cyclic-fatigue properties in a series of Al-containing silicon carbides

    SciTech Connect (OSTI)

    Yuan, Rong

    2004-08-30

    A series of in situ toughened, Al, B and C containing, silicon carbide ceramics (ABC-SiC) has been examined with Al contents varying from 3 to 7 wt%. With increasing Al additions, the grain morphology in the as-processed microstructures varied from elongated to bimodal to equiaxed, with a change in the nature of the grain-boundary film from amorphous to partially crystalline to fully crystalline. Fracture toughness and cyclic fatigue tests on these microstructures revealed that although the 7 wt.% Al containing material (7ABC) was extremely brittle, the 3 and particularly 5 wt.% Al materials (3ABC and 5ABC, respectively) displayed excellent crack-growth resistance at both ambient (25 C) and elevated (1300 C) temperatures. Indeed, no evidence of creep damage, in the form of grain-boundary cavitation, was seen at temperatures at 1300 C or below. The enhanced toughness of the higher Al-containing materials was associated with extensive crack bridging from both interlocking grains (in 3ABC) and uncracked ligaments (in 5ABC); in contrast, the 7ABC SiC showed no such bridging, concomitant with a marked reduction in the volume fraction of elongated grains. Mechanistically, cyclic fatigue-crack growth in 3ABC and 5ABC SiC involved the progressive degradation of such bridging ligaments in the crack wake, with the difference in the degree of elastic vs. frictional bridging affecting the slope, i.e., Paris law exponent, of the crack-growth curve. In addition an investigation of fracture resistance in non-transforming ceramics toughened by grain bridging mechanism is presented using linear elastic fracture mechanics (LEFM). Linear superposition theorems are used for the superposition of crack opening displacements, as well as stress intensity factors, resulting from the external tractions and the internal compressive bridging stresses. Specifically weight functions are used to relate the CODs, stress intensity factors, and tractions and the bridging stress. Expressions are

  7. REE Sorption Study for Media #1 and Media #2 in Brine #1 and #2 at different Liquid to Solid Ratio's at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-27

    This data set shows the different loading capacities of Media #1 and Media #2 in a high and low salt content brine matrix at different liquid to solid ratio's. These data sets are shaker bath tests on media #1 and media #2 in brine's #1 and #2 at 500mL-.5g(1000-1 ratio), 150mL-.75g(200-1 ratio), and 150mL-2.5g(60-1 ratio) at ambient temperature.

  8. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    SciTech Connect (OSTI)

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-03-15

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  9. Thermal degradation of concrete in the temperature range from ambient to 315{degree} C (600{degree} F). Revision 10/96

    SciTech Connect (OSTI)

    Kassir, M.K.; Bandyopadhyay, K.K.; Reich, M.

    1996-10-01

    This report is concerned with determining the effect of elevated temperatures on the behavior of concrete. Emphasis is placed on quantifying the degree of potential degradation of the physical properties of concrete in high-level waste storage tanks. The temperature elevation range of interest is from ambient to 315 C (600 F). The literature has been reviewed to examine the applicable experimental data and quantify the degradation in the concrete and reinforcing steel. Since many variables and test conditions control the results in the data base, upper and lower bounds of the degraded properties at temperatures applicable to the environments of the storage tanks are summarized and presented in explicit forms. For properties with large data bases, a normal logarithmic distribution of the data is assumed and a statistical analysis is carried out to find the mean and 84% values of the degraded property in the temperature range of interest. Such results are useful in assessing the effect of elevated temperatures on the structural behavior of the tanks. In addition, the results provide the technical basis for a parametric study that may be necessary to investigate the thermal aspects of the structural integrity of the tanks. 50 refs., 23 figs.

  10. CONTAINMENT VESSEL TEMPERATURE FOR PU-238 HEAT SOURCE CONTAINER UNDER AMBIENT, FREE CONVECTION AND LOW EMISSIVITY COOLING CONDITIONS

    SciTech Connect (OSTI)

    Gupta, N.; Smith, A.

    2011-02-14

    The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister called EP-60 is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath.

  11. Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation

    SciTech Connect (OSTI)

    Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

    2010-02-01

    Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

  12. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect (OSTI)

    Das, Palash Biswas, Dhrubes

    2014-04-24

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  13. ARM - Datastreams - assistsummary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... setting degC abbsetpoint ( time ) Ambient blackbody temperature at apex of cavity degC abbthermistorapex ( time ) Ambient blackbody temperature at bottom of cone degC ...

  14. Allostery Is an Intrinsic Property of the Protease Domain of DegS Implications for Enzyme Function and Evolution

    SciTech Connect (OSTI)

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T. (MIT)

    2010-12-02

    DegS is a periplasmic Escherichia coli protease, which functions as a trimer to catalyze the initial rate-limiting step in a proteolytic cascade that ultimately activates transcription of stress response genes in the cytoplasm. Each DegS subunit consists of a protease domain and a PDZ domain. During protein folding stress, DegS is allosterically activated by peptides exposed in misfolded outer membrane porins, which bind to the PDZ domain and stabilize the active protease. It is not known whether allostery is conferred by the PDZ domains or is an intrinsic feature of the trimeric protease domain. Here, we demonstrate that free DegS{sup {Delta}PDZ} equilibrates between active and inactive trimers with the latter species predominating. Substrate binding stabilizes active DegS{sup {Delta}PDZ} in a positively cooperative fashion. Mutations can also stabilize active DegS{sup {Delta}PDZ} and produce an enzyme that displays hyperbolic kinetics and degrades substrate with a maximal velocity within error of that for fully activated, intact DegS. Crystal structures of multiple DegS{sup {Delta}PDZ} variants, in functional and non-functional conformations, support a two-state model in which allosteric switching is mediated by changes in specific elements of tertiary structure in the context of an invariant trimeric base. Overall, our results indicate that protein substrates must bind sufficiently tightly and specifically to the functional conformation of DegS{sup {Delta}PDZ} to assist their own degradation. Thus, substrate binding alone may have regulated the activities of ancestral DegS trimers with subsequent fusion of the protease domain to a PDZ domain, resulting in ligand-mediated regulation.

  15. Ambiental PV | Open Energy Information

    Open Energy Info (EERE)

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  16. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect (OSTI)

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  17. Ambient Corp | Open Energy Information

    Open Energy Info (EERE)

    Product: Ambient develops open standards-based technologies for creating smart grid communication platforms and technologies. References: Ambient Corp1 This article is a stub....

  18. Light emission from Si nanoclusters formed at low temperatures

    SciTech Connect (OSTI)

    Pi, X.D.; Zalloum, O.H.Y.; Roschuk, T.; Wojcik, J.; Knights, A.P.; Mascher, P.; Simpson, P.J.

    2006-03-06

    Photoluminescence (PL) from amorphous Si nanoclusters (Si-ncls) formed by thin-film deposition via electron-cyclotron resonance plasma-enhanced chemical vapor deposition followed by annealing at temperatures {<=}875 deg. C has been investigated. We find that Si-ncls grow very slowly after their initial nucleation at low temperatures. An increase in the size of Si-ncls, which can be controlled by the annealing temperature, induces a redshift in the Si-ncl PL peak. While the emitted optical power is more than 100 times smaller than that of Si nanocrystals formed in an identically deposited film, it is increased by a factor of up to approximately four times following hydrogen passivation. The incorporation of hydrogen causes a redshift in the PL peak position, suggesting a partial hydrogenation induced bond distortion of the Si-ncls. This redshift decreases with increasing hydrogen ambient annealing temperature.

  19. Hydrothermal crystallization of Na{sub 2}Ti{sub 6}O{sub 13}, Na{sub 2}Ti{sub 3}O{sub 7}, and Na{sub 16}Ti{sub 10}O{sub 28} in the NaOH-TiO{sub 2}-H{sub 2}O system at a temperature of 500 deg. C and a pressure of 0.1 GPa: The structural mechanism of self-assembly of titanates from suprapolyhedral clusters

    SciTech Connect (OSTI)

    Hyushin, G. D.

    2006-07-15

    An increase in the NaOH concentration in the NaOH-TiO{sub 2} (rutile)-H{sub 2}O system at a temperature of 500 deg. C and a pressure of 0.1 GPa leads to the crystallization R-TiO{sub 2} + Na{sub 2}Ti{sub 6}O{sub 13} {sup {yields}} Na{sub 2}Ti{sub 3}O{sub 7} {sup {yields}} Na{sub 16}Ti{sub 10}O{sub 28}. Crystals of the Na{sub 2}Ti{sub 6}O{sub 13} titanate (space group C2/m) have the three-dimensional framework structure Ti{sub 6}O{sub 13}. The structure of the Na{sub 2}Ti{sub 3}O{sub 7} titanate (space group P2{sub 1}/m) contains the two-dimensional layers Ti{sub 3}O{sub 7}. The structure of the Na{sub 16}Ti{sub 10}O{sub 28} titanate (space group P-1) is composed of the isolated ten-polyhedron cluster precursors Ti{sub 10}O{sub 28}. In all the structures, the titanium atoms have an octahedral coordination (MTiO{sub 6}). The matrix self-assembly of the Na{sub 2}Ti{sub 6}O{sub 13} and Na{sub 2}Ti{sub 3}O{sub 7} (Na{sub 4}Ti{sub 6}O{sub 14}) crystal structures from Na{sub 4}M{sub 12} invariant precursors is modeled. These precursors are clusters consisting of twelve M polyhedra linked through the edges. It is demonstrated that the structurally rigid precursors Na{sub 4}M{sub 12} control all processes of the subsequent evolution of the crystal-forming titanate clusters. The specific features of the self-assembly of the Na{sub 2}Ti{sub 3}O{sub 7} structure that result from the additional incorporation of twice the number of sodium atoms into the composition of the high-level clusters are considered.

  20. Enhanced stability against bias-stress of metal-oxide thin film transistors deposited at elevated temperatures

    SciTech Connect (OSTI)

    Fakhri, M.; Goerrn, P.; Riedl, T. [Institute of Electronic Devices, University of Wuppertal, Rainer-Gruenter-St. 21, 42119 Wuppertal (Germany); Weimann, T.; Hinze, P. [Physikalisch-Technische Bundesanstalt Braunschweig, Bundesallee 100, 38116 Braunschweig (Germany)

    2011-09-19

    Transparent zinc-tin-oxide (ZTO) thin film transistors (TFTs) have been prepared by DC magnetron sputtering. Compared to reference devices with a channel deposited at room temperature and subsequently annealing at 400 deg. C, a substantially enhanced stability against bias stress is evidenced for devices with in-situ substrate heating during deposition (400 deg. C). A reduced density of sub-gap defect states in TFT channels prepared with in-situ substrate heating is found. Concomitantly, a reduced sensitivity to the adsorption of ambient gases is evidenced for the in-situ heated devices. This finding is of particular importance for an application as driver electronics for organic light emitting diode displays.

  1. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  2. Max Ambiental S A | Open Energy Information

    Open Energy Info (EERE)

    Ambiental S A Jump to: navigation, search Name: Max Ambiental S.A. Place: Sao Paulo, Brazil Zip: 01452-938 Sector: Carbon Product: Max Ambiental is a company involved in the...

