Powered by Deep Web Technologies
Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

COPPER-UPTAKE KINETICS OF COASTAL AND OCEANIC DIATOMS1 , Amber L. Annett3  

E-Print Network [OSTI]

COPPER-UPTAKE KINETICS OF COASTAL AND OCEANIC DIATOMS1 Jian Guo2 , Amber L. Annett3 , Rebecca L We investigated copper (Cu) acquisition mecha- nisms and uptake kinetics of the marine diatoms organic Cu complexes. Key index words: copper; Cu; diatom; Fe; iron; kinetics; Thalassiosira; transport

2

Flywheel energy storage workshop  

SciTech Connect (OSTI)

Since the November 1993 Flywheel Workshop, there has been a major surge of interest in Flywheel Energy Storage. Numerous flywheel programs have been funded by the Advanced Research Projects Agency (ARPA), by the Department of Energy (DOE) through the Hybrid Vehicle Program, and by private investment. Several new prototype systems have been built and are being tested. The operational performance characteristics of flywheel energy storage are being recognized as attractive for a number of potential applications. Programs are underway to develop flywheels for cars, buses, boats, trains, satellites, and for electric utility applications such as power quality, uninterruptible power supplies, and load leveling. With the tremendous amount of flywheel activity during the last two years, this workshop should again provide an excellent opportunity for presentation of new information. This workshop is jointly sponsored by ARPA and DOE to provide a review of the status of current flywheel programs and to provide a forum for presentation of new flywheel technology. Technology areas of interest include flywheel applications, flywheel systems, design, materials, fabrication, assembly, safety & containment, ball bearings, magnetic bearings, motor/generators, power electronics, mounting systems, test procedures, and systems integration. Information from the workshop will help guide ARPA & DOE planning for future flywheel programs. This document is comprised of detailed viewgraphs.

O`Kain, D.; Carmack, J. [comps.

1995-12-31T23:59:59.000Z

3

Lightweight flywheel containment  

DOE Patents [OSTI]

A lightweight flywheel containment composed of a combination of layers of various material which absorb the energy of a flywheel structural failure. The various layers of material act as a vacuum barrier, momentum spreader, energy absorber, and reaction plate. The flywheel containment structure has been experimentally demonstrated to contain carbon fiber fragments with a velocity of 1,000 m/s and has an aerial density of less than 6.5 g/square centimeters. The flywheel containment, may for example, be composed of an inner high toughness structural layer, and energy absorbing layer, and an outer support layer. Optionally, a layer of impedance matching material may be utilized intermediate the flywheel rotor and the inner high toughness layer.

Smith, James R. (Livermore, CA)

2001-01-01T23:59:59.000Z

4

Reactor coolant pump flywheel  

DOE Patents [OSTI]

A flywheel for a pump, and in particular a flywheel having a number of high density segments for use in a nuclear reactor coolant pump. The flywheel includes an inner member and an outer member. A number of high density segments are provided between the inner and outer members. The high density segments may be formed from a tungsten based alloy. A preselected gap is provided between each of the number of high density segments. The gap accommodates thermal expansion of each of the number of segments and resists the hoop stress effect/keystoning of the segments.

Finegan, John Raymond; Kreke, Francis Joseph; Casamassa, John Joseph

2013-11-26T23:59:59.000Z

5

Separators for flywheel rotors  

DOE Patents [OSTI]

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors. 10 figs.

Bender, D.A.; Kuklo, T.C.

1998-07-07T23:59:59.000Z

6

Separators for flywheel rotors  

DOE Patents [OSTI]

A separator forms a connection between the rotors of a concentric rotor assembly. This separator allows for the relatively free expansion of outer rotors away from inner rotors while providing a connection between the rotors that is strong enough to prevent disassembly. The rotor assembly includes at least two rotors referred to as inner and outer flywheel rings or rotors. This combination of inner flywheel ring, separator, and outer flywheel ring may be nested to include an arbitrary number of concentric rings. The separator may be a segmented or continuous ring that abuts the ends of the inner rotor and the inner bore of the outer rotor. It is supported against centrifugal loads by the outer rotor and is affixed to the outer rotor. The separator is allowed to slide with respect to the inner rotor. It is made of a material that has a modulus of elasticity that is lower than that of the rotors.

Bender, Donald A. (Dublin, CA); Kuklo, Thomas C. (Oakdale, CA)

1998-01-01T23:59:59.000Z

7

GSFC flywheel status  

SciTech Connect (OSTI)

The assessment of flywheel energy storage for spacecraft power system is based on the conceptual flywheel design. This conceptual design of an integrated flywheel is based on the Mechanical Capacitor which evolved from development of magnetic bearings and permanent magnet ironless-brushless DC motors. The mechanical capacitor is based on three key technologies: (1) a composite rotor with a low ID to OD ratio for high energy density (weight and volume) (2) magnetic suspension close to the geometric center of the rotating mass to minimize loads normally encountered on the ends of a shaft, a no-wear mechanism in a vacuum environment, and to minimize losses at high rotational speeds (3) permanent magnet ironless-brushless DC motor/generator for high efficiency of conversion and low losses at high rotational speeds. The complete system would include the necessary electronics for the motor/generator, containment, and counterrotating wheels for attitude control compatibility.

Rodriguez, G.E.

1983-12-01T23:59:59.000Z

8

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

9

Amber Kinetics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-EnergyAmbene Jump to: navigation,

10

Fiber composite flywheel rim  

DOE Patents [OSTI]

A flywheel comprising a hub having at least one radially projecting disc, an annular rim secured to said disc and providing a surface circumferential to said hub, a first plurality of resin-impregnated fibers wound about said rim congruent to said surface, and a shell enclosing said first plurality of fibers and formed by a second plurality of resin-impregnated fibers wound about said rim tangentially to said surface. 2 figs.

Davis, D.E.; Ingham, K.T.

1987-04-28T23:59:59.000Z

11

Rimmed and edge thickened Stodola shaped flywheel  

DOE Patents [OSTI]

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability. 6 figs.

Kulkarni, S.V.; Stone, R.G.

1983-10-11T23:59:59.000Z

12

Improved flywheel materials : characterization of nanofiber modified flywheel test specimen.  

SciTech Connect (OSTI)

As alternative energy generating devices (i.e., solar, wind, etc) are added onto the electrical energy grid (AC grid), irregularities in the available electricity due to natural occurrences (i.e., clouds reducing solar input or wind burst increasing wind powered turbines) will be dramatically increased. Due to their almost instantaneous response, modern flywheel-based energy storage devices can act a mechanical mechanism to regulate the AC grid; however, improved spin speeds will be required to meet the necessary energy levels to balance thesegreen' energy variances. Focusing on composite flywheels, we have investigated methods for improving the spin speeds based on materials needs. The so-called composite flywheels are composed of carbon fiber (C-fiber), glass fiber, and aglue' (resin) to hold them together. For this effort, we have focused on the addition of fillers to the resin in order to improve its properties. Based on the high loads required for standard meso-sized fillers, this project investigated the utility of ceramic nanofillers since they can be added at very low load levels due to their high surface area. The impact that TiO2 nanowires had on the final strength of the flywheel material was determined by athree-point-bend' test. The results of the introduction of nanomaterials demonstrated an increase instrength' of the flywheel's C-fiber-resin moiety, with an upper limit of a 30% increase being reported. An analysis of the economic impact concerning the utilization of the nanowires was undertaken and after accounting for new-technology and additional production costs, return on improved-nanocomposite investment was approximated at 4-6% per year over the 20-year expected service life. Further, it was determined based on the 30% improvement in strength, this change may enable a 20-30% reduction in flywheel energy storage cost (%24/kW-h).

Boyle, Timothy J.; Bell, Nelson Simmons; Ehlen, Mark Andrew; Anderson, Benjamin John; Miller, William Kenneth

2013-09-01T23:59:59.000Z

13

Rimmed and edge thickened Stodola shaped flywheel  

DOE Patents [OSTI]

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body (15) composed of essentially planar isotropic high strength material. The flywheel (10) body (15) is enclosed by a rim (50) of circumferentially wound fiber (2) embedded in resin (3). The rim (50) promotes flywheel (10) safety and survivability. The flywheel (10) has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

Kulkarni, Satish V. (San Ramon, CA); Stone, Richard G. (Oakland, CA)

1983-01-01T23:59:59.000Z

14

Rimmed and edge thickened stodola shaped flywheel. [Patent application  

DOE Patents [OSTI]

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body composed of essentially planar isotropic high strength material. The flywheel body is enclosed by a rim of circumferentially wound fiber embedded in resin. The rim promotes flywheel safety and survivability. The flywheel has a truncated and edge thickened Stodola shape designed to optimize system mass and energy storage capability.

Kulkarni, S.V.; Stone, R.G.

1980-09-24T23:59:59.000Z

15

Optimum rotationally symmetric shells for flywheel rotors  

DOE Patents [OSTI]

A flywheel rim support formed from two shell halves. Each of the shell halves has a disc connected to the central shaft. A first shell element connects to the disc at an interface. A second shell element connects to the first shell element. The second shell element has a plurality of meridional slits. A cylindrical shell element connects to the second shell element. The cylindrical shell element connects to the inner surface of the flywheel rim. A flywheel rim support having a disc connected an outer diameter of a shaft. Two optimally shaped shell elements connect to the optimally shaped disc at an interface. The interface defines a discontinuity in a meridional slope of said support. A cylindrical shell element connects to the two shell elements. The cylindrical shell element has an outer surface for connecting to the inner surface of the flywheel rim. A flywheel rim casing includes an annular shell connected to the central shaft. The annular shell connects to the flywheel rim. A composite shell surrounds the shaft, annular shell and flywheel rim.

Blake, Henry W. (Oak Ridge, TN)

2000-01-01T23:59:59.000Z

16

Canned pump having a high inertia flywheel  

DOE Patents [OSTI]

A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid.

Veronesi, Luciano (O'Hara Twp., Allegheny County, PA); Raimondi, ALbert A. (Monroeville Borough, Allegheny County, PA)

1989-01-01T23:59:59.000Z

17

Canned pump having a high inertia flywheel  

DOE Patents [OSTI]

A canned pump is described which includes a motor, impeller, shaft, and high inertia flywheel mounted within a hermetically sealed casing. The flywheel comprises a heavy metal disk made preferably of a uranium alloy with a stainless steel shell sealably enclosing the heavy metal. The outside surfaces of the stainless steel comprise thrust runners and a journal for mating with, respectively, thrust bearing shoes and radial bearing segments. The bearings prevent vibration of the pump and, simultaneously, minimize power losses normally associated with the flywheel resulting from frictionally pumping surrounding fluid. 5 figs.

Veronesi, L.; Raimondi, A.A.

1989-12-12T23:59:59.000Z

18

Layered flywheel with stress reducing construction  

DOE Patents [OSTI]

A flywheel having elastic spokes carrying an elastic rim; and a hub coupling the spokes to a shaft and deforming in response to centrifugal force to match the radial distortion of the spokes.

Friedericy, Johan A. (Palos Verdes Estates, CA); Towgood, Dennis A. (Huntington Beach, CA)

1984-11-13T23:59:59.000Z

19

The identity of Romanian amber (rumanite) with Baltic amber (succinite).  

SciTech Connect (OSTI)

Romanian amber (rumanite) has been considered to be a separate species of fossil resin for more than a century. While earlier investigators held it to be very similar to succinite (Baltic amber), modern scholars have assigned it a distinctly different botanical origin. We have found that almost all of the constituents of the ether-soluble fractions of 13 specimens of authentic rumanite identified by gas chromatography-mass spectrometry have previously been reported in the soluble fraction of succinite, including succinic acid and its monoterpene esters. Additionally and significantly, the soluble fraction of rumanite contains a number defunctionalized compounds that do not preexist in succinite, but that are produced by pyrolysis of whole succinite or of its insoluble polymeric fraction. Simultaneous methylation pyrolysis-gas chromatography-mass spectrometry of the polymeric fraction of seven of the rumanite specimens yielded further copious amounts of dimethyl succinate, a number of diterpene resin acid methyl esters, and additional defunctionalized compounds known to be pyrolysis products of succinite. The evidence shows conclusively that the botanical origin of rumanite is not distinct from that of succinite. Rather, rumanite is a succinite that has suffered partial thermal degradation in the course of the folding of the Oligocene Kliwa sandstone formation in which it is most commonly found.

Stout, E. C.; Beck, C. W.; Anderson, K. B.; Chemistry; Vassar Coll.

2000-11-01T23:59:59.000Z

20

Flywheel Energy Storage technology workshop  

SciTech Connect (OSTI)

Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in Flywheel Energy Storage (FES) technologies. FES offers several advantages over conventional electro-chemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

O`Kain, D.; Howell, D. [comps.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - amber dosemeters efectos Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

powder... structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using... -reflecting and amber-passing LWPF enhances both the amber...

22

E-Print Network 3.0 - amber Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

powder... structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using... -reflecting and amber-passing LWPF enhances both the amber...

23

Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration  

SciTech Connect (OSTI)

GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system that can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.

None

2010-10-01T23:59:59.000Z

24

Reluctance apparatus for flywheel energy storage  

DOE Patents [OSTI]

A motor generator for providing high efficiency, controlled voltage output or storage of energy in a flywheel system. A motor generator includes a stator of a soft ferromagnetic material, a motor coil and a generator coil, and a rotor has at least one embedded soft ferromagnetic piece. Control of voltage output is achieved by use of multiple stator pieces and multiple rotors with controllable gaps between the stator pieces and the soft ferromagnetic piece.

Hull, John R. (Downers Grove, IL)

2000-01-01T23:59:59.000Z

25

E-Print Network 3.0 - amber biomolecular simulation Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the parm98 amber force field1 were performed starting with amber topology... by us by comparison with results of a simulation of Ace-Ala-Nme done with the amber pro- gram.35...

26

amber force fields: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fields and Development of Improved Protein Backbone Parameters Laboratory, Upton, New York 11973, ABSTRACT The ff94 force field that is com- monly associated with the Amber a...

27

amber force field: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fields and Development of Improved Protein Backbone Parameters Laboratory, Upton, New York 11973, ABSTRACT The ff94 force field that is com- monly associated with the Amber a...

28

Flywheel storage for photovoltaics: an economic evaluation of two applications  

E-Print Network [OSTI]

A worth analysis is made for an advanced flywheel storage concept for tandem operation with photovoltaics currently being developed at MIT/Lincoln Laboratories. The applications examined here are a single family residence ...

Dinwoodie, Thomas L.

1980-01-01T23:59:59.000Z

29

High Speed Flywheels for Integrated Energy Storage and Attitude Control  

E-Print Network [OSTI]

High Speed Flywheels for Integrated Energy Storage and Attitude Control Christopher D. Hall. Decomposition of the space of internal torques separates the attitude control functionfrom the energy storage simultaneously performing energy storage and extraction operations. 1 Introduction The power engineering

Hall, Christopher D.

30

Vibration Isolation of a Locomotive Mounted Energy Storage Flywheel  

E-Print Network [OSTI]

Utilizing flywheels to store and reuse energy from regenerative braking on locomotives is a new technology being developed in the Vibration Control and Electromechanics Lab at Texas A&M. This thesis focuses on the motion analysis of a locomotive...

Zhang, Xiaohua

2011-02-22T23:59:59.000Z

31

Flywheel Energy Storage -- An Alternative to Batteries for UPS Systems  

SciTech Connect (OSTI)

Direct current (DC) system flywheel energy storage technology can be used as a substitute for batteries for providing backup power to an uninterruptible power supply (UPS) system. Although the initial cost will usually be higher, flywheels offer a much longer life, reduced maintenance, a smaller footprint, and better reliability compared to a battery. The combination of these characteristics will generally result in a lower life-cycle cost for a flywheel compared to a battery. This paper describes the technology, its variations, and installation requirements, as well as provides application advice. One Federal application is highlighted as a “case study,” followed by an illustrative life-cycle cost comparison of batteries and flywheels. A list of manufacturers, with contact information is also provided.

Brown, Daryl R.; Chvala, William D.

2003-11-12T23:59:59.000Z

32

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents [OSTI]

An interlayer toughening mechanism to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0.degree. to 90.degree. to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles.

Groves, Scott E. (Brentwood, CA); Deteresa, Steven J. (Livermore, CA)

1998-01-01T23:59:59.000Z

33

Interlayer toughening of fiber composite flywheel rotors  

DOE Patents [OSTI]

An interlayer toughening mechanism is described to mitigate the growth of damage in fiber composite flywheel rotors for long application. The interlayer toughening mechanism may comprise one or more tough layers composed of high-elongation fibers, high-strength fibers arranged in a woven pattern at a range from 0{degree} to 90{degree} to the rotor axis and bound by a ductile matrix material which adheres to and is compatible with the materials used for the bulk of the rotor. The number and spacing of the tough interlayers is a function of the design requirements and expected lifetime of the rotor. The mechanism has particular application in uninterruptable power supplies, electrical power grid reservoirs, and compulsators for electric guns, as well as electromechanical batteries for vehicles. 2 figs.

Groves, S.E.; Deteresa, S.J.

1998-07-14T23:59:59.000Z

34

Specific Energy and Energy Density Analysis of Conventional and NonConventional Flywheels  

E-Print Network [OSTI]

Flywheels are widely used as a means of energy storage throughout different applications such as hybrid electric vehicles, spacecraft, and electrical grids. The research presented here investigates various steel flywheel constructions. The purpose...

Reyna, Ruben

2013-12-09T23:59:59.000Z

35

Vibration Suppression and Flywheel Energy Storage in a Drillstring Bottom-Hole-Assembly  

E-Print Network [OSTI]

, and environmental disposal. Extreme and harsh downhole conditions necessitate that the flywheel module withstands temperatures and pressures exceeding 300 ?F and 20 kpsi, respectively, as well as violent vibrations encountered during drilling. Moreover, the flywheel...

Saeed, Ahmed

2012-07-16T23:59:59.000Z

36

Matched metal die compression molded structural random fiber sheet molding compound flywheel  

DOE Patents [OSTI]

A flywheel (10) is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel (10) has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel (10) may be economically produced by a matched metal die compression molding process. The flywheel (10) makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, Satish V. (San Ramon, CA); Christensen, Richard M. (Danville, CA); Toland, Richard H. (West Chester, PA)

1985-01-01T23:59:59.000Z

37

Matched metal die compression molded structural random fiber sheet molding compound flywheel. [Patent application  

DOE Patents [OSTI]

A flywheel is described that is useful for energy storage in a hybrid vehicle automotive power system or in some stationary applications. The flywheel has a body of essentially planar isotropic high strength structural random fiber sheet molding compound (SMC-R). The flywheel may be economically produced by a matched metal die compression molding process. The flywheel makes energy intensive efficient use of a fiber/resin composite while having a shape designed by theory assuming planar isotropy.

Kulkarni, S.V.; Christensen, R.M.; Toland, R.H.

1980-09-24T23:59:59.000Z

38

Amber Kinetics, Inc. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende NewSowitecAWSAgri-EnergyAmbene Jump to:

39

The magnetic flywheel flow meter: Theoretical and experimental contributions  

SciTech Connect (OSTI)

The development of contactless flow meters is an important issue for monitoring and controlling of processes in different application fields, like metallurgy, liquid metal casting, or cooling systems for nuclear reactors and transmutation machines. Shercliff described in his book “The Theory of Electromagnetic Flow Measurement, Cambridge University Press, 1962” a simple and robust device for contact-less measurements of liquid metal flow rates which is known as magnetic flywheel. The sensor consists of several permanent magnets attached on a rotatable soft iron plate. This arrangement will be placed closely to the liquid metal flow to be measured, so that the field of the permanent magnets penetrates into the fluid volume. The flywheel will be accelerated by a Lorentz force arising from the interaction between the magnetic field and the moving liquid. Steady rotation rates of the flywheel can be taken as a measure for the mean flow rate inside the fluid channel. The present paper provides a detailed theoretical description of the sensor in order to gain a better insight into the functional principle of the magnetic flywheel. Theoretical predictions are confirmed by corresponding laboratory experiments. For that purpose, a laboratory model of such a flow meter was built and tested on a GaInSn-loop under various test conditions.

Buchenau, D., E-mail: d.buchenau@hzdr.de; Galindo, V.; Eckert, S. [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstraße 400, 01328 Dresden (Germany)

2014-06-02T23:59:59.000Z

40

Peak Power Bi-directional Transfer From High Speed Flywheel to Electrical Regulated Bus Voltage System  

E-Print Network [OSTI]

were performed to determine the energy transfer capabilities of a flywheel coupled high speed permanent magnet synchronous machine through the proposed system's energy storage tank. Results are presented

Szabados, Barna

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

1710 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 6, NOVEMBER/DECEMBER 2003 An Integrated Flywheel Energy Storage System  

E-Print Network [OSTI]

An Integrated Flywheel Energy Storage System With Homopolar Inductor Motor/Generator and High-Frequency Drive Abstract--The design, construction, and test of an integrated flywheel energy storage system that also serves as the energy storage rotor for the flywheel system. A high-frequency six-step drive scheme

Sanders, Seth

42

An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive  

E-Print Network [OSTI]

An Integrated Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High Flywheel Energy Storage System with a Homopolar Inductor Motor/Generator and High-Frequency Drive Copyright 2003 by Perry I-Pei Tsao #12;1 Abstract An Integrated Flywheel Energy Storage System with a Homopolar

Sanders, Seth

43

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents [OSTI]

An interface structure for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45.degree. with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning.

Deteresa, Steven J. (Livermore, CA); Groves, Scott E. (Brentwood, CA)

1998-06-02T23:59:59.000Z

44

Interface structure for hub and mass attachment in flywheel rotors  

DOE Patents [OSTI]

An interface structure is described for hub and mass attachment in flywheel rotors. The interface structure efficiently transmits high radial compression forces and withstands both large circumferential elongation and local stresses generated by mass-loading and hub attachments. The interface structure is comprised of high-strength fiber, such as glass and carbon, woven into an angle pattern which is about 45{degree} with respect to the rotor axis. The woven fiber is bonded by a ductile matrix material which is compatible with and adheres to the rotor material. This woven fiber is able to elongate in the circumferential direction to match the rotor growth during spinning. 2 figs.

Deteresa, S.J.; Groves, S.E.

1998-06-02T23:59:59.000Z

45

Flywheel Project Escalates Grid Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverview Flow Cells forFluorescentFlywheel

46

Fossil arthropods in Late Cretaceous Vendean amber (northwestern France)  

E-Print Network [OSTI]

(Penney, 2014: 10B in this volume) and six genera and eleven species of various insects – barklice (Azar, Nel, & Perrichot, 2014: 10C in this volume); earwigs (Engel & Perrichot, 2014a: 10D in this volume); termites (Engel, 2014: 10E in this volume... Vendean amber. Pale- ontological Contributions 10H:34–40. Colin, J.-P., D. Néraudeau, A. Nel, & V. Perrichot. 2011. Termite co- prolites (Insecta: Isoptera) from the Cretaceous of western France: A palaeoecological insight. Revue de Micropaléontologie 54...

Perrichot, Vincent (ed.)

2014-12-01T23:59:59.000Z

47

AMBER closure and differential phases: accuracy and calibration with a Beam Commutation  

E-Print Network [OSTI]

as on the Closure Phase. Keywords: Instrumentation: interferometers - Techniques: image processing - Methods: data on ESO paranal observations of calibrators made with AMBER during various commissioning and GTO runs

Paris-Sud XI, Université de

48

E-Print Network 3.0 - amber box Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

powder... structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using Source: Lee, Yong-Hee - Department of Physics, Korea Advanced...

49

E-Print Network 3.0 - amber verification study Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

powder... structure to realize a highly efficient monochromatic amber-emitting light-emitting diode (LED) using Source: Lee, Yong-Hee - Department of Physics, Korea Advanced...

50

Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems  

SciTech Connect (OSTI)

This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

1999-06-01T23:59:59.000Z

51

Flywheel Cooling: A Cooling Solution for Non Air-Conditioned Buildings  

E-Print Network [OSTI]

"Flywheel Cooling" utillzes the natural cooling processes of evaporation, ventilation and air circulation. These systems are providing low-cost cooling for distribution centers, warehouses, and other non air-conditioned industrial assembly plants...

Abernethy, D.

52

Analysis of electromechanical interactions in a flywheel system with a doubly fed induction machine  

E-Print Network [OSTI]

This paper analyzes the electromechanical inter-action in a flywheel system with a doubly fed induction machine, used for wind farm power smoothing or grid frequency response control. The grid-connected electrical machine ...

Ran, Li

53

Design and analysis of a composite flywheel preload loss test rig  

E-Print Network [OSTI]

INTRODUCTION...................................................................................1 1.1 Overview.............................................................................1 1.2 Literature Review..................................................................2 1.3 Objectives and Novel Contributions...................................4 II PLM FLYWHEEL TEST RIG DESIGN................................................. 6 2.1 Design Process...

Preuss, Jason Lee

2004-09-30T23:59:59.000Z

54

MIMO active vibration control of magnetically suspended flywheels for satellite IPAC service  

E-Print Network [OSTI]

) Greek ? = Controls the sharpness of the function f ? = Damping ratio ? = Sensor gain cly? = Cylindrical mode damping ratio con? = Conical mode damping ratio 0? = Permeability of free space f? = Flywheel angular velocity relative... relative to the inertial frame spin? = Flywheel spin frequency ba /? = Angular velocity of a relative tob ?~ = ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 0 12 13 23 ?? ?? ?? 1 CHAPTER I INTRODUCTION 1.1 Overview Satellite weight and cost...

Park, Junyoung

2009-05-15T23:59:59.000Z

55

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

SciTech Connect (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

56

Long-Tailed Wasps (Hymenoptera: Megalyridae) from Cretaceous and Paleogene European amber  

E-Print Network [OSTI]

Fifty-two fossils of megalyrid wasps from various collections of European amber were examined. A male neotype for Prodinapsis succinalis Brues and a female neotype for P. minor Brues are designated. The two species are ...

Perrichot, Vincent

2009-08-31T23:59:59.000Z

57

A male of the bee genus Agapostemon in Dominican amber (Hymenoptera: Halictidae)  

E-Print Network [OSTI]

The first fossil species of the caenohalictine bee genus Agapostemon Guérin-Méneville (Halictinae: Caenohalictini:Agapostemonina) is described and figured from a single male preserved in EarlyMiocene (Burdigalian) amber ...

Engel, Michael S.; Breitkreuz, Laura C.V.

2013-09-04T23:59:59.000Z

58

Two new halictine bees in Miocene amber from the Dominican Republic (Hymenoptera, Halictidae)  

E-Print Network [OSTI]

Two new halictine bees (Halictidae: Halictinae) are described and figured from females preserved in Early Miocene (Burdigalian) amber from the Dominican Republic. Oligochlora semirugosa sp. n. (Augochlorini) is similar to ...

Engel, Michael S.

2009-12-11T23:59:59.000Z

59

A zinc-air battery and flywheel zero emission vehicle  

SciTech Connect (OSTI)

In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

1995-10-03T23:59:59.000Z

60

PCIM, Nrnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND  

E-Print Network [OSTI]

-scale storage of the type pumped hydro, compressed air, flow batteries, etc.), or even at the level of potentialPCIM, Nürnberg, may 2003 FLYWHEEL ENERGY STORAGE SYSTEMS IN HYBRID AND DISTRIBUTED ELECTRICITY of the electromechanical storage of energy over long operating cycles (with time constants ranging from several minutes

Boyer, Edmond

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Transient analysis of a flywheel battery containment during a full rotor burst event.  

SciTech Connect (OSTI)

Flywheels are being developed for use in an Advanced Locomotive Propulsion System (ALPS) targeted for use in high speed passenger rail service. The ALPS combines high performance, high speed gas turbines, motor/generators and flywheels to provide a light-weight, fuel-efficient power system. Such a system is necessary to avoid the high cost of railway electrification, as is currently done for high speed rail service (>100mph) since diesels are too heavy. The light-weight flywheel rotors are made from multilayered composite materials, and are operated at extremely high energy levels. Metal containment structures have been designed to enclose the rotors and provide encapsulation of the rotor during postulated failure events. One such event is a burst mode failure of the rotor in which the composite rim is assumed to burst into debris that impacts against the containment. This paper presents a finite element simulation of the transient structural response of a subscale metal flywheel containment structure to a rotor burst event.

Hsieh, B. J.

1998-04-17T23:59:59.000Z

62

Utilization of rotor kinetic energy storage for hybrid vehicles  

DOE Patents [OSTI]

A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

Hsu, John S. (Oak Ridge, TN)

2011-05-03T23:59:59.000Z

63

Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler  

DOE Patents [OSTI]

A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings.

Kuklo, Thomas C. (Oakdale, CA)

1999-01-01T23:59:59.000Z

64

Concentric ring flywheel with hooked ring carbon fiber separator/torque coupler  

DOE Patents [OSTI]

A concentric ring flywheel with expandable separators, which function as torque couplers, between the rings to take up the gap formed between adjacent rings due to differential expansion between different radius rings during rotation of the flywheel. The expandable separators or torque couplers include a hook-like section at an upper end which is positioned over an inner ring and a shelf-like or flange section at a lower end onto which the next adjacent outer ring is positioned. As the concentric rings are rotated the gap formed by the differential expansion there between is partially taken up by the expandable separators or torque couplers to maintain torque and centering attachment of the concentric rings. 2 figs.

Kuklo, T.C.

1999-07-20T23:59:59.000Z

65

AMBER+FINITO Investigating the gas emission regions of the T Tauri system GW Ori  

E-Print Network [OSTI]

physical structure plays an important role in the properties of the forming solar-type planetary systems field. Due to the restricted sensitivity limits of AMBER without the fringe tracker, however, positive. Hence, results found on these sources cannot be extended to solar mass objects (i.e. the T Tauri stars

Liske, Jochen

66

Benefits from flywheel energy storage for area regulation in California - demonstration results : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This report documents a high-level analysis of the benefit and cost for flywheel energy storage used to provide area regulation for the electricity supply and transmission system in California. Area regulation is an 'ancillary service' needed for a reliable and stable regional electricity grid. The analysis was based on results from a demonstration, in California, of flywheel energy storage developed by Beacon Power Corporation (the system's manufacturer). Demonstrated was flywheel storage systems ability to provide 'rapid-response' regulation. Flywheel storage output can be varied much more rapidly than the output from conventional regulation sources, making flywheels more attractive than conventional regulation resources. The performance of the flywheel storage system demonstrated was generally consistent with requirements for a possible new class of regulation resources - 'rapid-response' energy-storage-based regulation - in California. In short, it was demonstrated that Beacon Power Corporation's flywheel system follows a rapidly changing control signal (the ACE, which changes every four seconds). Based on the results and on expected plant cost and performance, the Beacon Power flywheel storage system has a good chance of being a financially viable regulation resource. Results indicate a benefit/cost ratio of 1.5 to 1.8 using what may be somewhat conservative assumptions. A benefit/cost ratio of one indicates that, based on the financial assumptions used, the investment's financial returns just meet the investors target.

Eyer, James M. (Distributed Utility Associates, Livermore, CA)

2009-10-01T23:59:59.000Z

67

Amber light-emitting diode comprising a group III-nitride nanowire active region  

DOE Patents [OSTI]

A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

2014-07-22T23:59:59.000Z

68

Schultz, T. R. 2007. The fungus-growing ant genus Apterostigma in Dominican amber, pp. 425-436. In Snelling, R. R., B. L. Fisher, and P. S. Ward (eds). Advances in ant systematics  

E-Print Network [OSTI]

(Figures 1 and 2) HOLOTYPE (worker): AMBER: Oligo-Miocene; Dominican Republic; AMNH no. DR- 14-984; Schultz, T. R. 2007. The fungus-growing ant genus Apterostigma in Dominican amber, pp. 425- 436. THE FUNGUS-GROWING ANT GENUS APTEROSTIGMA IN DOMINICAN AMBER Ted R. Schultz Department of Entomology, MRC 188

Schultz, Ted

69

Solvation Free Energy of Biomacromolecules: Parameters for a Modified Generalized Born Model Consistent with the AMBER Force Field  

E-Print Network [OSTI]

Solvation Free Energy of Biomacromolecules: Parameters for a Modified Generalized Born Model provides rapid estimates of the electrostatic free energies of solvation for diverse molecules of parameters compatible with the AMBER force field is described. The method is used to estimate free energies

Jayaram, Bhyravabotla

70

The genus Macroteleia Westwood in Middle Miocene amber from Peru (Hymenoptera, Platygastridae s.l., Scelioninae)  

E-Print Network [OSTI]

paleontology Genus Macroteleia Westwood, 1835 Macroteleia yaguarum Perrichot & Engel, sp. n. http://zoobank.org/8D3E135D-8273-4A15-A97D-BD4FDB0C76ED Figs 1–2 Type material. Holotype MUSM-A-2006-4a, female, in amber fragment from the Pebas Formation (Mollusc... | Received 29 May 2014 | Accepted 1 June 2014 | Published 17 Juny 2014 http://zoobank.org/6CD8F6A2-5D5E-4B25-AEB6-B0A4425EF2AB Citation: Perrichot V, Antoine P-O, Salas-Gismondi R, Flynn JJ, Engel MS (2014) The genus Macroteleia Westwood...

Perrichot, Vincent; Antoine, Pierre-Olivier; Salas-Gismondi, Rodolfo; Flynn, John J.; Engel, Michael S.

2014-06-17T23:59:59.000Z

71

Two-Level Systems and Boson Peak Remain Stable in 110-Million-Year-Old Amber Glass  

E-Print Network [OSTI]

The two most prominent and ubiquitous features of glasses at low temperatures, namely the presence of tunneling two-level systems and the so-called boson peak in the reduced vibrational density of states, are shown to persist essentially unchanged in highly stabilized glasses, contrary to what was usually envisaged. Specifically, we have measured the specific heat of 110 million-year-old amber samples from El Soplao (Spain), both at very low temperatures and around the glass transition Tg. In particular, the amount of two-level systems, assessed at the lowest temperatures, was surprisingly found to be exactly the same for the pristine hyperaged amber as for the, subsequently, partially and fully rejuvenated samples.

Tomás Pérez-Castañeda; Rafael J. Jiménez-Riobóo; Miguel A. Ramos

2014-05-21T23:59:59.000Z

72

Design & development fo a 20-MW flywheel-based frequency regulation power plant : a study for the DOE Energy Storage Systems program.  

SciTech Connect (OSTI)

This report describes the successful efforts of Beacon Power to design and develop a 20-MW frequency regulation power plant based solely on flywheels. Beacon's Smart Matrix (Flywheel) Systems regulation power plant, unlike coal or natural gas generators, will not burn fossil fuel or directly produce particulates or other air emissions and will have the ability to ramp up or down in a matter of seconds. The report describes how data from the scaled Beacon system, deployed in California and New York, proved that the flywheel-based systems provided faster responding regulation services in terms of cost-performance and environmental impact. Included in the report is a description of Beacon's design package for a generic, multi-MW flywheel-based regulation power plant that allows accurate bids from a design/build contractor and Beacon's recommendations for site requirements that would ensure the fastest possible construction. The paper concludes with a statement about Beacon's plans for a lower cost, modular-style substation based on the 20-MW design.

Rounds, Robert (Beacon Power, Tyngsboro, MA); Peek, Georgianne Huff

2009-01-01T23:59:59.000Z

73

An asymmetry detected in the disk of Kappa CMa with the AMBER/VLTI  

E-Print Network [OSTI]

Aims. We study the geometry and kinematics of the circumstellar environment of the Be star Kappa CMa in the Br gamma emission line and its nearby continuum. Methods. We use the VLTI/AMBER instrument operating in the K band which provides a spatial resolution of about 6 mas with a spectral resolution of 1500 to study the kinematics within the disk and to infer its rotation law. In order to obtain more kinematical constraints we also use an high spectral resolution Pa beta line profile obtain in December 2005 at the Observatorio do Pico do Dios, Brazil and we compile V/R line profile variations and spectral energy distribution data points from the literature. Results. Using differential visibilities and differential phases across the Br gamma line we detect an asymmetry in the disk. Moreover, we found that kappa CMa seems difficult to fit within the classical scenario for Be stars, illustrated recently by alpha Arae observations, i.e. a fast rotating B star close to its breakup velocity surrounded by a Kepleria...

Meilland, A; Stee, P; De Souza, A D; Petrov, R; Mourard, D; Jankov, S; Robbe-Dubois, S; Spang, A; Arisitidi, E; Meilland, Anthony; Millour, Florentin; Stee, Philippe; Souza, Armando Domiciano De; Petrov, Romain; Mourard, Denis; Jankov, Slobodan; Robbe-Dubois, Sylvie; Spang, Alain; Arisitidi, Eric; al, et

2006-01-01T23:59:59.000Z

74

Amber-green light-emitting diodes using order-disorder Al[subscript x]In[subscript 1?x]P heterostructures  

E-Print Network [OSTI]

We demonstrate amber-green emission from Al[subscript x]In[subscript 1– x]P light-emitting diodes (LEDs) with luminescence peaked at 566?nm and 600?nm. The LEDs are metamorphically grown on GaAs substrates via a graded ...

Christian, Theresa M.

