National Library of Energy BETA

Sample records for ambient air temperature

  1. Effect of Ambient Design Temperature on Air-Cooled Binary Plant Output

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Air-cooled binary plants are designed to provide a specified level of power production at a particular air temperature. Nominally this air temperature is the annual mean or average air temperature for the plant location. This study investigates the effect that changing the design air temperature has on power generation for an air-cooled binary plant producing power from a resource with a declining production fluid temperature and fluctuating ambient temperatures. This analysis was performed for plants operating both with and without a geothermal fluid outlet temperature limit. Aspen Plus process simulation software was used to develop optimal air-cooled binary plant designs for specific ambient temperatures as well as to rate the performance of the plant designs at off-design operating conditions. Results include calculation of annual and plant lifetime power generation as well as evaluation of plant operating characteristics, such as improved power generation capabilities during summer months when electric power prices are at peak levels.

  2. Ambient temperature thermal battery

    SciTech Connect (OSTI)

    Fletcher, A. N.; Bliss, D. E.; McManis III

    1985-11-26

    An ambient temperature thermal battery having two relatively high temperature melting electrolytes which form a low melting temperature electrolyte upon activation.

  3. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  4. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect (OSTI)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  5. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP)

  6. Neutral gas temperature maps of the pin-to-plate argon micro discharge into the ambient air

    SciTech Connect (OSTI)

    Xu, S. F.; Zhong, X. X.; Majeed, Asif

    2015-03-15

    This study is designed to explore the two dimensional temperature maps of the atmospheric argon discharge consisting of pin-to-plane electrodes supplied by a high voltage DC source. After checking the stability of the micro discharge, the two dimensional image plane focused by a quartz lens was scanned by the fiber probe driven by a 3D Mobile Platform. The rotational and vibrational temperatures are calculated using nitrogen emissions collected by the high resolution spectrometer and high sensitive intensified charge coupled device. The rotational temperature varies from 1558.15 K to 2621.14 K and vibrational temperature varies from 3010.38 K to 3774.69 K, indicating a great temperature gradient due to small discharge size. The temperature maps show a lateral expansion and a sharp truncation in the radial direction. A double layers discharge is identified, where an arc discharge coats the glow discharge.

  7. Updating LANL’s Ambient Air Monitoring Network (Airnet)

    SciTech Connect (OSTI)

    Fuehne, David Patrick; Allen, Shannon Purdue

    2015-06-09

    Airnet, LANL's ambient air monitoring for radionuclides, is described both historically as well as the drivers involved in the need for updating the program.

  8. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    536 Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners Omar Abdelaziz Som Shrestha Jeffrey Munk Randall Linkous William Goetzler Matthew Guernsey Theo Kassuga October 2015 Approved for public release. Distribution is unlimited. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/

  9. Ambient temperature modelling with soft computing techniques

    SciTech Connect (OSTI)

    Bertini, Ilaria; Ceravolo, Francesco; Citterio, Marco; Di Pietra, Biagio; Margiotta, Francesca; Pizzuti, Stefano; Puglisi, Giovanni; De Felice, Matteo

    2010-07-15

    This paper proposes a hybrid approach based on soft computing techniques in order to estimate monthly and daily ambient temperature. Indeed, we combine the back-propagation (BP) algorithm and the simple Genetic Algorithm (GA) in order to effectively train artificial neural networks (ANN) in such a way that the BP algorithm initialises a few individuals of the GA's population. Experiments concerned monthly temperature estimation of unknown places and daily temperature estimation for thermal load computation. Results have shown remarkable improvements in accuracy compared to traditional methods. (author)

  10. Enhancing Amine-Supported Materials for Ambient Air Capture ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhancing Amine-Supported Materials for Ambient Air Capture Previous Next List Julian P. Sculley, Hong-Cai Zhou, Angew. Chem. Int. Ed., 51, 12660-12661 (2012) DOI: 10.1002...

  11. Evaluating alternative refrigerants for high ambient temperature environments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdelaziz, Omar; Shrestha, Som S.

    2016-01-01

    According to the Montreal Protocol, developing countries have started the phase out schedule of the ozone depleting substances, including HCFC refrigerants, in 2015 and expect them to reach 35% reduction in 2020. This commitment to the start the phase out of HCFC refrigerants, especially R-22, in developing countries is seen as an opportunity to introduce lower Global Warming Potential (GWP) refrigerants. Furthermore, this paper summarizes an investigation into the performance of lower GWP refrigerants in high ambient temperature environments, experienced in some of the developed countries, in mini-split air conditioning units.

  12. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Oak Ridge National Laboratory High-Ambient-Temperature Evaluation Program for Low Global Warming Potential (Low-GWP) Refrigerants project was aimed to develop an understanding ...

  13. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    SciTech Connect (OSTI)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratorys Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  14. Alternative Refrigerant Evaluation for High-Ambient-Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Environments | Department of Energy Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test conditions (outdoor temperature 55°C and indoor temperature 29°C). Image: ORNL. Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test conditions (outdoor temperature 55°C and

  15. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect (OSTI)

    Sevilla, J.; Welch, J.; ,

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  16. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations This...

  17. ARM - Lesson Plans: Air Density and Temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Density and Temperature Objective The objective of this activity is to investigate the effect of temperature on the density of air. ...

  18. Polymeric electrolytes for ambient temperature lithium batteries

    SciTech Connect (OSTI)

    Farrington, G.C. . Dept. of Materials Science and Engineering)

    1991-07-01

    A new type of highly conductive Li{sup +} polymer electrolyte, referred to as the Innovision polymer electrolyte, is completely amorphous at room temperature and has an ionic conductivity in the range of 10{sup {minus}3} S/cm. This report discusses the electrochemical characteristics (lithium oxidation and reduction), conductivity, and physical properties of Innovision electrolytes containing various dissolved salts. These electrolytes are particularly interesting since they appear to have some of the highest room-temperature lithium ion conductivities yet observed among polymer electrolytes. 13 refs. 11 figs., 2 tabs.

  19. On-road evaluation of advanced hybrid electric vehicles over a wide range of ambient temperatures.

    SciTech Connect (OSTI)

    Carlson, R.; Duoba, M. J.; Bocci, D.; Lohse-Busch, H.

    2007-01-01

    In recent years, Hybrid Electric Vehicles (HEV's) have become a production viable and effective mode of efficient transportation. HEV's can provide increased fuel economy over convention technology vehicle, but these advantages can be affected dramatically by wide variations in operating temperatures. The majority of data measured for benchmarking HEV technologies is generated from ambient test cell temperatures at 22 C. To investigate cold and hot temperature affects on HEV operation and efficiency, an on-road evaluation protocol is defined and conducted over a six month study at widely varying temperatures. Two test vehicles, the 2007 Toyota Camry HEV and 2005 Ford Escape HEV, were driven on a pre-defined urban driving route in ambient temperatures ranging from -14 C to 31 C. Results from the on-road evaluation were also compared and correlated to dynamometer testing of the same drive cycle. Results from this on-road evaluation show the battery power control limits and engine operation dramatically change with temperature. These changes decrease fuel economy by more than two times at -14 C as compared to 25 C. The two vehicles control battery temperature in different manners. The Escape HEV uses the air conditioning system to provide cool air to the batteries at high temperatures and is therefore able to maintain battery temperature to less than 33 C. The Camry HEV uses cabin air to cool the batteries. The observed maximum battery temperature was 44 C.

  20. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect (OSTI)

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  1. Economizer control assembly for regulating the volume flow of outdoor ambient air

    SciTech Connect (OSTI)

    Michaels, D.D. Jr.

    1984-10-23

    An economizer assembly is disclosed wherein a sliding door is utilized for covering an outdoor ambient air opening allowing outdoor ambient air flow into a space to be conditioned. A motor shaft arrangement connected via a rotating drive rod is utilized to slidably displace the door to any position necessary to effectively regulate air flow. The utilization of this economizer control arrangement with a rooftop type air conditioning unit is further disclosed.

  2. Ambient air cooling arrangement having a pre-swirler for gas turbine engine blade cooling

    DOE Patents [OSTI]

    Lee, Ching-Pang; Tham, Kok-Mun; Schroeder, Eric; Meeroff, Jamie; Miller, Jr., Samuel R; Marra, John J

    2015-01-06

    A gas turbine engine including: an ambient-air cooling circuit (10) having a cooling channel (26) disposed in a turbine blade (22) and in fluid communication with a source (12) of ambient air: and an pre-swirler (18), the pre-swirler having: an inner shroud (38); an outer shroud (56); and a plurality of guide vanes (42), each spanning from the inner shroud to the outer shroud. Circumferentially adjacent guide vanes (46, 48) define respective nozzles (44) there between. Forces created by a rotation of the turbine blade motivate ambient air through the cooling circuit. The pre-swirler is configured to impart swirl to ambient air drawn through the nozzles and to direct the swirled ambient air toward a base of the turbine blade. The end walls (50, 54) of the pre-swirler may be contoured.

  3. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOE Patents [OSTI]

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  4. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOE Patents [OSTI]

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  5. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Standard in NEPA Evaluations (EPA, 2007) Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations (EPA, 2007) This letter, from the Director ...

  6. Electrical characteristics of multilayer MoS{sub 2} transistors at real operating temperatures with different ambient conditions

    SciTech Connect (OSTI)

    Kwon, Hyuk-Jun; Grigoropoulos, Costas P.; Jang, Jaewon Subramanian, Vivek; Kim, Sunkook

    2014-10-13

    Atomically thin, two-dimensional (2D) materials with bandgaps have attracted increasing research interest due to their promising electronic properties. Here, we investigate carrier transport and the impact of the operating ambient conditions on back-gated multilayer MoS{sub 2} field-effect transistors with a thickness of ?50?nm at their realistic working temperatures and under different ambient conditions (in air and in a vacuum of ?10{sup ?5}?Torr). Increases in temperature cause increases in I{sub min} (likely due to thermionic emission at defects), and result in decreased I{sub on} at high V{sub G} (likely due to increased phonon scattering). Thus, the I{sub on}/I{sub min} ratio decreases as the temperature increases. Moreover, the ambient effects with working temperatures on field effect mobilities were investigated. The adsorbed oxygen and water created more defect sites or impurities in the MoS{sub 2} channel, which can lead another scattering of the carriers. In air, the adsorbed molecules and phonon scattering caused a reduction of the field effect mobility, significantly. These channel mobility drop-off rates in air and in a vacuum reached 0.12?cm{sup 2}/V s K and 0.07?cm{sup 2}/V s K, respectively; the rate of degradation is steeper in air than in a vacuum due to enhanced phonon mode by the adsorbed oxygen and water molecules.

  7. Automatic electrochemical ambient air monitor for chloride and chlorine

    DOE Patents [OSTI]

    Mueller, Theodore R.

    1976-07-13

    An electrochemical monitoring system has been provided for determining chloride and chlorine in air at levels of from about 10-1000 parts per billion. The chloride is determined by oxidation to chlorine followed by reduction to chloride in a closed system. Chlorine is determined by direct reduction at a platinum electrode in 6 M H.sub.2 SO.sub.4 electrolyte. A fully automated system is utilized to (1) acquire and store a value corresponding to electrolyte-containing impurities, (2) subtract this value from that obtained in the presence of air, (3) generate coulometrically a standard sample of chlorine mixed with air sample, and determine it as chlorine and/or chloride, and (4) calculate, display, and store for permanent record the ratio of the signal obtained from the air sample and that obtained with the standard.

  8. Environmental continuous air monitor for ambient transuranic particulates

    SciTech Connect (OSTI)

    Rodgers, J.C.; Moore, M.E. [Los Alamos National Lab., NM (United States)

    1995-12-31

    We have constructed a working prototype of an environmental continuous air monitor (ECAM) for outdoor applications. The ECAM device is designed to continuously monitor the presence of transuranic contaminant aerosol below a size of 10 mm aerodynamic diameter. In remote operation, the ECAM can transmit radiological and meteorological data to a central processing location, where we have implemented geographical mapping and GPS capabilities into an integrated software package. The Canberra Alpha Sentry Monitor, a commercially available continuous air monitor (CAM) for indoor room applications, was used as the basic building block for the prototype. We increased the sample air flow to 4 cubic feet per minute (CFM) compared to the design air flow rate of 2 CFM. We also added a spread-spectrum radio data link between the CAM RS-232 serial port and a distant radio receiver that enables remote monitoring. In order to avoid collecting the large diameter particle fraction containing most of the inert mass that causes sample burial and alpha spectrum degradation, a Model 254 PM10 size-fractionating Wet from Graseby-Andersen was fitted to the Alpha Sentry Monitor. We removed the top cover of the CAM unit, and routed openings in the top surface of the CAM inlet. This allows air to flow into the inlet, down a collection tube, and then vertically into the CAM without the elbow and horizontal transition piece of the present in-line adapter. The air flows through a 47 mm filter, and the transuranic contamination is counted by a solid state alpha radiation detector, which is placed at a distance of 5 mm above the filter. The increased air flow significantly improves CAM alarm sensitivity and response time to an estimated level of 3.8x10-12 mCi/ml for an integration period 30 minutes. At the same time, the fractionating inlet removes a substantial amount of inert dust and thus enables extended monitoring without frequent maintenance.

  9. Air separation with temperature and pressure swing

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1986-01-01

    A chemical absorbent air separation process is set forth which uses a temperature swing absorption-desorption cycle in combination with a pressure swing wherein the pressure is elevated in the desorption stage of the process.

  10. Letter from Commonwealth to Mirant Potomac River Concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide

    Office of Energy Efficiency and Renewable Energy (EERE)

    Docket No. EO-05-01: Letter from Commonwealth of Virginia to Mirant Potomac River concerning Serious Violations of the National Ambient Air Quality Standards for Sulfur Dioxide.

  11. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, S.

    1994-06-21

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity [>=]10[sup [minus]4] (ohm-cm)[sup [minus]1], and preferably [>=]0.01 (ohm-cm)[sup [minus]1]. The conductivity may be due predominantly to Ag[sup +] ions, as in Ag[sub 2]WO[sub 4], or to F[sup [minus

  12. Dependence of electric strength on the ambient temperature

    SciTech Connect (OSTI)

    ?aja, Alexander, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Nemec, Patrik, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk; Malcho, Milan, E-mail: alexander.caja@fstroj.uniza.sk, E-mail: patrik.nemec@fstroj.uniza.sk, E-mail: milan.malcho@fstroj.uniza.sk [University of ilina, Faculty of Mechanical Engineering, Department of Power Engeneering, Univerzitn 1, 010 26 ilina (Slovakia)

    2014-08-06

    At present, the volume concentration of electronic components in their miniaturization to different types of microchips and increasing their performance raises the problem of cooling such elements due to the increasing density of heat flow of heat loss. Compliance with safe operating temperature of active semiconductor element is very closely related to the reliability and durability not only components, but also the entire device. Often it is also necessary to electrically isolate the unit from the side of the cooler air. Cooling demand by natural convection is typical for applications with high operating reliability. To the reliability of the system for removing heat loss increased, it is necessary to minimize need to use the mechanically or electrically powered elements, such as circulation pumps or fans. Experience to date with applications of heat pipe in specific systems appears to be the most appropriate method of cooling.

  13. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect (OSTI)

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  14. Sub-to super-ambient temperature programmable microfabricated gas chromatography column

    DOE Patents [OSTI]

    Robinson, Alex L.; Anderson, Lawrence F.

    2004-03-16

    A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.

  15. Alternative Refrigerant Evaluation for High-Ambient-Temperature...

    Energy Savers [EERE]

    test conditions (outdoor temperature 55C and indoor temperature 29C). Image: ORNL. Performance of alternative refrigerants compared with R-22 (mineral oil) at extreme test ...

  16. Coolant and ambient temperature control for chillerless liquid cooled data centers

    DOE Patents [OSTI]

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Simons, Robert E.

    2016-02-02

    Cooling control methods include measuring a temperature of air provided to a plurality of nodes by an air-to-liquid heat exchanger, measuring a temperature of at least one component of the plurality of nodes and finding a maximum component temperature across all such nodes, comparing the maximum component temperature to a first and second component threshold and comparing the air temperature to a first and second air threshold, and controlling a proportion of coolant flow and a coolant flow rate to the air-to-liquid heat exchanger and the plurality of nodes based on the comparisons.

  17. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus

    DOE Patents [OSTI]

    Zaromb, Solomon

    1994-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  18. Humidity-resistant ambient-temperature solid-electrolyte amperometric sensing apparatus and methods

    DOE Patents [OSTI]

    Zaromb, Solomon

    2001-01-01

    Apparatus and methods for detecting selected chemical compounds in air or other gas streams at room or ambient temperature includes a liquid-free humidity-resistant amperometric sensor comprising a sensing electrode and a counter and reference electrode separated by a solid electrolyte. The sensing electrode preferably contains a noble metal, such as Pt black. The electrolyte is water-free, non-hygroscopic, and substantially water-insoluble, and has a room temperature ionic conductivity .gtoreq.10.sup.-4 (ohm-cm).sup.-1, and preferably .gtoreq.0.01 (ohm-cm).sup.-1. The conductivity may be due predominantly to Ag+ ions, as in Ag.sub.2 WO.sub.4.4AgI, or to F- ions, as in Ce.sub.0.95 Ca.sub.0.05 F.sub.2.95. Electrical contacts serve to connect the electrodes to potentiostating and detecting circuitry which controls the potential of the sensing electrode relative to the reference electrode, detects the signal generated by the sensor, and indicates the detected signal.

  19. Metal-air low temperature ionic liquid cell

    SciTech Connect (OSTI)

    Friesen, Cody A; Buttry, Daniel A

    2014-11-25

    The present application relates to an electrochemical metal-air cell in which a low temperature ionic liquid is used.

  20. Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration

    SciTech Connect (OSTI)

    Dooley, James J.

    2011-06-08

    This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

  1. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, B. B.; Campuzano-Jost, P.; Ortega, A. M.; Day, D. A.; Kaser, L.; Jud, W.; Karl, T.; Hansel, A.; Hunter, J. F.; Cross, E. S.; et al

    2015-11-04

    Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR) located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA) formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs) onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. MoremoreSOA production was observed in the OFR at nighttime (average 4 ?g m-3 when LVOC fate corrected) compared to daytime (average 1 ?g m-3 when LVOC fate corrected), with maximum formation observed at 0.41.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH oxidation

  2. Third harmonic generation in air ambient and laser ablated carbon plasma

    SciTech Connect (OSTI)

    Singh, Ravi Pratap Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablated plume play a vital role in the observed third harmonic signals.

  3. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Reed, R.M.; Hamilton, C.B.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  4. Environmental Resources of Selected Areas of Hawaii: Climate, Ambient Air Quality, and Noise (DRAFT)

    SciTech Connect (OSTI)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.; Hamilton, C.B.

    1994-06-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 withdrawing its Notice of Intent of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. The report presents a general description of the climate and air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui, and Oahu. It also presents a literature review as baseline information on the health effects of hydrogen sulfide. the scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.

  5. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m−3 when LVOC fate corrected) compared to daytime (average 0.9 µg m−3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of

  6. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; et al

    2016-03-08

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen–Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed formore » semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m–3 when LVOC fate corrected) compared to daytime (average 0.9 µg m–3 when LVOC fate corrected), with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (>10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small

  7. Concentrations of a water soluble, gas-phase mercury species in ambient air: Results from measurements and modeling

    SciTech Connect (OSTI)

    Lindberg, S.E.; Stratton, W.J.; Pai, P.; Allan, M.A.

    1997-12-31

    There are few reliable data on the speciation of Hg in ambient air, although this information is critical to understanding the fate of Hg once released from point sources. The water soluble species of Hg that are thought to exist in flue gases would be subject to far greater local removal rates than is elemental Hg vapor, but methods are lacing to quantify this species. The authors developed a method using refluxing mist chambers to measure the airborne concentrations of reactive gaseous mercury (RGM) in short-term samples under ambient conditions. The method exhibits an effective detection limit of 0.02 ng/m{sup 3} and a precision for ambient concentration levels of {+-}20--30%. Using a model that simulates atmospheric transport and fate of anthropogenic mercury emissions over the contiguous United States, the authors generated 24-hr RGM concentrations to compare to the measurement data. The average RGM concentrations measured with their mist chambers at sites in Tennessee (TN) and Indiana (IN) were 0.065 ng/m{sup 3} and 0.100 ng/m{sup 3}, respectively. These averages represent about 3% of total gaseous mercury (TGM), and RGM generally exceeds regional particulate Hg. The 24-hr model-simulated RGM concentration averages in the modeling grid cells representing TN and IN are 0.051 ng/m{sup 3} and 0.098 ng/m{sup 3} respectively, in good agreement with the data. The measured concentrations at the two sites exhibit weak positive correlations with temperature, solar radiation, O{sub 3}, SO{sub 2}, and TGM. These concentrations are high enough to suggest that RGM can play an important role in both wet and dry deposition on a regional scale.

  8. Sorption Capacity of Europium for Media #1 and Media #2 from Solution at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-16

    This dataset shows the capacity for Europium of media #1 and media #2 in a shakertable experiment. The experimental conditions were 150mL of 500ppm Eu solution, 2g of media, pH of 3.2, at ambient temperature.

  9. Dynamic Column Extraction for Europium on Media #1 at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-04-07

    This is a dataset for a 200ppm europium solution sent through a column with 12g of media #1 at pH of 3.2. This column experiment was run at ambient temperature at a flow rate of 2mL/min.

  10. High-Temperature, Air-Cooled Traction Drive Inverter Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Air-Cooled Traction Drive Inverter Benchmarking of Competitive Technologies High Temperature, High Voltage Fully Integrated Gate Driver Circuit

  11. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  12. Pulmonary function and respiratory symptoms of school children exposed to ambient air pollution

    SciTech Connect (OSTI)

    Kim, Yoon Shin; Ko, Ung Ring

    1996-12-31

    This study was undertaken to evaluate the health effect of air pollution on pulmonary function and respiratory symptoms of Korean school children between 7 and 10 years of age during November 1995-January 1996. A standard respiratory symptom questionnaire was administered and spirometry was performed to examine pulmonary function of 121 children in an urban polluted area, Seoul, and of 119 children in non-polluted area, Sokcho, respectively. There was significant difference in the level of pulmonary function [forced expiratory volume in second (FEV{sub 1.0}) and forced vital capacity (FVC)] between exposed groups to polluted area and non-polluted area. Parental smoking was significantly related to respiratory symptoms of cough, phlegm, and the level of pulmonary function. The observed changes in FEV{sub 1.0} and FVC seemed to relate to home cooking fuel, not to respiratory symptoms. The additional longitudinal work that carefully monitors ambient and indoor air pollution and health effects data should be conducted to confirm these results.

  13. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  14. Air Cooling | Open Energy Information

    Open Energy Info (EERE)

    Air cooling is limited on ambient temperatures and typically require a larger footprint than Water Cooling, but when water restrictions are great enough to prevent the...

  15. Modeling ambient air concentrations of volatile organic compounds via digitally filtered FTIR spectra

    SciTech Connect (OSTI)

    Kaltenbach, T.

    1994-12-31

    As part of an agreement with the New York State Department of Environmental Conservation, Eastman Kodak Company has a program to monitor ambient air concentrations of volatile organic compounds at its fence lines. Currently, canister-based point sensors are used to collect a time-averaged sample every sixth day. The staff required to position, retrieve, and analyze these canisters makes this procedure expensive. Alternative methods are being investigated that can provide similar results in real time, while also saving costs. One such method is Fourier transform infrared (FTIR) spectroscopy. Radian Corporation performed a series of FTIR fence-line monitoring experiments at Kodak about one year ago. The spectra collected during this experiment are complicated by the presence of water vapor bands. Digital filtering techniques utilizing the Fourier transform are being explored as a means of removing the interference due to water vapor. When a digital filter is used as a spectral preprocessor, partial least squares (PLS) techniques can be employed to provide a powerful prediction pool. This seminar will describe the operation of the Fourier filters and present some encouraging preliminary results from PLS models.

  16. Characterization of stable brush-shaped large-volume plasma generated at ambient air

    SciTech Connect (OSTI)

    Tang Jie; Cao Wenqing; Zhao Wei; Wang Yishan; Duan Yixiang

    2012-01-15

    A brush-shaped, large-volume plasma was generated at ambient pressure with a dc power supply and flowing argon gas, as well as a narrow outlet slit. Based on the V-I curve and emission profiles obtained in our experiment, the plasma shows some typical glow discharge characteristics. The electron density in the positive column close to the anode is about 1.4x10{sup 14}cm{sup -3} high, which is desirable for generating abundant amounts of reactive species in the plasma. Emission spectroscopy diagnosis indicates that many reactive species, such as excited argon atoms, excited oxygen atoms, excited nitrogen molecules, OH and C{sub 2} radicals, etc., generated within the plasma are distributed symmetrically and uniformly, which is preferable to some chemical reactions in practical applications. Spectral measurement also shows that the concentration of some excited argon atoms increases with the argon flow rate when the applied voltage is unvaried, while that of these excited argon atoms declines with the discharge current in the normal/subnormal glow discharge mode with the argon flow rate fixed. The plasma size is about 15 mm x 1 mm x 19 mm (L, W, H), when 38-W of discharge power is used. Such a laminar brush-shaped large-volume plasma device ensures not only efficient utilization of the plasma gas, but also effective processing of objects with large volume and complicated structure that are susceptible to high temperatures.

  17. Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Progress in Retrieving Air Temperature Profiles and Air-Sea Temperature Differences from Infrared and Microwave Scanning Radiometer Data D. Cimini University of L'Aquila L'Aquila, Italy J. A. Shaw Department of Electrical and Computer Engineering Montana State University Bozeman, Montana E. R. Westwater Cooperative Institute for Research in the Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder,

  18. Parametric study of atmospheric pressure microwave-induced Ar/O{sub 2} plasmas and the ambient air effect on the plasma

    SciTech Connect (OSTI)

    Moon, Se Youn; Choe, W.

    2006-10-15

    A torch type microwave-induced afterglow plasma was produced at atmospheric pressure using an open-ended fused silica concentric double tube assisted by Ar and O{sub 2} supply gases. The plasma emerged from the end of the discharge tube and was exposed to ambient air. A parametric study of the plasma characteristics was performed by measuring the temperature, density, and plasma volume as the operational parameters such as microwave power, gas flow rate, and its composition were varied. The excitation temperature (T{sub exc}) obtained from the Ar I emission spectrum ranged from 3010 to 4350 K and the rotational temperature (T{sub rot}) measured from the OH and O{sub 2} diatomic molecular spectra ranged from 2250 to 3550 K. The electron density (n{sub e}) from the H{sub {beta}} Stark broadening width at the plasma core was in the range of 6.6 to 7.6x10{sup 14} cm{sup -3}. The two-dimensional distribution of T{sub exc} and T{sub rot} was also obtained. Experiments while varying the Ar and O{sub 2} gas flow rate and the O{sub 2}/Ar ratio showed that n{sub e} was reduced but T{sub exc} was increased as the O{sub 2} flow rate was increased. Using an additional dielectric tube for shielding the plasma from the ambient air demonstrated a significantly enlarged plasma length and lower T{sub rot} due to the nitrogen entrainment, as compared to the unshielded case.

  19. Effect of metal Additions on the Hydrogen Uptake of Microporous Carbon at Near-Ambient Temperature

    SciTech Connect (OSTI)

    Contescu, Cristian I; Gallego, Nidia C; Bhat, Vinay V

    2010-01-01

    Enhancing the hydrogen sorption capacity of microporous carbon materials at near-ambient temperature continue to be a challenge and the subject of intense research. Physisorption alone on microporous carbons is not strong enough to provide the desired levels of hydrogen uptake. Modifying carbons with small amounts of metals has been proven effective to increase the amounts adsorbed. However, very different mechanisms may be involved when the promoters are transition metals or alkali metals. In this presentation we compare the effect of additions of palladium and/or alkali metals on the hydrogen uptake of microporous carbons, in an attempt to differentiate between the possible mechanisms leading to enhanced hydrogen capacity and fast kinetics.

  20. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations

    Broader source: Energy.gov [DOE]

    This letter, from the Director of the Environmental Protection Agency's Office of Federal Activities, outlines EPA's position as to how the revised National Air Quality Standard should be reflected in NEPA evaluations of proposed actions.

  1. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect (OSTI)

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  2. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  3. Human health benefits of ambient sulfate aerosol reductions under Title IV of the 1990 Clean Air Act amendments

    SciTech Connect (OSTI)

    Chestnut, L.G.; Watkins, A.M.

    1997-12-31

    The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO{sub 2} emissions in the United States by the year 2010. Although the provisions apply nationwide, most of the reduction will take place in the eastern half of the United States, where use of high sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected reduction in adverse human health effects associated with exposure to ambient sulfate aerosols, a secondary pollutant formed in the atmosphere when SO{sub 2} is present. Sulfate aerosols are a significant constituent of fine particulate (PM{sub 2.5}). This paper combines available epidemiologic evidence of health effects associated with sulfate aerosols and economic estimates of willingness to pay for reductions in risks or incidence of health effects with available estimates of the difference between expected ambient sulfate concentrations in the eastern United States and southeastern Canada with and without Title IV to estimate the expected health benefits of Title IV. The results suggest a mean annual benefit in the eastern United States of $10.6 billion (in 1994 dollars) in 1997 and $40.0 billion in 2010, with an additional $1 billion benefit each year in Ontario and Quebec provinces.

  4. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    SciTech Connect (OSTI)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  5. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    SciTech Connect (OSTI)

    A. Jeffrey Sondrup; Arthur S. Rood

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  6. Evaluation of an ambient air sampling system for tritium (as tritiated water vapor) using silica gel adsorbent columns

    SciTech Connect (OSTI)

    Patton, G.W.; Cooper, A.T.; Tinker, M.R.