  3. Ambient Corporation's response to NBP RFI: Communications Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient Corporation's response to NBP RFI: Communications Requirements Ambient Corporation's response to NBP RFI: Communications Requirements Ambient Corporation's comments on ...

  4. Trama Tecno Ambiental | Open Energy Information

    Open Energy Info (EERE)

    Trama Tecno Ambiental Jump to: navigation, search Name: Trama Tecno-Ambiental Place: Barcelona, Spain Zip: 8026 Sector: Solar Product: Spanish solar engineering firm. References:...

  5. Arquip lago Engenharia Ambiental | Open Energy Information

    Open Energy Info (EERE)

    Arquip lago Engenharia Ambiental Jump to: navigation, search Name: Arquiplago Engenharia Ambiental Place: Sao Paulo, Sao Paulo, Brazil Zip: 04601-000 Product: Sao Paulo-based...

  6. JMalucelli CMC Ambiental | Open Energy Information

    Open Energy Info (EERE)

    CMC Ambiental Jump to: navigation, search Name: JMalucelli & CMC Ambiental Place: Curitiba, Parana, Brazil Zip: 80410-201 Sector: Carbon Product: JV company between Brazilian Grupo...

  7. MDL Ambiente Ltd | Open Energy Information

    Open Energy Info (EERE)

    MDL Ambiente Ltd Jump to: navigation, search Name: MDL Ambiente Ltd. Place: Leeds, England, United Kingdom Zip: LS1 2DS Product: The organisation prepares project design documents...

  8. Ambient Control Systems | Open Energy Information

    Open Energy Info (EERE)

    Control Systems Jump to: navigation, search Logo: Ambient Control Systems Name: Ambient Control Systems Address: 1810 Gillespie Way Place: El Cajon, California Zip: 92020 Region:...

  9. Surface analysis of Zircaloy-2 implanted with carbon before and after oxidation in air at 500 deg. C

    SciTech Connect (OSTI)

    Peng, D.Q. . E-mail: pdq01@mails.tsinghua.edu.cn; Bai, X.D.; Pan, F.; Sun, H.; Chen, B.S.

    2006-03-15

    Zircaloy-2 specimens were implanted with carbon ions in the fluence range from 1 x 10{sup 16} to 1 x 10{sup 18} ions/cm{sup 2}, using a MEVVA source at an extraction voltage of 40 kV at a maximum temperature of 380 deg. C. The valences and depth profiles of elements in the implanted surface of Zircaloy-2 were analyzed by X-ray photoelectron spectroscopy and Auger electron spectroscopy, respectively. Scanning electron microscopy was used to examine the micro-morphology of samples. The color of the oxidized samples was checked with an optical scanner. Glancing-angle X-ray diffraction at 0.3{sup o} incident angles was employed to examine the phase transformations of implanted samples before and after oxidation in the air at 500 deg. C for 2 h. Before oxidation, at fluences less than 5 x 10{sup 16} ions/cm{sup 2}, hexagonal zirconia (H-ZrO{sub 0.35}) was present. At a fluence of 1 x 10{sup 17} ions/cm{sup 2}, rhombohedral zirconia (R-Zr{sub 3}O) appeared. When the fluence reached 1 x 10{sup 18} ions/cm{sup 2}, cubic zirconium carbide was produced. There are many pits, both deep and shallow, in the sample surfaces, both prior to oxidation and after oxidation. Oxidation in the air at 500 deg. C gave rise to black surfaces on all samples. The X-ray diffraction results showed that monoclinic and tetragonal zirconia were present in the surface of as-received sample. For implanted samples, monoclinic and tetragonal zirconia are still present, while cubic zirconium carbide is produced at all fluences. The presence of ZrC is attributed to the high-temperature, long-time (2 h) exposure.

  10. Magnetic nanoparticle temperature estimation

    SciTech Connect (OSTI)

    Weaver, John B.; Rauwerdink, Adam M.; Hansen, Eric W.

    2009-05-15

    The authors present a method of measuring the temperature of magnetic nanoparticles that can be adapted to provide in vivo temperature maps. Many of the minimally invasive therapies that promise to reduce health care costs and improve patient outcomes heat tissue to very specific temperatures to be effective. Measurements are required because physiological cooling, primarily blood flow, makes the temperature difficult to predict a priori. The ratio of the fifth and third harmonics of the magnetization generated by magnetic nanoparticles in a sinusoidal field is used to generate a calibration curve and to subsequently estimate the temperature. The calibration curve is obtained by varying the amplitude of the sinusoidal field. The temperature can then be estimated from any subsequent measurement of the ratio. The accuracy was 0.3 deg. K between 20 and 50 deg. C using the current apparatus and half-second measurements. The method is independent of nanoparticle concentration and nanoparticle size distribution.

  11. Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750

    SciTech Connect (OSTI)

    Tan Hua; Jiang Yiming; Deng Bo; Sun Tao; Xu Juliang; Li Jin

    2009-09-15

    The pitting corrosion resistance of commercial super duplex stainless steels SAF2507 (UNS S32750) annealed at seven different temperatures ranging from 1030 deg. C to 1200 deg. C for 2 h has been investigated by means of potentiostatic critical pitting temperature. The microstructural evolution and pit morphologies of the specimens were studied through optical/scanning electron microscope. Increasing annealing temperature from 1030 deg. C to 1080 deg. C elevates the critical pitting temperature, whereas continuing to increase the annealing temperature to 1200 deg. C decreases the critical pitting temperature. The specimens annealed at 1080 deg. C for 2 h exhibit the best pitting corrosion resistance with the highest critical pitting temperature. The pit morphologies show that the pit initiation sites transfer from austenite phase to ferrite phase as the annealing temperature increases. The aforementioned results can be explained by the variation of pitting resistance equivalent number of ferrite and austenite phase as the annealing temperature changes.

  12. Biogas Energia Ambiental SA | Open Energy Information

    Open Energy Info (EERE)

    Ambiental SA Jump to: navigation, search Name: Biogas Energia Ambiental SA Place: Sao Paulo, Sao Paulo, Brazil Zip: 04561-004 Product: Sao Paulo-based landfill biogas-to-energy...

  13. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  14. AC-magnetotransport of a 2DEG in the quantum Hall regime

    SciTech Connect (OSTI)

    Hernndez, C.; Chaubet, C.

    2014-05-15

    In this paper we present an ac-magneto-transport study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime, for frequencies in the range [100Hz, 1MHz]. We present a new approach to understand admittance measurements based in the Landauer-Buttiker formalism for QHE edge channels and taking into account the capacitance and the topology of the cables connected to the contacts used in the measurements. Our model predicts an universal behavior with the a-dimensional parameter RC? where R is the 2 wires resistance of the 2DEG, C the capacitance cables and the angular frequency, in agreement with experiments.

  15. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  16. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  17. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    SciTech Connect (OSTI)

    Meot, F.; Huang, H.

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  18. Turbine airfoil with ambient cooling system

    DOE Patents [OSTI]

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  19. Greenvision Ambiente Spa | Open Energy Information

    Open Energy Info (EERE)

    Greenvision Ambiente Spa Place: Reggio Emilia, Italy Zip: 42020 Sector: Solar Product: Italian engineering company focussed on building waste-to-energy plants, as well as solar PV...

  20. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOE Patents [OSTI]

    Shelnutt, John A.

    1990-01-01

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  1. Effects of Ambient Density and Temperature on Soot Formation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  2. Solaria Energia y Medio Ambiente SA | Open Energy Information

    Open Energy Info (EERE)

    Medio Ambiente SA Jump to: navigation, search Name: Solaria Energia y Medio Ambiente SA Place: Puertollano, Spain Zip: 13500 Product: Spanish PV module and passive system...

  3. Emte Medio Ambiente y Energia | Open Energy Information

    Open Energy Info (EERE)

    Medio Ambiente y Energia Jump to: navigation, search Name: Emte Medio Ambiente y Energia Place: Spain Product: EMTE is structured into five business units providing the backbone...

  4. San Jose Energia y Medio Ambiente | Open Energy Information

    Open Energy Info (EERE)

    Energia y Medio Ambiente Jump to: navigation, search Name: San Jose Energia y Medio Ambiente Place: Madrid, Spain Zip: 28760 Sector: Renewable Energy Product: Madrid based...

  5. Ecogeo Meio Ambiente e Energias Renov veis | Open Energy Information

    Open Energy Info (EERE)

    Ecogeo Meio Ambiente e Energias Renov veis Jump to: navigation, search Name: Ecogeo - Meio Ambiente e Energias Renovveis Place: So Paulo, Sao Paulo, Brazil Zip: 04794-000...

  6. Age Inversiones in Media Ambiente AIMA | Open Energy Information

    Open Energy Info (EERE)

    Inversiones in Media Ambiente AIMA Jump to: navigation, search Name: Age Inversiones in Media Ambiente (AIMA) Place: Spain Product: Invests in projects that aim to generate energy...

  7. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: In Situ Ambient Pressure X-ray ... Citation Details In-Document Search Title: In Situ Ambient ... Resource Relation: Journal Name: Scientific Reports; Journal ...

  8. Arauna Energia e Gest o Ambiental | Open Energy Information

    Open Energy Info (EERE)

    Arauna Energia e Gest o Ambiental Jump to: navigation, search Name: Arauna Energia e Gesto Ambiental Place: So Paulo, Sao Paulo, Brazil Zip: 01420-002 Product: Brazilian...

  9. SPS emissions and comparison with ambient loadings

    SciTech Connect (OSTI)

    Bauer, E.; Brubaker, K. L.

    1980-01-01

    This paper provides an overview of propulsion injections into the atmosphere due to Satellite Power System (SPS) transportation vehicles, and relates the magnitudes of these injections to the ambient burdens of the different chemical species. The significance of the different injections is discussed in terms of a dimensionless perturbation factor, the magnitude of which is a measure of the expected concentration change relative to the existing ambient concentration.

  10. Ambient-pressure organic superconductor

    DOE Patents [OSTI]

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  11. Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting

    DOE Patents [OSTI]

    DeSteese, John G

    2010-11-16

    A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

  12. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1985-01-01

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.

  13. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  14. Cryogenic deformation of high temperature superconductive composite structures

    DOE Patents [OSTI]

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  15. Phase Development of NaOH Activated Blast Furnace Slag Geopolymers Cured at 90 deg. C

    SciTech Connect (OSTI)

    Zhang Bo; Bigley, C.; Ryan, M. J.; MacKenzie, K. J. D.; Brown, I. W. M.