75

Nonequilibrium quantum kinetics  

SciTech Connect (OSTI)

This paper contains viewgraphs on non-equilibrium quantum kinetics of nuclear reactions at the intermediate and high energy ranges.

Danielewicz, P.

1997-09-22T23:59:59.000Z

76

AMBER at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011Astudies smartHistory: TheALSNewsALSNews Vol.

77

Erbium hydride decomposition kinetics.  

SciTech Connect (OSTI)

Thermal desorption spectroscopy (TDS) is used to study the decomposition kinetics of erbium hydride thin films. The TDS results presented in this report are analyzed quantitatively using Redhead's method to yield kinetic parameters (E{sub A} {approx} 54.2 kcal/mol), which are then utilized to predict hydrogen outgassing in vacuum for a variety of thermal treatments. Interestingly, it was found that the activation energy for desorption can vary by more than 7 kcal/mol (0.30 eV) for seemingly similar samples. In addition, small amounts of less-stable hydrogen were observed for all erbium dihydride films. A detailed explanation of several approaches for analyzing thermal desorption spectra to obtain kinetic information is included as an appendix.

Ferrizz, Robert Matthew

2006-11-01T23:59:59.000Z

78

Kinetic theory viscosity  

E-Print Network [OSTI]

We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda 2001, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, second, the geometry of the mean flow.

C. J. Clarke; J. E. Pringle

2004-03-17T23:59:59.000Z

79

Molecular Beam Kinetics | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challenge fundProject8Mistakes to AvoidKinetics Molecular Beam Kinetics

80

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Improving alternative fuel utilization: detailed kinetic combustion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Improving alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Improving alternative fuel utilization: detailed kinetic combustion modeling &...

82

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

83

Multidimensional simulation and chemical kinetics development...  

Broader source: Energy.gov (indexed) [DOE]

processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Simulation of High...

84

Amber_HEP-NERSC.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropaneSecurity Administration Amb. LintonDOE

85

Reciprocal Relations Between Kinetic Curves  

E-Print Network [OSTI]

We study coupled irreversible processes. For linear or linearized kinetics with microreversibility, $\\dot{x}=Kx$, the kinetic operator $K$ is symmetric in the entropic inner product. This form of Onsager's reciprocal relations implies that the shift in time, $\\exp (Kt)$, is also a symmetric operator. This generates reciprocity relations between kinetic curves. For example, for the Master equation, if we start the process from the $i$th pure state and measure the probability $p_j(t)$ of the $j$th state ($j\

Yablonsky, G S; Constales, D; Galvita, V; Marin, G B

2010-01-01T23:59:59.000Z

86

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

87

Kinetic models of opinion formation  

E-Print Network [OSTI]

We introduce and discuss certain kinetic models of (continuous) opinion formation involving both exchange of opinion between individual agents and diffusion of information. We show conditions which ensure that the kinetic model reaches non trivial stationary states in case of lack of diffusion in correspondence of some opinion point. Analytical results are then obtained by considering a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of opinion among individuals.

G. Toscani

2006-05-17T23:59:59.000Z

88

Nonlinear effects in kinetic resolutions  

E-Print Network [OSTI]

KTRIC AMPLIFICATION IN THE JACOBSEN HYDROLYTIC KINET RESOLUTION OF RACEMIC EPOXIDES 20 Applicability of Homocompetitive Reaction Kinetics to the Jacobsen HKR Effect of Catalyst EE and Choice of Epoxide on Amplification in the Jacobsen HKR.... . . . . . . . . . . . . . . . . . Effect of Temperature on Amplification and Reaction Rate in the Jacobsen HKR . Effect of Low EE Catalyst Generation on Amplification in the Jacobsen HKR. . . . 21 21 25 26 27 30 31 TABLE OF CONTENTS (Continued) CHAPTER Page V AS...

Johnson, Derrell W.

1999-01-01T23:59:59.000Z

89

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

90

Kinetic Modeling and Thermodynamic Closure Approximation of ...  

E-Print Network [OSTI]

Oct 5, 2007 ... Kinetic Modeling and Thermodynamic Closure. Approximation of Liquid Crystal Polymers. Haijun Yu. Program in Applied and Computational ...

2007-10-03T23:59:59.000Z

91

14CME Kinetic Energy and Mass Kinetic energy is the energy that a  

E-Print Network [OSTI]

14CME Kinetic Energy and Mass Kinetic energy is the energy that a body has by virtue of its mass the table by determining the value of the missing entries using the formula for Kinetic Energy. Problem 2: What is the minimum and maximum range for the observed kinetic energies for the 10 CMEs? The largest

92

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation. Abstract: Many...

93

Challenges and Progress Toward a Commercial Kinetic Hydropower System  

E-Print Network [OSTI]

Challenges and Progress Toward a Commercial Kinetic Hydropower System for its kinetic hydropower devices, and has made precise measurements

Walter, M.Todd

94

Kinetic Modeling of Microbiological Processes  

SciTech Connect (OSTI)

Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

Liu, Chongxuan; Fang, Yilin

2012-09-17T23:59:59.000Z

95

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov (indexed) [DOE]

improved gasoline surrogate fuels for HCCI engines * Development of very efficient software to reduce the size of detailed chemical kinetic models for transportation fuels...

96

CLEERS Coordination & Development of Catalyst Process Kinetic...  

Broader source: Energy.gov (indexed) [DOE]

& coordinate DOE research efforts (CLEERS Coordination) * Develop detailed technical data required to simulate energy efficient emission controls (LNT & SCR Kinetics, Sulfur &...

97

Kinetic bounding volume hierarchies for deformable objects  

E-Print Network [OSTI]

We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. We used our kinetic bounding volume hierarchies for collision detection and performed a comparison with the classical bottomup update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios.

Gabriel Zachmann; Tu Clausthal

2006-01-01T23:59:59.000Z

98

The Fractional Kinetic Equation and Thermonuclear Functions  

E-Print Network [OSTI]

The paper discusses the solution of a simple kinetic equation of the type used for the computation of the change of the chemical composition in stars like the Sun. Starting from the standard form of the kinetic equation it is generalized to a fractional kinetic equation and its solutions in terms of H-functions are obtained. The role of thermonuclear functions, which are also represented in terms of G- and H-functions, in such a fractional kinetic equation is emphasized. Results contained in this paper are related to recent investigations of possible astrophysical solutions of the solar neutrino problem.

H. J. Haubold; A. M. Mathai

2000-01-16T23:59:59.000Z

99

CLEERS Coordination & Development of Catalyst Process Kinetic...  

Energy Savers [EERE]

CLEERS Coordination & Development of Catalyst Process Kinetic Data - Pres. 1: Coordination of CLEERS Project; Pres. 2: ORNL Research on LNT Sulfation & Desulfation CLEERS...

100

Combustion kinetics and reaction pathways  

SciTech Connect (OSTI)

This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kinetics of actinide complexation reactions  

SciTech Connect (OSTI)

Though the literature records extensive compilations of the thermodynamics of actinide complexation reactions, the kinetics of complex formation and dissociation reactions of actinide ions in aqueous solutions have not been extensively investigated. In light of the central role played by such reactions in actinide process and environmental chemistry, this situation is somewhat surprising. The authors report herein a summary of what is known about actinide complexation kinetics. The systems include actinide ions in the four principal oxidation states (III, IV, V, and VI) and complex formation and dissociation rates with both simple and complex ligands. Most of the work reported was conducted in acidic media, but a few address reactions in neutral and alkaline solutions. Complex formation reactions tend in general to be rapid, accessible only to rapid-scan and equilibrium perturbation techniques. Complex dissociation reactions exhibit a wider range of rates and are generally more accessible using standard analytical methods. Literature results are described and correlated with the known properties of the individual ions.

Nash, K.L.; Sullivan, J.C.

1997-09-01T23:59:59.000Z

102

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow computations  

E-Print Network [OSTI]

Multiple temperature kinetic model and gas-kinetic method for hypersonic non-equilibrium flow. For the non-equilibrium flow computations, i.e., the nozzle flow and hypersonic rarefied flow over flat plate-kinetic method; Hypersonic and rarefied flows 1. Introduction The development of aerospace technology has

Xu, Kun

103

Testing the kinetic energy functional: Kinetic energy density as a density functional  

E-Print Network [OSTI]

is to the exchange-correlation energy as a functional of the density. A large part of the total energy, the kinetic contexts. For finite systems these forms integrate to the same global ki- netic energy, but they differTesting the kinetic energy functional: Kinetic energy density as a density functional Eunji Sim

Burke, Kieron

104

Kinetic Theory of Dynamical Systems  

E-Print Network [OSTI]

It is generally believed that the dynamics of simple fluids can be considered to be chaotic, at least to the extent that they can be modeled as classical systems of particles interacting with short range, repulsive forces. Here we give a brief introduction to those parts of chaos theory that are relevant for understanding some features of non-equilibrium processes in fluids. We introduce the notions of Lyapunov exponents, Kolmogorov-Sinai entropy and related quantities using some simple low-dimensional systems as "toy" models of the more complicated systems encountered in the study of fluids. We then show how familiar methods used in the kinetic theory of gases can be employed for explicit, analytical calculations of the largest Lyapunov exponent and KS entropy for dilute gases composed of hard spheres in d dimensions. We conclude with a brief discussion of interesting, open problems.

R. van Zon; H. van Beijeren; J. R. Dorfman

1999-06-24T23:59:59.000Z

105

ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS  

E-Print Network [OSTI]

1262 ADVANCES IN ENVIRONMENTAL REACTION KINETICS AND THERMODYNAMICS: LONG-TERM FATE thermodynamic and kinetic data is available with regard to the formation of these mixed metal precipitate phases to six months from the initial addition of aqueous nickel. Additionally, we have determined thermodynamic

Sparks, Donald L.

106

Chemical kinetics and oil shale process design  

SciTech Connect (OSTI)

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

107

Kinetic advantage of controlled intermediate nuclear fusion  

SciTech Connect (OSTI)

The dominated process of controlled fusion is to let nuclei gain enough kinetic energy to overcome Coulomb barrier. As a result, a fusion scheme can consider two factors in its design: to increase kinetic energy of nuclei and to alter the Coulomb barrier. Cold Fusion and Hot fusion are all one-factor schemes while Intermediate Fusion is a twofactors scheme. This made CINF kinetically superior. Cold Fusion reduces deuteron-deuteron distance, addressing Coulomb barrier, and Hot Fusion heat up plasma into extreme high temperature, addressing kinetic energy. Without enough kinetic energy made Cold Fusion skeptical. Extreme high temperature made Hot Fusion very difficult to engineer. Because CIFN addresses both factors, CIFN is a more promising technique to be industrialized.

Guo Xiaoming [Physics and Computer Science Department, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5 (Canada)

2012-09-26T23:59:59.000Z

108

Long-term Kinetics of Uranyl Desorption from Sediments Under...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions. Abstract: Long-term...

109

Direct Visualization of Initial SEI Morphology and Growth Kinetics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Initial SEI Morphology and Growth Kinetics During Lithium Deposition by in situ Electrochemical Direct Visualization of Initial SEI Morphology and Growth Kinetics During Lithium...

110

Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation. Abstract: Molecular simulation techniques...

111

Uncertainty analysis of multi-rate kinetics of uranium desorption...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

112

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

113

Transport-controlled kinetics of dissolution and precipitation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions . Transport-controlled kinetics of dissolution and...

114

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2010 DOE...

115

Microscale Electrode Design Using Coupled Kinetic, Thermal and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling Microscale Electrode Design Using Coupled Kinetic, Thermal and Mechanical Modeling 2009 DOE...

116

Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes 2010 DOE...

117

A Comparison of HCCI Engine Performance Data and Kinetic Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Rangeof Gasoline Range Surrogate Fuel Blends A Comparison of HCCI Engine Performance Data and Kinetic...

118

Improving Combustion Software to Solve Detailed Chemical Kinetics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

119

UNLOCKING TAX EQUITY INVESTMENT  

Broader source: Energy.gov [DOE]

This presentation summarizes the information given by Amber Kinetics during the DOE SunShot Grand Challenge: Summit and Technology Forum, June 13-14, 2012.

120

Modeling of Reactor Kinetics and Dynamics  

SciTech Connect (OSTI)

In order to model a full fuel cycle in a nuclear reactor, it is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by coupling fuel burnup equations with the kinetics equations. When the equations are solved simultaneously with a nonlinear equation solver, the end result is a code with the unique capability of modeling transients at any time during a fuel cycle.

Matthew Johnson; Scott Lucas; Pavel Tsvetkov

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kinetic limits of dynamical systems  

E-Print Network [OSTI]

Since the pioneering work of Maxwell and Boltzmann in the 1860s and 1870s, a major challenge in mathematical physics has been the derivation of macroscopic evolution equations from the fundamental microscopic laws of classical or quantum mechanics. Macroscopic transport equations lie at the heart of many important physical theories, including fluid dynamics, condensed matter theory and nuclear physics. The rigorous derivation of macroscopic transport equations is thus not only a conceptual exercise that establishes their consistency with the fundamental laws of physics: the possibility of finding deviations and corrections to classical evolution equations makes this subject both intellectually exciting and relevant in practical applications. The plan of these lectures is to develop a renormalisation technique that will allow us to derive transport equations for the kinetic limits of two classes of simple dynamical systems, the Lorentz gas and kicked Hamiltonians (or linked twist maps). The technique uses the ergodic theory of flows on homogeneous spaces (homogeneous flows for short), and is based on joint work with Andreas Str\\"ombergsson.

Jens Marklof

2014-08-06T23:59:59.000Z

122

Kinetic description of mixtures of anisotropic fluids  

E-Print Network [OSTI]

A simple system of coupled kinetic equations for quark and gluon anisotropic systems is solved numerically. The solutions are compared with the predictions of the anisotropic hydrodynamics describing a mixture of anisotropic fluids. We find that the solutions of the kinetic equations can be well reproduced by anisotropic hydrodynamics if the initial distribution are oblate for both quarks and gluons. On the other hand, the solutions of the kinetic equations have a different qualitative behavior from those obtained in anisotropic hydrodynamics if the initial configurations are oblate-prolate or prolate-prolate. This suggests that an extension of the anisotropic hydrodynamics scheme for the mixture of anisotropic fluids is needed, where higher moments of the kinetic equations are used and present simplifications are avoided.

Wojciech Florkowski; Oskar Madetko

2014-02-11T23:59:59.000Z

123

Mechanistic studies using kinetic isotope effects  

E-Print Network [OSTI]

MECHANISTIC STUDIES USING KINETIC ISOTOPE EFFECTS A Thesis by BRIAN E. SCHULMFIER Submitted to the Office of Graduate Studies of Texas ARM University in partial fulfillment of the requtrements for the degree of MASTER OF SCIENCE December... 1999 Major Subject: Chemistry MECHANISTIC STUDIES USING KINETIC ISOTOPE EFFECTS A Thesis by BRIAN E. SCHULMEIER Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved...

Schulmeier, Brian E.

2012-06-07T23:59:59.000Z

124

Kinetic decoupling of WIMPs: analytic expressions  

E-Print Network [OSTI]

We present a general expression for the values of the average kinetic energy and of the temperature of kinetic decoupling of a WIMP, valid for any cosmological model. We show an example of the usage of our solution when the Hubble rate has a power-law dependence on temperature, and we show results for the specific cases of kination cosmology and low- temperature reheating cosmology.

Visinelli, Luca

2015-01-01T23:59:59.000Z

125

22nd IAEA-FEC Kinetic theory of Geodesic Acoustic Modes: ... 1 Kinetic theory of Geodesic Acoustic  

E-Print Network [OSTI]

22nd IAEA-FEC Kinetic theory of Geodesic Acoustic Modes: ... 1 Kinetic theory of Geodesic Acoustic Zonca, Liu Chen and Zhiyong Qiu #12;22nd IAEA-FEC Kinetic theory of Geodesic Acoustic Modes: ... 2 Chen and Zhiyong Qiu #12;22nd IAEA-FEC Kinetic theory of Geodesic Acoustic Modes: ... 3 2 Linear

Zonca, Fulvio

126

7-Gate Kinetic AMPA Model Kinetics to match EPSCs from calyx of Held  

E-Print Network [OSTI]

7-Gate Kinetic AMPA Model · Kinetics to match EPSCs from calyx of Held · Multiple closed, open and EPSC amplitude Bruce Graham Department of Computing Science and Mathematics, University of Stirling, U, including the calyx of Held in the mammalian auditory system. Such depression may be mediated

Graham, Bruce

127

Matthew Marker Jo~ Gamer Amber Lee  

E-Print Network [OSTI]

) (Al.oed Health Sciences) TiffanyMills Stuart Crystal Hoonhol'$t Parson Karie Phillips Tipton (Dcntisuy. Armstrong Brandi O. Barranco Darla Annette Bondurant Christina F. Buckelew Miriam J. Delaroi Scottie Ann

Cui, Yan

128

Contact: Amber Anderson Skrabek External Communications Specialist  

E-Print Network [OSTI]

: Energy Efficiency and Best Practices. It also detailed the latest developments in this old fashioned, photo/video presentations and the newest innovations relating to the ongoing evolution of best practices

Major, Arkady

129

Video:Ashley Anderson and Amber Stoesser  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha PatriPhotoelectron

130

Women @ Energy: Amber Boehnlein | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject isNovember 07, 2007What IsandWisconsin LEDAmber Boehnlein

131

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

132

Saffman-Taylor fingers with kinetic undercooling  

E-Print Network [OSTI]

The mathematical model of a steadily propagating Saffman-Taylor finger in a Hele-Shaw channel has applications to two-dimensional interacting streamer discharges which are aligned in a periodic array. In the streamer context, the relevant regularisation on the interface is not provided by surface tension, but instead has been postulated to involve a mechanism equivalent to kinetic undercooling, which acts to penalise high velocities and prevent blow-up of the unregularised solution. Previous asymptotic results for the Hele-Shaw finger problem with kinetic undercooling suggest that for a given value of the kinetic undercooling parameter, there is a discrete set of possible finger shapes, each analytic at the nose and occupying a different fraction of the channel width. In the limit in which the kinetic undercooling parameter vanishes, the fraction for each family approaches 1/2, suggesting that this 'selection' of 1/2 by kinetic undercooling is qualitatively similar to the well-known analogue with surface tens...

Gardiner, Bennett P J; Dallaston, Michael C; Moroney, Timothy J

2015-01-01T23:59:59.000Z

133

Neptunium Binding Kinetics with Arsenazo(III)  

SciTech Connect (OSTI)

This document has been prepared to meet FCR&D level 2 milestone M2FT-14IN0304021, “Report on the results of actinide binding kinetics with aqueous phase complexants” This work was carried out under the auspices of the Thermodynamics and Kinetics of Advanced Separations Systems FCR&D work package. The report details kinetics experiments that were performed to measure rates of aqueous phase complexation for pentavalent neptunium with the chromotropic dye Arsenazo III (AAIII). The studies performed were designed to determine how pH, ionic strength and AAIII concentration may affect the rate of the reaction. A brief comparison with hexavalent neptunium is also made. It was identified that as pH was increased the rate of reaction also increased, however increasing the ionic strength and concentration of AAIII had the opposite effect. Interestingly, the rate of reaction of Np(VI) with AAIII was found to be slower than that of the Np(V) reaction.

Leigh R. Martin; Aaron T. Johnson; Stephen P. Mezyk

2014-08-01T23:59:59.000Z

134

Kinetic studies of elementary chemical reactions  

SciTech Connect (OSTI)

This program concerning kinetic studies of elementary chemical reactions is presently focussed on understanding reactions of NH{sub x} species. To reach this goal, the author is pursuing experimental studies of reaction rate coefficients and product branching fractions as well as using electronic structure calculations to calculate transition state properties and reaction rate calculations to relate these properties to predicted kinetic behavior. The synergy existing between the experimental and theoretical studies allow one to gain a deeper insight into more complex elementary reactions.

Durant, J.L. Jr. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

135

Model Independent Bounds on Kinetic Mixing  

SciTech Connect (OSTI)

New Abelian vector bosons can kinetically mix with the hypercharge gauge boson of the Standard Model. This letter computes the model independent limits on vector bosons with masses from 1 GeV to 1 TeV. The limits arise from the numerous e{sup +}e{sup -} experiments that have been performed in this energy range and bound the kinetic mixing by {epsilon} {approx}< 0.03 for most of the mass range studied, regardless of any additional interactions that the new vector boson may have.

Hook, Anson; Izaguirre, Eder; Wacker, Jay G.; /SLAC

2011-08-22T23:59:59.000Z

136

E-Print Network 3.0 - age-specific kinetic model Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Kinetic StabilizationNSTX Simple model... - Kinetic StabilizationNSTX Kinetic model: collisions decrease stability collision frequency (note... dissipation of mode...

137

Interpreting the Aggregation Kinetics of Amyloid Peptides  

E-Print Network [OSTI]

Amyloid fibrils are insoluble mainly -sheet aggregates of proteins or peptides. The multi-step process) and amyloid-protected states, is used to investigate the kinetics of aggregation and the pathways of fibril state. The minimal-size aggregate able to form a fibril is generated by collisions of oligomers

Caflisch, Amedeo

138

Radiation from Kinetic Poynting Flux Acceleration  

E-Print Network [OSTI]

We derive analytic formulas for the power output and critical frequency of radiation by electrons accelerated by relativistic kinetic Poynting flux, and validate these results with Particle-In-Cell plasma simulations. We find that the in-situ radiation power output and critical frequency are much below those predicted by the classical synchrotron formulae. We discuss potential astrophysical applications of these results.

Edison Liang; Koichi Noguchi

2007-11-18T23:59:59.000Z

139

CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings  

E-Print Network [OSTI]

CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

Sherrill, David

140

Thermodynamic and kinetic modeling of transcriptional pausing  

E-Print Network [OSTI]

in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic secondary structure, an aspect not included explicitly in previous attempts at modeling the transcrip- tion

Chen, Kuang-Yu

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS  

E-Print Network [OSTI]

STATISTICAL ANALYSIS OF PROTEIN FOLDING KINETICS AARON R. DINNER New Chemistry Laboratory for Protein Folding: Advances in Chemical Physics, Volume 120. Edited by Richard A. Friesner. Series Editors Experimental and theoretical studies have led to the emergence of a unified general mechanism for protein

Dinner, Aaron

142

Direct kinetic correlation of carriers and ferromagnetism in...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

kinetic correlation of carriers and ferromagnetism in Co2+ : ZnO. Direct kinetic correlation of carriers and ferromagnetism in Co2+ : ZnO. Abstract: We report the use of controlled...

143

Adsorption, Desorption, and Displacement Kinetics of H2O and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Displacement Kinetics of H2O and CO2 on TiO2(110). Adsorption, Desorption, and Displacement Kinetics of H2O and CO2 on TiO2(110). Abstract: The adsorption, desorption, and...

144

Ethylbenzene dehydrogenation into styrene: kinetic modeling and reactor simulation  

E-Print Network [OSTI]

detailed kinetic model for coke formation and gasification, which was coupled to the kinetic model for the main reactions. The calculation of the dynamic equilibrium coke content provided a crucial guideline for the selection of the steam to ethylbenzene...

Lee, Won Jae

2007-04-25T23:59:59.000Z

145

Worldwide Oil Production Michaelis-Menten Kinetics Correlation and Regression  

E-Print Network [OSTI]

Worldwide Oil Production Michaelis-Menten Kinetics Topic 4 Correlation and Regression Transformed Variables 1 / 13 #12;Worldwide Oil Production Michaelis-Menten Kinetics Outline Worldwide Oil Production Michaelis-Menten Kinetics Lineweaver-Burke double reciprocal plot 2 / 13 #12;Worldwide Oil Production

Watkins, Joseph C.

146

The Inverse Kinetics Method and PID Compensation of the  

E-Print Network [OSTI]

The Inverse Kinetics Method and PID Compensation of the Annular Core Research Reactor by Benjamin Kinetics Method and PID Compensation of the Annular Core Research Reactor by Benjamin Garnas ABSTRACT Kinetics Method and PID Compensation of the Annular Core Research Reactor by Benjamin Garnas B.S. General

147

E-Print Network 3.0 - approximate kinetic equations Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

equation. Reactor kinetics and Summary: equations, prompt jump approximation; subcritical reactor kinetics, circulating fuel reactor dynamics 5... solution to neutron...

148

Ion mediated crosslink driven mucous swelling kinetics  

E-Print Network [OSTI]

We present an experimentally guided, multi-phasic, multi-species ionic gel model to compare and make qualitative predictions on the rheology of mucus of healthy individuals (Wild Type) versus those infected with Cystic Fibrosis. The mixture theory consists of the mucus (polymer phase) and water (solvent phase) as well as several different ions: H+, Na+ and Ca++. The model is linearized to study the hydration of spherically symmetric mucus gels and calibrated against the experimental data of mucus diffusivities. Near equilibrium, the linearized form of the equation describing the radial size of the gel, reduces to the well-known expression used in the kinetic theory of swelling hydrogels. Numerical studies reveal that the Donnan potential is the dominating mechanism driving the mucus swelling/deswelling transition. However, the altered swelling kinetics of the Cystic Fibrosis infected mucus is not merely governed by the hydroelectric composition of the swelling media, but also due to the altered movement of el...

Sircar, S

2015-01-01T23:59:59.000Z

149

Kinetics of atoms in a bichromatic field  

SciTech Connect (OSTI)

The kinetics of atoms in a bichromatic field is considered. Analytic solutions are obtained for the force, friction coefficient, and diffusion coefficient in the model of a two-level atom without limitations imposed on the intensity of light fields. This effect is observed in the domain of global minima and maxima of the optical potential (i.e., at points where the relative phase of two standing waves is Greek-Phi-Symbol = 0, {pi}/2.

Prudnikov, O. N., E-mail: llf@laser.nsc.ru [Novosibirsk State University (Russian Federation); Baklanov, A. S. [Russian Academy of Sciences, Institute of Laser Physics, Siberian Branch (Russian Federation)] [Russian Academy of Sciences, Institute of Laser Physics, Siberian Branch (Russian Federation); Taichenachev, A. V. [Novosibirsk State University (Russian Federation)] [Novosibirsk State University (Russian Federation); Tumaikin, A. M. [Russian Academy of Sciences, Institute of Laser Physics, Siberian Branch (Russian Federation)] [Russian Academy of Sciences, Institute of Laser Physics, Siberian Branch (Russian Federation); Yudin, V. I. [Novosibirsk State University (Russian Federation)] [Novosibirsk State University (Russian Federation)

2013-08-15T23:59:59.000Z

150

Philips Color Kinetics | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color Kinetics Jump to: navigation, search Name:

151

Kinetic Energy Systems | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood, Michigan:Killingworth, Connecticut:105.Kinetic

152

Kinetic Energy LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach, Florida:Kenyon MunicipalKinetic Energy LLC

153

Inertial range turbulence in kinetic plasmas  

E-Print Network [OSTI]

The transfer of turbulent energy through an inertial range from the driving scale to dissipative scales in a kinetic plasma followed by the conversion of this energy into heat is a fundamental plasma physics process. A theoretical foundation for the study of this process is constructed, but the details of the kinetic cascade are not well understood. Several important properties are identified: (a) the conservation of a generalized energy by the cascade; (b) the need for collisions to increase entropy and realize irreversible plasma heating; and (c) the key role played by the entropy cascade--a dual cascade of energy to small scales in both physical and velocity space--to convert ultimately the turbulent energy into heat. A strategy for nonlinear numerical simulations of kinetic turbulence is outlined. Initial numerical results are consistent with the operation of the entropy cascade. Inertial range turbulence arises in a broad range of space and astrophysical plasmas and may play an important role in the thermalization of fusion energy in burning plasmas.

G. G. Howes

2007-11-27T23:59:59.000Z

154

Kinetics and morphology of erbium silicide formation  

SciTech Connect (OSTI)

The growth kinetics and surface morphology of erbium silicide formation from Er layers on Si(100) substrates are examined using both fast e-beam annealing and furnace annealing. Very smooth erbium silicide layers have been grown using a line-source e beam to heat and react the Er overlayers with the substrate. This contrasts to the severe pitting observed when Er layers are reacted with Si in conventional furnace annealing. The pitting phenomenon can be explained by a thin contaminant layer at the interface between Er and Si. Our results suggest the contamination barrier is not due to oxygen, as usually assumed, but may be related to the presence of carbon. Rapid e-beam heating to reaction temperatures of approx.1200 K permits dispersion of the barrier layer before substantial silicide growth can occur, allowing smooth silicide growth. Heating to shorter times to just disperse the interface barrier allows uniform layer growth by subsequent furnace annealing and has permitted measurement of the kinetics of erbium silicide formation on crystalline Si. The reaction obeys (time)/sup 1//sup ///sup 2/ kinetics but is shown to be not totally diffusion limited by the ability to sustain multiple interface growth from a single Si source. The growth rates are nearly an order of magnitude slower for the Er/Si(100) interface than for the Er/amorphous-Si, but with a similar activation energy near 1.75 eV in both cases.

Knapp, J.A.; Picraux, S.T.; Wu, C.S.; Lau, S.S.

1985-11-15T23:59:59.000Z

155

Isothermal kinetics of new Albany oil shale  

SciTech Connect (OSTI)

From the development of technologies for the utilization of eastern U.S. oil shales, fluidized bed pyrolysis technology is emerging as one of the most promising in terms of oil yield, operating cost, and capital investment. Bench-scale testing of eastern shales has reached a level where scale-up represents the next logical step in the evolution of this technology. A major consideration in this development and an essential part of any fluidized bed reactor scale-up effort--isothermal kinetics-- has largely been ignored for eastern US shale with the exception of a recent study conducted by Richardson et al. with a Cleveland shale. The method of Richardson et al. was used previously by Wallman et al. with western shale and has been used most recently by Forgac, also with western shale. This method, adopted for the present study, entails injecting a charge of shale into a fluidized bed and monitoring the hydrocarbon products with a flame ionization detector (FID). Advantages of this procedure are that fluidized bed heat-up effects are simulated exactly and real-time kinetics are obtained due to the on-line FID. Other isothermal methods have suffered from heat-up and cool-down effects making it impossible to observe the kinetics at realistic operating temperatures. A major drawback of the FID approach, however, is that no differentiation between oil and gas is possible.

Carter, S.D.

1987-04-01T23:59:59.000Z

156

Studies of combustion kinetics and mechanisms  

SciTech Connect (OSTI)

The objective of the current research is to gain new quantitative knowledge of the kinetics and mechanisms of polyatomic free radicals which are important in hydrocarbon combustion processes. The special facility designed and built for these (which includes a heatable tubular reactor coupled to a photoionization mass spectrometer) is continually being improved. Where possible, these experimental studies are coupled with theoretical ones, sometimes conducted in collaboration with others, to obtain an improved understanding of the factors determining reactivity. The decomposition of acetyl radicals, isopropyl radicals, and n-propyl radicals have been studied as well as the oxidation of methylpropargyl radicals.

Gutman, D. [Catholic Univ. of America, Washington, DC (United States)

1993-12-01T23:59:59.000Z

157

Benchmarks for the point kinetics equations  

SciTech Connect (OSTI)

A new numerical algorithm is presented for the solution to the point kinetics equations (PKEs), whose accurate solution has been sought for over 60 years. The method couples the simplest of finite difference methods, a backward Euler, with Richardsons extrapolation, also called an acceleration. From this coupling, a series of benchmarks have emerged. These include cases from the literature as well as several new ones. The novelty of this presentation lies in the breadth of reactivity insertions considered, covering both prescribed and feedback reactivities, and the extreme 8- to 9- digit accuracy achievable. The benchmarks presented are to provide guidance to those who wish to develop further numerical improvements. (authors)

Ganapol, B. [Department of Aerospace and Mechanical Engineering (United States); Picca, P. [Department of Systems and Industrial Engineering, University of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino Alma Mater Studiorum, Universita di Bologna (Italy)

2013-07-01T23:59:59.000Z

158

Direct Kinetic Measurements of a Criegee Intermediate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocation of Shewanella Oneidensis OuterDirect Kinetic

159

Direct Kinetic Measurements of a Criegee Intermediate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSCDiesel prices topDirect Kinetic

160

Direct Kinetic Measurements of a Criegee Intermediate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOfficeNERSCDiesel prices topDirect KineticDirect

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Kinetic Bounding Volume Hierarchies for Collision Detection of Deformable Objects  

E-Print Network [OSTI]

We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. Furthermore, we present a kinetic data structures which uses the kinetic AABB tree for collision detection and show that this structure can be easily extended for continuous collision detection of deformable objects. We performed a comparison of our kinetic approaches with the classical bottom-up update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios.

Gabriel Zachmann; Rene Weller

2006-01-01T23:59:59.000Z

162

3.205 Thermodynamics and Kinetics of Materials, Fall 2003  

E-Print Network [OSTI]

Laws of thermodynamics applied to materials and materials processes. Solution theory. Equilibrium diagrams. Overview of fluid transport processes. Kinetics of processes that occur in materials, including diffusion, phase ...

Allen, Samuel M.

163

average kinetic energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy by kinetic averaging Pierre-Emmanuel Jabin Ecole Normale Sup-Landau energy for two dimensional divergence free fields ap- pearing in the gradient theory of...

164

Geothermal: Sponsored by OSTI -- The solubility and kinetics...  

Office of Scientific and Technical Information (OSTI)

The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results Geothermal Technologies Legacy Collection HelpFAQ |...

165

Uranium and Strontium Batch Sorption and Diffusion Kinetics into...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Uranium and Strontium Batch Sorption and Diffusion Kinetics into Mesoporous Silica Friday, February 27, 2015 Figure 1 Figure 1. Transmission electron microscopy images of (A)...

166

A Comparison of HCCI Engine Performance Data and Kinetic Modeling...  

Broader source: Energy.gov (indexed) [DOE]

of HCCI Engine Performance Data and Kinetic Modeling Results over a Wide Range of Gasoline Range Surrogate Fuel Blends Bruce G. Bunting and Scott Eaton, Oak Ridge National...

167

Design and operating characteristics of a transient kinetic analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

catalysis reactor system employing in situ transmission Abstract: A novel apparatus for gas-phase heterogeneous catalysis kinetics is described. The apparatus enables fast...

168

Ion mediated crosslink driven mucous swelling kinetics  

E-Print Network [OSTI]

We present an experimentally guided, multi-phasic, multi-species ionic gel model to compare and make qualitative predictions on the rheology of mucus of healthy individuals (Wild Type) versus those infected with Cystic Fibrosis. The mixture theory consists of the mucus (polymer phase) and water (solvent phase) as well as several different ions: H+, Na+ and Ca++. The model is linearized to study the hydration of spherically symmetric mucus gels and calibrated against the experimental data of mucus diffusivities. Near equilibrium, the linearized form of the equation describing the radial size of the gel, reduces to the well-known expression used in the kinetic theory of swelling hydrogels. Numerical studies reveal that the Donnan potential is the dominating mechanism driving the mucus swelling/deswelling transition. However, the altered swelling kinetics of the Cystic Fibrosis infected mucus is not merely governed by the hydroelectric composition of the swelling media, but also due to the altered movement of electrolytes as well as due to the defective properties of the mucin polymer network.

S. Sircar; A. J. Roberts

2015-01-20T23:59:59.000Z

169

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

170

A Chemical Kinetic Model of Transcriptional Elongation  

E-Print Network [OSTI]

A chemical kinetic model of the elongation dynamics of RNA polymerase along a DNA sequence is introduced. The proposed model governs the discrete movement of the RNA polymerase along a DNA template, with no consideration given to elastic effects. The model's novel concept is a ``look-ahead'' feature, in which nucleotides bind reversibly to the DNA prior to being incorporated covalently into the nascent RNA chain. Results are presented for specific DNA sequences that have been used in single-molecule experiments of the random walk of RNA polymerase along DNA. By replicating the data analysis algorithm from the experimental procedure, the model produces velocity histograms, enabling direct comparison with these published results.

Yujiro Richard Yamada; Charles S. Peskin

2006-05-23T23:59:59.000Z

171

Kinetics of wet sodium vapor complex plasma  

SciTech Connect (OSTI)

In this paper, we have investigated the kinetics of wet (partially condensed) Sodium vapor, which comprises of electrons, ions, neutral atoms, and Sodium droplets (i) in thermal equilibrium and (ii) when irradiated by light. The formulation includes the balance of charge over the droplets, number balance of the plasma constituents, and energy balance of the electrons. In order to evaluate the droplet charge, a phenomenon for de-charging of the droplets, viz., evaporation of positive Sodium ions from the surface has been considered in addition to electron emission and electron/ion accretion. The analysis has been utilized to evaluate the steady state parameters of such complex plasmas (i) in thermal equilibrium and (ii) when irradiated; the results have been graphically illustrated. As a significant outcome irradiated, Sodium droplets are seen to acquire large positive potential, with consequent enhancement in the electron density.

