National Library of Energy BETA

Sample records for amazonia lba lba-eco

  1. Impact of biomass burning aerosol on the monsoon circulation transition over Amazonia

    SciTech Connect (OSTI)

    Zhang, Y.; Fu, Rong; Yu, Hongbin; Qian, Yun; Dickinson, Robert; Silva Dias, Maria Assuncao F.; da Silva Dias, Pedro L.; Fernandes, Katia

    2009-05-30

    Ensemble simulations of a regional climate model (RegCM3) forced by aerosol radiative forcing suggest that biomass burning aerosols can work against the seasonal monsoon circulation transition, thus re-enforce the dry season rainfall pattern for Southern Amazonia. Strongly absorbing smoke aerosols warm and stabilize the lower troposphere within the smoke center in southern Amazonia (where aerosol optical depth > 0.3). These changes increase the surface pressure in the smoke center, weaken the southward surface pressure gradient between northern and southern Amazonia, and consequently induce an anomalous moisture divergence in the smoke center and an anomalous convergence occurs in northwestern Amazonia (5S-5N, 60W-40 70W). The increased atmospheric thermodynamic stability, surface pressure, and divergent flow in Southern Amazonia may inhibit synoptic cyclonic activities propagated from extratropical South America, and re-enforce winter-like synoptic cyclonic activities and rainfall in southeastern Brazil, Paraguay and northeastern Argentina.

  2. ARM-WPac-MSEbin-poster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amazonia, suggesting further improvements are needed. Tropical Oceanic Convection CRM Test Case Interesting features of MSE-binned results and parameterization implications. A...

  3. ARM - Feature Stories and Releases Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GOAMAZON field campaign proposal in 2010, she received approval for IARA under the umbrella of the Large-scale Biosphere Atmosphere Experiment in Amazonia and initiated...

  4. Sub-micrometre Particulate Matter is Primarily in Liquid Form over Amazon Rainforests

    SciTech Connect (OSTI)

    Bateman, Adam P.; Gong, Z. H.; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, A.; Rizzo, L. V.; Souza, Rodrigo A.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Particulate matter (PM) occurs in the Earth’s atmosphere both in liquid and non-liquid forms. The physical state affects the available physical and chemical mechanisms of growth and reactivity, ultimately affecting the number, size, and composition of the atmospheric particle population. Herein, the physical state, including the response to relative humidity (RH), was investigated on-line and in real time for PM (< 1 μm) over the tropical rain forest of central Amazonia during both the wet and dry seasons of 2013. The results show that the PM was liquid for RH > 80% across 296 to 300 K. These results, in conjunction with the distributions of RH and temperature in Amazonia, imply that near-surface submicron PM in Amazonia is liquid most of the time. The observations are consistent with laboratory experiments showing that PM produced by isoprene photo-oxidation is liquid across these meteorological conditions. The findings have implications for the mechanisms of new particle production in Amazonia, the growth of submicron particles and hence dynamics of the cloud life cycle, and the sensitivity of these processes to anthropogenic activities. An approach for inclusion of particle physical state in chemical transport models is presented.

  5. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  6. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 2, Greenhouse gas emissions from deforestration in the Brazilian Amazon

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J.; Fearnside, P.M.

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as ``committed carbon,`` or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil`s use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  7. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    SciTech Connect (OSTI)

    Makundi, W.; Sathaye, J. ); Fearnside, P.M. , Manaus, AM . Departmento de Ecologia)

    1992-08-01

    Deforestation in Brazilian Amazonia in 1990 was releasing approximately 281--282 X 10{sup 6} metric tons (MT) of carbon on conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as committed carbon,'' or the carbon released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. To the extent that deforestation rates have remained constant, current releases from the areas deforested in previous years will be equal to the future releases from the areas being cleared now. Considering the quantities of carbon dioxide, carbon monoxide, methane, nitrous oxide, NO{sub x} and non-methane hydrocarbons released raises the impact by 22--37%. The relative impact on the greenhouse effect of each gas is based on the Intergovernmental Panel on Climate Change (IPCC) calculations over a 20-year time period (including indirect effects). The six gases considered have a combined global warming impact equivalent to 343 to 386 million MT of C0{sub 2}-equivalent carbon, depending on assumptions regarding the release of methane and other gases from the various sources such as burning and termites. These emissions represent 7--8 times the 50 million MT annual carbon release from Brazil's use of fossil fuels, but bring little benefit to the country. Stopping deforestation in Brazil would prevent as much greenhouse emission as tripling the fuel efficiency of all the automobiles in the world. The relatively cheap measures needed to contain deforestation, together with the many complementary benefits of doing so, make this the first priority for funds intended to slow global warming.

  8. Primary and secondary organics in tropical Amazonian rainforest aerosols: Chiral analysis of 2-methyltetrols

    SciTech Connect (OSTI)

    Gonzalez, Nelida; Borg-Karlson, Anna-Karin; Artaxo, Paulo; Guenther, Alex B.; Krejci, R.; Noziere, Barbara; Noone, Kevin

    2014-06-01

    This work presents the application of a newly developed method to facilitate the distinction between primary and secondary organic compounds in ambient aerosols based on their chiral analysis. The organic constituents chosen for chiral analysis are the four stereomers of the 2-methyltetrols, (2R,3S)- and (2S,3R)- methylerythritol and (2S,3S)- and (2R,3R)- methylthreitol. Ambient PM10 aerosol samples were collected between June 2008 and June 2009 near Manaus, Brazil, in a remote tropical rainforest environment of central Amazonia. The samples were analyzed for the presence of these four stereomers because qualitatively, in a previous study, they have been demonstrated to have partly primary origins. Thus the origin of these compounds may be primary and secondary from the biosynthesis and oxidation processes of isoprene within plants and also in the atmosphere. Using authentic standards, the quantified concentrations were in average 78.2 and 72.8 ng m-3 for (2R,3S)- and (2S,3R)- methylerythritol and 3.1 and 3.3 ng m-3 for (2S,3S)- and (2R,3R)- methylthreitol during the dry season and 7.1, 6.5, 2.0, and 2.2 ng m-3 during the wet season, respectively. Furthermore, these compounds were found to be outside the confidence interval for racemic mixtures (enantiomeric fraction, Ef = 0.5 -0.01) in nearly all the samples, with deviations of up to 32 % (Ef = 0.61) for (2R,3S)-methylerythritol and 47 % (Ef = 0.65) for (2S,3S)-methylthreitol indicating (99% confidence level) biologically-produced 2-methyltetrols. The minimum primary origin contribution ranged between 0.19 and 29.67 ng m-3 for the 2-methylerythritols and between 0.15 and 1.2 ng m-3 for the 2-methylthreitols. The strong correlation of the diatereomers (racemic 2-methylerythritol and 2-methylthreitol) in the wet season implied a secondary origin. Assuming the maximum secondary contribution in the dry season, the secondary fraction in the wet season was 81-99 % and in the dry season, 10 - 95 %. Nevertheless, from the total 2-methyltetrol mass, the secondary mass represented 31 % whereas the primary 69 %. These results could have been expected for PM10 aerosols and might be different for fine particles at the same site. In addition, correlations with isoprene emission estimates for this site only showed an anti-correlation with 2-methylthreitol suggesting their direct emission from biological activity. The present study reinforces the importance of the analysis of chiral organic compounds to correctly assess the contribution of primary biogenic emissions and isoprene oxidation products to biogenic secondary organic aerosol.