    2009-07-23

    Geopolymers were synthesized from blast furnace slag activated with different levels of NaOH and cured at 90 deg. C. The crystalline and amorphous phases of the resulting geopolymers were characterized by XRD quantitative analysis, and {sup 29}Si and {sup 27}Al MAS NMR. Amorphous species are predominant in materials at all NaOH levels. In the amorphous phase, aluminium substituted silicate species (Q{sup 2}(1Al)) dominated among the species of Q{sup 0}, Q{sup 1}, Q{sup 2}(1Al) and Q{sup 2}(where Q{sup n}(mAl) denotes a silicate tetrahedron [SiO{sub 4}] with n bridging oxygen atoms and m adjacent tetrahedra substituted with an aluminate tetrahedron [AlO{sub 4}]). In addition, it was also found that 4-fold coordination aluminium [AlO{sub 4}] species ({sup 27}Al chemical shift 66.1 ppm) in low NaOH containing materials differs from the species ({sup 27}Al chemical shift 74.3 ppm) in high NaOH containing materials.

  16. Examination of 80 deg. C desorption isotherms of tritium aged Pd/k and LANA.75

    SciTech Connect (OSTI)

    Staack, G. C.; Shanahan, K. L.; Walters, R. T.; Pilgrim, R. D.

    2008-07-15

    Metal hydrides, specifically Pd deposited on kieselguhr (Pd/k) and LaNi{sub 4.25}Al{sub 0.75} (LANA.75), have been used at the Savannah River Site for almost twenty years for hydrogen isotope separation and storage. Radiolytic decay of tritium to helium-3 in the metal matrix causes three classic changes in the performance of the hydride: the plateau pressure decreases, the plateau slope increases, and a heel forms, reducing the reversible capacity of the hydride. Deuterium and tritium isotherms were collected on the virgin materials, only tritium isotherms were collected at approximately 2 years, and both deuterium and tritium isotherms were collected at approximately 3.5 years of quiescent aging at 26 deg. C. Each sample was loaded to 0.5-0.6 T/M prior to each aging period. Points of interest include comparisons of each sample at different aging periods and isotope effects on aged hydride isotherms. Partial restoration of thermodynamic properties by sample cycling has been observed in LANA. 75, though not previously reported in Pd. The methods and results are presented. (authors)

  17. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect (OSTI)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  18. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect (OSTI)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  19. Projection screen having reduced ambient light scattering

    SciTech Connect (OSTI)

    Sweatt, William C.

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  20. High temperature ceramic composition for hydrogen retention

    DOE Patents [OSTI]

    Webb, R.W.

    1974-01-01

    A ceramic coating for H retention in fuel elements is described. The coating has relatively low thermal neutron cross section, is not readily reduced by H at 1500 deg F, is adherent to the fuel element base metal, and is stable at reactor operating temperatures. (JRD)

  1. Complete dipole response in {sup 208}Pb from high-resolution polarized proton scattering at 0 deg

    SciTech Connect (OSTI)

    Neumann-Cosel, P. von; Kalmykov, Y.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Matsubara, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Bertulani, C. A.; Carter, J.; Fujita, H.; Dozono, M.; Fujita, K.; Hashimoto, H.; Hatanaka, K.

    2009-01-28

    The structure of electric and magnetic dipole modes in {sup 208}Pb is investigated in a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg. First results on the E1 strength in the region of the pygmy dipole resonance are reported.

  2. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  4. Low-Temperature Colossal Supersaturation of Stainless Steels

    Broader source: Energy.gov [DOE]

    Austenitic stainless steels in the 300 Series are the primary materials used for a very broad range of applications when corrosion resistance is needed in aqueous solutions at ambient temperatures....

  5. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect (OSTI)

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6?ns, 1064?nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ?300?Torr, while the electron density showed a maximum ?100?Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  6. The LSST Camera 500 watt -130 degC Mixed Refrigerant Cooling System

    SciTech Connect (OSTI)

    Bowden, Gordon B.; Langton, Brian J.; Little, William A.; Powers, Jacob R; Schindler, Rafe H.; Spektor, Sam; /MMR-Technologies, Mountain View, CA

    2014-05-28

    The LSST Camera has a higher cryogenic heat load than previous CCD telescope cameras due to its large size (634 mm diameter focal plane, 3.2 Giga pixels) and its close coupled front-end electronics operating at low temperature inside the cryostat. Various refrigeration technologies are considered for this telescope/camera environment. MMR-Technology’s Mixed Refrigerant technology was chosen. A collaboration with that company was started in 2009. The system, based on a cluster of Joule-Thomson refrigerators running a special blend of mixed refrigerants is described. Both the advantages and problems of applying this technology to telescope camera refrigeration are discussed. Test results from a prototype refrigerator running in a realistic telescope configuration are reported. Current and future stages of the development program are described. (auth)

  7. The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment 2003 DEER Conference Presentation: National Renewable Energy Laboratory 2003_deer_lawson.pdf (335.4 KB) More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California Real-World Studies of Ambient Ozone Formation as a

  8. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges to Smart Grid Implementation | Department of Energy Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation submits the following comments to the US Department of Energy (DOE) in hopes that their contribution can highlight and further the understanding of the DOE on

  9. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's ... to deploy cost-effective long-term smart grid benefits. ...

  10. Updating LANL’s Ambient Air Monitoring Network (Airnet)

    SciTech Connect (OSTI)

    Fuehne, David Patrick; Allen, Shannon Purdue

    2015-06-09

    Airnet, LANL's ambient air monitoring for radionuclides, is described both historically as well as the drivers involved in the need for updating the program.

  11. PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NACIONAL Y EL PROGRAMA DE CAPACITACIN 2014 PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL NACIONAL Y EL PROGRAMA DE CAPACITACIN 2014 La conferencia ...

  12. Ambient-pressure silica aerogel films

    SciTech Connect (OSTI)

    Prakash, S.S. [New Mexico Univ., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Hurd, A.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Very highly porous (aerogel) silica films with refractive index in the range 1.006--1.05 (equivalent porosity 98.5--88%) were prepared by an ambient-pressure process. It was shown earlier using in situ ellipsometric imaging that the high porosity of these films was mainly attributable to the dilation or `springback` of the film during the final stage of drying. This finding was irrefutably reconfirmed by visually observing a `springback` of >500% using environmental scanning electron microscopy (ESEM). Ellipsometry and ESEM also established the near cent per cent reversibility of aerogel film deformation during solvent intake and drying. Film thickness profile measurements (near the drying line) for the aerogel, xerogel and pure solvent cases are presented from imaging ellipsometry. The thickness of these films (crack-free) were controlled in the range 0.1-3.5 {mu}m independent of refractive index.

  13. The evolution of microstructure and photoluminescence of SiCN films with annealing temperature

    SciTech Connect (OSTI)

    Du Xiwen; Fu Yang; Sun Jing; Yao Pei

    2006-05-01

    Silicon carbonitride (SiCN) films were deposited by radio-frequency magnetron sputtering and then annealed at different temperatures from 1100 to 1300 deg. C in hydrogen atmosphere. The as-deposited films and films annealed at 1100 deg. C did not show photoluminescence (PL), whereas strong PL peaks appeared at 355 and 469 nm after annealing at 1200 and 1300 deg. C. X-ray diffraction, transmission electron microscope, and Fourier transform infrared spectrometer results show that the enhancement of PL properties is due to the change of microstructure and composition.

  14. Influence of Temperature on the Corrosion of Uranium Dioxide Nuclear Fuel

    SciTech Connect (OSTI)

    Broczkowski, Michael E.; Noel, Jamie J.; Shoesmith, David W.

    2007-07-01

    The anodic dissolution of UO{sub 2} has been studied at 60 deg. C and the results compared to previous observations at 22 deg. C. The rate of oxidation / dissolution was determined electrochemically at constant potentials in the range -500 mV to 500 mV (vs. SCE). The composition of the electrochemically oxidized surface was determined by X-Ray Photoelectron Spectroscopy (XPS). The onset of oxidation (UO{sub 2} {yields} UO{sub 2+x}) occurred at approximately the same potential (-400 mV) at both temperatures. However, the conversion of U{sub V} to U{sub VI}, and hence to soluble UO{sub 2}{sup 2+}, was accelerated by temperature. This acceleration of dissolution caused the development of acidity at localized sites on the fuel surface at lower (less oxidizing) potentials ({>=} 100 mV) at 60 deg. C than at 22 deg. C ({>=} 350 mV)

  15. The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 deg. C

    SciTech Connect (OSTI)

    Wang Jun Zou Hong; Li Cong; Qiu Shaoyu; Shen Baoluo

    2008-05-15

    The influence of aging time on the microstructure evolution of 17-4 PH martensitic stainless steel was studied by transmission electron microscopy (TEM). Results showed that the martensite decomposed by a spinodal decomposition mechanism after the alloy was subjected to long-term aging at 350 deg. C. The fine scale spinodal decomposition of {alpha}-ferrite brought about a Cr-enriched bright stripe and a Fe-enriched dark stripe, i.e., {alpha}' and {alpha} phases, separately, which were perpendicular to the grain boundary. The spinodal decomposition started at the grain boundary. Then with prolonged aging time, the decomposition microstructure expanded from the grain boundary to interior. The wavelength of the spinodally decomposed microstructure changed little with extended aging time.

  16. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  17. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  18. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect (OSTI)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  19. PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NACIONAL Y EL PROGRAMA DE CAPACITACIÓN 2014 | Department of Energy PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL NACIONAL Y EL PROGRAMA DE CAPACITACIÓN 2014 PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL NACIONAL Y EL PROGRAMA DE CAPACITACIÓN 2014 La conferencia regresa a D.C. del 26 al 28 de marzo de 2014 con la celebración de los 20 años de justicia ambiental pasados y futuros. PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA

  20. Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient 24 Hour SO2 Values: Model vs Monitor Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor Docket No. EO-05-01: Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor, March ...

  1. Terrain and Ambient Wind Effects on the Warming Footprint of a Wind Machine

    SciTech Connect (OSTI)

    Mcmeeking, Gavin R.; Whiteman, Charles D.; Powell, Stuart G.; Clements, Craig B.

    2002-05-20

    An experiment in a vineyard in south-central Washington is described in which a vineyard wind machine used for frost protection was turned on and off while monitoring the air temperature in the vineyard. The wind machine fan, with a hub height of 12 m, rotated around a quasi-horizontal axis that was tilted downward into the vineyard at an angle of 6 degrees. The fan also rotated around a vertical axis once every 4 minutes to protect a roughly circular area surrounding the wind machine tower. A temperature inversion of about 3.5 C occurred above the vineyard between the 3-m and hub-height levels during the experiments. The 300-m diameter warming footprint of the fan was displaced down the south-facing 1-2{sup o} slope of the vineyard when the ambient wind speed was low, showing the effect of the weak and shallow nighttime drainage flow that often occurred in the vineyard. When the ambient wind speed increased, the footprint was displaced downwind and downslope of the tower. The mean warming footprint magnitude when the fan was switched on was about 1-2 C, and the temperature excess in the footprint relative to the surroundings dissipated quickly when the fan was switched off.

  2. Enhancing Amine-Supported Materials for Ambient Air Capture ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing Amine-Supported Materials for Ambient Air Capture Previous Next List Julian P. Sculley, Hong-Cai Zhou, Angew. Chem. Int. Ed., 51, 12660-12661 (2012) DOI: 10.1002...

  3. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322...