Mishra, S. K., E-mail: nishfeb@rediffmail.com [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)] [Centre of Energy Studies, Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

2014-04-15T23:59:59.000Z

172

MEANKINETIC ENERGY,EDDY ENERGY,AND KINETIC ENERGYEXCHANGEBETWEENFLUCTUATIONSAND MEAN  

E-Print Network [OSTI]

MEANKINETIC ENERGY,EDDY ENERGY,AND KINETIC ENERGYEXCHANGEBETWEENFLUCTUATIONSAND MEAN FLOWWITHIN by cornputing three quantities suggested by the theory of turbulence: the nean kinetic energy, the eddy energy, and the energy exchange between the nean and fluctuating portions of the flow field (ca11ed dE/dt). Contours

Luther, Douglas S.

173

Kinetics and Modeling of Reductive Dechlorination at High PCE  

E-Print Network [OSTI]

Kinetics and Modeling of Reductive Dechlorination at High PCE and TCE Concentrations Seungho Yu for anaerobic reductive dechlorination of tetrachloroethylene (PCE) and trichloroethylene (TCE) were developed. The models were compared with results from batch kinetic tests conducted over a wide range of PCE and TCE

Semprini, Lewis

174

Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets  

E-Print Network [OSTI]

Kinetic Modeling of Non-thermal Escape: Planets and Exoplanets Valery I. Shematovich Institute of Astronomy, Russian Academy of Sciences Modeling Atmospheric Escape Workshop - Spring 2012 University are populated by the atoms and molecules with both thermal and suprathermal kinetic energies (Johnson et al

Johnson, Robert E.

175

Drift-/ Kinetic Alfven Eigenmodes in High Performance Tokamak Plasmas  

E-Print Network [OSTI]

Stockholm, Sweden 2) Plasma Science Fusion Centre, MIT, Cambridge MA 02139, USA 3) CRPP-EPFL, 1015 Lausanne to the kinetic Alfv´en wave. This stimulated the development of models such as continuum damping, complex-kinetic description for the bulk plasma. Such a model is required to calculate the power transfer between global fluid

Jaun, André

176

Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal 1  

E-Print Network [OSTI]

Parametric and Kinetic Minimum Spanning Trees Pankaj K. Agarwal 1 David Eppstein 2 Leonidas J. Guibas 3 Monika R. Henzinger 4 Abstract We consider the parametric minimum spanning tree problem- pute the sequence of minimum spanning trees generated as varies. We also consider the kinetic minimum

Eppstein, David

177

Rotational and divergent kinetic energy in the mesoscale model ALADIN  

E-Print Network [OSTI]

energy, divergent energy, ALADIN, limited-area modelling 1. Introduction Horizontal divergenceRotational and divergent kinetic energy in the mesoscale model ALADIN By V. BLAZ ICA1 *, N. Z AGAR1 received 7 June 2012; in final form 7 March 2013) ABSTRACT Kinetic energy spectra from the mesoscale

Zagar, Nedjeljka

178

Detailed chemical kinetic oxidation mechanism for a biodiesel Olivier Herbineta  

E-Print Network [OSTI]

Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate Olivier Herbineta , William of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from

Paris-Sud XI, Université de

179

An action with positive kinetic energy term for general relativity  

E-Print Network [OSTI]

At first, we state some results in arXiv: 0707.2639, and then, using a positive kinetic energy coordinate condition given by arXiv: 0707.2639, we present an action with positive kinetic energy term for general relativity. Based on this action, the corresponding theory of canonical quantization is discussed.

T. Mei

2007-11-02T23:59:59.000Z

180

Kinetics of coal pyrolysis and devolatilization  

SciTech Connect (OSTI)

An experimentally based, conceptual model of the devolatilization of a HV bituminous coal is outlined in this report. This model contends that the relative dominance of a process type-chemical kinetic, heat transport, mass transport -- varies with the extent of reaction for a given set of heating conditions and coal type and with experimental conditions for a given coal type and extent of reaction. The rate of devolatilization mass loss process is dominated initially by heat transfer processes, then coupled mass transfer and chemical kinetics, and finally by chemical processes alone. However, the chemical composition of the initial tars are determined primarily by the chemical characteristics of the parent coal. Chemically controlled gas phase reactions of the initial tars and coupled mass transfer and chemically controlled reactions of heavy tars determine the bulk of the light gas yields. For a HV bituminous coal this conceptual model serves to quantify the Two-Component Hypothesis'' of volatiles evolution. The model postulates that the overall rates of coal devolatilization should vary with coal type insofar as the characteristics of the parent coal determine the potential tar yield and the chemical characteristics of the initial tars. Experimental evidence indicates chemical characteristics and yields of primary'' tars vary significantly with coal type. Consequently, the conceptual model would indicate a shift from transport to chemical dominance of rate processes with variation in coal type. Using the conceptual model, United Technologies Research Center has been able to correlate initial mass loss with a heat transfer index for a wide range of conditions for high tar yielding coals. 33 refs., 30 figs., 6 tabs.

Not Available

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A Kinetic Theory Approach to Quantum Gravity  

E-Print Network [OSTI]

We describe a kinetic theory approach to quantum gravity -- by which we mean a theory of the microscopic structure of spacetime, not a theory obtained by quantizing general relativity. A figurative conception of this program is like building a ladder with two knotted poles: quantum matter field on the right and spacetime on the left. Each rung connecting the corresponding knots represent a distinct level of structure. The lowest rung is hydrodynamics and general relativity; the next rung is semiclassical gravity, with the expectation value of quantum fields acting as source in the semiclassical Einstein equation. We recall how ideas from the statistical mechanics of interacting quantum fields helped us identify the existence of noise in the matter field and its effect on metric fluctuations, leading to the establishment of the third rung: stochastic gravity, described by the Einstein-Langevin equation. Our pathway from stochastic to quantum gravity is via the correlation hierarchy of noise and induced metric fluctuations. Three essential tasks beckon: 1) Deduce the correlations of metric fluctuations from correlation noise in the matter field; 2) Reconstituting quantum coherence -- this is the reverse of decoherence -- from these correlation functions 3) Use the Boltzmann-Langevin equations to identify distinct collective variables depicting recognizable metastable structures in the kinetic and hydrodynamic regimes of quantum matter fields and how they demand of their corresponding spacetime counterparts. This will give us a hierarchy of generalized stochastic equations -- call them the Boltzmann-Einstein hierarchy of quantum gravity -- for each level of spacetime structure, from the macroscopic (general relativity) through the mesoscopic (stochastic gravity) to the microscopic (quantum gravity).

B. L. Hu

2002-04-22T23:59:59.000Z

182

Negative kinetic energy term of general relativity and its removing  

E-Print Network [OSTI]

We first present a new Lagrangian of general relativity, which can be divided into kinetic energy term and potential energy term. Taking advantage of vierbein formalism, we reduce the kinetic energy term to a sum of five positive terms and one negative term. Some gauge conditions removing the negative kinetic energy term are discussed. Finally, we present a Lagrangian that only include positive kinetic energy terms. To remove the negative kinetic energy term leads to a new field equation of general relativity in which there are at least five equations of constraint and at most five dynamical equations, this characteristic is different from the normal Einstein field equation in which there are four equations of constraint and six dynamical equations.

T. Mei

2009-03-30T23:59:59.000Z

183

E-Print Network 3.0 - accelerated search kinetics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dependence of the elongation kinetics. Marked acceleration... to the slowing of protein folding kinetics by other denaturants (28) and the acceleration of folding by TFE (26......

184

HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT  

SciTech Connect (OSTI)

As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction mechanism for the NBFZ tests.

Stefano Orsino

2005-03-30T23:59:59.000Z

185

Kinetics of the reactions of hydrogen fluoride with calcium oxide  

SciTech Connect (OSTI)

This paper studies the kinetics of interaction of gaseous hydrogen fluoride with calcium oxide at temperatures 300-700 degrees. The experiments were conducted in a laboratory adsorption apparatus modified and adapted for work with corrosive hydrogen fluoride. Calcium oxide samples in granulated form and deposited on gamma-alumina were used in the experiments. Kinetic curves representing variations of the degree of conversion of the solid samples with time are shown. The influence of retardation dure to diffusion was observed in the experiments. The influence of diffusion control on the reaction rate was also observed in a study of the reaction kinetics on supported layers of calcium oxide.

Kossaya, A.M.; Belyakov, B.P.; Kuchma, Z.V.; Sandrozd, M.K.; Vasil'eva, V.G.

1986-08-01T23:59:59.000Z

186

Evidence of critical balance in kinetic Alfven wave turbulence simulations  

SciTech Connect (OSTI)

A numerical simulation of kinetic plasma turbulence is performed to assess the applicability of critical balance to kinetic, dissipation scale turbulence. The analysis is performed in the frequency domain to obviate complications inherent in performing a local analysis of turbulence. A theoretical model of dissipation scale critical balance is constructed and compared to simulation results, and excellent agreement is found. This result constitutes the first evidence of critical balance in a kinetic turbulence simulation and provides evidence of an anisotropic turbulence cascade extending into the dissipation range. We also perform an Eulerian frequency analysis of the simulation data and compare it to the results of a previous study of magnetohydrodynamic turbulence simulations.

TenBarge, J. M.; Howes, G. G. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

2012-05-15T23:59:59.000Z

187

Kinetics of methanation on nickel catalysts  

SciTech Connect (OSTI)

Extensive steady-state and transient measurements of the disproportionation of carbon monoxide, the hydrogenation of deposited carbon, and methanation of carbon monoxide were performed over 2 and 10% nickel on silica support. The results indicated that the methanation of carbon monoxide involves competitively adsorbed species; that the reaction is nearly zero order in carbon monoxide at 0.1-0.5 atm CO and 1 atm H/sub 2/, but negative at higher CO partial pressures and that it becomes less negative with increasing temperature or increasing hydrogen pressure; and that the reaction order with respect to hydrogen changes from 0.5 to 1.0 with increasing CO pressure and decreasing H/sub 2/ pressure. A reaction mechanism is proposed which consists of the molecular adsorption of CO, the dissociative adsorption of H/sub 2/, dissociation of the surface CO species, and reaction of two adsorbed hydrogen atoms with the oxygen; and a multistep hydrogenation and desorption process for the adsorbed carbon. The dissociation and reaction of adsorbed CO is probably the rate-limiting step. The kinetic behavior is best represented with the assumption of a heterogeneous catalyst surface, containing three types of sites of widely varying activity.

Ho, S.V.; Harriott, P.

1980-08-01T23:59:59.000Z

188

Simulating galactic outflows with kinetic supernova feedback  

E-Print Network [OSTI]

Feedback from star formation is thought to play a key role in the formation and evolution of galaxies, but its implementation in cosmological simulations is currently hampered by a lack of numerical resolution. We present and test a sub-grid recipe to model feedback from massive stars in cosmological smoothed particle hydrodynamics simulations. The energy is distributed in kinetic form among the gas particles surrounding recently formed stars. The impact of the feedback is studied using a suite of high-resolution simulations of isolated disc galaxies embedded in dark halos with total mass 10^{10} and 10^{12} Msol/h. We focus in particular on the effect of pressure forces on wind particles within the disc, which we turn off temporarily in some of our runs to mimic a recipe that has been widely used in the literature. We find that this popular recipe gives dramatically different results because (ram) pressure forces on expanding superbubbles determine both the structure of the disc and the development of large-scale outflows. Pressure forces exerted by expanding superbubbles puff up the disc, giving the dwarf galaxy an irregular morphology and creating a galactic fountain in the massive galaxy. Hydrodynamic drag within the disc results in a strong increase of the effective mass loading of the wind for the dwarf galaxy, but quenches much of the outflow in the case of the high-mass galaxy.

Claudio Dalla Vecchia; Joop Schaye

2008-05-07T23:59:59.000Z

189

BE.420J Biomolecular Kinetics and Cellular Dynamics, Fall 2004  

E-Print Network [OSTI]

This subject deals primarily with kinetic and equilibrium mathematical models of biomolecular interactions, as well as the application of these quantitative analyses to biological problems across a wide range of levels of ...

Wittrup, K. Dane

190

Phase IV Simulant Testing of Monosodium Titanate Adsorption Kinetics  

SciTech Connect (OSTI)

The Salt Disposition Systems Engineering Team identified the adsorption kinetics of actinides and strontium onto monosodium titanate (MST) as a technical risk in several of the processing alternatives selected for additional evaluation in Phase III of their effort.

Hobbs, D.T.

1999-09-29T23:59:59.000Z

191

Nonphotochemical hole burning and dispersive kinetics in amorphous solids.  

E-Print Network [OSTI]

??Results of an extensive study, covering burn intensities in the nW to {dollar}?{dollar}W/cm{dollar}2{dollar} range, of dispersive hole growth kinetics are reported for Oxazine 720 in… (more)

Kenney, Michael Joseph

1990-01-01T23:59:59.000Z

192

A Study and Comparison of SCR Reaction Kinetics from Reactor...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Data A Study and Comparison of SCR Reaction Kinetics from Reactor and Engine Experimental Data Presents experimental study of a Cu-zeolite SCR in both reactor and engine test cell,...

193

atom kinetic energy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

.self-consistent Thomas Fermi TF atom discussed w Kais, Sabre 3 Towards an exact orbital-free single-particle kinetic energy density for the inhomogeneous electron liquid in the...

194

Kinetic energy error in the NIMROD spheromak simulations Carl Sovinec  

E-Print Network [OSTI]

Kinetic energy error in the NIMROD spheromak simulations Carl Sovinec 10/25/00 Dmitri Ryutov at the ends (as in the spheromak simulations), it may lead to compression in a boundary layer.] The maximum

Sovinec, Carl

195

Mechanistic kinetic modeling of the hydrocracking of complex feedstocks  

E-Print Network [OSTI]

Two separate mechanistic kinetic models have been developed for the hydrocracking of complex feedstocks. The first model is targeted for the hydrocracking of vacuum gas oil. The second one addresses specifically the hydrocracking of long...

Kumar, Hans

2009-05-15T23:59:59.000Z

196

RIS-M-2216 CHEMICAL KINETICS IN THE GAS PHASE  

E-Print Network [OSTI]

KINETICS, EXPERIMENTAL DATA, GASES, HYDROGEN SULFIDES, PULSED IRRADIATION, RADIATION CHEMISTRY, RADIOLYSIS is subjected to high energy radiation (e.g. a- particles, Y-radiation or fast electrons), the primary products

197

Topobo : a 3-D constructive assembly system with kinetic memory  

E-Print Network [OSTI]

We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

Raffle, Hayes Solos, 1974-

2004-01-01T23:59:59.000Z

198

Topobo : a gestural design tool with kinetic memory  

E-Print Network [OSTI]

The modeling of kinetic systems, both in physical materials and virtual simulations, provides a methodology to better understand and explore the forces and dynamics of our physical environment. The need to experiment, ...

Parkes, Amanda Jane

2004-01-01T23:59:59.000Z

199

Fully kinetic modeling of a divergent cusped-field thruster  

E-Print Network [OSTI]

A fully kinetic, particle-in-cell plasma simulation tool has been incrementally developed by members of the Massachusetts Institute of Technology Space Propulsion Laboratory. Adapting this model to simulate the performance ...

Gildea, Stephen Robert

2009-01-01T23:59:59.000Z

200

Kinetic studies of isoprene reactions with hydroxyl and chlorine radicals  

E-Print Network [OSTI]

Kinetic studies of the isoprene oxidation reactions initiated by the hydroxyl radical OH and the chlorine atom Cl have been investigated using a fast-flow reactor in conjunction with chemical ionization mass spectrometry (CIMS) and using laser...

Suh, Inseon

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

astrophysical systems kinetic: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermonuclear Kinetics in Astrophysics CERN Preprints Summary: Over the billions of years since...

202

Ducted kinetic Alfven waves in plasma with steep density gradients  

SciTech Connect (OSTI)

Given their high plasma density (n {approx} 10{sup 13} cm{sup -3}), it is theoretically possible to excite Alfven waves in a conventional, moderate length (L {approx} 2 m) helicon plasma source. However, helicon plasmas are decidedly inhomogeneous, having a steep radial density gradient, and typically have a significant background neutral pressure. The inhomogeneity introduces regions of kinetic and inertial Alfven wave propagation. Ion-neutral and electron-neutral collisions alter the Alfven wave dispersion characteristics. Here, we present the measurements of propagating kinetic Alfven waves in helium helicon plasma. The measured wave dispersion is well fit with a kinetic model that includes the effects of ion-neutral damping and that assumes the high density plasma core defines the radial extent of the wave propagation region. The measured wave amplitude versus plasma radius is consistent with the pile up of wave magnetic energy at the boundary between the kinetic and inertial regime regions.

Houshmandyar, Saeid [Solar Observatory Department, Prairie View A and M University, Prairie View, Texas 77446 (United States); Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Scime, Earl E. [Department of Physics, West Virginia University, Morgantown, West Virginia 26506-6315 (United States)

2011-11-15T23:59:59.000Z

203

Intercalation Kinetics and Ion Mobility in Electrode Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

es093daniel2011o.pdf More Documents & Publications Coupled Kinetic, Thermal, and Mechanical Modeling of FIB Micro-machined Electrodes In-Situ Electron Microscopy of Electrical...

204

Kinetic and Performance Studies of the Regeneration Phase of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies of the Regeneration Phase of Model PtRhBa NOx Traps for Design and Optimization Kinetic and Performance Studies of the Regeneration Phase of Model PtRhBa NOx...

205

Kinetic modeling and automated optimization in microreactor systems  

E-Print Network [OSTI]

The optimization, kinetic investigation, or scale-up of a reaction often requires significant time and materials. Silicon microreactor systems have been shown advantageous for studying chemical reactions due to their small ...

Moore, Jason Stuart

2013-01-01T23:59:59.000Z

206

Nonlinear Adaptive Control for Bioreactors with Unknown Kinetics  

E-Print Network [OSTI]

, unknown kinetics, wastewater treatment. 1 Introduction Biological processes have become widely used on a real life wastewater treatment plant. Key words: Nonlinear adaptive control, continuous bioprocesses a pollutant (wastewater treatment...). There- fore, bioreactors require advanced regulation procedures

Bernard, Olivier

207

A unified theory on electro-kinetic extraction of contaminants  

E-Print Network [OSTI]

of contaminants from fine-grained soils. Here, the experimental and the theoretical studies conducted to date are reviewed briefly 2. 3. 1. Experimental Studies The technique of electro-kinetic extraction of salts from alkaline soils was investigated by Puri...A VNIFIED THEORY ON ELECTRO-KINETIC EXTRACTION OF CONTAMINANTS A Thesis by SUBBARAJU DATLA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

Datla, Subbaraju

1994-01-01T23:59:59.000Z

208

Kinetics of Mercury(II) Adsorption and Desorption on Soil  

E-Print Network [OSTI]

Kinetics of Mercury(II) Adsorption and Desorption on Soil Y U J U N Y I N , H E R B E R T E . A L L of Delaware, Newark, Delaware 19716 D O N A L D L . S P A R K S Department of Plant and Soil Sciences kinetics of Hg(II) on four soils at pH 6 were investigated to discern the mechanisms controlling

Sparks, Donald L.

209

Consistent description of kinetics and hydrodynamics of dusty plasma  

SciTech Connect (OSTI)

A consistent statistical description of kinetics and hydrodynamics of dusty plasma is proposed based on the Zubarev nonequilibrium statistical operator method. For the case of partial dynamics, the nonequilibrium statistical operator and the generalized transport equations for a consistent description of kinetics of dust particles and hydrodynamics of electrons, ions, and neutral atoms are obtained. In the approximation of weakly nonequilibrium process, a spectrum of collective excitations of dusty plasma is investigated in the hydrodynamic limit.

Markiv, B. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine)] [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); Tokarchuk, M. [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine) [Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii St., 79011 Lviv (Ukraine); National University “Lviv Polytechnic,” 12 Bandera St., 79013 Lviv (Ukraine)

2014-02-15T23:59:59.000Z

210

HCCI in a CFR engine: experiments and detailed kinetic modeling  

SciTech Connect (OSTI)

Single cylinder engine experiments and chemical kinetic modeling have been performed to study the effect of variations in fuel, equivalence ratio, and intake charge temperature on the start of combustion and the heat release rate. Neat propane and a fuel blend of 15% dimethyl-ether in methane have been studied. The results demonstrate the role of these parameters on the start of combustion, efficiency, imep, and emissions. Single zone kinetic modeling results show the trends consistent with the experimental results.

Flowers, D; Aceves, S; Smith, R; Torres, J; Girard, J; Dibble, R

1999-11-05T23:59:59.000Z

211

OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION  

SciTech Connect (OSTI)

The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.

Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

2013-09-30T23:59:59.000Z

212

Theory of semicollisional kinetic Alfven modes in sheared magnetic fields  

SciTech Connect (OSTI)

The spectra of the semicollisional kinetic Alfven modes in a sheared slab geometry are investigated, including the effects of finite ion Larmor radius and diamagnetic drift frequencies. The eigenfrequencies of the damped modes are derived analytically via asymptotic analyses. In particular, as one reduces the resistivity, we find that, due to finite ion Larmor radius effects, the damped mode frequencies asymptotically approach finite real values corresponding to the end points of the kinetic Alfven continuum.

Hahm, T.S.; Chen, L.

1985-02-01T23:59:59.000Z

213

Mineral dissolution kinetics at the pore scale  

SciTech Connect (OSTI)

Mineral dissolution rates in the field have been reported to be orders of magnitude slower than those measured in the laboratory, an unresolved discrepancy that severely limits our ability to develop scientifically defensible predictive or even interpretive models for many geochemical processes in the earth and environmental sciences. One suggestion links this discrepancy to the role of physical and chemical heterogeneities typically found in subsurface soils and aquifers in producing scale-dependent rates where concentration gradients develop. In this paper, we examine the possibility that scale-dependent mineral dissolution rates can develop even at the single pore and fracture scale, the smallest and most fundamental building block of porous media. To do so, we develop two models to analyze mineral dissolution kinetics at the single pore scale: (1) a Poiseuille Flow model that applies laboratory-measured dissolution kinetics at the pore or fracture wall and couples this to a rigorous treatment of both advective and diffusive transport, and (2) a Well-Mixed Reactor model that assumes complete mixing within the pore, while maintaining the same reactive surface area, average flow rate, and geometry as the Poiseuille Flow model. For a fracture, a 1D Plug Flow Reactor model is considered in addition to quantify the effects of longitudinal versus transverse mixing. The comparison of averaged dissolution rates under various conditions of flow, pore size, and fracture length from the three models is used as a means to quantify the extent to which concentration gradients at the single pore and fracture scale can develop and render rates scale-dependent. Three important minerals that dissolve at widely different rates, calcite, plagioclase, and iron hydroxide, are considered. The modeling indicates that rate discrepancies arise primarily where concentration gradients develop due to comparable rates of reaction and advective transport, and incomplete mixing via molecular diffusion. The magnitude of the reaction rate is important, since it is found that scaling effects (and thus rate discrepancies) are negligible at the single pore and fracture scale for plagioclase and iron hydroxide because of the slow rate at which they dissolve. In the case of calcite, where dissolution rates are rapid, scaling effects can develop at high flow rates from 0.1 cm/s to 1000 cm/s and for fracture lengths less than 1 cm. At more normal flow rates, however, mixing via molecular diffusion is effective in homogenizing the concentration field, thus eliminating any discrepancies between the Poiseuille Flow and the Well-Mixed Reactor model. This suggests that a scale dependence to mineral dissolution rates is unlikely at the single pore or fracture scale under normal geological/hydrologic conditions, implying that the discrepancy between laboratory and field rates must be attributed to other factors.

Li, L.; Steefel, C.I.; Yang, L.

2007-05-24T23:59:59.000Z

214

Neptunium_Oxide_Precipitation_Kinetics_AJohnsen  

SciTech Connect (OSTI)

We evaluate the proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation system at elevated temperatures to obtain primary information on the effects of temperature, ionic strength, O{sub 2} and CO{sub 2}. Experiments conducted on unfiltered solutions at 10{sup -4} M NpO{sub 2}{sup +}(aq), neutral pH, and 200 C indicated that solution colloids strongly affect precipitation kinetics. Subsequent experiments on filtered solutions at 200, 212, and 225 C showed consistent and distinctive temperature-dependent behavior at reaction times {le} 800 hours. At longer times, the 200 C experiments showed unexpected dissolution of neptunium solids, but experiments at 212 C and 225 C demonstrated quasi steady-state neptunium concentrations of 3 x 10{sup -6} M and 6 x 10{sup -6} M, respectively. Solids from a representative experiment analyzed by X-ray diffraction were consistent with NpO{sub 2}(cr). A 200 C experiment with a NaCl concentration of 0.05 M showed a dramatic increase in the rate of neptunium loss. A 200 C experiment in an argon atmosphere resulted in nearly complete loss of aqueous neptunium. Previously proposed NpO{sub 2}{sup +}(aq)-NpO{sub 2}(cr) reduction-precipitation mechanisms in the literature specified a 1:1 ratio of neptunium loss and H{sup +} production in solution over time. However, all experiments demonstrated ratios of approximately 0.4 to 0.5. Carbonate equilibria can account for only about 40% of this discrepancy, leaving an unexpected deficit in H+ production that suggests that additional chemical processes are occurring.

Johnsen, A M; Roberts, K E; Prussin, S G

2012-06-08T23:59:59.000Z

215

POLARIZATION AND COMPRESSIBILITY OF OBLIQUE KINETIC ALFVEN WAVES  

SciTech Connect (OSTI)

It is well known that a complete description of the solar wind requires a kinetic description and that, particularly at sub-proton scales, kinetic effects cannot be ignored. It is nevertheless usually assumed that at scales significantly larger than the proton gyroscale r{sub L} , magnetohydrodynamics or its extensions, such as Hall-MHD and two-fluid models with isotropic pressures, provide a satisfactory description of the solar wind. Here we calculate the polarization and magnetic compressibility of oblique kinetic Alfven waves and show that, compared with linear kinetic theory, the isotropic two-fluid description is very compressible, with the largest discrepancy occurring at scales larger than the proton gyroscale. In contrast, introducing anisotropic pressure fluctuations with the usual double-adiabatic (or CGL) equations of state yields compressibility values which are unrealistically low. We also show that both of these classes of fluid models incorrectly describe the electric field polarization. To incorporate linear kinetic effects, we use two versions of the Landau fluid model that include linear Landau damping and finite Larmor radius (FLR) corrections. We show that Landau damping is crucial for correct modeling of magnetic compressibility, and that the anisotropy of pressure fluctuations should not be introduced without taking into account the Landau damping through appropriate heat flux equations. We also show that FLR corrections to all the retained fluid moments appear to be necessary to yield the correct polarization. We conclude that kinetic effects cannot be ignored even for kr{sub L} << 1.

Hunana, P.; Goldstein, M. L. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)] [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Passot, T.; Sulem, P. L.; Laveder, D. [Laboratoire J. L. Lagrange, Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France)] [Laboratoire J. L. Lagrange, Universite de Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, BP 4229, F-06304 Nice Cedex 4 (France); Zank, G. P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)] [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States)

2013-04-01T23:59:59.000Z

216

Peptide concentration alters intermediate species in amyloid ? fibrillation kinetics  

SciTech Connect (OSTI)

Highlights: ? A?(1–40) aggregation in vitro has been monitored at different concentrations. ? A?(1–40) fibrillation does not always follow conventional kinetic mechanisms. ? We demonstrate non-linear features in the kinetics of A?(1–40) fibril formation. ? At high A?(1–40) concentrations secondary processes dictate fibrillation speed. ? Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid ? (A?) (1–40) peptide aggregation. Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor A?(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. A?(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.

Garvey, M., E-mail: megan.garvey@molbiotech.rwth-aachen.de [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany); Morgado, I., E-mail: immorgado@ualg.pt [Max-Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, 06120 Halle (Saale) (Germany)

2013-04-12T23:59:59.000Z

217

E-Print Network 3.0 - ash kinetics mechanism Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Some of these ash particles may contribute to surface sealing if rainfall kinetic energy is sufficient... ......

218

Phrases of the Kinetic: Dynamic Physicality as a Dimension of the Design Process  

E-Print Network [OSTI]

construction and dynamics physics education with children; Kinetic Sketchup, a system for motion construction

Ishii, Hiroshi

219

Polymerization and Bundling Kinetics of FtsZ Filaments Ganhui Lan,* Alex Dajkovic,y  

E-Print Network [OSTI]

Polymerization and Bundling Kinetics of FtsZ Filaments Ganhui Lan,* Alex Dajkovic,y Denis Wirtz a kinetic model that describes the polymerization and bundling mechanism of FtsZ filaments. The model polymerization kinetics data of another researcher, and explains the cooperativity observed in FtsZ kinetics

Sun, Sean

220

Phase-field Model for Interstitial Loop Growth Kinetics and Thermodynamic and Kinetic Models of Irradiated Fe-Cr Alloys  

SciTech Connect (OSTI)

Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubble evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.

Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Khaleel, Mohammad A.

2011-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The Impact of Alternative Fuels on Combustion Kinetics  

SciTech Connect (OSTI)

The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and selection of desirable F-T molecules for use in jet engine simulations, where we should be able to predict the ignition, combustion and emissions characteristics of proposed fuel components. These mechanisms include the reactions and chemical species needed to describe high temperature phenomena such as shock tube ignition and flammability behavior, and they will also include low temperature kinetics to describe other ignition phenomena such as compression ignition and knocking. During the past years, our hydrocarbon kinetics modeling group at LLNL has focused a great deal on fuels typical of gasoline and diesel fuel. About 10 years ago, we developed kinetic models for the fuel octane primary reference fuels, n-heptane [1] and iso-octane [2], which have 7 and 8 carbon atoms and are therefore representative of typical gasoline fuels. N-heptane represents the low limit of knock resistance with an octane number of 0, while iso-octane is very knock resistant with an octane number of 100. High knock resistance in iso-octane was attributed largely to the large fraction of primary C-H bonds in the molecule, including 15 of the 18 C-H bonds, and the high bond energy of these primary bonds plays a large role in this knock resistance. In contrast, in the much more ignitable n-heptane, 10 of its 16 C-H bonds are much less strongly bound secondary C-H bonds, leading to its very low octane number. All of these factors, as well as a similarly complex kinetic description of the equally important role of the transition state rings that transfer H atoms within the reacting fuel molecules, were quantified and collected into large kinetic reaction mechanisms that are used by many researchers in the fuel chemistry world.

Pitz, W J; Westbrook, C K

2009-07-30T23:59:59.000Z

222

Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems  

SciTech Connect (OSTI)

Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

Westbrook, C.K.

2000-07-07T23:59:59.000Z

223

Kinetics of in situ combustion. SUPRI TR 91  

SciTech Connect (OSTI)

Oxidation kinetic experiments with various crude oil types show two reaction peaks at about 250{degree}C (482{degree}F) and 400{degree}C (725{degree}F). These experiments lead to the conclusion that the fuel during high temperature oxidation is an oxygenated hydrocarbon. A new oxidation reaction model has been developed which includes two partially-overlapping reactions: namely, low-temperature oxidation followed by high-temperature oxidation. For the fuel oxidation reaction, the new model includes the effects of sand grain size and the atomic hydrogen-carbon (H/C) and oxygen-carbon (O/C) ratios of the fuel. Results based on the new model are in good agreement with the experimental data. Methods have been developed to calculate the atomic H/C and O/C ratios. These methods consider the oxygen in the oxygenated fuel, and enable a direct comparison of the atomic H/C ratios obtained from kinetic and combustion tube experiments. The finding that the fuel in kinetic tube experiments is an oxygenated hydrocarbon indicates that oxidation reactions are different in kinetic and combustion tube experiments. A new experimental technique or method of analysis will be required to obtain kinetic parameters for oxidation reactions encountered in combustion tube experiments and field operations.

Mamora, D.D.; Ramey, H.J. Jr.; Brigham, W.E.; Castanier, L.M.

1993-07-01T23:59:59.000Z

224

Gravitationally Induced Particle Production: Thermodynamics and Kinetic Theory  

E-Print Network [OSTI]

A relativistic kinetic description for the irreversible thermodynamic process of gravitationally induced particle production is proposed in the context of an expanding Friedmann-Robertson-Walker (FRW) geometry. We show that the covariant thermodynamic treatment referred to as "adiabatic" particle production provoked by the cosmic time-varying gravitational field has a consistent kinetic counterpart. The variation of the distribution function is associated to a non-collisional kinetic term of quantum-gravitational origin which is proportional to the ratio $\\Gamma/H$, where $\\Gamma$ is the gravitational particle production rate and H is the Hubble parameter. For $\\Gamma gravitation. The resulting non-equilibrium distribution function has the same functional form of equilibrium with the evolution laws corrected by the particle production process. The macroscopic temperature evolution law is also kinetically derived for massive and massless particles. The present approach points to the possibility of an exact (semi-classical) quantum-gravitational kinetic treatment by incorporating back-reaction effects in the cosmic background.

J. A. S. Lima; I. P. Baranov

2014-11-24T23:59:59.000Z

225

Kinetic Alfvén wave turbulence and formation of localized structures  

SciTech Connect (OSTI)

This work presents non-linear interaction of magnetosonic wave with kinetic Alfvén wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvén wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvén wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

Sharma, R. P. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India)] [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Modi, K. V. [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India) [Centre for Energy Studies, Indian Institute of Technology Delhi, Delhi 110016 (India); Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001 (India)

2013-08-15T23:59:59.000Z

226

Chemical Kinetic Models for HCCI and Diesel Combustion  

SciTech Connect (OSTI)

Predictive engine simulation models are needed to make rapid progress towards DOE's goals of increasing combustion engine efficiency and reducing pollutant emissions. These engine simulation models require chemical kinetic submodels to allow the prediction of the effect of fuel composition on engine performance and emissions. Chemical kinetic models for conventional and next-generation transportation fuels need to be developed so that engine simulation tools can predict fuel effects. The objectives are to: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbrook, C K; Mehl, M; Sarathy, S M

2010-11-15T23:59:59.000Z

227

Kinetics of high-conversion hydrocracking of bitumen  

SciTech Connect (OSTI)

Residues are complex mixtures of thousands of components. This mixture will change during hydrocracking, so that high conversion may result in a residue material with different characteristics from the starting material. Our objective is to determine the kinetics of residue conversion and yields of distillates at high conversions, and to relate these observations to the underlying chemical reactions. Athabasca bitumen was reacted in a 1-L CSTR in a multipass operation. Product from the first pass was collected, then run through the reactor again and so on, giving kinetic data under conditions that simulated a multi-reactor or packed-bed operation. Experiments were run both with hydrocracking catalyst and without added catalyst. Products were analyzed by distillation, elemental analysis, NMR, and GPC. These data will be used to derive a kinetic model for hydrocracking of bitumen residue covering a wide range of conversion (from 30% to 95%+), based on the underlying chemistry.

Nagaishi, H.; Gray, M.R. [Univ. of Alberta, Edmonton (Canada); Chan, E.W.; Sanford, E.C. [Syncrude Canada, Edmonton, Alberta (Canada)

1995-12-31T23:59:59.000Z

228

Benchmarking kinetic calculations of resistive wall mode stability  

SciTech Connect (OSTI)

Validating the calculations of kinetic resistive wall mode (RWM) stability is important for confidently predicting RWM stable operating regions in ITER and other high performance tokamaks for disruption avoidance. Benchmarking the calculations of the Magnetohydrodynamic Resistive Spectrum—Kinetic (MARS-K) [Y. Liu et al., Phys. Plasmas 15, 112503 (2008)], Modification to Ideal Stability by Kinetic effects (MISK) [B. Hu et al., Phys. Plasmas 12, 057301 (2005)], and Perturbed Equilibrium Nonambipolar Transport (PENT) [N. Logan et al., Phys. Plasmas 20, 122507 (2013)] codes for two Solov'ev analytical equilibria and a projected ITER equilibrium has demonstrated good agreement between the codes. The important particle frequencies, the frequency resonance energy integral in which they are used, the marginally stable eigenfunctions, perturbed Lagrangians, and fluid growth rates are all generally consistent between the codes. The most important kinetic effect at low rotation is the resonance between the mode rotation and the trapped thermal particle's precession drift, and MARS-K, MISK, and PENT show good agreement in this term. The different ways the rational surface contribution was treated historically in the codes is identified as a source of disagreement in the bounce and transit resonance terms at higher plasma rotation. Calculations from all of the codes support the present understanding that RWM stability can be increased by kinetic effects at low rotation through precession drift resonance and at high rotation by bounce and transit resonances, while intermediate rotation can remain susceptible to instability. The applicability of benchmarked kinetic stability calculations to experimental results is demonstrated by the prediction of MISK calculations of near marginal growth rates for experimental marginal stability points from the National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)].

Berkery, J. W.; Sabbagh, S. A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Liu, Y. Q. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Wang, Z. R.; Logan, N. C.; Park, J.-K.; Manickam, J. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2014-05-15T23:59:59.000Z

229

'Recycling' Grid Energy with Flywheel Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy.pdfApplications:AdjustmentDepartment'Extreme

230

Flywheel Energy Storage Device for Hybrid and Electric Vehicles - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds" |beam damageFlyer, Title VI

231

Infrared absorption spectroscopy and chemical kinetics of free radicals  

SciTech Connect (OSTI)

This research is directed at the detection, monitoring, and study of chemical kinetic behavior by infrared absorption spectroscopy of small free radical species thought to be important intermediates in combustion. During the last year, infrared kinetic spectroscopy using excimer laser flash photolysis and color-center laser probing has been employed to study the high resolution spectrum of HCCN, the rate constant of the reaction between ethynyl (C{sub 2}H) radical and H{sub 2} in the temperature region between 295 and 875 K, and the recombination rate of propargyl (CH{sub 2}CCH) at room temperature.