    1995-08-01

    Ambient air samples for tritium analysis (as the tritiated water vapor [HTO] content of atmospheric moisture) are collected for the Hanford Site Surface Environmental Surveillance Project (SESP) using the solid adsorbent silica gel. The silica gel has a moisture sensitive indicator which allows for visual observation of moisture movement through a column. Despite using an established method, some silica gel columns showed a complete change in the color indicator for summertime samples suggesting that breakthrough had occurred; thus a series of tests was conducted on the sampling system in an environmental chamber. The purpose of this study was to determine the maximum practical sampling volume and overall collection efficiency for water vapor collected on silica gel columns. Another purpose was to demonstrate the use of an impinger-based system to load water vapor onto silica gel columns to provide realistic analytical spikes and blanks for the Hanford Site SESP. Breakthrough volumes (V{sub b}) were measured and the chromatographic efficiency (expressed as the number of theoretical plates [N]) was calculated for a range of environmental conditions. Tests involved visual observations of the change in the silica gel`s color indicator as a moist air stream was drawn through the column, measurement of the amount of a tritium tracer retained and then recovered from the silica gel, and gravimetric analysis for silica gel columns exposed in the environmental chamber.

  7. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  8. Testing an e2v CCD230-42 sensor for dark current performance at ambient temperatures - Final Paper

    SciTech Connect (OSTI)

    Dungee, Ryan

    2015-08-20

    The design of the Guidance Focus and Alignment (GFA) system for the Dark Energy Spectroscopic Instrument (DESI) project calls for a set of charge-coupled devices (CCDs) which operate at ambient temperature. Here we assess the performance of these CCDs under such conditions. Data was collected from –21°C to 28°C and used to determine the effect of temperature on the effectiveness of dark current subtraction. Comparing the dark current uncertainty to our expected signal has shown that the DESI design specifications will be met without need for significant changes.

  9. Vitrification of high level nuclear waste inside ambient temperature disposal containers using inductive heating: The SMILE system

    SciTech Connect (OSTI)

    Powell, J.; Reich, M.; Barletta, R.

    1996-03-01

    A new approach, termed SMILE (Small Module Inductively Loaded Energy), for the vitrification of high level nuclear wastes (HLW) is described. Present vitrification systems liquefy the HLW solids and associated frit material in large high temperature melters. The molten mix is then poured into small ({approximately}1 m{sup 3}) disposal canisters, where it solidifies and cools. SMILE eliminates the separate, large high temperature melter. Instead, the BLW solids and frit melt inside the final disposal containers, using inductive heating. The contents then solidify and cool in place. The SMILE modules and the inductive heating process are designed so that the outer stainless can of the module remains at near ambient temperature during the process cycle. Module dimensions are similar to those of present disposal containers. The can is thermally insulated from the high temperature inner container by a thin layer of refractory alumina firebricks. The inner container is a graphite crucible lined with a dense alumina refractory that holds the HLW and fiit materials. After the SMILE module is loaded with a slurry of HLW and frit solids, an external multi-turn coil is energized with 30-cycle AC current. The enclosing external coil is the primary of a power transformer, with the graphite crucible acting as a single turn ``secondary.`` The induced current in the ``secondary`` heats the graphite, which in turn heats the HLW and frit materials. The first stage of the heating process is carried out at an intermediate temperature to drive off remnant liquid water and water of hydration, which takes about 1 day. The small fill/vent tube to the module is then sealed off and the interior temperature raised to the vitrification range, i.e., {approximately}1200C. Liquefaction is complete after approximately 1 day. The inductive heating then ceases and the module slowly loses heat to the environment, allowing the molten material to solidify and cool down to ambient temperature.

  10. Application of Frequency of Detection Methods in Design and Optimization of the INL Site Ambient Air Monitoring Network

    SciTech Connect (OSTI)

    Rood, Arthur S.; Sondrup, A. Jeffrey

    2015-11-01

    This report presents an evaluation of a hypothetical INL Site monitoring network and the existing INL air monitoring network using frequency of detection methods. The hypothetical network was designed to address the requirement in 40 CFR Part 61, Subpart H (2006) that “emissions of radionuclides to ambient air from U.S. DOE facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent exceeding 10 mrem/year.” To meet the requirement for monitoring only, “radionuclide releases that would result in an effective dose of 10% of the standard shall be readily detectable and distinguishable from background.” Thus, the hypothetical network consists of air samplers placed at residence locations that surround INL and at other locations where onsite livestock grazing takes place. Two exposure scenarios were used in this evaluation: a resident scenario and a shepherd/rancher scenario. The resident was assumed to be continuously present at their residence while the shepherd/rancher was assumed to be present 24-hours at a fixed location on the grazing allotment. Important radionuclides were identified from annual INL radionuclide National Emission Standards for Hazardous Pollutants reports. Important radionuclides were defined as those that potentially contribute 1% or greater to the annual total dose at the radionuclide National Emission Standards for Hazardous Pollutants maximally exposed individual location and include H-3, Am-241, Pu-238, Pu 239, Cs-137, Sr-90, and I-131. For this evaluation, the network performance objective was set at achieving a frequency of detection greater than or equal to 95%. Results indicated that the hypothetical network for the resident scenario met all performance objectives for H-3 and I-131 and most performance objectives for Cs-137 and Sr-90. However, all actinides failed to meet the performance objectives for most sources. The shepherd/rancher scenario showed

  11. Toronto 1986: Ambient air-quality survey in the South Riverdale area, May-June 1986. Report No. ARB-104-87-AQM

    SciTech Connect (OSTI)

    Bell, R.W.; DeBrou, G.

    1988-01-01

    The objectives of the study were to determine the general air quality parameters in the area and if possible, identify and quantify any malodorous compounds. Because of these objectives, special emphasis was placed on monitoring the ambient air downwind of the following companies: Lever Brothers, Rothsay concentrates, Canadian Oil, Darling Rendering, Colgate-Palmolive, A.R. Clarke and the Metro Sewage Treatment Plant. The survey period extended from May 27 to June 26. This document contains the results of the study, and discusses the findings.

  12. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devicesmore » with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.« less

  13. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    SciTech Connect (OSTI)

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devices with high Voc values at 25°C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.

  14. Amorphous/crystalline silicon interface passivation: Ambient-temperature dependence and implications for solar cell performance

    SciTech Connect (OSTI)

    Seif, Johannes P.; Krishnamani, Gopal; Demaurex, Benedicte; Ballif, Christophe; Wolf, Stefaan De

    2015-03-02

    Silicon heterojunction (SHJ) solar cells feature amorphous silicon passivation films, which enable very high voltages. We report how such passivation increases with operating temperature for amorphous silicon stacks involving doped layers and decreases for intrinsic-layer-only passivation. We discuss the implications of this phenomenon on the solar cell's temperature coefficient, which represents an important figure-of-merit for the energy yield of devices deployed in the field. We show evidence that both open-circuit voltage (Voc) and fill factor (FF) are affected by these variations in passivation and quantify these temperature-mediated effects, compared with those expected from standard diode equations. We confirm that devices with high Voc values at 25C show better high-temperature performance. Thus, we also argue that the precise device architecture, such as the presence of charge-transport barriers, may affect the temperature-dependent device performance as well.

  15. A high-temperature, ambient-pressure ultra-dry operando reactor cell for Fourier-transform infrared spectroscopy

    SciTech Connect (OSTI)

    Kck, Eva-Maria; Kogler, Michaela; Pramsoler, Reinhold; Kltzer, Bernhard; Penner, Simon

    2014-08-15

    The construction of a newly designed high-temperature, high-pressure FT-IR reaction cell for ultra-dry in situ and operando operation is reported. The reaction cell itself as well as the sample holder is fully made of quartz glass, with no hot metal or ceramic parts in the vicinity of the high-temperature zone. Special emphasis was put on chemically absolute water-free and inert experimental conditions, which includes reaction cell and gas-feeding lines. Operation and spectroscopy up to 1273 K is possible, as well as pressures up to ambient conditions. The reaction cell exhibits a very easy and variable construction and can be adjusted to any available FT-IR spectrometer. Its particular strength lies in its possibility to access and study samples under very demanding experimental conditions. This includes studies at very high temperatures, e.g., for solid-oxide fuel cell research or studies where the water content of the reaction mixtures must be exactly adjusted. The latter includes all adsorption studies on oxide surfaces, where the hydroxylation degree is of paramount importance. The capability of the reaction cell will be demonstrated for two selected examples where information and in due course a correlation to other methods can only be achieved using the presented setup.

  16. Ambient-temperature superconductor symetrical metal-dihalide bis-(ethylenedithio)-tetrathiafulvalene compounds

    DOE Patents [OSTI]

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1987-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K. which is high for organic superconductors.

  17. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; et al

    2016-06-15

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient andmore » reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days–6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ~ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ~ –0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ~ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and

  18. Pilot project of biogas production from pig manure and urine mixture at ambient temperature in Ventanilla (Lima, Peru)

    SciTech Connect (OSTI)

    Ferrer, I. Gamiz, M.

    2009-01-15

    Parque Porcino de Ventanilla has an extension of 840 ha with 2200 farmers dedicated to pig production. There is a lack of services in the area (i.e., water supply, electricity, or waste collection). Anaerobic treatment of pig manure would replace current dumping and incineration, reducing environmental pollution and hazards to public health, as well as providing an organic fertilizer and biogas. The objective of the present work was to study the viability of ambient temperature anaerobic digestion of pig manure diluted in urine, by means of on-site pilot scale reactors. The final goal was to establish design parameters for anaerobic digesters to be implemented; since it was part of a project to improve life conditions for the farmers through the incorporation of better management techniques. Experiments were carried out in a low-cost pilot plant, which consists of three anaerobic digesters (225 L total volume), without heating or agitation, placed in a greenhouse. The start-up of the digestion process was performed with a mixture of temperature adapted pig manure-sludge and fresh rumen, and showed a good performance regardless of the dilution of pig manure with water or urine, which is a key parameter due to the scarcity of water in the area under study.

  19. Oxide modified air electrode surface for high temperature electrochemical cells

    DOE Patents [OSTI]

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  20. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect (OSTI)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  1. Determination of the transient electron temperature in a femtosecond-laser-induced air plasma filament

    SciTech Connect (OSTI)

    Sun Zhanliang; Chen Jinhai; Rudolph, Wolfgang

    2011-04-15

    The transient electron temperature in a weakly ionized femtosecond-laser-produced air plasma filament was determined from optical absorption and diffraction experiments. The electron temperature and plasma density decay on similar time scales of a few hundred picoseconds. Comparison with plasma theory reveals the importance of inelastic collisions that lead to energy transfer to vibrational degrees of freedom of air molecules during the plasma cooling.

  2. Ambient Air Radionuclide Concentrations at and near TA-50 from 2003 through the First Quarter of 2004

    SciTech Connect (OSTI)

    K.W. Jacobson; C.F. Eberhart

    2005-09-05

    The Meteorology and Air Quality (MAQ) group at Los Alamos National Laboratory maintains and operates a large network of environmental air samplers called AIRNET. Some of these samplers are located near Material Disposal Area C at TA-50, a low-level radioactive waste burial site in the semiarid environment of the Pajarito Plateau, near Los Alamos. AIRNET sampling media consist of a filter and silica gel. They are exchanged once every 2 weeks. Presented are 5 months of air sampling results for 5 stations operating in the vicinity of Material Disposal Area C.

  3. Near-ambient pressure XPS of high-temperature surface chemistry in Sr2Co2O5 thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong, Wesley T.; Stoerzinger, Kelsey; Crumlin, Ethan J.; Mutoro, Eva; Jeen, Hyoung Jeen; Lee, Ho Nyung; Shao-Horn, Yang

    2016-02-11

    Transition metal perovskite oxides are promising electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells, but a lack of fundamental understanding of oxide surfaces impedes the rational design of novel catalysts with improved device efficiencies. In particular, understanding the surface chemistry of oxides is essential for controlling both catalytic activity and long-term stability. Thus, elucidating the physical nature of species on perovskite surfaces and their catalytic enhancement would generate new insights in developing oxide electrocatalysts. In this article, we perform near-ambient pressure XPS of model brownmillerite Sr2Co2O5 (SCO) epitaxial thin films with different crystallographic orientations. Detailed analysis of themore » Co 2p spectra suggests that the films lose oxygen as a function of temperature. Moreover, deconvolution of the O 1s spectra shows distinct behavior for (114)-oriented SCO films compared to (001)-oriented SCO films, where an additional bulk oxygen species is observed. These findings indicate a change to a perovskite-like oxygen chemistry that occurs more easily in (114) SCO than (001) SCO, likely due to the orientation of oxygen vacancy channels out-of-plane with respect to the film surface. This difference in surface chemistry is responsible for the anisotropy of the oxygen surface exchange coefficient of SCO and may contribute to the enhanced ORR kinetics of La0.8Sr0.2CoO3-δ thin films by SCO surface particles observed previously.« less

  4. Electrochemistry in neutral ambient-temperature ionic liquids. 1. Studies of iron (III), neodymium (III), and lithium(I)

    SciTech Connect (OSTI)

    Osteryoung, R.A.

    1985-01-01

    An ambient-temperature neutral ionic liquid composed of aluminum chloride and either N-1-butylpyridinium or 1-methyl-3-ethylimidazolium chloride, BuPyCl or ImCl, respectively, was employed in studies that take advantage of their unusual properties. These include an extended electrochemical window, readily controlled additions of excess chloride (base) or aluminum chloride (acid), and the fact that the physical properties of the neutral melt do not change about the 1:1 mole ratio of AlCl/sub 3/ to RCl. Li/sup +/ was found to be reducible in the neutral AlCl/sub 3/-ImCl melt, and its diffusion coefficient was found to be .00000086 sq cm/s. The stoichiometry of the complex formed between Nd(III) and Cl/sup +/ in the molten salt system was investigated by what is essentially an amperometric titration and was found to be NdC/sub 6/(3-). The structure of the Fe(III) chloro complex that exists in basic or acidic melts just slightly varying in composition from the neutral melt was also investigated; a constant value for the diffusion coefficient-viscosity product in both systems suggests no change in structure.

  5. Reflecting the Revised PM 2.5 National Ambient Air Quality Standard in NEPA Evaluations (EPA, 2007)

    Broader source: Energy.gov [DOE]

    This letter, from the Director of the Environmental Protection Agency's Office of Federal Activities, outlines EPA's position as to how the revised National Air Quality Standard should be reflected in NEPA evaluations of proposed actions.

  6. Measured Performance of a Low Temperature Air Source Heat Pump

    SciTech Connect (OSTI)

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system's Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.

  7. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect (OSTI)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  8. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  9. Ambient air monitoring during the 2011 Las Conchas wildland fire near Los Alamos, U.S.A.

    SciTech Connect (OSTI)

    Green, Andrew A.; Schlemann, Shea A.; Young, Daniel L.

    2012-08-31

    Air monitoring data collected during the Las Conchas fire near the Los Alamos National Laboratory during 2011 are presented. Data included are for selected radionuclides and selected metals found in particulate matter. None of these analytes were seen at levels which exceeded any state or federal standards.

  10. Ambient and elevated temperature fracture and cyclic-fatigue properties in a series of Al-containing silicon carbides

    SciTech Connect (OSTI)

    Yuan, Rong

    2004-08-30

    A series of in situ toughened, Al, B and C containing, silicon carbide ceramics (ABC-SiC) has been examined with Al contents varying from 3 to 7 wt%. With increasing Al additions, the grain morphology in the as-processed microstructures varied from elongated to bimodal to equiaxed, with a change in the nature of the grain-boundary film from amorphous to partially crystalline to fully crystalline. Fracture toughness and cyclic fatigue tests on these microstructures revealed that although the 7 wt.% Al containing material (7ABC) was extremely brittle, the 3 and particularly 5 wt.% Al materials (3ABC and 5ABC, respectively) displayed excellent crack-growth resistance at both ambient (25 C) and elevated (1300 C) temperatures. Indeed, no evidence of creep damage, in the form of grain-boundary cavitation, was seen at temperatures at 1300 C or below. The enhanced toughness of the higher Al-containing materials was associated with extensive crack bridging from both interlocking grains (in 3ABC) and uncracked ligaments (in 5ABC); in contrast, the 7ABC SiC showed no such bridging, concomitant with a marked reduction in the volume fraction of elongated grains. Mechanistically, cyclic fatigue-crack growth in 3ABC and 5ABC SiC involved the progressive degradation of such bridging ligaments in the crack wake, with the difference in the degree of elastic vs. frictional bridging affecting the slope, i.e., Paris law exponent, of the crack-growth curve. In addition an investigation of fracture resistance in non-transforming ceramics toughened by grain bridging mechanism is presented using linear elastic fracture mechanics (LEFM). Linear superposition theorems are used for the superposition of crack opening displacements, as well as stress intensity factors, resulting from the external tractions and the internal compressive bridging stresses. Specifically weight functions are used to relate the CODs, stress intensity factors, and tractions and the bridging stress. Expressions are

  11. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    SciTech Connect (OSTI)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-07-12

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented.

  12. A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Rohlman, Diana; Syron, Laura; Hobbie, Kevin; Anderson, Kim A.; Scaffidi, Christopher; Sudakin, Daniel; Peterson, Elena S.; Waters, Katrina M.; Haynes, Erin; Arkin, Lisa; et al

    2015-08-15

    In west Eugene (Oregon), community research indicates residents are disproportionately exposed to industrial air pollution and exhibit increased asthma incidence. In Carroll County (Ohio), recent increases in unconventional natural gas drilling sparked air quality concerns. These community concerns led to the development of a prototype mobile device to measure personal chemical exposure, location, and respiratory function. Working directly with the environmental justice (EJ) communities, the prototype was developed to (1) meet the needs of the community and; (2) evaluate the use in EJ communities. The prototype was evaluated in 3 community focus groups (n=25) to obtain feedback on the prototypemore » and feasibility study design to evaluate the efficacy of the device to address community concerns. Focus groups were recorded and qualitatively analyzed with discrete feedback tabulated for further refinement. The prototype was improved by community feedback resulting in 8 alterations/additions to software and instructional materials. Overall, focus group participants were supportive of the device and believed it would be a useful environmental health tool. The use of focus groups ensured that community members were engaged in the research design and development of a novel environmental health tool. We found that community-based research strategies resulted in a refined device as well as relevant research questions, specific to the EJ community needs and concerns.« less

  13. A Community-Based Approach to Developing a Mobile Device for Measuring Ambient Air Exposure, Location, and Respiratory Health

    SciTech Connect (OSTI)

    Rohlman, Diana; Syron, Laura; Hobbie, Kevin; Anderson, Kim A.; Scaffidi, Christopher; Sudakin, Daniel; Peterson, Elena S.; Waters, Katrina M.; Haynes, Erin; Arkin, Lisa; Feezel, Paul; Kincl, Laurel

    2015-08-15

    In west Eugene (Oregon), community research indicates residents are disproportionately exposed to industrial air pollution and exhibit increased asthma incidence. In Carroll County (Ohio), recent increases in unconventional natural gas drilling sparked air quality concerns. These community concerns led to the development of a prototype mobile device to measure personal chemical exposure, location, and respiratory function. Working directly with the environmental justice (EJ) communities, the prototype was developed to (1) meet the needs of the community and; (2) evaluate the use in EJ communities. The prototype was evaluated in 3 community focus groups (n=25) to obtain feedback on the prototype and feasibility study design to evaluate the efficacy of the device to address community concerns. Focus groups were recorded and qualitatively analyzed with discrete feedback tabulated for further refinement. The prototype was improved by community feedback resulting in 8 alterations/additions to software and instructional materials. Overall, focus group participants were supportive of the device and believed it would be a useful environmental health tool. The use of focus groups ensured that community members were engaged in the research design and development of a novel environmental health tool. We found that community-based research strategies resulted in a refined device as well as relevant research questions, specific to the EJ community needs and concerns.

  14. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    SciTech Connect (OSTI)

    Margaret Torn

    2015-01-14

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  15. CO2 CH4 flux Air temperature Soil temperature and Soil moisture, Barrow, Alaska 2013 ver. 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Margaret Torn

    This dataset consists of field measurements of CO2 and CH4 flux, as well as soil properties made during 2013 in Areas A-D of Intensive Site 1 at the Next-Generation Ecosystem Experiments (NGEE) Arctic site near Barrow, Alaska. Included are i) measurements of CO2 and CH4 flux made from June to September (ii) Calculation of corresponding Gross Primary Productivity (GPP) and CH4 exchange (transparent minus opaque) between atmosphere and the ecosystem (ii) Measurements of Los Gatos Research (LGR) chamber air temperature made from June to September (ii) measurements of surface layer depth, type of surface layer, soil temperature and soil moisture from June to September.

  16. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Xuan Shi, Dali Wang

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  17. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect (OSTI)

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  18. REE Sorption Study for Media #1 and Media #2 in Brine #1 and #2 at different Liquid to Solid Ratio's at Ambient Temperature

    SciTech Connect (OSTI)

    Gary Garland

    2015-03-27

    This data set shows the different loading capacities of Media #1 and Media #2 in a high and low salt content brine matrix at different liquid to solid ratio's. These data sets are shaker bath tests on media #1 and media #2 in brine's #1 and #2 at 500mL-.5g(1000-1 ratio), 150mL-.75g(200-1 ratio), and 150mL-2.5g(60-1 ratio) at ambient temperature.

  19. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  20. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOE Patents [OSTI]

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  1. The potential for reducing urban air temperatures and energy consumption through vegetative cooling

    SciTech Connect (OSTI)

    Kurn, D.M.; Bretz, S.E.; Huang, B.; Akbari, H.

    1994-05-01

    A network of 23 weather stations was used to detect existing oases in Southern California. Four stations, separated from one another by 15--25 miles (24--40 km), were closely examined. Data were strongly affected by the distance of the stations from the Pacific Ocean. This and other city-scale effects made the network inadequate for detection of urban oases. We also conducted traverse measurements of temperature and humidity in the Whittier Narrows Recreation Area in Los Angeles County on September 8--10, 1993. Near-surface air temperatures over vegetated areas were 1--2{degrees}C lower than background air temperatures. We estimate that vegetation may lower urban temperatures by 1{degrees}C, while the establishment of vegetative canopies may lower local temperatures by an additional 2{degrees}C. An increase in vegetation in residential neighborhoods may reduce peak loads in the Los Angeles area by 0.3 GW, and reduce energy consumption by 0.2 BkWh/year, saving $20 million annually. Large additional savings would result from regional cooling.

  2. Controlling a rabbet load and air/oil seal temperatures in a turbine

    DOE Patents [OSTI]

    Schmidt, Mark Christopher

    2002-01-01

    During a standard fired shutdown of a turbine, a loaded rabbet joint between the fourth stage wheel and the aft shaft of the machine can become unloaded causing a gap to occur due to a thermal mismatch at the rabbet joint with the bearing blower turned on. An open or unloaded rabbet could cause the parts to move relative to each other and therefore cause the rotor to lose balance. If the bearing blower is turned off during a shutdown, the forward air/oil seal temperature may exceed maximum design practice criterion due to "soak-back." An air/oil seal temperature above the established maximum design limits could cause a bearing fire to occur, with catastrophic consequences to the machine. By controlling the bearing blower according to an optimized blower profile, the rabbet load can be maintained, and the air/oil seal temperature can be maintained below the established limits. A blower profile is determined according to a thermodynamic model of the system.

  3. Turbine airfoil with ambient cooling system

    DOE Patents [OSTI]

    Campbell, Jr, Christian X.; Marra, John J.; Marsh, Jan H.

    2016-06-07

    A turbine airfoil usable in a turbine engine and having at least one ambient air cooling system is disclosed. At least a portion of the cooling system may include one or more cooling channels configured to receive ambient air at about atmospheric pressure. The ambient air cooling system may have a tip static pressure to ambient pressure ratio of at least 0.5, and in at least one embodiment, may include a tip static pressure to ambient pressure ratio of between about 0.5 and about 3.0. The cooling system may also be configured such that an under root slot chamber in the root is large to minimize supply air velocity. One or more cooling channels of the ambient air cooling system may terminate at an outlet at the tip such that the outlet is aligned with inner surfaces forming the at least one cooling channel in the airfoil to facilitate high mass flow.

  4. Thermal degradation of concrete in the temperature range from ambient to 315{degree} C (600{degree} F). Revision 10/96

    SciTech Connect (OSTI)

    Kassir, M.K.; Bandyopadhyay, K.K.; Reich, M.

    1996-10-01

    This report is concerned with determining the effect of elevated temperatures on the behavior of concrete. Emphasis is placed on quantifying the degree of potential degradation of the physical properties of concrete in high-level waste storage tanks. The temperature elevation range of interest is from ambient to 315 C (600 F). The literature has been reviewed to examine the applicable experimental data and quantify the degradation in the concrete and reinforcing steel. Since many variables and test conditions control the results in the data base, upper and lower bounds of the degraded properties at temperatures applicable to the environments of the storage tanks are summarized and presented in explicit forms. For properties with large data bases, a normal logarithmic distribution of the data is assumed and a statistical analysis is carried out to find the mean and 84% values of the degraded property in the temperature range of interest. Such results are useful in assessing the effect of elevated temperatures on the structural behavior of the tanks. In addition, the results provide the technical basis for a parametric study that may be necessary to investigate the thermal aspects of the structural integrity of the tanks. 50 refs., 23 figs.

  5. An updated global grid point surface air temperature anomaly data set: 1851--1990

    SciTech Connect (OSTI)

    Sepanski, R.J.; Boden, T.A.; Daniels, R.C.

    1991-10-01

    This document presents land-based monthly surface air temperature anomalies (departures from a 1951--1970 reference period mean) on a 5{degree} latitude by 10{degree} longitude global grid. Monthly surface air temperature anomalies (departures from a 1957--1975 reference period mean) for the Antarctic (grid points from 65{degree}S to 85{degree}S) are presented in a similar way as a separate data set. The data were derived primarily from the World Weather Records and the archives of the United Kingdom Meteorological Office. This long-term record of temperature anomalies may be used in studies addressing possible greenhouse-gas-induced climate changes. To date, the data have been employed in generating regional, hemispheric, and global time series for determining whether recent (i.e., post-1900) warming trends have taken place. This document also presents the monthly mean temperature records for the individual stations that were used to generate the set of gridded anomalies. The periods of record vary by station. Northern Hemisphere station data have been corrected for inhomogeneities, while Southern Hemisphere data are presented in uncorrected form. 14 refs., 11 figs., 10 tabs.

  6. CONTAINMENT VESSEL TEMPERATURE FOR PU-238 HEAT SOURCE CONTAINER UNDER AMBIENT, FREE CONVECTION AND LOW EMISSIVITY COOLING CONDITIONS

    SciTech Connect (OSTI)

    Gupta, N.; Smith, A.

    2011-02-14

    The EP-61 primary containment vessel of the 5320 shipping package has been used for storage and transportation of Pu-238 plutonium oxide heat source material. For storage, the material in its convenience canister called EP-60 is placed in the EP-61 and sealed by two threaded caps with elastomer O-ring seals. When the package is shipped, the outer cap is seal welded to the body. While stored, the EP-61s are placed in a cooling water bath. In preparation for welding, several containers are removed from storage and staged to the welding booth. The significant heat generation of the contents, and resulting rapid rise in component temperature necessitates special handling practices. The test described here was performed to determine the temperature rise with time and peak temperature attained for an EP-61 with 203 watts of internal heat generation, upon its removal from the cooling water bath.

  7. OXIDATION OF INCONEL 718 IN AIR AT TEMPERATURES FROM 973K TO 1620K.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2000-10-01

    As part of the APT project, it was necessary to quantify the release of tungsten from the APT spallation target during postulated accident conditions in order to develop accident source terms for accident consequence characterization. Experiments with tungsten rods at high temperatures in a flowing steam environment characteristic of postulated accidents revealed that considerable vaporization of the tungsten occurred as a result of reactions with the steam and that the aerosols which formed were readily transported away from the tungsten surfaces, thus exposing fresh tungsten to react with more steam. The resulting tungsten release fractions and source terms were undesirable and it was decided to clad the tungsten target with Inconel 718 in order to protect it from contact with steam during an accident and mitigate the accident source term and the consequences. As part of the material selection criteria, experiments were conducted with Inconel 718 at high temperatures to evaluate the rate of oxidation of the proposed clad material over as wide a temperature range as possible, as well as to determine the high-temperature failure limit of the material. Samples of Inconel 718 were inserted into a preheated furnace at temperatures ranging from 973 K to 1620 K and oxidized in air for varying periods of time. After oxidizing in air at a constant temperature for the prescribed time and then being allowed to cool, the samples would be reweighed to determine their weight gain due to the uptake of oxygen. From these weight gain measurements, it was possible to identify three regimes of oxidation for Inconel 718: a low-temperature regime in which the samples became passivated after the initial oxidation, an intermediate-temperature regime in which the rate of oxidation was limited by diffusion and exhibited a constant parabolic rate dependence, and a high-temperature regime in which material deformation and damage accompanied an accelerated oxidation rate above the parabolic

  8. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect (OSTI)

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  9. Room temperature reaction of oxygen with gold: an in situ ambient-pressure X-ray photoelectron spectroscopy investigation

    SciTech Connect (OSTI)

    Jiang, Peng; Porsgaard, Soeren; Borondics, Ferenc; Kober, Mariana; Caballero, Alfonso; Bluhm, Hendrik; Besenbacher, Flemming; Salmeron, Miquel

    2010-02-01

    Gold is commonly regarded as the most inert element.1 However, the discovery of the exceptional catalytic properties of gold nanoparticles (NPs) for low temperature CO oxidation2 initiated great interest due to its promising applications and spawned a large number of studies devoted to the understanding of the reaction mechanism.3-6 Nevertheless, no consistent and conclusive picture has arisen.7-13

  10. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect (OSTI)

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  11. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    SciTech Connect (OSTI)

    Pintauro, Peter

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  12. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect (OSTI)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  13. PRESERVATION OF H2 PRODUCTION ACTIVITY IN NANOPOROUS LATEX COATINGS OF RHODOPSEUDOMONAS PALUSTRIS CGA009 DURING DRY STORAGE AT AMBIENT TEMPERATURES

    SciTech Connect (OSTI)

    Milliken, C.; Piskorska, M.; Soule, T.; Gosse, J.; Flickinger, M.; Smith, G.; Yeager, C.