  4. Temperature-dependent structural study of microporous CsAlSi{sub 5}O{sub 12}

    SciTech Connect (OSTI)

    Fisch, Martin; Armbruster, Thomas Kolesov, Boris

    2008-03-15

    CsAlSi{sub 5}O{sub 12} crystals were synthesized at high temperature by slow cooling of a vanadium oxide flux. Single-crystal X-ray diffraction structure analysis and electron microprobe analyses yielded the microporous CAS zeolite framework structure of Cs{sub 0.85}Al{sub 0.85}Si{sub 5.15}O{sub 12} composition. High-temperature single-crystal and powder X-ray diffraction studies were utilized to analyze anisotropic thermal expansion. Rietveld refined cell constants from powder diffraction data, measured in steps of 25 deg. C up to 700 deg. C, show a significant decrease in expansion above 500 deg. C. At 500 deg. C, a displacive, static disorder-dynamic disorder-type phase transition from the acentric low-temperature space group Ama2 to centrosymmetric Amam (Cmcm in standard setting) was found. Thermal expansion below the phase transition is governed by rigid-body TO{sub 4} rotations accompanied by stretching of T-O-T angles. Above the phase transition at 500 deg. C all atoms, except one oxygen (O6), are fixed on mirror planes. Temperature-dependent polarized Raman single-crystal spectra between -270 and 300 deg. C and unpolarized spectra between room temperature and 1000 deg. C become increasingly less resolved with rising temperature confirming the disordered static-disordered dynamic type of the phase transition. - Graphical abstract: Temperature-dependent structural evolution of microporous CsAlSi{sub 5}O{sub 12} has been investigated by single-crystal and powder X-ray diffraction, as well as Raman spectroscopy. Results yielded a phase transition of order-disorder type.

  5. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System SWATS In the realm of global climate modeling, ... An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located ...

  6. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    SciTech Connect (OSTI)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  7. Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine ...

  8. Verifying TRU Passive DPF Cold Ambient Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRU Passive DPF Cold Ambient Performance Verifying TRU Passive DPF Cold Ambient Performance Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_lucht.pdf (151.1 KB) More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines Emissions

  9. CO{sub 2} Capture by Sub-ambient Membrane Operation

    SciTech Connect (OSTI)

    Kulkarni, S.; Hasse, D.; Sanders, E.; Chaubey, T.

    2012-11-30

    The main objective of the project was to develop a CO{sub 2} capture process based on sub-ambient temperature operation of a hollow fiber membrane. The program aims to reach the eventual DOE program goal of > 90% CO{sub 2} capture from existing PC fired power plants with < 35% increase in the cost of electricity. The project involves closed-loop testing of commercial fiber bundles under simulated process conditions to test the mechanical integrity and operability of membrane module structural component under sub ambient temperature. A commercial MEDAL 12” bundle exhibited excellent mechanical integrity for 2 months. However, selectivity was ~25% lower than expected at sub-ambient conditions. This could be attributed to a small feed to permeate leak or bundle non-ideality. To investigate further, and due to compressor flow limitations, the 12” bundle was replaced with a 6” bundle to conduct tests with lower permeate/feed ratios, as originally planned. The commercial 6” bundle was used for both parametric testing as well as long-term stability testing at sub-ambient conditions. Parametric studies were carried out both near the start and end of the long-term test. The parametric studies characterized membrane performance over a broad range of feed conditions: temperature (-25°C to -45°C), pressure (160 psig to 200 psig), and CO{sub 2} feed concentration (18% to 12%). Performance of the membrane bundle was markedly better at lower temperature (-45ºC), higher pressure (200 psig) and higher CO{sub 2} feed concentration (18%). The long-term test was conducted at these experimentally determined “optimum” feed conditions. Membrane performance was stable over 8 months at sub-ambient temperature operation. The experimentally measured high performance of the membrane bundle at sub-ambient operating conditions provides justification for interest in sub-ambient membrane processing of flue gas. In a parallel activity, the impact of contaminants (100 ppm SOx and NOx

  10. Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  11. Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors

    SciTech Connect (OSTI)

    Deo, Chaitanya; Zhu, Ting; McDowell, David

    2013-11-17

    The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation reactions at general boundaries, along with extensive modeling cooperative effects of dislocation interactions and migration in crystals and polycrystals using continuum models.

  12. Li corrosion resistant glasses for headers in ambient temperature Li batteries

    DOE Patents [OSTI]

    Hellstrom, E.E.; Watkins, R.D.

    1985-10-11

    Glass compositions containing 10 to 50 mol% CaO, 10 to 50 mol% Al/sub 2/O/sub 3/, 30 to 60 mol% B/sub 2/O/sub 3/, and 0 to 30 mol% MgO are provided. These compositions are capable of forming a stable glass-to-metal seal possessing electrical insulating properties for use in a lithium battery. Also provided are lithium cells containing a stainless steel body and molybdenum center pin electrically insulated by means of a seal produced according to the invention.

  13. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  14. Sample cell for powder x-ray diffraction at up to 500 bars and 200 deg. C

    SciTech Connect (OSTI)

    Jupe, Andrew C.; Wilkinson, Angus P.

    2006-11-15

    A low cost sample cell for powder diffraction at high pressure and temperature that employs either sapphire or steel pressure tubes is described. The cell can be assembled rapidly, facilitating the study of chemically reacting systems, and it provides good control of both pressure and temperature in a regimen where diamond anvil cells and multianvil apparatus cannot be used. The design provides a relatively large sample volume making it suitable for the study of quite large grain size materials, such as hydrating cement slurries. However, relatively high energy x rays are needed to penetrate the pressure tube.

  15. Measurement of the Melting Point Temperature of Several Lithium-Sodium-Beryllium Fluoride Salt (Flinabe) Mixtures

    SciTech Connect (OSTI)

    McDonald, J.M; Nygren, R.E.; Lutz, T.J.; Tanaka, T.J; Ulrickson, M.A.; Boyle, T.J.; Troncosa, K.P.

    2005-04-15

    The molten salt Flibe, a combination of lithium and beryllium fluorides studied for molten salt fission reactors, has been proposed as a breeder and coolant for fusion applications. The melting points of 2LiF-BeF{sub 2} and LiF-BeF{sub 2} are 460 deg. C and 363 deg. C, but LiF-BeF{sub 2} is rather viscous and has less lithium for breeding. In the Advanced Power Extraction (APEX) Program, concepts with a free flowing liquid for the first wall and blanket were investigated. Flinabe (a mixture of LiF, BeF{sub 2} and NaF) was selected for a molten salt design because a melting temperature below 350 deg. C appeared possible and this provided an attractive operating temperature window for a reactor. To confirm that a ternary salt with a low melting temperature existed, several combinations of the fluoride salts, LiF, NaF and BeF{sub 2}, were melted in a stainless steel crucible under vacuum. One had an apparent melting temperature of 305 deg. C. The test system, preparation of the mixtures, melting procedures and temperature curves for the melting and cooling are presented along with the apparent melting points. Thermal modeling of the salt pool and crucible is reported in an accompanying paper.

  16. Toward Oxide Scale Behavior Management At High Temperature

    SciTech Connect (OSTI)

    Deltombe, R.; Dubar, M.; Dubois, A.; Dubar, L.

    2011-01-17

    Oxide scales grow freely on bare metallic surface under environmental conditions such as high temperature and oxygen. These act as thermal and mechanical shields, especially during high hot forming processes (>1000 deg. C). But product quality can be impacted by these oxide scales due to scale remaining on product or sticking on tools. Thus the TEMPO laboratory has created an original methodology in order to characterize oxide scale under high temperature, pressure and strain gradients. An experimental device has been developed. The final purpose of this work is to understand the scale behavior as a function of temperature, reduction ratio and steel composition.

  17. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  18. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    SciTech Connect (OSTI)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  19. Shock sensitivity of LX 04 at elevated temperatures

    SciTech Connect (OSTI)

    Urtiew, P.A.; Tarver, C.M.; Gorbes, J.W.; Garcia, G.

    1997-07-01

    Hazard scenarios can involve multiple stimuli, such as heating followed by fragment impact (shock). The shock response of LX-04 (85 weight % HMX and 15 weight % Viton binder) preheated to temperatures hear 170C is studied in a 10.2 cm bore diameter gas gun using embedded manganin pressure gauges. The pressure histories at various depths in the LX-04 targets and the run distances to detonation at several input shock pressures are measured and compared to those obtained in ambient temperature LX-04. The hot LX-04 is significantly more shock sensitive than ambient LX-04. Ignition and Growth reactive flow models are developed for ambient and hot LX-04 to allow predictions of impact scenarios that a can not be tested directly.

  20. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations This...

  1. Oceanic ambient noise as a background to acoustic neutrino detection

    SciTech Connect (OSTI)

    Kurahashi, Naoko; Gratta, Giorgio

    2008-11-01

    Ambient noise measured in the deep ocean is studied in the context of a search for signals from ultrahigh-energy cosmic ray neutrinos. The spectral shape of the noise at the relevant high frequencies is found to be very stable for an extensive data set collected over several months from 49 hydrophones mounted near the bottom of the ocean at {approx}1600 m depth. The slopes of the ambient noise spectra above 15 kHz are found to roll off faster than the -6 dB/octave seen in Knudsen spectra. A model attributing the source to a uniform distribution of surface noise that includes frequency-dependent absorption at large depth is found to fit the data well up to 25 kHz. This depth-dependent model should therefore be used in analysis methods of acoustic neutrino pulse detection that require the expected noise spectra.

  2. Ambient methods and apparatus for rapid laser trace constituent analysis

    DOE Patents [OSTI]

    Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.

    2002-01-01

    A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.

  3. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect (OSTI)

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  4. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    SciTech Connect (OSTI)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of molecules in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease

  5. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  6. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  7. Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Measurement in Supercritical Reservoirs and EGS Wells | Department of Energy Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Project objectives: 1. Optical fibers that resist hydrogen darkeningŽ for several months instead of hours and days at 300 deg. C and higher. 2. Tube

  8. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  9. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  10. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    2001-04-10

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  11. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  12. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  13. Fuel Cell Operations at Sub-Freezing Temperatures Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Operations at Sub-Freezing Temperatures Workshop Fuel Cell Operations at Sub-Freezing Temperatures Workshop The U.S. Department of Energy sponsored a Fuel Cell Operations at Sub-Freezing Temperatures Workshop in Phoenix, Arizona February 1-2, 2005. Attendees included representatives from fuel cell manufacturers, researchers, and government officials. Transportation and stationary fuel cells need to operate in environments where ambient temperatures will fall below 0°C. Surprisingly

  14. Studies on Temperature Dependence of Rubidium Lamp for Atomic Frequency Standard

    SciTech Connect (OSTI)

    Ghosal, Bikash; Banik, Alak; Vats, Vaibhav; Pal, Sukamal; Bahl, R. K

    2011-10-20

    Rb lamp is a very critical component of the Rb atomic clock's Physics Package. The Rb lamp's performance is very sensitive to temperature and its stability. In this paper we discuss the behaviors of Rb Lamp with temperature. The Rb lamp exciter power and temperature of Rb bulb are very important parameters in controlling the performance of the Rb Lamp. It is observed that at temperatures beyond 110 deg. C, the lamp mode changes from the ring to red mode resulting in abnormal broadening of emission lines and self reversal. The results of our studies on spectral analysis of Rb lamp under various operating conditions are reported in the paper.