Curl, R.F.; Glass, G.P. [Rice Univ., Houston, TX (United States)

1993-12-01T23:59:59.000Z

232

Spectroscopy and kinetics of combustion gases at high temperatures  

SciTech Connect (OSTI)

This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

1993-12-01T23:59:59.000Z

233

A coke oven model including thermal decomposition kinetics of tar  

SciTech Connect (OSTI)

A new one-dimensional coke oven model has been developed for simulating the amount and the characteristics of by-products such as tar and gas as well as coke. This model consists of both heat transfer and chemical kinetics including thermal decomposition of coal and tar. The chemical kinetics constants are obtained by estimation based on the results of experiments conducted to investigate the thermal decomposition of both coal and tar. The calculation results using the new model are in good agreement with experimental ones.

Munekane, Fuminori; Yamaguchi, Yukio [Mitsubishi Chemical Corp., Yokohama (Japan); Tanioka, Seiichi [Mitsubishi Chemical Corp., Sakaide (Japan)

1997-12-31T23:59:59.000Z

234

A kinetic scheme for pressurized flows in non uniform pipes  

E-Print Network [OSTI]

The aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes with variable sections. Firstly, we detail the derivation of the mathematical model in curvilinear coordinates under some hypothesis and we performe a formal asymptotic analysis. Then the obtained system is written as a conservative hyperbolic partial differential system of equations, and we recall how to obtain the corresponding kinetic formulation based on an upwinding of the source term due to the "pseudo topography" performed in a close manner described by Perthame and al.

Bourdarias, Christian; Gerbi, Stéphane

2008-01-01T23:59:59.000Z

235

Chemical and kinetic equilibrations via radiative parton transport  

E-Print Network [OSTI]

A hot and dense partonic system can be produced in the early stage of a relativistic heavy ion collision. How it equilibrates is important for the extraction of Quark-Gluon Plasma properties. We study the chemical and kinetic equilibrations of the Quark-Gluon Plasma using a radiative transport model. Thermal and Color-Glass-Condensate motivated initial conditions are used. We observe that screened parton interactions always lead to partial pressure isotropization. Different initial pressure anisotropies result in the same asymptotic evolution. Comparison of evolutions with and without radiative processes shows that chemical equilibration interacts with kinetic equilibration and radiative processes can contribute significantly to pressure isotropization.

Bin Zhang; Warner A. Wortman

2011-02-21T23:59:59.000Z

236

Supercooled water and the kinetic glass transition F. Sciortino,1  

E-Print Network [OSTI]

-dynamics study of the self-dynamics of water molecules in deeply supercooled liquid states. We find the superheated, stretched, and supercooled states of liquid water 4­6 ; ii the existence of a meta- stable, lowSupercooled water and the kinetic glass transition F. Sciortino,1 P. Gallo,2 P. Tartaglia,1 and S

Sciortino, Francesco

237

Research Article Kinetic Study of Epoxy Resin Decomposition  

E-Print Network [OSTI]

Research Article Kinetic Study of Epoxy Resin Decomposition in Near-Critical Water A diglycidyl ether type epoxy resin from bisphenol A, E-51, was cured by methyl- hexahydrophthalic anhydride (Me, hydrogenolysis, and alcoholysis [13­16] have been reported to decompose epoxy resin into its original mono- mers

Guo, John Zhanhu

238

SUPPORTING INFORMATION Dissecting the Kinetic Process of Amyloid Fiber Formation  

E-Print Network [OSTI]

eight Type-I amyloid proteins (the yeast prion Sup35 NW region, Csg Btrunc, Ure2 protein, 2SUPPORTING INFORMATION Dissecting the Kinetic Process of Amyloid Fiber Formation through Asymptotic 2 1 , where A represents proteins with specific conformations before fibrillation, B is proteins

Zhang, Yang

239

Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate  

SciTech Connect (OSTI)

A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

Herbinet, O; Pitz, W J; Westbrook, C K

2007-09-20T23:59:59.000Z

240

Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate  

SciTech Connect (OSTI)

A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran et al. for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO2 production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

Herbinet, O; Pitz, W J; Westbrook, C K

2007-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Linear Kinetic Heat Transfer: Moment Equations, Boundary Conditions, and Knudsen  

E-Print Network [OSTI]

] and phonons [6], and the radiative transfer equation [7]. The solution of any kinetic equation is usually][25], radiative transfer [7][26], and phonon transport in crystals [6]. Despite the long history, and success method, and the methods employed in [18][19][20], are based solely on the transport equations in the bulk, and

Struchtrup, Henning

242

Desorption Kinetics of Methanol, Ethanol, and Water from Graphene  

SciTech Connect (OSTI)

The desorption kinetics of methanol, ethanol, and water from graphene covered Pt(111) are investigated. The temperature programmed desorption (TPD) spectra for both methanol and ethanol have well-resolved first, second, third, and multilayer layer desorption peaks. The alignment of the leading edges is consistent with zero-order desorption kinetics from all layers. In contrast, for water the first and second layers are not resolved. At low water coverages (< 1 ML) the initial desorption leading edges are aligned but then fall out of alignment at higher temperatures. For thicker water layers (10 to 100 ML), the desorption leading edges are in alignment throughout the desorption of the film. The coverage dependence of the desorption behavoir suggests that at low water coverages the non-alignment of the desorption leading edges is due to water dewetting from the graphene substrate. Kinetic simulations reveal that the experimental results are consistent with zero-order desorption. The simulations also show that fractional order desorption kinetics would be readily apparent in the experimental TPD spectra.

Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

2014-09-18T23:59:59.000Z

243

Kinetic theory of geodesic acoustic and related modes  

E-Print Network [OSTI]

Kinetic theory of geodesic acoustic and related modes A.I. Smolyakov Department of Physics · Geodesic Acoustic Modes (GAM) are relatively high frequency eigen-modes supported by plasma compressibility history of GAM and related modes ·1968 : Geodesic acoustic modes: Winsor, Johnson, Dawson ·2000-05: Surge

244

ORBITAL-FREE KINETIC-ENERGY DENSITY FUNCTIONAL THEORY  

E-Print Network [OSTI]

Chapter 5 ORBITAL-FREE KINETIC-ENERGY DENSITY FUNCTIONAL THEORY Yan Alexander Wang and Emily A Theory (DFT), there was the Thomas-Fermi (TF) model, which uses the electron density ¢¡ r£ (a function-dependent DFT Density-Functional Theory DI density-independent DM1 first-order reduced density matrix EDF energy

Wang, Yan Alexander

245

AER1301: KINETIC THEORY OF GASES Assignment #2  

E-Print Network [OSTI]

AER1301: KINETIC THEORY OF GASES Assignment #2 1. Using the formalism of the text book is as follows. Assume that the particle number density is a slowly varying function of the z coordinate #27; Ã? is a constant. 3. Show that if the potential function, U(r), varies as 1=r 4

Groth, Clinton P. T.

246

AER1301: KINETIC THEORY OF GASES Assignment #2  

E-Print Network [OSTI]

AER1301: KINETIC THEORY OF GASES Assignment #2 1. Using the formalism of the text book the particle number density and temperature are both slowly varying functions of the z coordinate of the previous problem is as follows. Assume that the particle number density is a slowly varying function

Groth, Clinton P. T.

247

Plasmadynamics and ionization kinetics of thermionic energy conversion  

SciTech Connect (OSTI)

To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

Lawless, J.L. Jr.; Lam, S.H.

1982-02-01T23:59:59.000Z

248

Kinetic Properties of Alfven Modes in Tokamak Plasmas  

SciTech Connect (OSTI)

The ability to predict the stability of fast-particle-driven Alfven eigenmodes in burning fusion plasmas requires a detailed understanding of the dissipative mechanisms that damp these modes. In order to address this question, the linear gyro-kinetic, electromagnetic code LIGKA is employed to investigate their behaviour in realistic tokamak geometry. The eigenvalue formulation of LIGKA allows to calculate self-consistently the coupling of large-scaled MHD modes to the gyroradius scale-length kinetic Alfven waves. Therefore, the properties of the kineticly modified TAE mode in or near the gap (KTAE, radiative damping or 'tunnelling') and its coupling to the continuum close to the edge can be analysed numerically. In addition, an antenna-like version of LIGKA allows for a frequency scan, analogous to an external antenna.The model and the implementation of LIGKA were recently extended in order to capture the coupling of the shear Alfven waves to the sound waves. This coupling becomes important for the investigation of kinetic effects on the low-frequency phase of cascade modes, where e.g. geodesic acoustic effects play a significant role.

Lauber, Ph.; Guenter, S.; Bruedgam, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM-Association, D-85748 Garching (Germany); Koenies, A. [Max-Planck Institut fuer Plasmaphysik, EURATOM-Association, D-17489 Greifswald (Germany); Pinches, S. D. [UKAEA Fusion Association Culham Science Centre, Abingdon, Oxfordshire OX143DB (United Kingdom)

2006-11-30T23:59:59.000Z

249

Polymerization dynamics of double-stranded biopolymers: Chemical kinetic approach  

E-Print Network [OSTI]

Polymerization dynamics of double-stranded biopolymers: Chemical kinetic approach Evgeny B 19 November 2004; accepted 20 December 2004; published online 10 March 2005 The polymerization by the processes that take place during their polymerization. However, our understanding of the coupling between

250

Determination of the Kinetic Parameters of Atom Transfer Radical Polymerizations  

E-Print Network [OSTI]

Determination of the Kinetic Parameters of Atom Transfer Radical Polymerizations Young-Je Kwark a novel catalyst system for atom transfer radical polymerization (ATRP), a parameter estimation method parameters of polymerization. From our model system considering small molecular atom transfer addition

251

Kinetic Alfv'en Eigenmodes in a Hot Tokamak Plasma  

E-Print Network [OSTI]

'en waves, with a power absorption occurring through resistive dissipation. The kinetic model is appropriate­100 44 Stockholm, Sweden 2 CRPP­EPFL, CH­1015 Lausanne, Switzerland 3 JET Joint Undertaking, Abingdon Resonant destabilization of Alfv'en waves by fusion produced ff\\Gammaparticles is an important issue

Jaun, André

252

Improve Claus simulation by integrating kinetic limitations into equilibrium calculations  

SciTech Connect (OSTI)

Since all existing Claus simulators are based on equilibrium calculations, it is not surprising that the simulation results, including the overall sulfur yield, air to acid gas ratio, and stream compositions are somewhat different from the plant data. One method for improving the simulation is to consider the kinetic limitations in the Claus reactions. This has been accomplished in this work by integrating kinetic considerations into equilibrium calculations. Kinetic limitations have been introduced in both the Claus reaction furnace and the catalytic converters. An interactive computer program SULPLT Version 3 was written to implement the proposed modifications. The computer program was used to simulate the Claus furnace, catalytic converters, and the effect of air to acid gas ratio on sulfur recovery to check against literature data. Three Claus plants for which data exist have also been simulated. The results show that the proposed model predicts sulfur recovery, sulfur emission, optimal air to acid gas ratio, and various stream compositions more accurately than the equilibrium model. The proposed model appears to be valid, reliable, and applicable over a wide range of operating conditions (acid gas feeds ranging from 13% to 95% H/sub 2/S with different levels of impurities). The methodology developed in this study should be applicable to any reaction systems where kinetic limitations are important but where equilibrium still prevails.

Wen, T.C.

1986-01-01T23:59:59.000Z

253

Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics  

E-Print Network [OSTI]

Optimization of a Microfluidic Mixer for Studying Protein Folding Kinetics David E. Hertzog with numerical simulations to minimize the mixing time of a microfluidic mixer developed for protein folding reported continuous flow mixer for protein folding. Fast events in protein folding often occur

Santiago, Juan G.

254

Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding  

E-Print Network [OSTI]

Femtomole Mixer for Microsecond Kinetic Studies of Protein Folding David E. Hertzog,, Xavier a microfluidic mixer for studying protein folding and other reactions with a mixing time of 8 µs and sample) measurements of single-stranded DNA. We also demon- strate the feasibility of measuring fast protein folding

Michalet, Xavier

255

Statistical Analysis of Protein Folding Kinetics Aaron R. Dinner  

E-Print Network [OSTI]

Statistical Analysis of Protein Folding Kinetics Aaron R. Dinner , Sung-Sau So ¡ , and Martin and theoretical studies over several years have led to the emergence of a unified general mechanism for protein folding that serves as a framework for the design and interpretation of research in this area [1

Dinner, Aaron

256

Kinetics of the clay roofing tile convection drying  

SciTech Connect (OSTI)

Kinetics of the convection drying process of flat tile has been investigated experimentally in an industrial tunnel dryer. Several velocities of wet tile movement through the dryer were tested to obtain maximum allowable drying rate curve. As there are various models to describe the kinetics of convection drying, finding a model that would fairly well approximate the kinetics of the whole drying process was part of the research. Especially the polynomial and exponential models were tested. It was found that exponential model of the type: B(t) = (a[minus]B[sub e])[center dot]EXP([minus]bt[sup 2])+B[sub e], ([minus]dB(t)/dt) = 2bt(B(t)[minus]B[sub e]) significantly correlates the kinetics of the whole tile drying process. Applying the maximum allowable drying rate curve obtained for flat tile in the first period of drying, a grapho-analytic model for the optimal conducting of the process has been developed.

Thomas, S. (Univ. of Osijek (Croatia). Faculty of Food Technology); Skansi, D. (Univ. of Zagreb (Croatia). Faculty of Chemical Engineering and Technology); Sokele, M. (Croatian Post and Telecommunications, Zagreb (Croatia). Telecommunications Center)

1993-01-01T23:59:59.000Z

257

Nano Research Kinetics of Molecular Recognition Mediated Nanoparticle  

E-Print Network [OSTI]

Nano Research Kinetics of Molecular Recognition Mediated Nanoparticle Self-Assembly Chinmay Soman1 the streptavidin-biotin interaction [9] 0078 Nano Res (2009) 2: 78 84 DOI 10.1007/s12274-009-9005-z Research Article #12;79Nano Res (2009) 2: 78 84 are incubated with specific antigens in a physiological buffer

258

Detailed chemical kinetic oxidation mechanism for a biodiesel surrogate  

SciTech Connect (OSTI)

A detailed chemical kinetic mechanism has been developed and used to study the oxidation of methyl decanoate, a surrogate for biodiesel fuels. This model has been built by following the rules established by Curran and co-workers for the oxidation of n-heptane and it includes all the reactions known to be pertinent to both low and high temperatures. Computed results have been compared with methyl decanoate experiments in an engine and oxidation of rapeseed oil methyl esters in a jet-stirred reactor. An important feature of this mechanism is its ability to reproduce the early formation of carbon dioxide that is unique to biofuels and due to the presence of the ester group in the reactant. The model also predicts ignition delay times and OH profiles very close to observed values in shock tube experiments fueled by n-decane. These model capabilities indicate that large n-alkanes can be good surrogates for large methyl esters and biodiesel fuels to predict overall reactivity, but some kinetic details, including early CO{sub 2} production from biodiesel fuels, can be predicted only by a detailed kinetic mechanism for a true methyl ester fuel. The present methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels. (author)

Herbinet, Olivier; Pitz, William J.; Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

2008-08-15T23:59:59.000Z

259

Kinetics of Silicothermic Reduction of Calcined Dolomite in Flowing Argon  

E-Print Network [OSTI]

of Experimental Rig De oxi dat ion Fu rn ac e TC TC Copper Turning Reduction Furnace Argon Gas Condenser Gas wash. Disadvantages: high impurity, high condenser area #12;© Swinburne University of Technology Aim of the project the fundamental physical chemistry Thermodynamic modelling Kinetic analysis High temperature experiments

Liley, David

260

Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics  

E-Print Network [OSTI]

Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics Adrien Couet a to reduce hydrogen pickup during operation, and the associated cladding degradation. The present study focuses on precisely and accurately measuring hydrogen pickup fraction for a set of alloys to specifically

Motta, Arthur T.

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS  

SciTech Connect (OSTI)

This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight hydrocarbons. Van der Laan and Beenackers hydrocarbon selectivity model provides a very good fit of the experimental data for hydrocarbons up to about C{sub 20}. However, the experimental data shows higher paraffin formation rates in C{sub 12}-C{sub 25} region which is likely due to hydrocracking or other secondary reactions. The model accurately captures the observed experimental trends of decreasing olefin to paraffin ratio and increasing {alpha} (chain growth length) with increase in chain length.

Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

2006-09-29T23:59:59.000Z

262

Crystallization Kinetics and Excess Free Energy of H2O and D2O...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Crystallization Kinetics and Excess Free Energy of H2O and D2O Nanoscale Films of Amorphous Solid Water. Crystallization Kinetics and Excess Free Energy of H2O and D2O Nanoscale...

263

Phrases of the Kinetic: Dynamic Physicality as a Construct of Interaction Design  

E-Print Network [OSTI]

, a system for motion construction and dynamics physics education with children; Kinetic Sketchup, a system Backpacks for motion modulation Evaluations Kinetic Sketch-up Design Tools for motion prototyping

Ishii, Hiroshi

264

A comparison of the point kinetics equations with the QUANDRY analytic nodal diffusion method  

E-Print Network [OSTI]

The point kinetics equations were incorporated into QUANDRY, a nuclear reactor analysis computer program which uses the analytic nodal method to solve the neutron diffusion equation. Both the point kinetics equations, solved using the IMSL MATH...

Velasquez, Arthur

1993-01-01T23:59:59.000Z

265

Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics  

E-Print Network [OSTI]

Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume ...

Bazant, Martin Z.

266

Charge transport in micas: The kinetics of FeII/III electron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

transport in micas: The kinetics of FeIIIII electron transfer in the octahedral sheet. Charge transport in micas: The kinetics of FeIIIII electron transfer in the octahedral...

267

Progress in an oxygen-carrier reaction kinetics experiment for rotary-bed chemical looping combustion  

E-Print Network [OSTI]

The design process for an experimental platform measuring reaction kinetics in a chemical looping combustion (CLC) process is documented and justified. To enable an experiment designed to characterize the reaction kinetics ...

Jester-Weinstein, Jack (Jack L.)

2013-01-01T23:59:59.000Z

268

Thesis for the Degree of Licentiate of Engineering A Compartmental Model for Kinetics of  

E-Print Network [OSTI]

Thesis for the Degree of Licentiate of Engineering A Compartmental Model for Kinetics The thesis This licentiate thesis is the mathematical result in an ongoing project in kinetics of lipopro

Patriksson, Michael

269

Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate  

E-Print Network [OSTI]

1 Detailed chemical kinetic mechanism for the oxidation of biodiesel fuels blend surrogate of biodiesel fuels in diesel and homogeneous charge compression ignition engines. Keywords: Methyl decanoate; Methyl decenoate; Surrogate; Oxidation; Biodiesel fuels; Kinetic modeling; Engine; Low

Paris-Sud XI, Université de

270

Exploring Frontiers in Kinetics and Mechanisms of Geochemical Processes at the Mineral/Water Interface  

E-Print Network [OSTI]

Exploring Frontiers in Kinetics and Mechanisms of Geochemical Processes at the Mineral in the Earth's Critical Zone is the kinetics. The timescales for geochemical processes range from milliseconds geochemical processes including surface complexation, mineral transformations, and oxidation

Sparks, Donald L.

271

Application of Genetic Algorithms and Thermogravimetry to Determine the Kinetics of Polyurethane Foam in Smoldering Combustion   

E-Print Network [OSTI]

In this work, the kinetic parameters governing the thermal and oxidative degradation of flexible polyurethane foam are determined using thermogravimetric data and a genetic algorithm. These kinetic parameters are needed ...

Rein, Guillermo; Lautenberger, Chris; Fernandez-Pello, Carlos; Torero, Jose L; Urban, David

272

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and David H. Olson,  

E-Print Network [OSTI]

Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene Kunhao Li, David H the first examples of MMOFs that are capable of kinetic separation of propane and propene (propylene), which

Li, Jing

273

Adsorption kinetics taking account of the interaction of nearest and next-nearest neighbors  

SciTech Connect (OSTI)

A study was carried out on the effect of the interaction between nearest and next-nearest neighbors on adsorption and desorption kinetics. The interaction effect on the adsorption kinetics is much stronger than on the desorption kinetics. The suitability of an adsorption model taking account of the two nearest neighbors for describing the experimental data was examined. The effect of taking account of the ordering of adatoms on desorption kinetics was shown for the case of 2 x 2 super-structure.

Tovbin, Yu.K.; Surovtsev, S.Yu.

1986-04-01T23:59:59.000Z

274

On Measuring the Terms of the Turbulent Kinetic Energy Budget from an AUV LOUIS GOODMAN  

E-Print Network [OSTI]

of production of turbulent kinetic energy (TKE). Heat flux is obtained by correlating the vertical velocityOn Measuring the Terms of the Turbulent Kinetic Energy Budget from an AUV LOUIS GOODMAN School of the steady-state, homogeneous turbulent kinetic energy budgets are obtained from mea- surements of turbulence

Goodman, Louis

275

Determination of kinetic parameters in laminar flow reactors. I. Theoretical aspects  

E-Print Network [OSTI]

is the numerical evaluation of kinetic data, obtained from controlled experiments in a flow reactorDetermination of kinetic parameters in laminar flow reactors. I. Theoretical aspects T. Carraro1- mization of chemical flow reactors. The goal is the reliable determination of unknown kinetic parameters

276

Accepted Manuscript Kinetic Modelling of High Density PolyEthylene Pyrolysis: Part 1. Comparison of  

E-Print Network [OSTI]

Accepted Manuscript Kinetic Modelling of High Density PolyEthylene Pyrolysis: Part 1. Comparison this article as: Gascoin N, Navarro-Rodriguez A, Gillard P, Mangeot A, Kinetic Modelling of High Density PolyEthylene.polymdegradstab.2012.05.008 #12;M ANUSCRIPT ACCEPTED ACCEPTED MANUSCRIPT 1 Kinetic Modelling of High Density PolyEthylene

Paris-Sud XI, Université de

277

Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfven waves  

E-Print Network [OSTI]

Zonal flow and field generation by finite beta drift waves and kinetic drift-Alfve´n waves P. N magnetic fields by finite beta drift waves and kinetic drift-Alfve´n waves is presented. The analysis by electrostatic drift waves to finite beta drift waves and kinetic drift-Alfve´n waves. The drift wave driven

Rubloff, Gary W.

278

CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Plasma Descriptions I  

E-Print Network [OSTI]

CHAPTER 5. PLASMA DESCRIPTIONS I: KINETIC, TWO-FLUID 1 Chapter 5 Plasma Descriptions I: Kinetic, Two-Fluid Descriptions of plasmas are obtained from extensions of the kinetic theory of gases of charged particles in the plasma, and because the electric and magnetic fields in the plasma must

Callen, James D.

279

Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics: Folding Rates and  

E-Print Network [OSTI]

Using Stochastic Roadmap Simulation to Predict Experimental Quantities in Protein Folding Kinetics for studying protein folding kinetics. It uses the recently intro- duced Stochastic Roadmap Simulation (SRS validate the SRS method and indicate its potential as a general tool for studying protein folding kinetics

Pratt, Vaughan

280

Amber Waves of...Switchgrass? How about Sorghum? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

mean for me? For many counties, the expanding market for energy products made from biomass is a potential source of economic growth. Is your county one of them? As the fall...

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Land Tenure and Reform in Haiti Amber Bethell  

E-Print Network [OSTI]

the island of Hispaniola in 1492. The wealth of the colony came from gold exports. The original inhabitants was almost extinct. The French were given the western 1/3 of Hispaniola in 1697 because the gold was mostly

Onsrud, Harlan J.

282

amber diptera psychodidae: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Psychodidae) Response to Olfactory Biology and Medicine Websites Summary: - and Light Emitting Diode-Modified Mosquito Magnet X (MM-X) Traps RAJINDER S. MANN,1 PHILLIP E....

283

A Pore Scale Evaluation of the Kinetics of Mineral Dissolution and Precipitation Reactions (EMSI)  

SciTech Connect (OSTI)

The chief goals for CEKA are to (1) collect and synthesize molecular-level kinetic data into a coherent framework that can be used to predict time evolution of environmental processes over a range of temporal and spatial scales; (2) train a cohort of talented and diverse students to work on kinetic problems at multiple scales; (3) develop and promote the use of new experimental techniques in environmental kinetics; (4) develop and promote the use of new modeling tools to conceptualize reaction kinetics in environmental systems; and (5) communicate our understanding of issues related to environmental kinetics and issues of scale to the broader scientific community and to the public.

Steefel, Carl I.

2006-06-01T23:59:59.000Z

284

Nonequilibrium sensing and its analogy to kinetic proofreading  

E-Print Network [OSTI]

For a paradigmatic model of chemotaxis, we analyze the effect how a nonzero affinity driving receptors out of equilibrium affects sensitivity. This affinity arises whenever changes in receptor activity involve ATP hydrolysis. The sensitivity integrated over a ligand concentration range is shown to be enhanced by the affinity, providing a measure of how much energy consumption improves sensing. With this integrated sensitivity we can establish an intriguing analogy between sensing with nonequilibrium receptors and kinetic proofreading: the increase in integrated sensitivity is equivalent to the decrease of the error in kinetic proofreading. The influence of the occupancy of the receptor on the phosphorylation and dephosphorylation reaction rates is shown to be crucial for the relation between integrated sensitivity and affinity. This influence can even lead to a regime where a nonzero affinity decreases the integrated sensitivity, which corresponds to anti-proofreading.

Hartich, David; Seifert, Udo

2015-01-01T23:59:59.000Z

285

Species separation and kinetic effects in collisional plasma shocks  

SciTech Connect (OSTI)

The properties of collisional shock waves propagating in uniform plasmas are studied with ion-kinetic calculations, in both slab and spherical geometry and for the case of one and two ion species. Despite the presence of an electric field at the shock front—and in contrast to the case where an interface is initially present [C. Bellei et al., Phys. Plasmas 20, 044702 (2013)]—essentially no ion reflection at the shock front is observed due to collisions, with a probability of reflection ?10{sup ?4} for the cases presented. A kinetic two-ion-species spherical convergent shock is studied in detail and compared against an average-species calculation, confirming effects of species separation and differential heating of the ion species at the shock front. The effect of different ion temperatures on the DT and D{sup 3}He fusion reactivity is discussed in the fluid limit and is estimated to be moderately important.

Bellei, C., E-mail: bellei1@llnl.gov; Wilks, S. C.; Amendt, P. A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Rinderknecht, H.; Zylstra, A.; Rosenberg, M.; Sio, H.; Li, C. K.; Petrasso, R. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2014-05-15T23:59:59.000Z

286

COMSOL-based Nuclear Reactor Kinetics Studies at the HFIR  

SciTech Connect (OSTI)

The computational ability to accurately predict the dynamic behavior of a nuclear reactor core in response to reactivity-induced perturbations is an important subject in reactor physics. Space-time and point kinetics methodologies were developed for the purpose of studying the transient-induced behavior of the High Flux Isotope Reactor s (HFIR) compact core. The space-time simulations employed the three-energy-group neutron diffusion equations, and transients initiated by control cylinder and hydraulic tube rabbit ejections were studied. The work presented here is the first step towards creating a comprehensive multiphysics methodology for studying the dynamic behavior of the HFIR core during reactivity perturbations. The results of these studies show that point kinetics is adequate for small perturbations in which the power distribution is assumed to be time-independent, but space-time methods must be utilized to determine localized effects.

Chandler, David [ORNL] [ORNL; Freels, James D [ORNL] [ORNL; Maldonado, G Ivan [ORNL] [ORNL; Primm, Trent [ORNL] [ORNL

2011-01-01T23:59:59.000Z

287

Gasification characteristics and kinetics for an eastern oil shale  

SciTech Connect (OSTI)

Gasification tests of Indiana New Albany oil shale fines have been conducted. Thermobalance test results indicate that over 95% of the organic carbon in the shale can be gasified at 1700{degree}F and 135 psig with 30 minutes residence time under a synthesis gas atmosphere and at 1800{degree}F and 15 psig with 30 minutes residence time under a hydrogen/steam atmosphere. A simple kinetic expression for hydrogen/steam gasification weight loss has been developed. Weight loss has been described as the sum of the weight loss from two independent, simultaneous reaction paths: a rapid (<2 minutes) first order reaction and a slower gasification reaction that can be expressed in terms of the steam/carbon reaction. Work is in progress to study the gasification of other Eastern shales and improve the kinetic description of weight loss.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-04-01T23:59:59.000Z

288

Systems engineering analysis of kinetic energy weapon concepts  

SciTech Connect (OSTI)

This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

Senglaub, M.

1996-06-01T23:59:59.000Z

289

Kinetic dielectric decrement revisited: phenomenology of finite ion concentrations  

E-Print Network [OSTI]

With the help of a recently developed non-equilibrium approach, we investigate the ionic strength dependence of the Hubbard--Onsager dielectric decrement. We compute the depolarization of water molecules caused by the motion of ions in sodium chloride solutions from the dilute regime (0.035 M) up close to the saturation concentration (4.24 M), and find that the kinetic decrement displays a strong nonmonotonic behavior, in contrast to the prediction of available models. We introduce a phenomenological modification of the Hubbard--Onsager continuum theory, that takes into account the screening due to the ionic cloud at mean field level, and, is able to describe the kinetic decrement at high concentrations including the presence of a pronounced minimum.

Marcello Sega; Sofia Kantorovich; Axel Arnold

2014-07-16T23:59:59.000Z

290

Kinetics of gasification of black liquor char by steam  

SciTech Connect (OSTI)

This paper reports on the steam gasification kinetics of kraft black liquor char that were studied in a thermogravimetric analysis reactor. The effect of steam and hydrogen concentration on gasification rate can be described by Langmuir-Hinshelwood type kinetics. An activation energy of 210 kJ/mol was obtained. Methane formation was negligible, and H{sub 2}S was the major gaseous sulfur-containing product obtained over the temperature range studied, 873-973 K. The CO{sub 2} concentration was higher than calculated for the water-shift reaction at equilibrium. A gasification mechanism is proposed whereby CO{sub 2} is one of the primary gasification products.

Li, J.; van Heiningen, A.R.P. (Dept. of Chemical Engineering, McGill Univ., Pulp and Paper Research Inst. of Canada, Montreal, Quebec (CA))

1991-07-01T23:59:59.000Z

291

Visualizing kinetic pathways of homogeneous nucleation in colloidal crystallization  

E-Print Network [OSTI]

When a system undergoes a transition from a liquid to a solid phase, it passes through multiple intermediate structures before reaching the final state. However, our knowledge on the exact pathways of this process is limited, mainly due to the difficulty of realizing direct observations. Here, we experimentally study the evolution of symmetry and density for various colloidal systems during liquid-to-solid phase transitions, and visualize kinetic pathways with single-particle resolution. We observe the formation of relatively-ordered precursor structures with different symmetries, which then convert into metastable solids. During this conversion, two major cross-symmetry pathways always occur, regardless of the final state and the interaction potential. In addition, we find a broad decoupling of density variation and symmetry development, and discover that nucleation rarely starts from the densest regions. These findings hold for all our samples, suggesting the possibility of finding a unified picture for the complex crystallization kinetics in colloidal systems.

Peng Tan; Ning Xu; Lei Xu

2014-12-18T23:59:59.000Z

292

Dissipative kinetic Alfvén solitary waves resulting from viscosity  

SciTech Connect (OSTI)

Nonlinear small-amplitude kinetic Alfvén solitary waves (KASWs) are investigated with their “anomalous” kinetic viscosity effect on electrons. It is found that the structure of a hump-type KASW solution develops into a shock-type (or double layer) KASW solution for large amplitude KASWs when viscosity exists. For small amplitude KASWs, the Korteweg-de Vries (KdV) equation with an approximate pseudopotential was solved, and it is found that the hump-type KASWs develop into oscillating shock-type (kink-type) KASWs. It is also found that the oscillating scale of this structure is related to the propagation velocity and plasma beta, while the damping scale is inversely proportional to the viscosity.

Choi, C.-R.; Kang, S.-B.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Woo, M.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Hwang, J.; Park, Y.-D. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)] [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

2013-11-15T23:59:59.000Z

293

Nonlinear simplified model to study localization of kinetic Alfvén wave  

SciTech Connect (OSTI)

We have presented the numerical simulation of the coupled equations governing the dynamics of kinetic Alfvén wave (KAW) and ion acoustic wave in the intermediate ? plasma, where ? is the ratio of thermal pressure to the background magnetic pressure. We have also developed a simplified model for this nonlinear interaction using the results obtained from the simulation to understand the physics of nonlinear evolution of KAW. Localization of magnetic field intensity of KAW has been studied by means of the simplified model.

Sharma, R. P., E-mail: rpsharma@ces.iitd.ac.in; Gaur, Nidhi, E-mail: nidhiphysics@gmail.com [Centre for Energy Studies, Indian Institute of Technology, Delhi 110016 (India)] [Centre for Energy Studies, Indian Institute of Technology, Delhi 110016 (India)

2014-04-15T23:59:59.000Z

294

Consistent neutron kinetics data generation for nodal transient calculations  

SciTech Connect (OSTI)

Current three-dimensional transient codes for thermal reactors are mostly based on two-group diffusion-theory nodal models. In the two-group approach no explicit distinction is made between prompt fission neutrons and delayed neutrons. Consequently, effective delayed neutron fractions have traditionally been used in an attempt to compensate for this shortcoming. A fundamentally better approach would be to solve the nodal kinetics equations in a sufficient number of energy groups to explicitly capture neutron emission spectrum effects. However, this would require the availability of a multi-group nodal transient code as well as a lattice code to generate the appropriate multi-group nodal data for the simulator. One such simulator is the PARCS nodal transient code, which is widely used and recognized as representative of the current state-of-the-art. Unfortunately, a proper nodal data preparation path between PARCS and a lattice code is not available. Even though several industrial lattice codes could be considered as candidates, most of them are tailored to producing two-group nodal data and would require modifications to produce multi-group prompt and delayed neutron emission spectra. In this paper, the particular modifications required to match the TransLAT lattice code and the PARCS nodal transient code for BWR transient applications are reported. Some modifications to PARCS were also required to make two-group and multi-group applications fully consistent. Numerical results are presented both to verify the proper functioning of these modifications and to illuminate the impact of various nodal kinetics data approximations in a selected transient calculation. In particular, the significance of blending rodded and un-rodded kinetics data in partially rodded nodes is demonstrated. It is also confirmed that the use of delayed neutron importance factors in two-group calculations notably reduces the differences between two-group and multi-group kinetics calculations. (authors)

Akdeniz, B. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States); Mueller, E.; Panayotov, D. [Westinghouse Electric Sweden, SE - 721 63 Vaesteraas (Sweden); Ivanov, K. N. [Penn State Univ., Nuclear Engineering Program, Univ. Park, PA 16802 (United States)

2006-07-01T23:59:59.000Z

295

Chemical Kinetic Modeling of Combustion of Automotive Fuels  

SciTech Connect (OSTI)

The objectives of this report are to: (1) Develop detailed chemical kinetic reaction models for components of fuels, including olefins and cycloalkanes used in diesel, spark-ignition and HCCI engines; (2) Develop surrogate mixtures of hydrocarbon components to represent real fuels and lead to efficient reduced combustion models; and (3) Characterize the role of fuel composition on production of emissions from practical automotive engines.

Pitz, W J; Westbrook, C K; Silke, E J

2006-11-10T23:59:59.000Z

296

Plasmadynamics and ionization kinetics of thermionic energy conversion  

SciTech Connect (OSTI)

To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type Cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional Cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. The effects of the complete system of electron-atom inelastic collisions on the ionization-recombination problem are shown to reduce to a system nearly as simple as the well-known one-quantum approximation. To combine the above analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. Using the above developments, a proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a Cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed.

Lawless, J.L. Jr.

1981-01-01T23:59:59.000Z

297

Adiabatic trapping in coupled kinetic Alfven-acoustic waves  

SciTech Connect (OSTI)

In the present work, we have discussed the effects of adiabatic trapping of electrons on obliquely propagating Alfven waves in a low {beta} plasma. Using the two potential theory and employing the Sagdeev potential approach, we have investigated the existence of arbitrary amplitude coupled kinetic Alfven-acoustic solitary waves in both the sub and super Alfvenic cases. The results obtained have been analyzed and presented graphically and can be applied to regions of space where the low {beta} assumption holds true.