    2012-08-27

    To assess the applicability of latex cell coatings as an "off-the-shelf' biocatalyst, the effect of osmoprotectants, temperature, humidity and O{sub 2} on preservation of H{sub 2} production in Rhodopseudomonas palustris coatings was evaluated. Immediately following latex coating coalescence (24 h) and for up to 2 weeks of dry storage, rehydrated coatings containing different osmoprotectants displayed similar rates of H{sub 2} production. Beyond 2 weeks of storage, sorbitol- treated coatings lost all H{sub 2} production activity, whereas considerable H{sub 2} production was still detected in sucrose- and trehalose-stabilized coatings. The relative humidity level at which the coatings were stored had a significant impact on the recovery and subsequent rates of H{sub 2} production. After 4 weeks storage under air at 60% humidity, coatings produced only trace amounts of H{sub 2} (0-0.1% headspace accumulation), whereas those stored at <5% humidity retained 27-53% of their H{sub 2} production activity after 8 weeks of storage. When stored in argon at <5% humidity and room temperature, R. palustris coatings retained full H{sub 2} production activity for 3 months, implicating oxidative damage as a key factor limiting coating storage. Overall, the results demonstrate that biocatalytic latex coatings are an attractive cell immobilization platform for preservation of bioactivity in the dry state.

  14. Maintaining low exhaust emissions with turbocharged gas engines using a feedback air-fuel ratio control system

    SciTech Connect (OSTI)

    Eckard, D.W.; Serve, J.V.

    1987-10-01

    Maintaining low exhaust emissions on a turbocharged, natural gas engine through the speed and load range requires precise control of the air-fuel ratio. Changes in ambient conditions or fuel heating value will cause the air-fuel ratio to change substantially. By combining air-gas pressure with preturbine temperature control, the air-fuel ratio can be maintained regardless of changes in the ambient conditions or the fuel's heating value. Design conditions and operating results are presented for an air-fuel controller for a turbocharged engine.

  15. Drying rate and temperature profile for superheated steam vacuum drying and moist air drying of softwood lumber

    SciTech Connect (OSTI)

    Pang, S.; Dakin, M. [New Zealand Forest Research Inst., Ltd., Rotorua (New Zealand). Mfg. Technologies Portfolio

    1999-07-01

    Two charges of green radiata pine sapwood lumber were dried, ether using superheated steam under vacuum (90 C, 0.2 bar abs.) or conventionally using hot moist air (90/60 C). Due to low density of the drying medium under vacuum, the circulation velocity used was 10 m/s for superheated steam drying and 5.0 m/s for moist air drying, and in both cases, the flow was unidirectional. In drying, stack drying rate and wood temperatures were measured to examine the differences between the superheated steam drying and drying using hot moist air. The experimental results have shown that the stack edge board in superheated steam drying dried faster than in the hot moist air drying. Once again due to the low density of the steam under vacuum, a prolonged maximum temperature drop across load (TDAL) was observed in the superheated steam drying, however, the whole stack dried slower and the final moisture content distribution was more variable than for conventional hot moist air drying.

  16. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    SciTech Connect (OSTI)

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya; Hasegawa, Susumu; Maruta, Kaoru

    2010-08-15

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for the present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)

  17. Initial proof-of-principle for near room temperature Xe and Kr separation from air with MOFs

    SciTech Connect (OSTI)

    Thallapally, Praveen K.; Strachan, Denis M.

    2012-06-06

    Materials were developed and tested in support of the U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of Xenon and krypton from gaseous products of nuclear fuel reprocessing unit operations. During FY 2012, Three Metal organic framework (MOF) structures were investigated in greater detail for the removal and storage of Xe and Kr from air at room temperature. Our breakthrough measurements on Nickel based MOF could capture and separate parts per million levels of Xe from Air (40 ppm Kr, 78% N2, 21% O2, 0.9% Ar, 0.03% CO2). Similarly, the selectivity can be changed from Xe > Kr to Xe < Kr simply by changing the temperature in another MOF. Also for the first time we estimated the cost of the metal organic frameworks in bulk.

  18. Improvement in understanding the deposition of ambient dust particles on ECAM (environmental continuous air monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

    SciTech Connect (OSTI)

    Schery, Stephen D., Wasiolek, Piotr; Rodgers, John

    1999-06-01

    Improvement in understanding the deposition of ambient dust particles on ECAM (environmental continuous air monitor) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

  19. De-icing thermostat for air conditioners

    SciTech Connect (OSTI)

    Levine, M.R.

    1986-12-09

    This patent describes an electronic thermostat adapted to be connected to an air-cooling apparatus to control the operative state of the apparatus. The thermostat includes a means for generating a digital electrical signal representative of a desired temperature setpoint and means for generating a digital electrical signal representative of the ambient temperature at the thermostat. The improvement described here comprises: means for generating control signals for the aircooling apparatus in order to inhibit the accumulation of ice on the cooling element of the air-cooling apparatus when the ambient temperature is above the temperature setpoint; means, responsive to the control signals, for deenergizing the compressor in the air-cooling apparatus for a first preselected period of time whenever the compressor is determined to have run continuously for a second preselected period of time; and means for adaptively adjusting the length of at least one of the first or second preselected periods of time as a function of the change in the rate of change of the ambient temperature.

  20. Ambient pressure fuel cell system

    DOE Patents [OSTI]

    Wilson, Mahlon S.

    2000-01-01

    An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

  1. Metal-air cell comprising an electrolyte with a room temperature ionic liquid and hygroscopic additive

    DOE Patents [OSTI]

    Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek

    2014-08-19

    An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.

  2. The influence of air temperature inversions on snowmelt and glacier mass-balance simulations, Ammassalik island, SE Greenland

    SciTech Connect (OSTI)

    Mernild, Sebastian Haugard [Los Alamos National Laboratory; Liston, Glen [COLORADO STATE UNIV.

    2009-01-01

    In many applications, a realistic description of air temperature inversions is essential for accurate snow and glacier ice melt, and glacier mass-balance simulations. A physically based snow-evolution modeling system (SnowModel) was used to simulate eight years (1998/99 to 2005/06) of snow accumulation and snow and glacier ice ablation from numerous small coastal marginal glaciers on the SW-part of Ammassalik Island in SE Greenland. These glaciers are regularly influenced by inversions and sea breezes associated with the adjacent relatively low temperature and frequently ice-choked fjords and ocean. To account for the influence of these inversions on the spatiotemporal variation of air temperature and snow and glacier melt rates, temperature inversion routines were added to MircoMet, the meteorological distribution sub-model used in SnowModel. The inversions were observed and modeled to occur during 84% of the simulation period. Modeled inversions were defined not to occur during days with strong winds and high precipitation rates due to the potential of inversion break-up. Field observations showed inversions to extend from sea level to approximately 300 m a.s.l., and this inversion level was prescribed in the model simulations. Simulations with and without the inversion routines were compared. The inversion model produced air temperature distributions with warmer lower elevation areas and cooler higher elevation areas than without inversion routines due to the use of cold sea-breeze base temperature data from underneath the inversion. This yielded an up to 2 weeks earlier snowmelt in the lower areas and up to 1 to 3 weeks later snowmelt in the higher elevation areas of the simulation domain. Averaged mean annual modeled surface mass-balance for all glaciers (mainly located above the inversion layer) was -720 {+-} 620 mm w.eq. y{sup -1} for inversion simulations, and -880 {+-} 620 mm w.eq. y{sup -1} without the inversion routines, a difference of 160 mm w.eq. y

  3. Short-Term Oxidation Studies on Nicrofer- 6025HT in Air at Elevated Temperatures for Advanced Coal Based Power Plants

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Nachimuthu, Ponnusamy; Bowden, Mark E.; Weil, K. Scott

    2013-04-01

    Several advanced air separation unit (ASU) designs being considered for use in coal gasification rely on the use of solid state mixed ionic and electronic conductors. Nicrofer-6025HT, a nickel-based alloy, has been identified as a potential manifold material to transport the hot gases into the ASUs. In the current study, isothermal oxidation tests were conducted on Nicrofer-6025HT in the temperature range of 700900 C for up to 24 h. The evolution of oxide scale was evaluated using SEM, XRD, and XPS. The composite surface oxide layer that formed consisted of an outer chromia-rich scale and an inner alumina scale. For the longer times at the higher temperatures evaluated, a NiCr2O4 spinel phase was located at the interface between the alumina and chromia. Based on the experimental results a four-step oxidation model was proposed.

  4. Ambiental PV | Open Energy Information

    Open Energy Info (EERE)

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  5. Autoignited laminar lifted flames of methane, ethylene, ethane, and n-butane jets in coflow air with elevated temperature

    SciTech Connect (OSTI)

    Choi, B.C.; Chung, S.H.

    2010-12-15

    The autoignition characteristics of laminar lifted flames of methane, ethylene, ethane, and n-butane fuels have been investigated experimentally in coflow air with elevated temperature over 800 K. The lifted flames were categorized into three regimes depending on the initial temperature and fuel mole fraction: (1) non-autoignited lifted flame, (2) autoignited lifted flame with tribrachial (or triple) edge, and (3) autoignited lifted flame with mild combustion. For the non-autoignited lifted flames at relatively low temperature, the existence of lifted flame depended on the Schmidt number of fuel, such that only the fuels with Sc > 1 exhibited stationary lifted flames. The balance mechanism between the propagation speed of tribrachial flame and local flow velocity stabilized the lifted flames. At relatively high initial temperatures, either autoignited lifted flames having tribrachial edge or autoignited lifted flames with mild combustion existed regardless of the Schmidt number of fuel. The adiabatic ignition delay time played a crucial role for the stabilization of autoignited flames. Especially, heat loss during the ignition process should be accounted for, such that the characteristic convection time, defined by the autoignition height divided by jet velocity was correlated well with the square of the adiabatic ignition delay time for the critical autoignition conditions. The liftoff height was also correlated well with the square of the adiabatic ignition delay time. (author)

  6. Measurement of gas species, temperatures, coal burnout, and wall heat fluxes in a 200 MWe lignite-fired boiler with different overfire air damper openings

    SciTech Connect (OSTI)

    Jianping Jing; Zhengqi Li; Guangkui Liu; Zhichao Chen; Chunlong Liu

    2009-07-15

    Measurements were performed on a 200 MWe, wall-fired, lignite utility boiler. For different overfire air (OFA) damper openings, the gas temperature, gas species concentration, coal burnout, release rates of components (C, H, and N), furnace temperature, and heat flux and boiler efficiency were measured. Cold air experiments for a single burner were conducted in the laboratory. The double-swirl flow pulverized-coal burner has two ring recirculation zones starting in the secondary air region in the burner. As the secondary air flow increases, the axial velocity of air flow increases, the maxima of radial velocity, tangential velocity and turbulence intensity all increase, and the swirl intensity of air flow and the size of recirculation zones increase slightly. In the central region of the burner, as the OFA damper opening widens, the gas temperature and CO concentration increase, while the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and coal particles ignite earlier. In the secondary air region of the burner, the O{sub 2} concentration, NOx concentration, coal burnout, and release rates of components (C, H, and N) decrease, and the gas temperature and CO concentration vary slightly. In the sidewall region, the gas temperature, O{sub 2} concentration, and NOx concentration decrease, while the CO concentration increases and the gas temperature varies slightly. The furnace temperature and heat flux in the main burning region decrease appreciably, but increase slightly in the burnout region. The NOx emission decreases from 1203.6 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 0% to 511.7 mg/m{sup 3} (6% O{sub 2}) for a damper opening of 80% and the boiler efficiency decreases from 92.59 to 91.9%. 15 refs., 17 figs., 3 tabs.

  7. Pressure and concentration dependences of the autoignition temperature for normal butane + air mixtures in a closed vessel

    SciTech Connect (OSTI)

    Chandraratna, M.R.; Griffiths, J.F. . School of Chemistry)

    1994-12-01

    The condition at which autoignition occurs in lean premixed n-butane + air mixtures over the composition range 0.2%--2.5% n-butane by volume (0.06 < [phi] < 0.66) were investigated experimentally. Total reactant pressure from 0.1 to 0.6 MPa (1--6 atm) were studied in a spherical, stainless-steel, closed vessel (0.5 dm[sup 3]). There is a critical transition from nonignition to ignition, at pressures above 0.1 MPa, as the mixture is enriched in the vicinity of 1% fuel vapor by volume. There is also a region of multiplicity, which exhibits three critical temperatures at a given composition. Chemical analyses show that partially oxygenated components,including many o-heterocyclic compounds, are important products of the lean combustion of butane at temperatures up to 800 K. The critical conditions for autoignition are discussed with regard to industrial ignition hazards, especially in the context of the autoignition temperature of alkanes given by ASTM or BS tests. The differences between the behavior of n-butane and the higher n-alkanes are explained. The experimental results are also used as a basis for testing a reduced kinetic model to represent the oxidation and autoignition of n-butane or other alkanes.

  8. The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment 2003 DEER Conference Presentation: National Renewable Energy Laboratory 2003_deer_lawson.pdf (335.4 KB) More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin DOE's Studies of Weekday/Weekend Ozone Pollution in Southern California Real-World Studies of Ambient Ozone Formation as a

  9. Microsoft Word - Updated Air Dispersion Modeling Table _sulfur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIVINE STRAKE AIR DISPERSION MODELING RESULTS for SULFUR DIOXIDE The attached table is ... within the Nevada Ambient Air Quality Standards at the boundary of the Nevada Test Site. ...

  10. Interaction of Plutonium with Diverse Materials in Moist Air and Nitrogen-Argon Atmospheres at Room Temperature

    SciTech Connect (OSTI)

    John M. Haschke; Raymond J. Martinez; Robert E. Pruner II; Barbara Martinez; Thomas H. Allen

    2001-04-01

    Chemical and radiolytic interactions of weapons-grade plutonium with metallic, inorganic, and hydrogenous materials in atmospheres containing moist air-argon mixtures have been characterized at room temperature from pressure-volume-temperature and mass spectrometric measurements of the gas phase. A reaction sequence controlled by kinetics and gas-phase composition is defined by correlating observed and known reaction rates. In all cases, O{sub 2} is eliminated first by the water-catalyzed Pu + O{sub 2} reaction and H{sub 2}O is then consumed by the Pu + H{sub 2}O reaction, producing a gas mixture of N{sub 2}, argon, and H{sub 2}. Hydrogen formed by the reaction of water and concurrent radiolysis of hydrogenous materials either reacts to form PuH{sub 2} or accumulates in the system. Accumulation of H{sub 2} is correlated with the presence of hydrogenous materials in liquid and volatile forms that are readily distributed over the plutonium surface. Areal rates of radiolytic H{sub 2} generation are determined and applied in showing that modest extents of H{sub 2} production are expected for hydrogenous solids if the contact area with plutonium is limited. The unpredictable nature of complex chemical systems is demonstrated by occurrence of the chloride-catalyzed Pu + H{sub 2}O reaction in some tests and hydride-catalyzed nitriding in another.

  11. Controllable Growth of Perovskite Films by Room-Temperature Air Exposure for Efficient Planar Heterojunction Photovoltaic Cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Bin; Dyck, Ondrej; Poplawsky, Jonathan; Keum, Jong; Das, Sanjib; Puretzky, Alexander; Aytug, Tolga; Joshi, Pooran C.; Rouleau, Christopher M.; Duscher, Gerd; et al

    2015-12-01

    A two-step-solution-processing approach has been established to grow void-free perovskite films for low-cost and high-performance planar heterojunction photovoltaic devices. We generally applied a high-temperature thermal annealing treatment in order to drive the diffusion of CH3NH3I precursor molecules into the compact PbI2 layer to form perovskite films. But, thermal annealing for extended periods would lead to degraded device performance due to the defects generated by decomposition of perovskite into PbI2. In this work, we explored a controllable layer-by-layer spin-coating method to grow bilayer CH3NH3I/PbI2 films, and then drive the interdiffusion between PbI2 and CH3NH3I layers by a simple room-temperature-air-exposure for makingmore » well-oriented, highly-crystalline perovskite films without thermal annealing. This high degree of crystallinity resulted in a carrier diffusion length of ~ 800 nm and high device efficiency of 15.6%, which is comparable to the reported values from thermally-annealed perovskite films based counterparts. Finally, the simplicity and high device performance of this processing approach is highly promising for direct integration into industrial-scale device manufacture.« less

  12. Emission features and expansion dynamics of nanosecond laser ablation plumes at different ambient pressures

    SciTech Connect (OSTI)

    Farid, N.; Harilal, S. S. Hassanein, A.; Ding, H.

    2014-01-21

    The influence of ambient pressure on the spectral emission features and expansion dynamics of a plasma plume generated on a metal target has been investigated. The plasma plumes were generated by irradiating Cu targets using 6?ns, 1064?nm pulses from a Q-switched Nd:YAG laser. The emission and expansion dynamics of the plasma plumes were studied by varying air ambient pressure levels ranging from vacuum to atmospheric pressure. The ambient pressure levels were found to affect both the line intensities and broadening along with the signal to background and signal to noise ratios and the optimum pressure conditions for analytical applications were evaluated. The characteristic plume parameters were estimated using emission spectroscopy means and noticed that the excitation temperature peaked ?300?Torr, while the electron density showed a maximum ?100?Torr. Fast-gated images showed a complex interaction between the plume and background air leading to changes in the plume geometry with pressure as well as time. Surface morphology of irradiated surface showed that the pressure of the ambient gas affects the laser-target coupling significantly.

  13. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  14. Ambient Corp | Open Energy Information

    Open Energy Info (EERE)

    Product: Ambient develops open standards-based technologies for creating smart grid communication platforms and technologies. References: Ambient Corp1 This article is a stub....

  15. Variable temperature seat climate control system

    DOE Patents [OSTI]

    Karunasiri, Tissa R.; Gallup, David F.; Noles, David R.; Gregory, Christian T.

    1997-05-06

    A temperature climate control system comprises a variable temperature seat, at least one heat pump, at least one heat pump temperature sensor, and a controller. Each heat pump comprises a number of Peltier thermoelectric modules for temperature conditioning the air in a main heat exchanger and a main exchanger fan for passing the conditioned air from the main exchanger to the variable temperature seat. The Peltier modules and each main fan may be manually adjusted via a control switch or a control signal. Additionally, the temperature climate control system may comprise a number of additional temperature sensors to monitor the temperature of the ambient air surrounding the occupant as well as the temperature of the conditioned air directed to the occupant. The controller is configured to automatically regulate the operation of the Peltier modules and/or each main fan according to a temperature climate control logic designed both to maximize occupant comfort during normal operation, and minimize possible equipment damage, occupant discomfort, or occupant injury in the event of a heat pump malfunction.

  16. Nitrogen and hydrogen CARS temperature measurements in a hydrogen/air flame using a near-adiabatic flat-flame burner

    SciTech Connect (OSTI)

    Hancock, R.D.; Bertagnolli, K.E.; Lucht, R.P.

    1997-05-01

    Coherent anti-Stokes Raman scattering (CARS) spectroscopy of diatomic nitrogen and hydrogen was used to measure flame temperatures in hydrogen/air flames produced using a nonpremixed, near-adiabatic, flat-flame Hencken burner. The CARS temperature measurements are compared with adiabatic flame temperatures calculated by the NASA-Lewis equilibrium code for equivalence ratios from 0.5--2.5. The nitrogen CARS temperatures are in excellent agreement with the equilibrium code calculations. Comparison of nitrogen CARS data and the equilibrium code calculations confirms that for sufficiently high flow rates the Hencken burner produces nearly adiabatic flames. Hydrogen CARS temperature measurements are compared to both nitrogen CARS temperature measurements and equilibrium code predictions in order to evaluate and improve the accuracy of hydrogen CARS as a temperature diagnostic tool. Hydrogen CARS temperatures for fuel-rich flames are on average 70 K ({approximately}3%) above the equilibrium code predictions and nitrogen CARS temperatures. The difference between temperatures measured using hydrogen and nitrogen CARS is probably due primarily to uncertainties in hydrogen linewidths and line-broadening mechanisms at these conditions.

  17. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect (OSTI)

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  18. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    SciTech Connect (OSTI)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-07-01

    A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time scale analysis of the air-ingress phenomenon, a transient depressurization analysis of the reactor vessel, a hydraulic similarity analysis of the test facility, a heat transfer characterization of the hot plenum, a power scaling analysis for the reactor system, and a design analysis of the containment vessel are discussed.

  19. High strength air-dried aerogels

    DOE Patents [OSTI]

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  20. A description of the new ASTM test method E 1424, used for measuring fenestration air leakage at differential temperatures and pressures

    SciTech Connect (OSTI)

    Kehrli, D.W.

    1995-09-01

    A new committee has been developed by ASTM Committee E6 for measuring air leakage rates of fenestration products under imposed conditions of differential pressures and temperatures. This new method is different from the long-standing, internationally referenced ASTM Method E 283 in that it is performed under temperature differentials across the test specimen similar to ASTM C 236 and C 1199, and AAMA 1503-88. This new method will show the impacts of expansion and contraction, shrinkage, compression-set, fabrication and design integrity, and material and component interactions in the air leakage rates of window and doors products. This paper compares the two methods and provides some typical test data.

  1. High-Performance Sorbents for Carbon Dioxide Capture from Air

    SciTech Connect (OSTI)

    Sholl, David; Jones, Christopher

    2013-03-13

    This project has focused on capture of CO{sub 2} from ambient air (“air capture”). If this process is technically and economically feasible, it could potentially contribute to net reduction of CO{sub 2} emissions in ways that are complementary to better developed techniques for CO{sub 2} from concentrated point sources. We focused on cyclic adsorption processes for CO{sub 2} capture from air in which the entire cycle is performed at moderate temperatures. The project involved both experimental studies of sorbent materials and process level modeling of cyclic air capture processes. In our experimental work, a series of amine-functionalized silica adsorbents were prepared and characterized to determine the impact of molecular architecture on CO{sub 2} capture. Some key findings were: • Amine functionalized silicas can be prepared with high enough CO{sub 2} capacities under ambient conditions to merit consideration for use in air capture processes. • Primary amines are better candidates for CO{sub 2} capture than secondary or tertiary amines, both in terms of amine efficiency for CO{sub 2} adsorption and enhanced water affinity. • Mechanistic understanding of degradation of these materials can enable control of molecular architecture to significantly improve material stability. Our process modeling work provided the first publically available cost and energy estimates for cyclic adsorption processes for air capture of CO{sub 2}. Some key findings were: • Cycles based on diurnal ambient heating and cooling cannot yield useful purities or amounts of captured CO{sub 2}. • Cycles based on steam desorption at 110 oC can yield CO{sub 2} purities of ~88%. • The energy requirements for cycles using steam desorption are dominated by needs for thermal input, which results in lower costs than energy input in the form of electricity. Cyclic processes with operational costs of less than $100 tCO{sub 2}-net were described, and these results point to process and

  2. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ozone Formation as a Function of NOx Reductions Summary and Implications for Air Quality Impacts The Weekend Ozone Effect - The Weekly Ambient Emissions Control Experiment

  3. Greenhouse Gas and Air Pollution Interactions and Synergies ...

    Open Energy Info (EERE)

    in five-year intervals through the year 2050. GAINS provides estimates on ambient air quality and the subsequent impacts on human health and ecosystems, as well as...

  4. Strong terahertz radiation from air plasmas generated by anaperture...

    Office of Scientific and Technical Information (OSTI)

    its second harmonic into ambient air strongly saturates with increasing pump laser energy. ... With the optimal aperture-limited pump laser beams, the terahertz wave amplitudes can be ...

  5. Two-dimensional model of the air flow and temperature distribution in a cavity-type heat receiver of a solar stirling engine

    SciTech Connect (OSTI)

    Makhkamov, K.K.; Ingham, D.B.

    1999-11-01

    A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.

  6. Baseline air quality study at Fermilab

    SciTech Connect (OSTI)

    Dave, M.J.; Charboneau, R.

    1980-10-01

    Air quality and meteorological data collected at Fermi National Accelerator Laboratory are presented. The data represent baseline values for the pre-construction phase of a proposed coal-gasification test facility. Air quality data were characterized through continuous monitoring of gaseous pollutants, collection of meteorological data, data acquisition and reduction, and collection and analysis of discrete atmospheric samples. Seven air quality parameters were monitored and recorded on a continuous real-time basis: sulfur dioxide, ozone, total hydrocarbons, nonreactive hydrocarbons, nitric oxide, nitrogen oxides, and carbon monoxide. A 20.9-m tower was erected near Argonne's mobile air monitoring laboratory, which was located immediately downwind of the proposed facility. The tower was instrumented at three levels to collect continuous meteorological data. Wind speed was monitored at three levels; wind direction, horizontal and vertical, at the top level; ambient temperature at the top level; and differential temperature between all three levels. All continuously-monitored parameters were digitized and recorded on magnetic tape. Appropriate software was prepared to reduce the data. Statistical summaries, grphical displays, and correlation studies also are presented.

  7. Terrain and Ambient Wind Effects on the Warming Footprint of a Wind Machine

    SciTech Connect (OSTI)

    Mcmeeking, Gavin R.; Whiteman, Charles D.; Powell, Stuart G.; Clements, Craig B.

    2002-05-20

    An experiment in a vineyard in south-central Washington is described in which a vineyard wind machine used for frost protection was turned on and off while monitoring the air temperature in the vineyard. The wind machine fan, with a hub height of 12 m, rotated around a quasi-horizontal axis that was tilted downward into the vineyard at an angle of 6 degrees. The fan also rotated around a vertical axis once every 4 minutes to protect a roughly circular area surrounding the wind machine tower. A temperature inversion of about 3.5 C occurred above the vineyard between the 3-m and hub-height levels during the experiments. The 300-m diameter warming footprint of the fan was displaced down the south-facing 1-2{sup o} slope of the vineyard when the ambient wind speed was low, showing the effect of the weak and shallow nighttime drainage flow that often occurred in the vineyard. When the ambient wind speed increased, the footprint was displaced downwind and downslope of the tower. The mean warming footprint magnitude when the fan was switched on was about 1-2 C, and the temperature excess in the footprint relative to the surroundings dissipated quickly when the fan was switched off.

  8. Elevated air temperature alters an old-field insect community in a multi-factor climate change experiment

    SciTech Connect (OSTI)

    Villalpando, Sean [Appalachian State University; Williams, Ray [ORNL; Norby, Richard J [ORNL

    2009-01-01

    To address how multiple, interacting climate drivers may affect plant-insect community associations, we sampled the insect community from a constructed old-field plant community grown under simultaneous [CO2], temperature, and water manipulation. Insects were identified to morphospecies, assigned to feeding guilds and abundance, richness and evenness quantified. Warming significantly increased Order Thysanoptera abundance and reduced overall morphospecies richness and evenness. Non-metric multidimensional scaling clearly supported the effect of warming on insect community composition. Reductions in richness for herbivores and parasitoids suggest trophic-level effects within the insect community. Analysis of dominant insects demonstrated the effects of warming were limited to a relatively small number of morphospecies. Reported reductions in whole-community foliar N at elevated [CO2] unexpectedly did not result in any effects on herbivores. These results demonstrate climatic warming may alter certain insect communities via effects on insect species most responsive to higher temperature, contributing to a change in community structure.

  9. Low temperature sodium-beta battery

    DOE Patents [OSTI]

    Farmer, Joseph C

    2013-11-19

    A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

  10. High Energy Efficiency Air Conditioning

    SciTech Connect (OSTI)

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    values agree well with previous results and computer simulations of Ikon B performance versus R-22. The lower cooling capacity of Ikon B is not a concern unless a particular air conditioner is near its maximum cooling capacity in application. Typically, oversized A/C systems are installed by contractors to cover contingencies. In the extended run with Ikon B, which lasted about 4.5 months at 100 deg F ambient temperature and 68% compressor on time, the air conditioner performed well with no significant loss of energy efficiency. Post-run analysis of the refrigerant, compressor lubricant oil, compressor, compressor outlet tubing, and the filter/dryer showed minor effects but nothing that was considered significant. The project was very successful. All objectives were achieved, and the performance of Ikon B indicates that it can easily be retrofitted into R-22 air conditioners to give 15 - 20% energy savings and a 1 - 3 year payback of retrofit costs depending on location and use. Ikon B has the potential to be a successful commercial product.

  11. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  12. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  13. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, Thomas J.; Anderson, Iver E.; Ijadi-Maghsoodi, Sina; Nosrati, Mohammad; Unal, Ozer

    2001-04-10

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or cermaic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix.

  14. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-01-12

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 degrees C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 degrees C. to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  15. Low temperature joining of ceramic composites

    DOE Patents [OSTI]

    Barton, T.J.; Anderson, I.E.; Ijadi-Maghsoodi, S.; Nosrati, M.; Unal, O.

    1999-07-13

    A method of joining similar or dissimilar ceramic and ceramic composite materials, such as SiC continuous fiber ceramic composites, at relatively low joining temperatures uses a solventless, three component bonding agent effective to promote mechanical bond toughness and elevated temperature strength to operating temperatures of approximately 1200 C. The bonding agent comprises a preceramic precursor, an aluminum bearing powder, such as aluminum alloy powder, and mixtures of aluminum metal or alloy powders with another powder, and boron powder in selected proportions. The bonding agent is disposed as an interlayer between similar or dissimilar ceramic or ceramic composite materials to be joined and is heated in ambient air or inert atmosphere to a temperature not exceeding about 1200 C to form a strong and tough bond joint between the materials. The bond joint produced is characterized by a composite joint microstructure having relatively soft, compliant aluminum bearing particulate regions dispersed in a ceramic matrix. 3 figs.

  16. Max Ambiental S A | Open Energy Information

    Open Energy Info (EERE)

    Ambiental S A Jump to: navigation, search Name: Max Ambiental S.A. Place: Sao Paulo, Brazil Zip: 01452-938 Sector: Carbon Product: Max Ambiental is a company involved in the...