  15. THE MASSIVE AND DISTANT CLUSTERS OF WISE SURVEY. II. INITIAL SPECTROSCOPIC CONFIRMATION OF z ? 1 GALAXY CLUSTERS SELECTED FROM 10,000 deg{sup 2}

    SciTech Connect (OSTI)

    Stanford, S. A.; Gonzalez, Anthony H.; Gettings, Daniel P.; Brodwin, Mark; Eisenhardt, Peter R. M.; Stern, Daniel; Wylezalek, Dominika

    2014-08-01

    We present optical and infrared imaging and optical spectroscopy of galaxy clusters which were identified as part of an all-sky search for high-redshift galaxy clusters, the Massive and Distant Clusters of WISE Survey (MaDCoWS). The initial phase of MaDCoWS combined infrared data from the all-sky data release of the Wide-field Infrared Survey Explorer (WISE) with optical data from the Sloan Digital Sky Survey to select probable z ? 1 clusters of galaxies over an area of 10,000 deg{sup 2}. Our spectroscopy confirms 19 new clusters at 0.7 < z < 1.3, half of which are at z > 1, demonstrating the viability of using WISE to identify high-redshift galaxy clusters. The next phase of MaDCoWS will use the greater depth of the AllWISE data release to identify even higher redshift cluster candidates.

  16. THE SLOAN DIGITAL SKY SURVEY STRIPE 82 IMAGING DATA: DEPTH-OPTIMIZED CO-ADDS OVER 300 deg{sup 2} IN FIVE FILTERS

    SciTech Connect (OSTI)

    Jiang, Linhua; Fan, Xiaohui; McGreer, Ian D.; Green, Richard; Bian, Fuyan; Strauss, Michael A.; Buck, Zoë; Annis, James; Hodge, Jacqueline A.; Myers, Adam D.; Rafiee, Alireza; Richards, Gordon

    2014-07-01

    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ∼300 deg{sup 2} on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ∼1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ∼90 deg{sup 2} of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources)

  17. The Sloan Digital Sky Survey Stripe 82 Imaging Data: Depth-Optimized Co-adds Over 300 deg$^2$ in Five Filters

    SciTech Connect (OSTI)

    Jiang, Linhua; Fan, Xiaohui; Bian, Fuyan; McGreer, Ian D.; Strauss, Michael A.; Annis, James; Buck, Zoë; Green, Richard; Hodge, Jacqueline A.; Myers, Adam D.; Rafiee, Alireza; Richards, Gordon

    2014-06-25

    We present and release co-added images of the Sloan Digital Sky Survey (SDSS) Stripe 82. Stripe 82 covers an area of ~300 deg(2) on the celestial equator, and has been repeatedly scanned 70-90 times in the ugriz bands by the SDSS imaging survey. By making use of all available data in the SDSS archive, our co-added images are optimized for depth. Input single-epoch frames were properly processed and weighted based on seeing, sky transparency, and background noise before co-addition. The resultant products are co-added science images and their associated weight images that record relative weights at individual pixels. The depths of the co-adds, measured as the 5σ detection limits of the aperture (3.''2 diameter) magnitudes for point sources, are roughly 23.9, 25.1, 24.6, 24.1, and 22.8 AB magnitudes in the five bands, respectively. They are 1.9-2.2 mag deeper than the best SDSS single-epoch data. The co-added images have good image quality, with an average point-spread function FWHM of ~1'' in the r, i, and z bands. We also release object catalogs that were made with SExtractor. These co-added products have many potential uses for studies of galaxies, quasars, and Galactic structure. We further present and release near-IR J-band images that cover ~90 deg(2) of Stripe 82. These images were obtained using the NEWFIRM camera on the NOAO 4 m Mayall telescope, and have a depth of about 20.0-20.5 Vega magnitudes (also 5σ detection limits for point sources).

  18. Reserva La Fecha: Conferencia y Programa de Capacitación de Justicia Ambiental Nacional 2017

    Broader source: Energy.gov [DOE]

    Reserva La FechaDel 8 al 10 de Marzo de 2017Conferencia y Programa de Capacitación de Justicia Ambiental Nacional 2017

  19. MOL.19980331.0174 PARTICULATE MATTEX AMBIENT A I R QUALITY

    National Nuclear Security Administration (NNSA)

    MOL.19980331.0174 PARTICULATE MATTEX AMBIENT A I R QUALITY DATA REPORT FOR 1989 AND 1990 ... Applications International Corporation Technical & Management Support Services Las Vegas, ...

  20. Ene lica Energias Renov veis e Ambiente SA | Open Energy Information

    Open Energy Info (EERE)

    Enelica-Energias Renovveis e Ambiente SA Place: Portugal Sector: Renewable Energy Product: Portugal-based development of electric energy production projects from...

  1. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOE Patents [OSTI]

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  2. Effects of ambient ozone on respiratory function and symptoms in Mexico City schoolchildren

    SciTech Connect (OSTI)

    Castillejos, M.; Gold, D.R.; Dockery, D.; Tosteson, T.; Baum, T.; Speizer, F.E. )

    1992-02-01

    The effects of ambient ozone (O3) on respiratory function and acute respiratory symptoms were evaluated in 143 7- to 9-yr-old schoolchildren followed longitudinally at 1- to 2-wk intervals over a period of 6 months at three schools in Pedregal, Mexico City. The maximum O3 level exceeded the World Health Organization guideline of 80 ppb and the U.S. standard of 120 ppb in every week. For an increase from lowest to highest in the mean O3 level during the 48 hr before spirometry (53 ppb), logistic regression estimated relative odds of 1.7 for a child reporting cough/phlegm on the day of spirometry. For the full population, the mean O3 level during the hour before spirometry, not adjusted for temperature and humidity, predicted a significant decrement in FVC but not in FEV1 or FEF25-75. In contrast, the mean O3 level during the previous 24-, 48-, and 168-h periods predicted significant decrements in FEV1 and FEF25-75 but not in FVC. Ozone was consistently associated with a greater decrement in lung function for the 15 children with chronic phlegm as compared with the children without chronic cough, chronic phlegm, or wheeze. Ozone in the previous 24-, 48-, and 168-h periods predicted decrements in FEV1 for children of mothers who were current or former smokers, but not for children of mothers who were never smokers. Many of these effects were reduced in multiple regression analyses including temperature and humidity, as temperature and O3 were highly correlated.

  3. Ultra-High Temperature Sensors Based on Optical Property

    SciTech Connect (OSTI)

    Nabeel Riza

    2008-09-30

    In this program, Nuonics, Inc. has studied the fundamentals of a new Silicon Carbide (SiC) materials-based optical sensor technology suited for extreme environments of coal-fired engines in power production. The program explored how SiC could be used for sensing temperature, pressure, and potential gas species in a gas turbine environment. The program successfully demonstrated the optical designs, signal processing and experimental data for enabling both temperature and pressure sensing using SiC materials. The program via its sub-contractors also explored gas species sensing using SiC, in this case, no clear commercially deployable method was proven. Extensive temperature and pressure measurement data using the proposed SiC sensors was acquired to 1000 deg-C and 40 atms, respectively. Importantly, a first time packaged all-SiC probe design was successfully operated in a Siemens industrial turbine rig facility with the probe surviving the harsh chemical, pressure, and temperature environment during 28 days of test operations. The probe also survived a 1600 deg-C thermal shock test using an industrial flame.

  4. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  5. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  6. Vaccinia virus temperature-sensitive mutants in the A28 gene produce non-infectious virions that bind to cells but are defective in entry

    SciTech Connect (OSTI)

    Turner, Peter C. Dilling, Bradley P.; Prins, Cindy; Cresawn, Steven G.; Moyer, Richard W.; Condit, Richard C.

    2007-09-15

    The vaccinia virus temperature-sensitive mutations Cts6 and Cts9 were mapped by marker rescue and DNA sequencing to the A28 gene. Cts6 and Cts9 contain an identical 2-bp deletion truncating the A28 protein and removing the fourth conserved cysteine near the C-terminus. Cts9 mutant virions produced at 40 deg. C were non-infectious and unable to cause cytopathic effect. However, the mutant A28 protein localized to purified mature virions (MV) at 31 deg. C and 40 deg. C. MV of Cts9 produced at 40 deg. C bound to cells but did not enter cells. Low pH treatment of Cts9-infected cells at 18 h p.i. failed to produce fusion from within at 40 deg. C, but gave fusion at 31 deg. C. Adsorption of Cts9 mutant virions to cells followed by low pH treatment showed a defect in fusion from without. The Cts9 phenotype suggests that the A28 protein is involved in both virus entry and cell-cell fusion, and supports the linkage between the two processes.

  7. Concentrations of a water soluble, gas-phase mercury species in ambient air: Results from measurements and modeling

    SciTech Connect (OSTI)

    Lindberg, S.E.; Stratton, W.J.; Pai, P.; Allan, M.A.

    1997-12-31

    There are few reliable data on the speciation of Hg in ambient air, although this information is critical to understanding the fate of Hg once released from point sources. The water soluble species of Hg that are thought to exist in flue gases would be subject to far greater local removal rates than is elemental Hg vapor, but methods are lacing to quantify this species. The authors developed a method using refluxing mist chambers to measure the airborne concentrations of reactive gaseous mercury (RGM) in short-term samples under ambient conditions. The method exhibits an effective detection limit of 0.02 ng/m{sup 3} and a precision for ambient concentration levels of {+-}20--30%. Using a model that simulates atmospheric transport and fate of anthropogenic mercury emissions over the contiguous United States, the authors generated 24-hr RGM concentrations to compare to the measurement data. The average RGM concentrations measured with their mist chambers at sites in Tennessee (TN) and Indiana (IN) were 0.065 ng/m{sup 3} and 0.100 ng/m{sup 3}, respectively. These averages represent about 3% of total gaseous mercury (TGM), and RGM generally exceeds regional particulate Hg. The 24-hr model-simulated RGM concentration averages in the modeling grid cells representing TN and IN are 0.051 ng/m{sup 3} and 0.098 ng/m{sup 3} respectively, in good agreement with the data. The measured concentrations at the two sites exhibit weak positive correlations with temperature, solar radiation, O{sub 3}, SO{sub 2}, and TGM. These concentrations are high enough to suggest that RGM can play an important role in both wet and dry deposition on a regional scale.