Shah, H. A.; Ali, Z. [Department of Physics, G.C. University, 54000 Lahore (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP), Shahdara Valley Road, 44000 Islamabad (Pakistan); Theoretical Plasma Physics Division, P. O. Nilore, Islamabad (Pakistan)

2013-03-15T23:59:59.000Z

298

Development of Detailed Kinetic Models for Fischer-Tropsch Fuels  

SciTech Connect (OSTI)

Fischer-Tropsch (FT) fuels can be synthesized from a syngas stream generated by the gasification of biomass. As such they have the potential to be a renewable hydrocarbon fuel with many desirable properties. However, both the chemical and physical properties are somewhat different from the petroleum-based hydrocarbons that they might replace, and it is important to account for such differences when considering using them as replacements for conventional fuels in devices such as diesel engines and gas turbines. FT fuels generally contain iso-alkanes with one or two substituted methyl groups to meet the pour-point specifications. Although models have been developed for smaller branched alkanes such as isooctane, additional efforts are required to properly capture the kinetics of the larger branched alkanes. Recently, Westbrook et al. developed a chemical kinetic model that can be used to represent the entire series of n-alkanes from C{sub 1} to C{sub 16} (Figure 1). In the current work, the model is extended to treat 2,2,4,4,6,8,8-heptamethylnonane (HMN), a large iso-alkane. The same reaction rate rules used in the iso-octane mechanism were incorporated in the HMN mechanism. Both high and low temperature chemistry was included so that the chemical kinetic model would be applicable to advanced internal combustion engines using low temperature combustion strategies. The chemical kinetic model consists of 1114 species and 4468 reactions. Concurrently with this effort, work is underway to improve the details of specific reaction classes in the mechanism, guided by high-level electronic structure calculations. Attention is focused upon development of accurate rate rules for abstraction of the tertiary hydrogens present in branched alkanes and properly accounting for the pressure dependence of the ?-scission, isomerization, and R + O{sub 2} reactions.

Westbrook, C K; Pitz, W J; Carstensen, H; Dean, A M

2008-10-28T23:59:59.000Z

299

Master equation approach to protein folding and kinetic traps  

E-Print Network [OSTI]

The master equation for 12-monomer lattice heteropolymers is solved numerically and the time evolution of the occupancy of the native state is determined. At low temperatures, the median folding time follows the Arrhenius law and is governed by the longest relaxation time. For good folders, significant kinetic traps appear in the folding funnel whereas for bad folders, the traps also occur in non-native energy valleys.

Marek Cieplak; Malte Henkel; Jan Karbowski; Jayanth R. Banavar

1998-04-21T23:59:59.000Z

300

Potential digestibilities and digestion kinetics of forage cell wall components  

E-Print Network [OSTI]

LITERATURE REVIEW. EXPERIMENTAL PROCEDURES. Chemical Analysis Colorimetric Determinations Statistical Evaluation. 10 13 15 IV RESULTS AND DISCUSSION 16 V Characteristics of Forage Kinetics of Cell Wall Digestion SUMMARY AND CONCLUSIONS... and both of these variables appear to be the result of several dynamic processes. The amount of structural carbohydrates, the main constituents of the fibrous cell wall, ruminants can digest appears to be limited by the potential digestibility...

Tauskey, William Henry

1973-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nonphotochemical hole burning and dispersive kinetics in amorphous solids  

SciTech Connect (OSTI)

Results covering burn intensities in the nW to {mu}W/cm{sup 2} range, of dispersive hole growth kinetics are reported for Oxazine 720 in glycerol glasses and polyvinyl alcohol polymer films and their deuterated analogues. A theoretical model which employs a distribution function for the hole burning rate constant based upon a Gaussian distribution for the tunnel parameter is shown to accurately describe the kinetic data. This model incorporates the linear electron-phonon coupling. A method for calculating the nonphotochemical quantum yield is presented which utilizes the Gaussian distribution of tunnel parameters. The quantum yield calculation can be extended to determine a quantum yield as a function of hole depth. The effect of spontaneous hole filling is shown to be insignificant over the burn intensity range studied. Average relaxation rates for hole burning are {approximately}8 orders of magnitude greater than for hole filling. The dispersive kinetics of hole burning are observed to be independent over the temperature range of these experiments, 1.6 to 7.0 K. 6 refs., 20 figs., 1 tab.

Kenney, M.J.

1990-09-21T23:59:59.000Z

302

Kinetics of Cd Release from Some Contaminated Calcareous Soils  

SciTech Connect (OSTI)

Contamination of soils with heavy metals may pose long-term risk to groundwater quality leading to health implications. Bioavailability of heavy metals, like cadmium (Cd) is strongly affected by sorption and desorption processes. The release of heavy metals from contaminated soils is a major contamination risks to natural waters. The release of Cd from contaminated soils is strongly influenced by its mobility and bioavailability. In this study, the kinetics of Cd desorption from ten samples of contaminated calcareous soils, with widely varying physicochemical properties, were studied using 0.01 M EDTA extraction. The median percentage of Cd released was about 27.7% of the total extractable Cd in the soils. The release of Cd was characterized by an initial fast release rate (of labile fractions) followed by a slower release rate (of less labile fractions) and a model of two first-order reactions adequately describes the observed release of Cd from the studied soil samples. There was positive correlation between the amount of Cd released at first phase of release and Cd in exchangeable fraction, indicating that this fraction of Cd is the main fraction controlling the Cd in the kinetic experiments. There was strongly negative correlation between the amount of Cd released at first and second phases of release and residual fraction, suggesting that this fraction did not contribute in Cd release in the kinetic experiments. The results can be used to provide information for evaluation of Cd potential toxicity and ecological risk from contaminated calcareous soils.

Sajadi Tabar, S.; Jalali, M., E-mail: jalali@basu.ac.ir [Bu-Ali Sina University, Department of Soil Science, College of Agriculture (Iran, Islamic Republic of)

2013-03-15T23:59:59.000Z

303

Kinetic study of bitumen release from heated shale  

SciTech Connect (OSTI)

With rising temperature shales evolve hydrocarbons discontinuously. At low temperatures, bitumens are thermally distilled (Peak 1) while at higher temperatures kerogen is pyrolyzed to lower molecular weight products (Peak 2). Hydrocarbon release occurring between these two peaks is less well understood. They have studied the kinetics of thermal bitumen release (Peak 1) from samples of the Excello and Woodford Shales and find that they are second order with activation energies of 19,000 cals/mole and 17,048 cals/ mole, respectively. The thermal release of nC/sub 26/ adsorbed on a siliceous support also followed second order kinetics. Activation energies, along with the determined Arrhenius A factor, permits the calculation of Peak 1 shape so that its contribution can be subtracted from the total hydrocarbon release. The residual curve shows two smaller peaks between the bitumen and kerogen peaks. These are tentatively assigned to adsorption on the mineral matrix and adsorption on kerogen. An important consequence of second order kinetics is that the temperature for the Peak 1 maximum varies with the amount of bitumen in the rock.

Butler, E.B.; Barker, C.

1986-10-01T23:59:59.000Z

304

Hydrotreating process kinetics for bitumen and bitumen-derived liquids  

SciTech Connect (OSTI)

Hydrodenitrogenation, hydrodesulfurization and resid conversion data for the Whiterocks bitumen and bitumen-derived liquid were analyzed using a modified power rate law model. The model incorporated the space velocity and pressure since the plug flow equation may not be applicable to laboratory-scale reactors in which complete wetting of the catalyst may not be attained. The data were obtained with the reactor operating as a fixed bed reactor in the upflow mode. The space velocity (WHSV{sup {alpha}}) term was included to account for deviations from plug flow behavior. The exponents (a,p) and the kinetic parameters were obtained by combined non-linear regression and ODE solver techniques for the analysis of laboratory data. A simple nth order power rate law expression for hydrodenitrogenation and hydrodesulfurization was examined. The higher than first order kinetics for hydrodenitrogenation and hydrodesulfurization of the bitumen and bitumen-derived liquids were explained by invoking two parallel first-order reactions; one slow and the other fast. Parallel and consecutive reaction schemes were used to examine the extent of conversion of the resid fraction to middle distillate, gas oil and gasoline and the apparent kinetic parameters were determined. It was determined that the upflow operating mode was preferred to the trickle-bed mode in the laboratory reactor to insure plug flow behavior.

Kwak, S.; Longstaff, D.C.; Deo, M.D.; Hanson, F.V.

1993-03-01T23:59:59.000Z

305

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. In this report, the reactivity of AHI-5 was examined. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 70 {micro}m particles are reacted with 9000-18000 ppm hydrogen sulfide at 350-500 C. The range of space time of reaction gas mixtures is 0.071-0.088 s. The range of reaction duration is 4-10800 s.

K.C. Kwon

2001-01-01T23:59:59.000Z

306

KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS  

SciTech Connect (OSTI)

Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

K.C. Kwon

2002-01-01T23:59:59.000Z

307

Kinetic theory of nonlinear transport phenomena in complex plasmas  

SciTech Connect (OSTI)

In contrast to the prevalent use of the phenomenological theory of transport phenomena, a number of transport properties of complex plasmas have been evaluated by using appropriate expressions, available from the kinetic theory, which are based on Boltzmann's transfer equation; in particular, the energy dependence of the electron collision frequency has been taken into account. Following the recent trend, the number and energy balance of all the constituents of the complex plasma and the charge balance on the particles is accounted for; the Ohmic loss has also been included in the energy balance of the electrons. The charging kinetics for the complex plasma comprising of uniformly dispersed dust particles, characterized by (i) uniform size and (ii) the Mathis, Rumpl, and Nordsieck power law of size distribution has been developed. Using appropriate expressions for the transport parameters based on the kinetic theory, the system of equations has been solved to investigate the parametric dependence of the complex plasma transport properties on the applied electric field and other plasma parameters; the results are graphically illustrated.

Mishra, S. K. [Institute for Plasma Research (IPR), Gandhinagar 382428 (India); Sodha, M. S. [Centre for Energy Studies (CES), Indian Institute of Technology Delhi (IITD), New Delhi 110016 (India)

2013-03-15T23:59:59.000Z

308

KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS  

SciTech Connect (OSTI)

This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow rates of inorganic species, n-paraffins and total olefins were generally not in good agreement with the corresponding experimental values. In the future we'll use kinetic models based on non-constant value of {alpha}.

Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

2005-09-29T23:59:59.000Z

309

Kinetics and mechanisms of reactions involving small aromatic reactive intermediates  

SciTech Connect (OSTI)

Small aromatic radicals such as C{sub 6}H{sub 5}, C{sub 6}H{sub 5}O and C{sub 6}H{sub 4} are key prototype species of their homologs. C{sub 6}H{sub 5} and its oxidation product, C{sub 6}H{sub 5}O are believed to be important intermediates which play a pivotal role in hydrocarbon combustion, particularly with regard to soot formation. Despite their fundamental importance, experimental data on the reaction mechanisms and reactivities of these species are very limited. For C{sub 6}H{sub 5}, most kinetic data except its reactions with NO and NO{sub 2}, were obtained by relative rate measurements. For C{sub 6}H{sub 5}O, the authors have earlier measured its fragmentation reaction producing C{sub 5}H{sub 5} + CO in shock waves. For C{sub 6}H{sub 4}, the only rate constant measured in the gas phase is its recombination rate at room temperature. The authors have proposed to investigate systematically the kinetics and mechanisms of this important class of molecules using two parallel laser diagnostic techniques--laser resonance absorption (LRA) and resonance enhanced multiphoton ionization mass spectrometry (REMPI/MS). In the past two years, study has been focused on the development of a new multipass adsorption technique--the {open_quotes}cavity-ring-down{close_quotes} technique for kinetic applications. The preliminary results of this study appear to be quite good and the sensitivity of the technique is at least comparable to that of the laser-induced fluorescence method.

Lin, M.C. [Emory Univ., Atlanta, GA (United States)

1993-12-01T23:59:59.000Z

310

Reaction Path Optimization with Holonomic Constraints and Kinetic Energy Potentials  

SciTech Connect (OSTI)

Two methods are developed to enhance the stability, efficiency, and robustness of reaction path optimization using a chain of replicas. First, distances between replicas are kept equal during path optimization via holonomic constraints. Finding a reaction path is, thus, transformed into a constrained optimization problem. This approach avoids force projections for finding minimum energy paths (MEPs), and fast-converging schemes such as quasi-Newton methods can be readily applied. Second, we define a new objective function - the total Hamiltonian - for reaction path optimization, by combining the kinetic energy potential of each replica with its potential energy function. Minimizing the total Hamiltonian of a chain determines a minimum Hamiltonian path (MHP). If the distances between replicas are kept equal and a consistent force constant is used, then the kinetic energy potentials of all replicas have the same value. The MHP in this case is the most probable isokinetic path. Our results indicate that low-temperature kinetic energy potentials (<5 K) can be used to prevent the development of kinks during path optimization and can significantly reduce the required steps of minimization by 2-3 times without causing noticeable differences between a MHP and MEP. These methods are applied to three test cases, the C?eq-to-Cax isomerization of an alanine dipeptide, the ?C?- to-¹C? transition of an ?-D-glucopyranose, and the helix-to-sheet transition of a GNNQQNY heptapeptide. By applying the methods developed in this work, convergence of reaction path optimization can be achieved for these complex transitions, involving full atomic details and a large number of replicas (>100). For the case of helix-to-sheet transition, we identify pathways whose energy barriers are consistent with experimental measurements. Further, we develop a method based on the work energy theorem to quantify the accuracy of reaction paths and to determine whether the atoms used to define a path are enough to provide quantitative estimation of energy barriers.

Brokaw, Jason B.; Haas, Kevin R.; Chu, Jhih-wei

2009-08-11T23:59:59.000Z

311

Kinetics of aluminum fluoride complexation in acidic waters  

SciTech Connect (OSTI)

Acidic deposition has an important effect on the transport and speciation of soluble aluminum. Toxicity of aqueous aluminum seems to be strongly dependent on aluminum speciation and the presence of complexing ligands such as fluoride. A study is reported of the complex formation kinetics of AlF/sup 2 +/ in the environmentally significant pH range 2.9-4.9. The pH and temperature dependencies of the overall rate of reaction are discussed along with environmental implications for areas subjected to acidic deposition. 22 references, 6 figures, 4 tables.

Plankey, B.J.; Patterson, H.H.; Cronan, C.S.

1986-02-01T23:59:59.000Z

312

Kinetic model of catalytic oxidation of carbon monoxide on nickel  

SciTech Connect (OSTI)

A mechanism is proposed for describing the previous disclosed multiplicity of equilibrium states in the oxidation of carbon monoxide on metallic nickel. In contrast to the known mechanism for oxidation of CO on platinum metals it includes a nonlinear stage of carbon monoxide adsorption and a linear stage of oxygen adsorption. A kinetic model has been obtained and stage velocity constants have been found, providing a basis for obtaining a quantitative agreement between the calculated and experimental relations between the reaction velocity and the reagent concentrations. Opinions are stated in relation to the causes for evolution of the CO oxidation reaction from platinum metals to nickel.

Pyatnitskii, Yu.I.; Ostapyuk, V.A.

1986-07-01T23:59:59.000Z

313

Electromigration kinetics and critical current of Pb-free interconnects  

SciTech Connect (OSTI)

Electromigration kinetics of Pb-free solder bump interconnects have been studied using a single bump parameter sweep technique. By removing bump to bump variations in structure, texture, and composition, the single bump sweep technique has provided both activation energy and power exponents that reflect atomic migration and interface reactions with fewer samples, shorter stress time, and better statistics than standard failure testing procedures. Contact metallurgies based on Cu and Ni have been studied. Critical current, which corresponds to the Blech limit, was found to exist in the Ni metallurgy, but not in the Cu metallurgy. A temperature dependence of critical current was also observed.

Lu, Minhua; Rosenberg, Robert [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

2014-04-07T23:59:59.000Z

314

Kinetic modeling and reactor simulation in hydrodesulfurization of oil factions  

SciTech Connect (OSTI)

An adiabatic multiphase reactor for diesel hydrodesulfurization (HDS) was simulated with a one-dimensional heterogeneous model. A diesel-type mixture containing benzothiophene, dibenzothiophene, and 4,6-dimethyldibenzothiophene as sulfur components and quinoline as nitrogen components was chosen as feed. A kinetic modeling for the HDS of dibenzothiophene and alkyl-substituted dibenzothiophenes based upon structural contributions was developed. According to a molecular approach the total number of rate and adsorption parameters for the HDS of a set of (substituted)-dibenzothiophenes is 1,133. In the structural contribution approach introduced here the total number of parameters has been reduced to 93.

Froment, G.F.; Depauw, G.A.; Vanrysselberghe, V. (Univ. Gent (Belgium). Lab. voor Petrochemische Techniek)

1994-12-01T23:59:59.000Z

315

Kinetics of proton pumping in cytochrome c oxidase  

E-Print Network [OSTI]

We propose a simple model of cytochrome c oxidase, including four redox centers and four protonable sites, to study the time evolution of electrostatically coupled electron and proton transfers initiated by the injection of a single electron into the enzyme. We derive a system of master equations for electron and proton state probabilities and show that an efficient pumping of protons across the membrane can be obtained for a reasonable set of parameters. All four experimentally observed kinetic phases appear naturally from our model. We also calculate the dependence of the pumping efficiency on the transmembrane voltage at different temperatures and discuss a possible mechanism of the redox-driven proton translocation.

Anatoly Yu. Smirnov; Lev G. Mourokh; Franco Nori

2009-12-04T23:59:59.000Z

316

Convergent synthesis of proteins by kinetically controlled ligation  

DOE Patents [OSTI]

The present invention concerns methods and compositions for synthesizing a polypeptide using kinetically controlled reactions involving fragments of the polypeptide for a fully convergent process. In more specific embodiments, a ligation involves reacting a first peptide having a protected cysteyl group at its N-terminal and a phenylthioester at its C-terminal with a second peptide having a cysteine residue at its N-termini and a thioester at its C-termini to form a ligation product. Subsequent reactions may involve deprotecting the cysteyl group of the resulting ligation product and/or converting the thioester into a thiophenylester.

Kent, Stephen (Chicago, IL); Pentelute, Brad (Chicago, IL); Bang, Duhee (Boston, MA); Johnson, Erik (Chicago, IL); Durek, Thomas (Chicago, IL)

2010-03-09T23:59:59.000Z

317

Non-minimal Kinetic coupling to gravity and accelerated expansion  

E-Print Network [OSTI]

We study a scalar field with kinetic term coupled to itself and to the curvature, as a source of dark energy, and analyze the role of this new coupling in the accelerated expansion at large times. In the case of scalar field dominance, the scalar field and potential giving rise to power-law expansion are found in some cases, and a dynamical equation of state is calculated for a given solution of the field equations. A behavior very close to that of the cosmological constant was found.

L. N. Granda

2009-11-19T23:59:59.000Z

318

Kinetics of beneficiated fly ash by carbon burnout  

SciTech Connect (OSTI)

The presence of carbon in fly ash requires an increase in the dosage of the air-entraining admixture for concrete mix, and may cause the admixture to lose efficiency. Specifying authorities for the concrete producers have set maximum allowable levels of residual carbon. These levels are the so called Loss On Ignition (LOI). The concrete producers` day-to-day purchasing decisions sets the LOI at 4%. The objective of the project is to investigate the kinetics of oxidation of residual carbon present in coal fly ash as a possible first step toward producing low-carbon fly ash from high-carbon, low quality fly ash.

Okoh, J.M.; Dodoo, J.N.D.; Diaz, A. [Univ. of Maryland Eastern Shore, Princess Anne, MD (United States). Dept. of Natural Sciences; Ferguson, W.; Udinskey, J.R. Jr.; Christiana, G.A. [Delmarva Power, Wilmington, DE (United States)

1997-12-31T23:59:59.000Z

319

Evaluation of kinetic phosphorescence analysis for the determination of uranium  

SciTech Connect (OSTI)

In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11 offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.

Croatto, P.V.; Frank, I.W.; Johnson, K.D.; Mason, P.B.; Smith, M.M.

1997-12-01T23:59:59.000Z

320

Kinetic study of ion-acoustic plasma vortices  

SciTech Connect (OSTI)

The kinetic theory of electron plasma waves with finite orbital angular momentum has recently been introduced by Mendonca. This model shows possibility of new kind of plasma waves and instabilities. We have extended the theory to ion-acoustic plasma vortices carrying orbital angular momentum. The dispersion equation is derived under paraxial approximation which exhibits a kind of linear vortices and their Landau damping. The numerical solutions are obtained and compared with analytical results which are in good agreement. The physical interpretation of the ion-acoustic plasma vortices and their Landau resonance conditions are given for typical case of Maxwellian plasmas.

Khan, S. A. [National Centre for Physics (NCP), Quaid-i-Azam University Campus, Islamabad 45320 (Pakistan); Aman-ur-Rehman, E-mail: amansadiq@gmail.com [Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Mendonca, J. T. [IPFN, Instituto Superior Téchnico, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

2014-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Kinetic studies of the hydrolysis of organophosphate insecticides by phosphotriesterase  

E-Print Network [OSTI]

analogue. 14 The reaction of a thiol group with DTNB . . 20 The spectra of some of the P-0 bond-containing organophosphate insecticides and their hydrolysis products . . . The kinetic plots of the OP substrates where the rate of hydrolysis is plotted... and the efficiency in the 9 catalytic activity make PTE a potentially viable tool for the hydrolytic detoxification of OP insecticides-contaminated soils. ' Scheme 2 [I R, O ? & ? ORB 0 Not Present Oximes (P2-AM) D ? N=HC~Q CHa l II D H Late-coming Oxtme...

Zaitoun, Basel M.

2002-01-01T23:59:59.000Z

322

Microsecond Microfluidic Mixing for Investigation of Protein Folding Kinetics  

SciTech Connect (OSTI)

We have developed and characterized a mixer to study the reaction kinetics of protein folding on a microsecond timescale. The mixer uses hydrodynamic focusing of pressure-driven flow in a microfluidic channel to reduce diffusion times as first demonstrated by Knight et al.[1]. Features of the mixer include 1 {micro}s mixing times, sample consumptions of order 1 nl/s, loading sample volumes on the order of microliters, and the ability to manufacture in fused silica for compatibility with most spectroscopic methods.

Hertzog, D E; Santiago, J G; Bakajin, O

2003-06-25T23:59:59.000Z

323

A microfluidic device for investigating crystal nucleation kinetics  

E-Print Network [OSTI]

We have developed an original setup using microfluidic tools allowing one to produce continuously monodisperse microreactors ($\\approx 100$ nL), and to control their temperatures as they flow in the microdevice. With a specific microchannels geometry, we are able to apply large temperature quenches to droplets containing a KNO$_3$ solution (up to 50$^{\\circ}$C in 10 s), and then to follow nucleation kinetics at high supersaturations. By measuring the probability of crystal presence in the droplets as a function of time, we estimate the nucleation rate for different supersaturations, and confront our results to the classical nucleation theory.

Philippe Laval; Jean-Baptiste Salmon; Mathieu Joanicot

2006-12-20T23:59:59.000Z

324

Chemical Kinetic Modeling of Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of Fuels 2010 DOE

325

Chemical Kinetic Research on HCCI & Diesel Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of FuelsLaboratory

326

A kinetic model for the liquefaction of Texas lignite  

E-Print Network [OSTI]

shortages in the United States has led to investigations in alternative energy sources. Of particular interest is the lignite resource in Texas which is mainly situated in the east and central regions north of the Colorado River. There is an estimated...A KINETIC MODEL FOR THE LIQUEFACTION OF TEXAS LIGNITE 4 Thesis by SANDRA KAY BALKY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE y 1980 Major Subject...

Haley, Sandra Kay

1980-01-01T23:59:59.000Z

327

Electron kinetics in a microdischarge in nitrogen at atmospheric pressure  

SciTech Connect (OSTI)

Electron kinetics during a microdischarge in nitrogen at atmospheric pressure is studied using the one-dimensional Particle-in-Cell/Monte Carlo Collisions model. It is obtained that the electron energy distribution function can be divided into three parts, namely, the non-equilibrium low-energy part, the Maxwellian function at moderate energies, and the high-energy tail. Simulation results showed that the role of the high-energy tail of electron energy distribution increases, when the distance between electrodes increases.

Levko, Dmitry [LAPLACE (Laboratoire Plasma et Conversion d'Energie), Universite de Toulouse, UPS, INPT Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)] [LAPLACE (Laboratoire Plasma et Conversion d'Energie), Universite de Toulouse, UPS, INPT Toulouse, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

2013-12-14T23:59:59.000Z

328

Thermodynamic and kinetic control of the lateral Si wire growth  

SciTech Connect (OSTI)

Reproducible lateral Si wire growth has been realized on the Si (100) surface. In this paper, we present experimental evidence showing the unique role that carbon plays in initiating lateral growth of Si wires on a Si (100) substrate. Once initiated in the presence of ?5 ML of C, lateral growth can be achieved in the range of temperatures, T?=?450–650?°C, and further controlled by the interplay of the flux of incoming Si atoms with the size and areal density of Au droplets. Critical thermodynamic and kinetic aspects of the growth are discussed in detail.

Dedyulin, Sergey N., E-mail: sdedyuli@uwo.ca; Goncharova, Lyudmila V. [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7 (Canada)

2014-03-24T23:59:59.000Z

329

Kinetic Theory of Turbulent Multiphase Flow | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathan PershingrelocatesKayeAnalysis of MicrobialKinetic

330

A microrheological study of hydrogel kinetics and micro-heterogeneity  

E-Print Network [OSTI]

DOI 10.1140/epje/i2014-14044-y Regular Article Eur. Phys. J. E (2014) 37: 44 THE EUROPEAN PHYSICAL JOURNAL E A microrheological study of hydrogel kinetics and micro-heterogeneity Anders Aufderhorst-Roberts1,a, William J. Frith2, and Athene M. Donald... unique mechan- ical properties [5]. The range of available low-molecular-weight hydro- gelating systems has increased in recent years as their discovery has steadily relied more upon rational de- sign and less upon serendipity [6]. Hydrogelating sys- tems...

Aufderhorst-Roberts, Anders; Frith, William J.; Donald, Athene M.

2014-05-27T23:59:59.000Z

331

Pyrolysis Kinetics and Chemical Structure Considerations of a Green River Oil Shale and Its Derivatives.  

E-Print Network [OSTI]

??This work had the objective of determining both the kinetic parameters for the pyrolysis of oil shale and kerogen as well as using analytical techniques… (more)

Hillier, James L

2011-01-01T23:59:59.000Z

332

Comparison of Palladium and Platinum Water Gas Shift Kinetics Using Density Functional Theory Models.  

E-Print Network [OSTI]

??The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at low… (more)

Clay, John

2014-01-01T23:59:59.000Z

333

Comparison of palladium and platinum Water Gas Shift reaction kinetics using density functional theory models.  

E-Print Network [OSTI]

?? The Water Gas Shift (WGS) reaction can be either thermodynamically or kinetically limited, depending on process conditions. Improved catalysts are of particular interest at… (more)

Clay, John P.

2014-01-01T23:59:59.000Z

334

E-Print Network 3.0 - anodic reaction kinetics Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CELLS Summary: with electrochemical kinetics in active regions of anode and cathode of a SOFC. In the following section, the model... occurs by the following reactions. Oxidation...

335

E-Print Network 3.0 - atomistic kinetic monte Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science ; Physics 5 Mesoscopic model for dynamic simulations of carbon nanotubes Leonid V. Zhigilei* Summary: of the potential energy and kinetic energy of a 395...

336

E-Print Network 3.0 - analysing kinetic models Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

changes. Dynamics, stability... and control of reactor systems. Modeling neutronic and thermal processes. System characterization in time... kinetics and power plant dynamics, and...

337

Fundamental Mechanisms of Copper CMP – Passivation Kinetics of Copper in CMP Slurry Constituents  

E-Print Network [OSTI]

Tribochemical Mechanisms of Copper Chemical MechanicalE06-02 Fundamental Mechanisms of Copper CMP – PassivationKinetics of Copper in CMP Slurry Constituents Shantanu

Tripathi, Shantanu; Doyle, F M; Dornfeld, David

2009-01-01T23:59:59.000Z

338

E-Print Network 3.0 - axial kinetic energy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

axial flow fan systems. Despite... -vortex-driven flow structures to increase the energy efficiency of axial flow fan systems to provide high quality... the mean kinetic...

339

On spherically symmetric metric satisfying the positive kinetic energy coordinate condition  

E-Print Network [OSTI]

Generally speaking, there is a negative kinetic energy term in the Lagrangian of the Einstein-Hilbert action of general relativity; On the other hand, the negative kinetic energy term can be vanished by designating a special coordinate system. For general spherically symmetric metric, the question that seeking special coordinate system that satisfies the positive kinetic energy coordinate condition is referred to solving a linear first-order partial differential equation. And then, we present a metric corresponding to the Reissner-Nordstrom solution that satisfies the positive kinetic energy coordinate condition. Finally, we discuss simply the case of the Tolman metric.

T. Mei

2008-02-28T23:59:59.000Z

340

Kinetics and thermodynamics of hydrotreating synthetic middle distillates  

SciTech Connect (OSTI)

Middle distillates from the Tar Sands deposits in Alberta are an important component of diesel and jet fuels in the Canadian market. Commercial catalysts based on sulfided Ni-Mo and Ni-W are currently used to hydrogenate synthetic distillates to improve the cetane number and smoke point. In previous work {sup 13}C NMR was used to study the kinetics of overall hydrogenation of aromatics over sulfided Co-Mo, Ni-Mo and Ni-W catalysts. Arrhenius parameters were obtained for hydrogenation over sulfided Ni-W catalyst for a similar distillate feedstock. In the latter study, mass spectrometry was used to quantitate the three major aromatic hydrocarbon group types in the feed and products. In this study, liquid products from hydrotreating experiments with a hydrotreated distillate from delayed coking of Athabasca bitumen and sulfided Co-Mo and Ni-Mo catalysts have been analyzed by mass spectrometry. This completes a preliminary comparison of the kinetics of hydrogenation of alkylbenzenes, benzocycloparaffins and benzodicycloparaffins, the three major aromatic hydrocarbon types in these distillates.

Fisher, I.P. (Petro-Canada R and D Dept., Sheridan Park, Ontario (Canada)); Wilson, M.F. (CANMET, Ottawa, Ontario (Canada))

1987-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Observation of a crossover in kinetic aggregation of Palladium colloids  

E-Print Network [OSTI]

We use field emission scanning electron microscope (FE-SEM) to investigate the growth of palladium colloids over the surface of thin films of WO3/glass. The film is prepared by Pulsed Laser Deposition (PLD) at different temperatures. A PdCl2 (aq) droplet is injected on the surface and in the presence of steam hydrogen the droplet is dried through a reduction reaction process. Two distinct aggregation regimes of palladium colloids are observed over the substrates. We argue that the change in aggregation dynamics emerges when the measured water drop Contact Angel (CA) for the WO3/glass thin films passes a certain threshold value, namely CA = 46 degrees, where a crossover in kinetic aggregation of palladium colloids occurs. Our results suggest that the mass fractal dimension of palladium aggregates follows a power-law behavior. The fractal dimension (Df) in the fast aggregation regime, where the measured CA values vary from 27 up to 46 degrees, according to different substrate deposition temperatures, is Df = 1.75 (0.02). This value of Df is in excellent agreement with kinetic aggregation of other colloidal systems in fast aggregation regime. Whereas for the slow aggregation regime, with CA = 58 degrees, the fractal dimension changes abruptly to Df=1.92 (0.03). We have also used a modified Box-Counting method to calculate fractal dimension of gray-level images and observe that the crossover at around CA = 46 degrees remains unchanged.

M. Ghafari; M. Ranjbar; S. Rouhani

2014-12-27T23:59:59.000Z

342

Progress in Chemical Kinetic Modeling for Surrogate Fuels  

SciTech Connect (OSTI)

Gasoline, diesel, and other alternative transportation fuels contain hundreds to thousands of compounds. It is currently not possible to represent all these compounds in detailed chemical kinetic models. Instead, these fuels are represented by surrogate fuel models which contain a limited number of representative compounds. We have been extending the list of compounds for detailed chemical models that are available for use in fuel surrogate models. Detailed models for components with larger and more complicated fuel molecular structures are now available. These advancements are allowing a more accurate representation of practical and alternative fuels. We have developed detailed chemical kinetic models for fuels with higher molecular weight fuel molecules such as n-hexadecane (C16). Also, we can consider more complicated fuel molecular structures like cyclic alkanes and aromatics that are found in practical fuels. For alternative fuels, the capability to model large biodiesel fuels that have ester structures is becoming available. These newly addressed cyclic and ester structures in fuels profoundly affect the reaction rate of the fuel predicted by the model. Finally, these surrogate fuel models contain large numbers of species and reactions and must be reduced for use in multi-dimensional models for spark-ignition, HCCI and diesel engines.

Pitz, W J; Westbrook, C K; Herbinet, O; Silke, E J

2008-06-06T23:59:59.000Z

343

Hydro-kinetic approach to relativistic heavy ion collisions  

E-Print Network [OSTI]

We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in \\textit{A}+\\textit{A} collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time ($\\tau_{\\text{rel}}$) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small $\\tau_{\\text{rel}}$ it also allows one to catch the viscous effects in hadronic component - hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion $m_{T}$ spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher $p_{T}$ particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.

S. V. Akkelin; Y. Hama; Iu. A. Karpenko; Yu. M. Sinyukov

2008-08-28T23:59:59.000Z

344

Solar kinetics` photovoltaic concentrator module and tracker development  

SciTech Connect (OSTI)

Solar Kinetics, Inc., has been developing a point-focus concentrating photovoltaic module and tracker system under contract to Sandia National Laboratories. The primary focus of the contract was to achieve a module design that was manufacturable and passed Sandia`s environmental testing. Nine modules of two variations were assembled, tested, and characterized in Phase 1, and results of these tests were promising, with module efficiency approaching the theoretical limit achievable with the components used. The module efficiency was 11.9% at a solar irradiance of 850 W/m{sup 2} and an extrapolated cell temperature of 25{degrees}C. Improvements in module performance are anticipated as cell efficiencies meet their expectations. A 2-kW tracker and controller accommodating 20 modules was designed, built, installed, and operated at Solar Kinetics` test site. The drive used many commercially available components in an innovative arrangement to reduce cost and increase reliability. Backlash and bearing play were controlled by use of preloaded, low slip-stick, synthetic slide bearings. The controller design used a standard industrial programmable logic controller to perform ephemeris calculations, operate the actuators, and monitor encoders.

White, D.L.; Howell, B. [Solar Kinetics, Inc., Dallas, TX (United States)

1995-11-01T23:59:59.000Z

345

A comprehensive kinetics model for CO oxidation during char combustion  

SciTech Connect (OSTI)

The most important parameter in representing energy feedback to a particle during char combustion concerns the oxidation of CO to CO/sub 2/. If substantial oxidation of CO occurs near a particle, then the greater heat of combustion for the complete oxidation of carbon to CO/sub 2/ (94.1 kcal/mole vs. 26.4 kcal/mole for oxidation to CO) is available for energy feedback mechanisms. ''Energy feedback'' is here defined as any situation in which an individual particle receives a significant fraction of its heat of combustion directly, through the localized oxidation of emitted combustible species, i.e. CO. Conversely, if the oxidation of CO does not occur near a particle, then energy feedback will occur only indirectly, through heating of the bulk gas. The primary reaction product at the particle surface during char combustion is generally considered to be CO, and the location of the subsequent CO oxidation zone plays a very important role in determining the particle temperature. Ayling and Smith performed experimental and modeling work which indicates that CO oxidation is not of major importance under the conditions they investigated, although they noted the need for improved accuracy in measuring char reactivities, as well as for better modeling of the gas phase CO oxidation kinetics. The modeling work presented in this paper attempts to develop an improved understanding of the boundary layer oxidation of CO through the use of a comprehensive set of kinetic expressions.

Haussmann, G.; Kruger, C.

1986-04-01T23:59:59.000Z

346

Pulsed laser kinetic studies of liquids under high pressure  

SciTech Connect (OSTI)

A high pressure apparatus constructed for measuring the rates of reactions in liquids under pressures ranging from 1 atm to 2000 atm has been used to measure the complexation kinetics of molybdenum hexacarbonyl reacting with 2,2-bipyridine, 4,4{prime}-dimethyl-2-2{prime}-bipyridine and 4,4{prime}-diphenyl-2-2{prime} bipyridine in toluene. Pentacarbonyl reaction intermediates are created by a 10 nsec flash of frequency tripled Nd:YAG laser light. Measured activation volumes for chelate ligand ring closure indicate a change in mechanism from associative interchange to dissociative interchange as steric hindrance increases. A similar high pressure kinetics study of molybdenum carbonyl complexation by several substituted phenanthrolines is now well advanced that indicates that with the more rigid phenanthroline ligands steric effects from bulky substituents have less effect on the ring closure mechanism than in the case of the bipyridine ligands. An experimental concentration dependence of the fluorescence quantum yield of cresyl violet has been harmonized with previously published contradictory reports. Fluorescence of cresyl violet in various solvents and in micellar systems has also been systematically explored.

Eyring, E.M.

1991-11-25T23:59:59.000Z

347

Kinetic Alfvén solitary and rogue waves in superthermal plasmas  

SciTech Connect (OSTI)

We investigate the small but finite amplitude solitary Kinetic Alfvén waves (KAWs) in low ? plasmas with superthermal electrons modeled by a kappa-type distribution. A nonlinear Korteweg-de Vries (KdV) equation describing the evolution of KAWs is derived by using the standard reductive perturbation method. Examining the dependence of the nonlinear and dispersion coefficients of the KdV equation on the superthermal parameter ?, plasma ?, and obliqueness of propagation, we show that these parameters may change substantially the shape and size of solitary KAW pulses. Only sub-Alfvénic, compressive solitons are supported. We then extend the study to examine kinetic Alfvén rogue waves by deriving a nonlinear Schrödinger equation from the KdV equation. Rational solutions that form rogue wave envelopes are obtained. We examine how the behavior of rogue waves depends on the plasma parameters in question, finding that the rogue envelopes are lowered with increasing electron superthermality whereas the opposite is true when the plasma ? increases. The findings of this study may find applications to low ? plasmas in astrophysical environments where particles are superthermally distributed.