  17. Ambient Corporation's response to NBP RFI: Communications Requirements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient Corporation's response to NBP RFI: Communications Requirements Ambient Corporation's response to NBP RFI: Communications Requirements Ambient Corporation's comments on ...

  18. Trama Tecno Ambiental | Open Energy Information

    Open Energy Info (EERE)

    Trama Tecno Ambiental Jump to: navigation, search Name: Trama Tecno-Ambiental Place: Barcelona, Spain Zip: 8026 Sector: Solar Product: Spanish solar engineering firm. References:...

  19. Arquip lago Engenharia Ambiental | Open Energy Information

    Open Energy Info (EERE)

    Arquip lago Engenharia Ambiental Jump to: navigation, search Name: Arquiplago Engenharia Ambiental Place: Sao Paulo, Sao Paulo, Brazil Zip: 04601-000 Product: Sao Paulo-based...

  20. JMalucelli CMC Ambiental | Open Energy Information

    Open Energy Info (EERE)

    CMC Ambiental Jump to: navigation, search Name: JMalucelli & CMC Ambiental Place: Curitiba, Parana, Brazil Zip: 80410-201 Sector: Carbon Product: JV company between Brazilian Grupo...

  1. MDL Ambiente Ltd | Open Energy Information

    Open Energy Info (EERE)

    MDL Ambiente Ltd Jump to: navigation, search Name: MDL Ambiente Ltd. Place: Leeds, England, United Kingdom Zip: LS1 2DS Product: The organisation prepares project design documents...

  2. Ambient Control Systems | Open Energy Information

    Open Energy Info (EERE)

    Control Systems Jump to: navigation, search Logo: Ambient Control Systems Name: Ambient Control Systems Address: 1810 Gillespie Way Place: El Cajon, California Zip: 92020 Region:...

  3. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect (OSTI)

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup ?5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup ?4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  4. Compressed Air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Compressed Air ESUE Motors Federal Agriculture Compressed Air Compressed Air Roadmap The Bonneville Power Administration created the roadmap to help utilities find energy...

  5. Alpha-environmental continuous air monitor inlet

    DOE Patents [OSTI]

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  6. Enhancing Amine-Supported Materials for Ambient Air Capture ...

    Office of Scientific and Technical Information (OSTI)

    obtain a copy of this journal article from the publisher. Find in Google Scholar Find in Google Scholar Search WorldCat Search WorldCat to find libraries that may hold this journal

  7. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  8. Reduce Air Infiltration in Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of the Reduce Air Infiltration in Furnaces fact sheet. Provides suggestions on how to improve furnace energy efficiency. Fuel-fired furnaces discharge combustion products through a stack or a chimney. Hot furnace gases are less dense and more buoyant than ambient air, so they rise, creating a differential pressure between the top and the bottom of the furnace. This differential, known as thermal head, is the source of a natural draft or negative pressure in furnaces and boilers. A well-designed furnace (or boiler) is built to avoid air leakage into the furnace or leakage of flue gases from the furnace to the ambient. However, with time, most furnaces develop cracks or openings around doors, joints, and hearth seals. These openings (leaks) usually appear small compared with the overall dimensions of the furnace, so they are often ignored. The negative pressure created by the natural draft (or use of an induced-draft fan) in a furnace draws cold air through the openings (leaks) and into the furnace. The cold air becomes heated to the furnace exhaust gas temperature and then exits through the flue system, wasting valuable fuel. It might also cause excessive oxidation of metals or other materials in the furnaces. The heat loss due to cold air leakage resulting from the natural draft can be estimated if you know four major parameters: (1) The furnace or flue gas temperature; (2) The vertical distance H between the opening (leak) and the point where the exhaust gases leave the furnace and its flue system (if the leak is along a vertical surface, H will be an average value); (3) The area of the leak, in square inches; and (4) The amount of operating time the furnace spends at negative pressure. Secondary parameters that affect the amount of air leakage include these: (1) The furnace firing rate; (2) The flue gas velocity through the stack or the stack cross-section area; (3) The burner operating conditions (e.g., excess air, combustion air temperature

  9. Control of membrane permeability in air-stable droplet interface bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results inmore » loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.« less

  10. Control of membrane permeability in air-stable droplet interface bilayers

    SciTech Connect (OSTI)

    Mruetusatorn, Prachya; Polizos, Georgios; Datskos, Panos G.; Taylor, Graham; Sarles, Stephen A.; Boreyko, Jonathan; Hayes, Douglas G.; Collier, Pat

    2015-03-19

    Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, air-DIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that lifetimes of air-DIBs can be extended by as much as an order of magnitude by maintaining them at a temperature just above the dew point. We find that raising the temperature from near the dew point (7 C at 38.5 % relative humidity) to room temperature results in loss of water molecules of hydration from the polar head groups of the lipid bilayer membrane due to evaporation in an irreversible process that increases the overall entropy of the system. This dehydration transition affects primarily the bilayer resistance, by increasing ion permeability through the increasingly disordered polar head group region of the bilayer. Temperature and/or relative humidity are conveniently tunable parameters for controlling the stability and composition of air-DIBs membranes, while still allowing for operation in ambient environments.

  11. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  12. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  13. Inertial impaction air sampling device

    DOE Patents [OSTI]

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  14. CO{sub 2} Capture by Sub-ambient Membrane Operation

    SciTech Connect (OSTI)

    Kulkarni, S.; Hasse, D.; Sanders, E.; Chaubey, T.

    2012-11-30

    ) on membrane performance was tested in the laboratory with membrane minipermeators. NO permeance is intermediate between CO{sub 2} and N{sub 2}; while both SO{sub 2} and NO{sub 2} are more permeable than CO{sub 2} at cold condition. This implies that SO{sub 2} and NO{sub 2} will be efficiently removed with CO{sub 2} into the membrane permeate in the proposed cold membrane process. Calculations were performed by Air Liquide Engineering (ALE) to estimate capture costs based on the proposed sub-ambient temperature membrane process for 90% CO{sub 2} capture from an air- fired coal power plant delivering 550 MW net electricity. Membrane performance in the process simulation was defined by the final parametric test results. This analysis involved refining the process simulation model, obtaining relevant capital cost estimates and using these to estimate a 20-year levelized cost of electricity (LCOE). A sensitivity analysis shows CO{sub 2} capture specific energy requirements of 216-242 kwh/T CO{sub 2} captured. The LCOE estimating methodology followed DOE/NETL study 2010/1397. This analysis indicates increases in LCOE between 48% and 53%. For most equipment, the budgetary capital cost estimates are expected to be valid within ± 20%. The most significant capital costs are due to the (i) feed compression and associated gas pretreatment and (ii) membrane system. For both items, there is a realistic chance for cost reductions in the immediate future (0-5 years) as well as long term reductions. The process continues to hold promise with anticipated cost reductions in compression and membrane operations. In particular, membrane costs could be reduced significantly by increased production volume (economy of scale) as well as optimization of bundle size and configuration for this application. PFD definition for a potential field test has been completed through (i) simulation work at DRTC, (ii) discussions with compressor manufacturers and (iii) a field visit to t e NCCC

  15. Biogas Energia Ambiental SA | Open Energy Information

    Open Energy Info (EERE)

    Ambiental SA Jump to: navigation, search Name: Biogas Energia Ambiental SA Place: Sao Paulo, Sao Paulo, Brazil Zip: 04561-004 Product: Sao Paulo-based landfill biogas-to-energy...

  16. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  17. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public. Open full...

  18. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Quality Air Quality Tour The Laboratory calculates the dose to the maximally exposed individual (MEI) to determine effects of Laboratory operations on the public.

  19. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  20. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  1. Hybrid and Advanced Air Cooling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project will identify and analyze advanced air cooling strategies thatallow air-cooled geothermal power plants to maintain a high electric power output during periods of high air dry bulb temperatures while minimizing water consumption.

  2. Temperature and productivity

    Office of Scientific and Technical Information (OSTI)

    ... and performance of office work under combined exposure to temperature, noise and air pollution. PhD Thesis. International Centre for Indoor Environment and Energy, Department of ...

  3. Air Sealing

    SciTech Connect (OSTI)

    2000-02-01

    This fact sheet describes ventilation and the importance of sealing air leaks and providing controlled ventilation.

  4. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect (OSTI)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  5. Air Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  6. Greenvision Ambiente Spa | Open Energy Information

    Open Energy Info (EERE)

    Greenvision Ambiente Spa Place: Reggio Emilia, Italy Zip: 42020 Sector: Solar Product: Italian engineering company focussed on building waste-to-energy plants, as well as solar PV...

  7. Effects of Ambient Density and Temperature on Soot Formation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. ...

  8. Process for light-driven hydrocarbon oxidation at ambient temperatures

    DOE Patents [OSTI]

    Shelnutt, John A.

    1990-01-01

    A photochemical reaction for the oxidation of hydrocarbons uses molecular oxygen as the oxidant. A reductive photoredox cycle that uses a tin(IV)- or antimony(V)-porphyrin photosensitizer generates the reducing equivalents required to activate oxygen. This artificial photosynthesis system drives a catalytic cycle, which mimics the cytochrome P.sub.450 reaction, to oxidize hydrocarbons. An iron(III)- or manganese(III)-porphyrin is used as the hydrocarbon-oxidation catalyst. Methylviologen can be used as a redox relay molecule to provide for electron-transfer from the reduced photosensitizer to the Fe or Mn porphyrin. The system is long-lived and may be used in photo-initiated spectroscopic studies of the reaction to determine reaction rates and intermediates.

  9. Air filter

    SciTech Connect (OSTI)

    Jackson, R.E.; Sparks, J.E.

    1981-03-03

    An air filter is described that has a counter rotating drum, i.e., the rotation of the drum is opposite the tangential intake of air. The intake air has about 1 lb of rock wool fibers per 107 cu. ft. of air sometimes at about 100% relative humidity. The fibers are doffed from the drum by suction nozzle which are adjacent to the drum at the bottom of the filter housing. The drum screen is cleaned by periodically jetting hot dry air at 120 psig through the screen into the suction nozzles.

  10. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate thatmore » this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.« less

  11. A solvent replenishment solution for managing evaporation of biochemical reactions in air-matrix digital microfluidics devices

    SciTech Connect (OSTI)

    Jebrail, Mais J.; Renzi, Ronald F.; Sinha, Anupama; Van De Vreugde, Jim; Gondhalekar, Carmen; Ambriz, Cesar; Meagher, Robert J.; Branda, Steven S.

    2014-10-01

    Digital microfluidics (DMF) is a powerful technique for sample preparation and analysis for a broad range of biological and chemical applications. In many cases, it is desirable to carry out DMF on an open surface, such that the matrix surrounding the droplets is ambient air. However, the utility of the air-matrix DMF format has been severely limited by problems with droplet evaporation, especially when the droplet-based biochemical reactions require high temperatures for long periods of time. We present a simple solution for managing evaporation in air-matrix DMF: just-in-time replenishment of the reaction volume using droplets of solvent. We demonstrate that this solution enables DMF-mediated execution of several different biochemical reactions (RNA fragmentation, first-strand cDNA synthesis, and PCR) over a range of temperatures (4–95 °C) and incubation times (up to 1 h or more) without use of oil, humidifying chambers, or off-chip heating modules. Reaction volumes and temperatures were maintained roughly constant over the course of each experiment, such that the reaction kinetics and products generated by the air-matrix DMF device were comparable to those of conventional benchscale reactions. As a result, this simple yet effective solution for evaporation management is an important advance in developing air-matrix DMF for a wide variety of new, high-impact applications, particularly in the biomedical sciences.

  12. Hybrid membrane--PSA system for separating oxygen from air

    DOE Patents [OSTI]

    Staiger, Chad L.; Vaughn, Mark R.; Miller, A. Keith; Cornelius, Christopher J.

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  13. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    SciTech Connect (OSTI)

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  14. Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect (OSTI)

    McFarland, Jim; Zhou, Yuyu; Clarke, Leon E.; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy; Colley, Michelle; Patel, Pralit L.; Eom, Jiyong; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-10-09

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  15. Erratum to: Impacts of rising air temperatures and emissions mitigation on electricity demand and supply in the United States: a multi-model comparison

    SciTech Connect (OSTI)

    McFarland, Jim; Zhou, Yuyu; Clarke, Leon E.; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy; Colley, Michelle; Patel, Pralit L.; Eom, Jiyong; Kim, Son H.; Kyle, G. Page; Schultz, Peter; Venkatesh, Boddu; Haydel, Juanita; Mack, Charlotte; Creason, Jared

    2015-10-07

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Yet fewer studies have explored the physical impacts of climate change on the power sector. The present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effects of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. The increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.

  16. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McFarland, James; Zhou, Yuyu; Clarke, Leon; Sullivan, Patrick; Colman, Jesse; Jaglom, Wendy S.; Colley, Michelle; Patel, Pralit; Eom, Jiyon; Kim, Son H.; et al

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  17. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    SciTech Connect (OSTI)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E.; Lu, Y.; Epstein, A. J.

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  18. Heating, Ventilation and Air Conditioning Efficiency

    Energy Savers [EERE]

    Typical Design Conditions 75 degrees F temperature 50% relative humidity 30 - 50 FPM air movement 15 - 20 CFM outside air per person or CO2 less than 1,000 PPM ASHRAE 62 - 1989 ...

  19. Air Dispersion Modeling for the INL Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emission Cap Component

    SciTech Connect (OSTI)

    Sondrup, Andrus Jeffrey

    2015-10-01

    .e., land use data that defines roughness, albedo, Bowen ratio, and other parameters) were processed using the AERSURFACE utility (Version 13016) (EPA 2013). Emission sources were modeled as point sources using actual stack locations and dimensions. Emissions, flow rates and exit temperatures were based on the design operating capacity of each source. All structures close enough to produce an area of wake effect were included for all sources. For multi-tiered structures, the heights of the tiers were included or the entire building height was assumed to be equal to the height of the tallest tier. Concentrations were calculated at 1,352 receptor locations provided by DEQ. All receptors were considered for each pollutant and averaging period. Maximum modeled CAP concentrations summed with average background concentration values were presented and compared to National Ambient Air Quality Standards (NAAQS). The background concentration values used were obtained using the Washington State University’s Laboratory for Atmospheric Research North West Airquest web-based retrieval tool (http://lar.wsu.edu/nw airquest/lookup.html). The air dispersion modeling results show the maximum impacts for CAPs are less than applicable standards and demonstrate the INL will not cause a violation of any ambient air quality standards.

  20. Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in an old-field grassland

    SciTech Connect (OSTI)

    Wan, Shiqiang [Chinese Academy of Sciences; Norby, Richard J [ORNL; Childs, Joanne [ORNL; Weltzin, Jake [University of Tennessee, Knoxville (UTK)

    2007-01-01

    Responses of soil respiration to atmospheric and climatic change will have profound impacts on ecosystem and global C cycling in the future. This study was conducted to examine effects on soil respiration of the concurrent driving factors of elevated atmospheric CO2 concentration, rising temperature, and changing precipitation in a constructed old-field grassland in eastern Tennessee, USA. Model ecosystems of seven old-field species in 12 open-top chambers (4 m in diameter) were treated with two CO2 (ambient and ambient plus 300 ppm) and two temperature (ambient and ambient plus 3 C) levels. Two split plots with each chamber were assigned with high and low soil moisture levels. During the 19-month experimental period from June 2003 to December 2004, higher CO2 concentration and soil water availability significantly increased mean soil respiration by 35.8% and 15.7%, respectively. The effects of air warming on soil respiration varied seasonally from small reductions to significant increases to no response, and there was no significant main effect. In the wet side of elevated CO2 chambers, air warming consistently caused increases in soil respiration, whereas in other three combinations of CO2 and water treatments, warming tended to decrease soil respiration over the growing season but increase it over the winter. There were no interactive effects on soil respiration among any two or three treatment factors irrespective of testing time period. Temperature sensitivity of soil respiration was reduced by air warming, lower in the wet than the dry side, and not affected by CO2 treatment. Variations of soil respiration responses with soil temperature and soil moisture ranges could be primarily attributable to the seasonal dynamics of plant growth and its responses to the three treatments. Using a conceptual model to interpret the significant relationships of treatment-induced changes in soil respiration with changes in soil temperature and moisture observed in this study

  1. Air-to-air turbocharged air cooling versus air-to-water turbocharged air cooling

    SciTech Connect (OSTI)

    Moranne, J.-P.; Lukas, J.J.

    1984-01-01

    In Europe, turbocharged air in diesel engines used in on-road vehicles is cooled only by air. It is expected that by 1990, ten to twelve percent of European heavy trucks with diesel engines will cool turbocharged air by water. Air-to-air turbocharges air cooling is reviewed and the evolution of air-to-water turbocharged air cooling presented before the two systems are compared.

  2. Temperature environment for 9975 packages stored in KAC

    SciTech Connect (OSTI)

    Daugherty, W. L.

    2015-09-10

    Plutonium materials are stored in the K Area Complex (KAC) in shipping packages, typically the 9975 shipping package. In order to estimate realistic degradation rates for components within the shipping package (i.e. the fiberboard overpack and O-ring seals), it is necessary to understand actual facility temperatures, which can vary daily and seasonally. Relevant facility temperature data available from several periods throughout its operating history have been reviewed. The annual average temperature within the Crane Maintenance Area has ranged from approximately 70 to 74 °F, although there is significant seasonal variation and lesser variation among different locations within the facility. The long-term average degradation rate for 9975 package components is very close to that expected if the component were to remain continually at the annual average temperature. This result remains valid for a wide range of activation energies (which describes the variation in degradation rate as the temperature changes), if the activation energy remains constant over the seasonal range of component temperatures. It is recommended that component degradation analyses and service life estimates incorporate these results. Specifically, it is proposed that future analyses assume an average facility ambient air temperature of 94 °F. This value is bounding for all packages, and includes margin for several factors such as increased temperatures within the storage arrays, the addition of more packages in the future, and future operational changes.

  3. air force

    National Nuclear Security Administration (NNSA)

    en NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range http:nnsa.energy.govmediaroompressreleases...

  4. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    SciTech Connect (OSTI)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Tang, Kai; Liu, Zhi-jie; Wang, Sen

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  5. Solar Powered Radioactive Air Monitoring Stations

    SciTech Connect (OSTI)

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  6. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, Paul B.; Baldner, Richard

    1982-01-01

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  7. Regenerative air heater

    DOE Patents [OSTI]

    Hasselquist, P.B.; Baldner, R.

    1980-11-26

    A gas-cooled steel skirt is used to support a refractory cored brick matrix and dome structure in a high temperature regenerative air heater useful in magnetohydrodynamic power generation. The steel skirt thermally expands to accommodate the thermal expansion of the dome structure despite substantial temperature differential thereby reducing relative movement between the dome bricks. Gas cooling of the steel skirt allows the structure to operate above its normal temperature during clean-out cycles and also allows for the control of the thermal expansion of the steel skirt.

  8. Shock temperature as a criterion for the detonability of LNG/LPG constituents

    SciTech Connect (OSTI)

    Michels, H.J. . Dept. of Chemical Engineering and Chemical Technology); Rashidi, F. )

    1992-12-01

    Detonation limit data obtained at ambient conditions for some aliphatic LNG/LNG constituents with oxygen and nitrogen (air) have been analyzed in search of a single critical parameter for detonation propagation. It was established the shock, rather than C-J reaction temperatures, provides a firm basis for marginal detonability prediction and that, furthermore, classical reaction mechanisms and relatively simple calculation methods can be used for their reliable evaluation. In this paper the result is used to formulate a criterion, for predicting composition limits to detonation. For the systems investigated, this criterion is accurate to within approximately 0.2% for fuel-lean and around 1% for fuel-rich mixtures.

  9. Age Inversiones in Media Ambiente AIMA | Open Energy Information

    Open Energy Info (EERE)

    Inversiones in Media Ambiente AIMA Jump to: navigation, search Name: Age Inversiones in Media Ambiente (AIMA) Place: Spain Product: Invests in projects that aim to generate energy...

  10. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: In Situ Ambient Pressure X-ray ... Citation Details In-Document Search Title: In Situ Ambient ... Resource Relation: Journal Name: Scientific Reports; Journal ...

  11. Ecogeo Meio Ambiente e Energias Renov veis | Open Energy Information

    Open Energy Info (EERE)

    Ecogeo Meio Ambiente e Energias Renov veis Jump to: navigation, search Name: Ecogeo - Meio Ambiente e Energias Renovveis Place: So Paulo, Sao Paulo, Brazil Zip: 04794-000...

  12. Arauna Energia e Gest o Ambiental | Open Energy Information

    Open Energy Info (EERE)

    Arauna Energia e Gest o Ambiental Jump to: navigation, search Name: Arauna Energia e Gesto Ambiental Place: So Paulo, Sao Paulo, Brazil Zip: 01420-002 Product: Brazilian...

  13. Solaria Energia y Medio Ambiente SA | Open Energy Information

    Open Energy Info (EERE)

    Medio Ambiente SA Jump to: navigation, search Name: Solaria Energia y Medio Ambiente SA Place: Puertollano, Spain Zip: 13500 Product: Spanish PV module and passive system...

  14. Emte Medio Ambiente y Energia | Open Energy Information

    Open Energy Info (EERE)

    Medio Ambiente y Energia Jump to: navigation, search Name: Emte Medio Ambiente y Energia Place: Spain Product: EMTE is structured into five business units providing the backbone...

  15. San Jose Energia y Medio Ambiente | Open Energy Information

    Open Energy Info (EERE)

    Energia y Medio Ambiente Jump to: navigation, search Name: San Jose Energia y Medio Ambiente Place: Madrid, Spain Zip: 28760 Sector: Renewable Energy Product: Madrid based...

  16. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect (OSTI)

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  17. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, Donald C.

    1988-01-01

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite.

  18. Liquid phase thermal swing chemical air separation

    DOE Patents [OSTI]

    Erickson, D.C.

    1988-05-24

    A temperature swing absorption separation of oxygen from air is performed with an oxygen acceptor of alkali metal nitrate and nitrite. 2 figs.

  19. SPS emissions and comparison with ambient loadings

    SciTech Connect (OSTI)

    Bauer, E.; Brubaker, K. L.

    1980-01-01

    This paper provides an overview of propulsion injections into the atmosphere due to Satellite Power System (SPS) transportation vehicles, and relates the magnitudes of these injections to the ambient burdens of the different chemical species. The significance of the different injections is discussed in terms of a dimensionless perturbation factor, the magnitude of which is a measure of the expected concentration change relative to the existing ambient concentration.

  20. Air-pollutant emissions from kerosene space heaters

    SciTech Connect (OSTI)

    Leaderer, B.P.

    1982-12-10

    Air pollutant emissions from portable convective and radiant kerosene space heaters were measured in an environmental chamber. Emission factors for nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide, and oxygen depletion are presented. The data suggest that the use of such heaters in residences can result in exposures to air pollutants in excess of ambient air quality standards and in some cases in excess of occupational health standards.

  1. Ambient-pressure organic superconductor

    DOE Patents [OSTI]

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  2. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  3. Role of ambient dielectric in propagation of Ar atmospheric pressure nonequilibrium plasma jets

    SciTech Connect (OSTI)

    Song, Jian; Wang, Youyin; Yu, Daren; Tang, Jingfeng Wei, Liqiu; Ren, Chunsheng

    2015-05-15

    A single-electrode atmospheric pressure nonequilibrium plasma jet surrounded with different ambient dielectrics is investigated driven by AC power supply. Another three ambient dielectrics, distilled water, ethanol, and carbon tetrachloride, are adopted to compare with air. By examining electrical and optical characteristics, it was found that the molecular polarity of ambient dielectrics had its significant effect on the propagation of atmospheric pressure nonequilibrium plasma jets. When the polarization of molecules was enhanced, the discharge current and the bullet velocity were also increased. For nonpolar dielectric of carbon tetrachloride, this was mainly resulted from the electron polarization in the built-in electric field. For polar dielectrics of ethanol and distilled water, in addition to the electron polarization, orientation polarization was the main cause for the further increase in discharge current and bullet velocity.

  4. Air-quality survey (TAGA 6000), Bakelite Thermosets Limited, Belleville, May-June, 1989: Survey report

    SciTech Connect (OSTI)

    De Brou, G.B.; Ng, A.C.W.

    1989-01-01

    From May 23 to June 2, 1989, an air quality survey was performed in Belleville to determine the level of phenol and ammonia in the ambient air downwind of Bakelite Thermosets Ltd. This report presents the analysis of air samples taken.

  5. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  6. Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance

    SciTech Connect (OSTI)

    Kim, H.-M.; Rutqvist, J.; Ryu, D.-W.; Choi, B.-H.; Sunwoo, C.; Song, W.-K.

    2011-07-15

    This paper presents a numerical modeling study of coupled thermodynamic, multiphase fluid flow and heat transport associated with underground compressed air energy storage (CAES) in lined rock caverns. Specifically, we explored the concept of using concrete lined caverns at a relatively shallow depth for which constructing and operational costs may be reduced if air tightness and stability can be assured. Our analysis showed that the key parameter to assure long-term air tightness in such a system was the permeability of both the concrete lining and the surrounding rock. The analysis also indicated that a concrete lining with a permeability of less than 1×10{sup -18} m{sup 2} would result in an acceptable air leakage rate of less than 1%, with the operational pressure range between 5 and 8 MPa at a depth of 100 m. It was further noted that capillary retention properties and the initial liquid saturation of the lining were very important. Indeed, air leakage could be effectively prevented when the air-entry pressure of the concrete lining is higher than the operational air pressure and when the lining is kept moist at a relatively high liquid saturation. Our subsequent energy-balance analysis demonstrated that the energy loss for a daily compression and decompression cycle is governed by the air-pressure loss, as well as heat loss by conduction to the concrete liner and surrounding rock. For a sufficiently tight system, i.e., for a concrete permeability off less than 1×10{sup -18} m{sup 2}, heat loss by heat conduction tends to become proportionally more important. However, the energy loss by heat conduction can be minimized by keeping the air-injection temperature of compressed air closer to the ambient temperature of the underground storage cavern. In such a case, almost all the heat loss during compression is gained back during subsequent decompression. Finally, our numerical simulation study showed that CAES in shallow rock caverns is feasible from a leakage

  7. Temperature | Open Energy Information

    Open Energy Info (EERE)

    C Property:Combustion Intake Air Temperature F Property:FirstWellTemp G Property:GeochemReservoirTemp Property:GeofluidTemp M Property:MeanReservoirTemp R...

  8. Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting

    DOE Patents [OSTI]

    DeSteese, John G

    2010-11-16

    A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

  9. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, Tomas B.

    1985-01-01

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime.

  10. Temperature-sensitive optrode

    DOE Patents [OSTI]

    Hirschfeld, T.B.

    1985-09-24

    Method and apparatus are provided for measuring temperature and for generating optical signals related to temperature. Light from a fiber optic is directed to a material whose fluorescent response varies with ambient temperature. The same fiber optic delivering the excitation beam also collects a portion of the fluorescent emission for analysis. Signal collection efficiency of the fiber optic is enhanced by requiring that the fluorescent probe material be in the shape of an oblong parabolically tapered solid. Reproducibility is enhanced by using Raman backscatter to monitor excitation beam fluctuations, and by using measurements of fluorescence lifetime. 10 figs.

  11. Cryogenic deformation of high temperature superconductive composite structures

    DOE Patents [OSTI]

    Roberts, Peter R.; Michels, William; Bingert, John F.

    2001-01-01

    An improvement in a process of preparing a composite high temperature oxide superconductive wire is provided and involves conducting at least one cross-sectional reduction step in the processing preparation of the wire at sub-ambient temperatures.

  12. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect (OSTI)

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  13. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect (OSTI)

    G. Moridis; Q. Hu

    2001-12-20

    The purpose of Revision 00 of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada.

  14. RADIONUCLIDE TRANSPORT MODELS UNDER AMBIENT CONDITIONS

    SciTech Connect (OSTI)

    S. Magnuson

    2004-11-01

    The purpose of this model report is to document the unsaturated zone (UZ) radionuclide transport model, which evaluates, by means of three-dimensional numerical models, the transport of radioactive solutes and colloids in the UZ, under ambient conditions, from the repository horizon to the water table at Yucca Mountain, Nevada.

  15. Projection screen having reduced ambient light scattering

    SciTech Connect (OSTI)

    Sweatt, William C.

    2010-05-11

    An apparatus and method for improving the contrast between incident projected light and ambient light reflected from a projection screen are described. The efficiency of the projection screen for reflection of the projected light remains high, while permitting the projection screen to be utilized in a brightly lighted room. Light power requirements from the projection system utilized may be reduced.

  16. Comprehensive air monitoring plan: general monitoring report

    SciTech Connect (OSTI)

    Not Available

    1980-03-31

    Recommendations are provided for general monitoring of hydrogen sulfide (H/sub 2/S) in ambient air in parts of Colusa, Lake, Mendocino, Napa, and Sonoma counties potentially impacted by emissions from geothermal development projects in the Geysers-Calistoga Known Geothermal Resource Area. Recommendations for types, placement, performance guidelines, and criteria and procedure for triggering establishment and termination of CAMP monitoring equipment were determined after examination of four factors: population location; emission sources; meteorological considerations; and data needs of permitting agencies and applicants. Three alternate financial plans were developed. Locations and equipment for immediate installation are recommended for: two air quality stations in communities where the State ambient air quality standard for H/sub 2/S has been exceeded; three air quality trend stations to monitor progress in reduction of H/sub 2/S emissions; two meteorological observation stations to monitor synoptic wind flow over the area; and one acoustic radar and one rawinsonde station to monitor air inversions which limit the depth of the mixing layer.