  8. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  9. Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion 2003 DEER Conference Presentation: Sandia National Laboratories 2003_deer_pickett.pdf (538.33 KB) More Documents & Publications Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels

  10. Characterization of stable brush-shaped large-volume plasma generated at ambient air

    SciTech Connect (OSTI)

    Tang Jie; Cao Wenqing; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-01-15

    A brush-shaped, large-volume plasma was generated at ambient pressure with a dc power supply and flowing argon gas, as well as a narrow outlet slit. Based on the V-I curve and emission profiles obtained in our experiment, the plasma shows some typical glow discharge characteristics. The electron density in the positive column close to the anode is about 1.4x10{sup 14}cm{sup -3} high, which is desirable for generating abundant amounts of reactive species in the plasma. Emission spectroscopy diagnosis indicates that many reactive species, such as excited argon atoms, excited oxygen atoms, excited nitrogen molecules, OH and C{sub 2} radicals, etc., generated within the plasma are distributed symmetrically and uniformly, which is preferable to some chemical reactions in practical applications. Spectral measurement also shows that the concentration of some excited argon atoms increases with the argon flow rate when the applied voltage is unvaried, while that of these excited argon atoms declines with the discharge current in the normal/subnormal glow discharge mode with the argon flow rate fixed. The plasma size is about 15 mm x 1 mm x 19 mm (L, W, H), when 38-W of discharge power is used. Such a laminar brush-shaped large-volume plasma device ensures not only efficient utilization of the plasma gas, but also effective processing of objects with large volume and complicated structure that are susceptible to high temperatures.

  11. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the averagemore » structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  12. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOE Patents [OSTI]

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  13. Low Temperature Aluminum Dissolution Of Sludge Waste

    SciTech Connect (OSTI)

    Keefer, M.T.; Hamm, B.A.; Pike, J.A. [Washington Savannah River Company, Aiken, SC (United States)

    2008-07-01

    High Level Waste (HLW) at the Savannah River Site (SRS) is currently stored in aging underground storage tanks. This waste is a complex mixture of insoluble solids, referred to as sludge, and soluble salts. Continued long-term storage of these radioactive wastes poses an environmental risk. The sludge is currently being stabilized in the Defense Waste Processing Facility (DWPF) through a vitrification process immobilizing the waste in a borosilicate glass matrix for long-term storage in a federal repository. Without additional treatment, the existing volume of sludge would produce nearly 8000 canisters of vitrified waste. Aluminum compounds, along with other non-radioactive components, represent a significant portion of the sludge mass currently planned for vitrification processing in DWPF. Removing the aluminum from the waste stream reduces the volume of sludge requiring vitrification and improves production rates. Treating the sludge with a concentrated sodium hydroxide (caustic) solution at elevated temperatures (>90 deg. C) to remove aluminum is part of an overall sludge mass reduction effort to reduce the number of vitrified canisters, shorten the life cycle for the HLW system, and reduce the risk associated with the long term storage of radioactive wastes at SRS. A projected reduction of nearly 900 canisters will be achieved by performing aluminum dissolution on six targeted sludge batches; however, a project to develop and install equipment will not be ready for operation until 2013. The associated upgrades necessary to implement a high temperature process in existing facilities are costly and present many technical challenges. Efforts to better understand the characteristics of the sludge mass and dissolution kinetics are warranted to overcome these challenges. Opportunities to further reduce the amount of vitrified waste and increase production rates should also be pursued. Sludge staged in Tank 51 as the next sludge batch for feed to DWPF consisted

  14. Epitaxial growth of aluminum nitride on AlGaN by reactive sputtering at low temperature

    SciTech Connect (OSTI)

    Duquenne, C.; Djouadi, M. A.; Tessier, P. Y.; Jouan, P. Y.; Besland, M. P.; Brylinski, C.; Aubry, R.; Delage, S.

    2008-08-04

    We report the synthesis of 1 {mu}m thick single crystalline aluminum nitride films by dc magnetron sputtering on AlGaN/GaN layer grown on sapphire substrate at low temperature (substrate temperature <250 deg. C). The microstructure of c-axis oriented AlN films deposited on Si (100) and AlGaN <0001> substrates was studied by x-ray diffraction, selected area electron diffraction, and transmission electron microscopy. The optimization of process parameters, involving low energetic ion bombardment on film surface (20-30 eV) during the growth, leads to an increase in the surface mobility and thus promotes AlN epitaxial growth on AlGaN substrate at 250 deg. C.

  15. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nickel-ceria catalysts Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource/albums Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Journal Covers Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on nickel-ceria catalysts Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on nickel-ceria catalysts Print Monday, 15 August 2016 17:11 Ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) and

  16. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect (OSTI)

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  17. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto themore » GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  18. Silver-bearing, high-temperature, superconducting (HTS) paint

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1990-02-15

    A substantial set of device applications awaits development of a workable, durable, high-temperature superconducting (HTS) paint. Such a paint should be truly superconducting with its critical temperature T sub c>77K. For most of these applications, a high critical current (J sub c) is not required, although probably desirable. A process is described which can be used to produce silver-bearing HTS paint coatings on many engineering materials. Preliminary tests have shown good adherence to several ceramics and the ability to meet the superconducting criteria. Moreover, the coatings withstand multiple thermal cycling and stability under laboratory ambient storage conditions for periods of at least several months.

  19. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  20. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect (OSTI)

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  1. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Standard in NEPA Evaluations (EPA, 2007) Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations (EPA, 2007) This letter, from the Director ...

  2. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  3. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOE Patents [OSTI]

    Siminovitch, Michael J.

    1992-01-01

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.

  4. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOE Patents [OSTI]

    Siminovitch, M.J.

    1992-11-10

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.

  5. Economizer control assembly for regulating the volume flow of outdoor ambient air

    SciTech Connect (OSTI)

    Michaels, D.D. Jr.

    1984-10-23

    An economizer assembly is disclosed wherein a sliding door is utilized for covering an outdoor ambient air opening allowing outdoor ambient air flow into a space to be conditioned. A motor shaft arrangement connected via a rotating drive rod is utilized to slidably displace the door to any position necessary to effectively regulate air flow. The utilization of this economizer control arrangement with a rooftop type air conditioning unit is further disclosed.

  6. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray, and its applications in electrochemistry | Stanford Synchrotron Radiation Lightsource Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322 Zhi Liu The synchrotron based ambient pressure x-ray photoelectron spectroscopy (AP-XPS) endstation[1] pioneered at ALS based on differentially pumped electron energy analyzer has been recognized by scientific communities as

  7. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We reportmore » on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.« less

  8. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    SciTech Connect (OSTI)

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.

  9. Ambient to high-temperature fracture toughness and cyclic fatigue behavior in Al-containing silicon carbide ceramics

    SciTech Connect (OSTI)

    Yuan, R.; Kruzic, J.J.; Zhang, X.F.; De Jonghe, L.C.; Ritchie, R.O.

    2003-08-01

    A series of in situ toughened, A1, B and C containing, silicon carbide ceramics (ABC-SiC) has been examined with A1 contents varying from 3 to 7 wt percent. With increasing A1 additions, the grain morphology in the as-processed microstructures varied from elongated to bimodal to equiaxed, with a change in the nature of the grain-boundary film from amorphous to partially crystalline to fully crystalline.

  10. Cylinder surface, temperature may affect LPG odorization

    SciTech Connect (OSTI)

    McWilliams, H.

    1988-01-01

    A study of possible odorant fade in propane by the Arthur D. Little Co. (Boston) has indicated that oxidation of interior surfaces of LPG containers may cause the odorant, ethyl mercaptan, to fade. The oxidation, ferous oxide, is a black, easily oxidizable powder that is the monoxide of iron. The study, contracted for by the Consumer Product Safety Commission (CPSC), is part of that agency's study of residential LP-gas systems. Another study is currently underway by an NLPGA task force headed by Bob Reid of Petrolane (Long Beach, Calif.). It may not be finished until the end of next year. Recently, the Propane Gas Association of Canada completed a study of odorant fade with the conclusion that much more study is needed on the subject. In addition to the cylinder surface problem, the CPSC study indicated that ambient temperatures might also affect the presence of odorant in product. This article reviews some of the results.

  11. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-08-04

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  12. Cooled, temperature controlled electrometer

    DOE Patents [OSTI]

    Morgan, John P.

    1992-01-01

    A cooled, temperature controlled electrometer for the measurement of small currents. The device employs a thermal transfer system to remove heat from the electrometer circuit and its environment and dissipate it to the external environment by means of a heat sink. The operation of the thermal transfer system is governed by a temperature regulation circuit which activates the thermal transfer system when the temperature of the electrometer circuit and its environment exceeds a level previously inputted to the external variable temperature control circuit. The variable temperature control circuit functions as subpart of the temperature control circuit. To provide temperature stability and uniformity, the electrometer circuit is enclosed by an insulated housing.

  13. High temperature furnace

    DOE Patents [OSTI]

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  14. Near-ambient X-ray photoemission spectroscopy and kinetic approach to the mechanism of carbon monoxide oxidation over lanthanum substituted cobaltites

    SciTech Connect (OSTI)

    Hueso, J. L.; Martinez-Martinez, D.; Cabalerro, Alfonso; Gonzalez-Elipe, Agustin Rodriguez; Mun, Bongjin Simon; Salmeron, Miquel

    2009-07-31

    We have studied the oxidation of carbon monoxide over a lanthanum substituted perovskite (La0.5Sr0.5CoO3-d) catalyst prepared by spray pyrolysis. Under the assumption of a first-order kinetics mechanism for CO, it has been found that the activation energy barrier of the reaction changes from 80 to 40 kJ mol-1 at a threshold temperature of ca. 320 oC. In situ XPS near-ambient pressure ( 0.2 torr) shows that the gas phase oxygen concentration over the sample decreases sharply at ca. 300 oC. These two observations suggest that the oxidation of CO undergoes a change of mechanism at temperatures higher than 300 oC.

  15. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect (OSTI)

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  16. Accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas

    SciTech Connect (OSTI)

    Craciunescu, Oana I.; Stauffer, Paul R.; Soher, Brian J.; Wyatt, Cory R.; Arabe, Omar; Maccarini, Paolo; Das, Shiva K.; Cheng, Kung-Shan; Wong, Terence Z.; Jones, Ellen L.; Dewhirst, Mark W.; Vujaskovic, Zeljko; MacFall, James R.

    2009-11-15

    Purpose: To establish accuracy of real time noninvasive temperature measurements using magnetic resonance thermal imaging in patients treated for high grade extremity soft tissue sarcomas. Methods: Protocol patients with advanced extremity sarcomas were treated with external beam radiation therapy and hyperthermia. Invasive temperature measures were compared to noninvasive magnetic resonance thermal imaging (MRTI) at 1.5 T performed during hyperthermia. Volumetric temperature rise images were obtained using the proton resonance frequency shift (PRFS) technique during heating in a 140 MHz miniannular phased array applicator. MRTI temperature changes were compared to invasive measurements of temperature with a multisensor fiber optic probe inside a no. 15 g catheter in the tumor. Since the PRFS technique is sensitive to drifts in the primary imaging magnetic field, temperature change distributions were corrected automatically during treatment using temperature-stable reference materials to characterize field changes in 3D. The authors analyzed MRT images and compared, in evaluable treatments, MR-derived temperatures to invasive temperatures measured in extremity sarcomas. Small regions of interest (ROIs) were specified near each invasive sensor identified on MR images. Temperature changes in the interstitial sensors were compared to the corresponding ROI PRFS-based temperature changes over the entire treatment and over the steady-state period. Nonevaluable treatments (motion/imaging artifacts, noncorrectable drifts) were not included in the analysis. Results: The mean difference between MRTI and interstitial probe measurements was 0.91 deg. C for the entire heating time and 0.85 deg. C for the time at steady state. These values were obtained from both tumor and normal tissue ROIs. When the analysis is done on just the tumor ROIs, the mean difference for the whole power on time was 0.74 deg. C and during the period of steady state was 0.62 deg. C. Conclusions: The

  17. Shock sensitivity of IHE at elevated temperatures

    SciTech Connect (OSTI)

    Urtiew, P.A.; Cook, T.M.; Maienschein, J.L.; Tarver, C.M.