Bains, A. S.; Li, Bo, E-mail: bbl@sdu.edu.cn; Xia, Li-Dong [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, 264209 Weihai (China)] [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, 264209 Weihai (China)

2014-03-15T23:59:59.000Z

348

Kinetics of Elementary Processes Relevant to Incipient Soot Formation  

SciTech Connect (OSTI)

Soot formation and abatement processes are some of the most important and challenging problems in hydrocarbon combustion. The key reactions involved in the formation of polycyclic aromatic hydrocarbons (PAH�s), the precursors to soot, remain elusive. Small aromatic species such as C5H5, C6H6 and their derivatives are believed to play a pivotal role in incipient soot formation. The goal of this project is to establish a kinetic database for elementary reactions relevant to soot formation in its incipient stages. In the past year, we have completed by CRDS the kinetics for the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 +O2 reaction and the formation of C10H7O2 in the C10H7 + O2 reaction by directly monitoring C6H5C2H2O2 and C10H7O2 radicals in the visible region; their mechanisms have been elucidated computationally by quantum-chemical calculations. The O + C2H5OH reaction has been studied experimentally and computationally and the OH + HNCN reaction has been investigated by ab initio molecular orbital calculation. In addition, a new pulsed slit molecular beam system has been constructed and tested for spectroscopic studies of aromatic radicals and their derivatives by the cavity ringdown technique (CRDS).

M. C. Lin; M. C. Heaven

2008-04-30T23:59:59.000Z

349

Alterations in glucose kinetics induced by pentobarbital anesthesia  

SciTech Connect (OSTI)

Because pentobarbital is often used in investigations related to carbohydrate metabolism, the in vivo effect of this drug on glucose homeostasis was studied. Glucose kinetics assessed by the constant intravenous infusion of (6-{sup 3}H)- and (U-{sup 14}C)glucose, were determined in three groups of catheterized fasted rats: conscious, anesthetized and body temperature maintained, and anesthetized but body temperature not maintained. After induction of anesthesia, marked hypothermia developed in rats not provided with external heat. Anesthetized rats that developed hypothermia showed a decrease in mean arterial blood pressure (25%) and heart rate (40%). Likewise, the plasma lactate concentration and the rates of glucose appearance, recycling, and metabolic clearance were reduced by 30-50% in the hypothermic anesthetized rats. Changes in whole-body carbohydrate metabolism were prevented when body temperature was maintained. Because plasma pentobarbital levels were similar between the euthermic and hypothermic rats during the first 2 h of the experiment, the rapid reduction in glucose metabolism in this latter group appears related to the decrease in body temperature. The continuous infusion of epinephrine produced alterations in glucose kinetics that were not different between conscious animals and anesthetized rats with body temperature maintained. Thus pentobarbital-anesthetized rats became hypothermic when kept at room temperature and exhibited marked decreases in glucose metabolism. Such changes were absent when body temperature was maintained during anesthesia.

Lang, C.H.; Bagby, G.J.; Hargrove, D.M.; Hyde, P.M.; Spitzer, J.J. (Louisiana State Univ. Medical Center, New Orleans (USA))

1987-12-01T23:59:59.000Z

350

Kinetic theory and numerical simulations of two-species coagulation  

E-Print Network [OSTI]

In this work we study the stochastic process of two-species coagulation. This process consists in the aggregation dynamics taking place in a ring. Particles and clusters of particles are set in this ring and they can move either clockwise or counterclockwise. They have a probability to aggregate forming larger clusters when they collide with another particle or cluster. We study the stochastic process both analytically and numerically. Analytically, we derive a kinetic theory which approximately describes the process dynamics. One of our strongest assumptions in this respect is the so called well-stirred limit, that allows neglecting the appearance of spatial coordinates in the theory, so this becomes effectively reduced to a zeroth dimensional model. We determine the long time behavior of such a model, making emphasis in one special case in which it displays self-similar solutions. In particular these calculations answer the question of how the system gets ordered, with all particles and clusters moving in the same direction, in the long time. We compare our analytical results with direct numerical simulations of the stochastic process and both corroborate its predictions and check its limitations. In particular, we numerically confirm the ordering dynamics predicted by the kinetic theory and explore properties of the realizations of the stochastic process which are not accessible to our theoretical approach.

Carlos Escudero; Fabricio Macia; Raul Toral; Juan J. L. Velazquez

2014-04-19T23:59:59.000Z

351

Kinetic Modeling of Toluene Oxidation for Surrogate Fuel Applications  

SciTech Connect (OSTI)

New environmental issues, like the effect of combustion-generated greenhouse gases, provide motivation to better characterize oxidation of hydrocarbons. Transportation, in particular, significantly contributes to energy consumption and CO{sub 2} emissions. Kinetic studies about the combustion of fuels under conditions typical of internal combustion engines provides important support to improve mechanism formulation and to eventually provide better computational tools that can be used to increase the engine performance. It is foreseeable that at least in the next 30 years the main transportation fuels will be either gasoline or diesel. Unfortunately, these fuels are very complex mixtures of many components. Moreover, their specifications and performance requirements significantly change the composition of these fuels: gasoline and diesel mixtures are different if coming from different refineries or they are different from winter to summer. At the same time a fuel with a well defined and reproducible composition is needed for both experimental and modeling work. In response to these issues, surrogate fuels are proposed. Surrogate fuels are defined as mixtures of a small number of hydrocarbons whose relative concentrations is adjusted in order to approximate the chemical and physical properties of a real fuel. Surrogate fuels are then very useful both for the design of reproducible experimental tests and also for the development of reliable kinetic models. The primary reference fuels (PRF) are a typical and old example of surrogate fuel: n-heptane and iso-octane mixtures are used to reproduce antiknock propensity of complex mixtures contained in a gasoline. PRFs are not able to surrogate gasoline in operating conditions different from standard ones and new surrogates have been recently proposed. Toluene is included in all of them as a species able to represent the behavior of aromatic compounds. On the other side, the toluene oxidation chemistry is not so well established and uncertainties still remain in the mechanism. This is especially true in the low temperature regime (< 850K). In these conditions, the toluene reactivity is too low to be conveniently investigated. Nonetheless, gasoline surrogates work in the engine at low temperatures, because of the presence of very reactive alkanes. The effect of these component interactions have to be taken into account. This work's aim is to present the model activity carried out by two different research groups, comparing the main pathways and results, matching data carried out in different devices both for pure toluene and mixtures. This is the starting point for a further activity to improve the two kinetic schemes.

Frassoldati, A; Mehl, M; Fietzek, R; Faravelli, T; Pitz, W J; Ranzi, E

2009-04-21T23:59:59.000Z

352

Q-branch Raman scattering and modern kinetic thoery  

SciTech Connect (OSTI)

The program is an extension of previous APL work whose general aim was to calculate line shapes of nearly resonant isolated line transitions with solutions of a popular quantum kinetic equation-the Waldmann-Snider equation-using well known advanced solution techniques developed for the classical Boltzmann equation. The advanced techniques explored have been a BGK type approximation, which is termed the Generalized Hess Method (GHM), and conversion of the collision operator to a block diagonal matrix of symmetric collision kernels which then can be approximated by discrete ordinate methods. The latter method, which is termed the Collision Kernel method (CC), is capable of the highest accuracy and has been used quite successfully for Q-branch Raman scattering. The GHM method, not quite as accurate, is applicable over a wider range of pressures and has proven quite useful.

Monchick, L. [The Johns Hopkins Univ., Laurel, MD (United States)

1993-12-01T23:59:59.000Z

353

Desorption and sublimation kinetics for fluorinated aluminum nitride surfaces  

SciTech Connect (OSTI)

The adsorption and desorption of halogen and other gaseous species from surfaces is a key fundamental process for both wet chemical and dry plasma etch and clean processes utilized in nanoelectronic fabrication processes. Therefore, to increase the fundamental understanding of these processes with regard to aluminum nitride (AlN) surfaces, temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) have been utilized to investigate the desorption kinetics of water (H{sub 2}O), fluorine (F{sub 2}), hydrogen (H{sub 2}), hydrogen fluoride (HF), and other related species from aluminum nitride thin film surfaces treated with an aqueous solution of buffered hydrogen fluoride (BHF) diluted in methanol (CH{sub 3}OH). Pre-TPD XPS measurements of the CH{sub 3}OH:BHF treated AlN surfaces showed the presence of a variety of Al-F, N-F, Al-O, Al-OH, C-H, and C-O surfaces species in addition to Al-N bonding from the AlN thin film. The primary species observed desorbing from these same surfaces during TPD measurements included H{sub 2}, H{sub 2}O, HF, F{sub 2}, and CH{sub 3}OH with some evidence for nitrogen (N{sub 2}) and ammonia (NH{sub 3}) desorption as well. For H{sub 2}O, two desorption peaks with second order kinetics were observed at 195 and 460?°C with activation energies (E{sub d}) of 51?±?3 and 87?±?5?kJ/mol, respectively. Desorption of HF similarly exhibited second order kinetics with a peak temperature of 475?°C and E{sub d} of 110?±?5?kJ/mol. The TPD spectra for F{sub 2} exhibited two peaks at 485 and 585?°C with second order kinetics and E{sub d} of 62?±?3 and 270?±?10?kJ/mol, respectively. These values are in excellent agreement with previous E{sub d} measurements for desorption of H{sub 2}O from SiO{sub 2} and AlF{sub x} from AlN surfaces, respectively. The F{sub 2} desorption is therefore attributed to fragmentation of AlF{sub x} species in the mass spectrometer ionizer. H{sub 2} desorption exhibited an additional high temperature peak at 910?°C with E{sub d}?=?370?±?10?kJ/mol that is consistent with both the dehydrogenation of surface AlOH species and H{sub 2} assisted sublimation of AlN. Similarly, N{sub 2} exhibited a similar higher temperature desorption peak with E{sub d}?=?535?±?40?kJ/mol that is consistent with the activation energy for direct sublimation of AlN.

King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

2014-09-01T23:59:59.000Z

354

Kinetics of the heterogeneous photocatalytic oxidation of isopropanol  

SciTech Connect (OSTI)

Intrinsic kinetics for the ambient temperature photocatalytic oxidation (PCO) of dilute isopropanol (IPA) in humid air over near-ultraviolet (UV) irradiated titanium dioxide have been determined using a continuous microreactor flow system. The IPA disappearance rate exhibits a Langmuir-Hinshelwood-Hougen-Watson (LHHW) type dependence on IPA concentration. The rate is nearly first order in UV irradiance at low UV flux. The rate is independent of relative humidity R{sub H} at low R{sub H} levels, but is enhanced by water vapor concentration at higher levels. This relatively unique behavior is likely a direct consequence of the adsorption strength of alcohols on titania, which in general is considerably higher than the corresponding adsorption strengths for other classes of organic compounds. In addition to carbon dioxide, acetone is generated as a product of IPA destruction. This acetone is itself photocatalytically oxidized to carbon dioxide and water vapor at longer residence time. 10 refs., 3 figs.

Ameen, M.; Kalaga, M.; Annapragada, R.; Raupp, G.B. [Arizona State Univ., Tempe, AZ (United States)

1996-12-31T23:59:59.000Z

355

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-02-13T23:59:59.000Z

356

Chemical Kinetic Models for HCCI and Diesel Combustion  

SciTech Connect (OSTI)

Hydrocarbon fuels for advanced combustion engines consist of complex mixtures of hundreds or even thousands of different components. These components can be grouped into a number of chemically distinct classes, consisting of n-paraffins, branched paraffins, cyclic paraffins, olefins, oxygenates, and aromatics. Biodiesel contains its own unique chemical class called methyl esters. The fractional amounts of these chemical classes are quite different in gasoline, diesel fuel, oil-sand derived fuels and bio-derived fuels, which contributes to the very different combustion characteristics of each of these types of combustion systems. The objectives of this project are: (1) Develop detailed chemical kinetic models for fuel components used in surrogate fuels for diesel and HCCI engines; (2) Develop surrogate fuel models to represent real fuels and model low temperature combustion strategies in HCCI and diesel engines that lead to low emissions and high efficiency; and (3) Characterize the role of fuel composition on low temperature combustion modes of advanced combustion engines.

Pitz, W J; Westbook, C K; Mehl, M

2008-10-30T23:59:59.000Z

357

Estimating The Thermodynamics And Kinetics Of Chlorinated Hydrocarbon Degradation  

SciTech Connect (OSTI)

Many different degradation reactions of chlorinated hydrocarbons are possible in natural ground waters. In order to identify which degradation reactions are important, a large number of possible reaction pathways must be sorted out. Recent advances in ab initio electronic structure methods have the potential to help identify relevant environmental degradation reactions by characterizing the thermodynamic properties of all relevant contaminant species and intermediates for which experimental data is usually not available, as well as provide activation energies for relevant pathways. In this paper, strategies based on ab initio electronic structure methods for estimating thermochemical and kinetic properties of reactions with chlorinated hydrocarbons are presented. Particular emphasis is placed on strategies that are computationally fast and can be used for large organochlorine compounds such as 4,4?-DDT.

Bylaska, Eric J.

2006-08-01T23:59:59.000Z

358

[Grain boundary and interface kinetics during ion irradiation  

SciTech Connect (OSTI)

Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications.

Atwater, H.A.

1991-12-31T23:59:59.000Z

359

(Grain boundary and interface kinetics during ion irradiation)  

SciTech Connect (OSTI)

Proposed here is renewed support of a research program focused on interface motion and phase transformation during ion irradiation, with emphasis on elemental semiconductors. Broadly speaking, the aims of this program are to explore defect kinetics in amorphous and crystalline semiconductors, and to relate defect dynamics to interface motion and phase transformations. Over the last three years, we initiated a program under DOE support to explore crystallization and amorphization of elemental semiconductors under irradiation. This research has enabled new insights about the nature of defects in amorphous semiconductors and about microstructural evolution in the early stages of crystallization. In addition, we have demonstrated almost arbitrary control over the relative rates of crystal nucleation and crystal growth in silicon. As a result, the impinged grain microstructure of thin (100 nm) polycrystalline films crystallized under irradiation can be controlled with grain sizes ranging from a few nanometers to several micrometers, which may have interesting technological implications.

Atwater, H.A.

1991-01-01T23:59:59.000Z

360

Testing a dissipative kinetic k-essence model  

E-Print Network [OSTI]

In this work, we present a study of a purely kinetic k-essence model, characterized basically by a parameter $\\alpha$ in presence of a bulk dissipative term, whose relationship between viscous pressure $\\Pi$ and energy density $\\rho$ of the background follows a polytropic type law $\\Pi \\propto \\rho^{\\lambda+1/2}$, where $\\lambda$, in principle, is a parameter without restrictions. Analytical solutions for the energy density of the k-essence field are found in two specific cases: $\\lambda=1/2$ and $\\lambda=(1-\\alpha)/2\\alpha$, and then we show that these solutions posses the same functional form than the non-viscous counterpart. Finally, both approach are contrasted with observational data from type Ia supernova, and the most recent Hubble parameter measurements, and therefore, the best values for the parameters of the theory are founds.

Cardenas, V H; Villanueva, J R

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2014-05-13T23:59:59.000Z

362

Pulsed laser kinetic studies of liquids under high pressure  

SciTech Connect (OSTI)

A laser flash photolysis kinetic study of 2,2{prime}-bipyridine bidentate chelating ligands with one claw in the first coordination sphere of a molybdenum carbonyl complex has been completed at pressures up to 150 MPa. The reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2{prime}-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Stability constants for lithium ion complexes with crown ethers in a room temperature molten salt, fluorescence quantum yields for cresyl violet and several other dyes in solution, and the oxidation of alcohols by OsO{sub 4} have also been investigated.

Eyring, E.M.

1992-09-22T23:59:59.000Z

363

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T. A. [Knoxville, TN

2010-12-14T23:59:59.000Z

364

Mass independent kinetic energy reducing inlet system for vacuum environment  

DOE Patents [OSTI]

A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

Reilly, Peter T.A.

2013-12-03T23:59:59.000Z

365

On a Broken Formal Symmetry between Kinetic and Gravitational Energy  

E-Print Network [OSTI]

Historically, the discovery of symmetries has played an important role in the progress of our fundamental understanding of nature. This paper will demonstrate that there exists in Newtonian theory in a spherical gravitational field a formal symmetry between the kinetic (KE) and gravitational potential energy (GPE) of a test mass. Put differently, there exists a way of expressing GPE such that the form of the mathematical expression remains invariant under an interchange of KE and GPE. When extended to relativity by a suitable assumption, it leads to a framework that bridges the general relativistic and Newtonian conceptions of gravitational energy, even though the symmetry is broken except in the infinitesimal limit. Recognizing this symmetry at infinitesimal scales makes it possible to write a relativistic equation of an individual graviton, the properties of which under under one interpretation may be unexpected.

Armin Nikkhah Shirazi

2014-07-16T23:59:59.000Z

366

Kinetic and Fluid Ballooning Stability with Anisotropic Energetic Electron Layers  

SciTech Connect (OSTI)

A kinetic ballooning mode theory is developed from the gyrokinetic equation in the frequency range for which the ions are fluid, the thermal electron response is adiabatic and the hot electrons are non-interacting due to their large drift velocity. Trapped particle effects are ignored, The application of the quasineutrality condition together with the parallel and binomial components of Ampere's Law reduces the gyrokinetic equation to a second order ordinary differential equation along the equilibrium magnetic field lines. The instability dynamics are dominated by the pressure gradients of the thermal species in the fluid magnetohydrodynamic limit. The resulting equation combines features of both the Kruskal-Oberman energy principle and the rigid hot particle energy principle proposed by Johnson et al. to model the Astron device.

Cooper, W. A. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, CH-1015 Lausanne (Switzerland)

2006-11-30T23:59:59.000Z

367

Collective Modes of Chiral Kinetic Theory in Magnetic Field  

E-Print Network [OSTI]

We study collective excitations in systems described by chiral kinetic theory in external magnetic field. We consider high-temperature weak-coupling plasma, as well as high-density Landau Fermi liquid with interaction not restricted to be weak. We show that chiral magnetic wave (CMW) emerges in hydrodynamic regime (at frequencies smaller than collision relaxation rate) and the CMW velocity is determined by thermodynamic properties only. We find that in a plasma of opposite chiralities, at frequencies smaller than the chirality-flipping rate, the CMW excitation turns into a vector-like diffusion mode. In the interacting Fermi liquid, the CMW turns into the Landau zero sound mode in the high-frequency collisionless regime.

Mikhail Stephanov; Ho-Ung Yee; Yi Yin

2014-12-31T23:59:59.000Z

368

Collective Modes of Chiral Kinetic Theory in Magnetic Field  

E-Print Network [OSTI]

We study collective excitations in systems described by chiral kinetic theory in external magnetic field. We consider high-temperature weak-coupling plasma, as well as high-density Landau Fermi liquid with interaction not restricted to be weak. We show that chiral magnetic wave (CMW) emerges in hydrodynamic regime (at frequencies smaller than collision relaxation rate) and the CMW velocity is determined by thermodynamic properties only. We find that in a plasma of opposite chiralities, at frequencies smaller than the chirality-flipping rate, the CMW excitation turns into a vector-like diffusion mode. In the interacting Fermi liquid, the CMW turns into the Landau zero sound mode in the high-frequency collisionless regime.

Stephanov, Mikhail; Yin, Yi

2015-01-01T23:59:59.000Z

369

Synchronous parallel kinetic Monte Carlo Diffusion in Heterogeneous Systems  

SciTech Connect (OSTI)

A new hybrid Molecular Dynamics-kinetic Monte Carlo algorithm has been developed in order to study the basic mechanisms taking place in diffusion in concentrated alloys under the action of chemical and stress fields. Parallel implementation of the k-MC part based on a recently developed synchronous algorithm [1. Compo Phys. 227 (2008) 3804-3823] resorting on the introduction of a set of null events aiming at synchronizing the time for the different subdomains, added to the parallel efficiency of MD, provides the computer power required to evaluate jump rates 'on the flight', incorporating in this way the actual driving force emerging from chemical potential gradients, and the actual environment-dependent jump rates. The time gain has been analyzed and the parallel performance reported. The algorithm is tested on simple diffusion problems to verify its accuracy.

Martinez Saez, Enrique [Los Alamos National Laboratory; Hetherly, Jeffery [Los Alamos National Laboratory; Caro, Jose A [Los Alamos National Laboratory

2010-12-06T23:59:59.000Z

370

Atomistic Kinetic Monte Carlo Simulations of Polycrystalline Copper Electrodeposition  

E-Print Network [OSTI]

A high-fidelity kinetic Monte Carlo (KMC) simulation method (T. Treeratanaphitak, M. Pritzker, N. M. Abukhdeir, Electrochim. Acta 121 (2014) 407--414) using the semi-empirical multi-body embedded-atom method (EAM) potential has been extended to model polycrystalline metal electrodeposition. The presented KMC-EAM method enables true three-dimensional atomistic simulations of electrodeposition over experimentally relevant timescales. Simulations using KMC-EAM are performed over a range of overpotentials to predict the effect on deposit texture evolution. Results show strong agreement with past experimental results both with respect to deposition rates on various copper surfaces and roughness-time power law behaviour. It is found that roughness scales with time $\\propto t^\\beta$ where $\\beta=0.62 \\pm 0.12$, which is in good agreement with past experimental results. Furthermore, the simulations provide insights into sub-surface deposit morphologies which are not directly accessible from experimental measurements.

Treeratanaphitak, Tanyakarn; Abukhdeir, Nasser Mohieddin

2014-01-01T23:59:59.000Z

371

An Experimental and Kinetic Modeling Study of Methyl Decanoate Combustion  

SciTech Connect (OSTI)

Biodiesel is typically a mixture of long chain fatty acid methyl esters for use in compression ignition engines. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This research study presents new combustion data for methyl decanoate in an opposed-flow diffusion flame. An improved detailed chemical kinetic model for methyl decanoate combustion is developed, which serves as the basis for deriving a skeletal mechanism via the direct relation graph method. The novel skeletal mechanism consists of 648 species and 2998 reactions. This mechanism well predicts the methyl decanoate opposed-flow diffusion flame data. The results from the flame simulations indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular weight oxygenated compounds such as carbon monoxide, formaldehyde, and ketene.

Sarathy, S M; Thomson, M J; Pitz, W J; Lu, T

2010-02-19T23:59:59.000Z

372

Kinetically determined shapes of grain boundaries in CVD graphene  

E-Print Network [OSTI]

Predicting the shape of grain boundaries is essential to control results of the growth of large graphene crystals. A global energy minimum search predicting the most stable final structure contradicts experimental observations. Here we present Monte Carlo simulation of kinetic formation of grain boundaries (GB) in graphene during collision of two growing graphene flakes. Analysis of the resulting GBs for the full range of misorientation angles $\\alpha$ allowed us to identify a hidden (from post facto analysis such as microscopy) degree of freedom - the edge misorientation angle $\\beta$. Edge misorientation characterizes initial structure rather than final structure and therefore provides more information about growth conditions. Use of $\\beta$ enabled us to explain disagreements between the experimental observations and theoretical work. Finally, we report an analysis of an interesting special case of zero-tilt GBs for which structure is determined by two variables describing the relative shift of initial isl...

Bets, Ksenia V; Yakobson, Boris I

2014-01-01T23:59:59.000Z

373

Catalysis Letters Vol. 76, No. 12, 2001 35 Second order isothermal desorption kinetics  

E-Print Network [OSTI]

cycles of controlled heating and cooling of the sample, instead of the standard linear heat- ing rates, the kinetics of CO adsorption and desorption from Pd(110) [5], NH3/Re(0001) [6] monitored by optical second desorption that corresponds to second order de- sorption kinetics. Assuming high enough pumping speed

Asscher, Micha

374

Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows  

E-Print Network [OSTI]

Gas-Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows Wei Liao and Li-Shi Luo Old. The gas-kinetic schemes are validated with simulations of the hypersonic flow past a hollow flare at Mach and simulation of complex hypersonic flows become very challenging for computa- tional fluid dynamics (CFD) [1

Xu, Kun

375

Gas Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows  

E-Print Network [OSTI]

Gas Kinetic Scheme for Continuum and Near-Continuum Hypersonic Flows Wei Liao and Li-Shi Luo Old for the near-continuum flows. The gas-kinetic schemes are validated with simulations of the hypersonic flow thickness, modeling and simulation of complex hypersonic flows become very challenging for computational

Luo, Li-Shi

376

On the kinetic equation approach to pair production by time-dependent electric field  

E-Print Network [OSTI]

We investigate the quantum kinetic approach to pair production from vacuum by time-dependent electric field. Equivalence between this approach and the more familiar S-matrix approach is explicitly established for both scalar and fermion cases. For the particular case of a constant electric field exact solution for kinetic equations is provided and the accuracy of low-density approximation is estimated.

A. M. Fedotov; E. G. Gelfer; K. Yu. Korolev; S. A. Smolyansky

2010-08-12T23:59:59.000Z

377

Kinetic Part-Feeding Models for Assembly Lines in Automotive Industries  

E-Print Network [OSTI]

Kinetic Part-Feeding Models for Assembly Lines in Automotive Industries Michael Herty, Lena.ziegler@daimler.com. #12;KINETIC PART­FEEDING MODELS FOR ASSEMBLY LINES IN AUTOMOTIVE INDUSTRIES MICHAEL HERTY, LENA in automotive industries by models based on partial differential equations.The basic idea consists

Noelle, Sebastian

378

Zero electron kinetic energy spectroscopy of the ArCl anion Thomas Lenzer,a)  

E-Print Network [OSTI]

and the neutral complexes are observed in the ZEKE spectra. From our spectroscopic data we construct modelZero electron kinetic energy spectroscopy of the ArCl anion Thomas Lenzer,a) Ivan Yourshaw, Berkeley, California 94720 Received 19 January 1999; accepted 23 February 1999 Zero electron kinetic energy

Neumark, Daniel M.

379

Zero electron kinetic energy spectroscopy of the XeCl Thomas Lenzer,a)  

E-Print Network [OSTI]

measurements for the neutral state we construct a Morse­Morse-switching­van der Waals model potential functionZero electron kinetic energy spectroscopy of the XeCl� anion Thomas Lenzer,a) Ivan Yourshaw, Berkeley, California 94720 Received 9 November 2001; accepted 21 December 2001 Zero electron kinetic energy

Neumark, Daniel M.

380

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE  

E-Print Network [OSTI]

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE TRANSPORT . The radiative transport equations, satisfied by the Wigner function for random acoustic waves, present#usive approximation of the radiative transport equation. 1. Introduction We consider a class of kinetic models

Tzavaras, Athanasios E.

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE  

E-Print Network [OSTI]

HYDRODYNAMIC LIMITS FOR KINETIC EQUATIONS AND THE DIFFUSIVE APPROXIMATION OF RADIATIVE TRANSPORT of the radiative transport equation. 1. Introduction We consider a class of kinetic models equipped with a single. A general compactness frame- work is obtained for the diffusive scaling in L1 . The radiative transport

Tzavaras, Athanasios E.

382

RIS-M-2366 KINETICS OF THE REACTION OF HYDROXYL RADICALS WITH ETHANE AND  

E-Print Network [OSTI]

produced by pulse radiolysis of water vapour and the kinetics of OH was followed by kinetic spectroscopy studied at atmospheric pressure and over the temperature range 300-400 K. Hydroxyl radicals were produced by pulse radiolysis of water vapour and the decay rate was studied by monitoring the tran- sient light

383

Materials Science Forum, Vols. 426432, 2003, pp. 3542. Advances in the Kinetic Theory of Carbide Precipitation  

E-Print Network [OSTI]

Materials Science Forum, Vols. 426­432, 2003, pp. 35­42. Advances in the Kinetic Theory of Carbide Pembroke Street, Cambridge CB2 3QZ, U.K., www.msm.cam.ac.uk/phase­trans Keywords : Carbides, kinetics and reversion of carbides can determine the quality of steels. This paper is a review of efforts towards better

Cambridge, University of

384

Kinetic Theories of Geodesic Acoustic Modes: Radial Structure, Linear Excitation by Energetic Particles and Nonlinear Saturation  

E-Print Network [OSTI]

Kinetic Theories of Geodesic Acoustic Modes: Radial Structure, Linear Excitation by Energetic, Vol.13, No.3, Jun 2011 Kinetic Theories of Geodesic Acoustic Modes: Radial Structure, Linear, Univ. of California, Irvine CA 92697-4575, USA Abstract Geodesic acoustic modes (GAMs) are oscillating

Zonca, Fulvio

385

Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames  

E-Print Network [OSTI]

analyses of kinetic path ways and species transport on flame extinction were also conducted. The results and emission properties, such as the ignition delay times, extinction limits, flame speeds, species profilesKinetic effects of toluene blending on the extinction limit of n-decane diffusion flames Sang Hee

Ju, Yiguang

386

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries  

E-Print Network [OSTI]

Kinetics of Initial Lithiation of Crystalline Silicon Electrodes of Lithium-Ion Batteries Matt phase. KEYWORDS: Lithium-ion batteries, silicon, kinetics, plasticity Lithium-ion batteries already at the electrolyte/lithiated silicon interface, diffusion of lithium through the lithiated phase, and the chemical

387

Three distinct kinetic groupings of the synaptotagmin family: Candidate sensors for rapid and  

E-Print Network [OSTI]

Three distinct kinetic groupings of the synaptotagmin family: Candidate sensors for rapid, syt I, appears to function as a Ca2 sensor that triggers the rapid exocytosis of synaptic vesicles much slower disassembly kinetics than does syt I, might function as Ca2 sensors for asynchronous

Chapman, Edwin R.

388

Demonstrations: blocks on planes, scales, to find coefficients of static and kinetic friction  

E-Print Network [OSTI]

Demonstrations: ·blocks on planes, scales, to find coefficients of static and kinetic friction Text: Fishbane 5-1, 5-2 Problems: 18, 21, 28, 30, 34 from Ch. 5 What's important: ·frictional forces ·coefficients of static and kinetic friction Friction Where objects move in contact with other objects, we know

Boal, David

389

ON THE THERMODYNAMICS AND KINETICS OF THE COOPERATIVE BINDING OF BACTERIOPHAGE T4-  

E-Print Network [OSTI]

ON THE THERMODYNAMICS AND KINETICS OF THE COOPERATIVE BINDING OF BACTERIOPHAGE T4- CODED GENE 32 of thermodynamic, and preliminary kinetic, studies on the molecular details and specificity of interaction of phage into the molecular origins of binding cooperativity is obtained by determining these thermodynamic parameters also

Kowalczykowski, Stephen C.

390

Thermodynamics and kinetics of competing aggregation processes in a simple model system  

E-Print Network [OSTI]

Thermodynamics and kinetics of competing aggregation processes in a simple model system Ambarish 8 November 2007 A simple model system has been used to develop thermodynamics and kinetics for bulk and thermodynamics of the processes and to infer the conditions in which one process dominates another, in the high

Berry, R. Stephen

391

Intrinsic Primary and Secondary Hydrogen Kinetic Isotope Effects for Alanine Racemase from Global Analysis of  

E-Print Network [OSTI]

Intrinsic Primary and Secondary Hydrogen Kinetic Isotope Effects for Alanine Racemase from Global of the intrinsic primary kinetic isotope effects, the lower boundary on the energy of the quinonoid intermediate, making alanine racemase an attractive target for antibacterials. Global analysis of protiated

Toney, Michael

392

Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi  

E-Print Network [OSTI]

of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. We computed power spectraPower spectral analysis of Jupiter's clouds and kinetic energy from Cassini David S. Choi , Adam P o Article history: Received 16 December 2010 Revised 8 September 2011 Accepted 6 October 2011

393

Author's personal copy Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini  

E-Print Network [OSTI]

full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter's troposphere. WeAuthor's personal copy Power spectral analysis of Jupiter's clouds and kinetic energy from Cassini 85721, USA a r t i c l e i n f o Article history: Received 16 December 2010 Revised 8 September 2011

Choi, David S.

394

A gas-kinetic scheme for reactive ows Yongsheng Lian, Kun Xu*  

E-Print Network [OSTI]

A gas-kinetic scheme for reactive ¯ows Yongsheng Lian, Kun Xu* Department of Mathematics, Hong Kong in revised form 22 July 1999; accepted 22 July 1999 Abstract In this paper, the gas-kinetic BGK scheme for the compressible ¯ow equations is extended to chemical reactive ¯ow. The mass fraction of the unburnt gas

Xu, Kun

395

Kinetic Modeling Of Solid-Gas Reactions At Reactor Scale: A General Approach Loc Favergeon1  

E-Print Network [OSTI]

the knowledge of the kinetic model for the calculation of the speed of reaction in one part of the reactorKinetic Modeling Of Solid-Gas Reactions At Reactor Scale: A General Approach Loïc Favergeon1 favergeon@emse.fr ABSTRACT A rigorous simulation of industrial reactors in the case of solid-gas reacting

Paris-Sud XI, Université de

396

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging  

E-Print Network [OSTI]

Visualizing Chemical Compositions and Kinetics of Sol-Gel by Near-Infrared Multispectral Imaging, Milwaukee, Wisconsin 53201 Kinetics of sol-gel formation were studied using the recently developed near-infrared been studied extensively by many different spectroscopic techniques.4-15 Among them, the near-infrared

Reid, Scott A.

397

EVAPORATION LAW IN KINETIC GRAVITATIONAL SYSTEMS DESCRIBED BY SIMPLIFIED LANDAU MODELS  

E-Print Network [OSTI]

EVAPORATION LAW IN KINETIC GRAVITATIONAL SYSTEMS DESCRIBED BY SIMPLIFIED LANDAU MODELS PIERRE to a mathematical and numerical study of a simplified kinetic model for evaporation phenomena in gravitational) is the gravitational potential and (u) is the following 3 Ã? 3 matrix (u)ij = |u|2ij - uiuj |u|2 , (1.2) 1 #12;2 P

Méhats, Florian

398

A multiple temperature kinetic model and its application to micro-scale gas flow simulations  

E-Print Network [OSTI]

A multiple temperature kinetic model and its application to micro-scale gas flow simulations model, micro-scale flows. 1. Introduction Gas flows can be classified according to the flow regimes_pku@yahoo.com.cn Abstract This paper presents a numerical approach to solve the multiple temperature kinetic model (MTKM

Xu, Kun

399

Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel Production  

E-Print Network [OSTI]

Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production, Monte-Carlo Simulations, Enzymatic Biodiesel 1. INTRODUCTION In order to determine the optimal

Mosegaard, Klaus

400

Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels  

E-Print Network [OSTI]

Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels C.K. Westbrooka chemical kinetic reaction mechanism is developed for the five major components of soy biodiesel and rapeseed biodiesel fuels. These components, methyl stearate, methyl oleate, methyl linoleate, methyl

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Major accidents scenarios used for LUP and off-site emergency planning : Importance of kinetic description  

E-Print Network [OSTI]

Major accidents scenarios used for LUP and off-site emergency planning : Importance of kinetic, INERIS shows a method enabling to integrate, as a second prioritisation criteria, the on-site and off-site. Keywords : Land Use Planning ; off-site emergency planning ; chemical accident scenario ; kinetic 1

Paris-Sud XI, Université de

402

Neutron kinetics in subcritical cores with application to the source modulation method  

E-Print Network [OSTI]

Neutron kinetics in subcritical cores with application to the source modulation method J. Wright for the measurement of reactivity in subcritical, source-driven cores. Methods of measuring reactivity by a single. Hence, first, the conditions of point kinetic behaviour in subcritical source-driven cores are revis

Pázsit, Imre

403

Development of a Rig and Testing Procedures for the Experimental Investigation of Horizontal Axis Kinetic Turbines  

E-Print Network [OSTI]

Kinetic Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 A Thesis Submitted Turbines by Catalina Lartiga B.Sc., Catholic University of Chile, 2001 Supervisory Committee Dr. Curran system to characterize the non-dimensional performance coefficients of hor- izontal axis kinetic turbines

Victoria, University of

404

Kinetic Modeling of Cellulosic Biomass to Ethanol Via Simultaneous Saccharification and  

E-Print Network [OSTI]

ARTICLE Kinetic Modeling of Cellulosic Biomass to Ethanol Via Simultaneous Saccharification: cellulose; ethanol; kinetics; reactor design Introduction Plant biomass is the only foreseeable sustainable­803] for simultaneous saccharification of fermentation of cellulosic biomass is extended and modified to accommodate

California at Riverside, University of

405

Seasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian Ocean  

E-Print Network [OSTI]

energy and exert profound impacts on large-scale ocean circulations. Satellite altimeter ob- servations- sociations with the large-scale oceanic circulations and the climate. The global eddy kinetic energy (EKESeasonal Modulation of Eddy Kinetic Energy and Its Formation Mechanism in the Southeast Indian

Qiu, Bo

406

Predicting Experimental Quantities in Protein Folding Kinetics using Stochastic Roadmap Simulation  

E-Print Network [OSTI]

Predicting Experimental Quantities in Protein Folding Kinetics using Stochastic Roadmap Simulation the transition state ensemble (TSE) and predict the rates and -values for protein folding. The new method as a gen- eral tool for studying protein folding kinetics. 1 Introduction Protein folding is a crucial

Pratt, Vaughan

407

Multiple-relaxation-time lattice Boltzmann kinetic model for combustion  

E-Print Network [OSTI]

To probe both the Hydrodynamic Non-Equilibrium (HNE) and Thermodynamic Non-Equilibrium (TNE) in the combustion process, a two-dimensional Multiple-Relaxation-Time (MRT) version of Lattice Boltzmann Kinetic Model(LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Beside describing the evolutions of the conserved quantities, the density, momentum and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some non-conserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various non-equilibrium behaviours, including the complex interplays between various HNEs, between various TNEs and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increase the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.