  17. Cardiopulmonary Toxicity Induced by Ambient Particulate Matter (BI City Concentrated Ambient Particle Study)

    SciTech Connect (OSTI)

    Annette Rohr; James Wagner Masako Morishita; Gerald Keeler; Jack Harkema

    2010-06-30

    Alterations in heart rate variability (HRV) have been reported in rodents exposed to concentrated ambient particles (CAPs) from different regions of the United States. The goal of this study was to compare alterations in cardiac function induced by CAPs in two distinct regional atmospheres. AirCARE 1, a mobile laboratory with an EPA/Harvard fine particle (particulate matter <2.5 {micro}m; PM{sub 2.5}) concentrator was located in urban Detroit, MI, where the PM mixture is heavily influenced by motor vehicles, and in Steubenville, OH, where PM is derived primarily from long-range transport and transformation of power plant emissions, as well as from local industrial operations. Each city was studied during both winter and summer months, for a total of four sampling periods. Spontaneously hypertensive rats instrumented for electrocardiogram (ECG) telemetry were exposed to CAPs 8 h/day for 13 consecutive days during each sampling period. Heart rate (HR), and indices of HRV (standard deviation of the average normal-to-normal intervals [SDNN]; square root of the mean squared difference of successive normal-to-normal intervals [rMSSD]), were calculated for 30-minute intervals during exposures. A large suite of PM components, including nitrate, sulfate, elemental and organic carbon, and trace elements, were monitored in CAPs and ambient air. In addition, a unique sampler, the Semi-Continuous Elements in Air Sampler (SEAS) was employed to obtain every-30-minute measurements of trace elements. Positive matrix factorization (PMF) methods were applied to estimate source contributions to PM{sub 2.5}. Mixed modeling techniques were employed to determine associations between pollutants/CAPs components and HR and HRV metrics. Mean CAPs concentrations in Detroit were 518 and 357 {micro}g/m{sup 3} (summer and winter, respectively) and 487 and 252 {micro}g/m{sup 3} in Steubenville. In Detroit, significant reductions in SDNN were observed in the summer in association with cement

  18. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  19. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Office of Energy Efficiency and Renewable Energy (EERE)

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Combustion air preheating

    SciTech Connect (OSTI)

    Wells, T.A.; Petterson, W.C.

    1986-10-14

    This patent describes a process for steam cracking hydrocarbons to cracked gases in a tubular furnace heated by burning a mixture of fuel and combustion air and subsequently quenching the cracked gases. Waste heat is recovered in the form of high pressure steam and the combustion air is preheated prior to introduction into the furnace. The improvement described here comprises: (a) superheating the high pressure steam and expanding at least a portion of the superheated high pressure steam through a first turbine to produce shaft work and superheated medium pressure steam at a temperature between 260/sup 0/ and 465/sup 0/ C.; (b) expanding at least a portion of the superheated medium pressure steam through a second turbine to produce shaft work and low pressure steam at a temperature between 120/sup 0/ and 325/sup 0/ C.; and (c) preheating the combustion air by indirect heat exchange with at least a portion of the superheated medium pressure stream and at least a portion of the low pressure steam.

  1. Scrubbing of contaminants from contaminated air streams with aerogel materials with optional photocatalytic destruction

    DOE Patents [OSTI]

    Attia, Yosry A.

    2000-01-01

    Disclosed is a method for separating a vaporous or gaseous contaminant from an air stream contaminated therewith. This method includes the steps of: (a) passing said contaminated air into a contact zone in which is disposed an aerogel material capable of selecting adsorbing said contaminant from air and therein contacting said contaminated air with an aerogel material; and (b) withdrawing from said zone, air depleted of said contaminant. For present purposes, "contaminant" means a material not naturally occurring in ambient air and/or a material naturally occurring in air but present at a concentration above that found in ambient air. Thus, the present invention scrubs (or treats) air for the purpose of returning it to its ambient composition. Also disclosed herein is a process for the photocatalytic destruction of contaminants from an air stream wherein the contaminated air stream is passed into a control cell or contact zone in which is disposed a photocatalytic aerogel and exposing said aerogel to ultraviolet (UV) radiation for photocatalytically destroying the adsorbed contaminant, and withdrawing from said cell an exhaust air stream depleted in said contaminant.

  2. Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air

    DOE Patents [OSTI]

    Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.

    1997-01-01

    An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.

  3. Air-Cooled Stack Freeze Tolerance Freeze Failure Modes and Freeze Tolerance Strategies for GenDriveTM Material Handling Application Systems and Stacks Final Scientific Report

    SciTech Connect (OSTI)

    Hancock, David, W.

    2012-02-14

    Air-cooled stack technology offers the potential for a simpler system architecture (versus liquid-cooled) for applications below 4 kilowatts. The combined cooling and cathode air allows for a reduction in part count and hence a lower cost solution. However, efficient heat rejection challenges escalate as power and ambient temperature increase. For applications in ambient temperatures below freezing, the air-cooled approach has additional challenges associated with not overcooling the fuel cell stack. The focus of this project was freeze tolerance while maintaining all other stack and system requirements. Through this project, Plug Power advanced the state of the art in technology for air-cooled PEM fuel cell stacks and related GenDrive material handling application fuel cell systems. This was accomplished through a collaborative work plan to improve freeze tolerance and mitigate freeze-thaw effect failure modes within innovative material handling equipment fuel cell systems designed for use in freezer forklift applications. Freeze tolerance remains an area where additional research and understanding can help fuel cells to become commercially viable. This project evaluated both stack level and system level solutions to improve fuel cell stack freeze tolerance. At this time, the most cost effective solutions are at the system level. The freeze mitigation strategies developed over the course of this project could be used to drive fuel cell commercialization. The fuel cell system studied in this project was Plug Power's commercially available GenDrive platform providing battery replacement for equipment in the material handling industry. The fuel cell stacks were Ballard's commercially available FCvelocity 9SSL (9SSL) liquid-cooled PEM fuel cell stack and FCvelocity 1020ACS (Mk1020) air-cooled PEM fuel cell stack.

  4. Electric Power From Ambient Energy Sources

    SciTech Connect (OSTI)

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  5. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    SciTech Connect (OSTI)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury being

  6. Air nonlinear dynamics initiated by ultra-intense lambda-cubic terahertz pulses

    SciTech Connect (OSTI)

    Shalaby, Mostafa E-mail: christoph.hauri@psi.ch; Hauri, Christoph P. E-mail: christoph.hauri@psi.ch

    2015-05-04

    We report on the measurement of the instantaneous Kerr nonlinearity and the retarded alignment of air molecules CO{sub 2}, N{sub 2}, and O{sub 2} triggered by an intense, lambda-cubic terahertz pulse, a diffraction- and transform-limited single-cycle pulse. The strong-field, impulsive low-frequency excitation (3.9 THz) leads to field-free alignment dynamics of these molecules thanks to the terahertz-induced transient dipole moments in the otherwise non-polar molecules. The strong coupling to the terahertz electric transient results in the excitation of coherent large amplitude long-living rotational states at room temperature and ambient pressure. Beyond fundamental investigations of nonlinear properties in gases, our results suggest a route towards field-free molecular alignment at laser intensity well below the ionization threshold.

  7. Maintaining System Air Quality

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet discusses how to maintain air quality in compressed air systems through proper use of equipment.

  8. Tips: Air Conditioners

    Broader source: Energy.gov [DOE]

    How to operate your air conditioner efficiently, or consider alternatives to air conditioning that can cool effectively in many climates.

  9. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    SciTech Connect (OSTI)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presents two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.

  10. GENERATION, TRANSPORT AND DEPOSITION OF TUNGSTEN-OXIDE AEROSOLS AT 1000 C IN FLOWING AIR-STEAM MIXTURES.

    SciTech Connect (OSTI)

    GREENE,G.A.; FINFROCK,C.C.

    2001-10-01

    Experiments were conducted to measure the rates of oxidation and vaporization of pure tungsten rods in flowing air, steam and air-steam mixtures in laminar flow. Also measured were the downstream transport of tungsten-oxide condensation aerosols and their region of deposition, including plateout in the superheated flow tube, rainout in the condenser and ambient discharge which was collected on an array of sub-micron aerosol filters. The nominal conditions of the tests, with the exception of the first two tests, were tungsten temperatures of 1000 C, gas mixture temperatures of 200 C and wall temperatures of 150 C to 200 C. It was observed that the tungsten oxidation rates were greatest in all air and least in all steam, generally decreasing non-linearly with increasing steam mole fraction. The tungsten oxidation rates in all air were more than five times greater than the tungsten oxidation rates in all steam. The tungsten vaporization rate was zero in all air and increased with increasing steam mole fraction. The vaporization rate became maximum at a steam mole fraction of 0.85 and decreased thereafter as the steam mole fraction was increased to unity. The tungsten-oxide was transported downstream as condensation aerosols, initially flowing upwards from the tungsten rod through an 18-inch long, one-inch diameter quartz tube, around a 3.5-inch radius, 90{sup o} bend and laterally through a 24-inch horizontal run. The entire length of the quartz glass flow path was heated by electrical resistance clamshell heaters whose temperatures were individually controlled and measured. The tungsten-oxide plateout in the quartz tube was collected, nearly all of which was deposited at the end of the heated zone near the entrance to the condenser which was cold. The tungsten-oxide which rained out in the condenser as the steam condensed was collected with the condensate and weighed after being dried. The aerosol smoke which escaped the condenser was collected on the sub

  11. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in lined rock caverns

    SciTech Connect (OSTI)

    Rutqvist, J.; Kim, H. -M.; Ryu, D. -W.; Synn, J. -H.; Song, W. -K.

    2012-02-01

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. We analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could be

  12. ARM - Publications: Science Team Meeting Documents: AIRS retrievals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AIRS retrievals of atmospheric profiles of temperature and humidity - comparisons with radiosondes and ship-based remote sensing during AEROSE Minnett, Peter University of Miami...

  13. Low-Temperature Colossal Supersaturation of Stainless Steels

    Broader source: Energy.gov [DOE]

    Austenitic stainless steels in the 300 Series are the primary materials used for a very broad range of applications when corrosion resistance is needed in aqueous solutions at ambient temperatures....

  14. Metal-Air Batteries

    SciTech Connect (OSTI)

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  15. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges to Smart Grid Implementation | Department of Energy Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's Reply comments to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation submits the following comments to the US Department of Energy (DOE) in hopes that their contribution can highlight and further the understanding of the DOE on

  16. Ambient Corporation's Reply comments to DOE RFI: Addressing Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Ambient Corporation's ... to deploy cost-effective long-term smart grid benefits. ...

  17. PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NACIONAL Y EL PROGRAMA DE CAPACITACIN 2014 PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL NACIONAL Y EL PROGRAMA DE CAPACITACIN 2014 La conferencia ...

  18. Ignition of ethane, propane, and butane in counterflow jets of cold fuel versus hot air under variable pressures

    SciTech Connect (OSTI)

    Fotache, C.G.; Wang, H.; Law, C.K.

    1999-06-01

    This study investigates experimentally the nonpremixed ignition of ethane, propane, n-butane, and isobutane in a configuration of opposed fuel versus heated air jets. For each of these fuels the authors explore the effects of inert dilution, system pressure, and flow strain rate, for fuel concentrations ranging between 3--100% by volume, pressures between 0.2 and 8 atm, and strain rates of 100--600 s{sup {minus}1}. Qualitatively, these fuels share a number of characteristics. First, flame ignition typically occurs after an interval of mild oxidation, characterized by minimal heat release, fuel conversion, and weak light emission. The temperature extent of this regime decreases with increasing the fuel concentration, the ambient pressure, or the flow residence time. Second, the response to strain rate, pressure, and fuel concentration is similar for all investigated fuels, in that the ignition temperatures monotonically decrease with increasing fuel content, decreasing flow strain, and increasing ambient pressure. The C{sub 4} alkanes, however, exhibit three distinct p-T ignition regimes, similar to the homogeneous explosion limits. Finally, at 1 atm, 100% fuel, and a fixed flow strain rate the ignition temperature increases in the order of ethane < propane < n-butane < i-butane. Numerical simulation was conducted for ethane ignition using detailed reaction kinetics and transport descriptions. The modeling results suggest that ignition for all fuels studied at pressures below 5 atm is initiated by fuel oxidation following the high-temperature mechanism of radical chain branching and with little contribution by low-to-intermediate temperature chemistry.

  19. Ambient-pressure silica aerogel films

    SciTech Connect (OSTI)

    Prakash, S.S. [New Mexico Univ., Albuquerque, NM (United States); Brinker, C.J. [New Mexico Univ., Albuquerque, NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States); Hurd, A.J. [Sandia National Labs., Albuquerque, NM (United States)

    1994-12-31

    Very highly porous (aerogel) silica films with refractive index in the range 1.006--1.05 (equivalent porosity 98.5--88%) were prepared by an ambient-pressure process. It was shown earlier using in situ ellipsometric imaging that the high porosity of these films was mainly attributable to the dilation or `springback` of the film during the final stage of drying. This finding was irrefutably reconfirmed by visually observing a `springback` of >500% using environmental scanning electron microscopy (ESEM). Ellipsometry and ESEM also established the near cent per cent reversibility of aerogel film deformation during solvent intake and drying. Film thickness profile measurements (near the drying line) for the aerogel, xerogel and pure solvent cases are presented from imaging ellipsometry. The thickness of these films (crack-free) were controlled in the range 0.1-3.5 {mu}m independent of refractive index.

  20. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect (OSTI)

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  1. air_water.cdr

    Office of Legacy Management (LM)

    122011 Air Monitoring Groundwater Monitoring Surface Water Monitoring A continuously operating air monitoring network was in place from 1986 through 2000 for the Weldon Spring ...

  2. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  3. Biological Air Emissions Control

    Office of Energy Efficiency and Renewable Energy (EERE)

    Air quality standards are becoming more stringent for the U.S. wood products industry. Emissions of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) (including methanol,...

  4. ARM - Measurement - Virtual temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsVirtual temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Virtual temperature The virtual temperature Tv = T(1 + rv/{epsilon}), where rv is the mixing ratio, and {epsilon} is the ratio of the gas constants of air and water vapor ( 0.622). Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to

  5. Reactive Air Aluminization

    SciTech Connect (OSTI)

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  6. IRA-F, air quality monitoring program. Volume 2. Appendices. Version 2.0. Final report

    SciTech Connect (OSTI)

    1991-07-01

    This report focuses on activities of the Interim Response Action F (IRA-F) monitoring program at RMA. It provides an analysis of air quality conditions around Basin F, both during and after remedial activities. Included in this report are the details of the air monitoring and analytical procedures for IRA-F and a synopses of other air monitoring programs. The ambient air concentrations for a set of airborne target compounds are summarized. Targets include volatile organics, semi-volatile organics, metals (such as arsenic) and particulates. The results provide the information necessary to describe the potential impacts of Basin F operations and closure on ambient air quality and to characterize the potential sources of the observed concentrations of target compound.

  7. Performance Modeling of an Air-Based Photovoltaic/Thermal (PV/T) Collector

    SciTech Connect (OSTI)

    Casey, R. D.; Brandemuehl, M. J.; Merrigan, T.; Burch, J.

    2010-01-01

    This paper studies a collector design that utilizes unglazed photovoltaic/thermal (PV/T) collectors preheating air for glazed air heating modules. The performance modeling of these collectors is examined both individually and in series. For each collector type, a dynamic, finite difference, first-law model has been created using literature correlations for friction. The models were compared to performance data, calibrating the models by scaling of friction terms for best fit. The calibrated models generally agree well with the experimental data; even during sudden changes to ambient conditions. The root mean square error between the unglazed PV/T model and experiment results for the useful thermal energy gain and the outlet air temperature are 7.12 W/m{sup 2} and 1.07 C, respectively. The annual source energy performance of the building-integrated PV/T (BIPV/T) array is then simulated for residential applications in seven climate zones of the United States of America. The performance of the BIPV/T array is characterized by the amount of net electrical energy and useful thermal energy produced. The useful thermal energy is defined as the amount of energy offset by the BIPV/T system for water heating and space conditioning. A BIPV/T system composed 87.5% of PV modules, and 12.5% of glazed air heating modules, offsets the same amount of source energy as a roof-mounted PV system of the same area. This array composition increases the thermal energy gain by 47% over a BIPV/T array composed solely of PV modules.

  8. Cromer Cycle Air Conditioner

    Broader source: Energy.gov [DOE]

    New Air Conditioning System Uses Desiccant to Transfer Moisture and Increase Efficiency and Capacity

  9. Clean Air Act

    Office of Energy Efficiency and Renewable Energy (EERE)

    The primary law governing the Department of Energy (DOE) air pollution control activities is the Clean Air Act (CAA). This law defines the role of the U.S. Environmental Protection Agency (EPA) and state, local and tribal air programs in protecting and improving the nation’s air quality and stratospheric ozone layer by regulating emissions from mobile and stationary sources.

  10. Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects

    SciTech Connect (OSTI)

    Naidis, G. V.

    2011-04-04

    Results of modeling of streamer propagation along helium jets for both positive and negative polarities of applied voltage are presented. Obtained patterns of streamer dynamics and structure in these two cases are similar to those observed in experiments with plasma jets.

  11. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect (OSTI)

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  12. NanoCapillary Network Proton Conducting Membranes for High Temperature

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen/Air Fuel Cells | Department of Energy NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. pintauro.pdf (276.25 KB) More Documents & Publications High Temperature Membrane Working Group Vehicle Technologies Office Merit Review 2016: Li-Ion Battery Anodes from

  13. Emerging Latin American air quality regulation

    SciTech Connect (OSTI)

    Hosmer, A.W.; Vitale, E.M.; Guerrero, C.R.; Solorzano-Vincent, L.

    1998-12-31

    Latin America is the most urbanized region in the developing world. In recent years, significant economic growth has resulted in population migration from rural areas to urban centers, as well as in a substantial rise in the standard of living within the Region. These changes have impacted the air quality of Latin American countries as increased numbers of industrial facilities and motor vehicles release pollutants into the air. With the advent of new free trade agreements such as MERCOSUR and NAFTA, economic activity and associated pollutant levels can only be expected to continue to expand in the future. In order to address growing air pollution problems, many Latin America countries including Argentina, Brazil, Chile, Columbia, Costa Rica, and Mexico have passed, or will soon pass, new legislation to develop and strengthen their environmental frameworks with respect to air quality. As a first step toward understanding the impacts that this increased environmental regulation will have, this paper will examine the regulatory systems in six Latin American countries with respect to ambient air quality and for each of these countries: review a short history of the air quality problems within the country; outline the legal and institutional framework including key laws and implementing institutions; summarize in brief the current status of the country in terms of program development and implementation; and identify projected future trends. In addition, the paper will briefly review the international treaties that have bearing on Latin American air quality. Finally, the paper will conclude by identifying and exploring emerging trends in individual countries and the region as a whole.

  14. Compliance with the Clean Air Act Amendments: Challenge of the 90's

    SciTech Connect (OSTI)

    Odegard, G.J.; Van, H. )

    1993-01-01

    With its 17,593 miles of pipeline, El Paso Natural Gas Company is one of the country's largest interstate natural gas transmission companies. To keep the gas continually moving through the pipeline, it is compressed back to high pressures at 73 stations comprising 1,210,120 horsepower located along the pipeline route. These compressor stations, which operate 24 hours a day every day, house 316 reciprocating engines and 92 gas turbines. As fuel, these engines and turbines burn natural gas. Natural gas combustion releases emissions of nitrogen oxides and carbon monoxide with small amounts of particulates, sulfur dioxide and volatile organic compounds. This presentation will describe how one large energy company plans to comply with these new requirements over the next several years. El Paso has developed an extensive Air Program designed to obtain all needed operating permits by the November 1995 deadline. Work is underway to quantify and document emissions at every operating facility. Emissions tests will measure NOx, CO, oxygen, CO[sub 2], water, stack temperature, stack velocity and fuel flow rate. Data generated by the Emissions Inventory System will be used not only for permit applications, but to develop alternative emission reduction strategies at facilities located in nonattainment areas. Dispersion modeling will be performed to analyze compliance with PSD increments and National Ambient Air Quality Standards.

  15. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  16. Low temperature aqueous desulfurization of coal

    DOE Patents [OSTI]

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  17. Radionuclide Transport Models Under Ambient Conditions

    SciTech Connect (OSTI)

    G. Moridis; Q. Hu

    2000-03-12

    The purpose of this Analysis/Model Report (AMR) is to evaluate (by means of 2-D semianalytical and 3-D numerical models) the transport of radioactive solutes and colloids in the unsaturated zone (UZ) under ambient conditions from the potential repository horizon to the water table at Yucca Mountain (YM), Nevada. This is in accordance with the ''AMR Development Plan U0060, Radionuclide Transport Models Under Ambient Conditions'' (CRWMS M and O 1999a). This AMR supports the UZ Flow and Transport Process Model Report (PMR). This AMR documents the UZ Radionuclide Transport Model (RTM). This model considers: the transport of radionuclides through fractured tuffs; the effects of changes in the intensity and configuration of fracturing from hydrogeologic unit to unit; colloid transport; physical and retardation processes and the effects of perched water. In this AMR they document the capabilities of the UZ RTM, which can describe flow (saturated and/or unsaturated) and transport, and accounts for (a) advection, (b) molecular diffusion, (c) hydrodynamic dispersion (with full 3-D tensorial representation), (d) kinetic or equilibrium physical and/or chemical sorption (linear, Langmuir, Freundlich or combined), (e) first-order linear chemical reaction, (f) radioactive decay and tracking of daughters, (g) colloid filtration (equilibrium, kinetic or combined), and (h) colloid-assisted solute transport. Simulations of transport of radioactive solutes and colloids (incorporating the processes described above) from the repository horizon to the water table are performed to support model development and support studies for Performance Assessment (PA). The input files for these simulations include transport parameters obtained from other AMRs (i.e., CRWMS M and O 1999d, e, f, g, h; 2000a, b, c, d). When not available, the parameter values used are obtained from the literature. The results of the simulations are used to evaluate the transport of radioactive solutes and colloids, and

  18. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    SciTech Connect (OSTI)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  19. Isokinetic air sampler

    DOE Patents [OSTI]

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  20. PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NACIONAL Y EL PROGRAMA DE CAPACITACIÓN 2014 | Department of Energy PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL NACIONAL Y EL PROGRAMA DE CAPACITACIÓN 2014 PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA AMBIENTAL NACIONAL Y EL PROGRAMA DE CAPACITACIÓN 2014 La conferencia regresa a D.C. del 26 al 28 de marzo de 2014 con la celebración de los 20 años de justicia ambiental pasados y futuros. PREPARATIVOS EN MARCHA PARA LA CONFERENCIA SOBRE JUSTICIA

  1. Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ambient 24 Hour SO2 Values: Model vs Monitor Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor Docket No. EO-05-01: Mirant: Ambient 24 Hour SO2 Values: Model vs Monitor, March ...

  2. Performance Evaluation of a 4.5 kW (1.3 Refrigeration Tons) Air-Cooled Lithium Bromide/Water Solar Powered (Hot-Water-Fired) Absorption Unit

    SciTech Connect (OSTI)

    Zaltash, Abdolreza; Petrov, Andrei Y; Linkous, Randall Lee; Vineyard, Edward Allan

    2007-01-01

    During the summer months, air-conditioning (cooling) is the single largest use of electricity in both residential and commercial buildings with the major impact on peak electric demand. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. Thermally activated absorption air-conditioning (absorption chillers) can provide overall peak load reduction and electric grid relief for summer peak demand. This innovative absorption technology is based on integrated rotating heat exchangers to enhance heat and mass transfer resulting in a potential reduction of size, cost, and weight of the "next generation" absorption units. Rotartica Absorption Chiller (RAC) is a 4.5 kW (1.3 refrigeration tons or RT) air-cooled lithium bromide (LiBr)/water unit powered by hot water generated using the solar energy and/or waste heat. Typically LiBr/water absorption chillers are water-cooled units which use a cooling tower to reject heat. Cooling towers require a large amount of space, increase start-up and maintenance costs. However, RAC is an air-cooled absorption chiller (no cooling tower). The purpose of this evaluation is to verify RAC performance by comparing the Coefficient of Performance (COP or ratio of cooling capacity to energy input) and the cooling capacity results with those of the manufacturer. The performance of the RAC was tested at Oak Ridge National Laboratory (ORNL) in a controlled environment at various hot and chilled water flow rates, air handler flow rates, and ambient temperatures. Temperature probes, mass flow meters, rotational speed measuring device, pressure transducers, and a web camera mounted inside the unit were used to monitor the RAC via a web control-based data acquisition system using Automated Logic Controller (ALC). Results showed a COP and cooling capacity of approximately 0.58 and 3.7 kW respectively at 35 C (95 F) design condition for ambient

  3. Evaluation of a jet plate solar air heater

    SciTech Connect (OSTI)

    Choudhury, C.; Garg, H.P. )

    1991-01-01

    To achieve higher heat transfer from the absorber plate to the flowing air stream with an intention to increase the amount of the collected energy, and hence, to improve the efficiency of an air-based solar collector, a unique jet impingement concept has been advanced for evaluation in the present study. To investigate the effects of various geometrical parameters such as the hole or nozzle diameter on the jet plate, their interspacings, the nozzle height, the distance between the absorber and the jet plate and the operational parameter such as the velocity of air impinging out of the holes/nozzles on to the back side of the absorber surface on the performance parameters of the jet impingement concept air heater, a detailed theoretical parametric analysis has been made on the design for different mass flow rates of air and different lengths of air channel. A parallel study has also been carried out on a conventional parallel plate air heater in order to compare its air temperature increment and performance efficiency with those of the jet plate air heater. The gain in air temperature increment and performance efficiency of the jet-concept air heater over that of the parallel plate air heater with duct depth 10 cm and length 2 m is 15.5{degree}C to 2.5{degree}C and 26.5% to 19%, respectively, for air flow rates in the range 50 to 250 kg/hm{sup 2}.

  4. Clean Air Interstate Rule (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Clean Air Interstate Rule (CAIR) is a cap-and-trade program promulgated by the Environmental Protection Agency in 2005, covering 28 eastern U.S. states and the District of Columbia. It was designed to reduce sulfur dioxide (SO2) and nitrogen oxide (NOx) emissions in order to help states meet their National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter (PM2.5) and to further emissions reductions already achieved through the Acid Rain Program and the NOx State Implementation Plan call program. The rule was set to commence in 2009 for seasonal and annual NOx emissions and in 2010 for SO2 emissions.

  5. Measurement of the ambient gamma dose equivalent and kerma from the small 252Cf source at 1 meter and the small 60Co source at 2 meters

    SciTech Connect (OSTI)

    Carl, W. F.

    2015-07-30

    NASA Langley Research Center requested a measurement and determination of the ambient gamma dose equivalent rate and kerma at 100 cm from the 252Cf source and determination of the ambient gamma dose equivalent rate and kerma at 200 cm from the 60Co source for the Radiation Budget Instrument Experiment (Rad-X). An Exradin A6 ion chamber with Shonka air-equivalent plastic walls in combination with a Supermax electrometer were used to measure the exposure rate and free-in-air kerma rate of the two sources at the requested distances. The measured gamma exposure, kerma, and dose equivalent rates are tabulated.

  6. An empirical analysis of exposure-based regulation to abate toxic air pollution

    SciTech Connect (OSTI)

    Marakovits, D.M.; Considine, T.J.

    1996-11-01

    Title III of the 1990 Clean Air Act Amendments requires the Environmental Protection Agency to regulate 189 air toxics, including emissions from by-product coke ovens. Economists criticize the inefficiency of uniform standards, but Title III makes no provision for flexible regulatory instruments. Environmental health scientists suggest that population exposure, not necessarily ambient air quality, should motivate environmental air pollution policies. Using an engineering-economic model of the United States steel industry, we estimate that an exposure-based policy can achieve the same level of public health as coke oven emissions standards and can reduce compliance costs by up to 60.0%. 18 refs., 3 figs., 1 tab.

  7. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. Weekday and Weekend Air Pollutant Levels in Ozone Problem Areas in the U.S. 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_lawson.pdf (221.69 KB) More Documents & Publications Weekend/Weekday Ozone Study in the South Coast Air Basin Real-World Studies of Ambient Ozone Formation as a Function of NOx Reductions … Summary and Implications for Air

  8. Engine Cylinder Temperature Control

    DOE Patents [OSTI]

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  9. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322...

  10. Impacts of Future Climate and Emission Changes on U.S. Air Quality

    SciTech Connect (OSTI)

    Penrod, Ashley; Zhang, Yang; Wang, K.; Wu, Shiang Yuh; Leung, Lai-Yung R.

    2014-06-01

    Changes in climate and emissions will affect future air quality. In this work, simulations of present (2001-2005) and future (2026-2030) regional air quality are conducted with the newly released CMAQ version 5.0 to examine the individual and combined impacts of simulated future climate and anthropogenic emission projections on air quality over the U.S. Current (2001-2005) meteorological and chemical predictions are evaluated against observational data to assess the models capability in reproducing the seasonal differences. Overall, WRF and CMAQ perform reasonably well. Increased temperatures (up to 3.18 C) and decreased ventilation (up to 157 m in planetary boundary layer height) are found in both future winter and summer, with more prominent changes in winter. Increases in future temperatures result in increased isoprene and terpene emissions in winter and summer, driving the increase in maximum 8-h average O3 (up to 5.0 ppb) over the eastern U.S. in winter while decreases in NOx emissions drive the decrease in O3 over most of the U.S. in summer. Future concentrations of PM2.5 in winter and summer and many of its components including organic matter in winter, ammonium and nitrate in summer, and sulfate in winter and summer, decrease due to decreases in primary anthropogenic emissions and the concentrations of secondary anthropogenic pollutants and increased precipitation in winter. Future winter and summer dry and wet deposition fluxes are spatially variable and increase with increasing surface resistance and precipitation (e.g., NH4+ and NO3- dry and wet deposition fluxes increase in winter over much of the U.S.), respectively, and decrease with a decrease in ambient particulate concentrations (e.g., SO42- dry and wet deposition fluxes decrease over the eastern U.S. in summer and winter). Sensitivity simulations show that anthropogenic emission projections dominate over changes in climate in their impacts on the U.S. air quality in the near future. Changes in

  11. Simple Interactive Models for better air quality (SIM-air) |...

    Open Energy Info (EERE)

    Interactive Models for better air quality (SIM-air) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Simple Interactive Models (SIM-air) AgencyCompany Organization:...