    1993-06-01

    Insensitive high explosives (IHE`s) based on triamino-trinitrobenzene (TATB) have been demonstrated to be very insensitive to shock, thermal, friction and other stimuli. Hazard scenarios can involve more than one stimulus, such as heating followed by fragment impact (shock). The shock sensitivity of the IHE`s LX-17 and PBX-9502 preheated to a temperature (250{degree}C) just below thermal runaway is quantitatively studied using embedded manganin pressure gauges. The thermal expansion of TATB to 250{degree}C is measured to determine the state of the explosive prior to shock initiation. LX-17 and PBX-9502 are found to be significantly more sensitive at 250{degree}C than at lower temperatures, but still less sensitive than ambient temperature HMX-based explosives. An ignition and growth reactive flow computer model of the shock initiation of hot IHE is developed to allow predictions of the response of hot IHE to impact scenarios which can not be tested directly.

  18. Ambient-atmosphere glow discharge for determination of elemental concentration in solutions in a high-throughput or transient fashion

    DOE Patents [OSTI]

    Webb, Michael R.; Hieftje, Gary M.; Andrade, Francisco

    2011-04-19

    An ambient atmosphere glow discharge spectrometer is disclosed having a capillary, two electrodes and a means for recording the atomic emissions.

  19. Letter from Commonwealth to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE)

    Docket No. EO-05-01: Letter from Commonwealth of Virginia to Mirant Potomac River concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide.

  20. Enzymatic temperature change indicator

    DOE Patents [OSTI]

    Klibanov, Alexander M.; Dordick, Jonathan S.

    1989-01-21

    A temperature change indicator is described which is composed of an enzyme and a substrate for that enzyme suspended in a solid organic solvent or mixture of solvents as a support medium. The organic solvent or solvents are chosen so as to melt at a specific temperature or in a specific temperature range. When the temperature of the indicator is elevated above the chosen, or critical temperature, the solid organic solvent support will melt, and the enzymatic reaction will occur, producing a visually detectable product which is stable to further temperature variation.

  1. Temperature environment for 9975 packages stored in KAC

    SciTech Connect (OSTI)

    Daugherty, W. L.

    2015-09-10

    Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. The long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.

  2. High temperature measuring device

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  3. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  4. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  5. High temperature sensor

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  6. Synthesis of monodispersed CdSe nanocrystals in poly(styrene-alt-maleic anhydride) at room temperature

    SciTech Connect (OSTI)

    Liu, S.H.; Qian, X.F.; Yuan, J.Y.; Yin, J.; He, R.; Zhu, Z.K

    2003-07-14

    Nanocomposite of CdSe/poly(styrene-alt-maleic anhydride) (PSM) was successfully prepared via an in situ reaction process at room temperature and ambient pressure. Transmission electron microscopy (TEM) analysis revealed that CdSe nanoparticles with a small size and narrow size distribution were obtained. The obtained nanocomposite was also characterized by FT-IR, XRD, ultraviolet-visible, and fluorescence spectroscopy.

  7. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOE Patents [OSTI]

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  8. Parametric study of atmospheric pressure microwave-induced Ar/O{sub 2} plasmas and the ambient air effect on the plasma

    SciTech Connect (OSTI)

    Moon, Se Youn; Choe, W.

    2006-10-15

    A torch type microwave-induced afterglow plasma was produced at atmospheric pressure using an open-ended fused silica concentric double tube assisted by Ar and O{sub 2} supply gases. The plasma emerged from the end of the discharge tube and was exposed to ambient air. A parametric study of the plasma characteristics was performed by measuring the temperature, density, and plasma volume as the operational parameters such as microwave power, gas flow rate, and its composition were varied. The excitation temperature (T{sub exc}) obtained from the Ar I emission spectrum ranged from 3010 to 4350 K and the rotational temperature (T{sub rot}) measured from the OH and O{sub 2} diatomic molecular spectra ranged from 2250 to 3550 K. The electron density (n{sub e}) from the H{sub {beta}} Stark broadening width at the plasma core was in the range of 6.6 to 7.6x10{sup 14} cm{sup -3}. The two-dimensional distribution of T{sub exc} and T{sub rot} was also obtained. Experiments while varying the Ar and O{sub 2} gas flow rate and the O{sub 2}/Ar ratio showed that n{sub e} was reduced but T{sub exc} was increased as the O{sub 2} flow rate was increased. Using an additional dielectric tube for shielding the plasma from the ambient air demonstrated a significantly enlarged plasma length and lower T{sub rot} due to the nitrogen entrainment, as compared to the unshielded case.

  9. Temperature Effects on seepage Fluid Compositions at Yucca Mountain

    SciTech Connect (OSTI)

    Nicolas Spycher; Eric Sonnenthal

    2001-06-01

    This project investigated the effect of two repository operating temperature modes on coupled thermal, hydrological, and chemical processes around potential nuclear waste-emplacement tunnels (drifts) at Yucca Mountain, Nevada. The main objective of this study was to evaluate the composition of fluids (water and gas) that could enter the drifts, because these data directly relate to the performance of waste canisters and other in-drift engineered systems over the life of the potential repository. Multicomponent reactive transport simulations were performed using TOUGHREACT, initially written by T. Xu and K. Pruess at LBNL and modified here to handle high-temperature and boiling environments. Two repository operating temperature modes were investigated: (1) a ''high-temperature'' mode, which considered a short preclosure ventilation period (50 years) and gave rise to above-boiling temperatures in rocks around the drift for hundreds of years, and (2) a ''low-temperature'' mode with a smaller heat load and longer preclosure ventilation (300 years), yielding temperatures at the surface of the waste package below 85 C (a design threshold) and thus below boiling conditions. Simulations under ambient conditions (no heat load) were also conducted to serve as a baseline for comparing results of thermal-loading simulations.

  10. Chemical changes in carbon Nanotube-Nickel/Nickel Oxide Core/Shell nanoparticle heterostructures treated at high temperatures

    SciTech Connect (OSTI)

    Chopra, Nitin; McWhinney, Hylton G.; Shi Wenwu

    2011-06-15

    Heterostructures composed of carbon nanotube (CNT) coated with Ni/NiO core/shell nanoparticles (denoted as CNC heterostructures) were synthesized in a wet-chemistry and single-step synthesis route involving direct nucleation of nanoparticles on CNT surface. Two different aspects of CNC heterostructures were studied here. First, it was observed that the nanoparticle coatings were more uniform on the as-produced and non-purified CNTs compared to purified (or acid treated) CNTs. These heterostructures were characterized using electron microscopy, Raman spectroscopy, and energy dispersive spectroscopy. Second, thermal stability of CNC heterostructures was studied by annealing them in N{sub 2}-rich (O{sub 2}-lean) environment between 125 and 750 deg. C for 1 h. A detailed X-ray photoelectron spectroscopy and Raman spectroscopy analysis was performed to evaluate the effects of annealing temperatures on chemical composition, phases, and stability of the heterostructures. It was observed that the CNTs present in the heterostructures completely decomposed and core Ni nanoparticle oxidized significantly between 600 and 750 deg. C. - Research Highlights: {yields} Heterostructures composed of CNTs coated with Ni/NiO core/shell nanoparticles. {yields} Poor nanoparticle coverage on purified CNT surface compared to non-purified CNTs. {yields} CNTs in heterostructures decompose between 600 and 750 deg. C in N{sub 2}-rich atmosphere. {yields} Metallic species in heterostructures were oxidized at higher temperatures.

  11. High temperature refrigerator

    DOE Patents [OSTI]

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  12. Automatic temperature adjustment apparatus

    DOE Patents [OSTI]

    Chaplin, James E.

    1985-01-01

    An apparatus for increasing the efficiency of a conventional central space heating system is disclosed. The temperature of a fluid heating medium is adjusted based on a measurement of the external temperature, and a system parameter. The system parameter is periodically modified based on a closed loop process that monitors the operation of the heating system. This closed loop process provides a heating medium temperature value that is very near the optimum for energy efficiency.

  13. High-temperature sensor

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  14. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    SciTech Connect (OSTI)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.

  15. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1989-01-01

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperature of 77 degrees Kelvin.

  16. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  17. Sb{sub 2}O{sub 4} at high pressures and high temperatures

    SciTech Connect (OSTI)

    Orosel, D.; Balog, P.; Liu, H.; Qian, J.; Jansen, M. . E-mail: m.jansen@fkf.mpg.de

    2005-09-15

    Investigations on Sb{sub 2}O{sub 4} at high pressure and temperature have been performed up to 600{sup o}C and up to 27.3GPa. The so-called 'high temperature' phase ({beta}-Sb{sub 2}O{sub 4}) was obtained following pressure increase at ambient temperature and at relatively low temperatures. Thus, in contrast to previous perceptions, {beta}-Sb{sub 2}O{sub 4} is the modification more stable at high pressures, i.e., at low temperatures. The fact that the metastable {alpha}-form is typically obtained through the conventional way of preparation has to be attributed to kinetic effects. The pressure-induced phase transitions have been monitored by in-situ X-ray diffraction in a diamond anvil cell, and confirmed ex-situ, by X-ray diffraction at ambient conditions, following temperature decrease and decompression in large volume devices. Bulk modulus values have been derived from the pressure-induced volume changes at room temperature, and are 143GPa for {alpha}-Sb{sub 2}O{sub 4} and 105GPa for the {beta}-Sb{sub 2}O{sub 4}.

  18. High-Temperature Phase Change Materials (PCM) Candidates for Thermal Energy Storage (TES) Applications

    SciTech Connect (OSTI)

    Gomez, J. C.

    2011-09-01

    It is clearly understood that lower overall costs are a key factor to make renewable energy technologies competitive with traditional energy sources. Energy storage technology is one path to increase the value and reduce the cost of all renewable energy supplies. Concentrating solar power (CSP) technologies have the ability to dispatch electrical output to match peak demand periods by employing thermal energy storage (TES). Energy storage technologies require efficient materials with high energy density. Latent heat TES systems using phase change material (PCM) are useful because of their ability to charge and discharge a large amount of heat from a small mass at constant temperature during a phase transformation like melting-solidification. PCM technology relies on the energy absorption/liberation of the latent heat during a physical transformation. The main objective of this report is to provide an assessment of molten salts and metallic alloys proposed as candidate PCMs for TES applications, particularly in solar parabolic trough electrical power plants at a temperature range from 300..deg..C to 500..deg.. C. The physical properties most relevant for PCMs service were reviewed from the candidate selection list. Some of the PCM candidates were characterized for: chemical stability with some container materials; phase change transformation temperatures; and latent heats.