Aiguo Xu; Chuandong Lin; Guangcai Zhang; Yingjun Li

2015-03-13T23:59:59.000Z

408

Multiple-relaxation-time lattice Boltzmann kinetic model for combustion  

E-Print Network [OSTI]

To probe both the Mechanical Non-Equilibrium (MNE) and Thermodynamic Non-Equilibrium (TNE) in the combustion procedure, a two-dimensional Multiple-Relaxation-Time (MRT) version of the Lattice Boltzmann Kinetic Model(LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. The LB model is required to recover the Navier-Stokes equations with chemical reaction in the hydrodynamic limit. To that aim, we construct a discrete velocity model with $24$ velocities divided into $3$ groups. In each group a flexible parameter is used to control the size of discrete velocities and a second parameter is used to describe the contribution of the extra degrees of freedom. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. Via the MRT model, it is more convenient to track the effects of TNE and how the TNE influence the MNE behaviors. The model is verified and validated via well-known benchmark tests. It is found that around the detonation wave there are competition between the viscous effect, thermal diffusion effect and the gradient effects of physical quantities. Consequently, with decreasing the collision parameters, (i) the nonequilibrium region becomes wider and the gradients of physical quantities decrease; (ii) the position where the internal energy in the shocking degree of freedom equals the one averaged over all degrees of freedom moves away from the position for the von Neumann peak.

Aiguo Xu; Chuandong Lin; Guangcai Zhang; Yingjun Li

2014-11-25T23:59:59.000Z

409

Kinetic study of the reaction between nitric oxide and carbon monoxide catalyzed by clean polycrystalline platinum  

SciTech Connect (OSTI)

The kinetics of the platinum catalyzed reaction between NO and CO has been studied under conditions chosen to approximate those observed during operation of catalysts in automotive exhaust gas treatment applications. The catalysts were polycrystalline platinum foils and wires. The reaction was studied over a range of reactant partial pressures of 10 V Torr to 1 Torr and catalyst temperatures of 500 to 1500K. The steady-state kinetics results could not be fit by a simple Langmuir-Hinshelwood kinetic model over all experimental conditions studied. The kinetics at high coverage were most consistent with Langmuir-Hinshelwood kinetics assuming a bimolecular reaction between NO and CO as the rate-limiting step. At high temperature, the Langmuir-Hinshelwood assumption of fast adsorption-desorption equilibrium relative to the surface reaction rate was no longer appropriate and the mechanism of adsorption of NO had to be considered explicitly.

Klein, R.L.

1984-01-01T23:59:59.000Z

410

DOI: 10.1002/ejic.200600960 Synthesis and Sublimation Kinetics of a Highly Volatile Asymmetric Iron(II)  

E-Print Network [OSTI]

FULL PAPER DOI: 10.1002/ejic.200600960 Synthesis and Sublimation Kinetics of a Highly Volatile: Asymmetric iron(II) amidinate / Bridging ligands / Metathesis / Sublimation kinetics / Thermochemistry properties have been the subject of intense investigations in chemistry, electronics, optics, energy

411

CHEMKIN-III: A FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics  

SciTech Connect (OSTI)

This document is the user`s manual for the third-generation CHEMKIN package. CHEMKIN is a software package whose purpose is to facilitate the formation, solution, and interpretation of problems involving elementary gas-phase chemical kinetics. It provides a flexible and powerful tool for incorporating complex chemical kinetics into simulations of fluid dynamics. The package consists of two major software components: an Interpreter and a Gas-Phase Subroutine Library. The Interpreter is a program that reads a symbolic description of an elementary, user-specified chemical reaction mechanism. One output from the Interpreter is a data file that forms a link to the Gas-Phase Subroutine Library. This library is a collection of about 100 highly modular FORTRAN subroutines that may be called to return information on equations of state, thermodynamic properties, and chemical production rates. CHEMKIN-III includes capabilities for treating multi-fluid plasma systems, that are not in thermal equilibrium. These new capabilities allow researchers to describe chemistry systems that are characterized by more than one temperature, in which reactions may depend on temperatures associated with different species; i.e. reactions may be driven by collisions with electrons, ions, or charge-neutral species. These new features have been implemented in such a way as to require little or no changes to CHEMKIN implementation for systems in thermal equilibrium, where all species share the same gas temperature. CHEMKIN-III now has the capability to handle weakly ionized plasma chemistry, especially for application related to advanced semiconductor processing.

Kee, R.J.; Rupley, F.M.; Meeks, E.; Miller, J.A.

1996-05-01T23:59:59.000Z

412

Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas Z. Qiu, L. Chen, and F. Zonca  

E-Print Network [OSTI]

Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas Z. Qiu, L. Chen://scitation.aip.org/termsconditions. Downloaded to IP: 192.107.52.30 On: Thu, 06 Feb 2014 15:42:45 #12;Excitation of kinetic geodesic acoustic) Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic

Zonca, Fulvio

413

An efficient high-order finite difference gas-kinetic scheme for the Euler and Navier-Stokes solutions  

E-Print Network [OSTI]

-kinetic scheme is constructed. Different from the previous high-order finite volume gas-kinetic method [Li, Xu) Preprint submitted to Elsevier April 17, 2013 #12;covers the gas evolution process from the particle free a new finite volume gas-kinetic scheme has been developed [27], which significantly reduces

Xu, Kun

414

Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations  

E-Print Network [OSTI]

and collisions process. On the other hand, the gas-kinetic BGK scheme is a finite volume scheme, where the timeLattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations method (LBM) and the gas-kinetic BGK scheme are based on the numerical discretization of the Boltzmann

Xu, Kun

415

Fundamental Chemical Kinetic And Thermodynamic Data For Purex Process Models  

SciTech Connect (OSTI)

To support either the continued operations of current reprocessing plants or the development of future fuel processing using hydrometallurgical processes, such as Advanced Purex or UREX type flowsheets, the accurate simulation of Purex solvent extraction is required. In recent years we have developed advanced process modeling capabilities that utilize modern software platforms such as Aspen Custom Modeler and can be run in steady state and dynamic simulations. However, such advanced models of the Purex process require a wide range of fundamental data including all relevant basic chemical kinetic and thermodynamic data for the major species present in the process. This paper will summarize some of these recent process chemistry studies that underpin our simulation, design and testing of Purex solvent extraction flowsheets. Whilst much kinetic data for actinide redox reactions in nitric acid exists in the literature, the data on reactions in the diluted TBP solvent phase is much rarer. This inhibits the accurate modelization of the Purex process particularly when species show a significant extractability in to the solvent phase or when cycling between solvent and aqueous phases occurs, for example in the reductive stripping of Pu(IV) by ferrous sulfamate in the Magnox reprocessing plant. To support current oxide reprocessing, we have investigated a range of solvent phase reactions: - U(IV)+HNO{sub 3}; - U(IV)+HNO{sub 2}; - U(IV)+HNO{sub 3} (Pu catalysis); - U(IV)+HNO{sub 3} (Tc catalysis); - U(IV)+ Np(VI); - U(IV)+Np(V); - Np(IV)+HNO{sub 3}; - Np(V)+Np(V); Rate equations have been determined for all these reactions and kinetic rate constants and activation energies are now available. Specific features of these reactions in the TBP phase include the roles of water and hydrolyzed intermediates in the reaction mechanisms. In reactions involving Np(V), cation-cation complex formation, which is much more favourable in TBP than in HNO{sub 3}, also occurs and complicates the redox chemistry. Whilst some features of the redox chemistry in TBP appear similar to the corresponding reactions in aqueous HNO{sub 3}, there are notable differences in rates, the forms of the rate equations and mechanisms. Secondly, to underpin the development of advanced single cycle flowsheets using the complexant aceto-hydroxamic acid, we have also characterised in some detail its redox chemistry and solvent extraction behaviour with both Np and Pu ions. We find that simple hydroxamic acids are remarkably rapid reducing agents for Np(VI). They also reduce Pu(VI) and cause a much slower reduction of Pu(IV) through a complex mechanism involving acid hydrolysis of the ligand. AHA is a strong hydrophilic and selective complexant for the tetravalent actinide ions as evidenced by stability constant and solvent extraction data for An(IV), M(III) and U(VI) ions. This has allowed the successful design of U/Pu+Np separation flowsheets suitable for advanced fuel cycles. (authors)

Taylor, R.J.; Fox, O.D.; Sarsfield, M.J.; Carrott, M.J.; Mason, C.; Woodhead, D.A.; Maher, C.J. [British Technology Centre, Nexia Solutions, Sellafield, Seascale, CA20 1PG (United Kingdom); Steele, H. [Nexia Solutions, inton House, Risley, Warrington, WA3 6AS (United Kingdom); Koltunov, V.S. [A.A. Bochvar All-Russia Institute of Inorganic Materials, VNIINM, PO Box 369, Moscow 123060 (Russian Federation)

2007-07-01T23:59:59.000Z

416

Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels  

SciTech Connect (OSTI)

This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

2013-09-30T23:59:59.000Z

417

Empirical and physics based mathematical models of uranium hydride decomposition kinetics with quantified uncertainties.  

SciTech Connect (OSTI)

Metal particle beds have recently become a major technique for hydrogen storage. In order to extract hydrogen from such beds, it is crucial to understand the decomposition kinetics of the metal hydride. We are interested in obtaining a a better understanding of the uranium hydride (UH3) decomposition kinetics. We first developed an empirical model by fitting data compiled from different experimental studies in the literature and quantified the uncertainty resulting from the scattered data. We found that the decomposition time range predicted by the obtained kinetics was in a good agreement with published experimental results. Secondly, we developed a physics based mathematical model to simulate the rate of hydrogen diffusion in a hydride particle during the decomposition. We used this model to simulate the decomposition of the particles for temperatures ranging from 300K to 1000K while propagating parametric uncertainty and evaluated the kinetics from the results. We compared the kinetics parameters derived from the empirical and physics based models and found that the uncertainty in the kinetics predicted by the physics based model covers the scattered experimental data. Finally, we used the physics-based kinetics parameters to simulate the effects of boundary resistances and powder morphological changes during decomposition in a continuum level model. We found that the species change within the bed occurring during the decomposition accelerates the hydrogen flow by increasing the bed permeability, while the pressure buildup and the thermal barrier forming at the wall significantly impede the hydrogen extraction.

Salloum, Maher N.; Gharagozloo, Patricia E.

2013-10-01T23:59:59.000Z

418

Pattern Formation and Growth Kinetics in Eutectic Systems  

SciTech Connect (OSTI)

Growth patterns during liquid/solid phase transformation are governed by simultaneous effects of heat and mass transfer mechanisms, creation of new interfaces, jump of the crystallization units from liquid to solid and their rearrangement in the solid matrix. To examine how the above processes influence the scale of microstructure, two eutectic systems are chosen for the study: a polymeric system polyethylene glycol-p-dibromobenzene (PEG-DBBZ) and a simple molecular system succinonitrile (SCN)-camphor. The scaling law for SCN-camphor system is found to follow the classical Jackson-Hunt model of circular rod eutectic, where the diffusion in the liquid and the interface energy are the main physics governing the two-phase pattern. In contrast, a significantly different scaling law is observed for the polymer system. The interface kinetics of PEG phase and its solute concentration dependence thus have been critically investigated for the first time by directional solidification technique. A model is then proposed that shows that the two-phase pattern in polymers is governed by the interface diffusion and the interface kinetics. In SCN-camphor system, a new branch of eutectic, elliptical shape rodl, is found in thin samples where only one layer of camphor rods is present. It is found that the orientation of the ellipse can change from the major axis in the direction of the thickness to the direction of the width as the velocity and/or the sample thickness is decreased. A theoretical model is developed that predicts the spacing and orientation of the elliptical rods in a thin sample. The single phase growth patterns of SCN-camphor system were also examined with emphasis on the three-dimensional single cell and cell/dendrite transition. For the 3D single cell in a capillary tube, the entire cell shape ahead of the eutectic front can be described by the Saffmann-Taylor finger only at extremely low growth rate. A 3D directional solidification model is developed to characterize the cell shape and tip undercooling and the experimental results are compared with the predictions of the model. From the investigation of cell/dendrite transition, a model is proposed, from which the condition for the onset of the transition can be obtained.

Jing Teng

2007-12-01T23:59:59.000Z

419

Reduced and Validated Kinetic Mechanisms for Hydrogen-CO-sir Combustion in Gas Turbines  

SciTech Connect (OSTI)

Rigorous experimental, theoretical, and numerical investigation of various issues relevant to the development of reduced, validated kinetic mechanisms for synthetic gas combustion in gas turbines was carried out - including the construction of new radiation models for combusting flows, improvement of flame speed measurement techniques, measurements and chemical kinetic analysis of H{sub 2}/CO/CO{sub 2}/O{sub 2}/diluent mixtures, revision of the H{sub 2}/O{sub 2} kinetic model to improve flame speed prediction capabilities, and development of a multi-time scale algorithm to improve computational efficiency in reacting flow simulations.

Yiguang Ju; Frederick Dryer

2009-02-07T23:59:59.000Z

420

The relationship between the Wigner-Weyl kinetic formalism and the complex geometrical optics method  

E-Print Network [OSTI]

The relationship between two different asymptotic techniques developed in order to describe the propagation of waves beyond the standard geometrical optics approximation, namely, the Wigner-Weyl kinetic formalism and the complex geometrical optics method, is addressed. More specifically, a solution of the wave kinetic equation, relevant to the Wigner-Weyl formalism, is obtained which yields the same wavefield intensity as the complex geometrical optics method. Such a relationship is also discussed on the basis of the analytical solution of the wave kinetic equation specific to Gaussian beams of electromagnetic waves propagating in a ``lens-like'' medium for which the complex geometrical optics solution is already available.

Omar Maj

2005-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Maximum-Entropy Closures for Kinetic Theories of Neuronal Network Dynamics  

SciTech Connect (OSTI)

We analyze (1+1)D kinetic equations for neuronal network dynamics, which are derived via an intuitive closure from a Boltzmann-like equation governing the evolution of a one-particle (i.e., one-neuron) probability density function. We demonstrate that this intuitive closure is a generalization of moment closures based on the maximum-entropy principle. By invoking maximum-entropy closures, we show how to systematically extend this kinetic theory to obtain higher-order (1+1)D kinetic equations and to include coupled networks of both excitatory and inhibitory neurons.

Rangan, Aaditya V.; Cai, David [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

2006-05-05T23:59:59.000Z

422

Stochastic cooling of bunched beams from fluctuation and kinetic theory  

SciTech Connect (OSTI)

A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.

Chattopadhyay, S.

1982-09-01T23:59:59.000Z

423

Gasification characteristics and kinetics for an Eastern oil shale  

SciTech Connect (OSTI)

Gasification reactivity of an Eastern oil shale was studied in a three-year research project under a cooperative agreement between the Department of Energy, Morgantown Energy Technology Center, and HYCRUDE Corp. to expand the data base on the hydroretorting of Eastern oil shales. Gasification tests were conducted with the Indiana New Albany oil shale during the first year of the program. A total of six Eastern oil shales are planned to be tested during the program. A laboratory thermobalance and a 2-inch diameter fluidized bed were used to conduct gasification tests with Indiana New Albany oil shale. Temperature and pressure ranges used were 1600 to 1900/sup 0/F and 15 to 500 psig, respectively. Fifteen thermobalance tests were made in hydrogen/steam and synthesis gas/steam mixtures. Six fluidized-bed tests were made in the same synthesis gas/steam mixture. Carbon conversions as high as 95% were achieved. Thermobalance test results and a kinetic description of weight loss during hydrogen/steam gasification are presented. 14 refs., 6 figs., 4 tabs.

Lau, F.S.; Rue, D.M.; Punwani, D.V.; Rex, R.C. Jr.

1987-01-01T23:59:59.000Z

424

Coupled simulation of kinetic pedestal growth and MHD ELM crash  

SciTech Connect (OSTI)

Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.

Park, G. [New York University; Cummings, J. [California Institute of Technology, University of California, Davis; Chang, C. S. [New York University; Klasky, Scott A [ORNL; Ku, S. [New York University; Podhorszki, Norbert [University of California, Davis; Pankin, A. [Lehigh University, Bethlehem, PA; Samtaney, Ravi [Princeton Plasma Physics Laboratory (PPPL); Shoshani, A. [Lawrence Berkeley National Laboratory (LBNL); Snyder, P. [General Atomics, San Diego; Strauss, H. [New York University; Sugiyama, L. [Massachusetts Institute of Technology (MIT); CPES Team, the [SciDAC Prototype FSP Center for Plasma Edge Simulation

2007-01-01T23:59:59.000Z

425

Sigma phase formation kinetics in stainless steel laminate composites  

SciTech Connect (OSTI)

Stainless steel laminate composites were made to simulate weld microstructures. The use of laminates with variations in chemical composition allows for one dimensional analysis of phase transformation associated with the more complex three-dimensional solidification experience of weld metal. Alternate layers of austenitic (304L and 316L) and ferritic (Ebrite) stainless steels allowed for the study of sigma phase formation at the austenite-ferrite interface in duplex stainless steel. Two austenitic stainless steels, 304L (18.5Cr-9.2Ni-0.3Mo) and 316L (16.2Cr-10.1Ni-2.6Mo), and one ferritic stainless steel, Ebrite (26.3Cr-0Ni-1.0Mo) were received in the form of sheet which was laboratory cold rolled to a final thickness of 0.25 mm (0.030 in.). Laminate composites were prepared by laboratory hot rolling a vacuum encapsulated compact of alternating layers of the ferrite steel with either 304L or 316L stainless steel sheets. Laminate composite specimens, which simulate duplex austenite-ferrite weld metal structure, were used to establish the kinetics of nucleation and growth of sigma phase. The factors affecting sigma phase formation were identified. The effects of time, temperature, and transport of chromium and nickel were evaluated and used to establish a model for sigma phase formation in the austenite-ferrite interfacial region. Information useful for designing stainless steel welding consumables to be used for high temperature service was determined.

Wenmen, D.W.; Olson, D.L.; Matlock, D.K. [Colorado School of Mines, Golden, CO (United States)] [and others

1994-12-31T23:59:59.000Z

426

Reaction rates for mesoscopic reaction-diffusion kinetics  

E-Print Network [OSTI]

The mesoscopic reaction-diffusion master equation (RDME) is a popular modeling framework, frequently applied to stochastic reaction-diffusion kinetics in systems biology. The RDME is derived from assumptions about the underlying physical properties of the system, and it may produce unphysical results for models where those assumptions fail. In that case, other more comprehensive models are better suited, such as hard-sphere Brownian dynamics (BD). Although the RDME is a model in its own right, and not inferred from any specific microscale model, it proves useful to attempt to approximate a microscale model by a specific choice of mesoscopic reaction rates. In this paper we derive mesoscopic reaction rates by matching certain statistics of the RDME solution to statistics of the solution of a widely used microscopic BD model: the Smoluchowski model with a mixed boundary condition at the reaction radius of two molecules. We also establish fundamental limits for the range of mesh resolutions for which this approach yields accurate results, and show both theoretically and in numerical examples that as we approach the lower fundamental limit, the mesoscopic dynamics approach the microscopic dynamics.

Stefan Hellander; Andreas Hellander; Linda Petzold

2015-01-28T23:59:59.000Z

427

KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS  

SciTech Connect (OSTI)

This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sup 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions.

Dragomir B. Bukur; Gilbert F. Froment; Lech Nowicki; Jiang Wang; Wen-Ping Ma

2003-09-29T23:59:59.000Z

428

KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS  

SciTech Connect (OSTI)

This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined.

Dragomir B. Bukur

2004-09-29T23:59:59.000Z

429

Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels  

SciTech Connect (OSTI)

Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

Naik, C V; Westbrook, C K

2009-04-08T23:59:59.000Z

430

Kinetic effects on robustness of electron magnetohydrodynamic structures  

SciTech Connect (OSTI)

Following recent remarkable progress in the development of high-power short-pulse lasers, exploration is ongoing into hitherto unknown phenomena at fast time scales of electrons, the understanding of which is becoming crucial. For a simplified description of such phenomena, the Electron Magnetohydrodynamics (EMHDs) fluid description is often adopted. For the possibility of electron transport in high-density plasma, exact solutions of the EMHD model in the form of electron vortex currents, together with their associated magnetic fields, have been considered. However, the fluid EMHD model does not incorporate kinetic effects. Here, the finite Larmor radius effects owing to a finite electron temperature on the robustness of the exact EMHD structures are investigated using two-dimensional particle-in-cell simulations. It is found that larger EMHD vortex structures can sustain themselves for long periods, even in high temperature plasma; however, sustaining structures at higher temperatures tends to be difficult. With increasing temperature, electrons with finite Larmor radii become disengaged from the localized region. It is also shown that structures localized in smaller regions are more difficult to sustain. A quantitative criterion in terms of the structure size and Larmor radius has been established by simulations over a wide range of parameters. Finally, we conclude that a structure, larger than about eight times the typical Larmor radius at r=R, could form and exist even under the effects of finite electron temperature.

Hata, M. [Department of Physics, Nagoya University, Nagoya 464-8603 (Japan); Sakagami, H. [Fundamental Physics Simulation Research Division, National Institute for Fusion Science, Toki 509-5292 (Japan); Das, A. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)

2013-04-15T23:59:59.000Z

431

Mechanism and kinetics of peptide partitioning into membranes  

SciTech Connect (OSTI)

Partitioning properties of transmembrane (TM) polypeptide segments directly determine membrane protein folding, stability, and function, and their understanding is vital for rational design of membrane active peptides. However, direct determination of water-to-bilayer transfer of TM peptides has proved difficult. Experimentally, sufficiently hydrophobic peptides tend to aggregate, while atomistic computer simulations at physiological temperatures cannot yet reach the long time scales required to capture partitioning. Elevating temperatures to accelerate the dynamics has been avoided, as this was thought to lead to rapid denaturing. However, we show here that model TM peptides (WALP) are exceptionally thermostable. Circular dichroism experiments reveal that the peptides remain inserted into the lipid bilayer and are fully helical, even at 90 C. At these temperatures, sampling is 50 500 times faster, sufficient to directly simulate spontaneous partitioning at atomic resolution. A folded insertion pathway is observed, consistent with three-stage partitioning theory. Elevated temperature simulation ensembles further allow the direct calculation of the insertion kinetics, which is found to be first-order for all systems. Insertion barriers are Hin = 15 kcal/mol for a general hydrophobic peptide and 23 kcal/mol for the tryptophan-flanked WALP peptides. The corresponding insertion times at room temperature range from 8.5 s to 163 ms. High-temperature simulations of experimentally validated thermostable systems suggest a new avenue for systematic exploration of peptide partitioning properties.

Ulmschneider, Martin [University of Oxford; Killian, J Antoinette [University of Utrecht; Doux, Jacques P. F. [University of Utrecht; Smith, Jeremy C [ORNL; Ulmschneider, Jakob [University of Heidelberg

2010-02-01T23:59:59.000Z

432

Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet  

SciTech Connect (OSTI)

Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in the A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of novel order at low temperature. Here we present a comprehensive single crystal neutron scattering study CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5K, there is a dramatic change in elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that in fact T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.

MacDougall, Gregory J [ORNL; Gout, Delphine J [ORNL; Zarestky, Jerel L [ORNL; Ehlers, Georg [ORNL; Podlesnyak, Andrey A [ORNL; McGuire, Michael A [ORNL; Mandrus, David [ORNL; Nagler, Stephen E [ORNL

2011-01-01T23:59:59.000Z

433

Evaluation of kinetic controls on sulfate reduction in a contaminated wetland-aquifer system  

E-Print Network [OSTI]

systems is identifying key kinetic controls on important redox reactions such as sulfate reduction. Anaerobic microbial activities like sulfate reduction are of particular interest because of the important role they play in the degradation of contaminants...

Kneeshaw, Tara Ann

2009-05-15T23:59:59.000Z

434

Pyrolysis kinetics of scrap tire rubbers. 1: Using DTG and TGA  

SciTech Connect (OSTI)

Tire pyrolysis kinetics was investigated to explore an economically viable design for the pyrolysis process. Derivative thermogravimetry (DTG) and thermogravimetric analysis (TGA) were found to provide valuable information on pyrolysis kinetics and mechanisms of a heterogeneous compound like scrap tire rubbers. Kinetic parameters of each compositional compound were obtained by analyzing DTG and TGA results with a series of mathematical methods proposed in this study. The pyrolysis kinetics of the scrap tire rubbers tested was well accounted for by the first-order irreversible independent reactions of three compositional compounds. The sidewall and tread rubber exhibited different thermal degradation patterns, suggesting a compositional difference between them. Isothermal pyrolysis results showed that the sidewall rubber would hardly be degraded at low temperature regions (<600 K), whereas it would be more rapidly degraded than the tread rubber at higher temperatures ({>=}746 K). Because of the shorter pyrolysis time, the higher isothermal pyrolysis temperature appeared to be more economically favorable.

Kim, S.; Park, J.K. [Univ. of Wisconsin, Madison, WI (United States); Chun, H.D. [Research Inst. of Industrial Science and Technology, Pohang (Korea, Republic of)

1995-07-01T23:59:59.000Z

435

Mass fluctuation kinetics : analysis and computation of equilibria and local dynamics  

E-Print Network [OSTI]

The mass fluctuation kinetics (MFK) model is a set of coupled first-order differential equations describing the temporal evolution of means, variances and covariances of species concentrations in systems of chemical ...

Azunre, Paul

2009-01-01T23:59:59.000Z

436

Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass  

E-Print Network [OSTI]

biomass combustion and gasification Milena Nowakowska, Olivier Herbinet, Anthony Dufour, Pierre. Methoxyphenols are one of the main precursors of PAH and soot in biomass combustion and gasification. Keywords: Anisole; Pyrolysis; Oxidation; Tars; Biomass; Kinetic modeling Corresponding author

Paris-Sud XI, Université de

437

ONE-DIMENSIONAL PSEUDO-HOMOGENEOUS PACKED BED REACTOR MODELING INCLUDING NO-CO KINETICS  

E-Print Network [OSTI]

the chemical species and energy equations for dynamically incompressible flow in one-dimension. Furthermore, the chemical kinetics on the reduction reaction of nitric oxide by carbon monoxide over rhodium-alumina and platinum-alumina catalysts is investigated...

Srinivasan, Anand

2011-08-31T23:59:59.000Z

438

Building KiMoSin : design requirements for kinetic interfaces in protein education  

E-Print Network [OSTI]

Design guidelines for tools to enhance protein education are developed and applied to a prototype tool. A literature search and personal experience suggest kinetic, tangible models fill the current gaps in protein education. ...

Brown, Ashlie (Ashlie M.)

2007-01-01T23:59:59.000Z

439

Accepted Manuscript Kinetic modelling of high density polyethylene pyrolysis: Part 2. Reduction of existing  

E-Print Network [OSTI]

Accepted Manuscript Kinetic modelling of high density polyethylene pyrolysis: Part 2. Reduction density polyethylene pyrolysis: Part 2. Reduction of existing detailed mechanism, Polymer Degradation Modelling of High Density PolyEthylene Pyrolysis: Part 2. Reduction of existing detailed mechanism. N

Paris-Sud XI, Université de

440

Kinetic viscoelasticity modeling applied to degradation during carbon–carbon composite processing  

E-Print Network [OSTI]

Kinetic viscoelasticity modeling has been successfully utilized to describe phenomena during cure of thermoset based carbon fiber reinforced matrices. The basic difference from classic viscoelasticity is that the fundamental ...

Drakonakis, Vassilis M.

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Kinetics of Reduction of Fe(III) Complexes by Outer Membrane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fe(III) Complexes by Outer Membrane Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Kinetics of Reduction of Fe(III) Complexes by Outer Membrane Cytochromes MtrC and OmcA...

442

A kinetic scheme for unsteady pressurised flows in closed water pipes  

E-Print Network [OSTI]

he aim of this paper is to present a kinetic numerical scheme for the computations of transient pressurised flows in closed water pipes. Firstly, we detail the mathematical model written as a conservative hyperbolic partial differentiel system of equations, and the we recall how to obtain the corresponding kinetic formulation. Then we build the kinetic scheme ensuring an upwinding of the source term due to the topography performed in a close manner described by Perthame et al. using an energetic balance at microscopic level for the Shallow Water equations. The validation is lastly performed in the case of a water hammer in a uniform pipe: we compare the numerical results provided by an industrial code used at EDF-CIH (France), which solves the Allievi equation (the commonly used equation for pressurised flows in pipes) by the method of characteristics, with those of the kinetic scheme. It appears that they are in a very good agreement.

Bourdarias, Christian; Gerbi, Stéphane

2008-01-01T23:59:59.000Z

443

Solution of the space-dependent reactor kinetics equations in three dimensions  

E-Print Network [OSTI]

A general class of two-step alternating-direction semi-implicit methods is proposed for the approximate solution of the semi-discrete form of the space-dependent reactor kinetics equations. An exponential transformation ...

Ferguson, Donald Ross

1971-01-01T23:59:59.000Z

444

Post-assembly Modification of Kinetically Metastable FeII 2L3 Triple Helicates  

E-Print Network [OSTI]

,4 which recently led to a report of living supramolecular polymerization by Sugiyasu et al.5 Kinetically metastable species also feature in biological self-assembly, such as during the initial stages of protein folding.6 Biological systems are able...

Roberts, Derrick A.; Castilla, Ana M.; Ronson, Tanya K.; Nitschke, Jonathan R.

2014-05-23T23:59:59.000Z

445

Development of a Grid-Based Gyro-Kinetic Simulation Code  

SciTech Connect (OSTI)

The 4D Semi-Lagrangian code CYGNE for solving electrostatic drift-kinetic equations is presented. The code simulates well the linear phase. In the non-linear, phase development of negative value regions are investigated.

Lapillonne, X.; Brunetti, M.; Brunner, S.; Tran, T.-M. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland)

2006-11-30T23:59:59.000Z

446

The Kinetics and Magnesium Requirements for the Folding of Antigenomic Ribozymes  

E-Print Network [OSTI]

The Kinetics and Magnesium Requirements for the Folding of Antigenomic Ribozymes Sirinart of antigenomic ri- bozyme was studied, it is demonstrated that its L3 loop requires magnesium and, apparently

Perreault, Jean-Pierre

447

The Influence of Equilibrium Reactions on the Kinetics of Calcite Dissolution in Lactic Acid Solutions  

E-Print Network [OSTI]

acid and calcite will allow for optimized treatment design. The kinetic model was also used to isolate the contributions of the transport of reactants, the surface reaction, and the transport of products to the overall resistance of the reaction...

Shedd, Daniel C

2014-08-07T23:59:59.000Z

448

Kinetic trajectory decoding using motor cortical ensembles Andrew H. Fagg1  

E-Print Network [OSTI]

0 Kinetic trajectory decoding using motor cortical ensembles Andrew H. Fagg1 , Greg Ojakangas2, Norman, OK 2 Dept. of Physics, Drury University 3 Dept. of Physiology, Northwestern University, Chicago

Fagg, Andrew H.

449

Addition and recombination reactions of unsaturated radicals using a novel laser kinetics spectrometer  

E-Print Network [OSTI]

This thesis describes the construction of a novel, low-noise laser kinetics spectrometer. A quasi-CW (picosecond pulse), tunable Ti:Sapphire laser is used to detect various transient species in laser flash photolysis ...

Ismail, Huzeifa

2008-01-01T23:59:59.000Z

450

Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes  

E-Print Network [OSTI]

The kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) on polycrystalline platinum [Pt(pc)] and high surface area carbon-supported platinum nanoparticles (Pt/C) were studied in 0.1 M ...

Sheng, Wenchao

451

Oxidation kinetics of methylphosphonic acid in supercritical water : experimental measurements and model development  

E-Print Network [OSTI]

(cont.) at well-defined operating conditions and to develop. both microscopic and macroscopic models, ranging from regressed global models to an elementary reaction mechanism, to quantify MPA oxidation kinetics in supercritical ...

Sullivan, Patricia A. (Patricia Ann), 1978-

2004-01-01T23:59:59.000Z

452

Systems, methods and computer-readable media to model kinetic performance of rechargeable electrochemical devices  

DOE Patents [OSTI]

A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware samples performance characteristics of the electrochemical cell. The computing system determines cell information from the performance characteristics. The computing system also analyzes the cell information of the electrochemical cell with a Butler-Volmer (BV) expression modified to determine exchange current density of the electrochemical cell by including kinetic performance information related to pulse-time dependence, electrode surface availability, or a combination thereof. A set of sigmoid-based expressions may be included with the modified-BV expression to determine kinetic performance as a function of pulse time. The determined exchange current density may be used with the modified-BV expression, with or without the sigmoid expressions, to analyze other characteristics of the electrochemical cell. Model parameters can be defined in terms of cell aging, making the overall kinetics model amenable to predictive estimates of cell kinetic performance along the aging timeline.

Gering, Kevin L.

2013-01-01T23:59:59.000Z

453

Charge transfer kinetics at the solid–solid interface in porous electrodes  

E-Print Network [OSTI]

Interfacial charge transfer is widely assumed to obey the Butler–Volmer kinetics. For certain liquid–solid interfaces, the Marcus–Hush–Chidsey theory is more accurate and predictive, but it has not been applied to porous ...

Bai, Peng

454

Kinetic modeling of amyloid fibrillation and synaptic plasticity as memory loss and formation mechanisms  

E-Print Network [OSTI]

The principles of biochemical kinetics and system engineering are applied to explain memory-related neuroscientific phenomena. Amyloid fibrillation and synaptic plasticity have been our focus of research due to their ...

Lee, Chuang-Chung

2008-01-01T23:59:59.000Z

455

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides  

E-Print Network [OSTI]

Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum catalysts confirmed that oxidative dehydrogenation of propane occurs via similar pathways, which involve for propane dehydrogenation and for propene combustion increase in the sequence VOx/ZrO2

Iglesia, Enrique

456

The distribution of eddy kinetic and potential energies in the global ocean  

E-Print Network [OSTI]

Understanding of the major sources, sinks, and reservoirs of energy in the ocean is briefly updated in a diagram. The nature of the dominant kinetic energy reservoir, that of the balanced variablity, is then found to be ...

Ferrari, Raffaele

457

Pontificia Universidad Catlica de Chile Escuela de Ingeniera  

E-Print Network [OSTI]

) Electric Compressed Air Energy Storage (CAES) Potential/Enthalpy 15.000 in kJ/m3 Electric Flywheels Kinetic-600 Li-polymer ~ 1.400 Transport, Buildings Superconducting Magnetic Energy Storage (SMES (e.g. Hidroelectricidad Bombeada, Almacenamiento de Energía con Aire Comprimido, Volantes de Inercia

Rudnick, Hugh

458

Esterification kinetics of triglycerides in n-hexane catalyzed by an immobilized lipase  

E-Print Network [OSTI]

and high value products unobtainable by conventional methods (Macrae, 1989). A study of reaction kinetics provides basic information for bioreactor design such as rate of product formation, temperature effects, substrate concentration effects, catalyst...ESTERIFICATION KINETICS OF TRIGLYCERIDES IN N-HEXANE CATALYZED BY AN IMMOBILIZED LIPASE A Thesis by ALEJANDRO GOMEZ RUIZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

Gomez Ruiz, Alejandro

1998-01-01T23:59:59.000Z

459

The folding kinetics of ribonuclease Sa and a charge-reversal variant  

E-Print Network [OSTI]

Coulomb?s Law suggested that favorable electrostatic interactions in the denatured state were the cause for the decreased stability for the charge-reversed variant. Folding and unfolding kinetic studies were designed and conducted to study the iv charge...-reversal mutant, more than in WT*. To our knowledge, this is the first demonstration that a favorable electrostatic interaction in the denatured state ensemble has been shown to influence the unfolding kinetics of a protein. v DEDICATION To my beloved wife, Emily...

Trefethen, Jared M.