  12. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H Oh; Eung S Kim

    2011-09-01

    Idaho National Laboratory carried out air ingress experiments as part of validating computational fluid dynamics (CFD) calculations. An isothermal test loop was designed and set to understand the stratified-flow phenomenon, which is important as the initial air flow into the lower plenum of the very high temperature gas cooled reactor (VHTR) when a large break loss-of-coolant accident occurs. The unique flow characteristics were focused on the VHTR air-ingress accident, in particular, the flow visualization of the stratified flow in the inlet pipe to the vessel lower plenum of the General Atomic’s Gas Turbine-Modular Helium Reactor (GT-MHR). Brine and sucrose were used as heavy fluids, and water was used to represent a light fluid, which mimics a counter current flow due to the density difference between the stimulant fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between simulant fluids was established even for very small density differences. The CFD calculations were compared with experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations . As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  13. Maintaining Your Air Conditioner

    Broader source: Energy.gov [DOE]

    Regular maintenance extends the life of your air conditioner and helps it run as efficiently as possible.

  14. Minimize Compressed Air Leaks

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines a strategy for compressed air leak detection and provides a formula for cost savings calculations.

  15. High temperature Hexoloy{trademark} SX silicon carbide. Final report

    SciTech Connect (OSTI)

    Srinivasan, G.V.; Lau, S.K.; Storm, R.S.

    1994-09-01

    HEXOLOY{reg_sign} SX-SiC, fabricated with Y and Al containing compounds as sintering aids, has been shown to possess significantly improved strength and toughness over HEXOLOY{reg_sign}SA-SiC. This study was undertaken to establish and benchmark the complete mechanical property database of a first generation material, followed by a process optimization task to further improve the properties. Mechanical characterization on the first generation material indicated that silicon-rich pools, presumably formed as a reaction product during sintering, controlled the strength from room temperature to 1,232 C. At 1,370 C in air, the material was failing due to a glass-phase formation at the surface. This glass-phase formation was attributed to the reaction of yttrium aluminates, which exist as a second phase in the material, with the ambient. This process was determined to be a time-dependent one that leads to slow crack growth. Fatigue experiments clearly indicated that the slow crack growth driven by the reaction occurred only at temperatures >1,300 C, above the melting point of the glass phase. Process optimization tasks conducted included the selection of the best SiC powder source, studies on mixing/milling conditions for SiC powder with the sintering aids, and a designed experiment involving a range of sintering and post-treatment conditions. The optimization study conducted on the densification variables indicated that lower sintering temperatures and higher post-treatment pressures reduce the Si-rich pool formation, thereby improving the room-temperature strength. In addition, it was also determined that furnacing configuration and atmosphere were critical in controlling the Si-rich formation.

  16. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect (OSTI)

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  17. Lower Rio Grande Valley transboundary air pollution project (TAPP). Project report 1996--1997

    SciTech Connect (OSTI)

    Mukerjee, S.; Shadwick, D.S.; Dean, K.E.; Carmichael, L.Y.; Bowser, J.J.

    1999-04-01

    The Lower Rio Grande Valley Transboundary Air Pollution Project (TAPP) was a US-Mexico Border XXI project to find out if air pollutants were moving across the border from Mexico into the Lower Rio Grande Valley of Texas and to see what levels of air pollutants were present. Ambient measurements and meteorology were collected data for a year (March 1996-March 1997) at three fixed sites in and near Brownsville, Texas very close to the US-Mexico border on a continuous and 24-h internal basis. Overall levels of air pollution were similar to or lower than other areas in Texas and elsewhere. Based on wind sector analyses, transport of air pollution across the border did not appear to adversely impact air quality on the US side of the Valley. Southeasterly winds from the Gulf of Mexico were largely responsible for the clean air conditions.

  18. Evaluation of the Ram-Jet device, a PCV air bleed. Technical report

    SciTech Connect (OSTI)

    Barth, E.A.

    1980-01-01

    The Environmental Protection Agency receives information about many systems which appear to offer potential for emission reduction or fuel economy improvement compared to conventional engines and vehicles. This report discusses EPA's evaluation of the Ram-Jet, a retrofit device marketed by Ed Almquist. It is designed to bleed in extra air to the engine by allowing ambient air to bypass the carburetor under high engine load conditions. The manufacturer claims the device reduces emission pollutants and improves fuel economy.

  19. Air Sparging Decision Tool

    Energy Science and Technology Software Center (OSTI)

    1996-06-10

    The Air Sparging Decision Tool is a computer decision aid to help environmental managers and field practitioners in evaluating the applicability of air sparging to a wide range of sites and for refining the operation of air sparging systems. The program provides tools for the practitioner to develop the conceptual design for an air sparging system suitable for the identified site. The Tool provides a model of the decision making process, not a detailed designmore » of air sparging systems. The Tool will quickly and cost effectively assist the practitioner in screening for applicability of the technology at a proposed site.« less

  20. Determining the Right Air Quality for Your Compressed Air System

    Broader source: Energy.gov [DOE]

    This tip sheet outlines the main factors for determining the right air quality for compressed air systems.

  1. Trends in wetting behavior for Ag–CuO braze alloys on Ba0.5Sr0.5Co0.8Fe0.2O(3−δ) at elevated temperatures in air

    SciTech Connect (OSTI)

    Joshi, Vineet V.; Meier, Alan; Darsell, Jens T.; Weil, K. Scott; Bowden, Mark E.

    2013-10-01

    Ba0.5Sr0.5Co0.8Fe0.2O(3- (BSCF) is a potential oxygen separation membrane material for advanced coal based power plants. For this application, BSCF must be joined to a metal. In the current study, Ag-CuO, a reactive air brazing (RAB) alloy was evaluated for brazing BSCF. In-situ contact angle tests were performed on BSCF using Ag-CuO binary mixtures at 950 and 1000°C and the interfacial microstructures were evaluated. Wetting contact angles (<90°) were obtained at short times at 950°C and the contact angles remained constant at 1000°C for 1, 2 and 8 mol% CuO contents. Microstructural analysis revealed the dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundary. The formation of a thick interfacial reaction product layer and ridging at the sessile drop triple point indicate that the reaction kinetics are very rapid and that it will require careful process control to obtain the desired thin but continuous interfacial product layer.

  2. Temperature System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Soil Water and Temperature System SWATS In the realm of global climate modeling, ... An example is the soil water and temperature system (SWATS) (Figure 1). A SWATS is located ...

  3. Water Adsorption on a-Fe2O3(0001) at Near Ambient Conditions

    SciTech Connect (OSTI)

    Yamamoto, Susumu

    2011-08-19

    We have investigated hydroxylation and water adsorption on {alpha}-Fe{sub 2}O{sub 3}(0001) at water vapor pressures up to 2 Torr and temperatures ranging from 277 to 647 K (relative humidity (RH) {le} 34%) using ambient-pressure X-ray photoelectron spectroscopy (XPS). Hydroxylation occurs at the very low RH of 1 x 10{sup -7} % and precedes the adsorption of molecular water. With increasing RH, the OH coverage increases up to one monolayer (ML) without any distinct threshold pressure. Depth profiling measurements showed that hydroxylation occurs only at the topmost surface under our experimental conditions. The onset of molecular water adsorption varies from {approx}2 x 10{sup -5} to {approx} 4 x 10{sup -2} % RH depending on sample temperature and water vapor pressure. The coverage of water reaches 1 ML at {approx}15% RH and increases to 1.5 ML at 34% RH.

  4. Spectroscopic characterization of rovibrational temperatures in atmospheric pressure He/CH{sub 4} plasmas

    SciTech Connect (OSTI)

    Moon, Se Youn; Kim, D. B.; Gweon, B.; Choe, W.

    2008-10-15

    Atmospheric pressure of helium (He) and methane (CH{sub 4}) mixture discharge characteristics are investigated using emission spectroscopic methods. Plasmas are produced in a radio frequency capacitively coupled device at atmospheric pressure in the ambient air. Without the CH{sub 4} gas introduced in the plasma, the emission spectrum exhibits typical helium discharge characteristics showing helium atomic lines with nitrogen molecular bands and oxygen atomic lines resulting from air impurities. Addition of a small amount (<1%) of CH{sub 4} to the supplied He results in the emission of CN (B{sup 2}{sigma}{sup +}-X{sup 2}{sigma}{sup +}: violet system) and CH (A{sup 2}{delta}-X{sup 2} product : 430 nm system) molecular bands. Analyzing the CN and CH diatomic molecular emission spectra, the vibrational temperature (T{sub vib}) and rotational temperature (T{sub rot}) are simultaneously obtained. As input power levels are raised from 20 W to 200 W, T{sub vib} and T{sub rot} are increased from 4230 K to 6310 K and from 340 K to 500 K, respectively. On the contrary, increasing the CH{sub 4} amount brings about the decrease of both temperatures because CH{sub 4} is harder to ionize than He. The emission intensities of CN and CH radicals, which are important in plasma processing, are also changed along with the temperature variation. From the results, the atmospheric pressure plasma shows strong nonequilibrium discharge properties, which may be effectively utilized for thermal damage free material treatments.

  5. Determining the Right Air Quality for Your Compressed Air System - Compressed Air Tip Sheet #5

    SciTech Connect (OSTI)

    2004-08-01

    BestPractices Program tip sheet discussing how to determine the right air quality for compressed air systems.

  6. Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel...

    Broader source: Energy.gov (indexed) [DOE]

    Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine ...

  7. Common Air Conditioner Problems

    Broader source: Energy.gov [DOE]

    When your air conditioner is not operating properly, there are a few things you can check before calling a service professional.

  8. Personal continuous air monitor

    DOE Patents [OSTI]

    Morgan, Ronald G.; Salazar, Samuel A.

    2000-01-01

    A personal continuous air monitor capable of giving immediate warning of the presence of radioactivity has a filter/detector head to be worn in the breathing zone of a user, containing a filter mounted adjacent to radiation detectors, and a preamplifier. The filter/detector head is connected to a belt pack to be worn at the waist or on the back of a user. The belt pack contains a signal processor, batteries, a multichannel analyzer, a logic circuit, and an alarm. An air pump also is provided in the belt pack for pulling air through the filter/detector head by way of an air tube.

  9. Adsorption air conditioner

    DOE Patents [OSTI]

    Rousseau, Jean L. I.

    1979-01-01

    A solar powered air conditioner using the adsorption process is constructed with its components in a nested cylindrical array for compactness and ease of operation.

  10. Hill Air Force Base

    Broader source: Energy.gov [DOE]

    Energy savings performance contracting at Hill Air Force Base generated much interest during a recent training session on energy management that downlinked 12 Department of Defense sites. Energy...

  11. Verifying TRU Passive DPF Cold Ambient Performance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRU Passive DPF Cold Ambient Performance Verifying TRU Passive DPF Cold Ambient Performance Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_lucht.pdf (151.1 KB) More Documents & Publications ADEC II Universal SCR Retrofit System for On-road and Off-road Diesel Engines Emissions

  12. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    SciTech Connect (OSTI)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature rise monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.

  13. Fundamental Understanding of Ambient and High-Temperature Plasticity Phenomena in Structural Materials in Advanced Reactors

    SciTech Connect (OSTI)

    Deo, Chaitanya; Zhu, Ting; McDowell, David

    2013-11-17

    The goal of this research project is to develop the methods and tools necessary to link unit processes analyzed using atomistic simulations involving interaction of vacancies and interstitials with dislocations, as well as dislocation mediation at sessile junctions and interfaces as affected by radiation, with cooperative influence on higher-length scale behavior of polycrystals. These tools and methods are necessary to design and enhance radiation-induced damage-tolerant alloys. The project will achieve this goal by applying atomistic simulations to characterize unit processes of: 1. Dislocation nucleation, absorption, and desorption at interfaces 2. Vacancy production, radiation-induced segregation of substitutional Cr at defect clusters (point defect sinks) in BCC Fe-Cr ferritic/martensitic steels 3. Investigation of interaction of interstitials and vacancies with impurities (V, Nb, Ta, Mo, W, Al, Si, P, S) 4. Time evolution of swelling (cluster growth) phenomena of irradiated materials 5. Energetics and kinetics of dislocation bypass of defects formed by interstitial clustering and formation of prismatic loops, informing statistical models of continuum character with regard to processes of dislocation glide, vacancy agglomeration and swelling, climb and cross slip This project will consider the Fe, Fe-C, and Fe-Cr ferritic/martensitic material system, accounting for magnetism by choosing appropriate interatomic potentials and validating with first principles calculations. For these alloys, the rate of swelling and creep enhancement is considerably lower than that of face-centered cubic (FCC) alloys and of austenitic Fe-Cr-Mo alloys. The team will confirm mechanisms, validate simulations at various time and length scales, and improve the veracity of computational models. The proposed research?s feasibility is supported by recent modeling of radiation effects in metals and alloys, interfacial dislocation transfer reactions in nano-twinned copper, and dislocation reactions at general boundaries, along with extensive modeling cooperative effects of dislocation interactions and migration in crystals and polycrystals using continuum models.

  14. Li corrosion resistant glasses for headers in ambient temperature Li batteries

    DOE Patents [OSTI]

    Hellstrom, E.E.; Watkins, R.D.

    1985-10-11

    Glass compositions containing 10 to 50 mol% CaO, 10 to 50 mol% Al/sub 2/O/sub 3/, 30 to 60 mol% B/sub 2/O/sub 3/, and 0 to 30 mol% MgO are provided. These compositions are capable of forming a stable glass-to-metal seal possessing electrical insulating properties for use in a lithium battery. Also provided are lithium cells containing a stainless steel body and molybdenum center pin electrically insulated by means of a seal produced according to the invention.

  15. Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions

    Broader source: Energy.gov [DOE]

    Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

  16. Update on State Air Emission Regulations That Affect Electric Power Producers (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    Several states have recently enacted air emission regulations that will affect the electricity generation sector. The regulations are intended to improve air quality in the states and assist them in complying with the revised 1997 National Ambient Air Quality Standards (NAAQS) for ground-level ozone and fine particulates. The affected states include Connecticut, Massachusetts, Maine, Missouri, New Hampshire, New Jersey, New York, North Carolina, Oregon, Texas, and Washington. The regulations govern emissions of NOx, SO2, CO2, and mercury from power plants.

  17. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect (OSTI)

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  18. Portable oven air circulator

    DOE Patents [OSTI]

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  19. AIR RADIOACTIVITY MONITOR

    DOE Patents [OSTI]

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  20. History of Air Conditioning

    Broader source: Energy.gov [DOE]

    We take it for granted but what would life be like without the air conditioner? Once considered a luxury, this invention is now an essential, allowing us to cool everything from homes, businesses, businesses, data centers, laboratories and other buildings vital to our daily lives. Explore this timeline to learn some of the key dates in the history of air conditioning.

  1. Protective air lock

    DOE Patents [OSTI]

    Evans, Herbert W.

    1976-03-30

    A device suitable for preventing escape and subsequent circulation of toxic gases comprising an enclosure which is sealed by a surrounding air lock, automatic means for partially evacuating said enclosure and said air lock and for ventilating said enclosure and means for disconnecting said enclosure ventilating means, whereby a relatively undisturbed atmosphere is created in said enclosure.

  2. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  3. Recirculating electric air filter

    DOE Patents [OSTI]

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  4. AIRNET Data from Los Alamos National Laboratory: Air Concentration Data by Site and Isotope/Element

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ambient monitoring is the systematic, long-term assessment of pollutant levels by measuring the quantity and types of certain pollutants in the surrounding, outdoor air. The purpose of AIRNET, LANL's ambient air monitoring network, is to monitor locations where people live or work. The community of Los Alamos is downwind from LANL, so there are many monitoring stations in and around the town. AIRNET stations monitor 24 hours a day, 365 days of the year. Particulates are collected on a filter and analyzed every two weeks for identification of analytes and assessment of the potential impact on the public. Emissions measurement is the process of monitoring materials vented from buildings. Air samples are taken from building exhaust units, called stacks, and are then analyzed for particulate matter, tritium, and radioactive gases and vapors. A computer model uses the emission data to determine the dispersion. Stack monitoring is also used to measure emissions that cannot be measured by AIRNET stations.

  5. Brady 1D seismic velocity model ambient noise prelim

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mellors, Robert J.

    2013-10-25

    Preliminary 1D seismic velocity model derived from ambient noise correlation. 28 Green's functions filtered between 4-10 Hz for Vp, Vs, and Qs were calculated. 1D model estimated for each path. The final model is a median of the individual models. Resolution is best for the top 1 km. Poorly constrained with increasing depth.

  6. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    SciTech Connect (OSTI)

    Langton, C. A.; Almond, P. M.

    2013-11-26

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup −} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup −}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function of depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this report

  7. Beamline Temperatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Temperatures Energy: 3.0000 GeV Current: 495.5347 mA Date: 09-Jan-2016 04:18:38 Beamline Temperatures Energy 3.0000 GeV Current 495.5 mA 09-Jan-2016 04:18:38 LN:MainTankLevel 112.0...

  8. Renewables and air quality

    SciTech Connect (OSTI)

    Wooley, D.R.

    2000-08-01

    The US heavy reliance on fossil fuels is a central obstacle to improving air quality and preventing catastrophic climate change. To solve this problem will require a combination of financial incentives and market rules that strongly encourage development of renewable energy resources to meet electric power demand. One promising policy option is to allow renewable energy resources to directly participate in air pollution emission trading mechanisms. Currently, the clean air benefits of renewable energy generally go unrecognized by regulators, under-appreciated by consumers and uncompensated by markets. Renewable energy is a key clean air alternative to conventional electricity generation, and the development of renewables could be stimulated by changes to the Clean Air Act's emissions trading programs. As Congress revisits clean air issues over the next several years, renewable energy representatives could push for statutory changes that reward the renewable energy industry for the air quality benefits it provides. By also becoming involved in key US Environmental Protection Agency (EPA) and state rule-making cases, the renewables industry could influence the structure of emissions trading programs and strengthen one of the most persuasive arguments for wind, solar and biomass energy development.

  9. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    SciTech Connect (OSTI)

    Popescu, Simona; Jerby, Eli Meir, Yehuda; Ashkenazi, Dana; Barkay, Zahava; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  10. Air heating system

    DOE Patents [OSTI]

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  11. air.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air force NNSA, Air Force Complete Successful B61-12 Life Extension Program Development Flight Test at Tonopah Test Range WASHINGTON - The National Nuclear Security Administration (NNSA) and United States Air Force completed the third development flight test of a non-nuclear B61-12 nuclear gravity bomb at Tonopah Test Range in Nevada on October 20, 2015. "This demonstration of effective end-to-end system... The man who trains everyone on the bombs Mark Meyer, training coordinator and field

  12. Air Shower Simulations

    SciTech Connect (OSTI)

    Alania, Marco; Gomez, Adolfo V. Chamorro; Araya, Ignacio J.; Huerta, Humberto Martinez; Flores, Alejandra Parra; Knapp, Johannes

    2009-04-30

    Air shower simulations are a vital part of the design of air shower experiments and the analysis of their data. We describe the basic features of air showers and explain why numerical simulations are the appropriate approach to model the shower simulation. The CORSIKA program, the standard simulation program in this field, is introduced and its features, performance and limitations are discussed. The basic principles of hadronic interaction models and some gerneral simulation techniques are explained. Also a brief introduction to the installation and use of CORSIKA is given.

  13. Analysis of supersaturated air in natural waters and reservoirs

    SciTech Connect (OSTI)

    D'Aoust, B.G.; Clark, M.J.R.

    1980-11-01

    Supersaturation of water by air or other gases can be caused by temperature increase, air or gas injection by pressurized pumping, or turbulent injection by falling water that traps air. The physics of supersaturation are outlined, and alternative sampling and analysis techniques used to evaluate the extent of supersaturation are described. These techniques range from complex, exacting procedures commonly used in the biomedical analytical laboratory to simple, portable methods suited to field application or continuous monitoring. Analytical techniques tested during 1976-78 in the Columbia and Snake river system, both of which were seriously supersaturated as a result of entrainment of air into water spilling over hydroelectric dams, are comparatively evaluated.

  14. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  15. Air ejector augmented compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  16. sub-ambient-membrane | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting, Pittsburgh, PA CO2 Capture by Cold Membrane Operation with Actual Coal Fired Power Plant Flue Gas PDF (June 2015) Presented by Trapti Chaubey, Air Liquide, Inc., ...

  17. Floor-supply displacement air-conditioning: Laboratory experiments

    SciTech Connect (OSTI)

    Akimoto, Takashi; Nobe, Tatsuo; Tanabe, Shinichi; Kimura, Kenichi

    1999-07-01

    The results of laboratory measurements on the performance of a floor-supply displacement air-conditioning system in comparison to a displacement ventilation system with a side-wall-mounted diffuser and a ceiling-based distribution system are described. Thermal stratification was observed, as there were greater vertical air temperature differences in both of the displacement systems than in the ceiling-based system. The floor-supply displacement air-conditioning system produced a uniformly low air velocity at each measurement height, while a rather high air velocity near the floor was observed for the displacement ventilation system with a sidewall-mounted diffuser. Local mean age of air of the floor-supply displacement air-conditioning system was lower than that of the other systems, especially in the lower part of the room. According to the simulation results, the floor-supply displacement air-conditioning system with outdoor air cooling requires 34% less energy than the conventional air-conditioning system with outdoor air cooling.

  18. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    SciTech Connect (OSTI)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  19. Breathing zone air sampler

    DOE Patents [OSTI]

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  20. Air Sealing Windows

    SciTech Connect (OSTI)

    2009-05-14

    This information sheet addresses windows and may also be applied to doors and other pre-assembled elements installed in building enclosures that also perform an air barrier function.

  1. Air conditioning system

    DOE Patents [OSTI]

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  2. Compressed Air Systems

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load compressors, cycling refrigerated dryers (up to 200 CFM capacity), no-loss...

  3. Air bag restraint device

    DOE Patents [OSTI]

    Marts, Donna J.; Richardson, John G.

    1995-01-01

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle's rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump.

  4. Air bag restraint device

    DOE Patents [OSTI]

    Marts, D.J.; Richardson, J.G.

    1995-10-17

    A rear-seat air bag restraint device is disclosed that prevents an individual, or individuals, from continuing violent actions while being transported in a patrol vehicle`s rear seat without requiring immediate physical contact by the law enforcement officer. The air bag is activated by a control switch in the front seat and inflates to independently restrict the amount of physical activity occurring in the rear seat of the vehicle while allowing the officer to safely stop the vehicle. The air bag can also provide the officer additional time to get backup personnel to aid him if the situation warrants it. The bag is inflated and maintains a constant pressure by an air pump. 8 figs.

  5. Guide to Air Sealing

    SciTech Connect (OSTI)

    2011-02-01

    Air sealing is one of the most cost-effective ways to improve the comfort and energy efficiency of your home. Hire a certified professional contractor for best results.

  6. Shock sensitivity of LX 04 at elevated temperatures

    SciTech Connect (OSTI)

    Urtiew, P.A.; Tarver, C.M.; Gorbes, J.W.; Garcia, G.

    1997-07-01

    Hazard scenarios can involve multiple stimuli, such as heating followed by fragment impact (shock). The shock response of LX-04 (85 weight % HMX and 15 weight % Viton binder) preheated to temperatures hear 170C is studied in a 10.2 cm bore diameter gas gun using embedded manganin pressure gauges. The pressure histories at various depths in the LX-04 targets and the run distances to detonation at several input shock pressures are measured and compared to those obtained in ambient temperature LX-04. The hot LX-04 is significantly more shock sensitive than ambient LX-04. Ignition and Growth reactive flow models are developed for ambient and hot LX-04 to allow predictions of impact scenarios that a can not be tested directly.

  7. Production of nitrogen from air

    SciTech Connect (OSTI)

    Hubbard, C.; Duckett, M.; Limb, D.I.

    1985-01-29

    In the single column process for the recovery of nitrogen from air wherein reflux for the distillation is provided by condensing a first portion of the overhead stream by indirect heat exchange in a reflux condenser with oxygen-rich liquid from the bottom of the column which has been subjected to a first expansion to an intermediate pressure, refrigeration for the process is provided by work expanding evaporated oxygen-rich liquid from the reflux condenser, and prior to said first expansion, the oxygen-rich liquid recovered from the bottom of the column is sub-cooled by indirect heat exchange in a sub-cooler with the work-expanded evaporated oxygen-rich liquid, nitrogen recovery is increased by work expanding the evaporated oxygen-rich liquid at a temperature not substantially greater than that at which it is recovered from the reflux condenser or by first passing it through said sub-cooler at a temperature not substantially greater than that at which it is recovered from the reflux condenser and thereafter work-expanding it at a temperature not substantially greater than that at which it is recovered from the sub-cooler, and feeding the work-expanded evaporated oxygen-rich liquid directly to the sub-cooler.

  8. ARM - Lesson Plans: Air Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers' Toolbox Lesson Plans Lesson Plans: Air Pressure Objective The objective of this ... Important Points to Understand Air has weight and exerts pressure on everything with which ...

  9. Air Quality | Open Energy Information

    Open Energy Info (EERE)

    Air Quality Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleAirQuality&oldid612070" Feedback Contact needs updating Image needs updating...

  10. Uses of upper-air meteorological data for air quality data analysis and modeling

    SciTech Connect (OSTI)

    Lindsey, C.G.; Dye, T.S.; Ray, S.E.; Roberts, P.T.

    1996-12-31

    A series of regional-scale field studies have been conducted in recent years to study meteorological and photochemical processes that lead to ozone episodes (periods of high ozone concentration) and other types of reduced air quality. An important component of these studies has been to increase the temporal and spatial resolution of aloft measurements of winds, temperatures, and related parameters over those provided by the twice-per-day National Weather Service (NWS) balloon sounding network. Supplemental upper-air stations deployed for these studies have been equipped with a variety of observing systems, including rawinsonde sounding systems, Doppler radar wind profilers, radio acoustic sounding systems (RASS, for temperature profiling), Doppler acoustic sounders (sodar), tethersondes, lidar, and aircraft-based measurements, among others. The upper-air data collected during these programs have been used.

  11. Contaminant and heat removal effectiveness and air-to-air heat/energy recovery for a contaminated air space

    SciTech Connect (OSTI)

    Irwin, D.R.; Simonson, C.J.; Saw, K.Y.; Besant, R.W.

    1998-12-31

    Measured contaminant and heat removal effectiveness data are presented and compared for a 3:1 scale model room, which represents a smoking room, lounge, or bar with a two-dimensional airflow pattern. In the experiments, heat and tracer gases were introduced simultaneously from a source to simulate a prototype smoking room. High-side-wall and displacement ventilation schemes were investigated, and the latter employed two different types of ceiling diffuser,low-velocity slot and low-velocity grille. Results show that thermal energy removal effectiveness closely follows contaminant removal effectiveness for each of the ventilation schemes throughout a wide range of operating conditions. The average mean thermal and contaminant removal effectiveness agreed within {+-}20%. Local contaminant removal effectiveness ranged from a low of 80% for a high-wall slot diffuser to more than 200% for a low-velocity ceiling diffuser with displacement ventilation. Temperature differences between the supply and the indoor air were between 0.2 C (0.36 F) and 41.0 C (73.8 V) and ventilation airflow rates ranged from 9.2 to 36.8 air changes per hour at inlet conditions. For small temperature differences between supply and exhaust air, all three ventilation schemes showed increased contaminant removal effectiveness near the supply diffuser inlet with decreasing values toward the exhaust outlet. For the high-side-wall slot diffuser, effectiveness was up to 140% near the inlet and 100% near the exhaust, but for the second displacement scheme (low-velocity grille) the effectiveness was more than 200% near the inlet and 110% near the exhaust. This paper also shows a potential significant reduction in cooling load for a 50-person-capacity smoking lounge that utilizes an air-to-air heat/energy exchanger to recover heat/energy from the exhaust air.

  12. Oceanic ambient noise as a background to acoustic neutrino detection

    SciTech Connect (OSTI)

    Kurahashi, Naoko; Gratta, Giorgio

    2008-11-01

    Ambient noise measured in the deep ocean is studied in the context of a search for signals from ultrahigh-energy cosmic ray neutrinos. The spectral shape of the noise at the relevant high frequencies is found to be very stable for an extensive data set collected over several months from 49 hydrophones mounted near the bottom of the ocean at {approx}1600 m depth. The slopes of the ambient noise spectra above 15 kHz are found to roll off faster than the -6 dB/octave seen in Knudsen spectra. A model attributing the source to a uniform distribution of surface noise that includes frequency-dependent absorption at large depth is found to fit the data well up to 25 kHz. This depth-dependent model should therefore be used in analysis methods of acoustic neutrino pulse detection that require the expected noise spectra.

  13. Ambient methods and apparatus for rapid laser trace constituent analysis

    DOE Patents [OSTI]

    Snyder, Stuart C.; Partin, Judy K.; Grandy, Jon D.; Jeffery, Charles L.

    2002-01-01

    A method and apparatus are disclosed for measuring trace amounts of constituents in samples by using laser induced breakdown spectroscopy and laser induced fluorescence under ambient conditions. The laser induced fluorescence is performed at a selected wavelength corresponding to an absorption state of a selected trace constituent. The intensity value of the emission decay signal which is generated by the trace constituent is compared to calibrated emission intensity decay values to determine the amount of trace constituent present.

  14. Investigation of techniques to improve continuous air monitors under conditions of high dust loading in environmental setting

    SciTech Connect (OSTI)

    Huang, Suilou; Schery, Stephen D.; Rodgers, John

    2000-06-01

    Improvement in understanding the deposition of ambient dust particles on environmental continuous air monitor (ECAM) filters, reduction of the alpha-particle interference of radon progeny and other radioactive aerosols in different particle size ranges on filters, and development of ECAMs with increased sensitivity under dusty outdoor conditions.

  15. Mechanical-reliability evaluation of a proposed emergency-response radioiodine air sampler

    SciTech Connect (OSTI)

    Krupa, J.F.; Bird, S.K.; Motes, B.G.