  19. ARM - Word Seek: Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperature Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Word Seek: Temperature

  20. Fiber optic temperature sensor

    SciTech Connect (OSTI)

    Rabold, D.

    1995-12-01

    Our fiber optic temperature measurement sensor and system is a major improvement over methods currently in use in most industrial processes, and it delivers all of the attributes required simplicity, accuracy, and cost efficiency-to help improve all of these processes. Because temperature is a basic physical attribute of nearly every industrial and commercial process, our system can eventually result in significant improvements in nearly every industrial and commercial process. Many finished goods, and the materials that go into them, are critically dependent on the temperature. The better the temperature measurement, the better quality the goods will be and the more economically they can be produced. The production and transmission of energy requires the monitoring of temperature in motors, circuit breakers, power generating plants, and transmission line equipment. The more reliable and robust the methods for measuring these temperature, the more available, stable, and affordable the supply of energy will become. The world is increasingly realizing the threats to health and safety of toxic or otherwise undesirable by products of the industrial economy in the environment. Cleanup of such contamination often depends on techniques that require the constant monitoring of temperature in extremely hazardous environments, which can damage most conventional temperature sensors and which are dangerous for operating personnel. Our system makes such monitoring safer and more economical.

  1. Understanding and controlling low-temperature aging of nanocrystalline materials.

    SciTech Connect (OSTI)

    Battaile, Corbett Chandler; Boyce, Brad Lee; Brons, Justin G.; Foiles, Stephen Martin; Hattar, Khalid Mikhiel; Holm, Elizabeth Ann; Padilla, Henry A.,; Sharon, John Anthony; Thompson, Gregory B.

    2013-10-01

    Nanocrystalline copper lms were created by both repetitive high-energy pulsed power, to produce material without internal nanotwins; and pulsed laser deposition, to produce nan- otwins. Samples of these lms were indented at ambient (298K) and cryogenic temperatures by immersion in liquid nitrogen (77K) and helium (4K). The indented samples were sectioned through the indented regions and imaged in a scanning electron microscope. Extensive grain growth was observed in the lms that contained nanotwins and were indented cryogenically. The lms that either lacked twins, or were indented under ambient conditions, were found to exhibit no substantial grain growth by visual inspection. Precession transmission elec- tron microscopy was used to con rm these ndings quantitatively, and show that 3 and 7 boundaries proliferate during grain growth, implying that these interface types play a key role in governing the extensive grain growth observed here. Molecular dynamics sim- ulations of the motion of individual grain boundaries demonstrate that speci c classes of boundaries - notably 3 and 7 - exhibit anti- or a-thermal migration, meaning that their mobilities either increase or do not change signi cantly with decreasing temperature. An in-situ cryogenic indentation capability was developed and implemented in a transmission electron microscope. Preliminary results do not show extensive cryogenic grain growth in indented copper lms. This discrepancy could arise from the signi cant di erences in con g- uration and loading of the specimen between the two approaches, and further research and development of this capability is needed.

  2. A High-Reflectivity, Ambient-Stable Graphene Mirror for Neutral Atomic and Molecular Beams

    SciTech Connect (OSTI)

    Sutter, P.; Minniti, M.; Albrecht, P.; Farias, D.; Miranda, R.; Sutter, E.

    2011-11-21

    We report a He and H{sub 2} diffraction study of graphene-terminated Ru(0001) thin films grown epitaxially on c-axis sapphire. Even for samples exposed for several weeks to ambient conditions, brief annealing in ultrahigh vacuum restored extraordinarily high specular reflectivities for He and H{sub 2} beams (23% and 7% of the incident beam, respectively). The quality of the angular distributions recorded with both probes exceeds the one obtained from in-situ prepared graphene on Ru(0001) single crystals. Our results for graphene-terminated Ru thin films represent a significant step toward ambient tolerant, high-reflectivity curved surface mirrors for He-atom microscopy.

  3. Measurement of concrete E-modulus evolution since casting: A novel method based on ambient vibration

    SciTech Connect (OSTI)

    Azenha, Miguel; Magalhaes, Filipe; Faria, Rui; Cunha, Alvaro

    2010-07-15

    The use of ambient vibration tests to characterize the evolution of E-modulus of concrete right after casting is investigated in this paper. A new methodology is proposed, which starts by casting a concrete cylindrical beam inside a hollow acrylic formwork. This beam is then placed horizontally, simply supported at both extremities, and vertical accelerations resulting from ambient vibration are measured at mid-span. Processing these mid-span acceleration time series using power spectral density functions allows a continuous identification of the first flexural frequency of vibration of the composite beam, which in turn is correlated with the evolutive E-modulus of concrete since casting. Together with experiments conducted with the proposed methodology, a complementary validation campaign for concrete E-modulus determination was undertaken by static loading tests performed on the composite beam, as well as by standard compressive tests of concrete cylinders of the same batch loaded at different ages.

  4. High Temperature ESP Monitoring

    SciTech Connect (OSTI)

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 C based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 C system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 C.

  5. High temperature probe

    DOE Patents [OSTI]

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  6. Sources and levels of ambient ocean sound near the antarctic peninsula

    SciTech Connect (OSTI)

    Dziak, Robert P.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Lee, Won Sang; Fowler, Matt J.

    2015-04-14

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  7. Sources and levels of ambient ocean sound near the antarctic peninsula

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.; et al

    2015-04-14

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more » deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less

  8. Temperature dependent transport characteristics of graphene/n-Si diodes

    SciTech Connect (OSTI)

    Parui, S.; Ruiter, R.; Zomer, P. J.; Wojtaszek, M.; Wees, B. J. van; Banerjee, T.

    2014-12-28

    Realizing an optimal Schottky interface of graphene on Si is challenging, as the electrical transport strongly depends on the graphene quality and the fabrication processes. Such interfaces are of increasing research interest for integration in diverse electronic devices as they are thermally and chemically stable in all environments, unlike standard metal/semiconductor interfaces. We fabricate such interfaces with n-type Si at ambient conditions and find their electrical characteristics to be highly rectifying, with minimal reverse leakage current (<10{sup ?10}?A) and rectification of more than 10{sup 6}. We extract Schottky barrier height of 0.69?eV for the exfoliated graphene and 0.83?eV for the CVD graphene devices at room temperature. The temperature dependent electrical characteristics suggest the influence of inhomogeneities at the graphene/n-Si interface. A quantitative analysis of the inhomogeneity in Schottky barrier heights is presented using the potential fluctuation model proposed by Werner and Gttler.

  9. Field Test of Boiler Primary Loop Temperature Controller

    SciTech Connect (OSTI)

    Glanville, P.; Rowley, P.; Schroeder, D.; Brand, L.

    2014-09-01

    Beyond these initial system efficiency upgrades are an emerging class of Advanced Load Monitoring (ALM) aftermarket controllers that dynamically respond to the boiler load, with claims of 10% to 30% of fuel savings over a heating season. For hydronic boilers specifically, these devices perform load monitoring, with continuous measurement of supply and, in some cases, return water temperatures. Energy savings from these ALM controllers are derived from dynamic management of the boiler differential, where a microprocessor with memory of past boiler cycles prevents the boiler from firing for a period of time, to limit cycling losses and inefficient operation during perceived low load conditions. These differ from OTR controllers, which vary boiler setpoint temperatures with ambient conditions while maintaining a fixed differential.

  10. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  11. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; et al

    2015-11-04

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. MoremoreSOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.41.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation

  12. A High Temperature Silicon Carbide mosfet Power Module With Integrated Silicon-On-Insulator-Based Gate Drive

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; Wang, Fei Fred; Liang, Zhenxian; Costinett, Daniel; Blalock, Benjamin J.

    2014-04-30

    Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less

  13. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  14. Low temperature cryoprobe

    DOE Patents [OSTI]

    Sungaila, Z.F.

    1988-04-12

    A portable, hand held probe usable within a small confine to produce a point source of nitrogen or helium at a relatively constant temperatures of 77 degrees Kelvin, is discussed. 3 figs.

  15. Penrose Well Temperatures

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Christopherson, Karen

    2013-03-15

    Penrose Well Temperatures Geothermal waters have been encountered in several wells near Penrose in Fremont County, Colorado. Most of the wells were drilled for oil and gas exploration and, in a few cases, production. This ESRI point shapefile utilizes data from 95 wells in and around the Penrose area provided by the Colorado Oil and Gas Conservation Commission (COGCC) database at http://cogcc.state.co.us/ . Temperature data from the database were used to calculate a temperature gradient for each well. This information was then used to estimate temperatures at various depths. Projection: UTM Zone 13 NAD27 Extent: West -105.224871 East -105.027633 North 38.486269 South 38.259507 Originators: Colorado Oil and Gas Conservation Commission (COGCC) Karen Christopherson

  16. High-Temperature Superconductivity

    ScienceCinema (OSTI)

    Peter Johnson

    2010-01-08

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors ? materials that carry electrical c

  17. Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis

    Broader source: Energy.gov [DOE]

    Develpment of a low Cost Method to Estimate the Seismic Signiture of a Geothemal Field from Ambient Seismic Noise Analysis presentation at the April 2013 peer review meeting held in Denver, Colorado.

  18. Low temperature reactive bonding

    DOE Patents [OSTI]

    Makowiecki, Daniel M. (Livermore, CA); Bionta, Richard M. (Livermore, CA)

    1995-01-01

    The joining technique requires no external heat source and generates very little heat during joining. It involves the reaction of thin multilayered films deposited on faying surfaces to create a stable compound that functions as an intermediate or braze material in order to create a high strength bond. While high temperatures are reached in the reaction of the multilayer film, very little heat is generated because the films are very thin. It is essentially a room temperature joining process.

  19. Temperature measuring device

    DOE Patents [OSTI]

    Lauf, Robert J.; Bible, Don W.; Sohns, Carl W.

    1999-01-01

    Systems and methods are described for a wireless instrumented silicon wafer that can measure temperatures at various points and transmit those temperature readings to an external receiver. The device has particular utility in the processing of semiconductor wafers, where it can be used to map thermal uniformity on hot plates, cold plates, spin bowl chucks, etc. without the inconvenience of wires or the inevitable thermal perturbations attendant with them.

  20. High temperature pressure gauge

    DOE Patents [OSTI]

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  1. ARM - Temperature Converter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsTemperature Converter Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Temperature Converter The Fahrenheit scale, invented by German physicist Daniel Gabriel Fahrenheit (1686-1736), is based on 32 °F for the freezing point of water and 212 °F for the boiling point of water. The

  2. Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.

    2014-11-07

    High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less

  3. Investigating Low Temperature Properties of Rubber Seals - 13020

    SciTech Connect (OSTI)

    Jaunich, M.; Wolff, D.; Stark, W.

    2013-07-01

    To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glass transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of

  4. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m–3 when LVOC fate corrected) compared to daytime (average 0.9 µg m–3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small

  5. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  6. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  7. High temperature thermometric phosphors

    DOE Patents [OSTI]

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  8. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  9. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  10. High temperature lubricating process

    DOE Patents [OSTI]

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.