2005-02-17T23:59:59.000Z

460

Nonlinear evolution of the magnetized Kelvin-Helmholtz instability: From fluid to kinetic modeling  

SciTech Connect (OSTI)

The nonlinear evolution of collisionless plasmas is typically a multi-scale process, where the energy is injected at large, fluid scales and dissipated at small, kinetic scales. Accurately modelling the global evolution requires to take into account the main micro-scale physical processes of interest. This is why comparison of different plasma models is today an imperative task aiming at understanding cross-scale processes in plasmas. We report here the first comparative study of the evolution of a magnetized shear flow, through a variety of different plasma models by using magnetohydrodynamic (MHD), Hall-MHD, two-fluid, hybrid kinetic, and full kinetic codes. Kinetic relaxation effects are discussed to emphasize the need for kinetic equilibriums to study the dynamics of collisionless plasmas in non trivial configurations. Discrepancies between models are studied both in the linear and in the nonlinear regime of the magnetized Kelvin-Helmholtz instability, to highlight the effects of small scale processes on the nonlinear evolution of collisionless plasmas. We illustrate how the evolution of a magnetized shear flow depends on the relative orientation of the fluid vorticity with respect to the magnetic field direction during the linear evolution when kinetic effects are taken into account. Even if we found that small scale processes differ between the different models, we show that the feedback from small, kinetic scales to large, fluid scales is negligible in the nonlinear regime. This study shows that the kinetic modeling validates the use of a fluid approach at large scales, which encourages the development and use of fluid codes to study the nonlinear evolution of magnetized fluid flows, even in the collisionless regime.

Henri, P. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy) [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Université de Nice Sophia Antipolis, CNRS, Observatoire de la Côte d'Azur, BP 4229 06304, Nice Cedex 4 (France); Cerri, S. S. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy) [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Califano, F.; Pegoraro, F. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy)] [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); Rossi, C. [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy) [Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); LPP-CNRS, Ecole Polytechnique, UPMC, Université Paris VI, Université Paris XI, route de Saclay, 91128 Palaiseau (France); Faganello, M. [International Institute for Fusion Science/PIIM, UMR 7345 CNRS, Aix-Marseille University, 13397 Marseille (France)] [International Institute for Fusion Science/PIIM, UMR 7345 CNRS, Aix-Marseille University, 13397 Marseille (France); Šebek, O. [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague, Czech Republic and Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, B?ehová 7, 11519 Prague (Czech Republic)] [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague, Czech Republic and Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, B?ehová 7, 11519 Prague (Czech Republic); Trávní?ek, P. M. [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, California 94720, USA and Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic)] [Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, California 94720, USA and Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic); Hellinger, P. [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic)] [Astronomical Institute and Institute of Atmospheric Physics, AS CR Bocni II/1401, CZ-14131 Prague (Czech Republic); and others

2013-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Kinetics of Mixed Ni-Al Precipitate Formation on a Soil Clay Fraction  

E-Print Network [OSTI]

Kinetics of Mixed Ni-Al Precipitate Formation on a Soil Clay Fraction D A R R Y L R . R O B E R Management Laboratory, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland The kinetics of mixed Ni-Al Ni- Al LDH formation. The initial Ni concentration was 3 mM with a solid/solution ratio of 10 g L-1

Sparks, Donald L.

462

Extraction of kinetic freeze-out properties and effect of resonance decays  

E-Print Network [OSTI]

We present STAR results from identified particle spectra measured in $\\sqrt{s_{NN}}$ = 62.4 GeV Au-Au collisions. Particle production and system dynamics are compared to results at $\\sqrt{s_{NN}}$ = 200 GeV. We extract kinetic and chemical freeze-out parameters using blast wave model parameterization and statistical model. We discuss the effect of resonance decays on the extracted kinetic freeze-out parameters.

Levente Molnar

2005-07-21T23:59:59.000Z

463

Spectroscopic and Kinetic Investigation of the Catalytic Mechanism of Tyrosine Hydroxylase  

E-Print Network [OSTI]

into the catalytic mechanism of this physiologically important enzyme. Analysis of the TyrH reaction by rapid freeze-quench M?ssbauer spectroscopy allowed the first direct characterization of an Fe(IV) intermediate in a mononuclear non- heme enzyme catalyzing... aromatic hydroxylation. Further rapid kinetic studies established the kinetic competency of this intermediate to be the long-postulated hydroxylating species, Fe(IV)O. Spectroscopic investigations of wild-type (WT) and mutant TyrH complexes using...

Eser, Bekir Engin

2011-02-22T23:59:59.000Z

464

Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications  

SciTech Connect (OSTI)

The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the 'reverse energy bypass' scheme. MHD power generation on board reentry vehicles is also discussed.

Macheret, Sergey [Department of Mechanical and Aerospace Engineering, Princeton University, D-418 Engineering Quadrangle, Princeton, NJ 08544 (United States)

2005-05-16T23:59:59.000Z

465

Kinetic extensions of magnetohydrodynamic models for axisymmetric toroidal plasmas  

SciTech Connect (OSTI)

A nonvariational kinetic-MHD stability code (NOVA-K) has been developed to integrate a set of non-Hermitian integro-differential eigenmode equations due to energetic particles for axisymmetric toroidal plasmas in a general flux coordinate system with an arbitrary Jacobian. The NOVA-K code employs the Galerkin method involving Fourier expansions in the generalized poloidal angle theta and generalized toroidal angle /zeta/ directions, and cubic-B spline finite elements in the radial /Psi/ direction. Extensive comparisons with the existing variational ideal MHD codes show that the ideal MHD version of the NOVA-K code converges faster and gives more accurate results. The NOVA-K code is employed to study the effects of energetic particles on MHD-type modes: the stabilization of ideal MHD internal kink modes and the excitation of ''fishbone'' internal kink modes; and the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are also presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n = 1 internal kink mode in the hot particle beta space exists even in the absence of the core ion finite Larmor radius effect. On the other hand, the trapped alpha particles are found to have negligible effects on the stability of the n = 1 internal kink mode, but the circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 60 refs., 24 figs., 1 tab.

Cheng, C.Z.

1989-04-01T23:59:59.000Z

466

Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone  

SciTech Connect (OSTI)

The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals gives accurate forward barrier heights; however, it significantly underestimates reaction energies.

Zhao, Yan; Tishchenko, Oksana; Gour, Jeffrey R.; Li, Wei; Lutz, Jesse; Piecuch, Piotr; Truhlar, Donald G.

2009-05-14T23:59:59.000Z

467

Thermodynamic and kinetic characterization of hydroxyethylamine ?-secretase-1 inhibitors  

SciTech Connect (OSTI)

Highlights: •Kinetic and thermodynamic characterization of 10 hydroxyethylamine BACE-1 inhibitors. •Equilibrium binding of inhibitors was enthalpy driven for BACE-1. •Negative entropy of binding was observed towards BACE-1, but not Cathepsin-D. •Structural analysis demonstrates ligand binding induces a major conformational change. •Structural analysis and SPR analysis corroborate induced fit and negative entropy of binding. -- Abstract: Alzheimer’s disease (AD) is a devastating neurodegenerative disease affecting millions of people. ?-Secretase-1 (BACE-1), an enzyme involved in the processing of the amyloid precursor protein (APP) to form A?, is a well validated target for AD. Herein, the authors characterize 10 randomly selected hydroxyethylamine (HEA) BACE-1 inhibitors in terms of their association and dissociation rate constants and thermodynamics of binding using surface plasmon resonance (SPR). Rate constants of association (k{sub a}) measured at 25 °C ranged from a low of 2.42 × 10{sup 4} M{sup ?1} s{sup ?1} to the highest value of 8.3 × 10{sup 5} M{sup ?1} s{sup ?1}. Rate constants of dissociation (k{sub d}) ranged from 1.09 × 10{sup ?4} s{sup ?1} (corresponding to a residence time of close to three hours), to the fastest of 0.028 s{sup ?1}. Three compounds were selected for further thermodynamic analysis where it was shown that equilibrium binding was enthalpy driven while unfavorable entropy of binding was observed. Structural analysis revealed that upon ligand binding, the BACE-1flap folds down over the bound ligand causing an induced fit. The maximal difference between alpha carbon positions in the open and closed conformations of the flap was over 5 Å. Thus the negative entropy of binding determined using SPR analysis was consistent with an induced fit observed by structural analysis.

Mondal, Kalyani; Regnstrom, Karin; Morishige, Winse; Barbour, Robin; Probst, Gary; Xu, Ying-Zi; Artis, Dean R.; Yao, Nanhua; Beroza, Paul; Bova, Michael P., E-mail: mpbova2001@yahoo.com

2013-11-15T23:59:59.000Z

468

Chemical kinetic modeling of component mixtures relevant to gasoline  

SciTech Connect (OSTI)

Detailed kinetic models of pyrolysis and combustion of hydrocarbon fuels are nowadays widely used in the design of internal combustion engines and these models are effectively applied to help meet the increasingly stringent environmental and energetic standards. In previous studies by the combustion community, such models not only contributed to the understanding of pure component combustion, but also provided a deeper insight into the combustion behavior of complex mixtures. One of the major challenges in this field is now the definition and the development of appropriate surrogate models able to mimic the actual features of real fuels. Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. Their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. Aside the most commonly used surrogates containing iso-octane and n-heptane only, the so called Primary Reference Fuels (PRF), new mixtures have recently been suggested to extend the reference components in surrogate mixtures to also include alkenes and aromatics. It is generally agreed that, including representative species for all the main classes of hydrocarbons which can be found in real fuels, it is possible to reproduce very effectively in a wide range of operating conditions not just the auto-ignition propensity of gasoline or Diesel fuels, but also their physical properties and their combustion residuals [1]. In this work, the combustion behavior of several components relevant to gasoline surrogate formulation is computationally examined. The attention is focused on the autoignition of iso-octane, hexene and their mixtures. Some important issues relevant to the experimental and modeling investigation of such fuels are discussed with the help of rapid compression machine data and calculations. Following the model validation, the behavior of mixtures is discussed on the basis of computational results.

Mehl, M; Curran, H J; Pitz, W J; Dooley, S; Westbrook, C K

2008-05-29T23:59:59.000Z

469

Ion kinetic effects on the ignition and burn in ICF Ion kinetic effects on the ignition and burn of ICF targets  

E-Print Network [OSTI]

and burn of the thermonuclear fuel in inertial confinement fusion pellets at the ion kinetic level to treat fusion products (suprathermal -particles) in a self-consistent manner with the thermal bulk enhancement of fusion products leads to a significant reduction of the fusion yield. I. MOTIVATION AND CONTEXT

470

Heat Transfer Analysis and Assessment of Kinetics Systems for PBX 9501  

SciTech Connect (OSTI)

The study of thermal decomposition in high explosive (HE) charges has been an ongoing process since the early 1900s. This work is specifically directed towards the analysis of PBX 9501. In the early 1970s, Dwight Jaeger of Los Alamos National Laboratory (LANL) developed a single-step, two-species kinetics system that was used in the development of one of the first finite element codes for thermal analyses known as EXPLO. Jaeger's research focused on unconfined spherical samples of HE charges to determine if varied heating ramps would cause detonation or deflagration. Tarver and McGuire of Lawrence Livermore National Laboratory (LLNL) followed soon after with a three-step, four-species kinetics system that was developed for confined spheres under relatively fast heating conditions. Peter Dickson et al. of LANL then introduced a kinetics system with four steps and five species that included bimolecular products to capture the effects of the endothermic phase change that the HE undergoes. The results of four experiments are examined to study the effectiveness of these kinetics systems. The experiments are: (1) The LLNL scaled thermal explosion (STEX) experiments on confined cylindrical charges with long heating ramps in the range of 90 hours. (2) The LLNL one-dimensional time to explosion (ODTX) experiments on spherical charges that include confined, partially confined, and aged HE experiments. (3) The LANL unconfined one-dimensional experiments for small spheres. (4) The Naval Air Warfare Center Weapons Division at China Lake experiments on small confined cylinders. The three kinetics systems are applied to each of the four experiments with the use of the finite element analysis (FEA) heat conduction solver COYOTE. The numerical results using the kinetics systems are compared to each other and to the experimental data to determine which kinetics systems are best suited for analyzing conditions such as time to ignition, containment, heating time, and location of ignition.

Jeffrey W. Jorenby

2006-07-31T23:59:59.000Z

471

IfI-06-02 Clausthal-Zellerfeld 2006Kinetic Bounding Volume Hierarchies for Collision Detection of Deformable Objects  

E-Print Network [OSTI]

We present novel algorithms for updating bounding volume hierarchies of objects undergoing arbitrary deformations. Therefore, we introduce two new data structures, the kinetic AABB tree and the kinetic BoxTree. The event-based approach of the kinetic data structures framework enables us to show that our algorithms are optimal in the number of updates. Moreover, we show a lower bound for the total number of BV updates, which is independent of the number of frames. Furthermore, we present a kinetic data structures which uses the kinetic AABB tree for collision detection and show that this structure can be easily extended for continuous collision detection of deformable objects. We performed a comparison of our kinetic approaches with the classical bottom-up update method. The results show that our algorithms perform up to ten times faster in practically relevant scenarios. 1

Gabriel Zachmann; Tu Clausthal; Rene Weller; Tu Clausthal

472

An Alternative Method for Solving a Certain Class of Fractional Kinetic Equations  

E-Print Network [OSTI]

An alternative method for solving the fractional kinetic equations solved earlier by Haubold and Mathai (2000) and Saxena et al. (2002, 2004a, 2004b) is recently given by Saxena and Kalla (2007). This method can also be applied in solving more general fractional kinetic equations than the ones solved by the aforesaid authors. In view of the usefulness and importance of the kinetic equation in certain physical problems governing reaction-diffusion in complex systems and anomalous diffusion, the authors present an alternative simple method for deriving the solution of the generalized forms of the fractional kinetic equations solved by the aforesaid authors and Nonnenmacher and Metzler (1995). The method depends on the use of the Riemann-Liouville fractional calculus operators. It has been shown by the application of Riemann-Liouville fractional integral operator and its interesting properties, that the solution of the given fractional kinetic equation can be obtained in a straight-forward manner. This method does not make use of the Laplace transform.

R. K. Saxena; A. M. Mathai; H. J. Haubold

2010-01-13T23:59:59.000Z

473

Isotope exchange kinetics in metal hydrides I : TPLUG model.  

SciTech Connect (OSTI)

A one-dimensional isobaric reactor model is used to simulate hydrogen isotope exchange processes taking place during flow through a powdered palladium bed. This simple model is designed to serve primarily as a platform for the initial development of detailed chemical mechanisms that can then be refined with the aid of more complex reactor descriptions. The one-dimensional model is based on the Sandia in-house code TPLUG, which solves a transient set of governing equations including an overall mass balance for the gas phase, material balances for all of the gas-phase and surface species, and an ideal gas equation of state. An energy equation can also be solved if thermodynamic properties for all of the species involved are known. The code is coupled with the Chemkin package to facilitate the incorporation of arbitrary multistep reaction mechanisms into the simulations. This capability is used here to test and optimize a basic mechanism describing the surface chemistry at or near the interface between the gas phase and a palladium particle. The mechanism includes reversible dissociative adsorptions of the three gas-phase species on the particle surface as well as atomic migrations between the surface and the bulk. The migration steps are more general than those used previously in that they do not require simultaneous movement of two atoms in opposite directions; this makes possible the creation and destruction of bulk vacancies and thus allows the model to account for variations in the bulk stoichiometry with isotopic composition. The optimization code APPSPACK is used to adjust the mass-action rate constants so as to achieve the best possible fit to a given set of experimental data, subject to a set of rigorous thermodynamic constraints. When data for nearly isothermal and isobaric deuterium-to-hydrogen (D {yields} H) and hydrogen-to-deuterium (H {yields} D) exchanges are fitted simultaneously, results for the former are excellent, while those for the latter show pronounced deviations at long times. These discrepancies can be overcome by postulating the presence of a surface poison such as carbon monoxide, but this explanation is highly speculative. When the method is applied to D {yields} H exchanges intentionally poisoned by known amounts of CO, the fitting results are noticeably degraded from those for the nominally CO-free system but are still tolerable. When TPLUG is used to simulate a blowdown-type experiment, which is characterized by large and rapid changes in both pressure and temperature, discrepancies are even more apparent. Thus, it can be concluded that the best use of TPLUG is not in simulating realistic exchange scenarios, but in extracting preliminary estimates for the kinetic parameters from experiments in which variations in temperature and pressure are intentionally minimized.

Larson, Rich; James, Scott Carlton; Nilson, Robert H.

2011-05-01T23:59:59.000Z

474

Mixed Conduction in Rare-Earth Phosphates  

E-Print Network [OSTI]

compressed   air,   flywheels,   biofuels,   hydropower,   and   electrochemical   energy   storage  

Ray, Hannah Leung

2012-01-01T23:59:59.000Z

475

A generalized interface module for the coupling of spatial kinetics and thermal-hydraulics codes  

SciTech Connect (OSTI)

A generalized interface module has been developed for the coupling of any thermal-hydraulics code to any spatial kinetics code. The coupling scheme was designed and implemented with emphasis placed on maximizing flexibility while minimizing modifications to the respective codes. In this design, the thermal-hydraulics, general interface, and spatial kinetics codes function independently and utilize the Parallel Virtual Machine software to manage cross-process communication. Using this interface, the USNRC version of the 3D neutron kinetics code, PARCX, has been coupled to the USNRC system analysis codes RELAP5 and TRAC-M. RELAP5/PARCS assessment results are presented for two NEACRP rod ejection benchmark problems and an NEA/OECD main steam line break benchmark problem. The assessment of TRAC-M/PARCS has only recently been initiated, nonetheless, the capabilities of the coupled code are presented for a typical PWR system/core model.

Barber, D.A.; Miller, R.M.; Joo, H.G.; Downar, T.J. [Purdue Univ., West Lafayette, IN (United States). Dept. of Nuclear Engineering; Wang, W. [SCIENTECH, Inc., Rockville, MD (United States); Mousseau, V.A.; Ebert, D.D. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1999-03-01T23:59:59.000Z

476

Widening the Axion Window via Kinetic and St\\"uckelberg Mixings  

E-Print Network [OSTI]

We point out that kinetic and St\\"uckelberg mixings that are generically present in the low energy effective action of axions can significantly widen the window of axion decay constants. We show that an effective super-Planckian decay constant can be obtained even when the axion kinetic matrix has only sub-Planckian entries. Our minimal model involves only two axions, a St\\"uckelberg U(1) and a modest rank instanton generating non-Abelian group. Below the mass of the St\\"uckelberg U(1), there is only a single axion with a non-perturbatively generated potential. In contrast to previous approaches, the enhancement of the axion decay constant is not tied to the number of degrees of freedom introduced. We also discuss how kinetic mixings can lower the decay constant to the desired axion dark matter window. String theory embeddings of this scenario and their phenomenological features are briefly discussed.

Shiu, Gary; Ye, Fang

2015-01-01T23:59:59.000Z

477

Kinetic and thermodynamic study of the liquid-phase etherification of isoamylenes with methanol  

SciTech Connect (OSTI)

The kinetics and thermodynamics of liquid-phase etherification of isoamylenes with methanol on ion exchange catalyst (Amberlyst 15) were studied. Thermodynamic properties and rate data were obtained in a batch reactor operating under 1,013 kPa and 323--353 K. The kinetic equation was modeled following the Langmuir-Hinshelwood-Hougen-Watson formalism according to a proposed surface mechanism where the rate-controlling step is the surface reaction. According to the experimental results, methanol adsorbs very strongly on the active sites, covering them completely, and thus the reaction follows an apparent first-order behavior. The isoamylenes, according to the proposed mechanism, adsorb simultaneously on the same single active center already occupied by methanol, migrating through the liquid layer formed by the alcohol around the catalyst to react in the acidic site. From the proposed mechanism a model was suggested and the kinetic and thermodynamic parameters were obtained using nonlinear estimation methods.

Piccoli, R.L. (Copesul-Cia Petroquimica do Sul, Triunfo (Brazil)); Lovisi, H.R. (Petroflex-Ind. e Comercio, Duque de Caxias (Brazil))

1995-02-01T23:59:59.000Z

478

Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions  

SciTech Connect (OSTI)

Shock-driven implosions of thin-shell capsules, or “exploding pushers,” generate low-density, high-temperature plasmas in which hydrodynamic instability growth is negligible and kinetic effects can play an important role. Data from implosions of thin deuterated-plastic shells with hydroequivalent D{sup 3}He gas fills ranging from pure deuterium to pure {sup 3}He [H. G. Rinderknecht et al., Phys. Rev. Lett. 112, 135001 (2014)] were obtained to evaluate non-hydrodynamic fuel-shell mix mechanisms. Simulations of the experiments including reduced ion kinetic models support ion diffusion as an explanation for these data. Several additional kinetic mechanisms are investigated and compared to the data to determine which are important in the experiments. Shock acceleration of shell deuterons is estimated to introduce mix less than or comparable to the amount required to explain the data. Beam-target mechanisms are found to produce yields at most an order of magnitude less than the observations.

Rinderknecht, H. G.; Sio, H.; Li, C. K.; Zylstra, A. B.; Rosenberg, M. J.; Frenje, J. A.; Gatu Johnson, M.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Hoffman, N.; Kagan, G.; Molvig, K. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Betti, R.; Yu Glebov, V.; Meyerhofer, D. D.; Sangster, T. C.; Seka, W.; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Bellei, C.; Amendt, P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2014-05-15T23:59:59.000Z

479

Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas  

SciTech Connect (OSTI)

Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.

Qiu, Z. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China)] [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Chen, L. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China) [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Dept. Physics and Astronomy, Univ. of California, Irvine, California 92697-4575 (United States); Zonca, F. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China) [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati (Italy)

2014-02-15T23:59:59.000Z

480

Kinetics of the [beta]-[delta]phase transition in PBX9501.  

SciTech Connect (OSTI)

The initial step in the thermal decomposition of HMX is the solid state phase transition from the centrosymmetric beta form to the noncentrosymmetric delta form. The symmetry change makes the phase transition amenable to the application of second harmonic generation (SHG) as a probe of transition kinetics. We have used SHG to study the temperature dependence of the kinetics for unconfined PBX9501 and HMX. Spatially resolved SHG measurements have shown a nucleation and growth mechanism for the solid state phase transition. We have measured the transition rate as a function of temperature in order to obtain the activation energy and entropy of transition, which determine the phase transition kinetics. Additionally, we have observed temperature dependent reversion of the delta phase to beta phase and have fimd that we can control the reversion rate by controlling the cooling.

Smilowitz, L. B. (Laura B.); Henson, B. F. (Bryan F.); Asay, B. W. (Blaine W.); Dickson, P. M. (Peter M.); Robinson, J. M. (Jeanne M.)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "amber kinetics flywheel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo.  

SciTech Connect (OSTI)

The kinetic Monte Carlo method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length and time scales in between the atomic and continuum. We have completed a 3 year LDRD project with the goal of developing a parallel kinetic Monte Carlo capability and applying it to materials modeling problems of interest to Sandia. In this report we give an overview of the methods and algorithms developed, and describe our new open-source code called SPPARKS, for Stochastic Parallel PARticle Kinetic Simulator. We also highlight the development of several Monte Carlo models in SPPARKS for specific materials modeling applications, including grain growth, bubble formation, diffusion in nanoporous materials, defect formation in erbium hydrides, and surface growth and evolution.

Garcia Cardona, Cristina (San Diego State University); Webb, Edmund Blackburn, III; Wagner, Gregory John; Tikare, Veena; Holm, Elizabeth Ann; Plimpton, Steven James; Thompson, Aidan Patrick; Slepoy, Alexander (U. S. Department of Energy, NNSA); Zhou, Xiao Wang; Battaile, Corbett Chandler; Chandross, Michael Evan

2009-10-01T23:59:59.000Z

482

Kinetics of liquid phase catalytic dehydration of methanol to dimethyl ether  

SciTech Connect (OSTI)

This paper reports the kinetics of the liquid phase catalytic dehydration of methanol to dimethyl ether investigated. The experiments were carried out under low concentrations of feed in a 1-L stirred autoclave, according to a statistical experimental design. The inert liquid phase used for this investigation was a 78:22 blend of paraffinic and naphthenic mineral oils. A complete thermodynamic analysis was carried out in order to determine the liquid phase concentrations of the dissolved species. A global kinetic model was developed for the rate of dimethyl ether synthesis in terms of the liquid phase concentration of methanol. The activation energy of the reaction was found to be 18,830 cal/gmol. Based on a step-wise linear regression analysis of the kinetic data, the order of the reaction which gave the best fit was 0.28 with respect to methanol.

Gogate, M.R.; Lee, B.G.; Lee, S. (Akron Univ., OH (USA). Dept. of Chemical Engineering); Kulik, C.J. (Electric Power Research Inst., Palo Alto, CA (USA))

1990-01-01T23:59:59.000Z

483

Kinetics of extraction of alkylpyrocatecholates of europium and transplutonium elements from carbonate solutions  

SciTech Connect (OSTI)

The kinetics of extraction of alkylpyrocatecholates of europium, americium, curium, and californium from solutions containing 0.01-1.5 M potassium carbonate at pH = 10.5-13.2 has been studied. It has been shown that extraction slows down with increase of concentration of the complexing agent and accelerates with rise of pH. The chemical stage limiting the extraction rate seems to proceed on the aqueous phase slide. The conditions of americium(III) and curium(III) separation by extraction chromatography have been determined making use of the kinetic data.

Novikov, A.P.; Bukina, T.I.; Karalova, Z.K.; Myasoedov, B.F.

1987-11-01T23:59:59.000Z

484

Analytic results for Gaussian wave packets in four model systems: I. Visualization of the kinetic energy  

E-Print Network [OSTI]

Using Gaussian wave packet solutions, we examine how the kinetic energy is distributed in time-dependent solutions of the Schrodinger equation corresponding to the cases of a free particle, a particle undergoing uniform acceleration, a particle in a harmonic oscillator potential, and a system corresponding to an unstable equilibrium. We find, for specific choices of initial parameters, that as much as 90% of the kinetic energy can be localized (at least conceptually) in the `front half' of such Gaussian wave packets, and we visualize these effects.

R. W. Robinett; L. C. Bassett

2004-08-06T23:59:59.000Z

485

Dynamic first-order phase transition in kinetically constrained models of glasses  

E-Print Network [OSTI]

We show that the dynamics of kinetically constrained models of glass formers takes place at a first-order coexistence line between active and inactive dynamical phases. We prove this by computing the large-deviation functions of suitable space-time observables, such as the number of configuration changes in a trajectory. We present analytic results for dynamic facilitated models in a mean-field approximation, and numerical results for the Fredrickson-Andersen model, the East model, and constrained lattice gases, in various dimensions. This dynamical first-order transition is generic in kinetically constrained models, and we expect it to be present in systems with fully jammed states.

J. P. Garrahan; R. L. Jack; V. Lecomte; E. Pitard; K. van Duijvendijk; F. van Wijland

2007-05-22T23:59:59.000Z

486

Computational model, method, and system for kinetically-tailoring multi-drug chemotherapy for individuals  

DOE Patents [OSTI]

A method and system for tailoring treatment regimens to individual patients with diseased cells exhibiting evolution of resistance to such treatments. A mathematical model is provided which models rates of population change of proliferating and quiescent diseased cells using cell kinetics and evolution of resistance of the diseased cells, and pharmacokinetic and pharmacodynamic models. Cell kinetic parameters are obtained from an individual patient and applied to the mathematical model to solve for a plurality of treatment regimens, each having a quantitative efficacy value associated therewith. A treatment regimen may then be selected from the plurlaity of treatment options based on the efficacy value.

Gardner, Shea Nicole (San Leandro, CA)

2007-10-23T23:59:59.000Z

487

An experimental and kinetic modeling study of combustion of isomers of butanol  

SciTech Connect (OSTI)

A kinetic model is developed to describe combustion of isomers of butanol - n-butanol (n-C{sub 4}H{sub 9}OH), sec-butanol (sec-C{sub 4}H{sub 9}OH), iso-butanol (iso-C{sub 4}H{sub 9}OH), and tert-butanol (tert-C{sub 4}H{sub 9}OH). A hierarchical approach is employed here. This approach was previously found to be useful for developing detailed and semi-detailed mechanism of oxidation of various hydrocarbon fuels. This method starts from lower molecular weight compounds of a family of species and proceeds to higher molecular weight compounds. The pyrolysis and oxidation mechanisms of butanol isomers are similar to those for hydrocarbon fuels. Here, the development of the complete set of the primary propagation reactions for butanol isomers proceeds from the extension of the kinetic parameters for similar reactions already studied and recently revised for ethanol, n-propanol and iso-propanol. A detailed description leading to evaluation of rate constants for initiation reactions, metathesis reactions, decomposition reactions of alkoxy radicals, isomerization reactions, and four-center molecular dehydration reactions are given. Decomposition and oxidation of primary intermediate products are described using a previously developed semi-detailed kinetic model for hydrocarbon fuels. The kinetic mechanism is made up of more than 7000 reactions among 300 species. The model is validated by comparing predictions made using this kinetic model with previous and new experimental data on counterflow non-premixed flames of n-butanol and iso-butanol. The structures of these flames were measured by removing gas samples from the flame and analyzing them using a gas chromatograph. Temperature profiles were measured using coated thermocouples. The flame structures were measured under similar conditions for both fuels to elucidate the similarities and differences in combustion characteristics of the two isomers. The profiles measured include those of butanol, oxygen, carbon dioxide, water vapor, carbon monoxide, hydrogen, formaldehyde, acetaldehyde, and a number of C{sub 1}-C{sub 4} hydrocarbon compounds. The predictions of the kinetic model of flame structures of the two isomers were satisfactory. Validation of the kinetic model was also performed by comparing predictions with experimental data reported in the literature. These data were obtained in batch reactors, flow reactors, jet-stirred reactors, and shock tubes. In these configurations, combustion is not influenced by molecular transport. The agreement between the kinetic model and experimental data was satisfactory. (author)

Grana, Roberto; Frassoldati, Alessio; Faravelli, Tiziano; Ranzi, Eliseo [Dipartimento di Chimica, Materiali e Ingegneria Chimica, Politecnico di Milano, Milano (Italy); Niemann, Ulrich; Seiser, Reinhard; Cattolica, Robert; Seshadri, Kalyanasundaram [Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093-0411 (United States)

2010-11-15T23:59:59.000Z

488

Kinetic control of catalytic CVD for high quality graphene at low temperatures  

E-Print Network [OSTI]

Kinetic control of catalytic CVD for high quality graphene at low temperatures Robert S. Weatherup1, Bruno Dlubak1, Stephan Hofmann1,* 1Dept. of Engineering, University of Cambridge, Cambridge CB3 0FA, UK ABSTRACT Low temperature (~600°C... ), scalable chemical vapor deposition of high quality, uniform mono-layer graphene is demonstrated with a mapped Raman 2D/G ratio of >3.2, D/G ratio ? 0.08 and carrier mobilities of ? 3000cm2V-1s-1 on SiO2 support. A kinetic growth model for graphene CVD...

Weatherup, Robert S.; Dlubak, Bruno; Hofmann, Stephan

2012-10-01T23:59:59.000Z

489

The removal kinetics of industrial organic compounds in natural and synthetic systems  

E-Print Network [OSTI]

THE REMOVAL KINETICS OF INDUSTRIAL ORGANIC COMPOUNDS IN NATURAL AND SYNTHETIC SYSTEMS A Thesis by ALBERT C. PETRASEK, JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1970 Major Subject: Civil Engineering THE REMOVAL, KINETICS OF INDUSTRIAL ORGANIC COMPOUNDS IN NATURAL AND SYNTHETIC SYSTEMS A Thesis by ALBERT C. PETRASEK? dR ~ Approved as to style and content by a rman o omm t ee em er...

Petrasek, Albert Charles

1970-01-01T23:59:59.000Z

490

Origins of Chevron Rollovers in Non-Two-State Protein Folding Kinetics  

E-Print Network [OSTI]

Chevron rollovers of some proteins imply that their logarithmic folding rates are nonlinear in native stability. This is predicted by lattice and continuum G\\=o models to arise from diminished accessibilities of the ground state from transiently populated compact conformations under strongly native conditions. Despite these models' native-centric interactions, the slowdown is due partly to kinetic trapping caused by some of the folding intermediates' nonnative topologies. Notably, simple two-state folding kinetics of small single-domain proteins are not reproduced by common G\\=o-like schemes.

Huseyin Kaya; Hue Sun Chan

2003-05-20T23:59:59.000Z

491

Inverted List Kinetic Monte Carlo with Rejection ap-plied to Directed Self-Assembly of Epitaxial Growth  

E-Print Network [OSTI]

Inverted List Kinetic Monte Carlo with Rejection ap- plied to Directed Self-Assembly of Epitaxial of subsequently deposited material using a kinetic Monte Carlo algorithm that combines the use of inverted lists finding is that the relative performance of the inverted list algorithm improves with increasing system

Schulze, Tim

492

Corrosion Test of US Steels in Lead-Bismuth Eutectic (LBE) and Kinetic Modeling of Corrosion in LBE Systems  

E-Print Network [OSTI]

1 Corrosion Test of US Steels in Lead-Bismuth Eutectic (LBE) and Kinetic Modeling of Corrosion Federation Abstract We present the LBE corrosion test results of several US steels, and a preliminary analysis using a kinetic model for corrosion in LBE systems. Tube and rod specimens of austenitic steels

McDonald, Kirk

493

Understanding B Cell Kinetics in Humans via Heavy Water Labeling Using Nonlinear Mixed Effects Models and Stochastic Approximation EM algorithms  

E-Print Network [OSTI]

Understanding B Cell Kinetics in Humans via Heavy Water Labeling Using Nonlinear Mixed Effects, 2010 #12;Abstract Heavy water labeling is an endogenous labeling technique for measuring kinetics synthesized during cell division. Therefore, heavy water labeling is suitable for human studies and has been

Goldman, Steven A.

494

Kinetic and Related Models doi:10.3934/krm.2010.3.xx c American Institute of Mathematical Sciences  

E-Print Network [OSTI]

for the Schr¨odinger equation 62 5.1. The radiative transport limit 62 5.2. Limits for the wave function 64 5, Wave-wave correlation, Kinetic equation, Radiative transport equation, Fokker-Planck equation, Self-dependent Schr¨odinger 92 6. Kinetic models for correlations 98 6.1. Radiative transport equations

Bal, Guillaume

495

Aggregation Kinetics of Extended Porphyrin and Cyanine Dye Assemblies Robert F. Pasternack,* Cavan Fleming,* Stephanie Herring,* Peter J. Collings,  

E-Print Network [OSTI]

Aggregation Kinetics of Extended Porphyrin and Cyanine Dye Assemblies Robert F. Pasternack,* Cavan. The porphyrin's assembly kinetics, for example, displays an induction period unlike that of the cyanine dye. Two of an aggregation nucleus is rate-determining appears to be applicable; for the pseudoisocyanine dye, an equation

Collings, Peter

496

A Two-site Kinetic Mechanism for ATP Binding and Hydrolysis by E. coli Rep Helicase Dimer Bound to a  

E-Print Network [OSTI]

A Two-site Kinetic Mechanism for ATP Binding and Hydrolysis by E. coli Rep Helicase Dimer Bound that are coupled to ATP binding and hydrolysis. We have investi- gated the kinetic mechanism of ATP binding 17(Ã?2) sÃ?1 ; KM 3 mM), pre-steady-state studies provide evidence for a two-ATP site mechanism

Lohman, Timothy M.

497

Thermodynamics of Potassium Exchange in Soil Using a Kinetics Approach1 D. L. SPARKS AND P. M. JARDINEZ  

E-Print Network [OSTI]

Thermodynamics of Potassium Exchange in Soil Using a Kinetics Approach1 D. L. SPARKS AND P. M. JARDINEZ ABSTRACT Thermodynamics of potassium (K) exchange using a kinetics ap- proach was investigated that more energy was needed to desorb K than to adsorb K. Thermodynamic and pseudother- modynamic parameters

Sparks, Donald L.

498

Electron Acoustic Waves (EAW) EAW's are novel kinetic waves that exist only because nonlinear trapping turns off Landau damping.  

E-Print Network [OSTI]

Electron Acoustic Waves (EAW) EAW's are novel kinetic waves that exist only because nonlinear the particle distribution until a kinetic wave can exist at the driver frequency. The results are summarized in the figure on the right. The blue crosses and squares are linear Langmuir waves (called Trivelpiece

California at San Diego, University of

499

Long-term Hepatitis B Surface Antigen (HBsAg) Kinetics during Nucleoside/Nucleotide Analogue Therapy  

E-Print Network [OSTI]

-term Hepatitis B Surface Antigen (HBsAg) Kinetics during Nucleoside/Nucleotide Analogue Therapy: Finite Treatment regarding long-term HBsAg kinetics during treatment with nucleoside/nucleotide analogues is limited. The aim of the present study was to assess whether finite nucleoside/nucleotide analogue treatment duration could

Paris-Sud XI, Université de

500

Biochemistry 1994,33, 14565-14578 14565 Kinetic Mechanism of Adenine Nucleotide Binding to and Hydrolysis by the  

E-Print Network [OSTI]

Biochemistry 1994,33, 14565-14578 14565 Kinetic Mechanism of Adenine Nucleotide Binding nucleotides, we have investigated the kinetic mechanism of adenine nucleotide binding to the Rep monomer not significantly change the intrinsic tryptophan fluorescence, the binding of the fluorescent nucleotide analogue

Lohman, Timothy M.