    1982-12-01

    In the event of environmental releases of radionuclides following an accident at a commercial nuclear power plant, the concentrations of the radionuclides must be determined to assess the potential radiological impacts. A prototype air sampler was developed to measure airborne radioiodine. An independent evaluation of the mechanical reliability of the air sampler was conducted to determine the effects of temperature, relative humidity, rainfall, dusty air, and mechanical treatment on the samplers performance. The air sampler motor exhibited an insufficient lifetime and would not operate reliably at low temperatures on direct current voltage. Brief scoping studies were conducted to identify candidate motors to replace the original air sampler motor.

  16. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect (OSTI)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  17. Temperature-controlled molecular depolarization gates in nuclear magnetic resonance

    SciTech Connect (OSTI)

    Schroder, Leif; Schroder, Leif; Chavez, Lana; Meldrum, Tyler; Smith, Monica; Lowery, Thomas J.; E. Wemmer, David; Pines, Alexander

    2008-02-27

    Down the drain: Cryptophane cages in combination with selective radiofrequency spin labeling can be used as molecular 'transpletor' units for transferring depletion of spin polarization from a hyperpolarized 'source' spin ensemble to a 'drain' ensemble. The flow of nuclei through the gate is adjustable by the ambient temperature, thereby enabling controlled consumption of hyperpolarization.

  18. Ambient Mass Spectrometry Imaging Using Direct Liquid Extraction Techniques

    SciTech Connect (OSTI)

    Laskin, Julia; Lanekoff, Ingela

    2015-11-13

    Mass spectrometry imaging (MSI) is a powerful analytical technique that enables label-free spatial localization and identification of molecules in complex samples.1-4 MSI applications range from forensics5 to clinical research6 and from understanding microbial communication7-8 to imaging biomolecules in tissues.1, 9-10 Recently, MSI protocols have been reviewed.11 Ambient ionization techniques enable direct analysis of complex samples under atmospheric pressure without special sample pretreatment.3, 12-16 In fact, in ambient ionization mass spectrometry, sample processing (e.g., extraction, dilution, preconcentration, or desorption) occurs during the analysis.17 This substantially speeds up analysis and eliminates any possible effects of sample preparation on the localization of molecules in the sample.3, 8, 12-14, 18-20 Venter and co-workers have classified ambient ionization techniques into three major categories based on the sample processing steps involved: 1) liquid extraction techniques, in which analyte molecules are removed from the sample and extracted into a solvent prior to ionization; 2) desorption techniques capable of generating free ions directly from substrates; and 3) desorption techniques that produce larger particles subsequently captured by an electrospray plume and ionized.17 This review focuses on localized analysis and ambient imaging of complex samples using a subset of ambient ionization methods broadly defined as “liquid extraction techniques” based on the classification introduced by Venter and co-workers.17 Specifically, we include techniques where analyte molecules are desorbed from solid or liquid samples using charged droplet bombardment, liquid extraction, physisorption, chemisorption, mechanical force, laser ablation, or laser capture microdissection. Analyte extraction is followed by soft ionization that generates ions corresponding to intact species. Some of the key advantages of liquid extraction techniques include the ease

  19. Air electrode material for high temperature electrochemical cells

    DOE Patents [OSTI]

    Ruka, Roswell J.

    1985-01-01

    Disclosed is a solid solution with a perovskite-like crystal structure having the general formula La.sub.1-x-w (M.sub.L).sub.x (Ce).sub.w (M.sub.S1).sub.1-y (M.sub.S2).sub.y O.sub.3 where M.sub.L is Ca, Sr, Ba, or mixtures thereof, M.sub.S1 is Mn, Cr, or mixtures thereof and M.sub.S2 is Ni, Fe, Co, Ti, Al, In, Sn, Mg, Y, Nb, Ta, or mixtures thereof, w is about 0.05 to about 0.25, x+w is about 0.1 to about 0.7, and y is 0 to about 0.5. In the formula, M.sub.L is preferably Ca, w is preferably 0.1 to 0.2, x+w is preferably 0.4 to 0.7, and y is preferably 0. The solid solution can be used in an electrochemical cell where it more closely matches the thermal expansion characteristics of the support tube and electrolyte of the cell.

  20. Possible mechanism of abrupt jump in winter surface air temperature...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 120; Journal Issue: 24; Journal ID: ISSN 2169-897X Publisher: Wiley Blackwell (John Wiley & Sons) Sponsoring Org: USDOE Country of ...

  1. High-Temperature, Air-Cooled Traction Drive Inverter Packaging

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  2. Impacts of rising air temperatures and emissions mitigation on...

    Office of Scientific and Technical Information (OSTI)

    ; Colley, Michelle ; Patel, Pralit L. ; Eom, Jiyong ; Kim, Son H. ; Kyle, G. Page ; Schultz, Peter ; Venkatesh, Boddu ; Haydel, Juanita ; Mack, Charlotte ; Creason, Jared ...

  3. AIR COOLED NEUTRONIC REACTOR

    DOE Patents [OSTI]

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  4. Radioactive air effluent emission measurements at two research reactors

    SciTech Connect (OSTI)

    McDonald, M.J.; Ghanbari, F.; Burger, M.J.; Holm, C.

    1996-10-01

    Sandia National Laboratories operates two reactors which fall under US Environmental Protection Agency regulations for emission of radionuclides to the ambient air. These reactors are: (1) the Annular Core Research Reactor, a pool-type reactor and (2) the Sandia Pulsed Reactor III, a Godiva-type reactor. The annual radioactive air emissions from these two reactors had been estimated based on engineering calculations and used in the facility Safety Analysis Report. The calculated release rates had never been confirmed through measurements. The purpose of this work was to obtain confirmatory radioactive gas and aerosol concentration measurements for radionuclides in exhaust stacks of these reactors during normal operation; however, the measured production rate of argon-41 was significantly different from the engineering calculations for both reactors. The resolution of this difference is discussed.

  5. Encapsulated graphene field-effect transistors for air stable operation

    SciTech Connect (OSTI)

    Alexandrou, Konstantinos Kymissis, Ioannis; Petrone, Nicholas; Hone, James

    2015-03-16

    In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics.

  6. Cool Colored Roofs to Save Energy and Improve Air Quality

    SciTech Connect (OSTI)

    Akbari, Hashem; Levinson, Ronnen; Miller, William; Berdahl, Paul

    2005-08-23

    Urban areas tend to have higher air temperatures than their rural surroundings as a result of gradual surface modifications that include replacing the natural vegetation with buildings and roads. The term ''Urban Heat Island'' describes this phenomenon. The surfaces of buildings and pavements absorb solar radiation and become extremely hot, which in turn warm the surrounding air. Cities that have been ''paved over'' do not receive the benefit of the natural cooling effect of vegetation. As the air temperature rises, so does the demand for air-conditioning (a/c). This leads to higher emissions from power plants, as well as increased smog formation as a result of warmer temperatures. In the United States, we have found that this increase in air temperature is responsible for 5-10% of urban peak electric demand for a/c use, and as much as 20% of population-weighted smog concentrations in urban areas. Simple ways to cool the cities are the use of reflective surfaces (rooftops and pavements) and planting of urban vegetation. On a large scale, the evapotranspiration from vegetation and increased reflection of incoming solar radiation by reflective surfaces will cool a community a few degrees in the summer. As an example, computer simulations for Los Angeles, CA show that resurfacing about two-third of the pavements and rooftops with reflective surfaces and planting three trees per house can cool down LA by an average of 2-3K. This reduction in air temperature will reduce urban smog exposure in the LA basin by roughly the same amount as removing the basin entire onroad vehicle exhaust. Heat island mitigation is an effective air pollution control strategy, more than paying for itself in cooling energy cost savings. We estimate that the cooling energy savings in U.S. from cool surfaces and shade trees, when fully implemented, is about $5 billion per year (about $100 per air-conditioned house).

  7. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Compressed air energy storage system

    DOE Patents [OSTI]

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. New Whole-House Solutions Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania

    SciTech Connect (OSTI)

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania, to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. The team evaluated a market-available through-wall air transfer fan system that provides air to the bedrooms.The relative ability of this system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability.

  10. High temperature two component explosive

    DOE Patents [OSTI]

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  11. The Weekend Ozone Effect - The Weekly Ambient Emissions Control...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications WeekendWeekday Ozone Study in the South Coast Air Basin DOE's Studies of WeekdayWeekend Ozone Pollution in Southern California Real-World Studies of ...

  12. Low cost, bare plate solar air collector. Semi-annual progress report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    A low cost, bare plate solar collector that is specifically designed to preheat ambient air with solar energy is discussed. Two prototype solar collector test systems have been designed, fabricated and assembled. Each system has been instrumented to provide instantaneous and average thermal performance data by means of a computerized data logger system. This data logger system is currently being made operational. Data collection is scheduled to begin March 1, 1980 and continue until the project completion date of June 17, 1980. Some preliminary test data have been obtained for both prototype systems. The results showed that ambient air was preheated between 5/sup 0/F and 10/sup 0/F with the systems achieving a thermal performance of between 15% and 30% efficiency.

  13. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect (OSTI)

    Ridouane, El Hassan

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The objective of the study outlined in this report is to resolve the issue that the flow rates that are required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space.and maintain uniform temperatures within future homes. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes.

  14. Air Proportional Counter

    DOE Patents [OSTI]

    Simpson, J.A. Jr.

    1950-12-05

    A multiple wire counter utilizing air at atmospheric pressure as the ionizing medium and having a window of a nylon sheet of less than 0.5 mil thickness coated with graphite. The window is permeable to alpha particles so that the counter is well adapted to surveying sources of alpha radiation.

  15. A simple novel device for air sampling by electrokinetic capture

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  16. A simple novel device for air sampling by electrokinetic capture

    SciTech Connect (OSTI)

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A.

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of the

  17. Intake Air Oxygen Sensor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ignition can occur at elevated gas temperatures and with aged sensor Next Steps FMEA Study to understand ignition risk for failure modes identified by FMEA Identify...

  18. Fuel Cell Operations at Sub-Freezing Temperatures Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Operations at Sub-Freezing Temperatures Workshop Fuel Cell Operations at Sub-Freezing Temperatures Workshop The U.S. Department of Energy sponsored a Fuel Cell Operations at Sub-Freezing Temperatures Workshop in Phoenix, Arizona February 1-2, 2005. Attendees included representatives from fuel cell manufacturers, researchers, and government officials. Transportation and stationary fuel cells need to operate in environments where ambient temperatures will fall below 0°C. Surprisingly

  19. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool » Home Cooling Systems » Air Conditioning Air Conditioning Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Air conditioners cost U.S. homeowners more than $11 billion each year, and regular maintenance can keep your air conditioner running efficiently. | Photo courtesy of ©iStockphoto/JaniceRichard Two-thirds of all homes in the

  20. Central Air Conditioners","Heat Pumps","Individual Air Conditioners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioners","District Chilled Water","Central Chillers","Packaged Air ...,2354,2114,2054,"Q","Q" "District Chilled Water ......",2750,2750,"Q",336,359,2750,386,72...

  1. Central Air Conditioners","Heat Pumps","Individual Air Conditioners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Air Conditioners","District Chilled Water","Central Chillers","Packaged Air ..."Q",21,43,16,43,"Q","Q" "District Chilled Water ......",50,50,"Q",4,"Q",50,1,"Q","Q","Q" ...

  2. Project Profile: CSP Tower Air Brayton Combustor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power » Project Profile: CSP Tower Air Brayton Combustor Project Profile: CSP Tower Air Brayton Combustor SWRI logo -- This project is inactive -- The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing an external combustor capable of operating at much higher temperatures than the current state-of-the-art technology. Approach Illustration with a horizontal

  3. Data Quality Objectives Summary Report Supporting Radiological Air Surveillance Monitoring for the INL Site

    SciTech Connect (OSTI)

    Haney, Thomas Jay

    2015-05-01

    This report documents the Data Quality Objectives (DQOs) developed for the Idaho National Laboratory (INL) Site ambient air surveillance program. The development of the DQOs was based on the seven-step process recommended “for systematic planning to generate performance and acceptance criteria for collecting environmental data” (EPA 2006). The process helped to determine the type, quantity, and quality of data needed to meet current regulatory requirements and to follow U.S. Department of Energy guidance for environmental surveillance air monitoring design. It also considered the current air monitoring program that has existed at INL Site since the 1950s. The development of the DQOs involved the application of the atmospheric dispersion model CALPUFF to identify likely contamination dispersion patterns at and around the INL Site using site-specific meteorological data. Model simulations were used to quantitatively assess the probable frequency of detection of airborne radionuclides released by INL Site facilities using existing and proposed air monitors.

  4. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  5. Method and apparatus for controlling combustor temperature during transient load changes

    DOE Patents [OSTI]

    Clingerman, Bruce J.; Chalfant, Robert W.

    2002-01-01

    A method and apparatus for controlling the temperature of a combustor in a fuel cell apparatus includes a fast acting air bypass valve connected in parallel with an air inlet to the combustor. A predetermined excess quantity of air is supplied from an air source to a series connected fuel cell and combustor. The predetermined excess quantity of air is provided in a sufficient amount to control the temperature of the combustor during start-up of the fuel processor when the load on the fuel cell is zero and to accommodate any temperature transients during operation of the fuel cell.

  6. Analysis of supersaturated air in natural waters and reservoirs

    SciTech Connect (OSTI)

    D'Aoust, B.G.; Clark, M.J.R.

    1980-11-01

    Supersaturation of air or other gases in water can be caused by a temperature increase, air or gas injection by pressurized pumping, or turbulent injection by falling water which traps air when spills are allowed by hydroelectric projects. Evaluation of this problem requires both an understanding of the physics of the situation and practical knowledge of a number of alternative techniques for analysis. These range from complex, exacting procedures commonly used in the biomedical analytical laboratory to simple, portable methods well suited to use in the field or continuous monitoring. The authors have reviewed and refined several of these methods, have developed others, and have compared relevant techniques in the field and laboratory.

  7. Air cathode structure manufacture

    DOE Patents [OSTI]

    Momyer, William R.; Littauer, Ernest L.

    1985-01-01

    An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.

  8. FLUIDIC: Metal Air Recharged

    ScienceCinema (OSTI)

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  9. FLUIDIC: Metal Air Recharged

    SciTech Connect (OSTI)

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  10. Effect of air distribution on solid fuel bed combustion

    SciTech Connect (OSTI)

    Kuo, J.T.; Hsu, W.S.; Yo, T.C.

    1996-09-01

    One important aspect of refuse mass-burn combination control is the manipulation of combustion air. Proper air manipulation is key to the achievement of good combustion efficiency and reduction of pollutant emissions. Experiments, using a small fix-grate laboratory furnace with cylindrical combustion chamber, were performed to investigate the influence of undergrate/sidewall air distribution on the combustion of beds of wood cubes. Wood cubes were used as a convenient laboratory surrogate of solid refuse. Specifically, for different bed configurations (e.g. bed height, bed voidage and bed fuel size, etc.), burning rates and combustion temperatures at different bed locations were measured under various air supply and distribution conditions. One of the significant results of the experimental investigation is that combustion, with air injected from side walls and no undergrate air, provide the most efficient combustion. On the other hand, combustion with undergrate air achieves higher combustion rates but with higher CO emissions. A simple one-dimensional model was constructed to derive correlations of combustion rate as functions of flue gas temperature and oxygen concentration. Despite the fact that the model is one dimensional and many detailed chemical and physical processes of combustion are not considered, comparisons of the model predictions and the experimental results indicate that the model is appropriate for quantitative evaluation of bed burning rates.

  11. Fresh air indoors

    SciTech Connect (OSTI)

    Kull, K.

    1988-09-01

    This article describes and compares ventilation systems for the control of indoor air pollution in residential housing. These include: local exhaust fans, whole-house fans, central exhaust with wall ports, and heat-recovery central ventilation (HRV). HRV's have a higher initial cost than the other systems but they are the only ones that save energy. Homeowners are given guidelines for choosing the system best suited for their homes in terms of efficiency and payback period.

  12. Membrane Based Air Conditioning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Membrane Based Air Conditioning 2016 Building Technologies Office Peer Review Brian Johnson, brian.johnson@daisanalytic.com Dais Analytic Corporation INSERT PROJECT SPECIFIC PHOTO (replacing this shape) 2 Project Summary Timeline: Start date: October 1, 2015 NEW PROJECT Planned end date: September 30, 2017 Key Milestones 1. System Design Review; March 2016 2. Compressor testing review; September 2016 3. Go/No-Go based on bench testing; September 2016 4. Experimental evaluation of V1 prototype;

  13. Air conditioning apparatus

    SciTech Connect (OSTI)

    Ouchi, Y.; Otoshi, Sh.

    1985-04-09

    The air conditioning apparatus according to the invention comprises an absorption type heat pump comprising a system including an absorber, a regenerator, a condenser and an evaporator. A mixture of lithium bromide and zinc chloride is used as an absorbent which is dissolved to form an absorbent solution into a mixed solvent having a ratio by weight of methanol to water, the ratio falling in a range between 0.1 and 0.3. Said solution is circulated through the system.

  14. ARM - Instrument - ccn-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsccn-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "ccn-air" does not exist.

  15. ARM - Instrument - cpc-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentscpc-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "cpc-air" does not exist.

  16. ARM - Instrument - hk-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentshk-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "hk-air" does not exist.

  17. ARM - Instrument - met-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsmet-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "met-air" does not exist.

  18. ARM - Instrument - pcasp-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentspcasp-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "pcasp-air" does not exist.

  19. ARM - Instrument - tracegas-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentstracegas-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "tracegas-air" does not exist.

  20. ARM - Instrument - uhsas-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsuhsas-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "uhsas-air" does not exist.

  1. UNDERSTANDING THE AIR SAMPLING DATA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For more comparisons, see the millirem comparisons poster. Dose estimates have been calculated based on the low-volume air sampler results. Low-volume air samplers collect samples ...

  2. Air Liquide- Biogas & Fuel Cells

    Broader source: Energy.gov [DOE]

    Presentation about Air Liquide's biogas technologies and integration with fuel cells. Presented by Charlie Anderson, Air Liquide, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  3. Fundamentals of Compressed Air Systems

    Broader source: Energy.gov [DOE]

    Find out how a compressed air system works and the benefits of optimal compressed air system performance. This initial class demonstrates how to compute the current cost of your plant's compressed...

  4. Air quality committee

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Committees on air quality, coal, forest resources, and public lands and land use report on legislative, judicial, and administrative developments in 1979. There was no new significant air quality legislation, but a number of lawsuits raised questions about State Implementation Plans, prevention of significant deterioration, the Clean Air Act Amendments, new source performance standards, and motor vehicle emissions. Efforts to increase coal utilization emphasized implementation of the Power Plant and Industrial Fuel Use Act of 1978 and the Surface Mining Program. New legislation protects certain forest products from exploitation and exportation. Forest-related lawsuits focused on the RARE II process. Land-use legislation modified credit assistance to coastal zones and the language of interstate land sales, established a new agency to consolidate flood-insurance programs, and added protection to archaeological resources. Land-use-related lawsuits covered coastal zone management, interstate land sales, Indian reservations, and land-use planning in the context of civil rights, antitrust action, exclusionary zoning, comprehensive planning, and regional general welfare. Other suits addressed grants, leasing, claims, grazing rights, surveys, and other matters of public lands concern. Administrative actions centered on implementing the Coastal Zone Management Act, establishing the Council of Energy Resource Tribes, and developing guidelines for energy development. 147 references. (DCK)

  5. Air transparent soundproof window

    SciTech Connect (OSTI)

    Kim, Sang-Hoon; Lee, Seong-Hyun

    2014-11-15

    A soundproof window or wall which is transparent to airflow is presented. The design is based on two wave theories: the theory of diffraction and the theory of acoustic metamaterials. It consists of a three-dimensional array of strong diffraction-type resonators with many holes centered on each individual resonator. The negative effective bulk modulus of the resonators produces evanescent wave, and at the same time the air holes with subwavelength diameter existed on the surfaces of the window for macroscopic air ventilation. The acoustic performance levels of two soundproof windows with air holes of 20mm and 50mm diameters were measured. The sound level was reduced by about 30 - 35dB in the frequency range of 400 - 5,000Hz with the 20mm window, and by about 20 - 35dB in the frequency range of 700 - 2,200Hz with the 50mm window. Multi stop-band was created by the multi-layers of the window. The attenuation length or the thickness of the window was limited by background noise. The effectiveness of the soundproof window with airflow was demonstrated by a real installation.

  6. Hybrid and Advanced Air Cooling

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hybrid and Advanced Air Cooling presentation at the April 2013 peer review meeting held in Denver, Colorado.

  7. Compressed Air System Control Strategies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet briefly discusses compressed air system control strategies as a means to improving and maintaining system performance.

  8. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  9. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOE Patents [OSTI]

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  10. Development of Refrigerant Change Indicator and Dirty Air Filter Sensor

    SciTech Connect (OSTI)

    Mei, V.

    2003-06-24

    The most common problems affecting residential and light commercial heating, ventilation, and air-conditioning (HVAC) systems are slow refrigerant leaks and dirty air filters. Equipment users are usually not aware of a problem until most of the refrigerant has escaped or the air filter is clogged with dirt. While a dirty air filter can be detected with a technology based on the air pressure differential across the filter, such as a ''whistling'' indicator, it is not easy to incorporate this technology into existing HVAC diagnostic equipment. Oak Ridge National Laboratory is developing a low-cost, nonintrusive refrigerant charge indicator and dirty air filter detection sensor. The sensors, based on temperature measurements, will be inexpensive and easy to incorporate into existing heat pumps and air conditioners. The refrigerant charge indicator is based on the fact that when refrigerant starts to leak, the evaporator coil temperature starts to drop and the level of liquid subcooling drops. When the coil temperature or liquid subcooling drops below a preset reading, a signal, such as a yellow warning light, can be activated to warn the equipment user that the system is undercharged. A further drop of coil temperature or liquid subcooling below another preset reading would trigger a second warning signal, such as a red warning light, to warn the equipment user that the unit now detects a leak and immediate action should be taken. The warning light cannot be turned off until it is re-set by a refrigeration repairman. To detect clogged air filters, two additional temperature sensors can be applied, one each across the evaporator. When the air filter is accumulating buildup, the temperature differential across the evaporator will increase because of the reduced airflow. When the temperature differential reaches a pre-set reading, a signal will be sent to the equipment user that the air filter needs to be changed. A traditional refrigerant charge indicator requires

  11. California Air Resources Board | Open Energy Information

    Open Energy Info (EERE)

    Air Resources Board Jump to: navigation, search Logo: California Air Resources Board Name: California Air Resources Board Place: Sacramento, California Website: www.arb.ca.gov...

  12. Aire Valley Environmental | Open Energy Information

    Open Energy Info (EERE)

    Aire Valley Environmental Jump to: navigation, search Name: Aire Valley Environmental Place: United Kingdom Product: Leeds-based waste-to-energy project developer. References: Aire...

  13. Reserva La Fecha: Conferencia y Programa de Capacitación de Justicia Ambiental Nacional 2017

    Broader source: Energy.gov [DOE]

    Reserva La FechaDel 8 al 10 de Marzo de 2017Conferencia y Programa de Capacitación de Justicia Ambiental Nacional 2017

  14. Ene lica Energias Renov veis e Ambiente SA | Open Energy Information

    Open Energy Info (EERE)

    Enelica-Energias Renovveis e Ambiente SA Place: Portugal Sector: Renewable Energy Product: Portugal-based development of electric energy production projects from...

  15. MOL.19980331.0174 PARTICULATE MATTEX AMBIENT A I R QUALITY

    National Nuclear Security Administration (NNSA)

    MOL.19980331.0174 PARTICULATE MATTEX AMBIENT A I R QUALITY DATA REPORT FOR 1989 AND 1990 ... Applications International Corporation Technical & Management Support Services Las Vegas, ...

  16. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOE Patents [OSTI]

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  17. Miniaturized Air to Refrigerant Heat Exchangers

    Broader source: Energy.gov [DOE]

    This project is developing a miniaturized air-to-refrigerant heat exchanger that is more compact and more energy efficient than current market designs. The heat exchanger will feature at least 20% less volume, material volume, and approach temperature compared to current multiport flat tube designs, and it will be in production within five years. The heat exchanger, which acts as both an evaporator and a condenser, can be applied to commercial and residential air-conditioning or heat pump systems with various capacity scales. Prototype 1-kilowatt (kW) and 10 kW designs will be tested and then improved as necessary for final tests and demonstration in a 3-ton heat pump.

  18. Low-head air stripper treats oil tanker ballast water

    SciTech Connect (OSTI)

    Goldman, M. )

    1992-02-01

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions.

  19. Effects of ambient ozone on respiratory function and symptoms in Mexico City schoolchildren

    SciTech Connect (OSTI)

    Castillejos, M.; Gold, D.R.; Dockery, D.; Tosteson, T.; Baum, T.; Speizer, F.E. )

    1992-02-01

    The effects of ambient ozone (O3) on respiratory function and acute respiratory symptoms were evaluated in 143 7- to 9-yr-old schoolchildren followed longitudinally at 1- to 2-wk intervals over a period of 6 months at three schools in Pedregal, Mexico City. The maximum O3 level exceeded the World Health Organization guideline of 80 ppb and the U.S. standard of 120 ppb in every week. For an increase from lowest to highest in the mean O3 level during the 48 hr before spirometry (53 ppb), logistic regression estimated relative odds of 1.7 for a child reporting cough/phlegm on the day of spirometry. For the full population, the mean O3 level during the hour before spirometry, not adjusted for temperature and humidity, predicted a significant decrement in FVC but not in FEV1 or FEF25-75. In contrast, the mean O3 level during the previous 24-, 48-, and 168-h periods predicted significant decrements in FEV1 and FEF25-75 but not in FVC. Ozone was consistently associated with a greater decrement in lung function for the 15 children with chronic phlegm as compared with the children without chronic cough, chronic phlegm, or wheeze. Ozone in the previous 24-, 48-, and 168-h periods predicted decrements in FEV1 for children of mothers who were current or former smokers, but not for children of mothers who were never smokers. Many of these effects were reduced in multiple regression analyses including temperature and humidity, as temperature and O3 were highly correlated.

  20. Air Risk Information Support Center

    SciTech Connect (OSTI)

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  1. Simplified air change effectiveness modeling

    SciTech Connect (OSTI)

    Rock, B.A.; Anderson, R.; Brandemuehl, M.J.

    1992-06-01

    This paper describes recent progress in developing practical air change effectiveness modeling techniques for the design and analysis of air diffusion in occupied rooms. The ultimate goal of this continuing work is to develop a simple and reliable method for determining heating, ventilating, and air-conditioning (HVAC) system compliance with ventilation standards. In the current work, simplified two-region models of rooms are used with six occupancy patterns to find the air change effectiveness. A new measure, the apparent ACH effectiveness, yields the relative ventilation performance of an air diffusion system. This measure can be used for the prediction or evaluation of outside air delivery to the occupants. The required outside air can be greater or less than that specified by ventilation standards such as ASHRAE Standard 62-89.

  2. Hot air drum evaporator

    DOE Patents [OSTI]

    Black, Roger L.

    1981-01-01

    An evaporation system for aqueous radioactive waste uses standard 30 and 55 gallon drums. Waste solutions form cascading water sprays as they pass over a number of trays arranged in a vertical stack within a drum. Hot dry air is circulated radially of the drum through the water sprays thereby removing water vapor. The system is encased in concrete to prevent exposure to radioactivity. The use of standard 30 and 55 gallon drums permits an inexpensive compact modular design that is readily disposable, thus eliminating maintenance and radiation build-up problems encountered with conventional evaporation systems.

  3. AIR M A IL

    Office of Legacy Management (LM)

    MEMORlAL DRIVE AIR M A IL ._~ AtFx=b.-zf .7.-i- M r. s. .II. Gown -~ Gentlemen: Re: A.E.C. Contract No. We assume the weight of the 9-l/2" biscuits will:be 107'poutids approximately; i.e. 100 pounds of thorium per biscuit. A four biscuit charge is not feasible because of crucible dimensions, availability, etc. A three biscuit charge will, when molten, fill the proposed crucible half full. This condition is un- desirable because, due to the low heat of fusion of thorium and the

  4. Field Investigations And Temperature-Gradient Drilling At Marine...

    Open Energy Info (EERE)

    Investigations And Temperature-Gradient Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Jump to: navigation, search OpenEI Reference LibraryAdd to...

  5. Air-fuel ratio controller for a turbocharged internal combustion engine

    SciTech Connect (OSTI)

    Serve, J.V.; Eckard, D.W.

    1988-09-13

    This patent describes an air-fuel ratio controller for a gaseous-fueled, turbo-charged engine having an air manifold, a gas manifold, and a turbine inlet. The controller consists of: means for controlling air manifold pressure, comprising means for providing an air manifold pressure set point signal based on gas manifold pressure and engine RPM's and at least one constant input; and means for controlling turbine inlet temperature, the means comprising means for modulating the slope of the set point signal for the air manifold pressure controller.

  6. Tips: Air Ducts | Department of Energy

    Energy Savers [EERE]

    Tips: Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy ...

  7. Tips: Air Ducts | Department of Energy

    Energy Savers [EERE]

    Air Ducts Tips: Air Ducts Air ducts: out of sight, out of mind. The unsealed ducts in your attic and crawlspaces lose air, and uninsulated ducts lose heat -- wasting energy and ...

  8. Chemiluminescent detection of organic air pollutants (Conference...

    Office of Scientific and Technical Information (OSTI)

    Language: English Subject: 54 ENVIRONMENTAL SCIENCES; POLLUTANTS; CHEMILUMINESCENCE; AIR POLLUTION; CHEMICAL COMPOSITION; ORGANIC COMPOUNDS; AIR POLLUTION MONITORING; OZONE; ...

  9. Central Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioning Central Air Conditioning Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. | Photo courtesy of ©iStockphoto/DonNichols. Central air conditioners circulate cool air through a system of supply and return ducts. Supply ducts and registers (i.e., openings in the walls, floors, or ceilings covered by

  10. Remove Condensate with Minimal Air Loss

    Office of Energy Efficiency and Renewable Energy (EERE)

    This tip sheet outlines several condensate removal methods as part of maintaining compressed air system air quality.

  11. Role of surface characteristics in urban meteorology and air quality

    SciTech Connect (OSTI)

    Sailor, D.J.

    1993-08-01

    Urbanization results in a landscape with significantly modified surface characteristics. The lower values of reflectivity to solar radiation, surface moisture availability, and vegetative cover, along with the higher values of anthropogenic heat release and surface roughness combine to result higher air temperatures in urban areas relative to their rural counterparts. Through their role in the surface energy balance and surface exchange processes, these surface characteristics are capable of modifying the local meteorology. The impacts on wind speeds, air temperatures, and mixing heights are of particular importance, as they have significant implications in terms of urban energy use and air quality. This research presents several major improvements to the meteorological modeling methodology for highly heterogeneous terrain. A land-use data-base is implemented to provide accurate specification of surface characteristic variability in simulations of the Los Angeles Basin. Several vegetation parameterizations are developed and implemented, and a method for including anthropogenic heat release into the model physics is presented. These modeling advancements are then used in a series of three-dimensional simulations which were developed to investigate the potential meteorological impact of several mitigation strategies. Results indicate that application of moderate tree-planting and urban-lightening programs in Los Angeles may produce summertime air temperature reductions on the order of 4{degree}C with a concomitant reduction in air pollution. The analysis also reveals several mechanisms whereby the application of these mitigation strategies may potentially increase pollutant concentrations. The pollution and energy use consequences are discussed in detail.

  12. Investigations into High Temperature Components and Packaging

    SciTech Connect (OSTI)

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  13. Structural and superconducting features of Tl-1223 prepared at ambient pressure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shipra, Fnu; Idrobo Tapia, Juan Carlos; Sefat, Athena Safa

    2015-09-25

    This study provides an account of the bulk preparation of TlBa2Ca2Cu3O9-δ (Tl-1223) superconductor at ambient pressure, and the Tc features under thermal-annealing conditions. The ‘as-prepared’ Tl-1223 (Tc =106 K) presents a significantly higher Tc = 125 K after annealing the polycrystalline material in either flowing Ar+4% H2, or N2 gases. In order to understand the fundamental reasons for a particular Tc, we refined the average bulk structures using powder X-ray diffraction data. Although Ar+4%H2 annealed Tl- 1223 shows an increased ‘c’ lattice parameter, it shrinks by 0.03% (approximately unchanged) upon N2 anneal. Due to such indeterminate conclusions on the averagemore » structural changes, local structures were investigated at using aberration-corrected scanning-transmission electron microscopy technique. Similar compositional changes in the atomic arrangements of both annealed-samples of Tl-1223 were detected in which the plane containing Ca atomic layer gives a non-uniform contrast, due to substitution of some heavier Tl. In this report, extensive bulk properties are summarized through temperature-dependent resistivity, and shielding and Meissner fractions of magnetic susceptibility results; the bulk and local structures are investigated to correlate to properties.« less

  14. Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion 2003 DEER Conference Presentation: Sandia National Laboratories 2003_deer_pickett.pdf (538.33 KB) More Documents & Publications Effects of Ambient Density and Temperature on Soot Formation under High-EGR Conditions Fuels and Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels

  15. Ambient aromatic hydrocarbon measurements at Welgegund, South Africa

    SciTech Connect (OSTI)

    Jaars, K.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Josipovic, M.; Pienaar, J. J.; Vakkari, Ville; Aaltonen, H.; Laakso, H.; Kulmala, M.; Tiitta, P.; Guenther, Alex B.; Hellen, H.; Laakso, L.; Hakola, H.

    2014-07-11

    Aromatic hydrocarbons are associated with direct adverse human health effects and can have negative impacts on ecosystems due to their toxicity, as well as indirect negative effects through the formation of tropospheric ozone and secondary organic aerosol that affect human health, crop production and regional climate. Measurements were conducted at the Welgegund measurement station (South Africa) that is considered to be a regionally representative background site. However, the site is occasionally impacted by plumes from major anthropogenic source regions in the interior of South Africa, which include the western Bushveld Igneous Complex (e.g. platinum, base metal and ferrochrome smelters), the eastern Bushveld Igneous Complex (platinum and ferrochrome smelters), the Johannesburg-Pretoria metropolitan conurbation (>10 million people), the Vaal Triangle (e.g. petrochemical and industries), the Mpumalanga Highveld (e.g. coal-fired power plants and petrochemical industry) and also a region of anti-cyclonic recirculation of air mass over the interior of South Africa. The aromatic hydrocarbon measurements were conducted with an automated sampler on Tenax-TA and Carbopack-B adsorbent tubes with heated inlet for one year. Samples were collected twice a week for two hours during daytime and two hours 1 during night-time. A thermal desorption unit, connected to a gas chromatograph and a mass 2 selective detector was used for sample preparation and analysis. Results indicated that the 3 monthly median total aromatic hydrocarbon concentrations ranged between 0.01 to 3.1 ppb. 4 Benzene levels did not exceed local air quality standards. Toluene was the most abundant 5 species, with an annual median concentration of 0.63 ppb. No statistically significant 6 differences in the concentrations measured during daytime and night-time were found and no distinct seasonal patterns were observed. Air mass back trajectory analysis proved that the lack of seasonal cycles could be

  16. Air ingression calculations for selected plant transients using MELCOR

    SciTech Connect (OSTI)

    Kmetyk, L.N.

    1994-01-01

    Two sets of MELCOR calculations have been completed studying the effects of air ingression on the consequences of various severe accident scenarios. One set of calculations analyzed a station blackout with surge line failure prior to vessel breach, starting from nominal operating conditions; the other set of calculations analyzed a station blackout occurring during shutdown (refueling) conditions. Both sets of analyses were for the Surry plant, a three-loop Westinghouse PWR. For both accident scenarios, a basecase calculation was done, and then repeated with air ingression from containment into the core region following core degradation and vessel failure. In addition to the two sets of analyses done for this program, a similar air-ingression sensitivity study was done as part of a low-power/shutdown PRA, with results summarized here; that PRA study also analyzed a station blackout occurring during shutdown (refueling) conditions, but for the Grand Gulf plant, a BWR/6 with Mark III containment. These studies help quantify the amount of air that would have to enter the core region to have a significant impact on the severe accident scenario, and demonstrate that one effect, of air ingression is substantial enhancement of ruthenium release. These calculations also show that, while the core clad temperatures rise more quickly due to oxidation with air rather than steam, the core also degrades and relocates more quickly, so that no sustained, enhanced core heatup is predicted to occur with air ingression.

  17. Air Force Renewable Energy Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers Air Force Renewable Energy Programs and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  18. Solid State Magnetocaloric Air Conditioner

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory 2 Cooling Effect: Solid State Magnetocaloric Air Conditioner T cold T ... and fabricate permanent magnets Communications: * Abstract accepted for the Purdue ...

  19. Air bearing vacuum seal assembly

    DOE Patents [OSTI]

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  20. Clean Air Act, Section 309

    Energy Savers [EERE]

    CLEAN AIR ACT 309* 7609. Policy review (a) The Administrator shall review and comment in writing on the environmental impact of any matter relating to duties and ...

  1. Cold air systems: Sleeping giant

    SciTech Connect (OSTI)

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  2. Air Conditioning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An air conditioner cools your home with a cold indoor coil called the evaporator. The condenser, a hot outdoor coil, releases the collected heat outside. The evaporator and ...

  3. ISOTHERMAL AIR-INGRESS VALIDATION EXPERIMENTS

    SciTech Connect (OSTI)

    Chang H. Oh; Eung S. Kim

    2013-01-01

    Idaho National Laboratory has conducted airingress experiments as part of a campaign to validate computational fluid dynamics (CFD) calculations for very high-temperature gas-cooled reactor (VHTR) analysis. An isothermal test loop was designed to recreate exchange or stratified flow that occurs in the lower plenum of VHTR after a break in the primary loop allows helium to leak out and reactor building air to enter the reactor core. The experiment was designed to measure stratified flow in the inlet pipe connecting to the lower plenum of the General Atomics gas turbine–modular helium reactor (GT-MHR). Instead of helium and air, brine and sucrose were used as heavy fluids, and water was used as the lighter fluid to create, using scaling laws, the appropriate flow characteristics of the lower plenum immediately after depressurization. These results clearly indicate that stratified flow is established even for very small density differences. Corresponding CFD results were validated with the experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations. The calculated current speed showed very good agreement with the experimental data, indicating that current CFD methods are suitable for simulating density gradient stratified flow phenomena in an air-ingress accident.

  4. Combustion characteristics of pulverized coal and air/gas premixed flame in a double swirl combustor

    SciTech Connect (OSTI)

    Kamal, M.M.

    2009-07-01

    An experimental work was performed to investigate the co-firing of pulverized coal and premixed gas/air streams in a double swirl combustor. The results showed that the NOx emissions are affected by the relative rates of thermal NOx formation and destruction via the pyrolysis of the fuel-N species in high temperature fuel-rich zones. Various burner designs were tested in order to vary the temperature history and the residence time across both coal and gas flames inside the furnace. It was found that by injecting the coal with a gas/air mixture as a combined central jet surrounded by a swirled air stream, a double flame envelope develops with high temperature fuel-rich conditions in between the two reaction zones such that the pyrolysis reactions to N{sub 2} are accelerated. A further reduction in the minimum NOx emissions, as well as in the minimum CO concentrations, was reported for the case where the coal particles are fed with the gas/air mixture in the region between the two swirled air streams. On the other hand, allocating the gas/air mixture around the swirled air-coal combustion zone provides an earlier contact with air and retards the NOx reduction mechanism in such a way that the elevated temperatures around the coal particles allow higher overall NOx emissions. The downstream impingement of opposing air jets was found more efficient than the impinging of particle non-laden premixed flames for effective NOx reduction. In both cases, there is an upstream flow from the stagnation region to the coal primary combustion region, but with the case of air impingement, the hot fuel-rich zone develops earlier. The optimum configuration was found by impinging all jets of air and coal-gas/air mixtures that pronounced minimum NOx and CO concentrations of 310 and 480ppm, respectively.

  5. Impacts of Western Area Power Administration`s power marketing alternatives on air quality and noise

    SciTech Connect (OSTI)

    Chun, K.C.; Chang, Y.S.; Rabchuk, J.A.

    1995-05-01

    The Western Area Power Administration, which is responsible for marketing electricity produced at the hydroelectric power-generating facilities operated by the Bureau of Reclamation on the Upper Colorado River, has proposed changes in the levels of its commitment (sales) of long-term firm capacity and energy to its customers. This report describes (1) the existing conditions of air resources (climate and meteorology, ambient air quality, and acoustic environment) of the region potentially affected by the proposed action and (2) the methodology used and the results of analyses conducted to assess the potential impacts on air resources of the proposed action and the commitment-level alternatives. Analyses were performed for the potential impacts of both commitment-level alternatives and supply options, which include combinations of electric power purchases and different operational scenarios of the hydroelectric power-generating facilities.

  6. System for controlling the operating temperature of a fuel cell

    DOE Patents [OSTI]

    Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.

    2006-06-06

    A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.

  7. Evaluation of Air Mixing and Thermal Comfort From High Sidewall Supply Air Jets

    SciTech Connect (OSTI)

    Ridouane, E. H.

    2011-09-01

    Uniform mixing of conditioned air with room air is an essential factor for providing comfort in homes. The higher the supply flow rates the easier to reach good mixing in the space. In high performance homes, however, the flow rates required to meet the small remaining thermal loads are not large enough to maintain uniform mixing in the space. The objective of this study is to resolve this issue and maintain uniform temperatures within future homes. We used computational fluid dynamics modeling to evaluate the performance of high sidewall air supply for residential applications in heating and cooling modes. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions, and room dimensions. Laboratory experiments supported the study of thermal mixing in heating mode; we used the results to develop a correlation to predict high sidewall diffuser performance. For cooling mode, numerical analysis is presented. The results provide information to guide the selection of high sidewall supply diffusers to maintain proper room mixing for heating and cooling of high performance homes. It is proven that these systems can achieve good mixing and provide acceptable comfort levels. Recommendations are given on the operating conditions to guarantee occupant comfort.

  8. Air quality monitoring for dioxins, furans and PCBs in the Swan Hills area, Summer 1997, July 7 to August 1

    SciTech Connect (OSTI)

    1997-12-31

    Summarizes results of air quality monitoring activities carried out in the Swan Hills area of Alberta in summer 1997. At four locations in the area, samples of dioxin, furan, and polychlorinated biphenyls were analyzed and ambient concentrations determined. Results are presented in terms of toxic equivalents of dioxins and furans, total dioxins, total furans, and total polychlorinated biphenyls, normalized by compounds within each homologue group.

  9. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of air quality monitors within an exhaust stack. Nuclear facilities have three additional air sampling systems. LANL samples and analyzes air to assess effects on workers, the public, animals, and plants. As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. How we do it

  10. Lithium Air Electrodes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lithium Air Electrodes Pacific Northwest National Laboratory Contact PNNL About This Technology A comparison chart illustrates that Li-Air electrodes offer the highest energy density, second to gasoline. A comparison chart illustrates that Li-Air electrodes offer the highest energy density, second to gasoline. Comparing metal air batteries, Li-air delivers the highest specific energy. Comparing metal air batteries, Li-air delivers the highest specific energy. Technology Marketing Summary With

  11. Common Air Conditioner Problems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Common Air Conditioner Problems Common Air Conditioner Problems A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. A refrigerant leak is one common air conditioning problem. | Photo courtesy of ©iStockphoto/BanksPhotos. One of the most common air conditioning problems is improper operation. If your air conditioner is on, be sure to close your home's windows and outside doors. For room air conditioners, isolate the room or a group of

  12. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  13. ARM - Instrument - co-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsco-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Carbon Monoxide- Airborne (CO-AIR) Instrument Categories Airborne Observations, Atmospheric Carbon Contact(s) Stephen Springston Brookhaven National Laboratory (631) 344-4477 srs@bnl

  14. ARM - Instrument - gustprobe-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsgustprobe-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Aircraft Gust Probe (GUSTPROBE-AIR) Instrument Categories Airborne Observations Contact(s) Annette Koontz Pacific Northwest National Laboratory Developer (509) 375-3609 annette.koontz@pnnl

  15. ARM - Instrument - rad-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsrad-air Documentation ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument : Airborne Radiometers (RAD-AIR) Instrument Categories Radiometric, Airborne Observations

  16. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  17. Protective supplied breathing air garment

    DOE Patents [OSTI]

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  18. The Clean Air Mercury Rule

    SciTech Connect (OSTI)

    Michael Rossler

    2005-07-01

    Coming into force on July 15, 2005, the US Clean Air Mercury Rule will use a market-based cap-and-trade approach under Section 111 of the Clean Air Act to reduce mercury emissions from the electric power sector. This article provides a comprehensive summary of the new rule. 14 refs., 2 tabs.

  19. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  20. Radioxenon spiked air

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The Internationalmore » Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.« less

  1. The fabrication of polyfluorene and polycarbazole-based photovoltaic devices using an air-stable process route

    SciTech Connect (OSTI)

    Bovill, E.; Lidzey, D. G.; Yi, H.; Iraqi, A.

    2014-12-01

    We report a comparative study based on the fabrication of polymer:fullerene photovoltaic (PV) devices incorporating carbazole, fluorene, and a PTB based co-polymer. We have explored the efficiency and performance of such devices when the active polymer:fullerene layer is deposited by spin-casting either under nitrogen or ambient conditions. We show that PV devices based on carbazole and fluorene based materials have very similar power conversion efficiencies when processed under both air and nitrogen, with other photobleaching measurements suggesting that such materials have comparatively enhanced photostability. Devices based on the PTB co-polymer, however, have reduced efficiency when processed in air.

  2. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  3. Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nickel-ceria catalysts Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource/albums Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Journal Covers Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on nickel-ceria catalysts Ambient pressure XPS and IRRAS investigation of ethanol steam reforming on nickel-ceria catalysts Print Monday, 15 August 2016 17:11 Ambient-pressure x-ray photoelectron spectroscopy (AP-XPS) and

  4. Exposure to formaldehyde in indoor air

    SciTech Connect (OSTI)

    Gammage, R.B. )

    1990-01-01

    Trends in formaldehyde concentrations to which residents are exposed are reviewed, as are the means for assessing these exposures. Concentrations as high as a few ppm encountered in manufactured housing during the 1970s were eliminated after the Housing and Urban Development (HUD) 1984 ruling came into effect. The pressed-wood product industry, and its trade organizations, have made concerted efforts to comply with the ruling. Moreover, they have imposed additional voluntary product standards upon themselves intended to be applicable to a range of pressed-wood products wider than that defined in the HUD standard. Quarterly product testing on arbitrarily selected products shows a general lowering of emission rates with only a few percent of products now being above the HUD level. Measurement of ambient indoor levels of formaldehyde has been largely replaced by testing to assure conformance to product standards. The lower-emitting products on the market, if used in mobile home construction and furnishing, will expectantly produce formaldehyde levels not exceeding 0.1 ppm, except under conditions of unusually high temperature and humidity. Recent studies implicate household dust as a significant carrier of bound formaldehyde. In a few instances, old urea-formaldehyde cavity wall insulation has become friable and particles have blown into living areas. Future health assessments might need to consider this additional pathway of potential exposure.

  5. Radioxenon spiked air

    SciTech Connect (OSTI)

    Watrous, Matthew G.; Delmore, James E.; Hague, Robert K.; Houghton, Tracy P.; Jenson, Douglas D.; Mann, Nick R.

    2015-08-27

    Four of the radioactive xenon isotopes (131mXe, 133mXe, 133Xe and 135Xe) with half-lives ranging from 9 h to 12 days are produced from nuclear fission and can be detected from days to weeks following their production and release. Being inert gases, they are readily transported through the atmosphere. Sources for release of radioactive xenon isotopes include operating nuclear reactors via leaks in fuel rods, medical isotope production facilities, and nuclear weapons' detonations. They are not normally released from fuel reprocessing due to the short half-lives. The Comprehensive Nuclear-Test-Ban Treaty has led to creation of the International Monitoring System. The International Monitoring System, when fully implemented, will consist of one component with 40 stations monitoring radioactive xenon around the globe. Monitoring these radioactive xenon isotopes is important to the Comprehensive Nuclear-Test-Ban Treaty in determining whether a seismically detected event is or is not a nuclear detonation. A variety of radioactive xenon quality control check standards, quantitatively spiked into various gas matrices, could be used to demonstrate that these stations are operating on the same basis in order to bolster defensibility of data across the International Monitoring System. This study focuses on Idaho National Laboratory's capability to produce three of the xenon isotopes in pure form and the use of the four xenon isotopes in various combinations to produce radioactive xenon spiked air samples that could be subsequently distributed to participating facilities.

  6. Observations and models of emissions of volatile terpenoid compounds from needles of ponderosa pine trees growing in situ: Controls by light, temperature and stomatal conductance

    SciTech Connect (OSTI)

    Harley, P.; Eller, Allyson; Guenther, Alex B.; Monson, Russell K.

    2014-07-14

    Terpenoid emissions from ponderosa pine (Pinus ponderosa subsp. scopulorum) were measured in Colorado, USA over two growing seasons to evaluate the role of incident light, needle temperature and stomatal conductance in controlling emissions of 2-methyl-3-buten-2-ol (MBO) and several monoterpenes. MBO was the dominant daylight terpenoid emission, comprising on average 87% of the total flux, and diurnal variations were largely determined by light and temperature. During daytime, oxygenated monoterpenes (especially linalool) comprised up to 75% of the total monoterpenoid flux from needles. A significant fraction of monoterpenoid emissions was light dependent and 13CO2 labeling studies confirmed de novo production. Thus, modeling of monoterpenoid emissions required a hybrid model in which a significant fraction of emissions was dependent on both light and temperature, while the remainder was dependent on temperature alone. Experiments in which stomata were forced to close using abscisic acid demonstrated that MBO and a large fraction of the monoterpene flux, presumably linalool, could be limited at the scale of seconds to minutes by stomatal conductance. Using a previously published model of terpenoid emissions which explicitly accounts for the physico-chemical properties of emitted compounds, we are able to simulate these observed stomatal effects, whether induced through experimentation or arising under naturally fluctuation conditions of temperature and light. This study shows unequivocally that, under naturally occurring field conditions, de novo light dependent monoterpenes can comprise a large fraction of emissions. Differences between the monoterpene composition of ambient air and needle emissions imply a significant non-needle emission source enriched in ?-3-carene.

  7. Electronic and chemical structure of the H2O/GaN(0001) interface under ambient conditions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Xueqiang; Ptasinska, Sylwia

    2016-04-25

    We employed ambient pressure X-ray photoelectron spectroscopy to investigate the electronic and chemical properties of the H2O/GaN(0001) interface under elevated pressures and/or temperatures. A pristine GaN(0001) surface exhibited upward band bending, which was partially flattened when exposed to H2O at room temperature. However, the GaN surface work function was slightly reduced due to the adsorption of molecular H2O and its dissociation products. At elevated temperatures, a negative charge generated on the surface by a vigorous H2O/GaN interfacial chemistry induced an increase in both the surface work function and upward band bending. We tracked the dissociative adsorption of H2O onto themore » GaN(0001) surface by recording the core-level photoemission spectra and obtained the electronic and chemical properties at the H2O/GaN interface under operando conditions. In conclusion, our results suggest a strong correlation between the electronic and chemical properties of the material surface, and we expect that their evolutions lead to significantly different properties at the electrolyte/ electrode interface in a photoelectrochemical solar cell.« less

  8. Building America Case Study: Air Leakage and Air Transfer Between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project builds on previous work by Rudd and Bergey (2013) to further examine and evaluate the problem of unwanted air transfer from garage to living space and the ...

  9. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect (OSTI)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  10. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  11. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  12. Silver-bearing, high-temperature, superconducting (HTS) paint

    SciTech Connect (OSTI)

    Ferrando, W.A.

    1990-02-15

    A substantial set of device applications awaits development of a workable, durable, high-temperature superconducting (HTS) paint. Such a paint should be truly superconducting with its critical temperature T sub c>77K. For most of these applications, a high critical current (J sub c) is not required, although probably desirable. A process is described which can be used to produce silver-bearing HTS paint coatings on many engineering materials. Preliminary tests have shown good adherence to several ceramics and the ability to meet the superconducting criteria. Moreover, the coatings withstand multiple thermal cycling and stability under laboratory ambient storage conditions for periods of at least several months.

  13. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, Evan J.; Pennline, Henry W.

    2006-04-25

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  14. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  15. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect (OSTI)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  16. EPA Air Pollution and the Clean Air Act Webpage | Open Energy...

    Open Energy Info (EERE)

    Air Pollution and the Clean Air Act Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Air Pollution and the Clean Air Act Webpage Abstract...

  17. Personal cooling air filtering device

    DOE Patents [OSTI]

    Klett, James [Knoxville, TN; Conway, Bret [Denver, NC

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  18. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1981-12-01

    An apparatus to measure the heat flux through horizontally applied loosefill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  19. Effect of air movement on thermal resistance of loose-fill thermal insulations

    SciTech Connect (OSTI)

    Yarbrough, D.W.; Toor, I.A.

    1983-01-01

    An apparatus to measure the heat flux through horizontally applied loose-fill insulations with air movement above the insulation has been constructed and used to test specimens of loose-fill cellulosic, fiberglass, and rock wool insulations. Heat flux divided by the temperature difference across insulation specimens was measured for air velocities up to 92 cm/s. An increase in the heat flux term with air movement was observed and correlated with air velocity and specimen density. The magnitude of the increase in the heat flux term was greatest for the specimen of low-density fiberglass insulation.

  20. Air Leakage and Air Transfer Between Garage and Living Space

    SciTech Connect (OSTI)

    Rudd, Armin

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  1. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect (OSTI)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  2. Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray, and its applications in electrochemistry | Stanford Synchrotron Radiation Lightsource Ambient Pressure Photoelectron Spectroscopy Using Soft X-ray and Hard X-ray, and its applications in electrochemistry Friday, December 14, 2012 - 3:30pm SSRL, Bldg. 137, room 322 Zhi Liu The synchrotron based ambient pressure x-ray photoelectron spectroscopy (AP-XPS) endstation[1] pioneered at ALS based on differentially pumped electron energy analyzer has been recognized by scientific communities as

  3. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOE Patents [OSTI]

    Siminovitch, Michael J.

    1992-01-01

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface.

  4. Thermal element for maintaining minimum lamp wall temperature in fluorescent fixtures

    DOE Patents [OSTI]

    Siminovitch, M.J.

    1992-11-10

    In a lighting fixture including a lamp and a housing, an improvement is disclosed for maintaining a lamp envelope area at a cooler, reduced temperature relative to the enclosed housing ambient. The improvement comprises a thermal element in thermal communication with the housing extending to and springably urging thermal communication with a predetermined area of the lamp envelope surface. 12 figs.

  5. DunoAir | Open Energy Information

    Open Energy Info (EERE)

    DunoAir Jump to: navigation, search Name: DunoAir Place: Hessen, Germany Zip: 6865 VX Sector: Wind energy Product: Doorwerth-based wind project developer. References: DunoAir1...

  6. Why does LANL sample the air?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Why does LANL sample the air? Why does LANL sample the air? As the most significant pathway, air is monitored to ensure that any possible release is quickly detected. Diagram of ...

  7. Room Air Conditioners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Room Air Conditioners Room Air Conditioners A room air conditioner is one solution to cooling ... of a long room, then look for a fan control known as "Power Thrust" or "Super ...

  8. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    SciTech Connect (OSTI)

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; Schieber, Natalie P.; Gai, Zheng; Rondinone, Adam J.

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improves their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.

  9. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; Schieber, Natalie P.; Gai, Zheng; Rondinone, Adam J.

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.« less

  10. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect (OSTI)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  11. ARM - Instrument - inletcvi-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletcvi-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletcvi

  12. ARM - Instrument - inletisok-air

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentsinletisok-air Documentation Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Error occurred. Instrument "inletisok

  13. Manual on indoor air quality

    SciTech Connect (OSTI)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  14. PFT Air Infiltration Measurement Technique

    Broader source: Energy.gov [DOE]

    The airtightness of a building can be determined by using several methods. Learn how the PFT (PerFluorocarbon tracer gas) technique provides information about air leakage and energy loss.

  15. Commercial Compressed Air Systems Program

    Broader source: Energy.gov [DOE]

    There are incentives for variable frequency drive screw compressors (10-40 HP), air receivers/tanks for load/no-load screw and vane compressors, cycling refrigerated thermal mass dryers (up to 30...

  16. Air Conditioner Regional Standards Brochure

    Broader source: Energy.gov [DOE]

    DOE has adopted energy conservation standards for split-system air conditioners that vary depending on when and where a unit is installed. This brochure is designed to provide information about the new standards to distributors, contractors (installers), and consumers.

  17. Air-Conditioning Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Conditioning Basics Air-Conditioning Basics August 16, 2013 - 1:59pm Addthis Air conditioning is one of the most common ways to cool homes and buildings. How Air Conditioners Work Air conditioners employ the same operating principles and basic components as refrigerators. Refrigerators use energy (usually electricity) to transfer heat from the cool interior of the refrigerator to the relatively warm surroundings; likewise, an air conditioner uses energy to transfer heat from the interior

  18. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We reportmore » on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.« less

  19. Reduced diurnal temperature range does not change warming impacts on ecosystem carbon balance of Mediterranean grassland mesocosms

    SciTech Connect (OSTI)

    Phillips, Claire L.; Gregg, Jillian W.; Wilson, John K.

    2011-11-01

    Daily minimum temperature (Tmin) has increased faster than daily maximum temperature (Tmax) in many parts of the world, leading to decreases in diurnal temperature range (DTR). Projections suggest these trends are likely to continue in many regions, particularly northern latitudes and in arid regions. Despite wide speculation that asymmetric warming has different impacts on plant and ecosystem production than equal-night-and-day warming, there has been little direct comparison of these scenarios. Reduced DTR has also been widely misinterpreted as a result of night-only warming, when in fact Tmin occurs near dawn, indicating higher morning as well as night temperatures. We report on the first experiment to examine ecosystem-scale impacts of faster increases in Tmin than Tmax, using precise temperature controls to create realistic diurnal temperature profiles with gradual day-night temperature transitions and elevated early morning as well as night temperatures. Studying a constructed grassland ecosystem containing species native to Oregon, USA, we found the ecosystem lost more carbon at elevated than ambient temperatures, but was unaffected by the 3ºC difference in DTR between symmetric warming (constantly ambient +3.5ºC) and asymmetric warming (dawn Tmin=ambient +5ºC, afternoon Tmax= ambient +2ºC). Reducing DTR had no apparent effect on photosynthesis, likely because temperatures were most different in the morning and late afternoon when light was low. Respiration was also similar in both warming treatments, because respiration temperature sensitivity was not sufficient to respond to the limited temperature differences between asymmetric and symmetric warming. We concluded that changes in daily mean temperatures, rather than changes in Tmin/Tmax, were sufficient for predicting ecosystem carbon fluxes in this reconstructed Mediterranean grassland system.

  20. Ambient to high-temperature fracture toughness and cyclic fatigue behavior in Al-containing silicon carbide ceramics

    SciTech Connect (OSTI)

    Yuan, R.; Kruzic, J.J.; Zhang, X.F.; De Jonghe, L.C.; Ritchie, R.O.

    2003-08-01

    A series of in situ toughened, A1, B and C containing, silicon carbide ceramics (ABC-SiC) has been examined with A1 contents varying from 3 to 7 wt percent. With increasing A1 additions, the grain morphology in the as-processed microstructures varied from elongated to bimodal to equiaxed, with a change in the nature of the grain-boundary film from amorphous to partially crystalline to fully crystalline.